WorldWideScience

Sample records for side heat transfer

  1. Heat transfer from two-side heated helical channels

    International Nuclear Information System (INIS)

    Shimonis, V.; Ragaishis, V.; Poshkas, P.

    1995-01-01

    Experimental results are presented on the heat transfer from two-side heated helical channels to gas (air) flows. The study covered six configurations and wide ranges of geometrical (D/h=5.5 to 84.2) and performance (Re=10 3 to 2*10 5 ) parameters. Under the influence of Re and of the channel curvature, the heat transfer from both the convex and the concave surfaces for two-side heating (q w1 ≅ q w2 ) is augmented by 20-30% over one-side heating. Improved relations to predict the critical values of Reynolds Re cr1 and Re cr2 are suggested. They enable more exact predictions of the heat transfer from convex surface in transient flows for one-side heating. The relation for annular channels is suggested for the turbulent heat transfer from the convex and concave surfaces of two-side heated helical channels. It can be adapted by introducing earlier expresions for one-side heated helical channels. (author). 6 refs., 2 tabs., 3 figs

  2. Heat transfer modeling of double-side arc welding

    International Nuclear Information System (INIS)

    Sun Junsheng; Wu Chuansong

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  3. Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger

    International Nuclear Information System (INIS)

    Xue Ruojun; Deng Chengcheng; Li Chaojun; Wang Mingyuan

    2012-01-01

    In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)

  4. Study on Heat Transfer Characteristics of One Side Heated Vertical Channel Applied as Vessel Cooling System

    International Nuclear Information System (INIS)

    Kuriyama, Shinji; Takeda, Tetsuaki; Funatani, Shumpei

    2014-01-01

    The inherent properties of the Very-High-Temperature Reactor facilitate the design of the VHTR with high degree of passive safe performances, compared to other type of reactors. However; it is still not clear if the VHTR can maintain a passive safe function during the severe accident, or what would be a design criterion to guarantee the VHTR with the high degree of passive safe performances during the accidents. In the Very High Temperature Reactor (VHTR) which is a next generation nuclear reactor system, ceramics and graphite are used as a fuel coating material and a core structural material, respectively. Even if the depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change slowly. This is because the thermal capacity of the core is so large. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel (RPV). This study is to develop the passive cooling system for the VHTR using the vertical channel inserting porous materials. The objective of this study is to investigate heat transfer characteristics of natural convection of a one-side heated vertical channel inserting the porous materials with high porosity. In order to obtain the heat transfer and fluid flow characteristics of a vertical channel inserting porous material, we have also carried out a numerical analysis using the commercial CFD code. From the analytical results obtained in the natural convection cooling, an amount of removed heat enhanced inserting the copper wire. It was found that an amount of removed heat inserting the copper wire (porosity = 0.9972) was about 10% higher than that without the copper wire. This paper describes a thermal performance of the one-side heated vertical channel inserting copper wire with high porosity. (author)

  5. Enhanced heat transfer with corrugated flow channel in anode side of direct methanol fuel cells

    International Nuclear Information System (INIS)

    Heidary, H.; Abbassi, A.; Kermani, M.J.

    2013-01-01

    Highlights: • Effect of corrugated flow channel on the heat exchange of DMFC is studied. • Corrugated boundary (except rectangular type) increase heat transfer up to 90%. • Average heat transfer in rectangular-corrugated boundary is less than straight one. • In Re > 60, wavy shape boundary has highest heat transfer. • In Re < 60, triangular shape boundary has highest heat transfer. - Abstract: In this paper, heat transfer and flow field analysis in anode side of direct methanol fuel cells (DMFCs) is numerically studied. To enhance the heat exchange between bottom cold wall and core flow, bottom wall of fluid delivery channel is considered as corrugated boundary instead of straight (flat) one. Four different shapes of corrugated boundary are recommended here: rectangular shape, trapezoidal shape, triangular shape and wavy (sinusoidal) shape. The top wall of the channel (catalyst layer boundary) is taken as hot boundary, because reaction occurs in catalyst layer and the bottom wall of the channel is considered as cold boundary due to coolant existence. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique (1972). A wide spectrum of numerical studies is performed over a range of various shape boundaries, Reynolds number, triangle block number, and the triangle block amplitude. The performed parametric studies show that corrugated channel with trapezoidal, triangular and wavy shape enhances the heat exchange up to 90%. With these boundaries, cooling purpose of reacting flow in anode side of DMFCs would be better than straight one. Also, from the analogy between the heat and mass transfer problems, it is expected that the consumption of reacting species within the catalyst layer of DMFCs enhance. The present work provides helpful guidelines to the bipolar plate manufacturers of DMFCs to considerably enhance heat transfer and performance of the anode side of DMFC

  6. Heat transfer in composite materials disintegrating under high-rate one-sided heating

    Science.gov (United States)

    Isaev, K. B.

    1993-12-01

    A mathematical model of heat transfer in heat-protective materials is suggested with the proviso of a squarelaw temperature depence of the material density in the zone of thermal destruction of its binder. The influence of certain factors on the experimental temperature field and thermal conductivity of a glass-reinforced epoxy plastic material is shown.

  7. Supercritical heat transfer in an annular channel with two-sided heaing

    International Nuclear Information System (INIS)

    Sergeev, V.V.; Remizov, O.V.; Gal'chenko, Eh.F.

    1986-01-01

    The paper deals with experimental inestigation into worsening of heat transfer at forced up flow in steam-water mixture in a vertical annular channel with two-sided heating and development of technique for calculation of supercritical heat exchange in this channel. Bench-scale experiments are carried out at high-pressure at mass rates of the coolant equal to 300-865 kg/(m 2 x s), pressure of 9.8-17.8 MPa and heat flux on the internal surface - 20-400 kW/m 2 , on the external surface - 35-450 kW/m 2 . Technique for calculation of supercritical heat exchange in channels with one- and two-sided heating is suggested. Analysis of the obtained experimental data permits to determine conditions for arising departure nucleate boiling on the internal and external surfaces and on both surfaces simultaneously. It is concluded that the suggested technique of calculation adequately reflects the effect of regime parameters of coolant flow on temperature regime of heat transferring surfaces in the supercritical area

  8. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 4

    International Nuclear Information System (INIS)

    Matsushita, Hitoshi; Nakayama, Wataru; Yanagida, Takehiko; Kudo, Akio.

    1987-01-01

    Refering to the results of our previous works, a procedure for estimating the distribution of heat flux in shell-and-tube heat exchangers is proposed. The steam generator used in a high temperature reactor plant is taken up as the subject of analysis. Particular attention is paid to critical conditions for burnout and the strength of material in high temperature conditions. It is found that the distribution of heat transfer coefficient on the shell-side is crucial to the occurrence of burnout in the tubes. The use of a relatively large inlet nozzle (the ratio of its diameter to the shell is roughly half) is recommended. A low level of thermal stress on heat transfer tubes can be realized by the adoption of a relatively thin 2.25 Cr-1 Mo Steel tube wall of 1.24 mm thickness. (author)

  9. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  10. A survey of gas-side fouling in industrial heat-transfer equipment

    Science.gov (United States)

    Marner, W. J.; Suitor, J. W.

    1983-11-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  11. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber

    Science.gov (United States)

    Quentmeyer, Richard J.; Roncace, Elizabeth A.

    1993-01-01

    An experimental investigation was conducted to determine the hot-gas-side heat transfer characteristics for a liquid-hydrogen-cooled, subscale, plug-nozzle rocket test apparatus. This apparatus has been used since 1975 to evaluate rocket engine advanced cooling concepts and fabrication techniques, to screen candidate combustion chamber liner materials, and to provide data for model development. In order to obtain the data, a water-cooled calorimeter chamber having the same geometric configuration as the plug-nozzle test apparatus was tested. It also used the same two showerhead injector types that were used on the test apparatus: one having a Rigimesh faceplate and the other having a platelet faceplate. The tests were conducted using liquid oxygen and gaseous hydrogen as the propellants over a mixture ratio range of 5.8 to 6.3 at a nominal chamber pressure of 4.14 MPa abs (600 psia). The two injectors showed similar performance characteristics with the Rigimesh faceplate having a slightly higher average characteristic-exhaust-velocity efficiency of 96 percent versus 94.4 percent for the platelet faceplate. The throat heat flux was 54 MW/m(sup 2) (33 Btu/in.(sup 2)-sec) at the nominal operating condition, which was a chamber pressure of 4.14 MPa abs (600 psia), a hot-gas-side wall temperature of 730 K (1314 R), and a mixture ratio of 6.0. The chamber throat region correlation coefficient C(sub g) for a Nusselt number correlation of the form Nu =C(sub g)Re(sup 0.8)Pr(sup 0.3) averaged 0.023 for the Rigimesh faceplate and 0.026 for the platelet faceplate.

  12. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  13. Heat transfer and pressure drop of a gasket-sealed plate heat exchanger depending on operating conditions across hot and cold sides

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Hyouck Ju [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-05-15

    In a gas engine based cogeneration system, heat may be recovered from two parts: Jacket water and exhaust gas. The heat from the jacket water is often recovered using a plate-type heat exchanger, and is used for room heating and/or hot water supply applications. Depending on the operating conditions of an engine and heat recovery system, there may be an imbalance in the flow rate and supply pressure between the engine side and the heat-recovery side of the heat exchanger. This imbalance causes deformation of the plate, which affects heat transfer and pressure drop characteristics. In the present study, the heat transfer and pressure drop inside a heat exchanger were investigated under varying hot-side and cold-side operating conditions. Thermal efficiency of the plate heat exchanger decreases up to 30% with an operating engine load of 50%. A correction factor for the pressure drop correlation is proposed to account for the deformation caused by an imbalance between the two sides of a heat exchanger.

  14. Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane

    National Research Council Canada - National Science Library

    Rutledge, James

    2004-01-01

    An experimental study was conducted in a simulated three vane linear cascade to determine the effects of surface roughness and film cooling on the heat transfer coefficient distribution in the region...

  15. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger

    International Nuclear Information System (INIS)

    Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir

    2012-01-01

    Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.

  16. A new method to calculate pressure drop and shell-side heat transfer coefficient in a shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    Baptista Filho, B.D.; Konuk, A.A.

    1981-01-01

    A new method to calculate pressure drop (Δp) and shell-side heat transfer coefficient (h sub(c)) in a shell-and-tube heat exchanger with segmental baffles is presented. The method is based on the solution of the equations of conservation of mass and momentum between two baffles. The calculated distributions of pressure and velocities given respectively, Δp and h sub(c). The values of Δp and h sub(c) are correlated for a given geometry whit the shell side fluid properties and flow rate. The calculated and experimental results agree very well for a U-Tube heat exchanger. (Author) [pt

  17. Deformation and Heat Transfer on Three Sides Protected Beams under Fire Accident

    Science.gov (United States)

    Imran, M.; Liew, M. S.; Garcia, E. M.; Nasif, M. S.; Yassin, A. Y. M.; Niazi, U. M.

    2018-04-01

    Fire accidents are common in oil and gas industry. The application of passive fire protection (PFP) is a costly solution. The PFP is applied only on critical structural members to optimise project cost. In some cases, beams cannot be protected from the top flange in order to accommodate for the placement of pipe supports and grating. It is important to understand the thermal and mechanical response of beam under such condition. This paper discusses the response of steel beam under ISO 834 fire protected, unprotected and three sides protected beams. The model validated against an experimental study. The experimental study has shown good agreement with FE model. The study revealed that the beams protected from three sides heat-up faster compare to fully protected beam showing different temperature gradient. However, the affects load carrying capacity are insignificant under ISO 834 fire.

  18. Heat transfer and pressure measurements for the SSME fuel-side turbopump

    Science.gov (United States)

    Dunn, Michael G.

    1990-01-01

    A measurement program is currently underway at the Calspan-UB Research Center (CUBRC) which utilizes the Rocketdyne two-state fuel-side turbine with the engine geometric configuration reproduced. This is a full two-state turbine for which the vane rows and the blades are the engine hardware currently used on the Space Shuttle turbopump. A status report is provided for the experimental program and a description of the instrumentation and the measurements to be performed. The specific items that will be illustrated and described are as follows: (1) the gas flow path, (2) the heat-flux instrumentation, (3) the surface-pressure instrumentation, (4) the experimental conditions for which data will be obtained, and (5) the specific measurements that will be performed.

  19. Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-Newtonian power law fluids

    International Nuclear Information System (INIS)

    Lamsaadi, M.; Naimi, M.; Hasnaoui, M.

    2006-01-01

    A combined analytical and numerical study is conducted for two dimensional, steady state, buoyancy driven flows of non-Newtonian power law fluids confined in a shallow rectangular cavity submitted to uniform fluxes of heat along both its short vertical sides, while its long horizontal walls are considered adiabatic. The effect of the non-Newtonian behavior on the fluid flow and heat transfer characteristics is examined. An approximate theoretical solution is developed on the basis of the parallel flow assumption and validated numerically by solving the full governing equations

  20. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    Energy Technology Data Exchange (ETDEWEB)

    Lis, J [Central Electricity Research Laboratories, Leatherhead, Surrey (United Kingdom)

    1984-07-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10{sup 4} to 3x10{sup 5}. Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  1. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    International Nuclear Information System (INIS)

    Lis, J.

    1984-01-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10 4 to 3x10 5 . Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  2. Experimental study on the effects of channel gap size on mixed convection heat transfer characteristics in vertical rectangular channels heated from both sides

    International Nuclear Information System (INIS)

    Sudo, Y.; Kaminaga, M.

    1990-01-01

    The effects of channel gap size on mixed forced and free convective heat transfer characteristics were experimentally investigated for water flowing near atmospheric pressure in a 750 mm long and 50 mm wide channel heated from both sides. The channel gap sizes investigated were 2.5, 6, 18 and 50 mm. Experiments were carried out for both aiding and opposing forced convective flows with a Reynolds number Re x of 4x10 to 6x10 6 and a Grashof number Gr x of 2x10 4 to 6x10 11 , where the distance x from the inlet of the channel is adopted as the characteristic length in Re x and Gr x . As for the results, the following were revealed for the parameters ranges investigated in this study. (1) When the dimensionless parameter, Gr x /Re x 21/8 Pr 1/2 is less than 10 -4 , the flow shows the nature of forced convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (2) When Gr x /Re x 21/8 Pr 1/2 is larger than 10 -2 , the flow shows the nature of free convective heat transfer for a channel with any channel gap size in both aiding and opposing flows. (3) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size equal to or larger than 6 mm, the heat transfer coefficients in both aiding and opposing flows become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection, and can be expressed in simple forms with a combination of Gr x /Re x 21/8 Pr 1/2 and the previous correlation for either the pure turbulent forced convection or the free convection along a flat plate. (4) When Gr x /Re x 21/8 Pr 1/2 is between 10 -4 and 10 -2 for the channel with a channel gap size of 2.5 mm, the heat transfer coefficients in both aiding and opposing flows also become, on the average, higher than those predicted by the previous correlations for either the pure turbulent forced convection or the pure free convection. (orig./GL)

  3. Heat transfer: Pittsburgh 1987

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  4. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  5. Development of tube rupture evaluation code for FBR steam generator (II). Modification of heat transfer model in sodium side

    International Nuclear Information System (INIS)

    Hamada, H.; Kurihara, A.

    2003-05-01

    The thermal effect of sodium-water reaction jet on neighboring heat transfer tubes was examined to rationally evaluate the structural integrity of the tube for overheating rupture under a water leak in an FBR steam generator. Then, the development of new heat transfer model and the application analysis were carried out. Main results in this paper are as follows. (1) The evaluation method of heat flux and heat transfer coefficient (HTC) on the tube exposed to reaction jet was developed. By using the method, it was confirmed that the heat flux could be realistically evaluated in comparison with the previous method. (2) The HTC between reaction jet and the tube was theoretically examined in the two-phase flow model, and new heat transfer model considering the effect of fluid temperature and cover gas pressure was developed. By applying the model, a tentative experimental correlation was conservatively obtained by using SWAT-1R test data. (3) The new model was incorporated to the Tube Rupture Evaluation Code (TRUE), and the conservatism of the model was confirmed by using sodium-water reaction data such as the SWAT-3 tests. (4) In the application analysis of the PFR large leak event, there was no significant difference of calculation results between the new model and previous one; the importance of depressurization in the tube was confirmed. (5) In the application analysis of the Monju evaporator, it was confirmed that the calculation result in the previous model would be more conservative than that in the new one and that the maximum cumulative damage of 25% could be reduced in the new model. (author)

  6. Analysis of Heat Transfer

    International Nuclear Information System (INIS)

    2003-08-01

    This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.

  7. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  8. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  9. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  10. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  11. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  12. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    Science.gov (United States)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  13. Conduction and convection heat transfer characteristics of water-based au nanofluids in a square cavity with differentially heated side walls subjected to constant temperatures

    Directory of Open Access Journals (Sweden)

    Ternik Primož

    2014-01-01

    Full Text Available The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles’ volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid’s (i.e. water Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.

  14. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  15. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  16. Heat transfer II essentials

    CERN Document Server

    REA, The Editors of

    1988-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.

  17. Advances in heat transfer

    CERN Document Server

    Hartnett, James P; Cho, Young I; Greene, George A

    2001-01-01

    Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

  18. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  19. First Observation of the High Field Side Sawtooth Crash and Heat Transfer during Driven Reconnection Processes in Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z

    2005-01-01

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an 'X-point' reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic

  20. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  1. Analytical heat transfer

    CERN Document Server

    Han, Je-Chin

    2012-01-01

    … it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden

  2. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  3. Introduction to heat transfer

    International Nuclear Information System (INIS)

    Weisman, J.

    1983-01-01

    Heat may be defined as that form of energy which spontaneously flows between two bodies, or two regions of a body, by virtue of a temperature difference. The second law of thermodynamics tells us that we cannot have heat flow from a low temperature to high temperature without doing work. Heat flows spontaneously from a high temperature to a low temperature region. Thermodynamics, which is concerned with equilibrium states, cannot tell us anything about the rate of heat flow in the presence of a finite temperature difference. It is to the discipline of heat transfer to which we must turn for this answer

  4. A heat transfer textbook

    CERN Document Server

    Lienhard, John H

    2011-01-01

    This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins

  5. Elementary heat transfer analysis

    CERN Document Server

    Whitaker, Stephen; Hartnett, James P

    1976-01-01

    Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra

  6. Heat and mass transfer

    CERN Document Server

    Karwa, Rajendra

    2017-01-01

    This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...

  7. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  8. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  9. Engineering heat transfer

    International Nuclear Information System (INIS)

    Welty, J.R.

    1974-01-01

    The basic concepts of heat transfer are covered with special emphasis on up-to-date techniques for formulating and solving problems in the field. The discussion progresses logically from phenomenology to problem solving, and treats numerical, integral, and graphical methods as well as traditional analytical ones. The book is unique in its thorough coverage of the fundamentals of numerical analysis appropriate to solving heat transfer problems. This coverage includes several complete and readable examples of numerical solutions, with discussions and interpretations of results. The book also contains an appendix that provides students with physical data for often-encountered materials. An index is included. (U.S.)

  10. Heat transfer. V. 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume contains the 4 key-note lectures and 83 of the 148 papers presented at the 3rd UK National Conference on Heat Transfer. The papers are grouped under the following broad headings: boiling and condensation; heat exchangers; refrigeration and air-conditioning; natural convection; process safety and nuclear reactors; two-phase flow; post dry-out; combustion, radiation and chemical reaction. Separate abstracts have been prepared for 13 papers of relevance to nuclear reactors. (UK)

  11. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  12. HEAT TRANSFER METHOD

    Science.gov (United States)

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  13. Heat Transfer Analogies

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1965-11-15

    This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table.

  14. Heat Transfer Analogies

    International Nuclear Information System (INIS)

    Bhattacharyya, A.

    1965-11-01

    This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table

  15. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  16. Nucleate boiling heat transfer

    International Nuclear Information System (INIS)

    Saiz Jabardo, J.M.

    2009-01-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 μm and 10.5 μm ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 μm). (author)

  17. Heat transfer bibliography: russian works

    Energy Technology Data Exchange (ETDEWEB)

    Luikov, A V

    1965-02-01

    This bibliography of recent Russian publications in heat transfer is divided into the following categories: (1) books; (2) general; (3) experimental methods; (4) analytical calculation methods; (5) thermodynamics; (6) transfer processes involving phase conversions; ((7) transfer processes involving chemical conversions; (8) transfer processes involving very high velocities; (9) drying processes; (10) thermal properties of various materials, heat transfer agents and their determination methods; (11) high temperature physics and magneto- hydrodynamics; and (12) transfer processes in technological apparatuses. (357 refs.)

  18. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  19. Heat transfer probe

    Science.gov (United States)

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  20. On the heat transfer correlation for membrane distillation

    International Nuclear Information System (INIS)

    Wang, Chi-Chuan

    2011-01-01

    Research highlights: → Heat transfer coefficients applicable for membrane distillation. → Data reduction for heat transfer coefficient for membrane distillation method. → Uncertainty of permeate side due to large magnitude of membrane resistance. → Increase accuracy of heat transfer coefficient by modified Wilson plot technique. -- Abstract: The present study examines the heat transfer coefficients applicable for membrane distillation. In the available literatures, researchers often adopt some existing correlations and claim the suitability of these correlations to their test data or models. Unfortunately this approach is quite limited and questionable. This is subject to the influences of boundary conditions, geometrical configurations, entry flow conditions, as well as some influences from spacer or support. The simple way is to obtain the heat transfer coefficients from experimentation. However there is no direct experimental data for heat transfer coefficients being reported directly from the measurements. The main reasons are from the uncertainty of permeate side and of the comparatively large magnitude of membrane resistance. Additional minor influence is the effect of mass transfer on the heat transfer performance. In practice, the mass transfer effect is negligible provided the feed side temperature is low. To increase the accuracy of the measured feed side heat transfer coefficient, it is proposed in this study to exploit a modified Wilson plot technique. Through this approach, one can eliminate the uncertainty from permeate side and reduce the uncertainty in membrane to obtain a more reliable heat transfer coefficients at feed side from the experimentation.

  1. Supercritical heat transfer in an annular channel with external heating

    International Nuclear Information System (INIS)

    Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.

    1980-01-01

    Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1

  2. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  3. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  4. Heat transfer and fire spread

    Science.gov (United States)

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  5. Heat transfer physics

    CERN Document Server

    Kaviany, Massoud

    2014-01-01

    This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum tr...

  6. Numerical study of heat transfer characteristics in BOG heat exchanger

    Science.gov (United States)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  7. Heat transfer in an asymmetrically heated duct, 2

    International Nuclear Information System (INIS)

    Satoh, Isao; Kurosaki, Yasuo

    1986-01-01

    The objective of this article is to study theoretically and experimentally the effects of nonuniform heating on turbulent heat transfer characteristics for flow in a horizontal rectangular duct ; a vertical side wall was uniformly heated, and the other wall were insulated. In our theoretical approach, the zero-equation model for turbulent eddy viscosity was employed. The effects of mesh size of finite difference on the calculation results were examined, and some refined compensation for wall temperatures and wall shear stresses by no use of fine mesh were proposed to reduce the calculation time. The heat transfer coefficients in thermally developing region for a nonuniformly heated duct obtained from numerical solutions are larger than the one for uniformly heated case. The buoyancy effects on heat transfer were evaluated. However, it was seen that the secondary flow due to buoyancy force was hardly expected to enhance heat transfer in a turbulent duct flow. Experiments were performed to measure the velocity and temperature profiles in a turbulent duct flow with a nonuniform heated wall. The experimental results were in good agreement with the theoretical ones. (author)

  8. Influence of presence of inclined centered baffle and corrugation frequency on natural convection heat transfer flow of air inside a square enclosure with corrugated side walls

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Salam Hadi; Jabbar, Mohammed Yousif; Mohamad, Ahmad Saddy [Mechanical Engineering Department, College of Engineering, Babylon University, Babylon Province (Iraq)

    2011-09-15

    The main objective of this study is to investigate the effect of presence of insulated inclined centered baffle and corrugation frequency on the steady natural convection in a sinusoidal corrugated enclosure. The present study is based on such a configuration where the two vertical sinusoidal walls are maintained at constant low temperature whereas a constant heat flux source whose length is 80% of the width of the enclosure is discretely embedded in the bottom wall. The remaining parts of the bottom wall and the top wall are adiabatic. The finite volume method has been used to solve the governing Navier-Stokes and the energy conservation equations of the fluid medium in the enclosure in order to investigate the effects of baffle inclination angles, corrugation frequencies and Grashof numbers on the fluid flow and heat transfer in the enclosure. The values of the governing parameters are the Grashof number Gr (10{sup 3}-10{sup 6}), the corrugation frequencies CF (1, 2 and 3), baffle inclination angles (0 deg. {<=} {phi} {<=} 150 deg.) and Prandtl number Pr (0.71). Results are presented in the form of streamline and isotherm plots. The results of this investigation are illustrated that the average Nusselt number increases with increase in both the Grashof number and corrugation frequency for different baffle inclination angles and the presence of inclined baffle and increasing the corrugation frequency have significant effects on the average Nusselt numbers, streamlines and isotherms inside the enclosure. The obtained numerical results have been compared with literature ones, and it gives a reliable agreement. (authors)

  9. Heat transfer pipe shielding device for heat exchanger

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1991-01-01

    The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)

  10. Heat Transfer Basics and Practice

    CERN Document Server

    Böckh, Peter

    2012-01-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  11. Heat transfer for plasma facing components

    International Nuclear Information System (INIS)

    Boyd, R.D.; Meng, X.; Maughan, H.

    1995-01-01

    Although the high heat flux requirements for plasma-facing components have been reduced drastically from 40.0 MW/m 2 to near 10.0 MW/m 2 , there are still some refinements needed. This paper highlights: (1) recent accomplishments and pinpoints new thermal solutions and problem areas of immediate concern to the development of plasma-facing components, and (2) next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically the near-term thermal hydraulic problems entail: (1) generating an appropriate data base to insure the development of single-side heat flux correlations; and (2) adapting the existing vast uniform heat flux literature to the case of non-uniform heat flux distributions found in plasma facing components in fusion reactors. Results are presented for the latter task which includes: (a) an accurate subcooled flow boiling curve correlation for the partial nucleate boiling regime which can be adapted using previously proposed correlations relating single-side boundary heat flux to heat transfer, in uniformly heated channels, (b) the evaluation of the possibility of using the existing literature directly with redefined parameters, and (c) an estimation of circumferential variations in the heat transfer coefficient

  12. Heat transfer direction dependence of heat transfer coefficients in annuli

    Science.gov (United States)

    Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.

    2018-04-01

    In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.

  13. Condensation heat transfer in plate heat exchangers

    International Nuclear Information System (INIS)

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  14. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Science.gov (United States)

    Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław

    2017-10-01

    The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  15. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    Directory of Open Access Journals (Sweden)

    Nadolny Zbigniew

    2017-01-01

    Full Text Available The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal. In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  16. Radiation and combined heat transfer in channels

    International Nuclear Information System (INIS)

    Tamonis, M.

    1986-01-01

    This book presents numerical methods of calculation of radiative and combined heat transfer in channel flows of radiating as well as nonradiating media. Results obtained in calculations for flow conditions of combustion products from organic fuel products are given and methods used in determining the spectral optical properties of molecular gases are analyzed. The book presents applications of heat transfer in solving problems. Topic covered are as follows: optical properties of molecular gases; transfer equations for combined heat transfer; experimental technique; convective heat transfer in heated gas flows; radiative heat transfer in gaseous media; combined heat transfer; and radiative and combined heat transfer in applied problems

  17. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  18. Heat transfer system

    International Nuclear Information System (INIS)

    Meininger, S.; Kaffine, H.W.; Kleinschroth, K.H.

    1984-01-01

    The radiolysis products N13 and F18 are monitored on the secondary side for monitoring steam-raising unit leaks of a PWR. An (organic) ion exchange filter designed for a large flow surrounds the steam/water circuit in the condensate pipe to shield a scintillation counter against interference radiation. (HP) [de

  19. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  20. Fundamental principles of heat transfer

    CERN Document Server

    Whitaker, Stephen

    1977-01-01

    Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int

  1. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  2. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  3. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  4. FILM-30: A Heat Transfer Properties Code for Water Coolant

    International Nuclear Information System (INIS)

    MARSHALL, THERON D.

    2001-01-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating

  5. Engineering heat transfer

    CERN Document Server

    Annaratone, Donatello

    2010-01-01

    This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi

  6. Heat transfer from rough surfaces

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1977-01-01

    Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de

  7. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  8. Basic heat and mass transfer

    CERN Document Server

    Mills, A F

    1999-01-01

    The Second Edition offers complete coverage of heat transfer with broad up-to-date coverage that includes an emphasis on engineering relevance and on problem solving. Integrates software to assist the reader in efficiently calculations. Carefully orders material to make book more reader-friendly and accessible. Offers an extensive introduction to heat exchange design to enhance the engineering and design content of course to satisfy ABET requirements. For professionals in engineering fields.

  9. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube

    International Nuclear Information System (INIS)

    Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)

  10. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  11. Natural convection heat transfer in an anisotropic porous cavity heated from the side. 1st Report. Theory; Tosuiritsu ni ihosei wo yusuru howa takoshitsu sonai no sokuho kanetsu ni yoru shizen tairyu netsu dentatsu. 1. Riron kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S [Kanazawa University, Ishikawa (Japan). Faculty of Engineering; Okajima, A [Kanazawa University, Ishikawa (Japan)

    1998-02-25

    Natural convection heat transfer and flow structure in an anisotropic porous medium of square cavity saturated with Boussinesq fluid has been studied analytically and numerically. Based on asymptotic analysis three distinctive regimes are found depending upon the magnitude of permeability ratio K. In the vicinity of K=1 the average Nusselt number and fluid velocity are scaled with (KRa){sup 1/2} when either K or the Rayleigh number Ra is varied. In the limit of K {yields} 0 the heat transfer across the cavity approaches to the conductive state, and the convecting velocity, which is primarily in the vertical direction, is scaled with KRa. In the other end of spectrum, namely K {yields} {infinity}, the average Nusselt number and the convecting velocity are scaled with Ra and independent of K. The asymptotic results are verified with two-dimensional numerical calculations. The ranges of K of the respective regimes are also determined based on the numerical results. 12 refs., 12 figs.

  12. Experimental measurements and analytical analysis related to gas turbine heat transfer. Part 1: Time-averaged heat-flux and surface-pressure measurements on the vanes and blades of the SSME fuel-side turbine and comparison with prediction. Part 2: Phase-resolved surface-pressure and heat-flux measurements on the first blade of the SSME fuel-side turbine

    Science.gov (United States)

    1994-01-01

    Time averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin-film heat flux gages were used to obtain the heat flux measurements, while miniature silicon-diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and a quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.

  13. Heat transfer characteristics of a direct contact heat exchanger

    International Nuclear Information System (INIS)

    Kinoshita, I.; Nishi, Y.

    1993-01-01

    As a first step for development of a direct contact steam generator for FBRs, fundamental heat transfer characteristics of a liquid-liquid contact heat exchanger were evaluated by heat transfer experiment with low melting point alloy and water. Distinctive characteristics of direct contact heat transfer with liquid metal and water was obtained. (author)

  14. Heat transfer study under supercritical pressure conditions

    International Nuclear Information System (INIS)

    Yamashita, Tohru; Yoshida, Suguru; Mori, Hideo; Morooka, Shinichi; Komita, Hideo; Nishida, Kouji

    2003-01-01

    Experiments were performed on heat transfer and pressure drop of a supercritical pressure fluid flowing upward in a uniformly heated vertical tube of a small diameter, using HCFC22 as a test fluid. Following results were obtained. (1) Characteristics of the heat transfer are similar to those for the tubes of large diameter. (2) The effect of tube diameter on the heat transfer was seen for a 'normal heat transfer, but not for a 'deteriorated' heat transfer. (3) The limit heat flux for the occurrence of deterioration in heat transfer becomes larger with smaller diameter tube. (4) The Watts and Chou correlation has the best prediction performance for the present data in the 'normal' heat transfer region. (5) Frictional pressure drop becomes smaller than that for an isothermal flow in the region near the pseudocritical point, and this reduction was more remarkable for the deteriorated' heat transfer. (author)

  15. Visualisation of heat transfer in laminar flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Steenhoven, van A.A.

    2009-01-01

    Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients at non-adiabatic walls. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the

  16. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  17. Heat and mass transfer in buildings

    International Nuclear Information System (INIS)

    Kristoffersen, Astrid Rusaas

    2005-01-01

    This thesis has presented four journal papers about ventilation and heat transfer in buildings. Ventilation and heat transfer in buildings are elements that decide our indoor air quality, thermal comfort and energy use in buildings. Models and experiments are tools to understand the complex physics of heat and air transfer in buildings. As computers are, getting cheaper and more powerful, there is a need to develop reliable models that can predict heat and air transfer in buildings. The first paper in this thesis addressed the widely used multizone model. This model is mainly used to find the airflows between zones in a building. A multizone model is often coupled to an energy analysis program, and affects therefore the calculated energy use in a building. The first paper in this thesis, titled ''Effect of room air recirculation delay on the decay rate of tracer gas concentration'' discussed the impact of a recirculating ventilation system on the decay of the tracer gas concentration in the room. The delay of the tracer gas through the ventilation system affects the concentration in the room, and must be accounted for when calculating the amount of fresh air that the ventilation system supplies. The second paper titled ''CFD Investigation of Room Ventilation for Improved Operation of a Downdraft Table: Novel Concepts'' investigated the performance of a downdraft table by changing the ventilation configuration in the room by use of Computational Fluid Dynamics (CFD). CFD can provide a microscopic description of the airflow and the behavior of pollutants and temperature distribution in a room. This paper calculated the airflow pattern in the room without influence of thermal effects, and demonstrated the usage of CFD. It was found that the total airflow could be reduced compared to an existing configuration (and hence reduce energy costs), and at the same time increasing the performance of the downdraft table (increasing the indoor air quality). A room with a

  18. Numerical simulation of side heating for controlling angular ...

    Indian Academy of Sciences (India)

    In the present study, a 3-D coupled transient thermal analysis model with auxiliary side heating (parallel heating) is developed to control angular distortion. During analysis, parallel heating flames are placed at several locations from weld line in cross direction. A user defined subroutine is used to apply transient heat source ...

  19. MHTGR inherent heat transfer capability

    International Nuclear Information System (INIS)

    Berkoe, J.M.

    1992-01-01

    This paper reports on the Commercial Modular High Temperature Gas-Cooled Reactor (MHTGR) which achieves improved reactor safety performance and reliability by utilizing a completely passive natural convection cooling system called the RCCS to remove decay heat in the event that all active cooling systems fail to operate. For the highly improbable condition that the RCCS were to become non-functional following a reactor depressurization event, the plant would be forced to rely upon its inherent thermo-physical characteristics to reject decay heat to the surrounding earth and ambient environment. A computational heat transfer model was created to simulate such a scenario. Plant component temperature histories were computed over a period of 20 days into the event. The results clearly demonstrate the capability of the MHTGR to maintain core integrity and provide substantial lead time for taking corrective measures

  20. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  1. Heat transfer--Orlando (Symposium), 1980

    International Nuclear Information System (INIS)

    Stein, R.P.

    1980-01-01

    This conference proceedings contains 36 papers of which 3 appear as abstracts. 23 papers are indexed separately. Topics covered include: thermodynamics of PWR and LMFBR Steam Generators; two-phase flow in parallel channels; geothermal heat transfer; natural circulation in complex geometries; heat transfer in non-Newtonian systems; and process heat transfer

  2. Research progress on microgravity boiling heat transfer

    International Nuclear Information System (INIS)

    Xiao Zejun; Chen Bingde

    2003-01-01

    Microgravity boiling heat transfer is one of the most basic research topics in aerospace technology, which is important for both scientific research and engineering application. Research progress on microgravity boiling heat transfer is presented, including terrestrial simulation technique, terrestrial simulation experiment, microgravity experiment, and flow boiling heat transfer

  3. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  4. Transient heat transfer characteristics of liquid helium

    International Nuclear Information System (INIS)

    Tsukamoto, Osami

    1976-01-01

    The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)

  5. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  6. Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Chu, A.W.; Cho, S.M.

    1976-01-01

    Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted

  7. Blowdown heat transfer experiment, (1)

    International Nuclear Information System (INIS)

    Soda, Kunihisa; Yamamoto, Nobuo; Osaki, Hideki; Shiba, Masayoshi

    1976-09-01

    Blowdown heat transfer experiment has been carried out with a transparent test section to observe phenomena in coolant behavior during blowdown process. Experimental parameters are discharge position, initial system pressure, initial coolant temperature, power supply to heater rods and number of heater rods. At initial pressure 7-12 ata and initial power 6-50 kw per one heater rod, the flow condition in the test section is a major factor in determining time of DNB occurrence and physical process to DNB during blowdown. (auth.)

  8. Liquid metal heat transfer issues

    International Nuclear Information System (INIS)

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept

  9. Tunable heat transfer with smart nanofluids.

    Science.gov (United States)

    Bernardin, Michele; Comitani, Federico; Vailati, Alberto

    2012-06-01

    Strongly thermophilic nanofluids are able to transfer either small or large quantities of heat when subjected to a stable temperature difference. We investigate the bistability diagram of the heat transferred by this class of nanofluids. We show that bistability can be exploited to obtain a controlled switching between a conductive and a convective regime of heat transfer, so as to achieve a controlled modulation of the heat flux.

  10. Dual side control for inductive power transfer

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2017-09-12

    An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT system to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.

  11. Heat Transfer in Complex Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mehrdad Massoudi

    2012-01-01

    fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a

  12. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...... transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has...

  13. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  14. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  15. Demand side management for smart district heating

    DEFF Research Database (Denmark)

    Big, Oovidiu; Li, Hongwei; Svendsen, Svend

    2016-01-01

    between 25% and 35%. By making the light renovation, the heating system needs a minimum supply water temperature of 58ºC in order to cover the thermal comfort. Through extensive renovation, the supply water temperature could be reduced to 50ºC which makes it possible to transform the District Heating...... Temperature into Low Temperature. The building time constant for the extensive renovation is 86 hours which is double than a light building renovation and 53 hours higher than a non-renovated building. In the end of the paper is developed a formula which has the purpose to validate the results of virtual...... simulations. The relative percentage difference between the theoretical calculation and the virtual simulation results are between 2.5% and 17.5%....

  16. Heat Transfer in Gas Turbines

    Science.gov (United States)

    Garg, Vijay K.

    2001-01-01

    The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

  17. Heat transfer in porous media

    Directory of Open Access Journals (Sweden)

    N. Amanifard

    2007-06-01

    Full Text Available In this work, the effects of electrical double layer (EDL near the solid/ liquid interface, on three dimensional heat transfer characteristic and pressure drop of water flow through a rectangular microchannel numerically are investigated. An additional body force originating from the existence of EDL is considered to modify the conventional Navier-stokes and energy equations. These modified equations are solved numerically for steady laminar flow on the basis of control volume approaches. Fluid velocity distribution and temperature with presence and absence of EDL effects are presented for various geometric cases and different boundary conditions. The results illustrate that, the liquid flow in rectangular microchannels is influenced significantly by the EDL, particularly in the high electric potentials, and hence deviates from flow characteristics described by classical fluid mechanics.

  18. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-07-07

    This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

  19. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  20. Influence of the boundary conditions on heat and mass transfer in spacer-filled channels

    Science.gov (United States)

    Ciofalo, M.; La Cerva, M. F.; Di Liberto, M.; Tamburini, A.

    2017-11-01

    The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically complex channels

  1. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  2. A literature survey on numerical heat transfer

    Science.gov (United States)

    Shih, T. M.

    1982-12-01

    Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.

  3. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...... between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's....

  4. Supercritical heat transfer phenomena in nuclear system

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Kim, Moo Hwan; Anderson, Mark H.; Corradini, Michael L.

    2005-01-01

    A supercritical water (SCW) power cycle has been considered as one of the viable candidates for advanced fission reactor designs. However, the dramatic variation of thermo-physical properties with a modest change of temperature near the pseudo-critical point make existing heat transfer correlations such as the Dittus-Boelter correlation not suitably accurate to calculate the heat transfer in supercritical fluid. Several other correlations have also been suggested but none of them are able to predict the heat transfer over a parameter range, needed for reactor thermal-hydraulics simulation and design. This has prompted additional research to understand the characteristic of supercritical fluid heat transfer

  5. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  6. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    on calculations with a CFD-model, which has earlier been validated by means of experiments. The CFD-model is used to determine the heat transfer between the solar collector fluid in the mantle and the walls surrounding the mantle in all levels of the mantle as well as the heat transfer between the wall...... transfer correlations are suitable as input for a detailed simulation model for mantle tanks. The heat transfer correlations determined in this study are somewhat different from previous reported heat transfer correlations. The reason is that this study includes more mantle tank designs and operation......Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...

  7. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  8. Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2016-09-01

    Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.

  9. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-05-01

    Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.

  10. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  11. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  12. Heat transfer from humans wearing clothing

    NARCIS (Netherlands)

    Lotens, W.A.

    1993-01-01

    In this monograph the effects of clothing on human heat transfer are described. The description is based on the physics of heat and mass transfer, depending on the design of the clothing, the climate, and the activity of the wearer. The resulting model has been stepwise implemented in computer

  13. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  14. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  15. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  16. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  17. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  18. Heat transfer from internally-heated molten UO2 pools

    International Nuclear Information System (INIS)

    Stein, R.P.; Baker, L. Jr.; Gunther, W.H.; Cook, C.

    1978-01-01

    Experimental measurements of heat transfer from internally heated pools of molten UO 2 have been obtained for two cell sizes: 10 cm x 10 cm and 20 cm x 20 cm. The experiments with the large cell have supported a previous conclusion from early small data that the measured downward heat fluxes are higher than would be expected on the basis of considerations of thermal convection. A convective model underpredicts the downward heat fluxes by a factor of 2.5 to 4.5 for all but one early experiment. Arbitrary assumptions of increased thermal conductivity do not account for the discrepancy. A single model based on internal thermal radiation heat transfer is able to account for the high values. The model uses the optically thick Rosseland approximation. Because of this, it is tentatively concluded that thermal radiation plays a dominant role in controlling the heat transfer from internally heated molted fuel

  19. Droplet heat transfer and chemical reactions during direct containment heating

    International Nuclear Information System (INIS)

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences

  20. Control of distributed heat transfer mechanisms in membrane distillation plants

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-01-05

    Various examples are provided that are related to boundary control in membrane distillation (MD) processes. In one example, a system includes a membrane distillation (MD) process comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to control a water production rate of the MD process based at least in part upon a distributed heat transfer across the membrane boundary layer. In another example, a method includes determining a plurality of estimated temperature states of a membrane boundary layer separating a feed side and a permeate side of a membrane distillation (MD) process; and adjusting inlet flow rate or inlet temperature of at least one of the feed side or the permeate side to maintain a difference temperature along the membrane boundary layer about a defined reference temperature based at least in part upon the plurality of estimated temperature states.

  1. Stokes flow heat transfer in an annular, rotating heat exchanger

    International Nuclear Information System (INIS)

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  2. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  3. The magnetic fluid for heat transfer applications

    International Nuclear Information System (INIS)

    Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.

    2002-01-01

    Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case

  4. Natural convection heat transfer in SIGMA experiment

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull

    2004-01-01

    A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on

  5. Corrosion of heat exchanger materials under heat transfer conditions

    International Nuclear Information System (INIS)

    Tapping, R.L.; Lavoie, P.A.; Disney, D.J.

    1987-01-01

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28 1 . Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested

  6. Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring

    International Nuclear Information System (INIS)

    Mihalina, M.; Djetelic, N.

    2010-01-01

    The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e

  7. Investigation of the tube side flow distribution in heat exchangers

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Pyare, R.

    1977-01-01

    The tube side flow distribution in heat exchangers is being investigated through the solution of the governing equations of fluid mechanics with distributed resistances that simulate the presence of the tubes. The modeling scheme used in the analysis and the numerical methods of solving the governing equations are described. The analysis is applied to the CRBRP-Intermediate Heat Exchanger (IHX), where its tube side plenum is simulated by several models that approximate its spherical boundary. The flow field within the plenum and the distribution of the total flow rate among the tubes are determined by the analysis

  8. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    Science.gov (United States)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  9. Cyro Power and Heat Transfer

    National Research Council Canada - National Science Library

    Chow, L

    1998-01-01

    .... The heat generated from a 9x9-heater array was removed by liquid nitrogen pool boiling. The orientation and space limitation of the array were varied to explore their effects on the critical heat flux (CHF) value...

  10. Heat exchanger network retrofit optimization involving heat transfer enhancement

    International Nuclear Information System (INIS)

    Wang Yufei; Smith, Robin; Kim, Jin-Kuk

    2012-01-01

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.

  11. Endwall convective heat transfer for bluff bodies

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2012-01-01

    The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study......, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat...... transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat...

  12. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  13. Forced convection heat transfer in He II

    International Nuclear Information System (INIS)

    Kashani, A.

    1986-01-01

    An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid

  14. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger have been obtained. • Comparisons of experimental data and available correlations have been performed. • New Fanning friction factor and heat transfer correlations for the test PCHE are developed. - Abstract: Printed circuit heat exchanger (PCHE) is one of the leading intermediate heat exchanger (IHX) candidates to be employed in the very-high-temperature gas-cooled reactors (VHTRs) due to its capability for high-temperature, high-pressure applications. In the current study, a reduced-scale zigzag-channel PCHE was fabricated using Alloy 617 plates for the heat exchanger core and Alloy 800H pipes for the headers. The pressure drop and heat transfer characteristics of the PCHE were investigated experimentally in a high-temperature helium test facility (HTHF) at The Ohio State University. The PCHE helium inlet temperatures and pressures were varied up to 464 °C/2.7 MPa for the cold side and 802 °C/2.7 MPa for the hot side, respectively, while the maximum helium mass flow rates on both sides of the PCHE reached 39 kg/h. The corresponding maximum channel Reynolds number was approximately 3558, covering the laminar flow and laminar-to-turbulent flow transition regimes. New pressure drop and heat transfer correlations for the current zigzag channels with rounded bends were developed based on the experimental data. Comparisons between the experimental data and the results obtained from the available PCHE and straight circular pipe correlations were conducted. Compared to the heat transfer performance in straight circular pipes, the zigzag channels provided little advantage in the laminar flow regime but significant advantage near the transition flow regime.

  15. Interfacial stability with mass and heat transfer

    International Nuclear Information System (INIS)

    Hsieh, D.Y.

    1977-07-01

    A simplified formulation is presented to deal with interfacial stability problems with mass and heat transfer. For Rayleigh-Taylor stability problems of a liquid-vapor system, it was found that the effect of mass and heat transfer tends to enhance the stability of the system when the vapor is hotter than the liquid, although the classical stability criterion is still valid. For Kelvin-Holmholtz stability problems, however, the classical stability criterion was found to be modified substantially due to the effect of mass and heat transfer

  16. Application of intensified heat transfer for the retrofit of heat exchanger network

    International Nuclear Information System (INIS)

    Wang, Yufei; Pan, Ming; Bulatov, Igor; Smith, Robin; Kim, Jin-Kuk

    2012-01-01

    Highlights: → Novel design approach for the retrofit of HEN based on intensified heat transfer. → Development of a mathematical model to evaluate shell-and-tube heat exchanger performances. → Identification of the most appropriate heat exchangers requiring heat transfer enhancements in the heat exchanger network. -- Abstract: A number of design methods have been proposed for the retrofit of heat exchanger networks (HEN) during the last three decades. Although considerable potential for energy savings can be identified from conventional retrofit approaches, the proposed solutions have rarely been adopted in practice, due to significant topology modifications required and resulting engineering complexities during implementation. The intensification of heat transfer for conventional shell-and-tube heat exchangers can eliminate the difficulties of implementing retrofit in HEN which are commonly restricted by topology, safety and maintenance constraints, and includes high capital costs for replacing equipment and pipelines. This paper presents a novel design approach to solve HEN retrofit problems based on heat transfer enhancement. A mathematical model has been developed to evaluate shell-and-tube heat exchanger performances, with which heat-transfer coefficients and pressure drops for both fluids in tube and shell sides are obtained. The developed models have been compared with the Bell-Delaware, simplified Tinker and Wills-Johnston methods and tested with the HTRI (registered) and HEXTRAN (registered) software packages. This demonstrates that the new model is much simpler but can give reliable results in most cases. For the debottlenecking of HEN, four heuristic rules are proposed to identify the most appropriate heat exchangers requiring heat transfer enhancements in the HEN. The application of this new design approach allows a significant improvement in energy recovery without fundamental structural modifications to the network.

  17. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  18. Numerical investigation of heat transfer characteristic of fixed planar elastic tube bundles

    International Nuclear Information System (INIS)

    Duan, Derong; Ge, Peiqi; Bi, Wenbo

    2015-01-01

    Highlights: • Both tube-side and shell-side of planar elastic tube bundles were investigated. • Heat transfer and fluid flow were studied from the local analysis perspective. • Secondary flow varies depending on the fluid flow state and the geometry of tube. • Curvature plays a role on the external flow field. • The heat transfer of the two intermediate tube bundles is augmented. - Abstract: Planar elastic tube bundles are a novel approach to enhance heat transfer by using flow-induced vibration. This paper studied the heat transfer characteristic and fluid flow in both tube-side and shell-side using numerical simulation. Two temperature difference formulas were used to calculate convective heat transfer coefficient and the results were verified by theoretical analysis and experimental correlations. The effect of Reynolds number on overall convective heat transfer coefficient and pressure drop in tube-side and shell-side were studied. The comparison of the secondary flow in planar elastic tube bundles and conical spiral tube bundles were conducted. The external flow field and local convective heat transfer around the periphery of fixed planar elastic tube bundles subjected to the cross fluid flow were also analyzed. The results show that the energy consumption efficiency should be taken into account in the forced heat transfer process conducted by adjusting the fluid flow. The secondary flow varies depending on the fluid flow state and the geometry of tube. Hence, it is deduced that the heat transfer enhancement is obtained because the thermal boundary layer in the deformed planar elastic tube bundles caused by flow-induced vibration is damaged by the disordered secondary flow. In addition, the convective heat transfer capability of outside the two intermediate tube bundles is enhanced because of the effect of irregular and complex fluid flow affected by the role of curved tubes on both sides

  19. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  1. About the possible options for models of convective heat transfer in closed volumes with local heating source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2015-01-01

    Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.

  2. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  3. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  4. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  5. Heat transfer studies in pool fire environment

    International Nuclear Information System (INIS)

    Nitsche, F.

    1993-01-01

    A Type B package has to withstand severe thermal accident conditions. To calculate the temperature behaviour of such a package in a real fire environment, heat transfer parameters simulating the effect of the fire are needed. For studying such heat transfer parameters, a systematic programme of experimental and theoretical investigations was performed which was part of the IAEA Coordinated Research Programme (Nitsche and Weib 1990). The studies were done by means of small, unfinned and finned, steel model containers of simplified design in hydrocarbon fuel open fire tests. By using various methods, flame and container temperatures were measured and also container surface absorptivity before and after the test to study the effect of sooting and surface painting on heat transfer. Based on all these experimental data and comparative calculations, simplified, effective heat transfer parameters could be derived, simulating the effect of the real fire on the model containers. (J.P.N.)

  6. Transient heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Shiotsu, Masahiro

    1991-01-01

    Detailed knowledge on the steady-state and transient heat transfer from solid surfaces in He I and He II is important as a database for the analysis of the influence of local thermal disturbances on the stability of He I or He II cooled large superconducting magnets. In this paper, an overview of the transient heat transfer characteristics on solid surfaces in He I and He II caused by various large stepwise heat inputs, such as the quasi-steady nucleate boiling with a certain lifetime in He I and the quasi-steady Kapitza conductance heat flux with a certain lifetime in He II, are presented in comparison with their steady-state heat transfer characteristics. (author)

  7. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  8. 3D simulation of Heat transfer in MEMS-based microchannel

    International Nuclear Information System (INIS)

    Choi, Chi Woong; Huh, Cheol; Kim, Dong Eok; Kim, Moo Hwan

    2007-01-01

    The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 kg/m 2 s. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux

  9. Heat transfer analysis of short helical borehole heat exchangers

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele

    2013-01-01

    Highlights: ► Vertical ground heat exchanger with a helical shaped pipe is analyzed. ► The model considers the interaction between the ground and the environment. ► The results of the model are in good agreement with the experimental values. ► The weather conditions considerably affect the fluid heat carrier temperature. ► The pitch between the turns does not affect the behaviour of the heat exchanger. -- Abstract: In this paper a numerical model to analyze the thermal behaviour of vertical ground heat exchangers with a helical shaped pipe is presented. This type of configuration can be a suitable alternative to conventional ground heat exchangers, especially when the heating and cooling loads of the building are very low. The model describes the heat transfer problem by means of a network of interconnected thermal resistances and capacitances. Moreover, as the investigated ground heat exchanger is usually installed in shallow depth, the model takes into account the interaction between the ground and the ambient environment which affects the fluid heat carrier temperature into the heat exchanger and, as a consequence, the energy efficiency of the heat pump. After a sensitivity analysis on the mesh parameters, the presented model is compared with experimental data and the simulation results show good agreement with the measurements. Finally, analyses to investigate the influence of the weather conditions, of the axial heat transfer and of the pitch between the turns of the helical pipe for two types of ground are carried out.

  10. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  11. Theory of Periodic Conjugate Heat Transfer

    CERN Document Server

    Zudin, Yuri B

    2012-01-01

    This book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer sim...

  12. Nonlocal heat transfer in nanostructures

    International Nuclear Information System (INIS)

    Kanavin, A.P.; Uryupin, S.A.

    2008-01-01

    Kinetics of electrons in a degenerate conductor heated up by absorption of a high-frequency field localized in a region of about hundred nanometers has been studied. A new law for nonlocal electron thermal flux has been predicted

  13. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

    International Nuclear Information System (INIS)

    Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

    2005-01-01

    In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

  14. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  15. The role of the velocity gradient in laminar convective heat transfer through a tube with a uniform wall heat flux

    International Nuclear Information System (INIS)

    Wang Liangbi; Zhang Qiang; Li Xiaoxia

    2009-01-01

    This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy conservation equation of convective heat transfer is used to explain convective heat transfer there are two points that are difficult for teachers to explain and for undergraduates to understand: thermal diffusivity is placed before the Laplacian operator of temperature; on the wall surface (the fluid side) the velocity is zero, a diffusion equation of temperature is gained from energy conservation equation, however, temperature cannot be transported. Consequently, the real physical meaning of thermal diffusivity is not clearly reflected in the energy conservation equation, and whether heat transfer occurs through a diffusion process or a convection process on the wall surface is not clear. Through a simple convective heat transfer case: laminar convective heat transfer in a tube with a uniform wall heat flux on the tube wall, this paper explains these points more clearly. The results declare that it is easier for teachers to explain and for undergraduates to understand these points when a description of heat transfer in terms of the heat flux is used. In this description, thermal diffusivity is placed before the Laplacian operator of the heat flux; the role of the velocity gradient in convective heat transfer appears, on the wall surface, the fact whether heat transfer occurs through a diffusion process or a convection process can be explained and understood easily. The results are not only essential for teachers to improve the efficiency of university-level physics education regarding heat transfer, but they also enrich the theories for understanding heat transfer

  16. Conjugate Heat Transfer Study in Hypersonic Flows

    Science.gov (United States)

    Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar

    2018-04-01

    Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.

  17. Theory of periodic conjugate heat transfer

    CERN Document Server

    Zudin, Yuri B

    2016-01-01

    This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.

  18. Cornish heat transfer experiment - final report

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.

    1985-01-01

    The transfer of heat released in an in-site heating experiment simulating high level radioactive waste packages in granite in Cornwall has been found to be mainly by conduction but some appreciable convection does occur. Interim analysis of the data suggests that the latter may account for about 20% of the total. (author)

  19. Interactive Heat Transfer Simulations for Everyone

    Science.gov (United States)

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  20. A novel investigation of heat transfer characteristics in rifled tubes

    Science.gov (United States)

    Jegan, C. Dhayananth; Azhagesan, N.

    2018-05-01

    The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.

  1. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1993-07-20

    A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.

  2. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    Science.gov (United States)

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for condensa...

  3. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  4. Heat transfer with freezing and thawing

    CERN Document Server

    Lunardini, VJ

    1991-01-01

    This volume provides a comprehensive overview on the vast amount of literature on solidification heat transfer. Chapter one develops important basic equations and discusses the validity of considering only conductive heat transfer, while ignoring convection, in the large class of materials which make up the porous media. Chapters 2 to 4 deal with problems that can be expressed in plane (Cartesian) coordinates. These problems are further divided into boundary conditions of temperature, prescribed heat flux, and surface convection. Chapter 5 examines some plane geometries involving three-dime

  5. Heat transfer in a magnet C

    International Nuclear Information System (INIS)

    Sircilli Neto, F.; Passaro, A.; Borges, E.M.

    1991-01-01

    The cooling systems of nuclear reactors for spacial applications include direct current electromagnetic pumps, which are used to circulate the coolant fluid thru the reactor core. In this work, the transfer of the heat generated by the electrical current in a magnet C excitation coils, which is used in a prototype pump, was evaluated. Considering the processes of heat transfer by conduction, natural convection and radiation, the results of simulation with the codes HEATING5 and AUTHEATS indicate the utilization of the 180 sup(0)C thermal class conductor for a working Joule power of 4 10 sup(4) W/m sup(3) in each magnet coil. (author)

  6. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  7. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  8. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  9. Indirect evaporative coolers with enhanced heat transfer

    Science.gov (United States)

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  10. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  11. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  12. Heat transfer characteristics of a helical heat exchanger

    International Nuclear Information System (INIS)

    San, Jung-Yang; Hsu, Chih-Hsiang; Chen, Shih-Hao

    2012-01-01

    Heat transfer performance of a helical heat exchanger was investigated. The heat exchanger is composed of a helical tube with rectangular cross section and two cover plates. The ε–Ntu relation of the heat exchanger was obtained using a numerical method. In the analysis, the flow in the tube (helical flow) was considered to be mixed and the flow outside the tube (radial flow) was unmixed. In the experiment, the Darcy friction factor (f) and convective heat transfer coefficient (h) of the radial flow were measured. The radial flow was air and the helical flow was water. Four different channel spacing (0.5, 0.8, 1.2 and 1.6 mm) were individually considered. The Reynolds numbers were in the range 307–2547. Two correlations, one for the Darcy friction factor and the other for the Nusselt number, were proposed. - Highlights: ► We analyze the heat transfer characteristics of a helical heat exchanger and examine the effectiveness–Ntu relation. ► Increasing number of turns of the heat exchanger would slightly increase the effectiveness. ► There is an optimum Ntu value corresponding to a maximum effectiveness. ► We measure the Darcy friction factor and Nusselt number of the radial flow and examine the correlations.

  13. Heat transfer degradation during condensation of non-azeotropic mixtures

    Science.gov (United States)

    Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col

    2017-11-01

    International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.

  14. Lunar ash flow with heat transfer.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.

  15. Heat transfer in a thermoacoustic process

    International Nuclear Information System (INIS)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis aimed at determining the stability–instability border of the thermoacoustic system. In this paper, we present a project type of physical examination and modelling task. We employed an electrically heated Rijke tube in our thermoacoustic project work. The aim of our project is to help our students enlarge their knowledge about thermodynamics, mainly about thermoacoustics, and develop their applied information technology and mathematical skills. (paper)

  16. Heat transfer from thermal effluent

    International Nuclear Information System (INIS)

    Czapski, U.H.; Mumford, W.

    1975-01-01

    Measurements of the turbulent fluxes of sensible heat and momentum, together with profiles of horizontal wind, temperature, and humidity (wet bulb) have been conducted above the thermal plume of the Nine Mile Point Nuclear plant near Oswego, New York on Lake Ontario. The spectral analysis of the data, obtained with sonic anemometer and ultrafast thermocouples, reveals the importance of microthermals and similar features for the transport of heat. Temperature variance spectra and the cospectra wT and uw show distinct deviations from the -5/3 Kolmogorov law in the inertial subrange, suggesting a high input of energy in the eddy frequency range between 0.01 and 1 Hz. It is shown that microthermals in this frequency range are also responsible for a large portion of the momentum transport. 46 refs

  17. Heat Transfer Model for Hot Air Balloons

    OpenAIRE

    Lladó Gambín, Adriana

    2016-01-01

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...

  18. The overall heat transfer characteristics of a double pipe heat exchanger: comparison of experimental data with predictions of standard correlations

    International Nuclear Information System (INIS)

    Mehrabian, M. A.; Mansouri, S. H.; Sheikhzadeh, G. A.

    2002-01-01

    The single-phase flow and thermal performance of a double pipe heat exchanger are examined by experimental methods. The working fluid is water at atmospheric pressure. Temperature measurements at the inlet and outlet of the two streams and also at an intermediate point half way between the inlet and outlet is made, using copper-constantan thermocouple wires. Mass flow rates for each stream are also measured using calibrated ratemeters. Heat is supplied to the inner tube stream by an immersion heater. The overall heat transfer coefficients are inferred from the measured data. The heat transfer coefficient of the inner tube flow (circular cross section) is calculated using the standard correlations. The heat transfer coefficient of the outer tube flow (annular cross section) is then deduced.Higher heat transfer coefficients are reported in the laminar flow regime in comparison to the predictions of standard correlations for straight and smooth tubes. The reasons for this discrepancy are identified and discussed. Experimental errors in measuring temperatures and mass flow rates are studied and their effects on the heat transfer coefficients are estimated. Experimental results for the range of operating conditions used in this work show that the outer tube side heat transfer coefficients are smaller than the inner side heat transfer coefficients by a factor of almost 1.5 and 3.4 in counter flow and parallel flow arrangements, respectively. The agreement with predictions is very good for the counter flow arrangement, but not very good for the parallel flow arrangement

  19. ANL ITER high-heat-flux blanket-module heat transfer experiments

    International Nuclear Information System (INIS)

    Kasza, K.E.

    1992-02-01

    An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER

  20. Heat transfer of liquid-metal magnetohydrodynamic flow with internal heat generation

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Kurita, Kazuhisa; Kodama, Satoshi

    2000-01-01

    Numerical calculations on heat transfer of a magnetohydrodynamic (MHD) flow with internal heat generation in a rectangular channel have been performed for the cases of very-large Hartmann numbers, finite wall conductivities and small aspect ratio (i.e. small length ratios of the channel side perpendicular to the applied magnetic field and the side parallel to the field), simulating typical conditions for a fusion-reactor blanket. The Nusselt numbers of the MHD flow in rectangular channels with aspect ratios of 1/10 to 1/40 for Hartmann numbers of ∼5 x 10 5 become ∼10 times higher than those for the corresponding flow under no magnetic field. The Nusselt number becomes higher as the internal heat generation rate increases as far as the heat generation rates in a fusion reactor blanket are considered. (author)

  1. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  2. Transfer of chemicals in PWR systems: secondary side

    International Nuclear Information System (INIS)

    Jonas, O.

    1978-01-01

    Transfer of chemicals in the secondary side of pressurized water reactor systems with recirculating and once-through steam generators is considered. Chemical data on water, steam and deposit chemistry of twenty-six operating units are given and major physical-chemical processes and differences between the two systems and between fossil and PWR systems are discussed. It is concluded that the limited available data show the average water and steam chemistry to be within recommended limits, but large variations of impurity concentrations and corrosion problems encountered indicate that our knowledge of the system chemistry and chemical thermodynamics, system design, sampling, analysis and operation need improvement. (author)

  3. Heat transfer 1990. Proceedings of the ninth international heat transfer conference

    International Nuclear Information System (INIS)

    Hetsroni, G.

    1990-01-01

    This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 3 are the following chapters: Refrigerant vapor condensation on a horizontal tube bundle. Local heat transfer in a reflux condensation inside a closed two-phase thermosyphon and surface temperature by means of a pulsed photothermal effects

  4. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  5. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-08-15

    The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF{sup 2}), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment. (author)

  6. Heat transfer with a split water channel

    International Nuclear Information System (INIS)

    Krinsky, S.

    1978-01-01

    The heat transfer problem associated with the incidence of synchrotron radiation upon a vacuum chamber wall cooled by a single water channel was previously studied, and a numerical solution to the potential problem was found using the two-dimensional magnet program POISSON. Calculations were extended to consider the case of a split water channel using POISSON to solve the potential problem for a given choice of parameters. By optimizing the dimensions, boiling of the water can be avoided. A copper chamber is a viable solution to the heat transfer problem at a beam port

  7. Natural Convective Heat Transfer from Narrow Plates

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.

  8. Heat transfer applications for the practicing engineer

    CERN Document Server

    Theodore, Louis

    2011-01-01

    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu

  9. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  10. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  11. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  12. Turbulent Heat Transfer in Curved Pipe Flow

    Science.gov (United States)

    Kang, Changwoo; Yang, Kyung-Soo

    2013-11-01

    In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).

  13. Natural convective heat transfer from square cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.

  14. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    Science.gov (United States)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  15. An immersed-boundary method for conjugate heat transfer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jeong Chul; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of); Ahn, Joon [Kookmin University, Seoul (Korea, Republic of)

    2017-05-15

    An immersed-boundary method is proposed for the analysis of conjugate problems of convective heat transfer in conducting solids. In- side the solid body, momentum forcing is applied to set the velocity to zero. A thermal conductivity ratio and a heat capacity ratio, between the solid body and the fluid, are introduced so that the energy equation is reduced to the heat diffusion equation. At the solid fluid interface, an effective conductivity is introduced to satisfy the heat flux continuity. The effective thermal conductivity is obtained by considering the heat balance at the interface or by using a harmonic mean formulation. The method is first validated against the analytic solution to the heat transfer problem in a fully developed laminar channel flow with conducting solid walls. Then it is applied to a laminar channel flow with a heated, block-shaped obstacle to show its validity for geometry with sharp edges. Finally the validation for a curvilinear solid body is accomplished with a laminar flow through arrayed cylinders.

  16. Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube

    International Nuclear Information System (INIS)

    Chen, Y.S.; Wang, Y.; Zhang, J.H.; Yuan, X.F.; Tian, J.; Tang, Z.F.; Zhu, H.H.; Fu, Y.; Wang, N.X.

    2016-01-01

    In order to better understand the heat transfer behavior and characteristics of molten salt in heat exchanger, the convective heat transfer characteristics of molten salt in salt-to-oil concentric tube are studied. Overall heat transfer coefficients of the heat exchanger are calculated using Wilson plots. Heat transfer coefficients of tube side molten salt with the range of Reynolds number from 10,000 to 50,000 and the Prandtl number from 11 to 27 are evaluated invoking the calculated overall heat transfer coefficients. The effects of velocity and temperature on the convective heat transfer in the turbulent region of molten salt are studied by comparing with the traditional correlations. The results show that the heat transfer characteristics of molten salt are in line with the empirical heat transfer correlation; however, Dittus–Boelter, Gnielinski, Sieder–Tate and Hausen correlations all give a larger deviation for the experimental data. Finally, based on the experimental data and Sieder–Tate correlation, a modified heat transfer correlation is proposed and good agreement is observed between the experimental data and the modified correlation. The results will also provide an important reference for the design of the heat exchangers in the Thorium-based Molten Salt Reactor.

  17. Forced convection and subcooled flow boiling heat transfer in asymmetrically heated ducts of T-section

    International Nuclear Information System (INIS)

    Abou-Ziyan, Hosny Z.

    2004-01-01

    This paper presents the results of an experimental investigation of heat transfer from the heated bottom side of tee cross-section ducts to an internally flowing fluid. The idea of this work is derived from the cooling of critical areas in the cylinder heads of internal combustion engines. Fully developed single phase forced convection and subcooled flow boiling heat transfer data are reported. Six T-ducts of different width and height aspect ratios are tested with distilled water at velocities of 1, 2 and 3 m/s for bulk temperatures of 60 and 80 deg. C, while the heat flux was varied from about 80 to 700 kW/m 2 . The achieved data cover Reynolds numbers in the range of 5.22 x 10 4 to 2.36 x 10 5 , Prandtl numbers in the range from 2.2 to 3.0, duct width aspect ratio between 2.19 and 3.13 and duct height aspect ratio from 0.69 to 2.0. The results revealed that the increase in either the width or height aspect ratio of the T-ducts enhances the convection heat transfer coefficients and the boiling heat fluxes considerably. The following comparisons are provided for coolant velocity of 2 m/s, bulk temperature of 60 deg. C, wall superheat of 20 K and wall to bulk temperature difference of 20 K. As the width aspect ratio increases by 43%, the convection heat transfer coefficient and the boiling heat flux increase by 27% and 39%, respectively. An increase in the height aspect ratio by 290% enhances the convection heat transfer coefficient and the boiling heat fluxes by 82% and 103%, respectively. When the coolant velocity changes from 1 to 2 m/s, the heat transfer coefficient increases by 60% and the boiling heat flux rises by 62-98% for the various tested ducts. The convection heat transfer coefficient increases by 12% and the boiling heat flux decreases by 31% as the bulk fluid temperature rises from 60 to 80 deg. C. A correlation was developed for Nusselt number as a function of Reynolds number, Prandtl number, viscosity ratio and some aspect ratios of the T-duct

  18. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  19. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  20. Validation of the TASS/SMR-S Code for the PRHRS Condensation Heat Transfer Model

    International Nuclear Information System (INIS)

    Jun, In Sub; Yang, Soo Hyoung; Chung, Young Jong; Lee, Won Jae

    2011-01-01

    When some accidents or events are occurred in the SMART, the secondary system is used to remove the core decay heat for the long time such as a feedwater system. But if the feedwater system can't remove the residual core heat because of its malfunction, the core decay heat is removed using the Passive Residual Heat Removal System (PRHRS). The PRHRS is passive type safety system adopted to enhance the safety of the SMART. It can fundamentally eliminate the uncertainty of operator action. TASS/SMR-S (Transient And Setpoint Simulation/ System-integrated Modular Reactor-Safety) code has various heat transfer models reflecting the design features of the SMART. One of the heat transfer models is the PRHRS condensation heat transfer model. The role of this model is to calculate the heat transfer coefficient in the heat exchanger (H/X) tube side using the relevant heat transfer correlations for all of the heat transfer modes. In this paper, the validation of the condensation heat transfer model was carried out using the POSTECH H/X heat transfer test

  1. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  2. Adaptive heat pump and battery storage demand side energy management

    Science.gov (United States)

    Sobieczky, Florian; Lettner, Christian; Natschläger, Thomas; Traxler, Patrick

    2017-11-01

    An adaptive linear model predictive control strategy is introduced for the problem of demand side energy management, involving a photovoltaic device, a battery, and a heat pump. Moreover, the heating influence of solar radiation via the glass house effect is considered. Global sunlight radiation intensity and the outside temperature are updated by weather forecast data. The identification is carried out after adapting to a time frame witch sufficiently homogeneous weather. In this way, in spite of the linearity an increase in precision and cost reduction of up to 46% is achieved. It is validated for an open and closed loop version of the MPC problem using real data of the ambient temperature and the global radiation.

  3. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  4. Numerical simulation of heat transfer process in automotive brakes

    OpenAIRE

    Gonzalo Voltas, David

    2013-01-01

    This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...

  5. Heat transfer in two-phase flow of helium

    International Nuclear Information System (INIS)

    Subbotin, V.I.; Deev, V.I.; Solodovnikov, V.V.; Arkhipov, V.V.

    1986-01-01

    The results of experimental study of heat transfer in two-phase helium flow are presented. The effect of operating parameters (pressure, mass velocity, heat flux and quality) on boiling heat transfer intensity was investigated. A significant influence of boiling process prehistory on heat transfer coefficients was demonstrated. On the basis of experimental data obtained three typical regimes of flow boiling heat transfer were found. Analogy of heat transfer in flow boiling and pool boiling of helium and noncryogenic liquids was established. Correlations were developed which are in close agreement with available heat transfer data

  6. Heat Transfer in a Paper Cup

    Science.gov (United States)

    Ribeiro, Carla

    2017-01-01

    The double-wall paper cup is an everyday object that can be used in the laboratory to study heat transfer. The experiment described here has been done by physics students aged 12-13 years; it can also be used in a different context to prompt debate about environmental issues.

  7. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  8. Conjugate problems in convective heat transfer

    CERN Document Server

    Dorfman, Abram S

    2009-01-01

    The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.

  9. CENTRIFUGAL COMPRESSOR EFFICIENCY CALCULATION WITH HEAT TRANSFER

    Directory of Open Access Journals (Sweden)

    Valeriu Dragan

    2017-12-01

    and manner under which the efficiency itself is calculated. The paper  presents a more robust approach to measuring efficiency, regardless of the heat transfer within the turbomachinery itself. Possible applications of the study may range from cold-start regime simulation to the optimization of inter-cooling setup or even flow angle control without mechanically actuated OGV

  10. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  11. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  12. On the thermoeconomics of heat transfer

    International Nuclear Information System (INIS)

    El-Sayed, Y.M.

    1991-01-01

    The cost effectiveness of improving the thermodynamics of heat transfer in an energy system is investigated by considering steam power systems bottoming a given gas turbine. Higher efficiencies are basically achieved by improving the temperature match of the heat addition process using both structural and parametric modes of change. The heat transfer surfaces, when expressed solely in terms of efficiency, indicate the existence of an envelope bounding them. The envelope can be approximated by a simple continuous function. Minimum surface for a given efficiency is on or closest to the envelope. Similar features apply to capital cost and to the cost objective function. In this paper the generalization and the limitations of the envelopment concept are discussed as well as the relevance to artificial intelligence

  13. Side-by-Side Testing of Water Heating Systems: Results from the 2013–2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States). Building America Partnership for Improved Residential Construction (BA-PIRC)

    2017-07-01

    The Florida Solar Energy Center (FSEC) completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). The evaluation studied the performance of five hot water systems (HWS) plus a reference baseline system for each fuel, (i.e., electric and natural gas). Electric HWS consisted of two residential electric heat pump water heaters (HPWHs, 60 and 80 gallons), a solar thermal system using a polymer absorber (glazed) collector with 80-gallon storage and a duplicate 50-gallon standard electric water heater with added cap and wrap insulation. Baseline performance data were collected from a standard 50-gallon electric water heater of minimum code efficiency to compare energy savings. Similarly, a standard 40-gallon upright vented natural gas water heater served as baseline for the natural gas fuel category. The latter, having a larger jacket diameter [18 in., with an energy factor (EF) of 0.62] with increased insulation, replaced a former baseline (17 in. diameter, EF = 0.59) that served during three previous testing rotations (2009–2013). A high-efficiency, condensing natural gas hybrid water heater with 27-gallon buffered tank was also tested and compared against the gas baseline. All systems underwent testing simultaneously side-by-side under the criteria specified elsewhere in this report.

  14. Condensation heat transfer of steam on a single horizontal tube

    Science.gov (United States)

    Graber, K. A.

    1983-06-01

    An experimental apparatus was designed, constructed and instrumented in an effort to systematically and carefully study the condensation heat-transfer coefficient on a single, horizontal tube. A smooth, thick-walled copper tube of length 133.5 mm, with an outside diameter of 15.9 mm and an inside diameter of 12.7 mm was instrumented with six wall thermocouples. The temperature rise across the test section was measured accurately using quartz crystal thermometers. The inside heat-transfer coefficient was determined using the Sieder-Tate correlation with leading coefficient of 0.029. Initial steam side data were taken at atmospheric pressure to test the data acquisition/reduction computer programs.

  15. Visualisation of heat transfer in unsteady laminar flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Steenhoven, van A.A.

    2011-01-01

    Heat transfer in fluid flows traditionally is examined in terms of temperature fields and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by

  16. Adiabatic partition effect on natural convection heat transfer inside a square cavity

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; yousefi, Tooraj

    2018-01-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach......-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study...... partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms...

  17. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  18. Experimental study on convective heat transfer with thin porous bodies

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Furuya, Masahiro

    2001-01-01

    Experimental studies are made on the convective heat transfer of three types of thin porous bodies. Heat transfer performances, flow patterns and temperature profiles near the porous bodies are compared with each other. The heat transfer performance of porous bodies with the largest pore diameter is large. It became clear that the high heat transfer performance depends on an excellent heat transportation ability inside the pore and near the surface of the porous bodies. (author)

  19. Topology optimization for transient heat transfer problems

    DEFF Research Database (Denmark)

    Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov

    The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our......, TopOpt has later been extended to transient problems in mechanics and photonics (e.g. [5], [6] and [7]). In the presented approach, the optimization is gradient-based, where in each iteration the non-steady heat conduction equation is solved,using the finite element method and an appropriate time......-stepping scheme. A PCM can efficiently absorb heat while keeping its temperature nearly unchanged [8]. The use of PCM ine.g. electronics [9] and mechanics [10], yields improved performance and lower costs depending on a.o., the spatial distribution of PCM.The considered problem consists in optimizing...

  20. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  1. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In

    2016-01-01

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m"2/K from the 4×4 tube banks, and 4.92 W/m"2/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study

  2. Heat Transfer in Health and Healing.

    Science.gov (United States)

    Diller, Kenneth R

    2015-10-01

    Our bodies depend on an exquisitely sensitive and refined temperature control system to maintain a state of health and homeostasis. The exceptionally broad range of physical activities that humans engage in and the diverse array of environmental conditions we face require remarkable strategies and mechanisms for regulating internal and external heat transfer processes. On the occasions for which the body suffers trauma, therapeutic temperature modulation is often the approach of choice for reversing injury and inflammation and launching a cascade of healing. The focus of human thermoregulation is maintenance of the body core temperature within a tight range of values, even as internal rates of energy generation may vary over an order of magnitude, environmental convection, and radiation heat loads may undergo large changes in the absence of any significant personal control, surface insulation may be added or removed, all occurring while the body's internal thermostat follows a diurnal circadian cycle that may be altered by illness and anesthetic agents. An advanced level of understanding of the complex physiological function and control of the human body may be combined with skill in heat transfer analysis and design to develop life-saving and injury-healing medical devices. This paper will describe some of the challenges and conquests the author has experienced related to the practice of heat transfer for maintenance of health and enhancement of healing processes.

  3. Development of heat transfer models for gap cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kohriyama, Tamio; Murase, Michio; Tamaki, Tomohiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In a severe accident of a light water reactor (LWR), heat transfer models in a narrow annular gap between superheated core debris and a reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. This paper discusses the effects of superheat on the heat flux based on existing data. In low superheat conditions, the heat flux in the narrow gap is higher than the heat flux in pool nucleate boiling due to restricted flow area. It approaches the nucleate boiling heat flux as superheat increasing and reaches a critical value subject to the counter-current flow limiting (CCFL) at the top end of the gap. A heat transfer correlation was derived as a function of dimensionless superheat and a Kutateladze-type CCFL correlation was deduced for critical heat flux (CHF) restricted by CCFL, which gave good prediction for a wide range of the CHF data. Effect of an angle of inclination of the gap could also be incorporated in the CCFL correlation. In high superheat conditions, the heat flux in the narrow gap maintains a similar shape to the pool boiling curve but shifts the position to a higher superheated side than the pool boiling except film boiling, which could be expressed by the typical pool film boiling correlation. Incorporating quench test data, the heat flux correlation was derived as a function of dimensionless superheat using the same formula for the low superheat and the Kutateladze-type CCFL correlation was deduced for CHF. The CHF at the high superheat was 3-4 times as large as CHF at the low superheat and this difference was well predicted by different flow patterns in the gap and the balance of pressure gradients between gas and liquid phases. (author)

  4. Boiling heat transfer on fins – experimental and numerical procedure

    Directory of Open Access Journals (Sweden)

    Orzechowski T.

    2014-03-01

    Full Text Available The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.

  5. Heat transfer characteristics of some oils used for engine cooling

    International Nuclear Information System (INIS)

    Abou-Ziyan, Hosny Z.

    2004-01-01

    This paper reports the results of an experimental investigation of heat transfer from a cast iron test specimen to engine oils under boiling conditions. The work is aimed at evaluating the thermal characteristics of some engine oils in contact with high temperature parts in internal combustion engines. Three mono-grade oils and two multi-grade oils are examined at heat fluxes from about 30 to more than 400 kW/m 2 for bulk temperatures of 40, 60, 80, 100, 125, 150 and 175 deg. C. The considered oils are analyzed and tested according to some ASTM standards to determine their additives concentration and to obtain some of their thermophysical properties. The results indicated that oil additives, oil properties and bulk temperatures have substantial effects on the oil characteristics. The boiling heat flux, for the best oil, rises by a factor of 1.65 as the bulk temperature decreases from 175 to 40 deg. C. The mono-grade oils produce superior heat transfer characteristics compared to those produced by multi-grade oils. The oil with the best additive concentrations produces boiling heat fluxes up to 4.44 times higher than those produced by some other oils. Comparing the results of the tested oils revealed that the oil that has the largest concentrations of boron, magnesium, phosphorus and zinc with low concentration of calcium yields the best heat transport characteristics among the other tested oils. These additives provide superior detergent and dispersant characteristics, reflected in the large alkalinity and low corrosivity of the oil. On the other side, calcium has a negative interaction with other additives and yields an adverse effect on heat transfer characteristics even when it exists in oil with large concentrations of boron, magnesium, phosphorus and zinc

  6. Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, K M; Chang, J S; Bai, C H; Chung, M [Yeungnam University, Kyungsan (Korea)

    1999-11-01

    To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52 mm and 7.0 mm, respectively. Used microfin tubes have different shape and number of fins with each other. The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film. 17 refs., 14 figs., 3 tabs.

  7. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  8. Effect of Twisted-Tape Turbulators and Nanofluid on Heat Transfer in a Double Pipe Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Heydar Maddah

    2014-01-01

    Full Text Available Heat transfer and overall heat transfer in a double pipe heat exchanger fitted with twisted-tape elements and titanium dioxide nanofluid were studied experimentally. The inner and outer diameters of the inner tube were 8 and 16 mm, respectively, and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made from aluminum sheet with tape thickness (d of 1 mm, width (W of 5 mm, and length of 120 cm. Titanium dioxide nanoparticles with a diameter of 30 nm and a volume concentration of 0.01% (v/v were prepared. The effects of temperature, mass flow rate, and concentration of nanoparticles on the overall heat transfer coefficient, heat transfer changes in the turbulent flow regime Re≥2300, and counter current flow were investigated. When using twisted tape and nanofluid, heat transfer coefficient was about 10 to 25 percent higher than when they were not used. It was also observed that the heat transfer coefficient increases with operating temperature and mass flow rate. The experimental results also showed that 0.01% TiO2/water nanofluid with twisted tape has slightly higher friction factor and pressure drop when compared to 0.01% TiO2/water nanofluid without twisted tape. The empirical correlations proposed for friction factor are in good agreement with the experimental data.

  9. Heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    International Nuclear Information System (INIS)

    Islam, M.S.; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio; Monde, Masanori.

    1997-03-01

    Heat transfer augmentation in narrow rectangular channels in a target system is a very important method to remove high heat flux up to 12 MW/m 2 generated at target plates of a high-intensity proton accelerator of 1.5 GeV and 1 mA with a proton beam power of 1.5 MW. In this report, heat transfer coefficients and friction factors in narrow rectangular channels with one-sided rib-roughened surface were evaluated for fully developed flows in the range of the Reynolds number from 6,000 to 1,00,000; the rib pitch-to-height ratios (p/k) were 10,20 and 30; the rib height-to-equivalent diameter ratios (k/De) were 0.025, 0.03 and 0.1 by means of previous existing experimental correlations. The rib-roughened surface augmented heat transfer coefficients approximately 4 times higher than the smooth surface at Re=10,000, p/k=10 and k/De=0.1; friction factors increase around 22 times higher. In this case, higher heat flux up to 12 MW/m 2 could be removed from the rib-roughened surface without flow boiling which induces flow instability; but pressure drop reaches about 1.8 MPa. Correlations obtained by air-flow experiments have showed lower heat transfer performance with the water-flow conditions. The experimental apparatus was proposed for further investigation on heat transfer augmentation in very narrow channels under water-flow conditions. This report presents the evaluation results and an outline of the test apparatus. (author)

  10. USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer

    International Nuclear Information System (INIS)

    Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; Lian, K.

    2006-01-01

    The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects

  11. Local pool boiling heat transfer on a 3 Degree inclined tube surface

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    Mechanisms of pool boiling heat transfer have been studied for a long time. Recently, it has been widely investigated in nuclear power plants for the purpose of acquiring inherent safety functions in case of no power supply. To design more efficient heat exchangers, effects of several parameters on heat transfer must be studied in detail. One of the major issues is variation in local heat transfer coefficients on a tube. Lance and Myers reported that the type of boiling liquid can change the trend of local heat transfer coefficients along the tube periphery. Lance and Myers said that as the liquid is methanol the maximum local heat transfer coefficient was observed at the tube bottom while the maximum was at the tube sides as the boiling liquid was n hexane. Corn well and Einarsson reported that the maximum local heat transfer coefficient was observed at the tube bottom, as the boiling liquid was R113. Corn well and Houston explained the reason of the difference in local heat transfer coefficients along the tube circumference with introducing effects of sliding bubbles on heat transfer. According to Gu pta et al., the maximum and the minimum local heat transfer coefficients were observed at the bottom and top regions of the tube circumference, respectively, using a tube bundle and water. Kang also reported the similar results using a single horizontal tube and water. However, the maximum heat transfer coefficient was observed at the angle of 45 deg. Sateesh et al. investigated variations in local heat transfer coefficients along a tube periphery as the inclination angle was changed. Summarizing the published results, some parts are still remaining to be investigated in detail. Although pool boiling analysis on a nearly horizontal tube is necessary for the design of the advanced power reactor plus, no previous results are published yet. Therefore, the present study is aimed to study variations in local pool boiling heat transfer coefficients for a 3 degree inclined

  12. An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage. Part II: Simultaneous charging/discharging modes

    International Nuclear Information System (INIS)

    Liu Zhongliang; Wang Zengyi; Ma Chongfang

    2006-01-01

    In this part of the paper, the performance of the simultaneous charging/discharging operation modes of the heat pipe heat exchanger with latent heat storage is experimentally studied. The experimental results show that the device may operate under either the fluid to fluid heat transfer with charging heat to the phase change material (PCM) or the fluid to fluid heat transfer with discharging heat from the PCM modes according to the initial temperature of the PCM. The melting/solidification curves, the performances of the heat pipes and the device, the influences of the inlet temperature and the mass flow rate of the cold water on the operation performance are investigated by extensive experiments. The experimental results also disclose that under the simultaneous charging/discharging operation mode, although the heat transfer from the hot water directly to the cold water may vary, it always takes up a major part of the total heat recovered by the cold water due to the very small thermal resistance compared with the thermal resistance of the PCM side. The melting/solidification processes taking place in the simultaneous charging/discharging operation are compared with those in the charging only and discharging only processes. By applying a simplified thermal resistance analysis, a criterion for predicting the exact operation modes was derived and used to explain the observed experimental phenomena

  13. Heat transfer studies in waste repository design

    International Nuclear Information System (INIS)

    Boehm, R.F.; Chen, Y.T.; Izzeldin, A.; Kuharic, W.; Sudan, N.

    1994-01-01

    The main task of this project is the development of visualization methods in heat transfer through porous media. Experiments have been performed related to the determination of the wavelength that gives equality of the refractive indices of the porous material and the liquid. The work has been accomplished using the calibration setup consisting of a 2-in. long test cell filled with 2-mm diameter soda-lime glass beads. A supplemental task is an unsaturated flow experiment with heat transfer in porous media. For this work the medium of interest in quartz beads. Essentially two-dimensional flows of admitted water are able to be examined. During this quarter, the setup and calibration of the experimental instrumentation was done. Also the modification of the main experimental tank and the inflow system was carried out. Initial testing was done

  14. Double diffusive conjugate heat transfer: Part I

    Science.gov (United States)

    Azeem, Soudagar, Manzoor Elahi M.

    2018-05-01

    The present work is undertaken to investigate the effect of solid wall being placed at left of square cavity filled with porous medium. The presence of a solid wall in the porous medium turns the situation into a conjugate heat transfer problem. The boundary conditions are such that the left vertical surface is maintained at highest temperature and concentration whereas right vertical surface at lowest temperature and concentration in the medium. The top and bottom surfaces are adiabatic. The additional conduction equation along with the regular momentum and energy equations of porous medium are solved in an iterative manner with the help of finite element method. It is seen that the heat and mass transfer rate is lesser due to smaller thermal and concentration gradients.

  15. Heat transfer modeling an inductive approach

    CERN Document Server

    Sidebotham, George

    2015-01-01

    This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...

  16. Boiling Heat Transfer Mechanisms in Earth and Low Gravity: Boundary Condition and Heater Aspect Ratio Effects

    Science.gov (United States)

    Kim, Jungho

    2004-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across

  17. Low-melting point heat transfer fluid

    Science.gov (United States)

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  18. Computer graphics in heat-transfer simulations

    International Nuclear Information System (INIS)

    Hamlin, G.A. Jr.

    1980-01-01

    Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges

  19. The Winfrith 9MW heat transfer rig

    International Nuclear Information System (INIS)

    Obertelli, J.D.

    1976-01-01

    The Winfrith 9MW Rig is used for studying heat transfer and flow resistance in a variety of test sections at system pressures up to 68 bar. The basic rig and its instrumentation are discussed together with the characteristics of the test section design. The rig has been used in studies involving the full scale simulation of Steam Generating Heavy Water (SGHW) fuel assemblies and the paper discusses the measurements made in this type of study. (author)

  20. Principles of heat and mass transfer

    CERN Document Server

    Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S

    2013-01-01

    Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.

  1. Heat transfer in multi-phase materials

    CERN Document Server

    Öchsner, Andreas

    2011-01-01

    This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).

  2. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  3. Heat transfer to accelerating gas flows

    International Nuclear Information System (INIS)

    Kennedy, T.D.A.

    1978-01-01

    The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)

  4. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  5. Experimental heat transfer in tube bundle

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, A.; Habib, M.

    1983-01-01

    Previous work has looked for the problem of heat transfer with flow parallel to rod bundle either by treating each rod individually as a separate channel or by treating the bundle as one unit. The present work will consider the existence of both the central and corner rods simultaneously inside the cluster itself under the same working conditions. The test section is geometrically similar to the fuel assembly of the Egyptian Research Reactor-1. The hydro-thermal performance of bundle having 16 - stainless steel tubes arranged in square array of 1.5 pitch to diameter ratio is investigated. Surface temperature and pressure distributions are determined. Average heat transfer coefficient for both central and corner tubes are correlated. Also, pressure drop and friction factor correlations are predicted. The maximum experimental range of the measured parameters are determined in the nonboiling region at 1400 Reynolds number and 3.64 W/cm 2 . It is found that the average heat transfer coefficient of the central tube is higher than that of the corner tube by 27%. Comparison with the previous work shows satisfactory agreement particularly with the circular tubes correlation - Dittus et al. - at 104 Reynolds number

  6. An introduction to heat transfer. 2. rev. ed.

    International Nuclear Information System (INIS)

    Hell, F.

    1979-01-01

    This book represents a fundamental introduction to heat transfer. Practical problems and tables make the book useful for engeneers and students. The chapters include detailed informations together with exercises of convection, radiat heat transfer, thermal conduction and condensation. (CDS)

  7. Refrigeration. Heat Transfer. Part I: Evaporators and Condensers

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation.......The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation....

  8. Heat transfer coefficients during quenching of steels

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, H.S.; Jalil, J.M. [University of Technology, Department of Electromechanical Engineering, Baghdad (Iraq); Peet, M.J.; Bhadeshia, H.K.D.H. [University of Cambridge, Department of Materials Science and Metallurgy, Cambridge (United Kingdom)

    2011-03-15

    Heat transfer coefficients for quenching in water have been measured as a function of temperature using steel probes for a variety of iron alloys. The coefficients were derived from measured cooling curves combined with calculated heat-capacities. The resulting data were then used to calculate cooling curves using the finite volume method for a large steel sample and these curves have been demonstrated to be consistent with measured values for the large sample. Furthermore, by combining the estimated cooling curves with time-temperature-transformation (TTT) diagrams it has been possible to predict the variation of hardness as a function of distance via the quench factor analysis. The work should prove useful in the heat treatment of the steels studied, some of which are in the development stage. (orig.)

  9. Heat transfer at a beam port corner

    International Nuclear Information System (INIS)

    Krinsky, S.

    Along the general run of the vacuum chamber synchrotron radiation strikes the wall at a glancing angle of about 5.6 0 . The heat source is well-approximated by a ribbon of uniform power density having a small vertical height and an infinite azimuthal length. The heat transfer problem reduces to one in two-dimensions and it has been considered in a previous note. At the corner of a beam port the angle of incidence becomes 90 0 , so the temperature rises much higher than elsewhere. Since the power density at the corner is not uniform in its azimuthal dependence, but is strongly peaked at the point of normal incidence, two-dimensional heat flow is not a good approximation. The rectangular 3d problem is considered. This is easily solved and yields a good first estimate of the temperature rise at the corner

  10. Heat transfer operators associated with quantum operations

    International Nuclear Information System (INIS)

    Aksak, C; Turgut, S

    2011-01-01

    Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a Hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this paper is to investigate the relation between the HTOs and the associated quantum operations. Since any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This paper is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations, however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

  11. Heat transfer characteristics of induced mixed convection

    International Nuclear Information System (INIS)

    Weiss, Y.; Lahav, C.; Szanto, M.; Shai, I.

    1996-01-01

    In the present work we focus our attention on the opposed Induced Mixed Convection case, i.e. the flow field structure in a vertical cylinder, closed at its bottom, opens at the top, and being heated circumferentially. The paper reports an experimental study of this complex heat transfer process. For a better understanding of the flow field and the related heat transfer process, two different experimental systems were built. The first was a flow visualization system, with water as the working fluid, while the second system enabled quantitative measurements of the temperature field in air. All the experiments were performed in the turbulent flow regime. In order to learn about all possible flow regimes, the visualization tests were conducted in three different length-to-diameter ratios (1/d=1,5,10). Quantitative measurements of the cylindrical wall temperature, as well as the radial and axial temperature profiles in the flow field, were taken in the air system. Based on the visualization observation and the measured wall temperature profile, it was found that the OIMC can be characterized by three main regimes: a mixing regime at the top, a central turbulent core and a boundary layer type of flow adjacent to the heated wall. (authors)

  12. High performance passive solar heating system with heat pipe energy transfer and latent heat storage

    NARCIS (Netherlands)

    Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.

    1983-01-01

    Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an

  13. Heat transfer and friction characteristics in steam cooled rectangular channels with rib turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianying; Gao, Tieyu; Li, Guojun [Xi' an Jiaotong University, Xi' an (China)

    2014-01-15

    We studied the heat transfer and friction characteristics in steam-cooled rectangular channels with rib turbulators on W side or H side walls in the Reynolds number (Re) range of 10000-80000. Each of the test channels was welded by four stainless steel plates to simulate the actual geometry and heat transfer structure of blade/vane internal cooling passage. The length of the channel L was 1000 mm, the cross section of the channel was 40 mm X 80 mm, and the pitch-to-rib height ratio p/e was kept at 10. The channel blockage ratio (W/H) was 0.047. Results showed that the Nusselt number (Nu) distributions displayed different trends at the entrance region with the increase of Re for the rib turbulators on the W side walls. The heat transfer performance of the rib turbulators on the H side walls was about 24- 27% higher than that on the W side walls at the same pumping power. In addition, semi-empirical correlations for the two cases, rib turbulators on W side walls and rib turbulators on H side walls, were developed based on the heat transfer results, which could be used in the design of the internal cooling passage of new generation steam-cooled gas turbine blade/vane.

  14. A Review of Wettability Effect on Boiling Heat Transfer Enhancement

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2012-01-01

    Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer

  15. Subcooled boiling heat transfer on a finned surface

    International Nuclear Information System (INIS)

    Kowalski, J.E.; Tran, V.T.; Mills, P.J.

    1992-01-01

    Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)

  16. Simulations and experiments of laminar heat transfer for Therminol heat transfer fluids in a rifled tube

    International Nuclear Information System (INIS)

    Xu, Weiguo; Ren, Depeng; Ye, Qing; Liu, Guodong; Lu, Huilin; Wang, Shuai

    2016-01-01

    Graphical abstract: Predicted laminar Nusselt number using regression correlation of Therminol-55 heat transfer fluid is in agreement with experiments in the rifled tube. - Highlights: • Heat transfer coefficient and friction factor are measured and predicted in the rifled tube. • Correlations for Nusselt number and friction factor are proposed. • The roughness height of 0.425 mm in transition SST model is suggested as an input parameter. • k–kl–ω transition and transition SST models are recommended for laminar–turbulent transition. • Thermal enhancement factor and synergy angle are predicted in the rifled tube. - Abstract: Simulations and experiments of flow and heat transfer behavior of Therminol-55 heat transfer fluid have been conducted in a horizontal rifled tube with outer diameter and inner diameter 25.0 and 20.0 mm, pitch and rib height of 12.0 and 1.0 mm, respectively. Numerical simulations of three-dimensional flow behavior of Therminol-55 heat transfer fluid are carried out using FLUENT code in the rifled tube. Experimental results show that the heat transfer and thermal performance of Therminol-55 heat transfer fluid in the rifled tube are considerably improved compared to those of the smooth tube. The Nusselt number increases with the increase of Reynolds number, and is from 3.5 to 5.1 times over the smooth tube. Also, the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.2 and 4.2 times over the smooth tube. Predictive Nusselt number and friction factor correlations have been presented. The numerical results show that the laminar flow model is valid only at lower Reynolds number in the developed laminar flow of rifled tube. The k–kl–ω transition model and transition SST model with roughness of 0.425 mm are recommended for the predictions of transition process from laminar to turbulent flow in the rifled tube.

  17. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    Science.gov (United States)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  18. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Directory of Open Access Journals (Sweden)

    Konchada Pavan Kumar

    2016-06-01

    Full Text Available The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3 nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  19. Enhancement of heat and mass transfer by cavitation

    International Nuclear Information System (INIS)

    Zhang, Y N; Du, X Z; Xian, H Z; Zhang, Y N

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment

  20. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  1. Unravelling convective heat transfer in the Rotated Arc Mixer

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Baskan, O.; Metcalfe, G.; Clercx, H.J.H.

    2014-01-01

    Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations.

  2. Visualisation of heat transfer in 3D unsteady flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Steenhoven, van A.A.

    2010-01-01

    Heat transfer in fluid flows traditionally is examined in terms oftemperature field and heat-transfer coefficients at non-adiabaticwalls. However, heat transfer may alternatively be considered asthe transport of thermal energy by the total convective-conductiveheat flux in a way analogous to the

  3. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

    Science.gov (United States)

    Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

    2010-01-01

    This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

  4. Heat transfer in a compact tubular heat exchanger with application to the engine struts of the national aerospace plane

    International Nuclear Information System (INIS)

    Olsen, D.A.

    1991-01-01

    The authors constructed an apparatus to measure heat transfer coefficients in compact heat exchangers which are candidate cooling jackets for the engine struts of the National Aerospace Plane. This paper reports measurements on a tube specimen heat exchanger. The heat exchanger consisted of 20 nickel tubes (2 mm OD, 1 mm ID, 15.2 cm heated length), brazed to a 3 mm thick nickel plate. The tubes lay parallel to one another, 3.8 mm on-center separation. The heat exchanger was heated on one side in a radiative furnace at heat fluxes of 3.4 to 54 W/cm 2 over a normal area of 7.8 cm by 15.2 cm. The coolant fluid was helium gas at Reynolds numbers of 3000 to 35 000 and 3.50 MPa pressure. For high heat flux and low

  5. Transfer coefficients in elliptical tubes and plate fin heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.

    1979-09-01

    Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.) [pt

  6. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

  7. Transfer of heat to fluidized-solids beds

    Energy Technology Data Exchange (ETDEWEB)

    1952-10-16

    The improvement in the method described and claimed in patent application 14,363/47 (136,186) for supplying heat to a dense turbulent mass of solid fluidized by a gas flowing upwardly therethrough and subjected to a high temperature in a treating zone, by heat transfer through heat-transfer surfaces of heat-transfer elements in contact with the said turbulent mass of finely divided solid and heated by means of a fluid heating medium, including burning fuels comprising contacting the said heat-transfer surfaces with a fuel and a combustion supporting gas under such conditions that the combustion of the fuel is localized in the heat-transfer element near the point of entry of the fuel and combustion-supporting gas and a substantial temperature gradient is maintained along the path of said fuel combustion-supporting gas and combustion products through the said heat-transfer element.

  8. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall

  9. Heat transfer model for quenching by submerging

    International Nuclear Information System (INIS)

    Passarella, D N; Varas, F; MartIn, E B

    2011-01-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  10. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  11. An experimental investigation on air-side performances of finned tube heat exchangers for indirect air-cooling tower

    Directory of Open Access Journals (Sweden)

    Du Xueping

    2014-01-01

    Full Text Available A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90°, 60 °, 45°, and 30° are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90° has the worst performance while 45° and 30° has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60°, while the best performance occurred at 45° and 90° at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.

  12. Heat transfer unit and method for prefabricated vessel

    Science.gov (United States)

    Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.

    2017-11-07

    Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one of the plurality of peripheral rods.

  13. Flow and heat transfer in a curved channel

    Science.gov (United States)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  14. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    NARCIS (Netherlands)

    Bartle, S J; Thomson, D U; Gehring, R; van der Merwe, B. D.

    2017-01-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas,

  15. Convective heat transfer and infrared thermography.

    Science.gov (United States)

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  16. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    Gunes, M.

    1998-01-01

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  17. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  18. Computational fluid mechanics and heat transfer

    CERN Document Server

    Pletcher, Richard H; Anderson, Dale

    2012-01-01

    ""I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD.""-Joseph J.S. Shang, Wright State University""Computational Fluid Mechanics and Heat Transfer is very well written to be used as a t

  19. Thermal conductivity and heat transfer in superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G; Neagu, M; Borca-Tasciuc, T

    1997-07-01

    Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

  20. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  1. Natural convection heat transfer in an anisotropic porous cavity heated from the side. 2nd Report. experiment by hele-shaw cell; Tosuiritsu ni ihosei wo yusuru howa takoshitsu sonai no sokuho kanetsu ni yoru shizen tairyu netsu dentatsu. 2. Hele shaw cell ni yoru jikken

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Okajima, A; Kiwata, T [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    2000-11-25

    Natural convection heat transfer and flow structure in an anisotropic porous medium of square cavity saturated with Boussinesq fluid has been studied experimentally using a Hele-Shaw cell. The permeability ratio defined by K=K{sub y}/K{sub x} was put to three different values; 0.4, 1 and 2.5. The convection patterns at three different permeability ratios are visualized for several different Rayleigh numbers by the pH indicator method. When K is 0.25, the visualized flow is mainly in the vertical direction. On the contrary for K=4 the convecting flow is in the horizontal direction. The average heat transfer coefficients are also measured, and the corresponding Nusselt number are plotted as a function of K. It is found that the corresponding Nusselt numbers are scaled with (KRa){sup 1/2}. The experimental results of flow pattern and heat transfer are accord with those obtained by our previous theory. (author)

  2. Experimental study on external condensation heat transfer characteristics of bellows

    International Nuclear Information System (INIS)

    Feng Dianyi; Hu Jiansheng

    2008-01-01

    Flow model and heat transfer of condensation flow outside of bellows have been theoretically and experimentally studied. The formula for calculation of condensation heat transfer coefficient was deduced, and corrected through experiment. The calculation results are accordant with the experimental ones, and the errors is less than 10%. The effect of bellows structure parameters and pipe diameter on the enhancement heat transfer has been investigated. It is found that in the steady flow region, the average condensation heat transfer coefficient in a bellows is 3 ∼ 5 times than that in a straight tube under the same conditions, and when considering the increasing in heat transfer area, the effectiveness of enhancement heat transfer is 5 ∼ 7 times than that in a straight tube. To facilitate the engineering design and application of bellows, the formula for the calculation of the average heat transfer coefficient of a fluid in a bellows was also given. (authors)

  3. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin

    2013-01-01

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept

  4. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  5. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  6. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  7. Method of calculating heat transfer in furnaces of small power

    Directory of Open Access Journals (Sweden)

    Khavanov Pavel

    2016-01-01

    Full Text Available This publication presents the experiences and results of generalization criterion equation of importance in the analysis of the processes of heat transfer and thermal calculations of low-power heat generators cooled combustion chambers. With generalizing depending estimated contribution of radiation and convective heat transfer component in the complex for the combustion chambers of small capacity boilers. Determined qualitative and quantitative dependence of the integrated radiative-convective heat transfer from the main factors working combustion chambers of small volume.

  8. Heat and mass transfer in building services design

    CERN Document Server

    Moss, Keith

    1998-01-01

    Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *

  9. Research on Marine Boiler's Pressurized Combustion and Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN

    2005-01-01

    The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.

  10. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    International Nuclear Information System (INIS)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-01-01

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel

  11. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  12. Simultaneous heat and mass transfer to air from a compact heat exchanger with water spray precooling and surface deluge cooling

    International Nuclear Information System (INIS)

    Zhang, Feini; Bock, Jessica; Jacobi, Anthony M.; Wu, Hailing

    2014-01-01

    Various methods are available to enhance heat exchanger performance with evaporative cooling. In this study, evaporative mist precooling, deluge cooling, and combined cooling schemes are examined experimentally and compared to model predictions. A flexible model of a compact, finned-tube heat exchanger with a wetted surface is developed by applying the governing conservation and rate equations and invoking the heat and mass transfer analogy. The model is applicable for dry, partially wet, or fully wet surface conditions and capable of predicting local heat/mass transfer, wetness condition, and pressure drop of the heat exchanger. Experimental data are obtained from wind tunnel experiments using a louver-fin flat-tube heat exchanger with single-phase tube-side flow. Total capacity, pressure drop, and water drainage behavior under various water usage rates and air face velocities are analyzed and compared to data for dry-surface conditions. A heat exchanger partitioning method for evaporative cooling is introduced to study partially wet surface conditions, as part of a consistent and general method for interpreting wet-surface performance data. The heat exchanger is partitioned into dry and wet portions by introducing a wet surface factor. For the wet part, the enthalpy potential method is used to determine the air-side sensible heat transfer coefficient. Thermal and hydraulic performance is compared to empirical correlations. Total capacity predictions from the model agree with the experimental results with an average deviation of 12.6%. The model is also exercised for four water augmentation schemes; results support operating under a combined mist precooling and deluge cooling scheme. -- Highlights: • A new spray-cooled heat exchanger model is presented and is validated with data. • Heat duty is shown to be asymptotic with spray flow rate. • Meaningful heat transfer coefficients for partially wet conditions are obtained. • Colburn j wet is lower than j dry

  13. Heat and mass transfer in air-fed pressurised suits

    International Nuclear Information System (INIS)

    Tesch, K.; Collins, M.W.; Karayiannis, T.G.; Atherton, M.A.; Edwards, P.

    2009-01-01

    Air-fed pressurised suits are used to protect workers against contamination and hazardous environments. The specific application here is the necessity for regular clean-up maintenance within the torus chamber of fusion reactors. The current design of suiting has been developed empirically. It is, therefore, very desirable to formulate a thermo-fluids model, which will be able to define optimum designs and operating parameters. Two factors indicate that the modelling should be as comprehensive as possible. Firstly, the overall thermo-fluids problem is three-dimensional and includes mass as well as heat transfer. The fluid field is complex, bounded on one side by the human body and on the other by what may be distensible, porous and multi-layer clothing. In this paper, we report firstly the modelling necessary for the additional mass and heat transport processes. This involves the use of Fick's and Fourier's laws and conjugate heat transfer. The results of an initial validation study are presented. Temperatures at the outlet of the suits were obtained experimentally and compared with those predicted by the overall CFD model. Realistic three-dimensional geometries were used for the suit and human body. Calculations were for turbulent flow with single- and two-component (species) models

  14. Consideration of heat transfer performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Miyamoto, Yoshiaki

    1986-10-01

    The helium engineering loop (HENDEL) has four helium-gas/water coolers, where the cooling water flows in the tubes and the helium gas flows on the shell side. Their cooling performance depends on mainly the heat transfer of helium gas on the shell side. This report describes the operational data of the coolers and the consideration of the heat transfer performance which is important for the design of coolers. It becomes clear that Donohue's equation is close to the operational data and conservative for the segmental baffle type cooler and preduction by Fishenden-Saunders or Zukauskas' equation is conservation for the step-up baffle type cooler. (author)

  15. Heat and mass transfer during baking: product quality aspects

    NARCIS (Netherlands)

    Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.

    2005-01-01

    Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in

  16. EFLOD code for reflood heat transfer

    International Nuclear Information System (INIS)

    Gay, R.R.

    1979-01-01

    A computer code called EFLOD has been developed for simulation of the heat transfer and hydrodynamics of a nuclear power reactor during the reflood phase of a loss-of-coolant accident. EFLOD models the downcomer, lower plenum, core, and upper plenum of a nuclear reactor vessel using seven control volumes assuming either homogeneous or unequal-velocity, unequal-temperature (UVUT) models of two-phase flow, depending on location within the vessel. The moving control volume concept in which a single control volume models the quench region in the core and moves with the core liquid level was developed and implemented in EFLOD so that three control volumes suffice to model the core region. A simplified UVUT model that assumes saturated liquid above the quench front was developed to handle the nonhomogeneous flow situation above the quench region. An explicit finite difference routine is used to model conduction heat transfer in the fuel, gap, and cladding regions of the fuel rod. In simulation of a selected FLECHT-SET experimental run, EFLOD successfully predicted the midplane maximum temperature and turnaround time as well as the time-dependent advance of the core liquid level. However, the rate of advancement of the quench level and the ensuing liquid entrainment were overpredicted during the early part of the transient

  17. Post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.; Condie, K.G.

    1980-01-01

    This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation

  18. Effect of phase change material on the heat transfer rate of different building materials

    Science.gov (United States)

    Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan

    2017-12-01

    Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.

  19. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    International Nuclear Information System (INIS)

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  20. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.

  1. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.

  2. Restoration to serviceability of Bruce 'A' heat transfer equipment

    International Nuclear Information System (INIS)

    Gammage, D.; Machowski, C.; McGillivray, R.; Durance, D.; Kazimer, D.; Werner, K.

    2009-01-01

    Bruce Units 1 to 4 were shut down during the 1990s by the former Ontario Hydro, due in part to a long list of system and equipment deficiencies and concerns, including steam generator tube degradation as a consequence of the then-existing steam generator secondary side water chemistry conditions. Upon its creation in 2001, and following a program of condition assessment, Bruce Power was able to determine that Units 3 and 4 could return to service; but that Units 1 and 2 would require refurbishment. That Refurbishment Program, which is currently well advanced, included the re-assessment of the condition of equipment throughout the plant including the heat transfer equipment; and determination item-by-item as to what inspection, cleaning, repair, or even replacement would be required to put the equipment into a condition where it could be expected to operate reliably for the additional 30 years expected from the plant. Clearly the objective is to suitably restore the equipment to serviceability without doing more refurbishment work than is warranted - without replacing equipment except where absolutely necessary. The first task in such a program is determination of its scope - i.e. a listing of all heat exchangers. That list included everything from the steam generators (which required replacement, now completed), to much smaller heat exchangers in the heavy water upgrader systems (which were found to be in very good overall condition). There is also a very large number of other so-called 'balance-of-plant' heat exchangers; these include the maintenance coolers, moderator heat exchangers, shutdown coolers and a whole raft of smaller coolers - many of which are cooled directly by lake water with its potential for bio-fouling and 'BIC' (Biologically Induced Corrosion). This paper focuses primarily on the engineering assessment, inspection, repair and general refurbishment of the balance-of-plant heat exchangers. As will be discussed in the paper, the assessment of the

  3. Study on enhancement of heat transfer of RVACS

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi

    1989-01-01

    As for the enhancement of heat transfer on Reactor Vessel Auxiliary Cooling System (RVACS), utilization of high porosity porous bodies have been proposed by the last report. This report describe the experimental results to evaluate heat transfer performance of the porous bodies and to estimate the extrapolation to long heat transfer surface such as reactor scale. Following are typical results. (1) Usually the Heat Transfer coefficient at the lower reaches is smoller than that of the upper reaches. But Using with the high porosity porous bodies, the Heat Transfer coefficient at the lower reaches remains a constant value against distance from entrance point or a increase slightly compared to that of the upper reaches because of the effect of thermal radiation. (2) From the results of Heat Transfer coefficients against distance from the entrance point, the increasing ratio of enhancement of heat removal in the case of reactor scale is about 1.3. (author)

  4. Nucleate boiling heat transfer on horizontal tubes in bundles

    International Nuclear Information System (INIS)

    Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.

    1986-01-01

    In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate

  5. Heat transfer assembly for a fluorescent lamp and fixture

    Science.gov (United States)

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  6. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    Science.gov (United States)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  7. Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Mokamati, S.V.; Prasad, R.C.

    2003-01-01

    In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)

  8. Review of PCMS and heat transfer enhancement methods applied ...

    African Journals Online (AJOL)

    Most available PCMs have low thermal conductivity making heat transfer enhancement necessary for power applications. The various methods of heat transfer enhancement in latent heat storage systems were also reviewed systematically. The review showed that three commercially - available PCMs are suitable in the ...

  9. Measurement of heat transfer coefficient using termoanemometry methods

    Science.gov (United States)

    Dančová, P.; Sitek, P.; Vít, T.

    2014-03-01

    This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC) is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  10. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.

    2014-03-01

    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  11. Heat or mass transfer from an open cavity

    NARCIS (Netherlands)

    Kuiken, H.K.

    1978-01-01

    This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the Péclet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat

  12. Heat transfer enhancement with condensation by surface rotation

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Khrolenok, V V [A.V. Luikov Heat and Mass Transfer Inst., Minsk (Belarus)

    1993-11-01

    Process intensification relies on many unit operations on enhanced heat transfer. One technique for the enhancement of condensation heat transfer is the use of surface rotation. This is particularly effective in reducing the condensate film thickness. The formulae and relationships given in this paper are concerned with rotating discs and tubes, and can be used for developing advanced heat exchanger concepts. (Author)

  13. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  14. 34th UIT Heat Transfer Conference 2016

    International Nuclear Information System (INIS)

    2017-01-01

    The annual UIT Heat Transfer Conference of the “Unione Italiana di Termofluidodinamica” aims at promoting cooperation in the field of heat transfer and thermal sciences, by bringing together scientists and engineers working in related areas. Several issues of interest are addressed, namely natural, forced and mixed convection, conduction, radiation, multi-phase fluid dynamics and interface phenomena, computational fluid dynamics, micro- and nano-scales, efficiency in energy systems, environmental technologies and buildings, heat transfer in fire engineering. The 34th UIT Conference was held in Ferrara (FE), Italy, 4–6 July, 2015 in the spaces of the Scientific and Technological Center of The University of Ferrara. The response has been enthusiastic: 61 abstracts, 36 oral and 18 poster presentations, 48 papers published on the Proceedings To encourage the debate, the Conference Program has scheduled ample poster sessions and invited lectures from the best experts in the field along with a few of the most talented researchers. Keynote Lectures were given by Professor Giovanni S. Barozzi (University of Modena), Professor Paolo Di Marco (University of Pisa) and Professor Nicola Bianco (University of Napoli Federico II). This special volume collects a selection of the scientific contributions discussed during this conference; these works give a good overview of the state-of-the art Italian research in the field of Heat Transfer related topics. I would like to thank sincerely the authors for presenting their works at the conference and in this special issue. I would also like to extend my thanks to the Scientific Committee and the authors for their accurate review process of each paper for this special issue. Special thanks go to the organizing committee. Professor Stefano Piva (president of The Organizing Committee) About UIT (Unione Italiana Termofluidodinamica) The Italian Union of Thermal-Fluid Dynamics (UIT) was founded in Bologna on December 19, 1984

  15. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  16. 3D numerical simulation of fluid–solid coupled heat transfer with variable property in a LBE-helium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); North China University of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou, Henan 450011 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Wang, Yongwei, E-mail: wangyongwei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China)

    2014-07-01

    Highlights: • Heat transfer in heat exchanger can be improved by increasing helium's flow rate. • The outlet temperature of helium decreases with increasing helium's flow rate. • Balance is necessary between good heat transfer and high helium outlet temperature. - Abstract: LBE-helium experimental loop of ADS (LELA) and LBE-helium heat exchanger have been designed and constructed with the supporting of the “ADS Transmutation System” project of Chinese Academy of Sciences. In order to investigate the flow and heat transfer characteristics between LBE and helium, 3D numerical simulation of fluid–solid coupled heat transfer with variable property in the LBE-helium heat exchanger is conducted in the present study. The effects of mass-flow-rates of helium and LBE in the shell-side and tube-side on the heat transfer performance are addressed. It is found that the heat transfer performance can be significantly improved by increasing helium mass-flow-rate in the shell-side. In order to easily and quickly obtain the outlet temperatures of helium and LBE, a concept of modified effectiveness is introduced and correlated as the function of tube-side to shell-side heat capacity rate ratio. The results show that the outlet temperature of helium decreases with increasing helium mass-flow-rate. Therefore, considering the utilization of high-temperature helium in the future, for example power generation, there should be a tradeoff between good heat transfer performance and high outlet helium temperature when confirming helium mass-flow-rate.

  17. RELAP4/MOD6 reflood heat transfer and data comparison

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1981-01-01

    This discussion of RELAP4/MOD6 will be limited to the reflood heat transfer models and evaluation of these models by comparison of calculation with results from three reflood experiments. The discussion of the model includes the heat transfer surface concept, the heat transfer correlations, the superheat model and the entrainment model which presents both the two-phase heat transfer and hydraulic models. In the discussion of the reflood heat transfer, the mathematical concept of a multidimensional surface is used to represent the heat flux of a given heat transfer correlation or correlations dependent upon such variables as quality, wall superheat and flux. This concept has been used to investigate the characteristics of the correlations, which are discusssed in detail, and the way they are applied to the two-phase mixture. Of primary importance in the reflood core heat transfer is the consideration of thermal nonequilibrium between the phases and the liquid entrainment, and its distribution up the core. Results obtained to date show the heat transfer and hydraulics to be closely coupled. Comparison of the RELAP4/MOD6 reflood calculations with the data from the forced feed FLECHT and gravity feed FLECHT-SET and Semiscale reflood experiments indicates that the heat transfer and hydraulic models are operational and yield good results

  18. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  19. Interfacial heat transfer - State of the art

    International Nuclear Information System (INIS)

    Yadigaroglu, G.

    1987-01-01

    Interfacial heat exchanges control the interfacial mass exchange rate, depend on the interfacial area, and are tied to the prediction of thermal nonequilibrium. The nature of the problem usually requires the formulation of mechanistic laws and precludes the general use of universal correlations. This is partly due to the fact that the length scale controlling the interfacial exchanges varies widely from one situation to another and has a strong influence on the exchange coefficients. Within the framework of the ''two-fluid models'', the exchanges occurring at the interfaces are explicitly taken into consideration by the jump condition linking the volumetric mass exchange (evaporation) rate between the phases, to the interfacial energy transfer rates

  20. Experimental study on transient boiling heat transfer

    International Nuclear Information System (INIS)

    Visentini, R.

    2012-01-01

    well. A flexible power supply that can generate a free-shape signal, allows to get to a wall-temperature increase rate up to 2500 K/s but also to obtain lower rates, which permits to study weaker transients and steady state conditions. The thermal measurements are realised by means of an infra-red camera and a high-speed camera is employed in order to see the boiling phenomena at the same time. From the voltage and current measurements the heat flux that is passed to the fluid is known. It is possible to underline some of the main results of this work. We found that, even when the boiling onset occurs soon because of the high power, transient conduction is always coupled with transient convection. The boiling onset occurs when the wall superheat is between 10 K et 30 K. This value corresponds to the activation of the smallest nucleation sites at the wall. The literature correlations well fit the nucleate boiling data in steady-state conditions. When the wall-temperature increase rate leads to transient boiling, the heat flux is higher than in steady state. This is consistent with what was found in previous studies. The nucleate boiling phase may last only a few milliseconds when the power is really high and the wall temperature increases really rapidly (500-2000 K/s). The experiments in transient boiling also point out that the heat flux is larger than in steady state conditions for the other regimes: Critical heat flux and also film boiling. The experimental set-up allows to investigate a large range of parameters (wall-temperature increase rate, flow rate, fluid temperature) by means of accurate temperature measurements and visualisations. Some modeling of the heat transfer are also proposed. (author)

  1. Combustion chamber heat transfer characterization of LOX/hydrocarbon-type propellants

    Science.gov (United States)

    Schoenman, Leonard

    1987-01-01

    The gas-side heat transfer rates for LOX/propane and LOX/ethanol are experimentally characterized using a 1000 lb thrust water-cooled calorimeter chamber. The effects of injector element type and fuel film cooling are defined as a function of mixture ratio. The interaction of fuel injected through the resonator cavities on heat transfer and wall soot buildup are displayed as a function of time, axial distance, fuel coolant flow rate, and mixture ratio. Comparisons between clean-burning ethanol and sooting propane show a large difference between the two fuels and significantly higher than expected heat flux levels for ethanol in the throat region.

  2. Demand side management for commercial buildings using an in line heat pump water heating methodology

    International Nuclear Information System (INIS)

    Rankin, Riaan; Rousseau, Pieter G.; Eldik, Martin van

    2004-01-01

    Most of the sanitary hot water used in South African buildings is heated by means of direct electrical resistance heaters. This is one of the major contributors to the undesirably high morning and afternoon peaks imposed on the national electricity supply grid. For this reason, water heating continues to be of concern to the electricity supplier, ESCOM. Previous studies, conducted by the Potchefstroom University for Christian Higher Education in South Africa, indicated that extensive application of the so called inline heat pump water heating methodology in commercial buildings could result in significant demand side management savings to ESKOM. Furthermore, impressive paybacks can be obtained by building owners who choose to implement the design methodology on existing or new systems. Currently, a few examples exist where the design methodology has been successfully implemented. These installations are monitored with a fully web centric monitoring system that allows 24 h access to data from each installation. Based on these preliminary results, a total peak demand reduction of 108 MW can be achieved, which represents 18% of the peak load reduction target set by ESKOM until the year 2015. This represents an avoided cost of approximately MR324 (ZAR) [Int J Energy Res 25(4) (1999) 2000]. Results based on actual data from the monitored installations shows a significant peak demand reduction for each installation. In one installation, a hotel with an occupancy of 220 people, the peak demand contribution of the hot water installation was reduced by 86%, realizing a 36% reduction in peak demand for the whole building. The savings incurred by the building owner also included significant energy consumption savings due to the superior energy efficiency of the heat pump water heater. The combined savings result in a conservatively calculated straight payback period of 12.5 months, with an internal rate of return of 98%. The actual cost of water heating is studied by

  3. Influence of short heat pulses on the helium boiling heat transfer rate

    International Nuclear Information System (INIS)

    Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.

    1987-01-01

    Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer

  4. Numerical investigation of two- and three-dimensional heat transfer in expander cycle engines

    Science.gov (United States)

    Burch, Robert L.; Cheung, Fan-Bill

    1993-01-01

    The concept of using tube canting for enhancing the hot-side convective heat transfer in a cross-stream tubular rocket combustion chamber is evaluated using a CFD technique in this study. The heat transfer at the combustor wall is determined from the flow field generated by a modified version of the PARC Navier-Stokes Code, using the actual dimensions, fluid properties, and design parameters of a split-expander demonstrator cycle engine. The effects of artificial dissipation on convergence and solution accuracy are investigated. Heat transfer results predicted by the code are presented. The use of CFD in heat transfer calculations is critically examined to demonstrate the care needed in the use of artificial dissipation for good convergence and accurate solutions.

  5. Personalized recommendation based on heat bidirectional transfer

    Science.gov (United States)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  6. CarbAl Heat Transfer Material

    Science.gov (United States)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  7. On the heat transfer in packed beds

    International Nuclear Information System (INIS)

    Sordon, G.

    1988-09-01

    The design of a fusion reactor blanket concept based on a bed of lithium containing ceramic pebbles or a mixture of ceramic and beryllium pebbles demands the knowledge of the effective thermal conductivity of pebble beds, including beds formed by a binary mixture of high conducting metallic pebbles and poorly conducting pebbles. In this work, binary mixtures of spheres of same diameter and different conductivities as well as beds formed by one type of spheres were investigated. The experimental apparatus consists of a stainless steel cylinder with a heating rod along the symmetry axis. Experiments with stagnant and flowing gas were performed. The pebbles were of Al 2 O 3 (diameter = 1, 2, 4 mm), of Li 4 SO 4 (diameter = 0.5 mm) of Al (diameter = 2 mm) and of steel (diameter = 2, 4 mm). Experimental values of the thermal conductivity and of the wall heat transfer coefficient are compared with the predicted ones. Modifications of already existing models were suggested. (orig.) [de

  8. TACO: a finite element heat transfer code

    International Nuclear Information System (INIS)

    Mason, W.E. Jr.

    1980-02-01

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code

  9. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert W.; Ng, Kim Choon; Sarathy, Mani

    2017-01-01

    decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed

  10. Analysis of heat transfer in plain carbon steels

    International Nuclear Information System (INIS)

    Han, Heung Nam; Lee, Kyung Jong

    1999-01-01

    During cooling of steels, the heat transfer was controlled by radiation, convection, conduction and heat evolution from phase transformation. To analyze the heat transfer during cooling precisely, the material constants such as density, heat capacity and the heat evolved during transformation were obtained as functions of temperature and chemical composition for each phase observed in plain carbon steel using a thermodynamic analysis based on the sublattice model of Fe-C-Mn system. The results were applied to 0.049 wt% and 0.155 wt% carbon steels with an austenitic stainless steel as reference by developing a proper heat transfer governing equation. The equation was solved using the lumped system method. In addition, using a transformation dilatometer with adequate experimental conditions to clarify the individual heat transfer effect, the transformation heat evolved during cooling and the transformation behavior as well as the temperature change were observed. The predicted temperature profiles during cooling were well agreed with the measured ones

  11. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    Science.gov (United States)

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  12. Influence of radiation heat transfer during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  13. Heat Transfer Modelling of Glass Media within TPV Systems

    Science.gov (United States)

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  14. Influence of radiation heat transfer during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A.; Polo L, M. A.

    2016-09-01

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  15. An introduction to heat transfer principles and calculations

    CERN Document Server

    Ede, A J; Ower, E

    1967-01-01

    An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling

  16. An analytical solution to the heat transfer problem in thick-walled hunt flow

    International Nuclear Information System (INIS)

    Bluck, Michael J; Wolfendale, Michael J

    2017-01-01

    Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.

  17. A study on the heat transfer characteristics of a self-oscillating heat pipe

    International Nuclear Information System (INIS)

    Yoon, Seok Hun; Oh, Cheol; Choi, Jae Hyuk

    2002-01-01

    In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe

  18. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  19. INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES

    Directory of Open Access Journals (Sweden)

    A. G. Kulakov

    2005-01-01

    Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.

  20. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    International Nuclear Information System (INIS)

    Banerjee, S.; Hassan, Y.A.

    1995-01-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology's (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values

  1. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

  2. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer

    International Nuclear Information System (INIS)

    Han, Chang-Liang; Ren, Jing-Jie; Wang, Yan-Qing; Dong, Wen-Ping; Bi, Ming-Shu

    2017-01-01

    Highlights: • Thermal performance analysis of submerged combustion vaporizer (SCV) was performed experimentally. • Visualization study of shell-side flow field for SCV was carried out. • The effects of various operational parameters on the overall system performance were discussed. • Two new non-dimensional Nusselt correlations were proposed to predict the heat transfer performance of SCV. - Abstract: Submerged combustion vaporizer (SCV) occupies a decisive position in liquefied natural gas (LNG) industrial chain. In this paper, a visual experimental apparatus was established to have a comprehensive knowledge about fluid flow and heat transfer performance of SCV. Trans-critical liquid nitrogen (LN_2) was selected as alternative fluid to substitute LNG because of safety reason. Some unique experimental phenomena inside the SCV (local water bath freezes on the external surface of tube bundle) were revealed. Meanwhile the influences of static water height, superficial flue gas velocity, heat load, tube-side inlet pressure and tube-side mass flux on the system performance were systematically discussed. Finally, based on the obtained experimental results, two new empirical Nusselt number correlations were regressed to predict the shell-side and tube-side heat transfer characteristics of SCV. The maximum errors between predicted results and experimental data were respectively ±25% and ±20%. The outcomes of this paper were critical to the optimum design and economical operation of SCV.

  3. HEAT TRANSFER EVALUATION OF HFC-236FA IN CONDENSATION AND EVAPORATION

    Science.gov (United States)

    The report gives results of an evaluation of the shell-side heat transfer performance of hydrofluorocarbon (HFC)-236fa, which is considered to be a potential substitute for chlorofluorocarbon (CFC)-114 in Navy shipboard chillers, for both conventional finned [1024- and 1575-fpm (...

  4. Two dimensional heat transfer problem in flow boiling in a rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2015-01-01

    Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.

  5. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  6. Surface wettability and subcooling on nucleate pool boiling heat transfer

    Science.gov (United States)

    Suroto, Bambang Joko; Kohno, Masamichi; Takata, Yasuyuki

    2018-02-01

    The effect of varying surface wettabilities and subcooling on nucleate pool boiling heat transfer at intermediate heat flux has been examined and investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0, 5 and 10 K, respectively. The three types of heat transfer block were used that are bare surface/hydrophilic (polished copper), superhydrophilic/TiO2-coated on copper and hydrophobic/PTFE surface. The experimental results will be examined by the existing model. The results show that the heat transfer performance of surfaces with PTFE coating is better at low heat flux. While for an intermediate heat flux, superhydrophilic surface (TiO2) is superior compared to hydrophilic and hydrophobic surfaces. It is observed that the heat transfer performance is decreasing when the sub cooling degree is increased.

  7. Estimation and optimization of heat transfer and overall presure drop for a shell and tube heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Bala Bhaskara [Dept. of Mechanical Engineering, SISTAM College, JNTU, Kakinada (India); Raju, V. Ramachandra [Dept. of Mechanical Engineering, JNTU, Kakinada (India); Deepak, B. B V. L. [Dept. of Industrial Design, National Institute of Technology, Rourkela (India)

    2017-01-15

    Most thermal/chemical industries are equipped with heat exchangers to enhance thermal efficiency. The performance of heat exchangers highly depends on design modifications in the tube side, such as the cross-sectional area, orientation, and baffle cut of the tube. However, these parameters do not exhibit a specific relation to determining the optimum design condition for shell and tube heat exchangers with a maximum heat transfer rate and reduced pressure drops. Accordingly, experimental and numerical simulations are performed for a heat exchanger with varying tube geometries. The heat exchanger considered in this investigation is a single-shell, multiple-pass device. A Generalized regression neural network (GRNN) is applied to generate a relation among the input and output process parameters for the experimental data sets. Then, an Artificial immune system (AIS) is used with GRNN to obtain optimized input parameters. Lastly, results are presented for the developed hybrid GRNN-AIS approach.

  8. Transfer coefficients for plate fin and elliptical tube heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.; Saboya, F.E.M.

    1981-01-01

    In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author) [pt

  9. A New Correlation to Predict Nucleate Pool Boiling Heat Transfer in Vertical Annuli with Closed Bottoms

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    It is important to find a way of enhancing heat transfer coefficients if the space for heat exchanger installation is limited, as it is in advanced light water reactors. One of the effective methods to increase heat transfer coefficients ( h b ) of pool boiling is to consider a confined space. It is well known from the literature that the confined boiling is an effective technique to enhance heat transfer. Once the flow inlet at the tube bottom is closed, a very rapid increase in heat transfer coefficient is observed at low heat fluxes ( q ' ). The similar tendency is observed regardless of the geometric shape. Yao and Chang and Kang investigated a vertical annulus while Rops et al. investigated a confined plate. Fujita et al., in other wise, used parallel plates with side and bottom inflow is restricted. Around the upper region of the annulus with closed bottoms the downward liquid interrupts the upward movement of the bubble slugs. Thereafter, bubbles are coalescing into much bigger bubbles while fluctuating up and down in the annular space. As the heat flux increases (1) the isolate bubble region, (2) the coalesced big size bubble region, and (3) the dryout region is observed in series. The major causes of the heat transfer enhancement are related with the liquid film evaporation and active liquid agitation. Literature review on the previous studies about crevice effects on pool boiling denotes that heat transfer is highly dependent on the geometric parameters. Therefore, it is necessary to quantify the effect of each geometric parameter to estimate heat transfer coefficients accurately. Although some correlations were developed to predict pool boiling heat transfer in confined spaces based on open bottoms, the application of them to a confined space with closed bottoms could result in much error. To overcome the limits of the published correlations, Kang developed a correlation to predict pool boiling heat transfer in annuli with closed bottoms. However, the

  10. Numerical simulation in a subcooled water flow boiling for one-sided high heat flux in reactor divertor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: pinliu@aust.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, X.D. [Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Huang, S.H. [University of Science and Technology of China, Hefei 230026 (China); Mao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The Eulerian multiphase models coupled with Non-equilibrium Boiling model can effectively simulate the subcooled water flow boiling. • ONB and FDB appear earlier and earlier with the increase of heat fluxes. • The void fraction increases gradually along the flow direction. • The inner CuCrZr tube deteriorates earlier than the outer tungsten layer and the middle OFHC copper layer. - Abstract: In order to remove high heat fluxes for plasma facing components in International Thermonuclear Experimental Reactor (ITER) divertor, a numerical simulation of subcooled water flow boiling heat transfer in a vertically upward smooth tube was conducted in this paper on the condition of one-sided high heat fluxes. The Eulerian multiphase model coupled with Non-equilibrium Boiling model was adopted in numerical simulation of the subcooled boiling two-phase flow. The heat transfer regions, thermodynamic vapor quality (x{sub th}), void fraction and temperatures of three components on the condition of the different heat fluxes were analyzed. Numerical results indicate that the onset of nucleate boiling (ONB) and fully developed boiling (FDB) appear earlier and earlier with increasing heat flux. With the increase of heat fluxes, the inner CuCrZr tube will deteriorate earlier than the outer tungsten layer and the middle oxygen-free high-conductivity (OFHC) copper layer. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.

  11. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers - 15563

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Millan, P.

    2015-01-01

    In the framework of the CEA program to develop an industrial prototype of sodium-cooled fast reactor named (ASTRID), the present work aims at proposing an innovative compact heat exchanger technology, to provide solid technological basis for the utilization of a Brayton power conversion system. This allows avoiding the energetic sodium-water interaction that could potentially occur if a traditional Rankine cycle was used. The design of the gas-side (which determines the heat transfer resistance of the heat exchanger) of the sodium-gas heat exchanger has been the object of the present work. Compact technologies are necessary for the present application because of the low heat transfer capacity of the gas foreseen, i.e. nitrogen. The basic idea of this work is to design a channel were the fluid flow is as much as 3-dimensional as possible. In particular the proposed channel can be thought as the result of the superposition of 2 single PCHE wavy channels in phase opposition. The innovative channel geometry has to be studied numerically and experimentally to demonstrate its industrial interest and the final compact gain. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. It has been demonstrated that the ASST model can provide a valuable alternative to more complex models. Given the innovation of the proposed geometry, no test case has been found in the literature to be fully applicable to the present study. So, 3 experimental facilities have been used to acquire an extensive aerodynamic database. The Laser Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV) and VHEGAS facilities have been built to investigate the innovative channel flow and heat transfer characteristics. The ASST model, used with a SGDH turbulent heat flux model, has been validate against the acquired thermal-hydraulic database

  12. Heat transfer characteristics and limitations analysis of heat-pipe-cooled thermal protection structure

    International Nuclear Information System (INIS)

    Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei

    2014-01-01

    The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed

  13. Heat transfer in window frames with internal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild

    2001-07-01

    Heat transfer in window frames with internal air cavities is studied in this thesis. Investigations focus on two- and three-dimensional natural convection effects inside air cavities, the dependence of the emissivity on the thermal transmittance, and the emissivity of anodized and untreated aluminium profiles. The investigations are mostly conducted on window frames which are the same size as real frames found in residential buildings. Numerical and experimental investigations were performed to study the effectiveness of one commercial Computational Fluid Dynamics (CFD) program for simulating combined natural convection and heat transfer in simple three-dimensional window frames with internal air cavities. The accuracy of the conjugate CFD simulations was evaluated by comparing results for surface temperature on the warm side of the specimens to results from experiments that use infrared (IR) thermography to map surface temperatures during steady-state thermal tests. In general, there was good agreement between the simulations and experiments. Two-dimensional computational fluid dynamic and conduction simulations are performed to study the difference between treating air cavities as a fluid and as a solid when calculating the thermal transmittance of window frames. The simulations show that traditional software codes, simulating only conduction and using equivalent conductivities for the air cavities, give Uvalues that compare well with results from fluid flow simulations. The difference between the two models are mostly limited to the temperature distribution inside air cavities. It is also found that cavities with an interconnection less than about 7 mm can be treated as separate cavities. Three-dimensional natural convection effects in simple and custom-made PVC and thermally broken aluminum window frames with one open internal cavity were studied, with the use of CFD simulations and thermography experiments. Focus was put on corner effects and heat transfer

  14. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  15. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  16. The role of a convective surface in models of the radiative heat transfer in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.

    2014-08-15

    Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of

  17. Experimental determination of the heat transfer coefficient in shell-and-tube condensers using the Wilson plot method

    Directory of Open Access Journals (Sweden)

    Havlik Jan

    2017-01-01

    Full Text Available This article deals with the experimental determination of heat transfer coefficients. The calculation of heat transfer coefficients constitutes a crucial issue in design and sizing of heat exchangers. The Wilson plot method and its modifications based on measured experimental data utilization provide an appropriate tool for the analysis of convection heat transfer processes and the determination of convection coefficients in complex cases. A modification of the Wilson plot method for shell-and-tube condensers is proposed. The original Wilson plot method considers a constant value of thermal resistance on the condensation side. The heat transfer coefficient on the cooling side is determined based on the change in thermal resistance for different conditions (fluid velocity and temperature. The modification is based on the validation of the Nusselt theory for calculating the heat transfer coefficient on the condensation side. A change of thermal resistance on the condensation side is expected and the value is part of the calculation. It is possible to improve the determination accuracy of the criterion equation for calculation of the heat transfer coefficient using the proposed modification. The criterion equation proposed by this modification for the tested shell-and-tube condenser achieves good agreement with the experimental results and also with commonly used theoretical methods.

  18. Effect of different heat transfer models on HCCI engine simulation

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2014-01-01

    Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply

  19. Side-by-Side Testing of Water Heating Systems: Results from the 2013-2014 Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States). Bulding America Partnership for Improved Residential Construction

    2017-07-12

    The Florida Solar Energy Center (FSEC) has completed a fourth year-long evaluation on residential hot water heating systems in a laboratory environment (east central Florida, hot-humid climate). This report contains a summary of research activities regarding the evaluation of two residential electric heat pump water heaters (HPWHs), a solar thermal system utilizing a polymer glazed absorber and a high efficiency natural gas system.

  20. Heat transfer analysis of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2011-01-01

    Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.

  1. Heat transfer in a one-dimensional mixed convection loop

    International Nuclear Information System (INIS)

    Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun

    1999-01-01

    Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed

  2. Improving Heat Transfer Performance of Printed Circuit Boards

    Science.gov (United States)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  3. An inverse heat transfer problem for optimization of the thermal ...

    Indian Academy of Sciences (India)

    This paper takes a different approach towards identification of the thermal process in machining, using inverse heat transfer problem. Inverse heat transfer method allows the closest possible experimental and analytical approximation of thermal state for a machining process. Based on a temperature measured at any point ...

  4. Transient heat transfer in longitudinal fins of various profiles with ...

    Indian Academy of Sciences (India)

    Transient heat transfer through a longitudinal fin of various profiles is studied. The thermal conductivity and heat transfer coefficients are assumed to be temperature dependent. The resulting partial differential equation is highly nonlinear. Classical Lie point symmetry methods are employed and some reductions are ...

  5. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  6. Analytical Evalution of Heat Transfer Conductivity with Variable Properties

    DEFF Research Database (Denmark)

    Rahimi, Masoume; Hosseini, Mohammad Javad; Barari, Amin

    2011-01-01

    The homotopy analysis method (HAM) as a new technique which is powerful and easy-to-use, is applied to solve heat transfer problems. In this paper, we use HAM for heat transfer conductivity equation with variable properties which may contain highly nonlinear terms. The obtained results are also...

  7. Two dimensional finite element heat transfer models for softwood

    Science.gov (United States)

    Hongmei Gu; John F. Hunt

    2004-01-01

    The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential directions and have not differentiated the effects of cellular alignment, earlywood/latewood...

  8. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  9. Study of coupled heat and mass transfer during absorption of ...

    Indian Academy of Sciences (India)

    (iii) The gas phase is ideal from thermodynamic point of view. (iv) Only mass transfer and no heat transfer takes place through the porous filter. (v) The thermal conductivity and specific heat of the hydride bed are assumed to be constant. This assumption underestimates the bed performance slightly, because in actual case ...

  10. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    user

    enhancement of heat transfer with twisted tape inserts as compared to plain ... studies for heat transfer and pressure drop of laminar flow in horizontal tubes ... flow in rectangular and square plain ducts and ducts with twisted-tape inserts .... presence of the insert in the pipe causes resistance to flow and increases turbulence.

  11. Analysis of heat transfer in a centrifugal film evaporator

    NARCIS (Netherlands)

    Bruin, S.

    1970-01-01

    Heat transfer in a centrifugal film evaporator with a conical heating surface is analyzed. Two regions of transfer can be distinguished: an entrance region, where the temp. profile in the film develops, and an evapn. region, where \\"surface evapn.\\" takes place. Relations are derived for liq.-film

  12. A modified stanton number for heat transfer through fabric surface

    Directory of Open Access Journals (Sweden)

    Zhang Shen-Zhong

    2015-01-01

    Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.

  13. Study of coupled heat and mass transfer during absorption of ...

    Indian Academy of Sciences (India)

    2.3 Hydrogen mass balance ε. ∂ρg. ∂t. + div(ρgVg) ... staggered grids to catch the heat transfer across the control volume by convection effectively. .... temperature decreases due to fall in the reaction rate and increase in heat transfer from the.

  14. THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER

    Directory of Open Access Journals (Sweden)

    Alexander P. Solodov

    2013-01-01

    Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations. 

  15. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  16. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J I; Rodriques, R Jr [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1997-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  17. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  18. Proceedings of the 33rd national heat transfer conference NHTC'99

    International Nuclear Information System (INIS)

    Jensen, M.K.; Di Marzo, M.

    1999-01-01

    The papers in this conference were divided into the following sections: Radiation Heat Transfer in Fires; Computational Fluid Dynamics Methods in Two-Phase Flow; Heat Transfer in Microchannels; Thin Film Heat Transfer; Thermal Design of Electronics; Enhanced Heat Transfer I; Porous Media Convection; Contact Resistance Heat Transfer; Materials Processing in Solidification and Crystal Growth; Fundamentals of Combustion; Challenging Modeling Aspects of Radiative Transfer; Fundamentals of Microscale Transport; Laser Processing and Diagnostics for Manufacturing and Materials Processing; Experimental Studies of Multiphase Flow; Enhanced Heat Transfer II; Heat and Mass Transfer in Porous Media; Heat Transfer in Turbomachinery and Gas Turbine Systems; Conduction Heat Transfer; General Papers; Open Forum on Combustion; Combustion and Instrumentation and Diagnostics I; Radiative Heat Transfer and Interactions in Participating and Nonparticipating Media; Applications of Computational Heat Transfer; Heat Transfer and Fluid Aspects of Heat Exchangers; Two-Phase Flow and Heat Transfer Phenomena; Fundamentals of Natural and Mixed Convection Heat Transfer I; Fundamental of Natural and Mixed Convection Heat Transfer II; Combustion and Instrumentation and Diagnostics II; Computational Methods for Multidimensional Radiative Transfer; Process Heat Transfer; Advances in Computational Heat and Mass Transfer; Numerical Methods for Porous Media; Transport Phenomena in Manufacturing and Materials Processing; Practical Combustion; Melting and Solidification Heat Transfer; Transients in Dynamics of Two-Phase Flow; Basic Aspects of Two-Phase Flow; Turbulent Heat Transfer; Convective Heat Transfer in Electronics; Thermal Problems in Radioactive and Mixed Waste Management; and Transport Phenomena in Oscillatory Flows. Separate abstracts were prepared for most papers in this conference

  19. Burnout detector design for heat transfer experiments

    International Nuclear Information System (INIS)

    Dias, H.F.

    1992-01-01

    This paper describes the design of an burnout detector for heat transfer experiments, applied during tests for optimization of fuel elements for PWR reactors. The burnout detector avoids the fuel rods destruction during the experiments at the Centro de Desenvolvimento da Tecnologia Nuclear. The detector evaluates the temperature changes over the fuel rods in the temperature changes over the fuel rods in the area where the burnout phenomenon could be anticipated. As soon as the phenomenon appears, the system power supply is turned off. The thermal Circuit No. 1, during the experiments, had been composed by nine fuel rods feed parallelly by the same power supply. Fine copper wires had been attached at the centre and at the ends of the fuel rod to take two Wheat stone bridge arms. The detector had been applied across the bridge diagonals, which must be balanced the burnout excursion can be detected as a small but fast increase of the signal over the detector. Large scale experiments had been carried out to compare the resistance bridge performance against a thermocouple attached through the fuel rod wall. These experiments had been showed us the advantages of the first method over the last, because the bridge evaluates the whole fuel rod, while the thermocouple evaluates only the area where it had been attached. (author)

  20. Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Zavala-Ake, M.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.

    2017-01-01

    The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber:

  1. Heat transfer in the thermal entrance region of a circular tube with axial heat conduction

    International Nuclear Information System (INIS)

    Zhang Changquan.

    1985-01-01

    This paper recounts the effects of axial heat conduction and convective boundary conditions on the heat transfer in the thermal entrance region of a circular tube under uniform flow, and the corresponding calculation is made. It will be profitable for the heat transfer studies on the pipe entrance region of low Prandtl number (liquid metal), or flow of low Peclet number. (author)

  2. Second Law Analysis in Convective Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    A. Ben Brahim

    2006-02-01

    Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.

  3. Blowdown heat transfer surface in RELAP4/MOD6

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    New heat transfer correlations for both PWR and BWR blowdowns have been implemented in the RELAP4/MOD6 program. The concept of a multidimensional surface is introduced with the heat flux from a given heat transfer correlation or correlations depicted as a mathematical surface that is dependent upon quality, wall superheat, mass flow and pressure. The heat transfer logic has been modularized to facilitate replacing boiling curves for future correlation data comparisons and investigations. To determine the validity of the blowdown surface, comparison has been performed using data from the Semiscale experimental facility. (author)

  4. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    International Nuclear Information System (INIS)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.

    1995-01-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes

  5. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  6. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  7. Comparison of heat transfer models for reciprocating compressor

    International Nuclear Information System (INIS)

    Tuhovcak, J.; Hejcik, J.; Jicha, M.

    2016-01-01

    Highlights: • Comparison of integral heat transfer models. • Influence of heat transfer model on volumetric and isentropic efficiency. • Various gases used as working fluid. - Abstract: One of the main factors affecting the efficiency of reciprocating compressor is heat transfer inside the cylinder. An analysis of heat transfer could be done using numerical models or integral correlations developed mainly from approaches used in combustion engines; however their accuracy is not completely verified due to the complicated experimental set up. The goal of this paper is to analyse the effect of heat transfer on compressor efficiency. Various integral correlations were compared for different compressor settings and fluids. CoolProp library was used in the code to obtain the properties of common coolants and gases. A comparison was done using the in-house code developed in Matlab, based on 1st Law of Thermodynamics.

  8. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; hide

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  9. Natural convection heat transfer from a vertical circular tube sheet

    International Nuclear Information System (INIS)

    Dharne, S.P.; Gaitonde, U.N.

    1996-01-01

    Experiments were conducted to determine natural convection heat transfer coefficients (a) on a plain vertical circular plate, and (b) on a similar plate with a square array of non-conducting tubes fixed in it. The experiments were carried out using air as the heat transfer medium. The diameter of the brass plates used was 350 mm. The diameter of the bakelite tubes used was 19.2 mm. The range of Rayleigh numbers was from 1.06x10 8 to 1.66x10 8 . The results show that the heat transfer coefficients in case (a) are very close to those obtained using standard correlations for vertical flat plates, whereas for case (b) the heat transfer coefficients are at least 50 percent higher than those predicted by the Churchill-Chu correlation. It is hence concluded that the disturbance to boundary layer caused by the presence of tubes enhances the heat transfer coefficient significantly. (author). 4 refs., 3 figs

  10. Heat Transfer Characteristics on the Squealer Tip of gas turbine blade in a linear cascade

    International Nuclear Information System (INIS)

    Lee, Woo Jin; Lee, Dong Hyun; Kim, Kyung Min; Cho, Hyung Hee; Lee, Dong Ho; Kang, Shin Hyoung

    2007-01-01

    The present study investigates local heat/mass transfer characteristics on blade tip surfaces with squealer rim in a linear cascade. A cascade experiment setup consists of three airfoils. The airfoil has variable tip clearance(1, 2, 3% of axial chord length) and rim height(3, 6, 9% of axial chord length). Main flow Reynolds number based on axial chord is 1.5 x 10 5 . The axial chord length and turning angle is 237mm and 126 .deg. respectively. Naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results show that as the tip clearance increases, high heat transfer region moves from upstream to downstream. Also, as the rim height increases, high heat transfer region tends to move toward the suction side

  11. Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran

    2009-01-01

    Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.

  12. Non-Uniform Heat Transfer in Thermal Regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch

    , a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled....... Additionally, the experiments gave real comparative results, whereas the model to a certain degree more served to provide insight to the heat transfer processes taking place inside the regenera- tors, something that would be - if not impossible - then highly impractical to do experimentally. It has been found......This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...

  13. Direct contact heat transfer characteristics between melting alloy and water

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1995-01-01

    As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)

  14. Measurement of the heat transfer coefficient in the dimpled channel: effects of dimple arrangement and channel height

    International Nuclear Information System (INIS)

    Shin, So Min; Lee, Ki Seon; Park, Seoung Duck; Kwak, Jae Su

    2009-01-01

    Heat transfer coefficients were measured in a channel with one side dimpled surface. The sphere type dimples were fabricated, and the diameter (D) and the depth of dimple was 16 mm and 4 mm, respectively. Two channel heights of about 0.6D and 1.2D, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 30000 to 50000. The improved hue detection based transient liquid crystal technique was used in the heat transfer measurement. Heat transfer measurement results showed that high heat transfer was induced downstream of the dimples due to flow reattachment. Due to the flow recirculation on the upstream side in the dimple, the heat transfer coefficient was very low. As the Reynolds increased, the overall heat transfer coefficients also increased. With the same dimple arrangement, the heat transfer coefficients and the thermal performance factors were higher for the lower channel height. As the distance between the dimples became smaller, the overall heat transfer coefficient and the thermal performance factors increased

  15. Numerical investigation of heat transfer effects in small wave rotor

    International Nuclear Information System (INIS)

    Deng, Shi; Okamoto, Koji; Teramoto, Susumu

    2015-01-01

    Although a wave rotor is expected to enhance the performance of the ultra-micro gas turbine, the device itself may be affected by downsizing. Apart from the immediate effect of viscosity on flow dynamics when downscaled, the effects of heat transfer on flow field increase at such small scales. To gain an insight into the effects of heat transfer on the internal flow dynamics, numerical investigations were carried out with adiabatic, isothermal and conjugate heat transfer boundary treatments at the wall, and the results compared and discussed in the present study. With the light shed by the discussion of adiabatic and conjugate heat transfer boundary treatments, this work presents investigations of the heat flux distributions, as well as the effects of heat transfer on the internal flow dynamics and the consequent charging and discharging processes for various sizes. When heat transfer is taken into account, states of fluid in the cell before compression process varies, shock waves in compression process are found to be weaker, and changes in the charging and discharging processes are observed. Heat transfer differences between conjugate heat transfer boundary treatment and isothermal boundary treatment are addressed through comparisons of local wall temperature and heat flux. As a result, the difference in discharging temperature of high pressure fluid is noticeable in all sizes investigated, and the rapid increase of differences between results of isothermal and conjugate heat transfer boundary treatment in small size reveals that for certain small sizes (length of cell < 23 mm) the thermal boundary treatment should be taken care of.

  16. Heat transfer and energy efficiency in infrared paper dryers

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Magnus

    1999-11-01

    Infrared (IR) dryers are widely used in the paper industry, mainly in the production of coated paper grades. The thesis deals with various aspects of heat transfer and energy use in infrared heaters and dryers as employed in the paper industry. Both gas-fired and electric IR dryers are considered and compared. The thesis also provides an introduction to infrared heaters and infrared drying, including a review of recent literature in the field. The transport of thermal radiation inside a paper sheet was investigated and different IR dryers were compared in terms of their ability to transfer energy to the internal parts of a paper sheet. Although there were evident differences in the absorption of radiation between gas-fired and electric IR dryers, the distinction was found not to be as important as has generally been believed. The main differences appeared to be due to the choice of a one- or a two-sided dryer solution, rather than the spectral distributions emitted by the dryers. A method for evaluating the radiation efficiency of IR heaters was proposed. An electric IR heater was evaluated in the laboratory. The radiation efficiency of the heater was shown to be strongly dependent on the power level. The maximum efficiency, found at high power level, was close to 60 %. A procedure for evaluation of the total energy transfer efficiency of an infrared paper dryer was proposed and used in the evaluation of an electric IR dryer operating in an industrial coating machine. The efficiency of the dryer was roughly 40 %. A model for an electric IR heater was developed. The model includes non-grey radiative heat transfer between the different parts of the heater, as well as conduction in reflector material and convective cooling of the surfaces. Using IR module voltage as the only input, model predictions of temperatures and heat flux were found to agree well with experimental data both at steady state and under transient conditions. The model was also extended to include

  17. Heat transfer and mechanical interactions in fusion nuclear systems

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1984-01-01

    This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance

  18. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  19. Heat transfer characteristics in a channel fitted with zigzag-cut baffles

    Energy Technology Data Exchange (ETDEWEB)

    Nuntadusit, Chayut; Waehayee, Makatar [Prince of Songkla University, Hat Yai (Thailand); Piya, Ibroheng [Princess of Naradhiwas University, Naradhiwas (Thailand); Eiamsa-ard, Smith [Mahanakorn University of Technology, Bangkok (Thailand)

    2015-06-15

    The heat transfer characteristics were experimentally investigated in a wind channel with different types of cut baffles for heat transfer augmentation. The aim of using zigzag-cut baffles is to create 3D flow structure behind the baffles instead of transverse vortex flow leading to enhance heat transfer. In this study, 4 types of baffles were examined; conventional baffle (Rectangular cross section with no cut), baffle with rectangular zigzag-cut, baffle with triangle zigzag-cut at 45 degree and at 90 degree. All of the baffles have the same height at H = 15 mm and flow blocking area. In the experiment, the row of seven baffles was attached on the inner surface of wind channel. The effects of pitch spacing length were also investigated at baffle pitch distance P/H = 4, 6 and 8 (H: Height of baffle). The experiments were performed at constant Reynolds number (Re) of 20000. The heat transfer patterns via Thermochromic liquid crystal sheet were visualized and recorded with a digital camera. The recorded images were then analyzed with image processing technique to obtain the distribution of Nusselt number. The flow characteristics pass through the baffles were also numerically studied with CFD simulation for understanding the heat transfer characteristics. The friction losses were measured to evaluate the thermal performance for each baffle. It was found that the baffle with rectangular zigzag-cut gives the best thermal performance due to heat transfer augmentation in upstream and downstream side of baffle.

  20. International symposium on radiative heat transfer: Book of abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting

  1. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  2. An evaluation of analytical heat transfer area with various boiling heat transfer correlations in steam generator thermal sizing

    International Nuclear Information System (INIS)

    Jung, B. R.; Park, H. S.; Chung, D. M.; Baik, S. J.

    1999-01-01

    The computer program SAFE has been used to size and analyze the performance of a steam generator which has two types of heat transfer regions in Korean Standard Nuclear Power Plants (KSNP) and Korean Next Generation Reactor (KNGR) design. The SAFE code calculates the analytical boiling heat transfer area using the modified form of the saturated nucleate pool boiling correlation suggested by Rohsenow. The predicted heat transfer area in the boiling region is multiplied by a constant to obtain a final analytical heat transfer area. The inclusion of the multiplier in the analytical calculation has some disadvantage of loss of complete correlation by the governing heat transfer equation. Several comparative analyses have been performed quantitatively to evaluate the possibility of removing the multiplier in the analytical calculation in the SAFE code. The evaluation shows that the boiling correlation and multiplier used in predicting the boiling region heat transfer area can be replaced with other correlations predicting nearly the same heat transfer area. The removal of multiplier included in the analytical calculation will facilitate a direct use of a set of concerned analytical sizing values that can be exactly correlated by the governing heat transfer equation. In addition this will provide more reasonable basis for the steam generator thermal sizing calculation and enhance the code usability without loss of any validity of the current sizing procedure. (author)

  3. Enhanced two phase flow in heat transfer systems

    Science.gov (United States)

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  4. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  5. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  6. Distribution of steady state temperatures and thermoelastic stresses in a cylindrical shell with internal heat generation and cooled on both sides or only on one side

    International Nuclear Information System (INIS)

    Melese d'Hospital, G.B.

    1979-10-01

    General expressions for steady state temperatures and elastic thermal stress distributions are derived for a hollow fuel element cooled on both sides. The main simplifying assumptions consist of one dimensional heat transfer and a single medium. Dimensionless numerical results are plotted in the case of uniform internal heat generation and for constant thermal conductivity. Solid rods and flat plates are treated as special cases. As could be expected, cooling on both sides rather than on only one side, leads to significant reduction in maximum fuel temperature and thermal stresses for a given power density, or to a significant increase in power density for either given maximum temperature drop in the fuel or for maximum tensile thermal stress. Typically, for a rod diameter ratio of 2, the power density could be increased by a factor of 3 to 4 without increasing the maximum stress. Similarly, for the same power density, replacing internal cooling of a hollow fuel element by external cooling reduces the maximum fuel temperature drop by a factor of 1.5 and the average fuel temperature drop (or maximum tensile stress) by a factor of 2, with the same maximum compressive stress

  7. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    Science.gov (United States)

    Bartle, S. J.; Thomson, D. U.; Gehring, R.; van der Merwe, D.

    2017-11-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas, and three from the white areas. Samples were randomized and assigned to four coating treatments: (1) white hide with no coating (White), (2) black hide with no coating (Black), (3) black hide with 50% coating (Mid), and (4) black hide with 100% coating (High). Coatings were applied to the black hide samples using a hand sprayer. Lux measurements were taken using a modified lux meter at three light intensities generated with a broad spectrum, cold halogen light source. Reflectance over a wavelength range of 380 to 900 nm was measured using a spectroradiometer. The transdermal transfer of heat derived from absorbed light was measured by applying a broad spectrum, cold halogen light source to the stratum corneum (coated) side of the sample and recording the temperature of the dermis-side using a thermal camera for 10 min at 30-s intervals. At the high light level, the White, Black, Mid, and High coating treatments had different ( P 400 to 750 nm), Black hides reflected 10 to 15% of the light energy, hides with the Mid coating treatment reflected 35 to 40%, and hides with the High coating treatment reflected 70 to 80% of the light energy. The natural White hide samples reflected 60 to 80% of the light energy. The average maximum temperatures at the dermis-side of the hides due to transferred heat were 34.5, 70.1, 55.0, and 31.7, for the White, Black, Mid, and High treatments, respectively. Reflective coatings containing titanium dioxide on cattle hides were effective in reducing light energy absorption and reduced light-derived heat transfer from the skin surface to deeper skin layers.

  8. Validation of heat transfer models for gap cooling

    International Nuclear Information System (INIS)

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  9. Proceedings of the twenty third national heat and mass transfer conference and first international ISHMT-ASTFE heat and mass transfer conference: souvenir and book of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately

  10. Characterizing convective heat transfer using infrared thermography and the heated-thin-foil technique

    International Nuclear Information System (INIS)

    Stafford, Jason; Walsh, Ed; Egan, Vanessa

    2009-01-01

    Convective heat transfer, due to axial flow fans impinging air onto a heated flat plate, is investigated with infrared thermography to assess the heated-thin-foil technique commonly used to quantify two-dimensional heat transfer performance. Flow conditions generating complex thermal profiles have been considered in the analysis to account for dominant sources of error in the technique. Uncertainties were obtained in the measured variables and the influences on the resultant heat transfer data are outlined. Correction methods to accurately account for secondary heat transfer mechanisms were developed and results show that as convective heat transfer coefficients and length scales decrease, the importance of accounting for errors increases. Combined with flow patterns that produce large temperature gradients, the influence of heat flow within the foil on the resultant heat transfer becomes significant. Substantial errors in the heat transfer coefficient are apparent by neglecting corrections to the measured data for the cases examined. Methods to account for these errors are presented here, and demonstrated to result in an accurate measurement of the local heat transfer map on the surface

  11. Investigations on post-dryout heat transfer in bilaterally heated annular channels

    International Nuclear Information System (INIS)

    Tian, W.X.; Qiu, S.Z.; Jia, D.N.

    2006-01-01

    Post-dryout heat transfer in bilaterally heated vertical narrow annular channels with 1.0, 1.5 and 2.0 mm gap size has been experimentally investigated with deionized water under the condition of pressure ranging from 1.38 to 5.9 MPa and low mass flow rate from 42.9 to 150.2 kg/m 2 s. The experimental data was compared with well known empirical correlations including Groeneveld, Mattson, etc., and none of them gave an ideal prediction. Theoretical investigations were also carried out on post-dryout heat transfer in annular channels. Based on analysis of heat exchange processes arising among the droplets, the vapor and two tube walls of annular channel, a non-equilibrium mechanistic heat transfer model was developed. Comparison indicated that the present model prediction showed a good agreement with our experimental data. Theoretical calculation result showed that the forced convective heat transfer between the heated wall and vapor dominate the overall heat transfer. The heat transfer caused by the droplets direct contact to the wall and the interfacial convection/evaporation of droplets in superheated vapors also had an indispensable contribution. The radiation heat transfer would be neglected because of its small contribution (less than 0.11%) to the total heat transfer

  12. Study on boiling heat transfer of high temperature liquid sodium

    International Nuclear Information System (INIS)

    Sakurai, Akira

    1978-01-01

    In the Intitute of Atomic Energy, Kyoto University, fundamental studies on steady state and non-steady state heat flow are underway in connection with reactor design and the safety in a critical accident in a sodium-cooled fast breeder reactor. First, the experimental apparatus for sodium heat transfer and the testing system are described in detail. The apparatus is composed of sodium-purifying section including the plugging meter for measuring purity and cold trap, the pool boiling test section for experimenting natural convection boiling heat transfer, the forced convection boiling test section for experimenting forced convection boiling heat transfer, and gas system. Next, the experimental results by the author and the data obtained so far are compared regarding heat transfer in sodium natural convection and stable nucleating boiling and critical heat flux. The effect of liquid head on a heater on boiling heat transfer coefficient and critical heat flux under the condition of low system pressure in most fundamental pool boiling was elucidated quantitatively, which has been overlooked in previous studies. It was clarified that this is the essentially important problem that can not be overlooked. From this point of view, expressions on heat transfer were also re-investigated. (Wakatsuki, Y.)

  13. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  14. Liquid metal MHD and heat transfer in a tokamak blanket slotted coolant channel

    International Nuclear Information System (INIS)

    Reed, C.B.; Hua, T.Q.; Black, D.B.; Kirillov, I.R.; Sidorenkov, S.I.; Shapiro, A.M.; Evtushenko, I.A.

    1993-01-01

    A liquid metal MHD (Magnetohydrodynamic)/heat transfer test was conducted at the ALEX (Argonne Liquid Metal Experiment) facility of ANL (Argonne National Laboratory), jointly between ANL and NIIEFA (Efremov Institute). The test section was a rectangular slotted channel geometry (meaning the channel has a high aspect ratio, in this case 10:1, and the long side is parallel to the applied magnetic field). Isothermal and heat transfer data were collected. A heat flux of ∼9 W/cm 2 was applied to the top horizontal surface (the long side) of the test section. Hartmann Numbers to 1050 (2 Tesla), interaction parameters to 9 x 10 3 , Peclet numbers of 10--200, based on the half-width of the small dimension (7mm), and velocities of 1--75 cm/sec. were achieved. The working fluid was NaK (sodium potassium eutectic). All four interior walls were bare, 300-series stainless steel, conducting walls

  15. A multi-fluid model to simulate heat and mass transfer in a PEM fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    This article summarizes a multi-phase model of a polymer electrolyte membrane fuel cell based on the formerly commercial CFD code CFX-4. It is three-dimensional in nature and includes multiphase heat and mass transfer in porous media. An overview is given and some numerical issues are discussed...... heat and mass transfer properties are superior. Another important aspect of this study is the wetting status of the electrolyte menbrane and the effective drag of water through the menbrane, which indicates what fraction of the product water created at the cathode side diffuses through the membrane...

  16. The contact heat transfer between the heating plate and granular materials in rotary heat exchanger under overloaded condition

    Directory of Open Access Journals (Sweden)

    Luanfang Duan

    2018-03-01

    Full Text Available In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 – 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder’s model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%. Keywords: Rotary heat exchanger, Contact heat transfer, Granular material, Heating plate, Overloaded

  17. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  18. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  19. Generalized irreversible heat-engine experiencing a complex heat-transfer law

    International Nuclear Information System (INIS)

    Chen Lingen; Li Jun; Sun Fengrui

    2008-01-01

    The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature

  20. Handbook of heat and mass transfer. Volume 2

    International Nuclear Information System (INIS)

    Cheremisinoff, N.P.

    1986-01-01

    This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors

  1. Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Aly, Wael I.A.

    2014-01-01

    Highlights: • The performance of helically coiled tube heat exchanger using nanofluid is modeled. • The 3D turbulent flow and conjugate heat transfer of CTITHE are solved using FVM. • The effects of nanoparticle concentration and curvature ratio are investigated. • The Gnielinski correlation for Nu for turbulent flow in helical tubes can be used for water-based Al 2 O 3 nanofluid. - Abstract: A computational fluid dynamics (CFD) study has been carried out to study the heat transfer and pressure drop characteristics of water-based Al 2 O 3 nanofluid flowing inside coiled tube-in-tube heat exchangers. The 3D realizable k–ε turbulent model with enhanced wall treatment was used. Temperature dependent thermophysical properties of nanofluid and water were used and heat exchangers were analyzed considering conjugate heat transfer from hot fluid in the inner-coiled tube to cold fluid in the annulus region. The overall performance of the tested heat exchangers was assessed based on the thermo-hydrodynamic performance index. Design parameters were in the range of; nanoparticles volume concentrations 0.5%, 1.0% and 2.0%, coil diameters 0.18, 0.24 and 0.30 m, inner tube and annulus sides flow rates from 2 to 5 LPM and 10 to 25 LPM, respectively. Nanofluid flows inside inner tube side or annular side. The results obtained showed a different behavior depending on the parameter selected for the comparison with the base fluid. Moreover, when compared at the same Re or Dn, the heat transfer coefficient increases by increasing the coil diameter and nanoparticles volume concentration. Also, the friction factor increases with the increase in curvature ratio and pressure drop penalty is negligible with increasing the nanoparticles volume concentration. Conventional correlations for predicting average heat transfer and friction factor in turbulent flow regime such as Gnielinski correlation and Mishra and Gupta correlation, respectively, for helical tubes are also valid for

  2. Radiative heat transfer in low-dimensional systems -- microscopic mode

    Science.gov (United States)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  3. Heat transfer and flow characteristics on a gas turbine shroud.

    Science.gov (United States)

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  4. Measurement of heat transfers in cryogenic tank with several configurations

    International Nuclear Information System (INIS)

    Khemis, O.; Bessaieh, R.; Ait Ali, M.; Francois, M.X.

    2004-01-01

    The work presented here concerns the measurement of heat transfer in a cryogenic tank with several configurations. The experimental test incorporates the conductive heat in the neck, the convection heat transfers between the inner wall of the neck and the ascending vapor resulting from boiling, and the radiation heat transfers between the external envelope and the tank through a vacuum of 10 -8 mm Hg. An experimental prototype was produced in collaboration with the nuclear center of Orsay in France according to a didactic design, which takes into account the Wexler effect and the importance of the radiation compared to the conduction-convection heat transfer. The addition of a screen radiative ventilated with variable position on the neck (which can effectively replace several tens of floating screens), in order to find the optimal position, which minimizes the radiation flux, is presented in this paper

  5. Transient heat transfer for forced convection flow of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu

    1999-01-01

    Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)

  6. Experimental investigation of heat transfer performance for a novel microchannel heat sink

    International Nuclear Information System (INIS)

    Wang, Y; Ding, G-F

    2008-01-01

    We demonstrated a novel microchannel heat sink with a high local heat transfer efficiency contributed by a complicated microchannel system, which comprises parallel longitudinal microchannels etched in a silicon substrate and transverse microchannels electroplated on a copper heat spreader. The thermal boundary layer develops in transverse microchannels. Meanwhile, the heat transfer area is increased compared with the conventional microchannel heat sink only having parallel longitudinal microchannels. Both benefits yield high local heat transfer efficiency and enhance the overall heat transfer, which is attractive for the cooling of high heat flux electronic devices. Infrared tests show the temperature distribution in the test objects. The effects of flow rate and heat flux levels on heat transfer characteristics are presented. A uniform temperature distribution is obtained through the heating area. The reference temperatures decrease with the increasing flow rate from 0.64 ml min −1 to 6.79 ml min −1 for a constant heat flux of 10.4 W cm −2 . A heat flux of 18.9 W cm −2 is attained at a flow rate of 6.79 ml min −1 for assuring the maximum temperature of the microchannel heat sink less than the maximum working temperature of electronic devices

  7. Evaluation of piping heat transfer, piping flow regimes, and steam generator heat transfer for the Semiscale Mod-1 isothermal tests

    International Nuclear Information System (INIS)

    French, R.T.

    1975-08-01

    Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)

  8. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    Science.gov (United States)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  9. Heat transfer between immiscible liquids enhanced by gas bubbling

    International Nuclear Information System (INIS)

    Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model

  10. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  11. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  12. Evaluation of the Impact of Slab Foundation Heat Transfer on Heating and Cooling in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Vieira, R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Gu, L. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-09-01

    During the last three decades of energy-efficiency research, there has been limited study of heat transfer to slab-on-grade foundations in cooling-dominated climates. Most experimental research has focused on the impact of slab-on-grade foundations and insulation schemes on heat losses in heating-dominated climates. This is surprising because the floor area in single-family homes is generally equal to wall area, window area, or attic area, all of which have been extensively evaluated for heat-transfer properties. Moreover, slab foundations are the most common foundation type in cooling-dominated climates. Slab-on-grade construction is very popular in southern states, accounting for 77% of new home floors according to 2014 U.S. Census data. There is a widespread perception that tile flooring, as opposed to carpet, provides a cooler home interior in warm climates. Empirical research is needed because building energy simulation software programs running DOE-2 and EnergyPlus engines often rely on simplified models to evaluate the influence of flooring on interior temperature, even though in some cases more detailed models exist. The U.S. Department of Energy Building America Partnership for Improved Residential Construction (BA-PIRC) performed experiments in the Florida Solar Energy Center’s Flexible Residential Test Facility intended to assess for the first time (1) how slab-on-grade construction influences interior cooling in a cooling-dominated climate and (2) how the difference in a carpeted versus uncarpeted building might influence heating and cooling energy use. Two nominally identical side-by-side residential buildings were evaluated during the course of 1 year, from 2014 to 2015: the east building with a pad and carpet floor and the west building with a bare slab floor. A detailed grid shows temperature measurements taken on the slab surface at various locations as well as at depths of 1.0 ft, 2 ft, 5.0 ft, 10.0 ft, and 20.0 ft below the surface. Temperature

  13. Experimental study of heat transfer performance in a flattened AGHP

    International Nuclear Information System (INIS)

    Tao Hanzhong; Zhang Hong; Zhuang Jun; Jerry Bowman, W.

    2008-01-01

    Round mini-axial grooved heat pipes (AGHP) with a diameter of 6 mm and a length of 210 mm were pressed into flattened heat pipes with a thickness of 3.5 mm, 3 mm, 2.5 mm and 2 mm, respectively. The article measured the heat transfer limit, thermal resistance and evaporation heat transfer coefficient of the said AGHPs and analyzed and studied the result. The result indicates: the heat transfer limit decreased with the increase of flattening degree. The heat transfer limit of the 2 mm thick flattened AGHP was only 1/4 of that of the φ 6 mm round AGHP. The thermal resistance of the 3.5-2.5 mm thick AGHPs basically maintained stable at around 0.08 deg. C/W, while the thermal resistance of the 2 mm thick flattened AGHP increased obviously. The variation of the heat transfer coefficient in evaporator section with the change of flattening degree follows a similar rule to the variation of thermal resistance. This article serves as a reference to understanding the heat transfer performance of mini AGHP and to electronic cooling design of AGHP

  14. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  15. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    International Nuclear Information System (INIS)

    Megahed, A.; Hassan, I.

    2009-01-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  16. Research Strategy for Modeling the Complexities of Turbine Heat Transfer

    Science.gov (United States)

    Simoneau, Robert J.

    1996-01-01

    The subject of this paper is a NASA research program, known as the Coolant Flow Management Program, which focuses on the interaction between the internal coolant channel and the external film cooling of a turbine blade and/or vane in an aircraft gas turbine engine. The turbine gas path is really a very complex flow field. The combination of strong pressure gradients, abrupt geometry changes and intersecting surfaces, viscous forces, rotation, and unsteady blade/vane interactions all combine to offer a formidable challenge. To this, in the high pressure turbine, we add the necessity of film cooling. The ultimate goal of the turbine designer is to maintain or increase the high level of turbine performance and at the same time reduce the amount of coolant flow needed to achieve this end. Simply stated, coolant flow is a penalty on the cycle and reduces engine thermal efficiency. Accordingly, understanding the flow field and heat transfer associated with the coolant flow is a priority goal. It is important to understand both the film cooling and the internal coolant flow, particularly their interaction. Thus, the motivation for the Coolant Flow Management Program. The paper will begin with a brief discussion of the management and research strategy, will then proceed to discuss the current attack from the internal coolant side, and will conclude by looking at the film cooling effort - at all times keeping sight of the primary goal the interaction between the two. One of the themes of this paper is that complex heat transfer problems of this nature cannot be attacked by single researchers or even groups of researchers, each working alone. It truly needs the combined efforts of a well-coordinated team to make an impact. It is important to note that this is a government/industry/university team effort.

  17. Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel

    Science.gov (United States)

    Fouladi, Fama

    This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.

  18. Research progresses and future directions on pool boiling heat transfer

    OpenAIRE

    M. Kumar; V. Bhutani; P. Khatak

    2015-01-01

    This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated s...

  19. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    Science.gov (United States)

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  20. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  1. Molecular engineering problems in heat and mass transfer

    International Nuclear Information System (INIS)

    Kotake, S.

    1991-01-01

    As for developing, manufacturing and applying new materials of advanced functions such as high-performance devices and high-temperature materials, fundamental understanding of the phenomena from the standpoint of molecular and atomic levels has been required. In these problems, the processes of heat and mass transfer play an important role, being one of the rate-controlling factors. But the energy levels associated with heat and mass transfer are of the orders much less than those of chemical reaction, and it is not easy to understand the thermal problems on the molecular and atomic basis. This paper views the processes of heat and mass transfer from the dynamical motions of atom and molecule for thermal engineering problems. Especially, problems are considered of heat conduction in fine-ceramics, sintered materials of high heat conductivity or high heat-insulation, phase change of condensation in vapor deposition processes such as CVD and PVD, and radiation in laser processing

  2. Transient heat transfer for helium gas flowing over a horizontal cylinder with exponentially increasing heat input

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya

    2003-01-01

    The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)

  3. Enhancement of heat transfer using nanofluids - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Godson, Lazarus; Mohan Lal, D. [Refrigeration and Air-Conditioning Division, Department of Mechanical Engineering., College of Engineering, Anna University, Chennai 600 025, Tamil Nadu (India); Raja, B. [Indian Institute of Information Technology, Design and Manufacturing-Kancheepuram Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu (India); Wongwises, S. [Fluid Mechanics, Thermal Engineering and Multiphase Flow (FUTURE), Dept. of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2010-02-15

    A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics. This article addresses the unique features of nanofluids, such as enhancement of heat transfer, improvement in thermal conductivity, increase in surface volume ratio, Brownian motion, thermophoresis, etc. In addition, the article summarizes the recent research in experimental and theoretical studies on forced and free convective heat transfer in nanofluids, their thermo-physical properties and their applications, and identifies the challenges and opportunities for future research. (author)

  4. Heat Transfer and Cooling Techniques at Low Temperature

    CERN Document Server

    Baudouy, B

    2014-07-17

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  5. Heat transfer modelling in thermophotovoltaic cavities using glass media

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N. [Northumbria University, Newcastle upon Tyne (United Kingdom). School of Engineering and Technology

    2005-08-15

    Optimisation of heat transfer, and in particular radiative heat transfer in terms of the spectral, angular and spatial radiation distributions, is required to achieve high efficiencies and high electrical power densities for thermophotovoltaic (TPV) conversion. This work examines heat transfer from the radiator to the PV cell in an infinite plate arrangement using three different arrangements of participating dielectric media. The modelling applies the Discrete Ordinates method and assumes fused silica (quartz glass) as the dielectric medium. The arrangement radiator-glass-PV cell (also termed dielectric photon concentration) was found to be superior in terms of efficiency and power density. (author)

  6. Heat Transfer and Cooling Techniques at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B [Saclay (France)

    2014-07-01

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  7. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  8. Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer

    International Nuclear Information System (INIS)

    Fardel, Romain; Nagel, Matthias; Nueesch, Frank; Lippert, Thomas; Wokaun, Alexander

    2009-01-01

    Thin films of a photodecomposible triazene polymer are used as sacrificial layer for the micro-deposition of sensitive materials by laser-induced forward transfer. To understand the ablation process of this sacrificial layer, the ultraviolet laser ablation of triazene films was investigated by time-resolved shadowgraphy. Irradiation from the film side shows a complete decomposition into gaseous fragments, while ablation through the substrate causes ejection of a solid flyer of polymer. The occurence of the flyer depends on the film thickness as well as on the applied fluence, and a compact flyer is obtaind when these two parameters are optimized

  9. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    International Nuclear Information System (INIS)

    Piasecka, Magdalena; Strąk, Kinga; Grabas, Bogusław; Maciejewska, Beata

    2016-01-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining. (paper)

  10. Experimental study on local heat transfer characteristics of porous media with internal heat source

    International Nuclear Information System (INIS)

    Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping

    2008-01-01

    Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)

  11. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  12. An ecofriendly graphene-based nanofluid for heat transfer applications

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Akhiani, Amir Reza

    2016-01-01

    including chemical stability, viscosity, wettability, electrical conductivity and thermal conductivity were investigated in a comprehensive manner. A significant thermal conductivity enhancement amounting to 45.1% was obtained for a volume fraction of 4%. In addition, the convective heat transfer...... that the generated nanofluid will open a new avenue in the pursuit of ecofriendly thermal conductors for heat transfer applications....... coefficient of the nanofluid in a laminar flow regime with uniform wall heat flux was investigated to estimate its cooling capabilities. These results, firmly confirm that the generated graphene-based nanofluid is a formidable transporter of heat and yet ecofriendly. Therefore, it's anticipate...

  13. Heat transfer characteristics of alkali metals flowing across tube banks

    International Nuclear Information System (INIS)

    Sugiyama, K.; Ishiguro, R.; Kojima, Y.; Kanaoka, H.

    2004-01-01

    For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)

  14. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles

    International Nuclear Information System (INIS)

    Li, Bo; Huang, Kuo; Yan, Yuying; Li, Yong; Twaha, Ssennoga; Zhu, Jie

    2017-01-01

    Highlights: •Shape-adapted thermoelectric module for highly compact heat recovery exchanger assembly. •Heat pipe-assisted heat transfer enhancement method for better power output. •Highest power output ratio to the total volume of heat recovery exchanger. •Cascaded thermoelectric system can be scaled and extended for various power output. •Self-clamping design of thermoelectric module can solve the thermomechanical imbalances. -- Abstract: Transport represents over a quarter of Europe's greenhouse gas emissions and is the leading cause of air pollution in cities. It has not seen the same gradual decline in emissions as other sectors. Recently, the thermoelectric power generation (TEG) technology emerges as an alternative solution to the emission reduction challenge in this area. In this paper, we present an innovative pathway to an improved heat supply into the concentric shape-adapted TEG modules, integrating the heat pipe technologies. It relies on a phase changing approach which enhances the heat flux through the TEG surface. In order to improve the heat transfer for higher efficiency, in our work, the heat pipes are configured in the radial direction of the exhaust streams. The analysis shows that the power output is adequate for the limited space under the chassis of the passenger car. Much effort can also be applied to obtain enhanced convective heat transfer by adjusting the heat pipes at the dual sides of the concentric TEG modules. Heat enhancement at the hot side of the TEG has an effective impact on the total power out of the TEG modules. However, such improvements can be offset by the adjustment made from the coolant side. Predictably, the whole temperature profile of TEG system is subject to the durability and operational limitations of each component. Furthermore, the results highlight the importance of heat transfer versus the TEG power generation under two possible configurations in the passenger car. The highest power output per

  15. Identification of the Heat Transfer Coefficient at the Charge Surface Heated on the Chamber Furnace

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2017-06-01

    Full Text Available The inverse method was applied to determine the heat flux reaching the charge surface. The inverse solution was based upon finding the minimum of the error norm between the measured and calculated temperatures. The charge temperature field was calculated with the finite element method by solving the heat transfer equation for a square charge made of 15HM steel heated on all its surfaces. On the basis of the mean value of heat flux, the value of the heat transfer coefficient at each surface was determined depending on the surface temperature of the material heated.

  16. Heat transfer characteristics of building walls using phase change material

    Science.gov (United States)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  17. Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-04-01

    In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  18. Numerical simulation of heat transfer in metal foams

    Science.gov (United States)

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  19. Fourier analysis of conductive heat transfer for glazed roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  20. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  1. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  2. Experimental and analytical study of natural-convection heat transfer of internally heated liquids

    International Nuclear Information System (INIS)

    Green, G.A.

    1982-08-01

    Boundary heat transfer from a liquid pool with a uniform internal heat source to a vertical or inclined boundary was investigated. The experiments were performed in an open rectangular liquid pool in which the internal heat source was generated by electrical heating. The local heat flux was measured to a boron nitride test wall which was able to be continuously inclined from vertical. Gold plated microthermocouples of 0.01 inch outside diameter were developed to measure the local surface temperature, both front and back, of the boron nitride. The local heat flux and, thus, the local heat transfer coefficient was measured at nineteen locations along the vertical axis of the test plate. A theoretical analysis of the coupled nonlinear boundary layer equations was performed. The parametric effect of the Prandtl number and the dimensionless wall temperature on the boundary heat transfer were investigated When the analytical model was used to calculate the boundary heat transfer data, agreement was achieved with the experimental data within 3% for the local heat transfer and within 2% for the average heat transfer

  3. Heat transfer and thermoregulation in the largemouth blackbass, Micropterus salmoides

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D. J.

    1976-01-01

    An energy budget equation, based on energy budget theory for terrestrial organisms, was developed to describe the heat energy exchange between a largemouth bass (Micropterus salmoides) and its aquatic environment. The energy budget equation indicated that convection and a combined conduction-convection process were major avenues of heat exchange for a fish. Solid aluminum castings were used to experimentally determine heat transfer coefficients for the largemouth bass at water velocities covering the free and forced convection ranges. Heat energy budget theory was applied to the casting data and the derived coefficients were used to characterize heat exchange between the bass and its aquatic habitat. The results indicate that direct transfer of heat from the body surface is the major mechanism of heat exchange for a fish.

  4. Single-phase convective heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2008-01-01

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

  5. Single-phase convective heat transfer in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

    2008-04-15

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

  6. Natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, R.J.; Kim, S.B.; Kim, H.D.; Choi, S.M.

    1997-01-01

    Analytical studies using the FLOW-3D computer program have been performed on natural convection heat transfer of a high density molten metal pool, in order to evaluate the coolability of the corium pool. The FLOW-3D results on the temperature distribution and the heat transfer rate in the molten metal pool region have been compared and evaluated with the experimental data. The FLOW-3D results have shown that the developed natural convection flow contributes to the solidified crust formation of the high density molten metal pool. The present FLOW-3D results, on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool region, are more similar to the calculated results of Globe and Dropkin's correlation than any others. The natural convection heat transfer in the low aspect ratio case is more substantial than that in the high aspect ratio case. The FLOW-3D results, on the temperature profile and on the heat transfer rate in the molten metal pool region, are very similar to the experimental data. The heat transfer rate of the internal heat generation case is higher than that of the bottom heating case at the same heat supply condition. (author)

  7. Transient heat transfer in longitudinal fins of various profiles with ...

    Indian Academy of Sciences (India)

    School of Computational and Applied Mathematics, University of the Witwatersrand, ... by frequent encounters of fin problems in many engineering applications to enhance heat transfer. In recent .... where β is the thermal conductivity gradient.

  8. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... experimental investigations of the augmentation of turbulent flow heat transfer in a horizontal tube by means of varying width twisted tape inserts with air as the working fluid.

  9. Convective heat and mass transfer in rotating disk systems

    CERN Document Server

    Shevchuk, Igor V

    2009-01-01

    The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.

  10. HTCC - a heat transfer model for gas-steam mixtures

    International Nuclear Information System (INIS)

    Papadimitriou, P.

    1983-01-01

    The mathematical model HTCC (Heat Transfer Coefficient in Containment) has been developed for RALOC after a loss-of-coolant accident in order to determine the local heat transfer coefficients for transfer between the containment atmosphere and the walls of the reactor building. The model considers the current values of room and wall temperature, the concentration of steam and non-condensible gases, geometry data and those of fluid dynamics together with thermodynamic parameters and from these determines the heat transfer mechanisms due to convection, radiation and condensation. The HTCC is implemented in the RALOC program. Comparative analyses of computed temperature profiles, for HEDL Standard problems A and B on hydrogen distribution, and of computed temperature profiles determined during the heat-up phase in the CSE-A5 experiment show a good agreement with experimental data. (orig.) [de

  11. Heat transfer problems in ductus of retangular cross section

    International Nuclear Information System (INIS)

    Cintra Filho, J. de S.

    1976-01-01

    The finite difference method is used to resolve the problem of heat transfer in the rectangular ducts in turbulent conditions. Velocities, temperatures and diffusivity distributions are determined. A computer programme is also developed for such calculations [pt

  12. Heat transfer during forced convection condensation inside horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N. [M.M.M. Engineering College, Gorakhpur, Uttar Pradesh (India). Dept. of Mechanical Engineering; Varma, H.K.; Gupta, C.P. [Roorkee Univ., Uttar Pradesh (India). Dept. of Mechanical and Industrial Engineering

    1995-03-01

    This paper presents the results of an experimental investigation on heat transfer behaviour during forced convection condensation inside a horizontal tube for wavy, semi-annular and annular flows. A qualitative study was made of the effect of various parameters - refrigerant mass flux, vapour quality, condensate film temperature drop and average vapour mass velocity - on average condensing-heat transfer coefficient. Akers-Rosson correlations have been found to predict the heat transfer coefficients within {+-} 25% for the entire range of data. A closer examination of the data revealed that the nature of the relation for the heat transfer coefficient changes from annular and semi-annular flow to wavy flow. Akers-Rosson correlations with changed constant and power have been recommended for the two flow regimes. (author)

  13. Investigation into the heat transfer performance of helically ribbed surfaces

    International Nuclear Information System (INIS)

    Firth, R.J.

    1981-12-01

    The first part of an investigation into flow and heat transfer in annular channels and seven pin clusters is described. One of the main aims of the project is to improve cluster heat transfer prediction codes for helically ribbed surfaces. A study is made of the heat transfer and flow characteristics of a helically ribbed pin in an annular channel. It is shown that the swirling flow, which is induced by the helical ribs, gives rise to substantially enhanced diffusivity levels. This phenomenon had not been taken into account by previous analysis techniques. The methods for analysing heat transfer and pressure drop data from annular channels which were originally developed for non-swirling flow are generalised to accommodate swirling flow. The new methods are shown to be consistent with empirical data. Roughness parameter data is presented for helically ribbed surfaces with an axial rib pitch into height ratio of about 7. (author)

  14. Heat transfer across the interface between nanoscale solids and gas.

    Science.gov (United States)

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  15. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    International Nuclear Information System (INIS)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.; Rohatgi, U.S.

    1995-01-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations al these conditions were compared with the GIRAFFE data. The effects of PCCS cell nodings on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three-node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer in the presence of noncondensable gases with only a coarse mesh. The cell length term in the condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes

  16. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    International Nuclear Information System (INIS)

    Boyd, Ronald D.

    2000-01-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details

  17. A Mathematical Model of Heat Transfer in Spheroplastic

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available Spheroplastics are composite materials composed of a polymer or organosilicate binder and hollow spherical inclusions (mostly, of glass, but there are also of carbon, phenol, and epoxy, which are called microspheres and have a diameter within a millimeter with the wall thickness of several micrometers. To reduce the material density in watercraft constructions sometimes are used so called macrospheres of up to 40 mm in diameter and shell thickness of 0,5--1,5 mm from spheroplastic with microspheres.Microspheres may contain inert gases such as nitrogen. Many countries have commercialised quartz microspheres. The USA, in particular, produces Q-Gel microspheres with density of 300 kg / m3, the bulk density - 100 kg / m3 and the average diameter of 75 microns,characterized by a high mechanical strength and low cost. Carbon microspheres having low mechanical properties can absorb radio waves in certain frequency ranges. Spheroplastic with silicone microspheres combine relatively high mechanical and dielectric properties.In virtue of low thermal conductivity spheroplastics are used in various heat-insulating structures. As the thermal insulation coatings, the spheroplastic covers the outer surface of the pipes, in particular oil and gas pipelines in the permafrost zones,  regions of swampy ground, and underwater. The effective heat conductivity factor, primarily, determines the specific application of spheroplastic as a thermal insulation material. To quantify the value of this factor is necessary to have a mathematical model describing heat ransfer in spheroplastic.The paper presents a four-phase mathematical model of the heat transfer in a representative element of a spheroplastic structure placed in an unlimited array of homogeneous material, the thermal conductivity of which is to be determined as desired characteristics of spheroplastic. This model in combination with a dual variational formulation of stationary heat conduction problem in the

  18. Study on the expectation differences between the both sides of farmland transfer at the level of farmer

    Science.gov (United States)

    Yang, Liyong; Liu, Dejiang; Qiu, Cheng; Wu, Xianhua

    2017-12-01

    The expected consistency between the both sides of farmland transfer is the key to the success or failure of transfer. We use the participatory rural appraisal method, carry out a questionnaire survey of farmers in Yunnan Province, and analysis empirically the expectation differences on the will, price, duration, objects and contract between the both sides of farmland transfer. The research shows that: farmers in the suburban village tend to be willing to transfer out rather than transfer in, while farmers in the outer suburbs village tend to prefer to transfer in rather than transfer out. They are relatively small in the expectation of will, duration, objects and contract between the both sides of farmland transfer, and the transfer price "gap" is the most important factor that impedes the farmland transfer. Measures should be taken to promote the farmland transfer from three aspects, such as the promotion of farmland protection regulations, the establishment and improvement of transfer institutions and the opening of transfer price.

  19. Overview PWR-Blowdown Heat Transfer Separate-Effects Program

    International Nuclear Information System (INIS)

    White, J.D.

    1978-01-01

    The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation

  20. Transient heat transfer into superfluid helium under confined conditions

    International Nuclear Information System (INIS)

    Filippov, Yu.P.; Miklyaev, V.M.; Sergeev, I.A.

    1988-01-01

    Transient thermal processes at solid-HeII interface at input of step pulse of heat load was investigated. Particular attention is given to the study of influence of geometry of experimental specimen upon the heat transfer dynamics. Abrupt breakdown of highly efficient transfer modes caused by the developmet of superfluid turbulence under confined condition is revealed, and accompanying temperature shift is registered. Some characteristic parameters are selected, their dependence on experimental conditions is established