WorldWideScience

Sample records for sic silicon carbide

  1. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  2. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  3. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  4. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  5. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) power supply for the Power Processing Unit (PPU) of...

  6. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  7. High Temperature All Silicon-Carbide (SiC) DC Motor Drives for Venus Exploration Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project seeks to prove the feasibility of creating high-temperature silicon-carbide (SiC) based motor drives for...

  8. Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET

    Directory of Open Access Journals (Sweden)

    Frederick Ojiemhende Ehiagwina

    2016-09-01

    Full Text Available Properties of Silicon Carbide Junction Field Effect Transistor (SiC JFET such as high switching speed, low forward voltage drop and high temperature operation have attracted the interest of power electronic researchers and technologists, who for many years developed devices based on Silicon (Si.  A number of power system Engineers have made efforts to develop more robust equipment including circuits or modules with higher power density. However, it was realized that several available power semiconductor devices were approaching theoretical limits offered by Si material with respect to capability to block high voltage, provide low on-state voltage drop and switch at high frequencies. This paper presents an overview of the current applications of SiC JFET in circuits such as inverters, rectifiers and amplifiers. Other areas of application reviewed include; usage of the SiC JFET in pulse signal circuits and boost converters. Efforts directed toward mitigating the observed increase in electromagnetic interference were also discussed. It also presented some areas for further research, such as having more applications of SiC JFET in harsh, high temperature environment. More work is needed with regards to SiC JFET drivers so as to ensure stable and reliable operation, and reduction in the prices of SiC JFETs through mass production by industries.

  9. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  10. Single-Event Effects in Silicon and Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2014-01-01

    NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.

  11. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  12. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  13. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  14. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    Science.gov (United States)

    2016-05-01

    AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp

  15. Study of nano-metric silicon carbide powder sintering. Application to fibers processing

    International Nuclear Information System (INIS)

    Malinge, A.

    2011-01-01

    Silicon carbide ceramic matrix composites (SiCf/SiCm) are of interest for high temperature applications in aerospace or nuclear components for their relatively high thermal conductivity and low activation under neutron irradiation. While most of silicon carbide fibers are obtained through the pyrolysis of a poly-carbo-silane precursor, sintering of silicon carbide nano-powders seems to be a promising route to explore. For this reason, pressureless sintering of SiC has been studied. Following the identification of appropriate sintering aids for the densification, optimization of the microstructure has been achieved through (i) the analysis of the influence of operating parameters and (ii) the control of the SiC β a SiC α phase transition. Green fibers have been obtained by two different processes involving the extrusion of SiC powder dispersion in polymer solution or the coagulation of a water-soluble polymer containing ceramic particles. Sintering of these green fibers led to fibers of around fifty microns in diameter. (author) [fr

  16. Dependence of silicon carbide coating properties on deposition parameters: preliminary report

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1980-05-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide, which acts as a pressure vessel and provides containment of metallic fission products. The silicon carbide (SiC) is deposited by the thermal decomposition of methyltrichlorosilane (CH 3 SiCl 3 or MTS) in an excess of hydrogen. The purpose of the current study is to determine how the deposition variables affect the structure and properties of the SiC layer

  17. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  18. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  19. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, N., E-mail: naderi.phd@gmail.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2013-03-05

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  20. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    International Nuclear Information System (INIS)

    Naderi, N.; Hashim, M.R.

    2013-01-01

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  1. Effect of Ion Beam Irradiation on Silicon Carbide with Different Microstructures

    International Nuclear Information System (INIS)

    Park, Kyeong Hwan; Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog

    2006-01-01

    SiC and SiC/SiC composites are one of promising candidates for structural materials of the next generation energy systems such as the gas-cooled reactors and fusion reactors. This anticipation yields many material issues, and radiation effects of silicon carbide are recognized as an important research subject. Silicon carbide has diverse crystal structures (called polytypes), such as α-SiC (hexagonal structure), β-SiC (cubic structure) and amorphous SiC. Among these polytypes, β-SiC has been studied as matrix material in SiC/SiC composites. Near-stoichiometric β-SiC with high crystallinity and purity is considered as suitable material in the next generation energy system and matrix material in SiC/SiC composites because of its excellent radiation resistance. Highly pure and crystalline β-SiC and SiC/SiC composites could be obtained by the chemical vapor deposition (CVD) and Infiltration (CVI) process using a gas mixture of methyltrichlorosilane (CH 3 SiCl 3 , MTS) and purified H 2 . SiC produced by the CVD method has different grain size and microstructural morphology depended on the process conditions such as temperature, pressure and the input gas ratio. In this work, irradiation effects of silicon carbide were investigated using ion beam irradiation with emphasis on the influence of grain size and grain boundary. MeV ion irradiation at low temperature makes amorphous phase in silicon carbide. The microstructures and mechanical property changes of silicon carbide with different structures were analyzed after ion beam irradiation

  2. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  3. High frequency three-phase PWM grid connected drive using silicon-carbide switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Pedersen, Jacob Lykke; Nymand, Morten

    2016-01-01

    This paper presents controller design procedure for a fully silicon-carbide (SiC) based three-phase grid-connected PWM drive. The influence of the feedforward compensation for the presented setup is studied and the transfer function of the system with feedforward is derived and compared with the ......This paper presents controller design procedure for a fully silicon-carbide (SiC) based three-phase grid-connected PWM drive. The influence of the feedforward compensation for the presented setup is studied and the transfer function of the system with feedforward is derived and compared...

  4. Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

    Directory of Open Access Journals (Sweden)

    Gammon P.M.

    2017-01-01

    Full Text Available A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si wafer bonded to silicon carbide (SiC. This novel silicon-on-silicon-carbide (Si/SiC substrate solution promises to combine the benefits of silicon-on-insulator (SOI technology (i.e device confinement, radiation tolerance, high and low temperature performance with that of SiC (i.e. high thermal conductivity, radiation hardness, high temperature performance. Details of a process are given that produces thin films of silicon 1, 2 and 5 μm thick on semi-insulating 4H-SiC. Simulations of the hybrid Si/SiC substrate show that the high thermal conductivity of the SiC offers a junction-to-case temperature ca. 4× less that an equivalent SOI device; reducing the effects of self-heating, and allowing much greater power density. Extensive electrical simulations are used to optimise a 600 V laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET implemented entirely within the silicon thin film, and highlight the differences between Si/SiC and SOI solutions.

  5. Electronic structures of ultra-thin silicon carbides deposited on graphite

    International Nuclear Information System (INIS)

    Baba, Y.; Sekiguchi, T.; Shimoyama, I.; Nath, Krishna G.

    2004-01-01

    Electronic structures of ultra-thin silicon carbide films have been investigated by X-ray photoelectron spectroscopy (XPS) and Si K-edge X-ray absorption near edge structure (XANES) using linearly polarized synchrotron soft X-rays. Silicon carbide films were deposited on the surface of highly oriented pyrolytic graphite (HOPG) by ion beam deposition method. Tetramethylsilane (Si(CH 3 ) 4 ) was used as a discharge gas. The XPS and XANES features for the thick layers were similar to those for the bulk SiC. For sub-monolayered films, the Si 1s binding energy in XPS was higher by 2.5 eV than that for bulk SiC. This suggests the existence of low-dimensional SiC x where the silicon atoms are more positively charged than those in bulk SiC. After annealing the sub-monolayered film at 850 deg. C, a new peak appeared around 1840 eV in the XANES spectrum. The energy of this new peak was lower than those for any other silicon compounds. The low-energy feature of the XANES peak suggests the existence of π*-like orbitals around the silicon atom. On the basis of the polarization dependencies of the XANES spectra, it was revealed that the direction of the π*-like orbitals are nearly perpendicular to the surface. We conclude that sub-monolayered SiC x film exhibits flat-lying structure of which configuration is similar to a single sheet of graphite

  6. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  7. Low-temperature synthesis of silicon carbide powder using shungite

    International Nuclear Information System (INIS)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-01-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  8. Low-temperature synthesis of silicon carbide powder using shungite

    Energy Technology Data Exchange (ETDEWEB)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-07-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  9. Lattice location of impurities in silicon Carbide

    CERN Document Server

    AUTHOR|(CDS)2085259; Correia Martins, João Guilherme

    The presence and behaviour of transition metals (TMs) in SiC has been a concern since the start of producing device-grade wafers of this wide band gap semiconductor. They are unintentionally introduced during silicon carbide (SiC) production, crystal growth and device manufacturing, which makes them difficult contaminants to avoid. Once in SiC they easily form deep levels, either when in the isolated form or when forming complexes with other defects. On the other hand, using intentional TM doping, it is possible to change the electrical, optical and magnetic properties of SiC. TMs such as chromium, manganese or iron have been considered as possible candidates for magnetic dopants in SiC, if located on silicon lattice sites. All these issues can be explored by investigating the lattice site of implanted TMs. This thesis addresses the lattice location and thermal stability of the implanted TM radioactive probes 56Mn, 59Fe, 65Ni and 111Ag in both cubic 3C- and hexagonal 6H SiC polytypes by means of emission cha...

  10. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  11. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...... lattice mismatch. Secondly, SiC material is abundant, containing no rear-earth element material as commercial phosphor. In this paper, fabrication of porous SiC is introduced, and their morphology and photoluminescence are characterized. Additionally, the carrier lifetime of the porous SiC is measured...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications....

  12. Method of producing silicon carbide articles

    International Nuclear Information System (INIS)

    Milewski, J.V.

    1985-01-01

    A method of producing articles comprising reaction-bonded silicon carbide (SiC) and graphite (and/or carbon) is given. The process converts the graphite (and/or carbon) in situ to SiC, thus providing the capability of economically obtaining articles made up wholly or partially of SiC having any size and shape in which graphite (and/or carbon) can be found or made. When the produced articles are made of an inner graphite (and/or carbon) substrate to which SiC is reaction bonded, these articles distinguish SiC-coated graphite articles found in the prior art by the feature of a strong bond having a gradual (as opposed to a sharply defined) interface which extends over a distance of mils. A method for forming SiC whisker-reinforced ceramic matrices is also given. The whisker-reinforced articles comprise SiC whiskers which substantially retain their structural integrity

  13. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    International Nuclear Information System (INIS)

    Cunning, Benjamin V; Ahmed, Mohsin; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca; Wood, Barry

    2014-01-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices. (paper)

  14. Influence of oxygen on the ion-beam synthesis of silicon carbide buried layers in silicon

    International Nuclear Information System (INIS)

    Artamanov, V.V.; Valakh, M.Ya.; Klyui, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of silicon structures with silicon carbide (SiC) buried layers produced by high-dose carbon implantation followed by a high-temperature anneal are investigated by Raman and infrared spectroscopy. The influence of the coimplantation of oxygen on the features of SiC buried layer formation is also studied. It is shown that in identical implantation and post-implantation annealing regimes a SiC buried layer forms more efficiently in CZ Si wafers or in Si (CZ or FZ) subjected to the coimplantation of oxygen. Thus, oxygen promotes SiC layer formation as a result of the formation of SiO x precipitates and accommodation of the volume change in the region where the SiC phase forms. Carbon segregation and the formation of an amorphous carbon film on the SiC grain boundaries are also discovered

  15. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...... is demonstrated. After optimizing the passivation conditions, strong blue-green emission from porous SiC is demonstrated as well. When combining the yellow emission from co-doped SiC and blue-green from porous SiC, a high color rendering index white light source is achieved....

  16. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  17. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  18. Effect of SiC Nanowhisker on the Microstructure and Mechanical Properties of WC-Ni Cemented Carbide Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Xiaoyong Ren

    2014-01-01

    Full Text Available Ultrafine tungsten carbide-nickel (WC-Ni cemented carbides with varied fractions of silicon carbide (SiC nanowhisker (0–3.75 wt.% were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC and tantalum carbide (TaC as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical properties of the as-prepared WC-Ni cemented carbides were investigated. X-ray diffraction analysis revealed that during spark plasma sintering (SPS Ni may react with the applied SiC nanowhisker, forming Ni2Si and graphite. Scanning electron microscopy examination indicated that, with the addition of SiC nanowhisker, the average WC grain size decreased from 400 to 350 nm. However, with the additional fractions of SiC nanowhisker, more and more Si-rich aggregates appeared. With the increase in the added fraction of SiC nanowhisker, the Vickers hardness of the samples initially increased and then decreased, reaching its maximum of about 24.9 GPa when 0.75 wt.% SiC nanowhisker was added. However, the flexural strength of the sample gradually decreased with increasing addition fraction of SiC nanowhisker.

  19. Influences of Device and Circuit Mismatches on Paralleling Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Wang, Xiongfei

    2016-01-01

    This paper addresses the influences of device and circuit mismatches on paralleling the Silicon Carbide (SiC) MOSFETs. Comprehensive theoretical analysis and experimental validation from paralleled discrete devices to paralleled dies in multichip power modules are first presented. Then, the influ......This paper addresses the influences of device and circuit mismatches on paralleling the Silicon Carbide (SiC) MOSFETs. Comprehensive theoretical analysis and experimental validation from paralleled discrete devices to paralleled dies in multichip power modules are first presented. Then......, the influence of circuit mismatch on paralleling SiC MOSFETs is investigated and experimentally evaluated for the first time. It is found that the mismatch of the switching loop stray inductance can also lead to on-state current unbalance with inductive output current, in addition to the on-state resistance...... of the device. It further reveals that circuit mismatches and a current coupling among the paralleled dies exist in a SiC MOSFET multichip power module, which is critical for the transient current distribution in the power module. Thus, a power module layout with an auxiliary source connection is developed...

  20. Structural and optical properties of silicon-carbide nanowires produced by the high-temperature carbonization of silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pavlikov, A. V., E-mail: pavlikov@physics.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Latukhina, N. V.; Chepurnov, V. I. [Samara National Researh University (Russian Federation); Timoshenko, V. Yu. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    Silicon-carbide (SiC) nanowire structures 40–50 nm in diameter are produced by the high-temperature carbonization of porous silicon and silicon nanowires. The SiC nanowires are studied by scanning electron microscopy, X-ray diffraction analysis, Raman spectroscopy, and infrared reflectance spectroscopy. The X-ray structural and Raman data suggest that the cubic 3C-SiC polytype is dominant in the samples under study. The shape of the infrared reflectance spectrum in the region of the reststrahlen band 800–900 cm{sup –1} is indicative of the presence of free charge carriers. The possibility of using SiC nanowires in microelectronic, photonic, and gas-sensing devices is discussed.

  1. Enhanced optical performance of electrochemically etched porous silicon carbide

    International Nuclear Information System (INIS)

    Naderi, N; Hashim, M R; Saron, K M A; Rouhi, J

    2013-01-01

    Porous silicon carbide (PSC) was successfully synthesized via electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using various current densities. The cyclic voltammograms of SiC dissolution show that illumination is required for the accumulation of carriers at the surface, followed by surface oxidation and dissolution of the solid. The morphological and optical characterizations of PSC were reported. Scanning electron microscopy results demonstrated that the current density can be considered an important etching parameter that controls the porosity and uniformity of PSC; hence, it can be used to optimize the optical properties of the porous samples. (paper)

  2. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  3. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  4. Synthesis and investigation of silicon carbide nanowires by HFCVD ...

    Indian Academy of Sciences (India)

    Silicon carbide (SiC) nanowire has been fabricated by hot filament chemical vapour .... −5. Torr by mechanical and dif- fusion vacuum pumps, then high purity H2 gas was fed into it. ... to standard PDF card numbers of 01-074-2307 and 01-.

  5. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  6. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  7. Low-Cost, Silicon Carbide Replication Technique for LWIR Mirror Fabrication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG proposes an innovative optical manufacturing approach that will enable the low-cost fabrication of lightweighted, Long Wave Infrared (LWIR) Silicon Carbide (SiC)...

  8. DECODING THE MESSAGE FROM METEORITIC STARDUST SILICON CARBIDE GRAINS

    International Nuclear Information System (INIS)

    Lewis, Karen M.; Lugaro, Maria; Gibson, Brad K.; Pilkington, Kate

    2013-01-01

    Micron-sized stardust grains that originated in ancient stars are recovered from meteorites and analyzed using high-resolution mass spectrometry. The most widely studied type of stardust is silicon carbide (SiC). Thousands of these grains have been analyzed with high precision for their Si isotopic composition. Here we show that the distribution of the Si isotopic composition of the vast majority of stardust SiC grains carries the imprints of a spread in the age-metallicity distribution of their parent stars and of a power-law increase of the relative formation efficiency of SiC dust with the metallicity. This result offers a solution for the long-standing problem of silicon in stardust SiC grains, confirms the necessity of coupling chemistry and dynamics in simulations of the chemical evolution of our Galaxy, and constrains the modeling of dust condensation in stellar winds as a function of the metallicity.

  9. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  10. Single Photon Sources in Silicon Carbide

    International Nuclear Information System (INIS)

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  11. Parameters optimization, microstructure and micro-hardness of silicon carbide laser deposited on titanium alloy

    CSIR Research Space (South Africa)

    Adebiyia, DI

    2016-06-01

    Full Text Available Silicon carbide (SiC), has excellent mechanical properties such as high hardness and good wear resistance, and would have been a suitable laser-coating material for titanium alloy to enhance the poor surface hardness of the alloy. However, SiC has...

  12. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  13. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  14. Very low Schottky barrier height at carbon nanotube and silicon carbide interface

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Suzuki, Kazuma; Shibuya, Megumi; Lee, Chih-Yu [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Masuda, Yoshiho; Tomatsu, Naoya; Norimatsu, Wataru; Kusunoki, Michiko [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Hiraiwa, Atsushi [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Kawarada, Hiroshi [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2015-03-23

    Electrical contacts to silicon carbide with low contact resistivity and high current durability are crucial for future SiC power devices, especially miniaturized vertical-type devices. A carbon nanotube (CNT) forest formed by silicon carbide (SiC) decomposition is a densely packed forest, and is ideal for use as a heat-dissipative ohmic contact in SiC power transistors. The contact resistivity and Schottky barrier height in a Ti/CNT/SiC system with various SiC dopant concentrations were evaluated in this study. Contact resistivity was evaluated in relation to contact area. The Schottky barrier height was calculated from the contact resistivity. As a result, the Ti/CNT/SiC contact resistivity at a dopant concentration of 3 × 10{sup 18 }cm{sup −3} was estimated to be ∼1.3 × 10{sup −4} Ω cm{sup 2} and the Schottky barrier height of the CNT/SiC contact was in the range of 0.40–0.45 eV. The resistivity is relatively low for SiC contacts, showing that CNTs have the potential to be a good ohmic contact material for SiC power electronic devices.

  15. Corrosion behaviour of 2124 aluminium alloy-silicon carbide metal matrix composites in sodium chloride environment

    International Nuclear Information System (INIS)

    Singh, Nirbhay; Vadera, K.K.; Ramesh Kumar, A.V.; Singh, R.S.; Monga, S.S.; Mathur, G.N.

    1999-01-01

    Aluminium alloy based particle reinforced metal matrix composites (MMCs) are being considered for a range of applications. Their mechanical properties have been investigated in detail, but more information about their corrosion resistance is needed. In this investigation, the corrosion behaviour of silicon carbide particulates (SiC p )-2124 aluminium metal matrix composites was studied in 3 wt% sodium chloride solution by means of electrochemical technique and optical microscope. The effects of weight percentages and particle size of silicon carbide particulates on corrosion behaviour of the composite were studied in NaCl and it was observed that corrosion rate increases linearly with the increasing weight percentage of SiC p . The corrosion rate of the MMC increases by increasing the size of SiC particles. Anodization improved corrosion resistance of the composites. (author)

  16. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to manufacture new silicon carbide (SiC) foam-based optics that are composite, athermal and lightweight (FOCAL) that provide...

  17. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  18. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) has developed new silicon carbide (SiC) foam-based optics with hybrid skins that are composite, athermal and lightweight (FOCAL) that...

  19. Preparation And Characterization Of Silicon Carbide Foam By Using In-Situ Generated Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Shalini Saxena

    2015-08-01

    Full Text Available Abstract The open cell silicon carbide SiC foam was prepared using highly crosslinked hybrid organic- inorganic polymer resin matrix. As inorganic polymer polycarbosilane was taken and organic resin was taken as a mixture of epoxy resin and diisocyanates. The resultant highly crosslinked hybrid resin matrix on heating and subsequently on pyrolysis yielded open cell silicon carbide foam. The hybrid resin matrix was characterized by Fourier transform Infrared Spectroscopy FT-IR and thermal properties i.e. Thermogravimetric analysis TGA amp Differential Scanning Calorimetry DSC were also studied. The morphological studies of silicon carbide ceramic foam were carried out using X-ray Spectroscopy XRD amp Scanning Electron Microscopy SEM.

  20. Quantitative analyses of impurity silicon-carbide (SiC) and high-purity-titanium by neutron activation analyses based on k0-standardization method. Development of irradiation silicon technology in productivity using research reactor (Joint research)

    International Nuclear Information System (INIS)

    Motohashi, Jun; Takahashi, Hiroyuki; Magome, Hirokatsu; Sasajima, Fumio; Tokunaga, Okihiro; Kawasaki, Kozo; Onizawa, Koji; Isshiki, Masahiko

    2009-07-01

    JRR-3 and JRR-4 have been providing neutron-transmutation-doped silicon (NTD-Si) by using the silicon NTD process, which is a method to produce a high quality semiconductor. The domestic supply of NTD-Si is insufficient for the demand, and the market of NTD-Si is significantly growing at present. It is very important to increase achieve the production. To fulfill the requirement, we have been investigating a neutron filter, which is made of high-purity-titanium, for uniform doping. Silicon-carbide (SiC) semiconductor doped with NTD technology is considered suitable for high power devices with superior performances to conventional Si-based devices. We are very interested in the SiC as well. This report presents the results obtained after the impurity contents in the high-purity-titanium and SiC were analyzed by neutron activation analyses (NAA) using k 0 -standardization method. There were 6 and 9 impurity elements detected from the high-purity-titanium and SiC, respectively. Among those Sc from the high-purity-titanium and Fe from SiC were comparatively long half life nuclides. From the viewpoint of exposure in handling them, we need to examine the impurity control of materials. (author)

  1. Silicon carbide production by Self-Propagating High Temperature (SHS) technique

    International Nuclear Information System (INIS)

    Lima, Eduardo de Souza; Schneider, Pedro Luiz; Mattoso, Irani Guedes; Costa, Carlos Roberto Correia da; Louro, Luis Henrique Leme

    1997-01-01

    Samples of silicon carbide (SiC) were synthesized from a mixture of silicon and carbon powders, using the Self-Propagating High Temperature Synthesis (SHS) technique. Three mixtures were tried, using silicon particles of the same average size but carbon particles of different average sizes. The method tried is characterized by an ignition temperature of 1450 deg C and the short duration of the synthesis ( 2-3 min). The samples were characterized by X-ray diffraction and scattering electron microscopy. (author)

  2. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  3. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    Science.gov (United States)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  4. Effect of oxygen on the processes of ion beam synthesis of buried SiC layers in silicon

    International Nuclear Information System (INIS)

    Artamonov, V.V.; Valakh, M.Ya.; Klyuj, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of Si-structures with buried silicon carbide (SiC) layers created by high dose carbon implantation into Cz-Si or Fz-Si wafers followed by high-temperature annealing were studied by Raman and infrared spectroscopy. Effect of additional oxygen implantation on the peculiarities of SiC layer formation was also studied. It was shown that under the same implantation and post-implantation annealing conditions the buried SiC layers are more effectively formed in Cz-Si or in Si subjected to additional oxygen implantation. Thus, oxygen in silicon promotes the SiC layer formation due to SiO x precipitate creation and accommodation of the crystal volume in the region where SiC phase is formed

  5. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Leparoux, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)], E-mail: susanne.leparoux@empa.ch; Diot, C. [Consultant, allee de Mozart 10, F-92300 Chatillon (France); Dubach, A. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Vaucher, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2007-10-15

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  6. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    International Nuclear Information System (INIS)

    Leparoux, S.; Diot, C.; Dubach, A.; Vaucher, S.

    2007-01-01

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  7. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  8. A comparative study of the constitutive models for silicon carbide

    Science.gov (United States)

    Ding, Jow-Lian; Dwivedi, Sunil; Gupta, Yogendra

    2001-06-01

    Most of the constitutive models for polycrystalline silicon carbide were developed and evaluated using data from either normal plate impact or Hopkinson bar experiments. At ISP, extensive efforts have been made to gain detailed insight into the shocked state of the silicon carbide (SiC) using innovative experimental methods, viz., lateral stress measurements, in-material unloading measurements, and combined compression shear experiments. The data obtained from these experiments provide some unique information for both developing and evaluating material models. In this study, these data for SiC were first used to evaluate some of the existing models to identify their strength and possible deficiencies. Motivated by both the results of this comparative study and the experimental observations, an improved phenomenological model was developed. The model incorporates pressure dependence of strength, rate sensitivity, damage evolution under both tension and compression, pressure confinement effect on damage evolution, stiffness degradation due to damage, and pressure dependence of stiffness. The model developments are able to capture most of the material features observed experimentally, but more work is needed to better match the experimental data quantitatively.

  9. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  10. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    Science.gov (United States)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  11. Extended vapor-liquid-solid growth of silicon carbide nanowires.

    Science.gov (United States)

    Rajesh, John Anthuvan; Pandurangan, Arumugam

    2014-04-01

    We developed an alloy catalytic method to explain extended vapor-liquid-solid (VLS) growth of silicon carbide nanowires (SiC NWs) by a simple thermal evaporation of silicon and activated carbon mixture using lanthanum nickel (LaNi5) alloy as catalyst in a chemical vapor deposition process. The LaNi5 alloy binary phase diagram and the phase relationships in the La-Ni-Si ternary system were play a key role to determine the growth parameters in this VLS mechanism. Different reaction temperatures (1300, 1350 and 1400 degrees C) were applied to prove the established growth process by experimentally. Scanning electron microscopy and transmission electron microscopy studies show that the crystalline quality of the SiC NWs increases with the temperature at which they have been synthesized. La-Ni alloyed catalyst particles observed on the top of the SiC NWs confirms that the growth process follows this extended VLS mechanism. The X-ray diffraction and confocal Raman spectroscopy analyses demonstrate that the crystalline structure of the SiC NWs was zinc blende 3C-SiC. Optical property of the SiC NWs was investigated by photoluminescence technique at room temperature. Such a new alloy catalytic method may be extended to synthesis other one-dimensional nanostructures.

  12. Silicon Carbide Junction Field Effect Transistor Digital Logic Gates Demonstrated at 600 deg. C

    Science.gov (United States)

    Neudeck, Philip G.

    1998-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. The HTIES team recently fabricated and demonstrated the first semiconductor digital logic gates ever to function at 600 C.

  13. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  14. Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2017-01-01

    Porous silicon carbide (B–N co-doped SiC) produced by anodic oxidation showed strong photoluminescence (PL) at around 520 nm excited by a 375 nm laser. The porous SiC samples were passivated by atomic layer deposited (ALD) aluminum oxide (Al2O3) films, resulting in a significant enhancement...

  15. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    Science.gov (United States)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  16. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors

    Science.gov (United States)

    Kim, Myeongjin; Yoo, Youngjae; Kim, Jooheon

    2014-11-01

    Synthesis of microsphere silicon carbide/nanoneedle MnO2 (SiC/N-MnO2) composites for use as high-performance materials in supercapacitors is reported herein. The synthesis procedure involves the initial treatment of silicon carbide (SiC) with hydrogen peroxide to obtain oxygen-containing functional groups to provide anchoring sites for connection of SiC and the MnO2 nanoneedles (N-MnO2). MnO2 nanoneedles are subsequently formed on the SiC surface. The morphology and microstructure of the as-prepared composites are characterized via X-ray diffractometry, field-emission scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The characterizations indicate that MnO2 nanoneedles are homogeneously formed on the SiC surface in the composite. The capacitive properties of the as-prepared SiC/N-MnO2 electrodes are evaluated using cyclic voltammetry, galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy in a three-electrode experimental setup using a 1-M Na2SO4 aqueous solution as the electrolyte. The SiC/N-MnO2(5) electrode, for which the MnO2/SiC feed ratio is 5:1, displays a specific capacitance as high as 273.2 F g-1 at 10 mV s-1.

  17. Precision Surface Grinding of Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Mohamed Konneh

    2016-12-01

    Full Text Available Silicon carbide (SiC is well known for its excellent material properties, high durability, high wear resistance, light weight and extreme hardness. Among the engineering applications of this material, it is an excellent candidate for optic mirrors used in an Airbone Laser (ABL device. However, the low fracture toughness and extreme brittleness characteristics of SiC are predominant factors for its poor machinability. This paper presents surface grinding of SiC using diamond cup wheels to assess the performance of diamond grits with respect to the roughness produced on the machined surfaces and also the morphology of the ground work-piece. Resin bonded diamond cup wheels of grit sizes 46 µm, 76 µm and 107 µm; depth of cut of 10 µm, 20 µm and 30 µm; and feed rate of 2 mm/min, 12 mm/min and 22 mm/min were used during this machining investigation. It has been observed that the 76 grit performs better in terms of low surface roughness value and morphology.

  18. Densification of silicon and zirconium carbides by a new process: spark plasma sintering

    International Nuclear Information System (INIS)

    Guillard, F.

    2006-12-01

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  19. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  20. Structures of sub-monolayered silicon carbide films

    International Nuclear Information System (INIS)

    Baba, Y.; Sekiguchi, T.; Shimoyama, I.; Nath, Krishna G.

    2004-01-01

    The electronic and geometrical structures of silicon carbide thin films are presented. The films were deposited on graphite by ion-beam deposition using tetramethylsilane (TMS) as an ion source. In the Si K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra for sub-monolayered film, sharp peaks due to the resonance from Si 1s to π*-like orbitals were observed, suggesting the existence of Si=C double bonds. On the basis of the polarization dependencies of the Si 1s → π* peak intensities, it is elucidated that the direction of the π*-like orbitals is just perpendicular to the surface. We conclude that the sub-monolayered SiC x film has a flat-lying hexagonal structure of which configuration is analogous to the single sheet of graphite

  1. Nondestructive ultrasonic characterization of armor grade silicon carbide

    Science.gov (United States)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy

  2. Creation of leak-proof silicon carbide diffusion barriers by means of pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Reinecke, A.-M.; Lustfeld, M.; Lippmann, W., E-mail: wolfgang.lippmann@tu-dresden.de; Hurtado, A.

    2014-05-01

    TRISO (tristructural isotropic) coated fuel particles are a crucial element of the HTR safety concept. While TRISO coated particles have been proven as a very efficient barrier for a large range of fission products in HTR experimental reactors, some particular fission products could still diffuse at a considerable rate. Most importantly, radioactive silver {sup 110m}Ag was found to be released from coated particles. In future HTRs with active components like a gas turbine in the primary circuit, such silver contamination may severely limit maintainability of these parts with the result of reduced life-time performance. So far, experimental analyses on silver diffusion through silicon carbide have led to contradictory results. In this work, an alternative method was used to generate silicon carbide layers as a basis for analysis of silver diffusion. With pulsed laser deposition (PLD), it is possible to generate coatings of different materials and various kinds of compounds. In particular, this technology allows the generation of layers very well defined with respect to their composition, purity and density. The microstructure can precisely be manipulated through various parameters. Based on different silicon carbide coatings with well-defined properties, we are going to investigate the silver diffusion process. Our goal is to derive the properties of an ideal silicon carbide coating preventing silver diffusion entirely. In this paper we present the major aspects of our work creating crystalline SiC layers as well as silver and CsI layers both on plane and spherical substrates. Analyses with X-ray diffraction, X-ray spectrometry and secondary ion mass spectrometry show that complex multilayer systems comprising a graphite substrate, a crystalline SiC layer and an intermediate silver layer were successfully created. Major challenges to approach in the future are the handling of high-level intrinsic stresses forming in the layer structure as well as the high vapour

  3. Use of spectroscopic techniques for the chemical analysis of biomorphic silicon carbide ceramics

    International Nuclear Information System (INIS)

    Pavon, J.M. Cano; Alonso, E. Vereda; Cordero, M.T. Siles; Torres, A. Garcia de; Lopez-Cepero, J.M.

    2005-01-01

    Biomorphic silicon carbide ceramics are a new class of materials prepared by several complex processing steps including pre-processing (shaping, drying, high-temperature pyrolysis in an inert atmosphere) and reaction with liquid silicon to obtain silicon-carbide. The results of industrial process of synthesis (measured by the SiC content) must be evaluated by means of fast analytical methods. In the present work, diverse samples of biomorphic ceramics derived from wood are studied for to evaluate the capability of the different analytical techniques (XPS, LIBS, FT-IR and also atomic spectroscopy applied to previously dissolved samples) for the analysis of these materials. XPS and LIBS gives information about the major components, whereas XPS and FT-IR can be used to evaluate the content of SiC. On the other hand, .the use of atomic techniques (as ICP-MS and ETA-AAS) is more adequate for the analysis of metal ions, specially at trace level. The properties of ceramics depend decisively of the content of chemical elements. Major components found were C, Si, Al, S, B and Na in all cases. Previous dissolution of the samples was optimised by acid attack in an oven under microwave irradiation

  4. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  5. Latest Advances in the Generation of Single Photons in Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2016-06-01

    Full Text Available The major barrier for optical quantum information technologies is the absence of reliable single photons sources providing non-classical light states on demand which can be easily and reliably integrated with standard processing protocols for quantum device fabrication. New methods of generation at room temperature of single photons are therefore needed. Heralded single photon sources are presently being sought based on different methods built on different materials. Silicon Carbide (SiC has the potentials to serve as the preferred material for quantum applications. Here, we review the latest advances in single photon generation at room temperatures based on SiC.

  6. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  7. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  8. Body of Knowledge for Silicon Carbide Power Electronics

    Science.gov (United States)

    Boomer, Kristen; Lauenstein, Jean-Marie; Hammoud, Ahmad

    2016-01-01

    Wide band gap semiconductors, such as silicon carbide (SiC), have emerged as very promising materials for future electronic components due to the tremendous advantages they offer in terms of power capability, extreme temperature tolerance, and high frequency operation. This report documents some issues pertaining to SiC technology and its application in the area of power electronics, in particular those geared for space missions. It also serves as a body of knowledge (BOK) in reference to the development and status of this technology obtained via literature and industry survey as well as providing a listing of the major manufacturers and their capabilities. Finally, issues relevant to the reliability of SiC-based electronic parts are addressed and limitations affecting the full utilization of this technology are identified.

  9. Vaporization thermodynamics and enthalpy of formation of aluminum silicon carbide

    International Nuclear Information System (INIS)

    Behrens, R.G.; Rinehart, G.H.

    1984-01-01

    The vaporization thermodynamics of aluminum silicon carbide was investigated using Knudsen effusion mass spectrometry. Vaporization occurred incongruently to give Al(g), SiC(s), and graphite as reaction products. The vapor pressure of aluminum above (Al 4 SiC 4 + SiC + C) was measured using graphite effusion cells with orifice areas between 1.1 X 10 -2 and 3.9 X 10 -4 cm 2 . The vapor pressure of aluminum obtained between 1427 and 1784 K using an effusion cell with the smallest orifice area, 3.9 X 10 -4 cm 2 , is expressed as log p (Pa) = - (18567 + or - 86) (K/T) + (12.143 + or - 0.054) The third-law calculation of the enthalpy change for the reaction Al 4 SiC 4 (s) = 4Al(g) + SiC(hex) + 3C(s) using the present aluminum pressures gives ΔH 0 (298.15 K) = (1455 + or - 79) kJ /SUP ./ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (1456 + or - 47) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from the elements calculated from the present vaporization enthalpy (third-law calculation) and the enthalpies of formation of Al(g) and hexagonal SiC is ΔH 0 /SUB f/ (298.15 K) = -(221 + or - 85) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from its constituent carbides Al 4 C 3 (s) and SiC(c, hex) is calculated to be ΔH 0 (298.15 K) = (38 + or - 92) KJ /SUP ./ mol -1

  10. Effect of metallic coating on the properties of copper-silicon carbide composites

    Science.gov (United States)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  11. Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [College of Chemical Engineering, Sichuan University, Chengdu, 610064 (China); Hu, Yu [College of Material Science and Enginneering, Sichuan University, Chengdu, 610064 (China); Zeng, Hongmei [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Zhong, Lin, E-mail: zhonglin@scu.edu.cn [College of Chemical Engineering, Sichuan University, Chengdu, 610064 (China); Liu, Kewei; Cao, Hongmei [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Li, Wei [College of Material Science and Enginneering, Sichuan University, Chengdu, 610064 (China); Yan, Hongjian, E-mail: hjyan@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China)

    2017-05-05

    Highlights: • SiC was recovered from photovoltaic industry waste. • The recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides. • The recovered SiC shows photocatalytic H{sub 2} evolution from water. - Abstract: In recent years, the focus on creating a dependable and efficient means to recycle or recover the valuable parts from the waste material has drawn significantly attention as an environmentally friendly way to deal with the industrial wastes. The silicon carbide (SiC) crystalline is one of reusable material in the slurry wastes generated during wafer slicing. Here we report the use of recovered SiC from the slurry wastes as photocatalysts to produce hydrogen in the presence of Na{sub 2}SO{sub 3}-Na{sub 2}S as electron donor. The recovered SiC were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy spectra (XPS), UV–vis (UV–vis) spectroscopy, and photoluminescence (PL) spectroscopy. The morphology of SiC loaded with 1 wt% Pt as cocatalyst by thermal-reduction method was observed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). The experimental results reveal that the recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides on the surface of the SiC. The highest hydrogen production rate is 191.8 μmol h{sup −1} g{sup −1}. This study provides a way to recycle crystalline SiC from the discharged waste in the photovoltaic industry and reuse it as photocatalyst to yield hydrogen with the advantage of low energy consumption, low pollution and easy operation.

  12. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  13. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  14. Nanowires of silicon carbide and 3D SiC/C nanocomposites with inverse opal structure

    International Nuclear Information System (INIS)

    Emelchenko, G.A.; Zhokhov, A.A.; Masalov, V.M.; Kudrenko, E.A.; Tereshenko, A.N.; Steinman, E.A.; Khodos, I.I.; Zinenko, V.I.; Agafonov, Yu.A.

    2011-01-01

    Synthesis, morphology, structural and optical characteristics of SiC NWs and SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by carbothermal reduction of silica (SiC NWs) and by thermo-chemical treatment of opal matrices (SiC/C) filled with carbon compounds which was followed by silicon dioxide dissolution. It was shown that the nucleation of SiC NWs occurs at the surface of carbon fibers felt. It was observed three preferred growth direction of the NWs: [111], [110] and [112]. HRTEM studies revealed the mechanism of the wires growth direction change. SiC/C- HRTEM revealed in the structure of the composites, except for silicon carbide, graphite and amorphous carbon, spherical carbon particles containing concentric graphite shells (onion-like particles).

  15. Silicon carbide composites as fusion power reactor structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L., E-mail: SneadLL@ORNL.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Nozawa, T. [Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Ferraris, M. [Politecnico di Torino-DISMIC c. Duca degli Abruzzi, 24I-10129 Torino (Italy); Katoh, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Shinavski, R. [Hypertherm HTC, 18411 Gothard St., Units A/B/C, Huntington Beach, CA 92648 (United States); Sawan, M. [University of Wisconsin, Madison 417 Engineering Research Building, 1500 Engineering Drive Madison, WI 53706-1687 (United States)

    2011-10-01

    Silicon carbide was first proposed as a low activation fusion reactor material in the mid 1970s. However, serious development of this material did not begin until the early 1990s, driven by the emergence of composite materials that provided enhanced toughness and an implied ability to use these typically brittle materials in engineering application. In the decades that followed, SiC composite system was successfully transformed from a poorly performing curiosity into a radiation stable material of sufficient maturity to be considered for near term nuclear and non-nuclear systems. In this paper the recent progress in the understanding and of basic phenomenon related to the use of SiC and SiC composite in fusion applications will be presented. This work includes both fundamental radiation effects in SiC and engineering issues such as joining and general materials properties. Additionally, this paper will briefly discuss the technological gaps remaining for the practical application of this material system in fusion power devices such as DEMO and beyond.

  16. Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses

    International Nuclear Information System (INIS)

    Gemini, Laura; Hashida, Masaki; Shimizu, Masahiro; Miyasaka, Yasuhiro; Inoue, Shunsuke; Tokita, Shigeki; Sakabe, Shuji; Limpouch, Jiri; Mocek, Tomas

    2013-01-01

    Periodic structures were generated on Si and SiC surfaces by irradiation with femtosecond laser pulses. Self-organized structures with spatial periodicity of approximately 600 nm appear on silicon and silicon carbide in the laser fluence range just above the ablation threshold and upon irradiation with a large number of pulses. As in the case of metals, the dependence of the spatial periodicity on laser fluence can be explained by the parametric decay of laser light into surface plasma waves. The results show that the proposed model might be universally applicable to any solid state material

  17. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation

    International Nuclear Information System (INIS)

    Dai Hong; Chen Yanling; Lin Yanyu; Xu Guifang; Yang Caiping; Tong Yuejin; Guo Longhua; Chen Guonan

    2012-01-01

    In this paper, we propose a facile approach for palladium nanoparticles load using silicon carbide nanoparticles as the new supported matrix and a familiar NaBH 4 as reducer. Detailed X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) analysis of the resultant products indicated that palladium nanoparticles are successfully immobilized onto the surface of the silicon carbide nanoparticles with uniform size distribution between 5 and 7 nm. The relative electrochemical characterization clearly demonstrated excellent electrocatalytic activity of this material toward alcohol in alkaline electrolytes. Investigation on the characteristics of the electrocatalytic activity of this material further indicated that the palladium nanoparticles supporting on SiC are very promising for direct alcohol fuel cells (DMFCs), biosensor and electronic devices. Moreover, it was proved that silicon carbide nanoparticles with outstanding properties as support for catalysis are of strong practical interest. And the silicon carbide could perform attractive role in adsorbents, electrodes, biomedical applications, etc.

  18. Nanoparticles and nanorods of silicon carbide from the residues of corn

    Science.gov (United States)

    Qadri, S. B.; Gorzkowski, E.; Rath, B. B.; Feng, J.; Qadri, S. N.; Kim, H.; Caldwell, J. D.; Imam, M. A.

    2015-01-01

    We have investigated the thermally induced transformation of various residues of the corn plant into nanoparticles and nanorods of different silicon carbide (SiC) polytypes. This has been accomplished by both microwave-induced and conventional furnace pyrolysis in excess of 1450 °C in an inert atmosphere. This simple process of producing nanoparticles of different polytypes of SiC from the corn plant opens a new method of utilizing agricultural waste to produce viable industrial products that are technologically important for nanoelectronics, molecular sensors, nanophotonics, biotechnology, and other mechanical applications. Using x-ray and Raman scattering characterization, we have demonstrated that the processed samples of corn husk, leaves, stalks, and cob consist of SiC nanostructures of the 2H, 3C, 4H, and 6H polytypes.

  19. Creating and Controlling Single Spins in Silicon Carbide

    Science.gov (United States)

    Christle, David

    Silicon carbide (SiC) is a well-established commercial semiconductor used in high-power electronics, optoelectronics, and nanomechanical devices, and has recently shown promise for semiconductor-based implementations of quantum information technologies. In particular, a set of divacancy-related point defects have improved coherence properties relative to the prominent nitrogen-vacancy center in diamond, are addressable at near-telecom wavelengths, and reside in a material for which there already exist advanced growth, doping, and microfabrication capabilities. These properties suggest divacancies in SiC have compelling advantages for photonics and micromechanical applications, yet their relatively recent discovery means crucial aspects of their fundamental physics for these applications are not well understood. I will review our progress on manipulating spin defects in SiC, and discuss efforts towards isolating and controlling them at the single defect limit. In particular, our most recent experimental results demonstrate isolation and control of long-lived (T2 = 0 . 9 ms) divacancies in a form of SiC that can be grown epitaxially on silicon. By studying the time-resolved photoluminescence of a single divacancy, we reveal its fundamental orbital structure and characterize in detail the dynamics of its special optical cycle. Finally, we probe individual divacancies using resonant laser techniques and reveal an efficient spin-photon interface with figures of merit comparable to those reported for NV centers in diamond. These results suggest a pathway towards photon-mediated entanglement of SiC defect spins over long distances. This work was supported by NSF, AFOSR, the Argonne CNM, the Knut & Alice Wallenberg Foundation, the Linköping Linnaeus Initiative, the Swedish Government Strategic Research Area, and the Ministry of Education, Science, Sports and Culture of Japan.

  20. Fine defective structure of silicon carbide powders obtained from different starting materials

    Directory of Open Access Journals (Sweden)

    Tomila T.V.

    2006-01-01

    Full Text Available The fine defective structure of silicon carbide powders obtained from silicic acid-saccharose, aerosil-saccharose, aerosil-carbon black, and hydrated cellulose-silicic acid gel systems was investigated. The relation between IR absorption characteristics and the microstructure of SiC particles obtained from different starting materials was established. The numerical relationship between the lattice parameter a and the frequency νTO is presented.

  1. Nanotubes, nanobelts, nanowires, and nanorods of silicon carbide from the wheat husks

    Energy Technology Data Exchange (ETDEWEB)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Feng, J.; Qadri, S. N.; Caldwell, J. D. [Materials Science and Component Technology Directorate, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-09-14

    Nanotubes, nanowires, nanobelts, and nanorods of SiC were synthesized from the thermal treatment of wheat husks at temperatures in excess of 1450 °C. From the analysis based on x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, it has been found that the processed samples of wheat husk consisted of 2H and 3C polytypes of SiC exhibiting the nanostructure shapes. These nanostructures of silicon carbide formed from wheat husks are of technological importance for designing advance composites, applications in biotechnology, and electro-optics. The thermodynamics of the formation of SiC is discussed in terms of the rapid solid state reaction between hydrocarbons and silica on the molecular scale, which is inherently present in the wheat husks.

  2. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  3. Covalently Attached Organic Monolayers onto Silicon Carbide from 1-Alkynes: Molecular Structure and Tribological Properties

    NARCIS (Netherlands)

    Pujari, S.P.; Scheres, L.M.W.; Weidner, T.; Baio, J.E.; Cohen Stuart, M.A.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    In order to achieve improved tribological and wear properties at semiconductor interfaces, we have investigated the thermal grafting of both alkylated and fluorine-containing ((CxF2x+1)–(CH2)n-) 1-alkynes and 1-alkenes onto silicon carbide (SiC). The resulting monolayers display static water contact

  4. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting.

    Science.gov (United States)

    Goel, Saurav; Luo, Xichun; Reuben, Robert L; Rashid, Waleed Bin

    2011-11-11

    Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.

  5. Tuning the thermal conductivity of silicon carbide by twin boundary: a molecular dynamics study

    International Nuclear Information System (INIS)

    Liu, Qunfeng; Wang, Liang; Shen, Shengping; Luo, Hao

    2017-01-01

    Silicon carbide (SiC) is a semiconductor with excellent mechanical and physical properties. We study the thermal transport in SiC by using non-equilibrium molecular dynamics simulations. The work is focused on the effects of twin boundaries and temperature on the thermal conductivity of 3C-SiC. We find that compared to perfect SiC, twinned SiC has a markedly reduced thermal conductivity when the twin boundary spacing is less than 100 nm. The Si–Si twin boundary is more effective to phonon scattering than the C–C twin boundary. We also find that the phonon scattering effect of twin boundary decreases with increasing temperature. Our findings provide insights into the thermal management of SiC-based electronic devices and thermoelectric applications. (paper)

  6. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  7. Interaction of noble-metal fission products with pyrolytic silicon carbide

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1982-01-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain layers of pyrolytic carbon and silicon carbide, which act as a miniature pressure vessel and form the primary fission product barrier. Of the many fission products formed during irradiation, the noble metals are of particular interest because they interact significantly with the SiC layer and their concentrations are somewhat higher in the low-enriched uranium fuels currently under consideration. To study fission product-SiC interactions, particles of UO 2 or UC 2 are doped with fission product elements before coating and are then held in a thermal gradient up to several thousand hours. Examination of the SiC coatings by TEM-AEM after annealing shows that silver behaves differently from the palladium group

  8. SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ruby N. Ghosh; Peter Tobias; Roger G. Tobin

    2004-04-01

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen containing species in chemically reactive, high temperature environments. Robust metallization and electrical contacting techniques have been developed for device operation at elevated temperatures. To characterize the time response of the sensor responses in the millisecond range, a conceptually new apparatus has been built. Software has been developed to cope with the requirements of fast sensor control and data recording. In addition user friendly software has been developed to facilitate use of the SiC sensors for industrial process control applications.

  9. Estimate of toxically influence of silicon carbide nanoparticles according histopatologycal changes

    Directory of Open Access Journals (Sweden)

    Grozdanov Anita

    2013-07-01

    Full Text Available Taking in consideration a very wide application of nanoparticules in different industrial sectors due to their remarkable properties for implementation in different products, very important part for future development of nanotechology is following a histopatologycal changes provoke of this material.Silicon carbide (SiC as ceramic material with high thermal conductivity, high stability, good wear resistance and small thermal expansion coefficient is very applied in ceramic’s industry, power electronics, biomaterials, pharmaceutics etc. Histopathological changes of SiC particles were investigate on 4 weeks old female Wistar rats divided into four groups (two control and two experimental groups, sacrificed 2, 7 and 14 days after treatment. Histopathological diagnosis was performed on heart, liver, spleen, kidneys, lung, brain, gastrointestinal tract, using standard Hematoxilin-eosin staining methods. The main toxicological influences of SiC were observed on liver, lungs and gastrointestinal tract.

  10. The effect of carbon mole ratio on the fabrication of silicon carbide

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available Silicon Carbide (SiC particles were synthesized by self-propagating high temperature synthesis (SHS from a powder mixture of SiO2-C-Mg. The reaction was carried out in a SHS reactor under static argon gas at a pressure of 0.5 MPa. The standard Gibbs energy minimization method was used to calculate the equilibrium composition of the reacting species. The effects of carbon mole ratio on the precursor mixture (C/SiO2/Mg: 1/1/2 to 3/1/2 and on the SiC conversion were investigated using X-ray diffraction and scanning electron microscope technique. The as-synthesized products of SiC-MgO powders were leached with 0.1M HCl acid solution to obtain the SiC particles.

  11. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    Science.gov (United States)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  12. CLASSiC: Cherenkov light detection with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Oscar [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Albergo, Sebastiano [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Alessandro, Raffaello [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Lenzi, Piergiulio [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Sciuto, Antonella [CNR-IMM, VIII Strada 5, Zona Industriale, Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); Starodubtsev, Oleksandr [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Tricomi, Alessia [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy)

    2017-02-11

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  13. Fabrication and Mechanical Properties of Silicon Carbide Micropillars

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun; Kim, Don Jin

    2011-01-01

    Silicon carbide (SiC) has outstanding thermal and mechanical properties under high temperature and high neutron irradiation. SiC and SiC/SiC composites have been proposed as a promising candidate material for structural components in fusion reactors. Characterization of the mechanical properties such as fracture strength is important in ensuring the reliability of these ceramic structures. This study demonstrates a micro-compression test of SiC micropillars which are fabricated by mask and dryetching technique. Our fabrication method involves lithographic pattering of spun and baked photoresist on chemically vapor-deposited (CVD) polycrystalline beta-SiC substrates, followed by lift-off process of electroplated metal into the prescribed photoresist template. This metal works as an etch cap for inductively coupled plasma (ICP) etching. Our fabrication method enables the production of more than a few hundred micropillars under an identical fabrication condition, which is a great benefit for the statistical analysis of the fracture properties of brittle ceramic materials. The diameters of fabricated SiC micropillars range from 6 down to 0.5 μm. The ratio of micropillar diameter to height is set to 1:3 ∼ 1:4. Uniaxial compression tests have been conducted using flat punch nanoindentation at room temperature. We observed the specimen size effect on the measured fracture stress of SiC micropillars. In this paper we present the results of the micro-compression tests of SiC micropillars with the diameters of 0.8 and 2.6 μm

  14. Processes and applications of silicon carbide nanocomposite fibers

    International Nuclear Information System (INIS)

    Shin, D G; Cho, K Y; Riu, D H; Jin, E J

    2011-01-01

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al 2 O 3 . Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200deg. C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  15. Processes and applications of silicon carbide nanocomposite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D G; Cho, K Y; Riu, D H [Nanomaterials Team, Korea Institute of Ceramic Engineering and Technology, 233-5 Gasan-dong, Guemcheon-gu, Seoul 153-801 (Korea, Republic of); Jin, E J, E-mail: dhriu15@seoultech.ac.kr [Battelle-Korea Laborotary, Korea University, Anamdong, Seongbuk-gu, Seoul (Korea, Republic of)

    2011-10-29

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and {gamma}-Al{sub 2}O{sub 3}. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200deg. C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  16. Processes and applications of silicon carbide nanocomposite fibers

    Science.gov (United States)

    Shin, D. G.; Cho, K. Y.; Jin, E. J.; Riu, D. H.

    2011-10-01

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al2O3. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200°C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  17. Theoretical studies of the lithium atom on the silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Yu, Guolong; Chen, Na; Wang, Feifei; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2014-01-01

    Based on density functional theory method, we have investigated structural, electronic, and magnetic properties of lithium (Li) atom adsorbed on silicon carbide (SiC) zigzag (9,0) and armchair (5,5) nanotubes. Effective adsorptions are found on both inner- and outer-side of the SiC nanotubes, with adsorption energies ranging from 1.03 to 1.71 eV. Interestingly, we have found that SiC nanotubes exhibit different behaviors with several Li adsorption sites. Li adsorptions on the s-Si and s-H sites of the outer surface and all the five sites of the inner surface in zigzag (9,0) nanotube emerge metallic features, whereas adsorptions on other sides of (9,0) and all sites of armchair (5,5) SiC nanotubes show semiconducting characters. The calculating results also indicate that lithium adsorptions on most sites of SiC nanotubes yield spontaneous magnetization, where net magnetic moment is 1 μ B . Additionally, spin density of states, spin density distribution, and charge density difference are also calculated to investigate the electronic and magnetic properties of SiC nanotubes induced by Li adsorption

  18. Synthesis and characterisation of star polymer/silicon carbide nanocomposites

    International Nuclear Information System (INIS)

    Majewski, Peter; Choudhury, Namita Roy; Spori, Doris; Wohlfahrt, Ellen; Wohlschloegel, Markus

    2006-01-01

    A new type of composite material's preparation and property are reported in this paper. The composite was formed by solution blending a styrene ethylene butylenes (SEBS) star polymer with silicon carbide at various compositions. The composites were characterised using spectroscopic, microscopic and thermal techniques. Photo-acoustic Fourier transform infrared spectroscopy (PA-FT-IR) and transmission electron microscopy (TEM) results show that the SiC resides uniformly in the organic network. Thermogravimetric analysis (TGA) of the hybrid shows that the thermal stability of the composite is higher than that of the star polymer. The maximum decomposition temperature increases by 73 deg. C. Dynamic mechanical analysis (DMA) of the hybrid shows that the storage modulus of the star polymer increases after the composite formation, indicating the existence of thermodynamically stable SiC nanoparticles mostly in the micro-phase separated multiarm structure of the polymer

  19. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  20. Optical spectroscopy of vacancy related defects in silicon carbide generated by proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, C.; Sperlich, A.; Simin, D.; Astakhov, G.V. [Experimental Physics VI, Julius Maximilian University of Wuerzburg (Germany); Kraus, H. [Japan Atomic EnergyAgency, Takasaki, Gunma (Japan); Experimental Physics VI, Julius Maximilian University of Wuerzburg (Germany); Makino, T.; Sato, S.I.; Ohshima, T. [Japan Atomic EnergyAgency, Takasaki, Gunma (Japan); Dyakonov, V. [Experimental Physics VI, Julius Maximilian University of Wuerzburg (Germany); ZAE Bayern, Wuerzburg (Germany)

    2016-07-01

    Defects in silicon carbide (SiC) received growing attention in recent years, because they are promising candidates for spin based quantum information processing. In this study we examine silicon vacancies in 4H-SiC crystals generated by proton irradiation. By the use of confocal microscopy the implantation depth of Si vacancies for varying proton energies can be verified. An important issue is to ascertain the nature and distribution of the defects. For this purpose, we use the characteristic photoluminescence spectrum of Si vacancies, whose intensity is proportional to the defect density. Using xyz-scans, where the photoluminescence at each mapping point is recorded, one can thus determine the vacancies nature and their distribution in the SiC crystal. Additionally we verify the nature of the examined defects by measuring their uniquely defined zero-field-splitting by using ODMR associated with defect spins.

  1. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Directory of Open Access Journals (Sweden)

    Wanshun Zhao

    2013-04-01

    Full Text Available We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD. The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM. Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films.

  2. Synthesis of silicon carbide by carbothermal reduction of silica

    International Nuclear Information System (INIS)

    Abel, Joao Luis

    2009-01-01

    The production of silicon carbide (SiC) in an industrial scale still by carbothermal reduction of silica. This study aims to identify, in a comparative way, among the common reducers like petroleum coke, carbon black, charcoal and graphite the carbothermal reduction of silica from the peat. It is shown, that the peat, also occurs in nature together with high purity silica sand deposits, where the proximity of raw materials and their quality are key elements that determine the type, purity and cost of production of SiC. Tests were running from samples produced in the electric resistance furnace with controlled atmosphere at temperatures of 1550 degree C, 1600 degree C and 1650 degree C, both the precursors and products of reaction of carbothermal reduction were characterized by applying techniques of X-ray diffraction, scanning electron microscopy (SEM) and Energy-Dispersive X-ray analysis Spectroscopy (EDS). The results showed the formation of SiC for all common reducers, as well as for peat, but it was not possible to realize clearly the difference between them, being necessary, specific tests. (author)

  3. Generation of damage cross section for silicon carbide

    International Nuclear Information System (INIS)

    Chang, Jonghwa; Lee, Wonjae

    2013-01-01

    There is practically no cross section library for current reactor physics codes which will be used for DPA calculation. Silicon carbide(SiC) is an important material used in gas-cooled reactor, advanced nuclear fuel, and fusion applications. There are more than 200 polytypes of SiC. However β-SiC, which is produced under 1700 .deg. C, is the polytype interesting for a nuclear application. This work has been carried out under the Korea-US I-NERI program supported by Korea Ministry of Education Science and Technology and US Department of Energy. Authors express gratitude to C. S. Gil of KAERI nuclear data center for NJOY processing

  4. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Tuttle, Blair R. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2015-06-15

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO{sub 2}/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  5. Joining of silicon carbide using interlayer with matching coefficient of thermal expansion

    International Nuclear Information System (INIS)

    Perham, T.

    1996-11-01

    The primary objective of this study is to develop a technique for joining a commercially available Silicon Carbide that gives good room temperature strength and the potential for good high temperature strength. One secondary objective is that the joining technique be adaptable to SiC f /SiC composites and/or Nickel based superalloys, and another secondary objective is that the materials provide good neutron irradiation resistance and low activation for potential application inside nuclear fusion reactors. The joining techniques studied here are: (1) reaction bonding with Al-Si/Si/SiC/C; (2) reaction/infiltration with calcium aluminum silicate; (3) ion exchange mechanism to form calcium hexaluminate (a refractory cement); and (4) oxide frit brazing with cordierite

  6. Silicon carbide hollow fiber membranes: obtainment and characterization; Membranas de fibra oca de carbeto de silicio: obtencao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.S.L.; Ferreira, R.S.B.; Araujo, B.A.; Medeiros, K.M.; Lucena, H.L.; Araujo, E.M., E-mail: sandriely_sonaly@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    Silicon carbide is a promising material for the production of membranes due to its high melting temperature, thermal shock resistance, excellent mechanical and chemical stability. So, this study aims to characterize silicon carbide membranes in order to apply them in the separation of oil-water. A solution (SiC + PES + 1-Methyl- 2-Pyrrolidone) and through the extrusion technique by immersion precipitation membranes were obtained with hollow fiber geometry was prepared. And then sintered at 1500 ° C. For the characterization analyzes were made XRD, FTIR and SEM to evaluate the morphology and composition of the membranes obtained before and after sintering. (author)

  7. Multi-quantum spin resonances of intrinsic defects in silicon carbide

    International Nuclear Information System (INIS)

    Georgy Astakhov

    2014-01-01

    We report the observation of multi-quantum microwave absorption and emission, induced by the optical excitation of silicon vacancy related defects in silicon carbide (SiC). In particular, we observed two-quantum transitions from +3/2 to -1/2 and from -3/2 to +1/2 spin sublevels, unambiguously indicating the spin S = 3/2 ground state. Our findings may have implications for a broad range of quantum applications. On one hand, a single silicon vacancy defect is a potential source of indistinguishable microwave photon pairs due to the two-quantum emission process. On the other hand, the two-quantum absorption can be used generate a population inversion, which is a prerequisite to fabricate solid-state maser and quantum microwave amplifier. This opens a new platform cavity quantum electrodynamics experiments and quantum information processing on a single chip. (author)

  8. Influence of Hot Implantation on Residual Radiation Damage in Silicon Carbide

    International Nuclear Information System (INIS)

    Rawski, M.; Zuk, J.; Kulik, M.; Drozdziel, A.; Pyszniak, K.; Turek, M.; Lin, L.; Prucnal, S.

    2011-01-01

    Remarkable thermomechanical and electrical properties of silicon carbide (SiC) make this material very attractive for high-temperature, high-power, and high-frequency applications. Because of very low values of diffusion coefficient of most impurities in SiC, ion implantation is the best method to selectively introduce dopants over well-defined depths in SiC. Aluminium is commonly used for creating p-type regions in SiC. However, post-implantation radiation damage, which strongly deteriorates required electric properties of the implanted layers, is difficult to anneal even at high temperatures because of remaining residual damage. Therefore implantation at elevated target temperatures (hot implantation) is nowadays an accepted method to decrease the level of the residual radiation damage by avoiding ion beam-induced amorphization. The main objective of this study is to compare the results of the Rutherford backscattering spectroscopy with channeling and micro-Raman spectroscopy investigations of room temperature and 500 o C Al + ion implantation-induced damage in 6H-SiC and its removal by high temperature (up to 1600 o C) thermal annealing. (author)

  9. Phosphorus-doped Amorphous Silicon Nitride Films Applied to Crystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Feinäugle, Matthias

    2008-01-01

    The Photovoltaics Group at the Universitat Politècnica de Catalunya is investigating silicon carbide (SiC) for the electronic passivation of the surface of crystalline silicon solar cells. The doping of SiC passivation layers with phosphorus resulted in a clear improvement of the minority carrier

  10. Effect of Liquid Phase Content on Thermal Conductivity of Hot-Pressed Silicon Carbide Ceramics

    International Nuclear Information System (INIS)

    Lim, Kwang-Young; Jang, Hun; Lee, Seung-Jae; Kim, Young-Wook

    2015-01-01

    Silicon carbide (SiC) is a promising material for Particle-Based Accident Tolerant (PBAT) fuel, fission, and fusion power applications due to its superior physical and thermal properties such as low specific mass, low neutron cross section, excellent radiation stability, low coefficient of thermal expansion, and high thermal conductivity. Thermal conductivity of PBAT fuel is one of very important factors for plant safety and energy efficiency of nuclear reactors. In the present work, the effect of Y 2 O 3 -Sc 2 O 3 content on the microstructure and thermal properties of the hot pressed SiC ceramics have been investigated. Suppressing the β to α phase transformation of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. Developed SiC ceramics with Y 2 O 3 -Sc 2 O 3 additives are very useful for thermal conductivity on matrix material of the PBAT fuel

  11. UV laser ablation of silicon carbide ring surfaces for mechanical seal applications

    Science.gov (United States)

    Daurelio, Giuseppe; Bellosi, Alida; Sciti, Diletta; Chita, Giuseppe; Allegretti, Didio; Guerrini, Fausto

    2000-02-01

    Silicon carbide ceramic seal rings are treated by KrF excimer laser irradiation. Surface characteristics, induced by laser treatment, depend upon laser fluence, the number of laser pulses, their energy and frequency, the rotation rate of the ring and the processing atmosphere. It was ascertained that silicon carbide has to be processed under an inert atmosphere to avoid surface oxidation. Microstructural analyses of surface and cross section of the laser processed samples showed that the SiC surface is covered by a scale due to the melting/resolidification processes. At high fluence there are no continuous scales on the surfaces; materials is removed by decomposition/vaporization and the ablation depth is linearly dependent on the number of pulses. Different surface morphologies are observed. The evolution of surface morphology and roughness is discussed with reference to compositions, microstructure and physical and optical properties of the ceramic material and to laser processing parameters. Preliminary results on tribological behavior of the treated seals are reported.

  12. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  13. X-ray absorption study of silicon carbide thin film deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Monaco, G.; Suman, M.; Garoli, D.; Pelizzo, M.G.; Nicolosi, P.

    2011-01-01

    Silicon carbide (SiC) is an important material for several applications ranging from electronics to Extreme UltraViolet (EUV) space optics. Crystalline cubic SiC (3C-SiC) has a wide band gap (near 2.4 eV) and it is a promising material to be used in high frequency and high energetic electronic devices. We have deposited, by means of pulsed laser deposition (PLD), different SiC films on sapphire and silicon substrates both at mild (650 o C) and at room temperature. The resulted films have different structures such as: highly oriented polycrystalline, polycrystalline and amorphous which have been studied by means of X-ray absorption spectroscopy (XAS) near the Si L 2,3 edge and the C K edge using PES (photoemission spectroscopy) for the analysis of the valence bands structure and film composition. The samples obtained by PLD have shown different spectra among the grown films, some of them showing typical 3C-SiC absorption structure, but also the presence of some Si-Si and graphitic bonds.

  14. Melting of SiC powders preplaced duplex stainless steel using TIG welding

    Science.gov (United States)

    Maleque, M. A.; Afiq, M.

    2018-01-01

    TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

  15. Microstructure and Mechanical Behaviour of Stir-Cast Al-Mg-Sl Alloy Matrix Hybrid Composite Reinforced with Corn Cob Ash and Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Oluwagbenga Babajide Fatile

    2014-10-01

    Full Text Available In this present study, the microstructural and mechanical behaviour of Al-Mg-Si alloy matrix composites reinforced with silicon carbide (SiC and Corn cob ash (An agro‑waste was investigated. This research work was aimed at assessing the suitability of developing low cost- high performance Al-Mg-Si hybrid composite. Silicon carbide (SiC particulates added with 0,1,2,3 and 4 wt% Corn cob ash (CCA were utilized to prepare 10 wt% of the reinforcing phase with Al-Mg-Si alloy as matrix using two-step stir casting method. Microstructural characterization, density measurement, estimated percent porosity, tensile testing, and micro‑hardness measurement were used to characterize the composites produced. From the results obtained, CCA has great potential to serve as a complementing reinforcement for the development of low cost‑high performance aluminum hybrid composites.

  16. Fluorescent Silicon Carbide and its Applications in White Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Ou, Yiyu

    light extraction efficiency are presented. White LEDs are the most promising techniques to replace the conventional lighting sources. A typical white LED consists of a Gallium Nitride (GaN) blue or Ultraviolet (UV) LED stack and a wavelengthconversion material. Silicon Carbide (SiC) has a wide optical...... rendering performance and a much longer material lifetime compared with the commonly used wavelength-conversion material like Phosphors. In this thesis, f-SiC with different doping concentrations are analyzed and optimized in order to enhance the quantum efficiency. On the other hand, semiconductor...

  17. DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications

    International Nuclear Information System (INIS)

    Katoh, Y.; Kondo, S.; Snead, L.L.

    2009-01-01

    High purity chemically vapor-deposited silicon carbide (SiC) and 2D continuous SiC fiber, chemically vapor-infiltrated SiC matrix composites with pyrocarbon interphases were examined. Specifically, temperature dependent (RT to 800 deg. C) electrical conductivity and the influence of neutron irradiation were measured. The influence of neutron irradiation on electrical properties appeared very strong for the SiC of this study, typically resulting in orders lower ambient conductivity and steeper temperature dependency of this conductivity. For the 2D composites, through-thickness (normal to the fiber axis') electrical conductivity was dominated by bypass conduction via interphase network at relatively low temperatures, whereas conduction through SiC constituents dominated at higher temperatures. Through-thickness electrical conductivity of neutron-irradiated 2D SiC composites with thin PyC interphase, currently envisioned for flow channel insert application, will likely in the order of 10 S/m at the appropriate operating temperature. Mechanisms of electrical conduction in the composites and irradiation-induced modification of electrical conductivity of the composites and their constituents are discussed.

  18. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    Science.gov (United States)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  19. Optical characterisation of cubic silicon carbide

    International Nuclear Information System (INIS)

    Jackson, S.M.

    1998-09-01

    The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO 2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO 2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO 2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)

  20. Interlaminar shear strength of SiC matrix composites reinforced by continuous fibers at 900 °C in air

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Gou, Jianjie; Qiao, Shengru; Wang, Xuanwei; Zhang, Jun

    2014-01-01

    Highlights: • The application of SiC fiber could improve ILSS of the SiC matrix composites. • The orientation of the warp fibers plays a critical role in determining ILSS of 2.5D-C/SiC. • The failure mechanisms of 2D composites involve matrix cracking, and interfacial debonding. - Abstract: To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers

  1. Evaluation of CVD silicon carbide for synchrotron radiation mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1981-07-01

    Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods

  2. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide

    Science.gov (United States)

    Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2018-03-01

    Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.

  3. Comparative Evaluations and Microstructure: Mechanical Property Relations of Sintered Silicon Carbide Consolidated by Various Techniques

    Science.gov (United States)

    Barick, Prasenjit; Chatterjee, Arya; Majumdar, Bhaskar; Saha, Bhaskar Prasad; Mitra, Rahul

    2018-04-01

    A comparative evaluation between pressureless or self-sintered silicon carbide (SSiC), hot-pressed silicon carbide (HP-SiC), and spark plasma-sintered silicon carbide (SPS-SiC) has been carried out with emphasis on examination of their microstructures and mechanical properties. The effect of sample dimensions on density and properties of SPS-SiC has been also examined. Elastic modulus, flexural strength, and fracture toughness measured by indentation or testing of single-edge notched beam specimens have been found to follow the following trend, HP-SiC > SSiC > SPS-SiC. The SPS-SiC samples have shown size-dependent densification and mechanical properties, with the smaller sample exhibiting superior properties. The mechanical properties of sintered SiC samples appear to be influenced by relative density, grain size, and morphology, as well as the existence of intergranular glassy phase. Studies of fracture surface morphologies have revealed the mechanism of failure to be transgranular in SSiC or HP-SiC, and intergranular in case of SPS-SiC, indicating the dominating influence of grain size and α-SiC formation with high aspect ratio.

  4. Locking of electron spin coherence above 20 ms in natural silicon carbide

    Science.gov (United States)

    Simin, D.; Kraus, H.; Sperlich, A.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2017-04-01

    We demonstrate that silicon carbide (SiC) with a natural isotope abundance can preserve a coherent spin superposition in silicon vacancies over an unexpectedly long time exceeding 20 ms. The spin-locked subspace with a drastically reduced decoherence rate is attained through the suppression of heteronuclear spin crosstalking by applying a moderate magnetic field in combination with dynamic decoupling from the nuclear spin baths. Furthermore, we identify several phonon-assisted mechanisms of spin-lattice relaxation and find that it can be extremely long at cryogenic temperatures, equal to or even longer than 10 s. Our approach may be extended to other polyatomic compounds and opens a path towards improved qubit memory for wafer-scale quantum technologies.

  5. High-temperature effect of hydrogen on sintered alpha-silicon carbide

    Science.gov (United States)

    Hallum, G. W.; Herbell, T. P.

    1986-01-01

    Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.

  6. Electromagnetic local density of states in graphene-covered porous silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting [Department of Physics, Nanchang University, Nanchang 330031 (China); Wang, Tong-Biao, E-mail: tbwang@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Liao, Qing-Hua; Liu, Jiang-Tao; Yu, Tian-Bao [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Nian-Hua [Institute for Advanced Study, Nanchang University, Nanchang 330031 (China)

    2017-06-21

    Surface phonon polariton supported by silicon carbide (SiC) can be strongly coupled with graphene plasmon in the graphene-covered SiC bulk. The spectrum of the electromagnetic local density of states exhibits two peaks whose positions can be tuned by the chemical potential of graphene. In this work, we study the electromagnetic local density of states in the proximity of a graphene-covered SiC with periodic hole arrays. The well-known peak from the coupling of surface polariton supported by SiC and graphene plasmon splits into two. With increased volume ratio of holes, one of the split peak shifts towards high frequencies, whereas the other moves towards low frequencies. The dependence of split-peak positions on the chemical potential and permittivity of filling materials in the holes are also investigated. This study offers another method of modulating the electromagnetic local density of states. - Highlights: • The electromagnetic local density of states in the proximity of graphene-covered anisotropic SiC is firstly studied. • The peak from resonance of surface phonon polaritons in the EM-LDOS spectrum can be split into two. • The split peaks can be tuned by chemical potential, filling factor, and filling materials. • Our results provide a new method to modulate the EM-LDOS.

  7. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Wilson, Dane F [ORNL; Forsberg, Charles W [ORNL

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

  8. The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Ruddy, Frank H.; Seidel, John G.

    2007-01-01

    Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 deg. C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137 Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress

  9. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    Science.gov (United States)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  10. Preparation of silicon carbide nanowires via a rapid heating process

    International Nuclear Information System (INIS)

    Li Xintong; Chen Xiaohong; Song Huaihe

    2011-01-01

    Silicon carbide (SiC) nanowires were fabricated in a large quantity by a rapid heating carbothermal reduction of a novel resorcinol-formaldehyde (RF)/SiO 2 hybrid aerogel in this study. SiC nanowires were grown at 1500 deg. C for 2 h in an argon atmosphere without any catalyst via vapor-solid (V-S) process. The β-SiC nanowires were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) equipped with energy dispersive X-ray (EDX) facility, Fourier transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The analysis results show that the aspect ratio of the SiC nanowires via the rapid heating process is much larger than that of the sample produced via gradual heating process. The SiC nanowires are single crystalline β-SiC phase with diameters of about 20-80 nm and lengths of about several tens of micrometers, growing along the [1 1 1] direction with a fringe spacing of 0.25 nm. The role of the interpenetrating network of RF/SiO 2 hybrid aerogel in the carbothermal reduction was discussed and the possible growth mechanism of the nanowires is analyzed.

  11. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    2014-01-01

    Donor-acceptor co-doped SiC is a promising light converter for novel monolithic all-semiconductor white LEDs due to its broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides sufficiently high doping concentrations in an appropriate ratio yielding...... short radiative lifetimes, long nonradiative lifetimes are crucial for efficient light conversion. The impact of different types of defects is studied by characterizing fluorescent silicon carbide layers with regard to photoluminescence intensity, homogeneity and efficiency taking into account...

  12. Silicon carbide whiskers with superlattice structure: A precursor for a new type of nanoreactor

    International Nuclear Information System (INIS)

    Lutsenko, Vadym G.

    2008-01-01

    Silicon carbide whiskers exhibit growth predominantly in the direction. The high level of impurities, stacking faults and nanosized twins govern the formation of homojunctions and heterojunctions in crystals. The structure of the whiskers comprises a hybrid superlattice, i.e. contains elements of doped and composite superlattices. An individual SiC whisker can contain hundreds of quantum wells with anomalous chemical properties. This paper shows that it is possible to selectively etch quantum wells and to construct whiskers with quasi-regularly distributed slit-like nanopores (nanoreactors), which are bordered by polar planes {1 1 1}, {0 0 0 1} or a combination of them, and also to produce flat SiC nanocrystals bordered by polar planes

  13. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  14. Development and Characterization of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) Reinforced Al-based Nanocomposites

    Science.gov (United States)

    Gujba, Kachalla Abdullahi

    Composites are engineered materials developed from constituent materials; matrix and reinforcements, to attain synergistic behavior at the micro and macroscopic level which are different from the individual materials. The high specific strength, low weight, excellent chemical resistance and fatigue endurance makes these composites superior than other materials despite anisotropic behaviors. Metal matrix composites (MMCs) have excellent physical and mechanical properties and alumium (Al) alloy composites have gained considerable interest and are used in multiple industries including: aerospace, structural and automotive. The aim of this research work is to develop an advanced Al-based nanocomposites reinforced with Carbon nanotubes (CNTs) and silicon carbide particulates (SiCp) nanophases using mechanical alloying and advanced consolidation procedure (Non-conventional) i.e. Spark Plasma Sintering (SPS) using two types of aluminum alloys (Al-7Si-0.3mg and Al-12Si-0.3Mg). Different concentrations of SiCp and CNTs were added and ball milled for different milling periods under controlled atmosphere to study the effect of milling time and the distribution of the second phases. Characterization techniques were used to investigate the morphology of the as received monolithic and milled powder using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-Ray Mapping, X-Ray Diffraction (XRD) and Particle Size Analyses (PSA). The results revealed that the addition of high concentrations of SiCp and CNTs in both alloys aided in refining the structure of the resulting powder further as the reinforcement particles acted like a grinding agent. Good distribution of reinforcing particles was observed from SEM and no compositional fluctuations were observed from the EDS. Some degree of agglomerations was observed despite the ethyl alcohol sonication effect of the CNTs before ball milling. From the XRD; continuous reduction in crystallite size and

  15. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  16. Technical and cost advantages of silicon carbide telescopes for small-satellite imaging applications

    Science.gov (United States)

    Kasunic, Keith J.; Aikens, Dave; Szwabowski, Dean; Ragan, Chip; Tinker, Flemming

    2017-09-01

    Small satellites ("SmallSats") are a growing segment of the Earth imaging and remote sensing market. Designed to be relatively low cost and with performance tailored to specific end-use applications, they are driving changes in optical telescope assembly (OTA) requirements. OTAs implemented in silicon carbide (SiC) provide performance advantages for space applications but have been predominately limited to large programs. A new generation of lightweight and thermally-stable designs is becoming commercially available, expanding the application of SiC to small satellites. This paper reviews the cost and technical advantages of an OTA designed using SiC for small satellite platforms. Taking into account faceplate fabrication quilting and surface distortion after gravity release, an optimized open-back SiC design with a lightweighting of 70% for a 125-mm SmallSat-class primary mirror has an estimated mass area density of 2.8 kg/m2 and an aspect ratio of 40:1. In addition, the thermally-induced surface error of such optimized designs is estimated at λ/150 RMS per watt of absorbed power. Cost advantages of SiC include reductions in launch mass, thermal-management infrastructure, and manufacturing time based on allowable assembly tolerances.

  17. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2014-12-01

    Full Text Available Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation.

  18. Thermo-Mechanical Properties of Unsaturated Polyester Reinforced with SiliconCarbide Powder And with Chopped Glass Fiber

    Directory of Open Access Journals (Sweden)

    Bushra Hosnie Musa

    2018-02-01

    Full Text Available The work studied the effectoffine silicon carbide (SiC powder with (0,3,5,7wt % on the thermal conductivity and mechanical properties of unsaturated polyester composite in the presence of a fixed amount of chopped glass fiber. The hand lay-up technique was employed to preparethe required samples. Results showed that tensile, impact strength and thermal conductivity increased with increasing the weight fraction of reinforced materials.

  19. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  20. Research Progress on Preparation for Biomass-based SiC Ceramic

    Directory of Open Access Journals (Sweden)

    CUI He-shuai

    2017-08-01

    Full Text Available Silicon carbide (SiC ceramics prepared by the conventional process has excellent properties and wide application prospects, but the increased cost of high-temperature preparation process restricts its further development. In contrast, the abundant porous structure of biomass makes itself to be ideal replacement of SiC ceramic prepared at low temperature. This paper reviewed the structure characteristics, preparation methods, pyrolysis mechanism and influence parameters of biomass-based SiC ceramic, and eventually explored the current problems and development trends of the pretreatment of carbon source and silicon source, the pyrolysis process and the application research on the preparation for biomass-based SiC ceramic.

  1. Gelcasting of SiC/Si for preparation of silicon nitride bonded silicon carbide

    International Nuclear Information System (INIS)

    Xie, Z.P.; Tsinghua University, Beijing,; Cheng, Y.B.; Lu, J.W.; Huang, Y.

    2000-01-01

    In the present paper, gelcasting of aqueous slurry with coarse silicon carbide(1mm) and fine silicon particles was investigated to fabricate silicon nitride bonded silicon carbide materials. Through the examination of influence of different polyelectrolytes on the Zeta potential and viscosity of silicon and silicon carbide suspensions, a stable SiC/Si suspension with 60 vol% solid loading could be prepared by using polyelectrolyte of D3005 and sodium alginate. Gelation of this suspension can complete in 10-30 min at 60-80 deg C after cast into mold. After demolded, the wet green body can be dried directly in furnace and the green strength will develop during drying. Complex shape parts with near net size were prepared by the process. Effects of the debindering process on nitridation and density of silicon nitride bonded silicon carbide were also examined. Copyright (2000) The Australian Ceramic Society

  2. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    Science.gov (United States)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  3. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  4. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  5. Ion beam figuring of CVD silicon carbide mirrors

    Science.gov (United States)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  6. Joining of porous silicon carbide bodies

    Science.gov (United States)

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  7. Fluidized bed deposition and evaluation of silicon carbide coatings on microspheres

    International Nuclear Information System (INIS)

    Federer, J.I.

    1977-01-01

    The fuel element for the HTGR is an array of closely packed fuel microspheres in a carbonaceous matrix. A coating of dense silicon carbide (SiC), along with pyrocarbon layers, is deposited on the fueled microspheres to serve as a barrier against diffusion of fission products. The microspheres are coated with silicon carbide in a fluidized bed by reaction of methyltrichlorosilane (CH 3 SiCl 3 or MTS) and hydrogen at elevated temperatures. The principal variables of coating temperature and reactant gas composition (H 2 /MTS ratio) have been correlated with coating rate, morphology, stoichiometry, microstructure, and density. The optimum temperature for depositing highly dense coatings is in the range 1475 to 1675 0 C. Lower temperatures result in silicon-rich deposits, while higher temperatures may cause unacceptable porosity. The optimum H 2 /MTS ratio for highly dense coatings is 20 or more (approximately 5% MTS or less). The amount of grown-in porosity increases as the H 2 /MTS ratio decreases below 20. The requirement that the H 2 /MTS ratio be about 20 or more imposes a practical restraint on coating rate, since increasing the total flow rate would eventually expel microspheres from the coating tube. Evaluation of stoichiometry, morphology, and microstructure support the above mentioned optimum conditions of temperature and reactant gas composition. 18 figures, 3 tables

  8. High efficiency three-phase power factor correction rectifier using SiC switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper presents designing procedure of a high efficiency 5 kW silicon-carbide (SiC) based threephase power factor correction (PFC). SiC switches present low capacitive switching loss compared to the alternative Si switches. Therefore, the switching frequency can be increased and hence the siz...

  9. Using of the Modern Semiconductor Devices Based on the SiC

    Directory of Open Access Journals (Sweden)

    Pavel Drabek

    2008-01-01

    Full Text Available This paper deals with possibility of application of the semiconductor devices based on the SiC (Silicon Carbide inthe power electronics. Basic synopsis of SiC based materials problems are presented, appreciation of their properties incomparison with current using power semiconductor devices ((IGBT, MOSFET, CoolFET transistors.

  10. Grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    ), raman spectroscopy and X-ray diffraction (XRD) measurements. UV–Visible absorption spectroscopy was used to study optical properties such as optical energy gap (Eg), Urbach's energy (Eu), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constant of PVA as well as PVA......Polyvinyl alcohol (PVA) grafted SiC (PVA-g-SiC)/PVA nanocomposite was synthesized by incorporating PVA grafted silicon carbide (SiC) nanocrystals inside PVA matrix. In-depth structural characterization of resulting nanocomposite was carried out using fourier transform infrared spectroscopy (FTIR...

  11. Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation

    Science.gov (United States)

    Khorsandi, Behrooz

    There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.

  12. Laser processing for bevel termination of high voltage pn junction in SiC

    International Nuclear Information System (INIS)

    Kubiak, A; Ruta, Ł; Rosowski, A; French, P

    2016-01-01

    Proper edge termination of the p-n junction in silicon carbide is a key requirement in the fabrication of discrete devices able to withstand high voltages in reverse polarization. Due to the hardness of SiC the creation of the bevel termination remains difficult using mechanical machining. The use of laser beam sources with medium wavelength (532 nm) gives new possibilities in the machining of the silicon carbide. The paper presents the fabrication of the bevel termination structure in SiC using a green DPSS laser equipped with scanner and dedicated rotating sample holder. Characterization of the resulting structures proves the high potential of the proposed approach. (paper)

  13. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  14. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  15. Quantum Control and Entanglement of Spins in Silicon Carbide

    Science.gov (United States)

    Klimov, Paul

    Over the past several decades silicon carbide (SiC) has matured into a versatile material platform for high-power electronics and optoelectronic and micromechanical devices. Recent advances have also established SiC as a promising host for quantum technologies based on the spin of intrinsic defects, with the potential of leveraging existing device fabrication protocols alongside solid-state quantum control. Among these defects are the divacancies and related color centers, which have ground-state electron-spin triplets with coherence times as long as one millisecond and built-in optical interfaces operating near the telecommunication wavelengths. This rapidly developing field has prompted research into the SiC material host to understand how defect-bound electron spins interact with their surrounding nuclear spin bath. Although nuclear spins are a major source of decoherence in color-center spin systems, they are also a valuable resource since they can have coherence times that are orders of magnitude longer than electron spins. In this talk I will discuss our recent efforts to interface defect-bound electron spins in SiC with the nuclear spins of naturally occurring 29Si and 13C isotopic defects. I will discuss how the hyperfine interaction can be used to strongly initialize them, to coherently control them, to read them out, and to produce genuine electron-nuclear ensemble entanglement, all at ambient conditions. These demonstrations motivate further research into spins in SiC for prospective quantum technologies. In collaboration with A. Falk, D. Christle, K. Miao, H. Seo, V. Ivady, A. Gali, G. Galli, and D. D. Awschalom. This research was supported by the AFOSR, the NSF DMR-1306300, and the NSF Materials Research Science and Engineering Center.

  16. SiC Armor Tiles via Magnetic Compaction and Pressureless Sintering

    National Research Council Canada - National Science Library

    Chelluri, Bhanu; Knoth, Ed A; Franks, L. P

    2008-01-01

    The purpose of the SBIR, entitled "Continuous Dynamic Processing of Ceramic Tiles for Ground Vehicle Protection", was to create a high rate, cost effective manufacturing method for producing silicon carbide (SiC...

  17. synthesis and characterization of al/sic composite made by stir casting method

    International Nuclear Information System (INIS)

    Ghauri, K.M.; Ahmad, A.; Ahmad, R.; Din, K.M.; Chaudhry, J.A.

    2013-01-01

    Ceramics contain a distinctive property of completely absence of slip planes and have least probability of deforming by the application of force. Among these ceramics, the silicon carbide occupies a competent place to be used as a reinforcing agent for aluminum or its alloys. It has the density close to aluminum and is best for making composite having good strength and good heat conductivity. Stir casting has been used to synthesize Al/SiC MMCs by reinforcing silicon carbide particles into aluminum matrix. The reason for using stir casting is to develop technology for the development of MMCs at affordable cost. The selection of SiC as reinforcement and Al as matrix is because of their easy availability. The practical data acquired, analyzed and optimized will be interpreted in the light of information available in the literature and be shared with the relevant industries. The present work was mainly carried out to characterize the SiC/Al composite which was produced by reinforcing the various proportions of SiC (5, 10, 15, 25 and 30%) in aluminum matrix using stir casting technique. Mechanical properties of test specimens made from stir-casted Aluminum-Silicon Carbide composites have been studied using metallographic and mechanical testing techniques. It was observed that as the volume fraction of SiC in the composite is gradually increased, the hardness and toughness increase. However, beyond a level of 25-30 percent SiC, the results are not very consistent, and depend largely on the uniformity of distribution of SiC in the aluminum matrix. (author)

  18. Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures

    International Nuclear Information System (INIS)

    Katoh, Yutai; Kondo, Sosuke; Snead, Lance L.

    2008-01-01

    Microstructures of silicon carbide were examined by transmission electron microscopy (TEM) after creep deformation under neutron irradiation. Thin strip specimens of polycrystalline and monocrystalline, chemically vapor-deposited, beta-phase silicon carbide were irradiated in the high flux isotope reactor to 0.7-4.2 dpa at nominal temperatures of 640-1080 deg. C in an elastically pre-strained bend stress relaxation configuration with the initial stress of ∼100 MPa. Irradiation creep caused permanent strains of 0.6 to 2.3 x 10 -4 . Tensile-loaded near-surface portions of the crept specimens were examined by TEM. The main microstructural features observed were dislocation loops in all samples, and appeared similar to those observed in samples irradiated in non-stressed conditions. Slight but statistically significant anisotropy in dislocation loop microstructure was observed in one irradiation condition, and accounted for at least a fraction of the creep strain derived from the stress relaxation. The estimated total volume of loops accounted for 10-45% of the estimated total swelling. The results imply that the early irradiation creep deformation of SiC observed in this work was driven by anisotropic evolutions of extrinsic dislocation loops and matrix defects with undetectable sizes

  19. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  20. Morphology of silicon carbide formed by chemical vapour deposition

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.

    1977-01-01

    Silicon carbide polycrystalline layers and particulate crystals were obtained in a modified van Arkel-de Boer apparatus on SiC-covered graphite and molybdenum susceptors. Gaseous SiCl 4 + CCl 4 + H 2 reactive mixtures with Si/C mole ratios varying between 0.9 and 1.4 and with Cl/Cl + H ratios varying between 2.10 -5 and 1.10 -3 were used. The morphology and structure of SiC products obtained at temperatures between 1400 and 1900 0 C and input gas flow rates between 5.10 -4 and 6.10 -2 moles per hour have been systematically investigated by scanning electronmicrographs, X-rays (using the Laue, Weissenberg, and rotation photographers), IR-spectra, and under the polarising microscope. The ranges of temperature and input gas flow rates in which the given habits and forms of the SiC products are formed have been assessed. The habits of the particulate crystals as function of temperature have been interpreted in terms of the existing theories of heterogeneous nucleation assuming layer growth of the crystals by two-dimensional nucleation. The influence of the composition of the gaseous mixtures upon the formation of the 2H polytype as well as the probable reasons for the common occurrence of stacking fault twins in the 3C polytype have been discussed. (author)

  1. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    Science.gov (United States)

    Czapski, M.; Stora, T.; Tardivat, C.; Deville, S.; Santos Augusto, R.; Leloup, J.; Bouville, F.; Fernandes Luis, R.

    2013-12-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes.

  2. SiC Power MOSFET with Improved Gate Dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, Nick M. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Spencer, Michael G. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Chandrashekhar, Chandra M.V. S. [Structured Materials Industries, Inc., Piscataway, NJ (United States)

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  3. Molecular dynamics simulation of damage cascade creation in SiC composites containing SiC/graphite interface

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Joseph; Chen, Di; Wang, Jing; Shao, Lin, E-mail: lshao@tamu.edu

    2013-07-15

    Silicon carbide composites have been investigated for their use as structural materials for advanced nuclear reactor designs. Although the composites have significantly enhanced mechanical properties and structure integrity, there is little known about the behavior of defects in the presence of a graphite-silicon carbide interface. In this study, molecular dynamics simulations have been used to model defect creation and clustering in a composite containing a SiC/graphite interface. Evolution of displacements as a function of time were studied and compared to bulk SiC. The results show that the first a few SiC atomic layers closest to the interface are easily damaged. However, beyond these first few atomic layers the system appears to be unaffected by the SiC interface.

  4. Advanced Silicon Carbide from Molecular Engineering and Actinide Fuels

    International Nuclear Information System (INIS)

    Meyer, D.J.M.; Garcia, J.; Guillaneux, D.; Wong-Chi-Man, M.; Moreau, J.J.E.

    2008-01-01

    In the frame of nuclear fuels studies for generation IV, carbides or oxycarbides assemblies are one of the engaged material for high temperature reactors. The design of the fuels is not yet defined but some structures are actually considered with SiC as matrix for the actinide fuel. In this work we have studied the synthesis of a multi-scale structure controlled SiC matrix using molecular silicon organometallic precursors. The aim of this work was to develop a way to obtain multi-scale SiC matrix material which could be engineered to fit in any fuel structure defined for generation IV fuels. The control of this multi-scale structure was done using several simulation methods specific of the low temperature solution synthesis of the precursor. In a first step, we have focused our effort on the synthesis of the SiC material. A first level of template was successfully done by the use of solid silica 500 nm balls. A second level of template was studied by the use of meso-porous silica, structured at a 50 nm level. At least, supra-molecular simulation in non aqueous media was considered with the difficulty to build a molecular assembly (inverse micelles). In a second step, we have functionalized the primary silane phase with actinide complexing agent in order to blend directly the actinide inside this primary phase in a controlled way. During these studies, a new one pot synthesis route to obtain the functionalized primary silane phase was developed. (authors)

  5. Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill

    International Nuclear Information System (INIS)

    Carreño-Gallardo, C.; Estrada-Guel, I.; López-Meléndez, C.; Martínez-Sánchez, R.

    2014-01-01

    Highlights: • Synthesis of 2024-SiC NP nanocomposite by mechanical milling process. • SiC nanoparticles improved mechanical properties of aluminum alloy 2024 matrix. • A homogeneous distribution of SiC nanoparticles were observed in the matrix • Compressive and hardness properties of the composite are improved significantly. -- Abstract: Al 2024 alloy was reinforced with silicon carbide nanoparticles (SiC NP ), whose concentration was varied in the range from 0 to 5 wt.%; some composites were synthesized with the mechanical milling (MM) process. Structure and microstructure of the consolidated samples were studied by X-ray diffraction and transmission electron microscopy, while mechanical properties were investigated by compressive tests and hardness measurements. The microstructural evidence shows that SiC NP were homogeneously dispersed into the Al 2024 alloy using high-energy MM after 2 h of processing. On the other hand, an increase of the mechanical properties (yield stress, maximum strength and hardness) was observed in the synthesized composites as a direct function of the SiC NP content. In this research several strengthening mechanisms were observed, but the main was the obstruction of dislocations movement by the addition of SiC NP

  6. Distribution and characterization of iron in implanted silicon carbide

    International Nuclear Information System (INIS)

    Bentley, J.; Romana, L.J.; Horton, L.L.; McHargue, C.J.

    1991-01-01

    Analytical electron microscopy (AEM) and Rutherford backscattering spectroscopy-ion channeling (RBS-C) have been used to characterize single crystal α-silicon carbide implanted at room temperature with 160 keV 57 Fe ions to fluences of 1, 3, and 6 x 10 16 ions/cm 2 . Best correlations among AEM, RBS, and TRIM calculations were obtained assuming a density of the amorphized implanted regions equal to that of crystalline SiC. No iron-rich precipitates or clusters were detected by AEM. Inspection of the electron energy loss fine structure for iron in the implanted specimens suggests that the iron is not metallically-bonded, supporting conclusions from earlier conversion electron Moessbauer spectroscopy (CEMS) studies. In-situ annealing surprisingly resulted in crystallization at 600 degrees C with some redistribution of the implanted iron

  7. FLiNaK compatibility studies with Inconel 600 and silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Graydon L., E-mail: yodergljr@ornl.gov [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Heatherly, Dennis; Wilson, Dane [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Caja, Mario [Electrochemical Systems, Inc. (ESI), 9320 Collingwood Rd., Knoxville, TN 37922 (United States)

    2016-10-15

    Highlights: • A versatile experimental design has been developed to examine liquid fluoride salt materials compatibility behavior. • Samples of silicon carbide and a grafoil/nickel spiral wound gasket were exposed to FLiNaK salt at 700 °C for 90 days and showed no degradation. • Alloy 600 showed material effects penetrating up to 300 μm below the salt interface after exposure to the salt for 90 days at 700 °C. • Comparison of the Alloy 600 corrosion results with existing data indicated that results were comparable to the few corrosion results available for Alloy 600. • Sapphire viewing windows incorporated in the experiment showed fogging by condensed salt components at the highest test temperatures. - Abstract: A small liquid fluoride salt test apparatus has been constructed and testing has been conducted to examine the compatibility of silicon carbide (SiC), Inconel 600 and a spiral wound gasket material in FLiNaK, the ternary eutectic alkaline metal fluoride salt mixture. These tests were conducted to evaluate materials and sealing systems that could be used in fluoride salt systems. Three months of testing at 700 °C was conducted to assure that these materials and seals would be acceptable when operating under prototypic operating conditions. The SiC specimens showed little or no change over the test period, while the spiral wound gasket material did not show any degradation except that salt might have been seeping into the outermost spirals of the gasket. The Inconel 600 specimens showed regions of voiding which penetrated the specimen surface to about 250 μm in depth. Analysis indicated that the salt had leached chrome from the Inconel surface, as was expected for this material.

  8. Effect of Reactant Concentration on the Microstructure of SiC Nano wires Grown In Situ within SiC Fiber Preforms

    International Nuclear Information System (INIS)

    Kim, Weon Ju; Kang, Seok Min; Park, Ji Yeon; Ryu, Woo Seog

    2006-01-01

    Silicon carbide fiber-reinforced silicon carbide matrix (SiC f /SiC) composites are considered as advanced materials for control rods and other in-core components of high-temperature gas cooled reactors. Although the carbon fiber-reinforced carbon matrix (C f /C) composites are more mature and have advantages in cost, manufacturability and some thermomechanical properties, the SiC f /SiC composites have a clear advantage in irradiation stability, specifically a lower level of swelling and retention of mechanical properties. This offers a lifetime component for control rod application to HTGRs while the Cf/C composites would require 2-3 replacements over the reactor lifetime. In general, the chemical vapor infiltration (CVI) technique has been used most widely to produce SiC f /SiC composites. Although the technique produces a highly pure SiC matrix, it requires a long processing time and inevitably contains large interbundle pores. The present authors have recently developed 'whisker growing-assisted process,' in which one-dimensional SiC nano structures with high aspect ratios such as whiskers, nano wires and nano rods are introduced into the fiber preform before the matrix infiltration step. This novel method can produce SiC f /SiC composites with a lower porosity and an uniform distribution of pores when compared with the conventional CVI. This would be expected to increase mechanical and thermal properties of the SiC f /SiC composites. In order to take full advantage of the whisker growing strategy, however, a homogeneous growth of long whiskers is required. In this study, we applied the atmospheric pressure CVI process without metallic catalysts for the growth of SiC nano wires within stacked SiC fiber fabrics. We focused on the effect of the concentration of a reactant gas on the growth behavior and microstructures of the SiC nano wires and discussed a controlling condition for the homogenous growth of long SiC nano wires

  9. On the characterisation of the dynamic compressive behaviour of silicon carbides subjected to isentropic compression experiments

    Directory of Open Access Journals (Sweden)

    Zinszner Jean-Luc

    2015-01-01

    Full Text Available Ceramic materials are commonly used as protective materials particularly due to their very high hardness and compressive strength. However, the microstructure of a ceramic has a great influence on its compressive strength and on its ballistic efficiency. To study the influence of microstructural parameters on the dynamic compressive behaviour of silicon carbides, isentropic compression experiments have been performed on two silicon carbide grades using a high pulsed power generator called GEPI. Contrary to plate impact experiments, the use of the GEPI device and of the lagrangian analysis allows determining the whole loading path. The two SiC grades studied present different Hugoniot elastic limit (HEL due to their different microstructures. For these materials, the experimental technique allowed evaluating the evolution of the equivalent stress during the dynamic compression. It has been observed that these two grades present a work hardening more or less pronounced after the HEL. The densification of the material seems to have more influence on the HEL than the grain size.

  10. Graphene ribbon growth on structured silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Alexander; Link, Stefan; Starke, Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Baringhaus, Jens; Aprojanz, Johannes; Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany); Niu, Yuran [MAX IV Laboratory, Lund University (Sweden); present address: School of Physics and Astronomy, Cardiff University (United Kingdom); Zakharov, Alexei A. [MAX IV Laboratory, Lund University (Sweden); Chen, Chaoyu; Avila, Jose; Asensio, Maria C. [Synchrotron SOLEIL and Universite Paris-Saclay, Gif sur Yvette (France)

    2017-11-15

    Structured Silicon Carbide was proposed to be an ideal template for the production of arrays of edge specific graphene nanoribbons (GNRs), which could be used as a base material for graphene transistors. We prepared periodic arrays of nanoscaled stripe-mesas on SiC surfaces using electron beam lithography and reactive ion etching. Subsequent epitaxial graphene growth by annealing is differentiated between the basal-plane mesas and the faceting stripe walls as monitored by means of atomic force microscopy (AFM). Microscopic low energy electron diffraction (μ-LEED) revealed that the graphene ribbons on the facetted mesa side walls grow in epitaxial relation to the basal-plane graphene with an armchair orientation at the facet edges. The π-band system of the ribbons exhibits linear bands with a Dirac like shape corresponding to monolayer graphene as identified by angle-resolved photoemission spectroscopy (ARPES). (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Microstructure and properties of sintered silicon carbides fabricated by different methods

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Kitamura, Hideya; Iseki, Takayoshi

    1986-01-01

    Studies were made of effects of fabrication methods on the properties and microstructure of sintered silicon carbides. The specimens used in this investigation were three kinds of commercially available SiC bodies which were fabricated by reaction bonding, pressureless sintering and hot-pressing. The hot-pressed SiC contained a small amount of BeO. Measurements were carried out on density, the polytype by X-ray diffraction method and 4-point bend strength. Microstructural observation was also carried out using an optical microscope, a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The results of density measurement showed that the open porosities of three specimens were negligibly small and that the density of the hot pressed SiC had nearly the theoretical density. The measurement of 4-point bend strength indicated that the reaction bonded SiC had the highest value and the hot-pressed SiC the lowest. The analysis of the polytype indicated that all the specimens consisted mainly of α-SiC of 6 H type. In the reaction bonded SiC, about 11 % of 3 C type (β-SiC) and 9 % of free Si were recognized. The average grain diameter and fracture mode of each specimen were determined from observation with an optical microscope and SEM. In the hot-pressed SiC, the fracture occurred mainly at grain boundaries, whereas it occurred mostly in grains in the reaction bonded and pressureless sintered SiC. A lot of stacking faults were observed in all the specimens with a TEM. In addition, small closed pores were often recognized in the pressureless sintered SiC. In the hot-pressed SiC, a contrast originated from strain field within grains was observed, and dislocations near grain boundaries were a characteristic feature of this material. Small short partial dislocations accompanied by stacking fault were often observed in the reaction bonded SiC. (author)

  12. Production of silicon carbide bodies

    International Nuclear Information System (INIS)

    Parkinson, K.

    1981-01-01

    A body consisting essentially of a coherent mixture of silicon carbide and carbon for subsequent siliconising is produced by casting a slip comprising silicon carbide and carbon powders in a porous mould. Part of the surface of the body, particularly internal features, is formed by providing within the mould a core of a material which retains its shape while casting is in progress but is compressed by shrinkage of the cast body as it dries and is thereafter removable from the cast body. Materials which are suitable for the core are expanded polystyrene and gelatinous products of selected low elastic modulus. (author)

  13. High yield silicon carbide prepolymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Prepolymers which exhibit good handling properties, and are useful for preparing ceramics, silicon carbide ceramic materials and articles containing silicon carbide, are polysilanes consisting of 0 to 60 mole% (CH 3 ) 2 Si units and 40 to 100 mole% CH 3 Si units, all Si valences being satisfied by CH 3 groups, other Si atoms, or by H atoms, the latter amounting to 0.3 to 2.1 weight% of the polysilane. They are prepared by reducing the corresponding chloro- or bromo-polysilanes with at least the stoichiometric amount of a reducing agent, e.g. LiAlH 4 . (author)

  14. Microstructure and orientation effects on properties of discontinuous silicon carbide/aluminum composites

    Science.gov (United States)

    Mcdanels, D. L.; Hoffman, C. A.

    1984-01-01

    Composite panels containing up to 40 vol % discontinuous silicon carbide SiC whisker, nodule, or particulate reinforcement in several aluminum matrices are commercially fabricated and the mechanical properties and microstructual characteristics are evaluated. The yield and tensile strengths and the ductility are controlled primarily by the matrix alloy, the temper condition, and the reinforcement content. Particulate and nodule reinforcements are as effective as whisker reinforcement. Increased ductility is attributed to purer, more uniform starting materials and to more mechanical working during fabrication. Comparing mechanical properties with those of other aluminum alloys shows that these low cost, lightweight composites demonstrate very good potential for application to aerospace structures.

  15. X-ray powder diffraction analysis of liquid-phase-sintered silicon carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.L.; Sanchez-Bajo, F. [Universidad de Extremadura, Badajoz (Spain). Dept. de Electronica e Ingenieria Electromecanica; Cumbrera, F.L. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica

    2002-07-01

    In an attempt to gain a comprehensive understanding of the microstructural evolution in liquid-phase-sintered silicon carbide ceramics, the effect of the starting {beta}-SiC powder has been studied. Pellets of two different {beta}-SiC starting powders were sintered with simultaneous additions of Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} at 1950 C for 1 hour in flowing argon atmosphere. Here we have used X-ray diffraction to obtain the relative abundance of the resulting SiC polytypes after sintering. The significant influence of the defects concentration on the {beta} to {alpha} transformation rate has been determined using the Rietveld method. (orig.)

  16. Silicon Carbide Emitter Turn-Off Thyristor

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2008-01-01

    Full Text Available A novel MOS-controlled SiC thyristor device, the SiC emitter turn-off thyristor (ETO is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5 A/cm2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100 W/cm2 conduction and the 100 W/cm2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV and higher frequency (10 kHz are needed.

  17. Properties of SiC semiconductor detector of fast neutrons investigated using MCNPX code

    International Nuclear Information System (INIS)

    Sedlakova, K.; Sagatova, A.; Necas, V.; Zatko, B.

    2013-01-01

    The potential of silicon carbide (SiC) for use in semiconductor nuclear radiation detectors has been long recognized. The wide bandgap of SiC (3.25 eV for 4H-SiC polytype) compared to that for more conventionally used semiconductors, such as silicon (1.12 eV) and germanium (0.67 eV), makes SiC an attractive semiconductor for use in high dose rate and high ionization nuclear environments. The present work focused on the simulation of particle transport in SiC detectors of fast neutrons using statistical analysis of Monte Carlo radiation transport code MCNPX. Its possibilities in detector design and optimization are presented.(authors)

  18. 5 kW bidirectional grid-connected drive using silicon-carbide switches: Control

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Lazar, Radu; Pedersen, Jacob Lykke

    2017-01-01

    his paper presents a controller design for a fully silicon-carbide (SiC) based bidirectional three-phase grid-connected PWM drive. For drive applications, controller must be robust and fast to be able to provide power flow in both directions. In this paper, proportional resonance (PR) current con...... magnet motor. Different tests will be conducted to evaluate the performance of the controllers in both generative and regenerative mode. It is shown that the controller can provide a good dynamic response to load changes for both direction of power flow.......-phase rectifier with switching frequency of 45 kHz will be tested. The test is done by connecting it to a grid simulator and the load is a resistive load. In the second test the rectifier will be connected to the grid via an auto-transformer and load is a 7.5kW SiC based drive which is connected to a permanent...

  19. Stress testing on silicon carbide electronic devices for prognostics and health management.

    Energy Technology Data Exchange (ETDEWEB)

    Kaplar, Robert James; Brock, Reinhard C.; Marinella, Matthew; King, Michael Patrick; Smith, Mark A.; Atcitty, Stanley

    2011-01-01

    Power conversion systems for energy storage and other distributed energy resource applications are among the drivers of the important role that power electronics plays in providing reliable electricity. Wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) will help increase the performance and efficiency of power electronic equipment while condition monitoring (CM) and prognostics and health management (PHM) will increase the operational availability of the equipment and thereby make it more cost effective. Voltage and/or temperature stress testing were performed on a number of SiC devices in order to accelerate failure modes and to identify measureable shifts in electrical characteristics which may provide early indication of those failures. Those shifts can be interpreted and modeled to provide prognostic signatures for use in CM and/or PHM. Such experiments will also lead to a deeper understanding of basic device physics and the degradation mechanisms behind failure.

  20. Effect of deposition conditions on the properties of pyrolytic silicon carbide coatings for high-temperature gas-cooled reactor fuel particles

    International Nuclear Information System (INIS)

    Stinton, D.P.; Lackey, W.J.

    1977-10-01

    Silicon carbide coatings on HTGR microsphere fuel act as the barrier to contain metallic fission products. Silicon carbide coatings were applied by the decomposition of CH 3 SiCl 3 in a 13-cm-diam (5-in.) fluidized-bed coating furnace. The effects of temperature, CH 3 SiCl 3 supply rate and the H 2 :CH 3 SiCl 3 ratio on coating properties were studied. Deposition temperature was found to control coating density, whole particle crushing strength, coating efficiency, and microstructure. Coating density and microstructure were also partially determined by the H 2 :CH 3 SiCl 3 ratio. From this work, it appears that the rate at which high quality SiC can be deposited can be increased from 0.2 to 0.5 μm/min

  1. Preparation and mechanical properties of liquid-phase sinterd silicon carbide; Herstellung und mechanische Eigenschaften von fluessigphasengesintertem Siliziumkarbid

    Energy Technology Data Exchange (ETDEWEB)

    Wiedmann, I.

    1998-12-01

    Liquid-phase sintered silicon carbide ceramics, LPS-SiC, were prepared, and the influence of structure and chemical secondary phase composition on the mechanical properties was investigated in order to identify LPS-SiC materials which can be produced reproducibly and with low loss of mass by simple techniques, i.e. without powder bed or encapsulation. Their profile of characteristics should be superior to conventional solid-phase sintered SiC and should be comparable with liquid-phase sintered silicon nitride ceramics. [Deutsch] In der vorliegenden Arbeit wurden fluessigphasengesinterte Siliziumkarbid-Keramiken, LPS-SiC, hergestellt und der Einfluss der Gefuegeausbildung und der chemischen Sekundaerphasenzusammensetzung auf die mechanischen Eigenschaften untersucht. Ziel war es, LPS-SiC-Materialien zu identifizieren, die ohne besonderen Vorkehrungen wie Pulverbett oder Einkapselung reproduzierbar und mit geringem Masseverlust hergestellt werden koennen. Das Eigenschaftsprofil sollte deutlich ueber dem von konventionell festphasengesintertem SiC liegen und vergleichbar zu fluessigphasengesinterten Siliziumnitrid-Keramiken sein. (orig.)

  2. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca [Queensland Micro and Nanotechnology Centre and Environmental Futures Research Institute, Griffith University, Nathan QLD 4111 (Australia); Boeckl, John J. [Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433 (United States); Hellerstedt, Jack; Fuhrer, Michael S. [Monash Centre for Atomically Thin Materials, Monash University, Monash, VIC 3800 (Australia)

    2016-07-04

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  3. Flexural strength of proof-tested and neutron-irradiated silicon carbide

    Science.gov (United States)

    Price, R. J.; Hopkins, G. R.

    1982-08-01

    Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.

  4. ToF-MEIS stopping measurements in thin SiC films

    International Nuclear Information System (INIS)

    Linnarsson, M.K.; Khartsev, S.; Primetzhofer, D.; Possnert, G.; Hallén, A.

    2014-01-01

    Electronic stopping in thin, amorphous, SiC films has been studied by time-of-flight medium energy ion scattering and conventional Rutherford backscattering spectrometry. Amorphous SiC films (8, 21 and 36 nm) were prepared by laser ablation using a single crystalline silicon carbide target. Two kinds of substrate films, one with a lower atomic mass (carbon) and one with higher atomic mass (iridium) compared to silicon has been used. Monte Carlo simulations have been used to evaluate electronic stopping from the shift in energy for the signal scattered from Ir with and without SiC. The two kinds of samples are used to illustrate the strength and challenges for ToF-MEIS compared to conventional RBS

  5. Joining technique of silicon nitride and silicon carbide in a mixture and/or in contact with high-melting metals and alloys

    International Nuclear Information System (INIS)

    Mueller-Zell, A.

    1980-01-01

    The following work gives a survey on possible joining techniques of silicon nitride (Si 3 N 4 ) and silicon carbide (SiC) in a mixture and/or in contact with high-melting metals and alloys. The problem arose because special ceramic materials such as Si 3 N 4 and SiC are to be used in gas turbines. The special ceramics in use may unavoidably come into contact with metals or the one hand, or form intended composite systems with them on the other hand, like e.g. the joining of a Si 3 N 4 disc with a metallic drive axis or ceramic blades with a metal wheel. The mixed body of X% ceramic (Si 3 N 4 , SiC) and Y% metal powder were prepared depending on the material combination at 1200 0 C-1750 0 C by hot-pressing or at 1200 0 C-2050 0 C by hot-pressing or pressureless sintering. The following possible ways were chosen as interlaminar bonding ceramic/metal/ceramic: on the one hand pressure welding (composite hot pressing) and the solid-state bonding in direct contact and by means of artificially included transition mixed layers, as well as material intermediate layers between metal and ceramic and on the other hand, soldering with active solder with molten phase. (orig./RW) [de

  6. Silicon carbide detectors for diagnostics of ion emission from laser plasmas

    International Nuclear Information System (INIS)

    Musumeci, Paolo; Zimbone, Massimo; Calcagno, Lucia; Cutroneo, Maria; Torrisi, Lorenzo; Velyhan, Andry

    2014-01-01

    Silicon carbide (SiC) detectors have been employed to analyze the multi-MeV ions generated from laser plasma. The irradiation was performed with the iodine laser of Prague Asterix Laser System Laboratory operating at 10 16  W cm −2 pulse intensity. Thin metallic and polymeric targets were irradiated and the produced plasmas were monitored in the forward direction. The use of SiC detectors ensures the cutting of the visible and soft UV radiation emitted from plasma, enhancing the sensitivity to protons and very fast heavy ions. The time-of-flight spectra obtained by irradiating polymeric films with high laser pulse energy produce protons with energy in the range 1.0–2.5 MeV and all the charge states of carbon ions. The metallic Al target allows achieving energy up to 3.0 MeV for protons and 40 MeV for Al ions. All the results reveal the high performances of these detectors in terms of resolution and response time. (paper)

  7. Mechanical performance of SiC three-layer cladding in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Angelici Avincola, Valentina, E-mail: valentina.avincola@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Guenoun, Pierre, E-mail: pguenoun@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Shirvan, Koroush, E-mail: kshirvan@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-12-15

    Highlights: • FEA calculations of the stress distribution in SiC three-layer cladding. • Simulation of SiC mechanical performance under operation and accident conditions. • Failure probability analysis of SiC in steady-state and accident conditions. - Abstract: The silicon carbide cladding concept is currently under investigation with regard to increasing the accident tolerance and economic performance of light-water reactor fuels. In this work, the stress fields in the multi-layered silicon carbide cladding for LWR fuels are calculated using the commercial finite element analysis software ADINA. The material properties under irradiation are implemented as a function of temperature. The cladding is studied under operating and accident conditions, specifically for the loss-of-coolant accident (LOCA). During the LOCA, the blowdown and the reflood phases are modeled, including the quench waterfront. The calculated stresses along the cladding thickness show a high sensitivity to the assumptions regarding material properties. The resulting stresses are compared with experimental data and the probability of failure is calculated considering a Weibull model.

  8. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles

    International Nuclear Information System (INIS)

    Derradji, Mehdi; Ramdani, Noureddine; Zhang, Tong; Wang, Jun; Feng, Tian-tian; Wang, Hui; Liu, Wen-bin

    2015-01-01

    Highlights: • SiC microparticles improve the mechanical properties of phthalonitrile resin. • Excellent thermal stability achieved by adding SiC particles in phthalonitrile resin. • Adding 20 wt.% of SiC microparticles increases the T g by 38 °C. • Silane coupling agent can enhance the adhesion and dispersion of particles/matrix. - Abstract: A new type of composite based on phthalonitrile resin reinforced with silicon carbide (SiC) microparticles was prepared. For various weight ratios ranging between 0% and 20%, the effect of the micro-SiC particles on the mechanical and thermal properties has been studied. Results from thermal analysis revealed that the starting decomposition temperature and the residual weight were significantly improved upon adding the reinforcing phase. At the maximum micro-SiC loading, dynamic mechanical analysis (DMA) showed an important enhancement in both the storage modulus and glass transition temperature (T g ), reaching 3.1 GPa and 338 °C, respectively. The flexural strength and modulus as well as the microhardness were significantly enhanced by adding the microfillers. Tensile test revealed enhancements in the composites toughness upon adding the microparticles. Polarization optical microscope (POM) and scanning electron microscope (SEM) analysis confirmed that mechanical and thermal properties improvements are essentially attributed to the good dispersion and adhesion between the particles and the resin

  9. Mullite-based coating on silicon carbide refractory obtained from PMSQ [poly(methylsilsesquioxane)

    International Nuclear Information System (INIS)

    Machado, Glauson Aparecido Ferreira

    2017-01-01

    Silicon carbide (SiC) presents low thermal expansion, high strength and thermal conductivity. For this reason it is used as kiln furniture for materials sintering. On the other hand, SiC degrades at high temperature under aggressive atmosphere. The use of protective coatings can avoid the right exposition of SiC surface to the furnace atmosphere. Mullite can be a suitable material as protective coating because of its high corrosion resistance and thermal expansion coefficient matching that of SiC (4,7 x 10 -6 /°C e 5,3 x 10 -6 /°C, respectively). In the present work a mullite coating obtained from ceramic precursor polymer and aluminium powder was studied to be applied over SiC refractories. Compositions were prepared with 10, 20, 30 and 50% (vol.) of aluminium powder added to the polymer. They were used aluminium powders with different distributions sizes These compositions were heat treated at different thermal cycles to determine a suitable condition to obtain a high mullite content. The composition with 20% of the smaller particle size Al powder was selected and used to be applied as a suspension over SiC refractory. The applied suspension, after dried, crosslinked and heat treated, formed a mullite coating over SiC refractory. Cycles of thermal shock were performed in coated and uncoated SiC samples to compare each other. They were carried out 26 cycles of thermal shock, in the following conditions: 600°C/30 min. and air cooling to room temperature. After each thermal shock, samples were analysed by mean of optical and electron microscopy, elastic modulus was also determined. After thermal shock cycles the coating presented good adhesion and no significant damage were observed. (author)

  10. Effects of silicon carbide MOSFETs on the efficiency and power quality of a microgrid-connected inverter

    International Nuclear Information System (INIS)

    Ding, Xiaofeng; Chen, Feida; Du, Min; Guo, Hong; Ren, Suping

    2017-01-01

    Highlights: •The characteristics comparison between SiC-inverter and Si-inverter is implemented, considering thermal effects. •The voltage distortion of inverters is modeling from the perspective of the behaviors of the device. •The efficiency of the microgrid-connected inverter has been greatly increased by replacing Si with SiC. •The SiC microgrid-connected inverter has smaller voltage distortion and less harmonic current than those of Si-inverter. •The proposed analytical model has been validated by the experimental test. -- Abstract: With the expanding power demands and increasing use of renewable energy resources, microgrids have been widely supported. Wide bandgap semiconductor devices with higher blocking voltage capabilities and higher switching speeds, such as silicon carbide (SiC) devices, will become a critical component in building microgrids. This paper describes a comprehensive investigation of the effects of SiC Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) on the efficiency and power quality of the inverters used in low voltage microgrids compared with conventional inverters based on silicon (Si) Insulated-gate Bipolar Transistors (IGBTs). First, the characteristics of both SiC and Si are measured by a double pulse test (DPT), considering thermal effects. Then, conduction and switching losses under different temperatures are calculated based on DPT results. Second, phase voltage distortions are modeled and calculated according to the tested switching and conduction characteristics of SiC, resulting in harmonic components in the phase current. Finally, an experiment is implemented. The experimental results show that the SiC-inverter greatly increases the energy efficiency and improves the power quality in the microgrid; these results are consistent with the analytical results.

  11. Breakthrough in Power Electronics from SiC: May 25, 2004 - May 31, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Marckx, D. A.

    2006-03-01

    This report explores the premise that silicon carbide (SiC) devices would reduce substantially the cost of energy of large wind turbines that need power electronics for variable speed generation systems.

  12. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    CERN Document Server

    Czapski, M; Tardivat, C; Stora, T; Bouville, F; Leloup, J; Luis, R Fernandes; Augusto, R Santos

    2013-01-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLORA codes. (C) 2013 Elsevier B.V. All rights reserved.

  13. Molecular dynamics studies of radiation effects in silicon carbide

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Caturla, M.J.; Tobin, M.

    1995-01-01

    We discuss results of molecular dynamics computer simulation studies of 3 keV and 5 keV displacement cascades in β-SIC, and compare them to results of 5 keV cascades in pure silicon. The SiC simulations are performed with the Tersoff potential. For silicon we use the Stillinger-Weber potential. Simulations were carried out for Si recoils in 3 dimensional cubic computational cells With periodic boundary conditions and up to 175,616 atoms. The cascade lifetime in SiC is found to be extremely short. This, combined with the high melting temperature of SiC, precludes direct lattice amorphization during the cascade. Although large disordered regions result, these retain their basic crystalline structure. These results are in contrast with observations in pure silicon where direct-impact amorphization from the cascade is seen to take place. The SiC results also show anisotropy in the number of Si and C recoils as well as in the number of replacements in each sublattice. Details of the damage configurations obtained will be discussed

  14. Development of polishing methods for Chemical Vapor Deposited Silicon Carbide mirrors for synchrotron radiation

    International Nuclear Information System (INIS)

    Fuchs, B.A.; Brown, N.J.

    1987-01-01

    Material properties of Chemical Vapor Deposited Silicon Carbide (CVD SiC) make it ideal for use in mirrors for synchrotron radiation experiments. We developed methods to grind and polish flat samples of CVD SiC down to measured surface roughness values as low as 1.1 Angstroms rms. We describe the processing details, including observations we made during trial runs with alternative processing recipes. We conclude that pitch polishing using progressively finer diamond abrasive, augmented with specific water based lubricants and additives, produces superior results. Using methods based on these results, a cylindrical and a toroidal mirror, each about 100 x 300mm, were respectively finished by Continental Optical and Frank Cooke, Incorporated. WYCO Interferometry shows these mirrors have surface roughness less than 5.7 Angstroms rms. These mirrors have been installed on the LLNL/UC X-ray Calibration and Standards Facility at the Stanford Synthrotron Radiation Laboratory

  15. Abundances of presolar silicon carbide grains in primitive meteorites determined by NanoSIMS

    Science.gov (United States)

    Davidson, Jemma; Busemann, Henner; Nittler, Larry R.; Alexander, Conel M. O.'D.; Orthous-Daunay, François-Régis; Franchi, Ian A.; Hoppe, Peter

    2014-08-01

    It has been suggested that the matrices of all chondrites are dominated by a common material with Ivuna-like (CI) abundances of volatiles, presolar grains and insoluble organic matter (IOM) (e.g., Alexander, 2005). However, matrix-normalized abundances of presolar silicon carbide (SiC) grains estimated from their noble gas components show significant variations in even the most primitive chondrites (Huss and Lewis, 1995; Huss et al., 2003), in contradiction to there being a common chondrite matrix material. Here we report presolar SiC abundances determined by NanoSIMS raster ion imaging of IOM extracted from primitive members of different meteorite groups. We show that presolar SiC abundance determinations are comparable between NanoSIMS instruments located at three different institutes, between residues prepared by different demineralization techniques, and between microtomed and non-microtomed samples. Our derived SiC abundances in CR chondrites are comparable to those found in the CI chondrites (∼30 ppm) and are much higher than previously determined by noble gas analyses. The revised higher CR SiC abundances are consistent with the CRs being amongst the most primitive chondrites in terms of the isotopic compositions and disordered nature of their organic matter. Similar abundances between CR1, CR2, and CR3 chondrites indicate aqueous alteration on the CR chondrite parent body has not progressively destroyed SiC grains in them. A low SiC abundance for the reduced CV3 RBT 04133 can be explained by parent body thermal metamorphism at an estimated temperature of ∼440 °C. Minor differences between primitive members of other meteorite classes, which did not experience such high temperatures, may be explained by prolonged oxidation at lower temperatures under which SiC grains formed outer layers of SiO2 that were not thermodynamically stable, leading to progressive degassing/destruction of SiC.

  16. Colloidal characterization of silicon nitride and silicon carbide

    Science.gov (United States)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  17. Surface modification of silicon carbide with silane coupling agent and hexadecyl iodiele

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Xujing, E-mail: shangxujing@tju.edu.cn; Zhu, Yumei, E-mail: zymtju@163.com; Li, Zhihong, E-mail: lzhtju@163.com

    2017-02-01

    Highlights: • A novel universal method was performed to enhance hydrophobicity of SiC powder. • The modification effects of KH550 and KH590 were compared and the optimum reaction parameters were established. • Hexadecyl iodiele was successfully grafted on the surface of SiC-KH590 powder. • Surface changes on SiC powder before and after modification were analyzed via FTIR, XPS, SEM. • The related reaction mechanisms were discussed. - Abstract: In this paper, two kinds of silane coupling agents, namely 3-aminopropyl triethoxysilane (KH550) and 3-mercaptopropyl trimethoxysilane (KH590), were adopted as preliminary modifiers to improve the hydrophobic surface properties of silicon carbide (SiC) powder for the first step. The factors that influence the modification effects were investigated by measuring the contact angle. The results showed that KH590 has a better effect than KH550 for the hydrophobic modification of SiC, and the contact angle improved most after SiC powder was reacted with 0.3 g KH590 at 75 °C in aqueous/alcohol solution for 4 h. On account of further enhancement of hydrophobicity, the study was focused on utilizing nucleophilic substitution between KH590 and hexadecyl iodiele to extend the length of alkyl chain. Compared with using KH590 alone, SiC powder modified by KH590 and hexadecyl iodiele showed better water resistance with an increase of contact angle from 106.8° to 127.5°. The Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectra (XPS) as well as X-ray diffraction (XRD) analysis results showed that KH550/KH590 and hexadecyl iodiele can be covalently bonded to the surface of SiC powder without altering its crystal configuration. This methodology may provide a new way of the modification of inorganic materials in further.

  18. Ion beam evaluation of silicon carbide membrane structures intended for particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pallon, J., E-mail: jan.pallon@nuclear.lu.se [Division of Nuclear Physics, Physics Department, Lund University, Box 118, SE-221 00 Lund (Sweden); Syväjärvi, M. [Linköping University, Department of Physics, Chemistry and Biology, SE-58183 Linköping (Sweden); Graphensic AB, Teknikringen 1F, SE-58330 Linköping (Sweden); Wang, Q. [Sensor System, ACREO Swedish ICT AB, Box 1070, SE-164 25 Kista (Sweden); Yakimova, R.; Iakimov, T. [Linköping University, Department of Physics, Chemistry and Biology, SE-58183 Linköping (Sweden); Graphensic AB, Teknikringen 1F, SE-58330 Linköping (Sweden); Elfman, M.; Kristiansson, P.; Nilsson, E.J.C.; Ros, L. [Division of Nuclear Physics, Physics Department, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2016-03-15

    Thin ion transmission detectors can be used as a part of a telescope detector for mass and energy identification but also as a pre-cell detector in a microbeam system for studies of biological effects from single ion hits on individual living cells. We investigated a structure of graphene on silicon carbide (SiC) with the purpose to explore a thin transmission detector with a very low noise level and having mechanical strength to act as a vacuum window. In order to reach very deep cavities in the SiC wafers for the preparation of the membrane in the detector, we have studied the Inductive Coupled Plasma technique to etch deep circular cavities in 325 μm prototype samples. By a special high temperature process the outermost layers of the etched SiC wafers were converted into a highly conductive graphitic layer. The produced cavities were characterized by electron microscopy, optical microscopy and proton energy loss measurements. The average membrane thickness was found to be less than 40 μm, however, with a slightly curved profile. Small spots representing much thinner membrane were also observed and might have an origin in crystal defects or impurities. Proton energy loss measurement (also called Scanning Transmission Ion Microscopy, STIM) is a well suited technique for this thickness range. This work presents the first steps of fabricating a membrane structure of SiC and graphene which may be an attractive approach as a detector due to the combined properties of SiC and graphene in a monolithic materials structure.

  19. Densification of silicon and zirconium carbides by a new process: spark plasma sintering; Densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F

    2006-12-15

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  20. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    Energy Technology Data Exchange (ETDEWEB)

    Czapski, M., E-mail: michal.czapski@cern.ch [CERN, Genève 23 CH-1211 (Switzerland); Stora, T. [CERN, Genève 23 CH-1211 (Switzerland); Tardivat, C.; Deville, S. [Lab. de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain, Av. Jauffret 84306 Cavaillon (France); Santos Augusto, R. [CERN, Genève 23 CH-1211 (Switzerland); Leloup, J.; Bouville, F. [Lab. de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain, Av. Jauffret 84306 Cavaillon (France); Fernandes Luis, R. [Univ. Técnica de Lisboa Estrada Nacional 10, 2686-953 Sacavem, Loures (Portugal)

    2013-12-15

    Highlights: • SiC and Al{sub 2}O{sub 3} of uniaxial porosity were produced with ice-templating method. • The method allows controlled pore formation within the material. • Calculation of mechanical integrity under irradiation with protons was performed. • Generated thermal stresses should not exceed material’s strength. -- Abstract: New silicon carbide (SiC) and aluminum oxide (Al{sub 2}O{sub 3}) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes.

  1. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  2. High Temperature Memories in SiC Technology

    OpenAIRE

    Ekström, Mattias

    2014-01-01

    This thesis is part of the Working On Venus (WOV) project. The aim of the project is to design electronics in silicon carbide (SiC) that can withstand the extreme surface environmen  of Venus. This thesis investigates some possible computer memory technologies that could survive on the surface of Venus. A memory must be able to function at 460 °C and after a total radiation dose of at least 200 Gy (SiC). This thesis is a literature survey. The thesis covers several Random-Access Memory (RAM) ...

  3. Evaluation of neutron irradiated near-stoichiometric silicon carbide fiber composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Katoh, Y.; Kohyama, A.; Bailey, J.L.; Vaughn, N.L.; Lowden, R.A.

    2000-01-01

    Composites have been fabricated by chemical vapor infiltration of silicon carbide (SiC) into SiC-based fiber preforms. Fibers were Ceramic Grade Nicalon TM , Hi-Nicalon TM and Hi-Nicalon TM Type-S. Results are presented for two parallel studies on the effects of neutron irradiation on these materials. In the first study, neutron irradiation induced changes in mechanical properties, as measured by bend testing, for Hi-Nicalon TM fiber materials of varied interphase structures is measured. Results indicate that both the Ceramic Grade Nicalon TM and Hi-Nicalon TM materials degrade substantially under irradiation, though the higher oxygen content Ceramic Grade fiber degrades more rapidly and more substantially. Of the three interfaces studied in the Hi-Nicalon TM system, the multilayer SiC is the most radiation resistant. At a dose of ∼1 dpa the mechanical property degradation of the Hi-Nicalon TM composite is consistent with a fiber densification-induced debonding. At a dose of 10 dpa the properties continue to degrade raising the question of degradation in the CVD SiC matrix as well. Low-dose results on the Hi-Nicalon TM Type-S fabricated material are encouraging, as they appear to not lose, and perhaps slightly increase, in ultimate bend strength. This result is consistent with the supposition that as the oxygen content in SiC-based fibers is reduced, the irradiation stability and hence composite performance under irradiation will improve

  4. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  5. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC

  6. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Nagle, Dennis; Zhang, Dajie

    2009-01-01

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm -3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC

  7. Development of the fabrication process of SiC composite by polycarbosilane

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Kim, Jung Il; Ryu, Woo Seog

    2004-11-01

    This technical report reviewed the fabrication process of fiber reinforced ceramic composites, characteristics of the PIP process, and applications of SiC f /SiC composite to develop a silicon carbide composite by PIP method. Additionally, characteristics and thermal behaviors of a PCS+SiC powder slurry and infiltration behaviors of slurry into the SiC fabric was evaluated. The stacking behaviors of SiC fabrics infiltrated a PCS+SiC powder slurry was also investigated. Using this stacked preforms, SiC f /SiC composites were fabricated by the electron beam curing and pyrolysis process and the thermal oxidation curing and pyrolysis process, respectively. And the characteristics of both composites were compared

  8. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  9. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340 ± 10K

  10. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  11. Tailoring the Electronic and Magnetic Properties of Two-Dimensional Silicon Carbide Sheets and Ribbons by Fluorination

    KAUST Repository

    Shi, Zhiming

    2016-07-12

    Fluorination has been instrumental for tuning the properties of several two-dimensional (2D) materials, including graphene, h-BN, and MoS2. However, its potential application has not yet been explored in 2D silicon carbide (SiC), a promising material for nanoelectronic devices. We investigate the structural, electronic, and magnetic properties of fully and partially fluorinated 2D SiC sheets and nanoribbons by means of density functional theory combined with cluster expansion calculations. We find that fully fluorinated 2D SiC exhibits chair configurations and a nonmagnetic semiconducting behavior. Fluorination is shown to be an efficient approach for tuning the band gap. Four ground states of partially fluorinated SiC, SiCF2x with x = 0.0625, 0.25, 0.5, 0.75, are obtained by cluster expansion calculations. All of them exhibit nanoroad patterns, with the x = 0.5 structure identified as the most stable one. The x = 0.0625 structure is a nonmagnetic metal, while the other three are all ferromagnetic half-metals, whose properties are not affected by the edge states. We propose an effective approach for modulating the electronic and magnetic behavior of 2D SiC, paving the way to applications of SiC nanostructures in integrated multifunctional and spintronic nanodevices. © 2016 American Chemical Society.

  12. Tailoring the Electronic and Magnetic Properties of Two-Dimensional Silicon Carbide Sheets and Ribbons by Fluorination

    KAUST Repository

    Shi, Zhiming; Kutana, Alex; Yu, Guangtao; Chen, Wei; Yakobson, Boris I.; Schwingenschlö gl, Udo; Huang, Xuri

    2016-01-01

    Fluorination has been instrumental for tuning the properties of several two-dimensional (2D) materials, including graphene, h-BN, and MoS2. However, its potential application has not yet been explored in 2D silicon carbide (SiC), a promising material for nanoelectronic devices. We investigate the structural, electronic, and magnetic properties of fully and partially fluorinated 2D SiC sheets and nanoribbons by means of density functional theory combined with cluster expansion calculations. We find that fully fluorinated 2D SiC exhibits chair configurations and a nonmagnetic semiconducting behavior. Fluorination is shown to be an efficient approach for tuning the band gap. Four ground states of partially fluorinated SiC, SiCF2x with x = 0.0625, 0.25, 0.5, 0.75, are obtained by cluster expansion calculations. All of them exhibit nanoroad patterns, with the x = 0.5 structure identified as the most stable one. The x = 0.0625 structure is a nonmagnetic metal, while the other three are all ferromagnetic half-metals, whose properties are not affected by the edge states. We propose an effective approach for modulating the electronic and magnetic behavior of 2D SiC, paving the way to applications of SiC nanostructures in integrated multifunctional and spintronic nanodevices. © 2016 American Chemical Society.

  13. Design and Thermal Analysis for Irradiation of Pyrolytic Carbon/Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Department of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.

  14. Degradation of Silicon Carbide Reflective Surfaces in the LEO Environment

    Science.gov (United States)

    Mileti, Sandro; Coluzzi, Plinio; Marchetti, Mario

    2009-01-01

    Space mirrors in Low Earth Orbit (LEO) encounter a degradation problem caused by the impact of atomic oxygen (ATOX) in the space environment. This paper presents an experiment of the atomic oxygen impact degradation and UV synergic effects on ground simulation. The experiment was carried out in a dedicated ATOX simulation vacuum chamber. As target materials, a polished CVD Beta-silicon carbide (SiC) coating was investigated. The selection of silicon carbide is due to its high potential candidate as a mirror layer substrate material for its good reflectance at UV wavelengths and excellent thermal diffusivity. It has highly desirable mechanical and thermal properties and can achieve an excellent surface finish. The deposition of the coatings were on carbon-based material substrate; i.e., silicon impregnated carbon fiber composite (C/SiC). Mechanical and thermal properties of the coatings such as hardness and Coefficient of Thermal Expansion (CTE) were achieved. Several atomic oxygen impact angles were studied tilting the target samples respect to the flux direction. The various impact angles permitted to analyze the different erosion rates and typologies which the mirrors would encounter in LEO environment. The degradation was analyzed in various aspects. Macroscopic mass loss per unit area, surface roughness and morphology change were basically analyzed. The exposed surfaces of the materials were observed through a Scanning Electron Microscope (SEM). Secondly, optical diagnostic of the surfaces were performed in order to investigate their variation in optical properties as the evaluation of reflectance degradation. The presence of micro-cracks caused by shrinkage, grinding, polishing or thermal cycling and the porosity in the coatings, could have led to the undercutting phenomenon. Observation of uprising of undercutting was also conducted. Remarks are given regarding capabilities in short-term mission exposures to the LEO environment of this coating.

  15. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1979-01-01

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH 3 ) 2 Si][CH 3 Si]. The polysilane contains from 0 to 60 mole percent (CH 3 ) 2 Si units and from 40 to 100 mole percent CH 3 Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 150 0 C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  16. Reliability Assessment of SiC Power MOSFETs From The End User's Perspective

    DEFF Research Database (Denmark)

    Karaventzas, Vasilios Dimitris; Nawaz, Muhammad; Iannuzzo, Francesco

    2016-01-01

    The reliability of commercial Silicon Carbide (SiC) Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) is investigated, and comparative assessment is performed under various test environments. The MOSFETs are tested both regarding the electrical properties of the dies and the packaging...

  17. The suitability of silicon carbide for photocatalytic water oxidation

    Science.gov (United States)

    Aslam, M.; Qamar, M. T.; Ahmed, Ikram; Rehman, Ateeq Ur; Ali, Shahid; Ismail, I. M. I.; Hameed, Abdul

    2018-04-01

    Silicon carbide (SiC), owing to its extraordinary chemical stability and refractory properties, is widely used in the manufacturing industry. Despite the semiconducting nature and morphology-tuned band gap, its efficacy as photocatalysts has not been thoroughly investigated. The current study reports the synthesis, characterization and the evaluation of the capability of silicon carbide for hydrogen generation from water splitting. The optical characterization of the as-synthesized powder exposed the formation of multi-wavelength absorbing entities in synthetic process. The structural analysis by XRD and the fine microstructure analysis by HRTEM revealed the cubic 3C-SiC (β-SiC) and hexagonal α-polymorphs (2H-SiC and 6H-SiC) as major and minor phases, respectively. The Mott-Schottky analysis verified the n-type nature of the material with the flat band potential of - 0.7 V. In the electrochemical evaluation, the sharp increase in the peak currents in various potential ranges, under illumination, revealed the plausible potential of the material for the oxidation of water and generation of hydrogen. The generation of hydrogen and oxygen, as a consequence of water splitting in the actual photocatalytic experiments, was observed and measured. A significant increase in the yield of hydrogen was noticed in the presence of methanol as h + scavenger, whereas a retarding effect was offered by the Fe3+ entities that served as e - scavengers. The combined effect of both methanol and Fe3+ ions in the photocatalytic process was also investigated. Besides hydrogen gas, the other evolved gasses such as methane and carbon monoxide were also measured to estimate the mechanism of the process.

  18. High Quality, Low-Scatter SiC Optics Suitable for Space-based UV & EUV Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG Precision Optronics proposes the development and demonstration of a new optical fabrication process for the production of EUV quality Silicon Carbide (SiC)...

  19. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  20. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C

  1. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  2. Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide

    International Nuclear Information System (INIS)

    Kukushkin, S A; Osipov, A V

    2017-01-01

    The paper focuses on the study of transformation of silicon crystal into silicon carbide crystal via substitution reaction with carbon monoxide gas. As an example, the Si(1 0 0) surface is considered. The cross section of the potential energy surface of the first stage of transformation along the reaction pathway is calculated by the method of nudged elastic bands. It is found that in addition to intermediate states associated with adsorption of CO and SiO molecules on the surface, there is also an intermediate state in which all the atoms are strongly bonded to each other. This intermediate state significantly reduces the activation barrier of transformation down to 2.6 eV. The single imaginary frequencies corresponding to the two transition states of this transformation are calculated, one of which is reactant-like, whereas the other is product-like. By methods of quantum chemistry of solids, the second stage of this transformation is described, namely, the transformation of precarbide silicon into silicon carbide. Energy reduction per one cell is calculated for this ‘collapse’ process, and bond breaking energy is also found. Hence, it is concluded that the smallest size of the collapsing islet is 30 nm. It is shown that the chemical bonds of the initial silicon crystal are coordinately replaced by the bonds between Si and C in silicon carbide, which leads to a high quality of epitaxy and a low concentration of misfit dislocations. (paper)

  3. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  4. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Directory of Open Access Journals (Sweden)

    D. Simin

    2016-07-01

    Full Text Available We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-^{28}SiC and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100  nT/sqrt[Hz] within a volume of 3×10^{-7}mm^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3  mm^{3}, the projection noise limit is below 100  fT/sqrt[Hz].

  5. RBS and ERDA determinations of depth distributions of high-dose carbon ions implanted in silicon for silicon-carbide synthesis study

    International Nuclear Information System (INIS)

    Intarasiri, S.; Kamwanna, T.; Hallen, A.; Yu, L.D.; Janson, M.S.; Thongleum, C.; Possnert, G.; Singkarat, S.

    2006-01-01

    For ion beam synthesis of silicon carbide (SiC), a knowledge of the depth distribution of implanted carbon ions in silicon is crucial for successful development. Based on its simplicity and availability, we selected Rutherford backscattering spectrometry (RBS) as an analysis technique for this purpose. A self-developed computer program dedicated to extract depth profiles of lighter impurities in heavier matrix is established. For control, calculated results are compared with an other ion beam analysis (IBA) technique superior for studying lighter impurity in heavier substrate i.e. elastic recoil detection analysis (ERDA). The RBS was performed with a 1.7-MV Tandetron accelerator using He 2+ as the probe ions. The ERDA was performed with a 5-MV Pelletron accelerator using I 8+ as the probe ions. This work shows that the RBS-extracted data had no significant deviations from those of ERDA and simulations by SRIM2003 and SIIMPL computer codes. We also found that annealing at temperatures as high as 1000 deg. C had quite limited effect on the redistribution of carbon in silicon

  6. Silicon carbide devices: more reliability for transmission and distribution systems; Dispositivos de SiC: mais confiabilidade para sistemas de transmissao e distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Basset, Roger; Ballad, John [Areva T and D Tecnology Centre (United Kingdom)

    2006-05-15

    The silicon carbide power semiconductors will represent an essential role in relation to electrical nets in the future. Counting with higher voltage levels, more rapid commutations and allowing higher temperatures then the current silicon semiconductors, they will result in power electronic equipment with lower dissipation and smaller amount of components, becoming more compacts and reliable.

  7. Study of irradiation effects in the silicon carbide cubic polytype by photoluminescence and electron spin resonance spectroscopies

    International Nuclear Information System (INIS)

    Lefevre, J.

    2008-01-01

    This experimental work has consisted in the study of point defects induced by an electronic irradiation in the cubic crystallographic structure of silicon carbide with low temperature photoluminescence and electron spin resonance spectroscopies. The first one of these measurement tools has allowed to estimate the displacement threshold energy in the silicon sub-lattice and then to analyze the thermal stability of the irradiation defects in the low temperature range: (10-300 K) and then in the high temperature range: (300-1400 K). Besides, on the base of a recent theoretical model, this thesis has confirmed the proposition of the isolated silicon antisite for the D1 center whose running beyond the nominal running temperature of fission nuclear reactors (generation IV), for which SiC is in part intended, seems to be particularly problematic. Measurements carried out by ESR under lighting have at last allowed to detect a new defect in its metastable spin state S=1, possibly associated to a silicon interstitial configuration. (O.M.)

  8. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    Science.gov (United States)

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; Snead, Lance L.

    2016-03-01

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperature and removes possible user-introduced error while standardizing the analysis. This method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.

  9. Identification of {2 anti 1 anti 10} and {10 anti 10} Laue patterns of hexagonal and rhombohedral silicon carbide polytypes

    International Nuclear Information System (INIS)

    Yoganathan, M.; Suttrop, W.; Devaty, R.P.; Choyke, W.J.

    1994-01-01

    The development of epitaxic and bulk-grown semiconductor SiC exhibiting uniform polytype phase homogeneity is critically dependent upon the accurate identification of crystallographic orientations corresponding to the desired polytype. In this paper, experimental transmission Laue photographs as well as computer-generated transmission Laue patterns are presented for {2 anti 1 anti 10} and {10 anti 10} faces of the 4H, 6H and 15R polytypes of silicon carbide. The transmission patterns permit easy recognition of polytypes and crystal orientations. (orig.)

  10. Influence of defects in SiC (0001) on epitaxial graphene

    International Nuclear Information System (INIS)

    Guo Yu; Guo Li-Wei; Lu Wei; Huang Jiao; Jia Yu-Ping; Sun Wei; Li Zhi-Lin; Wang Yi-Fei

    2014-01-01

    Defects in silicon carbide (SiC) substrate are crucial to the properties of the epitaxial graphene (EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC (0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG. (rapid communication)

  11. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  12. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  13. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    Science.gov (United States)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  14. SUPERPOLISHED SI COATED SIC OPTICS FOR RAPID MANUFACTURE OF LARGE APERTURE UV AND EUV TELESCOPES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG/Tinsley proposes an innovative optical manufacturing process that will allow the advancement of state-of-the-art Silicon Carbide (SiC) mirrors for large aperture...

  15. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    tions, they concluded that either reaction sintering or liquid phase .... α-6H silicon carbide single crystal by three different laboratories ... silicon carbide particles by the overall reaction .... layer displacement is likely to occur in such a manner as.

  16. Synthesis of nanostructured SiC using the pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Zhang, H.X.; Feng, P.X.; Makarov, V.; Weiner, B.R.; Morell, G.

    2009-01-01

    We report the new results on the direct synthesis of nanostructured silicon carbide (SiC) materials using the pulsed laser deposition technique. Scanning electron microscopy images revealed that SiC nanoholes, nanosprouts, nanowires, and nanoneedles were obtained. The crystallographic structure, chemical composition, and bond structure of the nanoscale SiC materials were investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman scattering spectroscopy. The transverse optical mode and longitudinal optical mode in Raman spectra were found to become sharper as the substrate temperature was increased, while the material structure evolved from amorphous to crystalline

  17. Formation of silicon carbide by laser ablation in graphene oxide-N-methyl-2-pyrrolidone suspension on silicon surface

    Science.gov (United States)

    Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz

    2018-01-01

    Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction‌ (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy‌ (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV‌-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.

  18. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling

    International Nuclear Information System (INIS)

    Lucas, G.

    2006-10-01

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  19. Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol

    Energy Technology Data Exchange (ETDEWEB)

    Laloy, J., E-mail: julie.laloy@unamur.be [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Lozano, O. [University of Namur (UNamur), Research Centre in Physics of Matter and Radiation (PMR), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium); Alpan, L.; Masereel, B. [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Toussaint, O. [University of Namur (UNamur), Laboratory of Cellular Biochemistry and Biology (URBC), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium); Dogné, J. M. [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Lucas, S. [University of Namur (UNamur), Research Centre in Physics of Matter and Radiation (PMR), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium)

    2015-08-15

    Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time.

  20. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca, E-mail: f.iacopi@griffith.edu.au [Environmental Futures Research Institute, Griffith University, Nathan 4111 (Australia); Wood, Barry [Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia 4072 (Australia)

    2016-05-02

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm{sup −2} with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  2. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    International Nuclear Information System (INIS)

    Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca; Wood, Barry

    2016-01-01

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm"−"2 with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  3. DC characteristics and parameters of silicon carbide high-voltage power BJTs

    International Nuclear Information System (INIS)

    Patrzyk, Joanna; Zarębski, Janusz; Bisewski, Damian

    2016-01-01

    The paper shows the static characteristics and operating parameters of the bipolar power transistors made of silicon carbide and for comparison their equivalents made of classical silicon technology. The characteristics and values of selected operating parameters with special emphasis on the effect of temperature and operating point of considered devices are discussed. Quantitative as well as qualitative differences between the characteristics of the transistor made of silicon and silicon carbide are indicated as well

  4. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shengwang, E-mail: bkdysw@yahoo.cn; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-11-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH{sub 3}){sub 4}) diluted in H{sub 2} as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co{sub 2}Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  5. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    International Nuclear Information System (INIS)

    Yu Shengwang; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-01-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH 3 ) 4 ) diluted in H 2 as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co 2 Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  6. EFFECT OF THE Si POWDER ADDITIONS ON THE PROPERTIES OF SiC COMPOSITES

    Directory of Open Access Journals (Sweden)

    GUOGANG XU

    2012-09-01

    Full Text Available By means of transient plastic phase process, the SiC silicon carbide kiln furniture materials were produced through adding Si powder to SiC materials. At the condition of the same additions of SiO2 powder, the effect of the Si powder additions on properties of silicon carbide materials after sintered at 1450°C for 3 h in air atmosphere was studied by means of SEM and other analysis methods. The results showed that silicon powder contributes to both sintering by liquid state and plastic phase combination to improve the strength of samples. When the Si powder additions is lower than 3.5 %, the density and strength of samples increase and porosity decrease with increasing Si powder additions. However when the Si powder additions is higher than 3.5 %, the density and strength of samples decrease and porosity increase with increasing Si powder additions. With increasing of Si additions, the residual strength of sample after thermal shocked increased and linear change rate decreased, and get to boundary value when Si additions is 4.5 %. The results also indicated that at the same sintering temperature, the sample with 3.5 % silicon powder has maximum strength.

  7. Production of technical silicon and silicon carbide from rice-husk

    Directory of Open Access Journals (Sweden)

    A. Z. Issagulov

    2014-10-01

    Full Text Available In the article there are studied physical and chemical properties of silicon-carbonic raw material – rice-husk, thermophysical characteristics of the process of rice-husk pyrolysis in nonreactive and oxidizing environment; structure and phase composition of products of the rice-husk pyrolysis in interval of temperatures 150 – 850 °С and high temperature pyrolysis in interval of temperatures 900 – 1 500 °С. There are defined the silicon-carbon production conditions, which meet the requirements applicable to charging materials at production of technical silicon and silicon carbide.

  8. The annealing effects on irradiated SiC piezo resistive pressure sensor

    International Nuclear Information System (INIS)

    Almaz, E.; Blue, T. E.; Zhang, P.

    2009-01-01

    The effects of temperature on annealing of Silicon Carbide (SiC) piezo resistive pressure sensor which was broken after high fluence neutron irradiation, were investigated. Previously, SiC piezo resistive sensor irradiated with gamma ray and fast neutron in the Co-60 gamma-ray irradiator and Beam Port 1 (BP1) and Auxiliary Irradiation Facility (AIF) at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) respectively. The Annealing temperatures were tested up to 400 C. The Pressure-Output voltage results showed recovery after annealing process on SiC piezo resistive pressure sensor. The bridge resistances of the SiC pressure sensor stayed at the same level up to 300 C. After 400 C annealing, the resistance values changed dramatically.

  9. Recent progress of ultrahigh voltage SiC devices for particle accelerator

    International Nuclear Information System (INIS)

    Fukuda, Kenji; Tsuji, Takashi; Shiomi, Hiromu; Mizushima, Tomonori; Yonezawa, Yoshiyuki; Kondo, Chikara; Otake, Yuji

    2016-01-01

    Silicon carbide (SiC) is the promising material for next power electronics technology used in the field such as HEV, EV, and railway, electric power infrastructure. SiC enables power devices with low loss to easily operate in an ultrahigh-voltage region because of the high breakdown electric field of SiC. In this paper, we report static and dynamic electric performances of 3300 V class SiC SBDs, IE-MOSFETs, >10 kV PiN diodes and IE-IGBTs. Especially, the electrical characteristics of IE-IGBT with the blocking voltage of 16.5 kV indicate the sufficient ability to convert the thyratron in high power RF system of an accelerator. (author)

  10. Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence

    International Nuclear Information System (INIS)

    Bae, I.-T.; Ishimaru, Manabu; Hirotsu, Yoshihiko; Sickafus, Kurt E.

    2004-01-01

    We have investigated the effect of radiation damage and impurity concentration on solid phase epitaxial growth of amorphous silicon carbide (SiC) as well as microstructures of recrystallized layer using transmission electron microscopy. Single crystals of 6H-SiC with (0001) orientation were irradiated with 150 keV Xe ions to fluences of 10 15 and 10 16 /cm 2 , followed by annealing at 890 deg. C. Full epitaxial recrystallization took place in a specimen implanted with 10 15 Xe ions, while retardation of recrystallization was observed in a specimen implanted with 10 16 /cm 2 Xe ions. Atomic pair-distribution function analyses and energy dispersive x-ray spectroscopy results suggested that the retardation of recrystallization of the 10 16 Xe/cm 2 implanted sample is attributed to the difference in amorphous structures between the 10 15 and 10 16 Xe/cm 2 implanted samples, i.e., more chemically disordered atomistic structure and higher Xe impurity concentration in the 10 16 Xe/cm 2 implanted sample

  11. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming; Bings, Nicolas H.; Broekaert, Jose A.C.

    2008-01-01

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS TM spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm -2 and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower μg g -1 range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 μg g -1

  12. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Bings, Nicolas H. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: bings@chemie.uni-hamburg.de; Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2008-02-15

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS{sup TM} spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm{sup -2} and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower {mu}g g{sup -1} range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 {mu}g g{sup -1}.

  13. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  14. Basic mechanisms of atomic displacement production in cubic silicon carbide: A molecular dynamics study

    International Nuclear Information System (INIS)

    Malerba, L.; Perlado, J.M.

    2002-01-01

    Studying the effects of radiation in silicon carbide (SiC) is important for its possible use in both nuclear and electronic technology. One of the most important parameters to describe radiation damage in a material is the threshold displacement energy (TDE). In this paper, the computational technique known as molecular dynamics (MD) is used to determine the TDE's along different crystallographic directions for Si and C atoms in SiC, also allowing for irradiation temperature effects, and to study in detail the mechanisms of atomic displacement production in this material. For this purpose, the widely tested Tersoff potential, implemented in a MD code optimized to study the interaction of high-energy ions with crystals, is used to describe the interatomic forces in SiC. It is found that it is difficult to define a single threshold for this material. Instead, the introduction of two thresholds, upper and lower, becomes necessary. These two thresholds delimit an uncertainty band, within which the displacement may or may not be produced, because the Frenkel pairs generated in such a transferred-kinetic-energy range are metastable. The Arrhenius law expressing the lifetime of one of these metastable defects has also been deduced from the simulation. Finally, on the basis of the results of the simulation, possible values for the recombination distance and the average threshold energy (E d,Si and E d,C ) in SiC are proposed and discussed

  15. Muonium states in silicon carbide

    International Nuclear Information System (INIS)

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  16. High-temperature stability of laser-joined silicon carbide components

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Marion, E-mail: marion.herrmann@tu-dresden.de; Lippmann, Wolfgang; Hurtado, Antonio

    2013-11-15

    Silicon carbide is recommended for applications in energy technology due to its good high-temperature corrosion resistance, mechanical durability, and abrasion resistance. The prerequisite for use is often the availability of suitable technologies for joining or sealing the components. A laser-induced process using fillers and local heating of the components represents a possible low-cost option. Investigations in which yttrium aluminosilicate glass was used for laser-induced brazing of SiC components of varying geometry are presented. A four-point bending strength of 112 MPa was found for these joints. In burst tests, laser-joined components were found to withstand internal pressures of up to 54 MPa. Helium leak tests yielded leak rates of less than 10{sup –8} mbar l s{sup −1}, even after 300 h at 900 °C. In contrast, the assemblies showed an increased leak rate after annealing at 1050 °C. The short process time of the laser technique – in the range of a few seconds to a few minutes – results in high temperature gradients and transients. SEM analysis showed that the filler in the seam predominantly solidifies in a glassy state. Crystallization occurred during later thermal loading of the joined components, with chemical equilibrium being established. Differences in seam structures yielded from different cooling rates in the laser process could not be equalized by annealing. The results demonstrated the long-term stability of laser-brazed SiC assemblies to temperatures in the range of glass transformation (900 °C) of the yttrium aluminosilicate filler. In technological investigations, the suitability of the laser joining technique for sealing of SiC components with a geometry approximating that of a fuel element sleeve pin (pin) in a gas-cooled fast reactor was proven.

  17. The development of SiC whisker fabrication technology for nuclear applications

    International Nuclear Information System (INIS)

    Kang, Thae Khapp; Kuk, Il Hiun; Lee, Jae Chun; Rhee, Chang Kyu; Lee, Ho Jin; Park, Soon Dong

    1990-02-01

    Important process factors of carbothermic process for the growth of SiC whiskers were investigated. The crystalline form of silicon dioxide, amount of carbon addition, graphite, silicon, catalysts, additive and reaction temperature were chosen as the main factors. Morphology of the resultant products was grouped into 3 different types; whisker,noodle and power types. The addition of catalyst affected in most the formation of SiC whiskers. Effects of catalyst and additive additions and reaction atmospheres on the morphology anf growth of SiC whiskers were investigated, silicon monoxide power and carbon monoxide gas were used as the raw materials. The addition of an iron containing catalyst resulted in a very long thread-like growth of the whiskers, while that of sodium chloride helical curlings. Addition of hydrogen to the non-oxidizing atmosphere enhanced the whisker formations. Crystallization of amorphous silicon monoxide raw powder was investigated at high temperatures up to 1500 deg C in Ar atmosphere using graphite crucible. Up to 900 deg C no crystallization occurred, while at 1100 - 1300 deg C silicon formation, and at 1500 deg C silicon dioxide and silicon carbide formations were detected. A slight weight loss began 1300 deg C, and the weight loss became about 33 % at 1500 deg C. After the formation reaction of SiC whiskers, the reaction products were leached by hydrofluoric acids. The optimum concentration of the hydrofluoric acid was 2 %. (author)

  18. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  19. Pulsed laser deposition of SiC thin films at medium substrate temperatures

    International Nuclear Information System (INIS)

    Katharria, Y.S.; Kumar, Sandeep; Choudhary, R.J.; Prakash, Ram; Singh, F.; Lalla, N.P.; Phase, D.M.; Kanjilal, D.

    2008-01-01

    Systematic studies of thin silicon carbide (SiC) films deposited on Si (100) substrates using pulsed laser deposition technique at room temperature, 370 deg. C and 480 deg. C are carried out. X-ray photoelectron spectroscopy showed the formation of SiC bonds in the films at these temperatures along with some graphitic carbon clusters. Fourier transform infrared analysis also confirmed the formation of SiC nanocrystallites in the films. Transmission electron microscopy and electron diffraction were used to study the structural properties of nanocrystallites formed in the films. Surface morphological analysis using atomic force microscopy revealed the growth of smooth films

  20. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Science.gov (United States)

    Karray, Fekri; Kassiba, Abdelhadi

    2012-06-01

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  1. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Karray, Fekri [Laboratoire des materiaux Ceramiques Composites et Polymeres, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Kassiba, Abdelhadi, E-mail: kassiba@univ-lemans.fr [Institute of Molecules and Materials of Le Mans (I3M), UMR-CNRS 6283, Universite du Maine, 72085 Le Mans (France)

    2012-06-15

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  2. Single Side Electrolytic In-Process Dressing (ELID) Grinding with Lapping Kinematics of Silicon Carbide

    Science.gov (United States)

    Khoshaim, Ahmed Bakr

    The demand for Silicon Carbide ceramics (SiC) has increased significantly in the last decade due to its reliable physical and chemical properties. The silicon carbide is widely used for aerospace segments in addition to many uses in the industry. Sometimes, a single side grinding is preferable than conventional grinding, for it has the ability to produce flat ceramics. However, the manufacturing cost is still high because of the high tool wear and long machining time. Part of the solution is to use electrolytic in process dressing (ELID) to reduce the processing time. The study on ELID single side grinding of ceramics has never been attempted before. The study involves four variables with three levels each. One of the variables, which is the eccentricity, is being investigated for the first time on ceramics. A full factorial design, for both the surface roughness and material removal rate, guides to calculate mathematical models that can predict future results. Three grinding wheel mesh sizes are used. An investigation of the influence of different grain size on the results can then be evaluated. The kinematics of the process was studied based on eccentricity in order to optimize the pattern of the diamond grains. The experiment is performed with the assist of the proposed specialized ELID fluid, TRIM C270E.

  3. Recycling silicon wire-saw slurries: separation of silicon and silicon carbide in a ramp settling tank under an applied electrical field.

    Science.gov (United States)

    Tsai, Tzu-Hsuan; Shih, Yu-Pei; Wu, Yung-Fu

    2013-05-01

    The growing demand for silicon solar cells in the global market has greatly increased the amount of silicon sawing waste produced each year. Recycling kerf Si and SiC from sawing waste is an economical method to reduce this waste. This study reports the separation of Si and SiC using a ramp settling tank. As they settle in an electrical field, small Si particles with higher negative charges have a longer horizontal displacement than SiC particles in a solution of pH 7, resulting in the separation of Si and SiC. The agreement between experimental results and predicted results shows that the particles traveled a short distance to reach the collection port in the ramp tank. Consequently, the time required for tiny particles to hit the tank bottom decreased, and the interference caused by the dispersion between particles and the fluid motion during settling decreased. In the ramp tank, the highest purities of the collected SiC and Si powders were 95.2 and 7.01 wt%, respectively. Using a ramp tank, the recycling fraction of Si-rich powders (SiC tanks. Recycling Si and SiC abrasives from the silicon sawing waste is regarded as an economical solution to reduce the sawing waste. However, the separation of Si and SiC is difficult. This study reports the separation of Si and SiC using a ramp settling tank under an applied electrical field. As they settle in an electrical field, small Si particles with higher negative charges have a longer horizontal displacement than SiC particles in a solution of pH 7, resulting in the separation of Si and SiC. Compared with the rectangular tanks, the recycling fraction of Si-rich powders using a ramp tank is greater, and the proposed ramp settling tank is more suitable for industrial applications.

  4. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    Science.gov (United States)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  5. Atomistic simulation of rapid compression of fractured silicon carbide

    International Nuclear Information System (INIS)

    Romano, A.; Li, J.; Yip, S.

    2006-01-01

    Deformation mechanisms of a crack in silicon carbide under high-rate compression are investigated by molecular dynamics simulation. The penny-shaped crack is in tension throughout the simulation while a variable compression is applied in an in-plane direction. Two different mechanisms of crack-tip response are observed: (1) At low tension, a disordered band forms from the crack surface in the direction orthogonal to the compression, which grows as the compressional force is increased in a manner suggesting a stress-induced transition from an ordered to a disordered phase. Moreover the crack is observed to close. (2) At a tension sufficient to allow the crack to remain open, the compressional stress induces formation of disordered regions along the boundaries of the opened crack, which grow and merge into a band as the compression proceeds. This process is driven by bending of the initial crack, which transforms into a curved slit. This mechanism induces incorporation of fragments of perfect crystal into the disordered band. Similar mechanisms have been experimentally observed to occur in porous SiC under high-strain rate compression

  6. Self-diffusion in isotopically enriched silicon carbide and its correlation with dopant diffusion

    International Nuclear Information System (INIS)

    Rueschenschmidt, K.; Bracht, H.; Stolwijk, N.A.; Laube, M.; Pensl, G.; Brandes, G.R.

    2004-01-01

    Diffusion of 13 C and 30 Si in silicon carbide was performed with isotopically enriched 4H- 28 Si 12 C/ nat SiC heterostructures which were grown by chemical vapor phase epitaxy. After diffusion annealing at temperatures between 2000 deg. C and 2200 deg. C the 30 Si and 13 C profiles were measured by means of secondary ion mass spectrometry. We found that the Si and C diffusivity is of the same order of magnitude but several orders of magnitude lower than earlier data reported in the literature. Both Si and C tracer diffusion coefficients are in satisfactory agreement with the native point defect contribution to self-diffusion deduced from B diffusion in SiC. This reveals that the native defect which mediates B diffusion also controls self-diffusion. Assuming that B atoms within the extended tail region of B profiles are mainly dissolved on C sites, we propose that B diffuses via the kick-out mechanism involving C interstitials. Accordingly, C diffusion should proceed mainly via C interstitials. The mechanism of Si diffusion remains unsolved but Si may diffuse via both Si vacancies and interstitials, with the preference for either species depending on the doping level

  7. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  8. Revised activation estimates for silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Cheng, E.T.; Mann, F.M.

    1996-10-01

    Recent progress in nuclear data development for fusion energy systems includes a reevaluation of neutron activation cross sections for silicon and aluminum. Activation calculations using the newly compiled Fusion Evaluated Nuclear Data Library result in calculated levels of {sup 26}Al in irradiated silicon that are about an order of magnitude lower than the earlier calculated values. Thus, according to the latest internationally accepted nuclear data, SiC is much more attractive as a low activation material, even in first wall applications.

  9. Threshold irradiation dose for amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1997-01-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface or strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be ∼0.56eV. This model successfully explains the difference in the temperature dependent amorphization behavior of SiC irradiated with 0.56 MeV Si + at 1 x 10 -3 dpa/s and with fission neutrons irradiated at 1 x 10 -6 dpa/s irradiated to 15 dpa in the temperature range of ∼340±10K

  10. Large area SiC coating technology of RBSC for semiconductor processing component

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described

  11. Large area SiC coating technology of RBSC for semiconductor processing component

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described.

  12. Residual stress and mechanical properties of SiC ceramic by heat treatment

    International Nuclear Information System (INIS)

    Yoon, H.K.; Kim, D.H.; Shin, B.C.

    2007-01-01

    Full text of publication follows: Silicon carbide is a compound of relatively low density, high hardness, elevated thermal stability and good thermal conductivity, resulting in good thermal shock resistance. Because of these properties, SiC materials are widely used as abrasives and refractories. In this study, SiC single and poly crystals was grown by the sublimation method using the SiC seed crystal and SiC powder as the source material. Mechanical properties of SiC single and poly crystals are carried out by using the nano-indentation method and small punch test after the heat treatment. As a result, mechanical properties of SiC poly crystal had over double than single. And SiC single and poly crystals were occurred residual stress, but residual stress was shown relaxant properties by the effect of heat treatment. (authors)

  13. Re-defining failure envelopes for silicon carbide composites based on damage process analysis by acoustic emission

    International Nuclear Information System (INIS)

    Nozawa, Takashi; Ozawa, Kazumi; Tanigawa, Hiroyasu

    2013-01-01

    A silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) composite is a promising candidate for a fusion DEMO blanket. To develop design codes in practical use of them, strength anisotropy is an important issue to be clarified and therefore this study aimed to evaluate the failure behavior of the SiC/SiC composites to provide a strength map. For this purpose, detailed tensile, compressive and in-plane shear failure behaviors were evaluated by the acoustic emission (AE) technique for a plain–weave (P/W) chemically vapor-infiltration (CVI) SiC/SiC composite. The AE results distinguished damage accumulation processes by separately discussing localized variations of power within a time series by wavelet analysis. Of particular emphasis is that matrix cracking occurred prior to the proportional limit stress (PLS) by both tensile and compressive tests. This is because the rough-surface of SiC fibers resulted in the strong frictional stress at the fiber/matrix (F/M) interface, showing linearity in the stress–strain curve beyond the actual matrix cracking stress (i.e., possibly no sliding of the fibers at the F/M interface). In this paper, an updated failure envelope was provided by referring the true matrix cracking stresses as more realistic and reasonable failure criteria

  14. Re-defining failure envelopes for silicon carbide composites based on damage process analysis by acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, Takashi, E-mail: nozawa.takashi67@jaea.go.jp; Ozawa, Kazumi; Tanigawa, Hiroyasu

    2013-10-15

    A silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) composite is a promising candidate for a fusion DEMO blanket. To develop design codes in practical use of them, strength anisotropy is an important issue to be clarified and therefore this study aimed to evaluate the failure behavior of the SiC/SiC composites to provide a strength map. For this purpose, detailed tensile, compressive and in-plane shear failure behaviors were evaluated by the acoustic emission (AE) technique for a plain–weave (P/W) chemically vapor-infiltration (CVI) SiC/SiC composite. The AE results distinguished damage accumulation processes by separately discussing localized variations of power within a time series by wavelet analysis. Of particular emphasis is that matrix cracking occurred prior to the proportional limit stress (PLS) by both tensile and compressive tests. This is because the rough-surface of SiC fibers resulted in the strong frictional stress at the fiber/matrix (F/M) interface, showing linearity in the stress–strain curve beyond the actual matrix cracking stress (i.e., possibly no sliding of the fibers at the F/M interface). In this paper, an updated failure envelope was provided by referring the true matrix cracking stresses as more realistic and reasonable failure criteria.

  15. Test setup for long term reliability investigation of Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Beczkowski, Szymon

    2013-01-01

    Silicon Carbide MOSFETs are now widely available and have frequently been demonstrated to offer numerous advantages over Silicon based devices. However, reliability issues remain a significant concern in their realisation in commercial power electronic systems. In this paper, a test bench...... is designed that enables an accelerated power cycling test to be performed on packaged Silicon Carbide MOSFETs (TO-247) under realistic operating conditions. An accelerated power cycling test is then performed, with on-state resistance selected as the observed parameter to detect degradation. On......-state resistance is routinely monitored online through the use of an innovative voltage measurement system. The packaged Silicon Carbide MOSFET is shown to exhibit a 25% increase in on-state resistance as the device ages throughout its lifetime, with the test still on-going....

  16. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  17. Structure-Property Relationships in Polymer Derived Amorphous/Nano-Crystalline Silicon Carbide for Nuclear Applications

    International Nuclear Information System (INIS)

    Zunjarrao, Suraj C.; Singh, Abhishek K.; Singh, Raman P.

    2006-01-01

    Silicon carbide (SiC) is a promising candidate for several applications in nuclear reactors owing to its high thermal conductivity, high melting temperature, good chemical stability, and resistance to swelling under heavy ion bombardment. However, fabricating SiC by traditional powder processing route generally requires very high temperatures for pressureless sintering. Polymer derived ceramic materials offer unique advantages such as ability to fabricate net shaped components, incorporate reinforcements and relatively low processing temperatures. Furthermore, for SiC based ceramics fabricated using polymer infiltration process (PIP), the microstructure can be tailored by controlling the processing parameters, to get an amorphous, nanocrystalline or crystalline SiC. In this work, fabrication of polymer derived amorphous and nano-grained SiC is presented and its application as an in-core material is explored. Monolithic SiC samples are fabricated by controlled pyrolysis of allyl-hydrido-poly-carbo-silane (AHPCS) under inert atmosphere. Chemical changes, phase transformations and microstructural changes occurring during the pyrolysis process are studied as a function of the processing temperature. Polymer cross-linking and polymer to ceramic conversion is studied using infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) are performed to monitor the mass loss and phase change as a function of temperature. X-ray diffraction studies are done to study the intermediate phases and microstructural changes. Variation in density is carefully monitored as a function of processing temperature. Owing to shrinkage and gas evolution during pyrolysis, precursor derived ceramics are inherently porous and composite fabrication typically involves repeated cycles of polymer re-infiltration and pyrolysis. However, there is a limit to the densification that can be achieved by this method and porosity in the final materials presents

  18. Electronic properties of epitaxial 6H silicon carbide

    International Nuclear Information System (INIS)

    Wessels, B.W.; Gatos, H.C.

    1977-01-01

    The electrical conductivity and Hall coefficient were measured in the temperature range from 78 to 900 K for n-type epitaxially grown 6H silicon carbide. A many-valley model of the conduction band was used in the analysis of electron concentration as a function of temperature. From this analysis, the density of states mass to the free electron mass ratio per ellipsoid was calculated to be 0.45. It was estimated that the constant energy surface of the conduction band consists of three ellipsoids. The ionization energy of the shallowest nitrogen donor was found to be 105 meV, when the valley-orbit interaction was taken into account. The electron scattering mechanisms in the epitaxial layers were analyzed and it was shown that the dominant mechanism limiting electron mobility at high temperatures is inter-valley scattering and at low temperatures (200K), impurity and space charge scattering. A value of 360 cm 2 /V sec was calculated for the maximum room temperature Hall mobility expected for electrons in pure 6H SiC. The effect of epitaxial growth temperature on room temperature Hall mobility was also investigated. (author)

  19. Silicon carbide transparent chips for compact atomic sensors

    Science.gov (United States)

    Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.

    2017-11-01

    Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].

  20. Fabrication and characterization of aluminium hybrid composites reinforced with fly ash and silicon carbide through powder metallurgy

    Science.gov (United States)

    Bilal Naim Shaikh, Mohd; Arif, Sajjad; Arif Siddiqui, M.

    2018-04-01

    This paper reports the fabrication and characterization of aluminium hybrid composites (AMCs) reinforced with commonly available and inexpensive fly ash (FA, 0, 5, 10 and 15 wt.%) particles along silicon carbide (SiC) using powder metallurgy process. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were employed for microstructural characterization and phase identification respectively. Wear behaviour were investigated using pin-on-disc wear tester for the different combinations of wear parameters like load (10, 20 and 30 N), sliding speed (1.5, 2 and 2.5 m s‑1) and sliding distance (300, 600 and 900 m). SEM confirms the uniform distribution of FA and SiC in aluminium matrix. The hardness of Al/SiC/FA is increased by 20%–25% while wear rate decreased by 15%–40%. From wear analysis, sliding distance was the least significant parameter influencing the wear loss followed by applied load and sliding speed. To identify the mechanism of wear, worn out surface were also analysed by SEM.

  1. Potential of Glassy Carbon and Silicon Carbide Photonic Structures as Electromagnetic Radiation Shields for Atmospheric Re-entry

    Science.gov (United States)

    Komarevskiy,Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John W.

    2012-01-01

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.

  2. The significance of strength of silicon carbide for the mechanical integrity of coated fuel particles for HTRs

    International Nuclear Information System (INIS)

    Bongartz, K.; Scheer, A.; Schuster, H.; Taeuber, K.

    1975-01-01

    Silicon carbide (SiC) and pyrocarbon are used as coating material for the HTR fuel particles. The PyC shell having a certain strength acts as a pressure vessel for the fission gases whereas the SiC shell has to retain the solid fission products in the fuel kernel. For measuring the strength of coating material the so-called Brittle Ring Test was developed. Strength and Young's modulus can be measured simultaneously with this method on SiC or PyC rings prepared out of the coating material of real fuel particles. The strength measured on the ring under a certain stress distribution which is characteristic for this method is transformed with the aid of the Weibull formalism for brittle fracture into the equivalent strength of the spherical coating shell on the fuel particle under uniform stress caused by the fission gas pressure. The values measured for the strength of the SiC were high (400-700MN/m 2 ), it could therefore be assumed that a SiC layer might contribute significantly also to the mechanical strength of the fuel coating. This assumption was confirmed by an irradiation test on coated particles with PyC-SiC-PyC coatings. There were several particles with all PyC layers broken during the irradiation, whereas the SiC layers remained intact having to withstand the fission gas pressure alone. This fact can only be explained assuming that the strength of the SiC is within the range of the values measured with the brittle ring test. The result indicates that, in optimising the coating of a fuel particle, the PyC layers of a multilayer coating should be considered alone as prospective layers for the SiC. The SiC shell, besides acting as a fission product barrier, is then also responsible for the mechanical integrity of the particle

  3. Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xue, Haizhou [Univ. of Tennessee, Knoxville, TN (United States); Zarkadoula, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Army Research Office, Triangle Park, NC (United States); Ostrouchov, Christopher [Univ. of Tennessee, Knoxville, TN (United States); Liu, Peng [Univ. of Tennessee, Knoxville, TN (United States); Shandong Univ., Jinan (China); Wang, Xue -lin [Shandong Univ., Jinan (China); Zhang, Shuo [Lanzhou Univ., Gansu Province (China); Wang, Tie Shan [Lanzhou Univ., Gansu Province (China); Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-16

    Understanding energy dissipation processes in electronic/atomic subsystems and subsequent non-equilibrium defect evolution is a long-standing challenge in materials science. In the intermediate energy regime, energetic particles simultaneously deposit a significant amount of energy to both electronic and atomic subsystems of silicon carbide (SiC). Here we show that defect evolution in SiC closely depends on the electronic-to-nuclear energy loss ratio (Se/Sn), nuclear stopping powers (dE/dxnucl), electronic stopping powers (dE/dxele), and the temporal and spatial coupling of electronic and atomic subsystem for energy dissipation. The integrated experiments and simulations reveal that: (1) increasing Se/Sn slows damage accumulation; (2) the transient temperatures during the ionization-induced thermal spike increase with dE/dxele, which causes efficient damage annealing along the ion trajectory; and (3) for more condensed displacement damage within the thermal spike, damage production is suppressed due to the coupled electronic and atomic dynamics. Ionization effects are expected to be more significant in materials with covalent/ionic bonding involving predominantly well-localized electrons. Here, insights into the complex electronic and atomic correlations may pave the way to better control and predict SiC response to extreme energy deposition

  4. Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide

    Science.gov (United States)

    Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.

    2011-10-01

    The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.

  5. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  6. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Gryshkov, Oleksandr, E-mail: gryshkov@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Klyui, Nickolai I., E-mail: klyuini@ukr.net [College of Physics, Jilin University, 130012 Changchun (China); V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Temchenko, Volodymyr P., E-mail: tvp@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Kyselov, Vitalii S., E-mail: kyselov@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Chatterjee, Anamika, E-mail: chatterjee@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Belyaev, Alexander E., E-mail: belyaev@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Lauterboeck, Lothar, E-mail: lauterboeck@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany); Iarmolenko, Dmytro, E-mail: iarmolenko.dmytro@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028 Kyiv (Ukraine); Glasmacher, Birgit, E-mail: glasmacher@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO{sub 2}) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO{sub 2} using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO{sub 2} to the initial HA powder resulted in significant decomposition of the final HA/ZrO{sub 2} coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO{sub 2} coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC

  7. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Klyui, Nickolai I.; Temchenko, Volodymyr P.; Kyselov, Vitalii S.; Chatterjee, Anamika; Belyaev, Alexander E.; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-01-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO 2 ) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO 2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO 2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO 2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO 2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. - Highlights: • Synthesis and characterization of porous biomorphic SiC ceramics derived from wood • Successful deposition of bioactive calcium phosphate coatings using gas detonation deposition • Porosity and pore size of SiC ceramics depend on wood

  8. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck

    2016-12-01

    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  9. Rapid Chemical Vapor Infiltration of Silicon Carbide Minicomposites at Atmospheric Pressure.

    Science.gov (United States)

    Petroski, Kenneth; Poges, Shannon; Monteleone, Chris; Grady, Joseph; Bhatt, Ram; Suib, Steven L

    2018-02-07

    The chemical vapor infiltration technique is one of the most popular for the fabrication of the matrix portion of a ceramic matrix composite. This work focuses on tailoring an atmospheric pressure deposition of silicon carbide onto carbon fiber tows using the methyltrichlorosilane (CH 3 SiCl 3 ) and H 2 deposition system at atmospheric pressure to create minicomposites faster than low pressure systems. Adjustment of the flow rate of H 2 bubbled through CH 3 SiCl 3 will improve the uniformity of the deposition as well as infiltrate the substrate more completely as the flow rate is decreased. Low pressure depositions conducted at 50 Torr deposit SiC at a rate of approximately 200 nm*h -1 , while the atmospheric pressure system presented has a deposition rate ranging from 750 nm*h -1 to 3.88 μm*h -1 . The minicomposites fabricated in this study had approximate total porosities of 3 and 6% for 10 and 25 SCCM infiltrations, respectively.

  10. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  11. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic

    International Nuclear Information System (INIS)

    Reau, A.

    2008-01-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC f /SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC f /SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  12. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite

    International Nuclear Information System (INIS)

    Singh, R.N.

    1990-01-01

    This paper reports that mechanical properties of a monolithic zircon ceramic and zircon-matrix composites uniaxially reinforced with either uncoated or BN-coated silicon carbide monofilaments were measured in flexure between 25 degrees and 1477 degrees C. Monolithic zircon ceramics were weak and exhibited a brittle failure up to abut 1300 degrees C. An increasing amount of the plastic deformation was observed before failure above about 1300 degrees C. In contrast, composites reinforced with either uncoated or BN-coated Sic filaments were stronger and tougher than the monolithic zircon at all test temperatures between 25 degrees and 1477 degrees. The ultimate strength and work-of-fracture of composite samples decreased with increasing temperature. A transgranular matrix fracture was shown by the monolithic and composite samples tested up to about 1200 degrees C, whereas an increasing amount of the intergranular matrix fracture was displayed above 1200 degrees C

  13. Advanced Non-Destructive Assessment Technology to Determine the Aging of Silicon Containing Materials for Generation IV Nuclear Reactors

    Science.gov (United States)

    Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.

    2011-06-01

    To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.

  14. Erosion behaviour of physically vapour-deposited and chemically vapour-deposited SiC films coated on molybdenum during oxygenated argon beam thinning

    International Nuclear Information System (INIS)

    Shikama, T.; Kitajima, M.; Fukutomi, M.; Okada, M.

    1984-01-01

    The erosion behaviour during bombardment with a 5 keV argon beam at room temperature was studied for silicon carbide (SiC) films of thickness of about 10 μm coated on molybdenum by physical vapour deposition (PVD) and chemical vapour deposition (CVD). The PVD SiC (plasma-assisted ion plating) exhibited a greater thinning rate than the CVD SiC film. Electron probe X-ray microanalysis revealed that the chemical composition of PVD SiC was changed to a composition enriched in silicon by the bombardment, and there was a notable change in its surface morphology. The CVD SiC retained its initial chemical composition with only a small change in its surface morphology. Auger electron spectroscopy indicated that silicon oxide was formed on the surface of PVD SiC by the bombardment. The greater thinning rate and easier change in chemical composition in PVD SiC could be attributed to its readier chemical reaction with oxygen due to its more non-uniform structure and weaker chemical bonding. Oxygen was present as one of the impurities in the argon beam. (Auth.)

  15. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.

    Science.gov (United States)

    Lou, Ping

    2011-10-14

    The edge reconstruction effect of the zigzag silicon carbide nanoribbons (zz SiC NRs) to a stable line of alternatively fused seven and five membered rings without and with H passivation have been studied using first principles density functional theory (DFT). The both side's edges of the pristine SiC are respectively terminated by Si and C atoms and are called the Si-edge and the C-edge, respectively. In the un-passivated systems, the C-edge reconstructed (Crc) could effectively lower the edge energy of the system, while the Si-edge reconstructed (Sirc) could raise the edge energy of the system. Thus, the Crc edge is the best edge for the edge reconstruction of the system, while the both edge reconstructed (brc) system is the metastability. Moreover, the brc system has a nonmagnetic metallic state, whereas the Crc system, as well as Sirc system, has a ferromagnetic metallic state. The edge reconstructed destroys the magnetic moment of the corresponding edge atoms. The magnetic moment arises from the unreconstructed zigzag edges. The pristine zz edge system has a ferrimagnetic metallic state. However, in the H-passivated systems, the unreconstructed zigzag edge (zz-H) is the best edge. The Crc-H system is the metastability. The Sirc-H system has only slightly higher energy than the Crc-H system, whereas the brc-H system of the pristine SiC NR has the highest edge energy. Thus, the H passivation would prevent the occurrence of edge reconstruction. Moreover, H passivation induces a metal-semiconductor transition in the zz and brc SiC NRs. Additionally, except for brc-H system which has non-magnetic semiconducting state, the zz-H, Crc-H, and Sirc-H systems have the magnetic state.

  16. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  17. Effects of silicon carbide on the phase developments in mullite-carbon ceramic composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of the addition of silicon carbide and sintering temperatures on the phases developed, in sintered ceramic composite produced from kaolin and graphite was investigated. The kaolin and graphite of known mineralogical composition were thoroughly blended with 4 and 8 vol % silicon carbide. From the homogeneous mixture of kaolin, graphite and silicon carbide, standard samples were prepared via uniaxial compaction. The test samples produced were subjected to firing (sintering at 1300°C, 1400°C and 1500°C. The sintered samples were characterized for the developed phases using x‐ray diffractometry analysis, microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM. It was observed that microstructural morphology of the samples revealed the evolution of mullite, cristobalite and microcline. The kaolinite content of the raw kaolin undergoes transformation into mullite and excess silica, the mullite and the silica phases contents increased with increased sintering temperature. It is also generally observed that the graphite content progressively reduced linearly with increased sintering temperature. It is concluded that silicon carbide acts as anti-oxidant for the graphite, this anti-oxidant effect was more effective at 4 vol % silicon carbide.

  18. Measurement of leakage neutron spectra from silicon carbide cylinders with D–T neutrons and validation of evaluated nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Han, R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413 (China); Nie, Y. [Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413 (China); Chen, Z., E-mail: zqchen@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, S. [College of Physics Electronic Information, Inner Mongolia University for the Nationalities, Tongliao 028000 (China); Shi, F.; Lin, W.; Ren, P.; Tian, G.; Sun, Q.; Gou, B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Ruan, X.; Ren, J. [Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413 (China); Ye, M. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China)

    2016-11-15

    Highlights: • Evaluated data for SiC are validated by a high precision benchmark experiment. • Leakage neutron spectra from SiC cylinders are measured at 60° and 120° using time-of-flight method. • The experimental results are compared with the MCNP-4C calculations with ENDF-BVII.1, JENDL-4.0 and CENDL-3.1 libraries. • The SiC evaluated nuclear data from CENDL-3.1 library was checked for the first time and proved to be reliable. - Abstract: Benchmarking of evaluated nuclear data libraries was performed for 14 MeV neutrons on silicon carbide samples. The experiments were carried out by using the benchmark experimental facility at China Institute of Atomic Energy (CIAE). The leakage neutron spectra from SiC (Φ13 cm × 20 cm) at 60° and 120° and SiC (Φ13 cm × 2 cm) at 60° were measured by the TOF method. The measured spectra are well reproduced by MCNP-4C calculations with the CENDL-3.1, ENDF/B-VII.1 and JENDL-4.0 evaluated nuclear data libraries, except 5–8 MeV range for 20 cm thickness. The discrepancies are mostly considered as caused by the improper evaluation of the angular distribution and secondary neutron energy distribution of the elastic scattering and inelastic scattering in evaluated nuclear data libraries.

  19. Measurement of leakage neutron spectra from silicon carbide cylinders with D–T neutrons and validation of evaluated nuclear data

    International Nuclear Information System (INIS)

    Luo, F.; Han, R.; Nie, Y.; Chen, Z.; Zhang, S.; Shi, F.; Lin, W.; Ren, P.; Tian, G.; Sun, Q.; Gou, B.; Ruan, X.; Ren, J.; Ye, M.

    2016-01-01

    Highlights: • Evaluated data for SiC are validated by a high precision benchmark experiment. • Leakage neutron spectra from SiC cylinders are measured at 60° and 120° using time-of-flight method. • The experimental results are compared with the MCNP-4C calculations with ENDF-BVII.1, JENDL-4.0 and CENDL-3.1 libraries. • The SiC evaluated nuclear data from CENDL-3.1 library was checked for the first time and proved to be reliable. - Abstract: Benchmarking of evaluated nuclear data libraries was performed for 14 MeV neutrons on silicon carbide samples. The experiments were carried out by using the benchmark experimental facility at China Institute of Atomic Energy (CIAE). The leakage neutron spectra from SiC (Φ13 cm × 20 cm) at 60° and 120° and SiC (Φ13 cm × 2 cm) at 60° were measured by the TOF method. The measured spectra are well reproduced by MCNP-4C calculations with the CENDL-3.1, ENDF/B-VII.1 and JENDL-4.0 evaluated nuclear data libraries, except 5–8 MeV range for 20 cm thickness. The discrepancies are mostly considered as caused by the improper evaluation of the angular distribution and secondary neutron energy distribution of the elastic scattering and inelastic scattering in evaluated nuclear data libraries.

  20. Operation and Modulation of H7 Current Source Inverter with Hybrid SiC and Si Semiconductor Switches

    DEFF Research Database (Denmark)

    Wang, Weiqi; Gao, Feng; Yang, Yongheng

    2018-01-01

    This paper proposes an H7 current source inverter (CSI) consisting of a single parallel-connected silicon carbide (SiC) switch and a traditional silicon (Si) H6 CSI. The proposed H7 CSI takes the advantages of the SiC switch to maintain high efficiency, while significantly increasing the switching...... as an all-SiC-switch converter in terms of high performance and high efficiency with reduced DC inductance. It provides a cost-effective solution to addressing the efficiency issue of conventional CSI systems. Simulations and experiments are performed to validate the effectiveness of the proposed H7 CSI...

  1. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  2. Microstructural Evaluation of Inductively Sintered Aluminum Matrix Nanocomposites Reinforced with Silicon Carbide and/or Graphene Nanoplatelets for Tribological Applications

    Science.gov (United States)

    Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib

    2018-04-01

    Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.

  3. Fast digitization and discrimination of prompt neutron and photon signals using a novel silicon carbide detector

    International Nuclear Information System (INIS)

    Brandon W. Blackburn; James T. Johnson; Scott M. Watson; David L. Chichester; James L. Jones; Frank H. Ruddy; John G. Seidel; Robert W. Flammang

    2007-01-01

    Current requirements of some Homeland Security active interrogation projects for the detection of Special Nuclear Material (SNM) necessitate the development of faster inspection and acquisition capabilities. In order to do so, fast detectors which can operate during and shortly after intense interrogation radiation flashes are being developed. Novel silicon carbide (SiC) semiconductor Schottky diodes have been utilized as robust neutron and photon detectors in both pulsed photon and pulsed neutron fields and are being integrated into active inspection environments to allow exploitation of both prompt and delayed emissions. These detectors have demonstrated the capability of detecting both photon and neutron events during intense photon flashes typical of an active inspection environment. Beyond the inherent insensitivity of SiC to gamma radiation, fast digitization and processing has demonstrated that pulse shape discrimination (PSD) in combination with amplitude discrimination can further suppress unwanted gamma signals and extract fast neutron signatures. Usable neutron signals have been extracted from mixed radiation fields where the background has exceeded the signals of interest by >1000:1

  4. Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Polychroniadis, Efstathios K; Stanciu, George A

    2017-07-07

    Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the "optical signature" concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide. This technique can be used for fast and in situ characterization and optimization of growth conditions for epilayers of silicon carbide and similar materials.

  5. Interface and interaction of graphene layers on SiC(0001[combining macron]) covered with TiC(111) intercalation.

    Science.gov (United States)

    Wang, Lu; Wang, Qiang; Huang, Jianmei; Li, Wei-Qi; Chen, Guang-Hui; Yang, Yanhui

    2017-10-11

    It is important to understand the interface and interaction between the graphene layer, titanium carbide [TiC(111)] interlayer, and silicon carbide [SiC(0001[combining macron])] substrates in epitaxial growth of graphene on silicon carbide (SiC) substrates. In this study, the fully relaxed interfaces which consist of up to three layers of TiC(111) coatings on the SiC(0001[combining macron]) as well as the graphene layers interactions with these TiC(111)/SiC(0001[combining macron]) were systematically studied using the density functional theory-D2 (DFT-D2) method. The results showed that the two layers of TiC(111) coating with the C/C-terminated interfaces were thermodynamically more favorable than one or three layers of TiC(111) on the SiC(0001[combining macron]). Furthermore, the bonding of the Ti-hollow-site stacked interfaces would be a stronger link than that of the Ti-Fcc-site stacked interfaces. However, the formation of the C/Ti/C and Ti/C interfaces implied that the first upper carbon layer can be formed on TiC(111)/SiC(0001[combining macron]) using the decomposition of the weaker Ti-C and C-Si interfacial bonds. When growing graphene layers on these TiC(111)/SiC(0001[combining macron]) substrates, the results showed that the interaction energy depended not only on the thickness of the TiC(111) interlayer, but also on the number of graphene layers. Bilayer graphene on the two layer thick TiC(111)/SiC(0001[combining macron]) was thermodynamically more favorable than a monolayer or trilayer graphene on these TiC(111)/SiC(0001[combining macron]) substrates. The adsorption energies of the bottom graphene layers with the TiC(111)/SiC(0001[combining macron]) substrates increased with the decrease of the interface vertical distance. The interaction energies between the bottom, second and third layers of graphene on the TiC(111)/SiC(0001[combining macron]) were significantly higher than that of the freestanding graphene layers. All of these findings provided

  6. Ion-beam synthesis and photoluminescence of SiC nanocrystals assisted by MeV-heavy-ion-beam annealing

    International Nuclear Information System (INIS)

    Khamsuwan, J.; Intarasiri, S.; Kirkby, K.; Chu, P.K.; Singkarat, S.; Yu, L.D.

    2012-01-01

    This work explored a novel way to synthesize silicon carbide (SiC) nanocrystals for photoluminescence. Carbon ions at 90 keV were implanted in single crystalline silicon wafers at elevated temperature, followed by irradiation using xenon ion beams at an energy of 4 MeV with two low fluences of 5 × 10 13 and 1 × 10 14 ions/cm 2 at elevated temperatures for annealing. X-ray diffraction, Raman scattering, infrared spectroscopy and transmission electron microscopy were used to characterize the formation of nanocrystalline SiC. Photoluminescence was measured from the samples. The results demonstrated that MeV-heavy-ion-beam annealing could indeed induce crystallization of SiC nanocrystals and enhance emission of photoluminescence with violet bands dominance due to the quantum confinement effect.

  7. Evaluation of the mechanical performance of silicon carbide in TRISO fuel at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rohbeck, Nadia, E-mail: nadia.rohbeck@manchester.ac.uk; Xiao, Ping, E-mail: p.xiao@manchester.ac.uk

    2016-09-15

    The HTR design envisions fuel operating temperatures of up to 1000 °C and in case of an accident even 1600 °C are conceivable. To ensure safety in all conditions a thorough understanding of the impact of an extreme temperature environment is necessary. This work assesses the high temperature mechanical performance of the silicon carbide (SiC) layer within the tristructural-isotropic (TRISO) fuel particle as it poses the main barrier against fission product release into the primary circuit. Therefore, simulated fuel was fabricated by fluidized bed chemical vapour deposition; varying the deposition conditions resulted in strongly differing SiC microstructures for the various samples. Subsequently the TRISO particles were annealed in inert atmosphere at temperatures ranging from 1600 °C up to 2200 °C. Scanning electron microscopy and Raman spectroscopy showed that strong disintegration of the SiC layer occurred from 2100 °C onwards, but initial signs of porosity formation were visible already at 1800 °C. Still, the elastic modulus and hardness as measured by nanoindentation were hardly impaired. After annealing stoichiometric SiC coatings showed a reduction in fracture strength as determined by a modified crush test, however the actual annealing temperature from 1600 °C to 2000 °C had no measureable effect. Furthermore, a technique was developed to measure the elastic modulus and hardness in situ up to 500 °C using a high temperature nanoindentation facility. This approach allows conducting tests while the specimen and indenter tip are heated to a specific measurement temperature, thus obtaining reliable values for the temperature dependent mechanical properties of the material. For the SiC layer in TRISO particles it was found that the elastic modulus decreased slightly from room temperature up to 500 °C, whereas the hardness was reduced more severely to approximately half of its ambient temperature value.

  8. Evaluation of the Mechanical Performance of Silicon Carbide in TRISO Fuel at High Temperatures

    International Nuclear Information System (INIS)

    Rohbeck, N.; Xiao, P.

    2014-01-01

    The HTR design envisions fuel operating temperatures of up to 1000°C and in case of an accident even 1600°C are conceivable. To ensure safety in all conditions a thorough understanding of the impact of an extreme temperature environment is necessary. This work assesses the high temperature mechanical performance of the silicon carbide (SiC) layer within the tristructural-isotropic (TRISO) fuel particle as it poses the main barrier against fission product release into the primary circuit. Therefore simulated fuel was fabricated by fluidized bed chemical vapour deposition; varying the deposition conditions resulted in strongly differing SiC microstructures for the various samples. Subsequently the TRISO particles were annealed in inert atmosphere at temperatures ranging from 1600°C up to 2200°C. Scanning electron microscopy and Raman spectroscopy showed that strong disintegration of the SiC layer occurred from 2100°C onwards, but initial signs of porosity formation were visible already at 1800°C. Still, the elastic modulus and hardness as measured by nanoindentation were hardly impaired. After annealing stoichiometric SiC coatings showed a reduction in fracture strength as determined by a modified crush test, however the actual annealing temperature from 1600°C to 2000°C had no measureable effect. Furthermore, a technique was developed to measure the elastic modulus and hardness in-situ up to 500°C using a high temperature nanoindentation facility. This approach allows conducting numerous tests on small sample volumes and thus promises to improve our knowledge of irradiation effects on the mechanical properties. For the SiC layer in TRISO particles it was found that the elastic modulus decreased slightly from room temperature up to 500°C, whereas the hardness was reduced more severely to approximately half of its ambient temperature value. (author)

  9. Evaluation of the mechanical performance of silicon carbide in TRISO fuel at high temperatures

    International Nuclear Information System (INIS)

    Rohbeck, Nadia; Xiao, Ping

    2016-01-01

    The HTR design envisions fuel operating temperatures of up to 1000 °C and in case of an accident even 1600 °C are conceivable. To ensure safety in all conditions a thorough understanding of the impact of an extreme temperature environment is necessary. This work assesses the high temperature mechanical performance of the silicon carbide (SiC) layer within the tristructural-isotropic (TRISO) fuel particle as it poses the main barrier against fission product release into the primary circuit. Therefore, simulated fuel was fabricated by fluidized bed chemical vapour deposition; varying the deposition conditions resulted in strongly differing SiC microstructures for the various samples. Subsequently the TRISO particles were annealed in inert atmosphere at temperatures ranging from 1600 °C up to 2200 °C. Scanning electron microscopy and Raman spectroscopy showed that strong disintegration of the SiC layer occurred from 2100 °C onwards, but initial signs of porosity formation were visible already at 1800 °C. Still, the elastic modulus and hardness as measured by nanoindentation were hardly impaired. After annealing stoichiometric SiC coatings showed a reduction in fracture strength as determined by a modified crush test, however the actual annealing temperature from 1600 °C to 2000 °C had no measureable effect. Furthermore, a technique was developed to measure the elastic modulus and hardness in situ up to 500 °C using a high temperature nanoindentation facility. This approach allows conducting tests while the specimen and indenter tip are heated to a specific measurement temperature, thus obtaining reliable values for the temperature dependent mechanical properties of the material. For the SiC layer in TRISO particles it was found that the elastic modulus decreased slightly from room temperature up to 500 °C, whereas the hardness was reduced more severely to approximately half of its ambient temperature value.

  10. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    International Nuclear Information System (INIS)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-01-01

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E_c_o_r_r) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO_4 and SiO_2.

  11. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swarnima; Sribalaji, M. [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India); Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI) Hyderabad, Balapur P.O., Hyderabad, Andhra Pradesh 500005 (India); Singh, Raghuvir [CSIR-National Metallurgical Laboratory, Jamshedpur, Jharkhand 831007 (India); Keshri, Anup Kumar, E-mail: anup@iitp.ac.in [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E{sub corr}) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO{sub 4} and SiO{sub 2}.

  12. Efficiency and Cost Comparison of Si IGBT and SiC JFET Isolated DC/DC Converters

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Török, Lajos; Munk-Nielsen, Stig

    2013-01-01

    Silicon carbide (SiC) and other wide band gap devices are in these years undergoing a rapid development. The need for higher efficiency and smaller dimensions are forcing engineers to take these new devices in to considerations when choosing semiconductors for their converters. In this article a Si...

  13. Interfacial reaction between SiC and aluminium due to extrusion and heat treatment process

    International Nuclear Information System (INIS)

    Junaidah Jai; Fauzi Ismail; Samsiah Sulaiman; Patthi Hussain, Azmi Idris; Yoichi Murakoshi

    1999-01-01

    Chemical interaction between aluminium (Al) and silicon carbide (SiC) produces aluminium carbide (Al 4 C 3 ) which presents potential problems in the production and application of Al/SiC Metal Matrix Composit (MMC). The Al 4 C 3 formed can reduce material properties such as strength in the MMC. This research work investigates the interface reaction in Al 7075/SiC MMC made through hot extrusion process. Mixed Al 7075/SiC MMC powders were pressed at 300 degree C and extruded at 500 degree C, with a reduction ratio of 20:1. The extruded MMC was then heat-treated in air at various temperatures from 560 degree C, 600 degree C, 640 degree C, 700 degree C to 800 degree C in order to observe the interface reaction of the MMC materials. The heat-treated MMCs were then analyzed under the optical microscope, X-ray Diffraction (XRD) Spectroscope and Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDAZ) attachment to observe the interface reaction within the MMCs. This investigation confirms there was interface reaction between SiC and aluminium

  14. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  15. Thermal-Hydraulic Aspects of Changing the Nuclear Fuel-Cladding Materials from Zircaloy to Silicon Carbides

    International Nuclear Information System (INIS)

    Niceno, Bojan; Pouchon, Manuel

    2014-01-01

    The accident in Fukushima has drastically shown the drawbacks of Zircaloy claddings despite their beneficial properties in normal use. The effect of the lack of cooling and the production of hydrogen would not have been so strong if the fuel cladding had not consisted of a zirconium (or metal) alloy. International activities have been started to search for an alternative to Zircaloy, however, still on a limited basis. A project sponsored by Swissnuclear has been conducted at Paul Scherrer Institute (PSI) with the aim to close the gap in knowledge on application of silicon carbides (SiC) as potential replacement for Zircaloys as material for nuclear fuel cladding. The work was interdisciplinary, result of collaboration between different laboratories at PSI, and has focused on SiC cladding material properties, implication of its usage on neutronics and on thermal-hydraulics. This paper summarizes thermal-hydraulic aspects of changing Zircaloy for SiC as the cladding material. The change of cladding material inevitably changes the surface properties thus making a significant impact on boiling curve, and critical heat flux (CHF). Low chemical reactivity of SiC means fewer particles in the flow (less crud), which leads to fewer failures, but also decreases the CHF. Due to differences in physical properties between SiC and Zircaloys, higher brittleness of SiC in particular, might have impact on fuel-rod assembly design, which has direct influence on flow patterns and heat transfer in the fuel assembly. Higher melting (i.e. decomposition) point for SiC means that severe accident management guidelines (SAMG) should have to be re-assessed. Not only would the core degrade later than in the case of conventional fuels, but the production of hydrogen would be quite different as well. All these issues are explored in this work in two steps; first the SiC properties which may have influence on thermal-hydraulics are outlined, then each thermal-hydraulic issues is explained from

  16. Effect of hydrogen on the microstructure of silicon carbide

    International Nuclear Information System (INIS)

    Fischman, G.S.

    1985-01-01

    The effect of hydrogenation on the microstructure of a pressureless sintered silicon carbide was studied. Samples which were annealed in a 40:60 mole % H 2 :Ar atmosphere at 1400 0 C for 50 hours were microstructurally compared with unannealed samples and samples that had been annealed in a similar manner but using an argon atmosphere. The results were also compared with microstructural results obtained from in situ studies using both hydrogen and argon atmospheres. These results were compared with a thermodynamic model which was constructed using a free energy minimization technique. The observed effects of hydrogenation were surface decarburization and amorphization throughout the silicon carbide material. Other observations include the thermally induced growth of microcrystalline silicon and accelerated amorphization around the silicon microcrystals in samples used in hydrogen in situ studies. An analysis of the microstructure of the reference material was also performed

  17. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.

    Science.gov (United States)

    Kisku, Sudhir K; Dash, Satyabrata; Swain, Sarat K

    2014-01-01

    Cellulose/silicon carbide (cellulose/SiC) nanobiocomposites were prepared by solution technique. The interaction of SiC nanoparticles with cellulose were confirmed by Fourier transformed infrared (FTIR) spectroscopy. The structure of cellulose/SiC nanobiocomposites was investigated by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The tensile properties of the nanobiocomposites were improved as compared with virgin cellulose. Thermal stabilities of cellulose/SiC nanobiocomposites were studied by thermogravimetric analysis (TGA). The cellulose/SiC nanobiocomposites were thermally more stable than the raw cellulose. It may be due to the delamination of SiC with cellulose matrix. The oxygen barrier properties of cellulose composites were measured using gas permeameter. A substantial reduction in oxygen permeability was obtained with increase in silicon carbide concentrations. The thermally resistant and oxygen barrier properties of the prepared nanobiocomposites may enable the materials for the packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Relaxations of fluorouracil tautomers by decorations of fullerene-like SiCs: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Kouchaki, Alireza [Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Gülseren, Oğuz [Department of Physics, Faculty of Science, Bilkent University, Ankara (Turkey); Hadipour, Nasser [Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mirzaei, Mahmoud, E-mail: mdmirzaei@pharm.mui.ac.ir [Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)

    2016-06-03

    Decorations of silicon carbide (SiC) fullerene-like nanoparticles by fluorouracil (FU) and its tautomers are investigated through density functional theory (DFT) calculations. Two models of fullerene-like particles including Si{sub 12}C{sub 8} and Si{sub 8}C{sub 12} are constructed to be counterparts of decorated hybrid structures, FU@Si{sub 12}C{sub 8} and FU@Si{sub 8}C{sub 12}, respectively. The initial models including original FU and tautomeric structures and SiC nanoparticles are individually optimized and then combined for further optimizations in the hybrid forms. Covalent bonds are observed for FU@Si{sub 12}C{sub 8} hybrids, whereas non-covalent interactions are seen for FU@Si{sub 8}C{sub 12} ones. The obtained properties indicated that Si{sub 12}C{sub 8} model could be considered as a better counterpart for interactions with FU structures than Si{sub 8}C{sub 12} model. The results also showed significant effects of interactions on the properties of atoms close to the interacting regions in nanoparticles. Finally, the tautomeric structures show different behaviors in interactions with SiC nanoparticles, in which the SiC nanoparticles could be employed to detect the situations of tautomeric processes for FU structures. - Highlights: • Possibilities of interaction between fluorouracil and silicon carbides have been recognized. • Possibilities for covalent and non-covalent interactions have been indicated. • Detections of tautomeric structures have been investigated.

  19. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics; Elaboration de ceramiques nanostructurees en carbure de silicium: de la synthese de la poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A.

    2008-12-15

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC{sub f}/SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  20. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    Science.gov (United States)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  1. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  2. Thermal shock behaviour of mullite-bonded porous silicon carbide ceramics with yttria addition

    International Nuclear Information System (INIS)

    Ding Shuqiang; Zeng Yuping; Jiang Dongliang

    2007-01-01

    Thermal shock resistance of mullite (3Al 2 O 3 · 2SiO 2 )-bonded porous silicon carbide (SiC) ceramics with 3.0 wt% yttria (Y 2 O 3 ) addition was evaluated by a water-quenching technique. The thermal shock damage was investigated as a function of the quenching temperature, quenching cycles and specimen thickness. The residual flexural strength of the quenched specimens decreases with increasing quenching temperature and specimen thickness due to the larger thermal stress caused by thermal shock. However, quenching cycles at the temperature difference of 1200 deg. C have no effect on the residual strength since the same thermal stress was produced in repeated thermal shock processes. The good thermal shock damage resistance of the specimens is contributed mainly by the low strength and moderate elastic modulus. Moreover, the pores prevent the continuous propagation of cracks and alleviate further damage

  3. Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications

    Science.gov (United States)

    Khalifa, H. E.; Deck, C. P.; Gutierrez, O.; Jacobsen, G. M.; Back, C. A.

    2015-02-01

    The use of silicon carbide (SiC) composites as structural materials in nuclear applications necessitates the development of a viable joining method. One critical application for nuclear-grade joining is the sealing of fuel within a cylindrical cladding. This paper demonstrates cylindrical joint feasibility using a low activation nuclear-grade joint material comprised entirely of β-SiC. While many papers have considered joining material, this paper takes into consideration the joint geometry and component form factor, as well as the material performance. Work focused specifically on characterizing the strength and permeability performance of joints between cylindrical SiC-SiC composites and monolithic SiC endplugs. The effects of environment and neutron irradiation were not evaluated in this study. Joint test specimens of different geometries were evaluated in their as-fabricated state, as well as after being subjected to thermal cycling and partial mechanical loading. A butted scarf geometry supplied the best combination of high strength and low permeability. A leak rate performance of 2 × 10-9 mbar l s-1 was maintained after thermal cycling and partial mechanical loading and sustained applied force of 3.4 kN, or an apparent strength of 77 MPa. This work shows that a cylindrical SiC-SiC composite tube sealed with a butted scarf endplug provides out-of-pile strength and permeability performance that meets light water reactor design requirements.

  4. Linear electro-optic effect in cubic silicon carbide

    Science.gov (United States)

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.

    1991-01-01

    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  5. Emission of blue light from hydrogenated amorphous silicon carbide

    Science.gov (United States)

    Nevin, W. A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y.

    1994-04-01

    THE development of new electroluminescent materials is of current technological interest for use in flat-screen full-colour displays1. For such applications, amorphous inorganic semiconductors appear particularly promising, in view of the ease with which uniform films with good mechanical and electronic properties can be deposited over large areas2. Luminescence has been reported1 in the red-green part of the spectrum from amorphous silicon carbide prepared from gas-phase mixtures of silane and a carbon-containing species (usually methane or ethylene). But it is not possible to achieve blue luminescence by this approach. Here we show that the use of an aromatic species-xylene-as the source of carbon during deposition results in a form of amorphous silicon carbide that exhibits strong blue luminescence. The underlying structure of this material seems to be an unusual combination of an inorganic silicon carbide lattice with a substantial 'organic' π-conjugated carbon system, the latter dominating the emission properties. Moreover, the material can be readily doped with an electron acceptor in a manner similar to organic semiconductors3, and might therefore find applications as a conductivity- or colour-based chemical sensor.

  6. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters

    Science.gov (United States)

    Reese, Bradley

    2015-01-01

    Arkansas Power Electronics International (APEI), Inc., is developing a high-efficiency, radiation-hardened 3.8-kW SiC power supply for the PPU of Hall effect thrusters. This project specifically targets the design of a PPU for the high-voltage Hall accelerator (HiVHAC) thruster, with target specifications of 80- to 160-V input, 200- to 700-V/5A output, efficiency greater than 96 percent, and peak power density in excess of 2.5 kW/kg. The PPU under development uses SiC junction field-effect transistor power switches, components that APEI, Inc., has irradiated under total ionizing dose conditions to greater than 3 MRad with little to no change in device performance.

  7. Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Iliescu, Ciprian; Chen Bangtao; Wei Jiashen; Pang, A.J.

    2008-01-01

    The paper presents a characterisation of amorphous silicon carbide films deposited in plasma-enhanced chemical vapour deposition (PECVD) reactors for MEMS applications. The main parameter was optimised in order to achieve a low stress and high deposition rate. We noticed that the high frequency mode (13.56 MHz) gives a low stress value which can be tuned from tensile to compressive by selecting the correct power. The low frequency mode (380 kHz) generates high compressive stress (around 500 MPa) due to ion bombardment and, as a result, densification of the layer achieved. Temperature can decrease the compressive value of the stress (due to annealing effect). A low etching rate of the amorphous silicon carbide layer was noticed for wet etching in KOH 30% at 80 o C (around 13 A/min) while in HF 49% the layer is practically inert. A very slow etching rate of amorphous silicon carbide layer in XeF 2 -7 A/min- was observed. The paper presents an example of this application: PECVD-amorphous silicon carbide cantilevers fabricated using surface micromachining by dry-released technique in XeF 2

  8. Circuit mismatch and current coupling effect influence on paralleling SiC MOSFETs in multichip power modules

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper reveals that there are circuit mismatches and a current coupling effect in the direct bonded copper (DBC) layout of a silicon carbide (SiC) MOSFET multichip power module. According to the modelling and the mathematic analysis of the DBC layout, the mismatch of the common source stray i...

  9. Detonation Synthesis of Alpha-Variant Silicon Carbide

    Science.gov (United States)

    Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym

    2017-06-01

    A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.

  10. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  11. Stability and electronic properties of SiC nanowire adsorbed on MoS{sub 2} monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Munish, E-mail: munishsharmahpu@live.com; Pooja,; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla, H. P., 171005 (India); Kumar, Ashok [Department of Physics, Panjab University, Chandigarh, 160014 (India)

    2015-06-24

    Structural stability and electronic properties of silicon carbide (SiC) nano-wire on MoS{sub 2} monolayer are investigated within the framework of density functional theory (DFT). The preferred binding site for the SiC nano-wire is predicted to be hollow site of monolayer. In the electronic band structure the states in valence band near Fermi level are mainly due to nano-wire leading to reduction of band gap relative to monolayer. These results provide a platform for their applications in optoelectronic devices.

  12. Report on the Fracture Analysis of HfB(sub 2)-SiC and ZrB(sub 2)-SiC Composites; TOPICAL

    International Nuclear Information System (INIS)

    MECHOLSKY, JR. JOHN J.

    2001-01-01

    Hafnium diboride-silicon carbide (HS) and zirconium diboride-silicon carbide (ZS) composites are potential materials for high temperature, thermal shock applications such as for components on re-entry vehicles. In order to establish material constants necessary for evaluation of in situ fracture, bars fractured in four-point flexure were examined using fractographic principles. The fracture toughness was determined from measurements of the critical crack sizes and the strength values and the crack branching constants were established to use in forensic fractography for future in-flight tests. The fracture toughnesses range from about 13 MPam(sup 1/2) at room temperature to about 6 MPam(sup 1/2) at 1400 C for ZrB(sub 2)-Sic composites and from about 13 MPam(sup 1/2) at room temperature to about 4 MPam(sup 1/2) at 1400 C for HfB(sub 2)-SiC composites. Thus, the toughnesses of either the HS or ZS composites have the potential for use in thermal shock applications. Processing and manufacturing defects limited the strength of the test bars. However, examination of the microstructure on the fracture surfaces shows that the processing of these composites can be improved. There is potential for high toughness composites with high strength to be used in thermal shock conditions if the processing and handling are controlled

  13. A study on the development of silicon carbide materials for nuclear application

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Chan Jung; Lee, Jae Choon; Kim, Joon Hyung; Lim, Kyung Soo; Kim, Ki Baik

    1987-12-01

    Silicon carbide was synthesized by reaction sintering process from carbon and silicon powders as starting materials. The effects of two processing parameters, i.e., heat treatment time and temperature, were examined (to characterize the reaction sintering process) in terms of the degree of reaction and phase developed during heat treatment. The final products after reaction of silicon and carbon powders were identified as β-SiC having ZnS crystal structure. Sintering of cordierite ceramics which was used as an high temperature inorganic binder to fabricate ceramically bound silicon carbide, and phase identification of the sintered ceramics by X-ray powder diffraction techniques. (Author)

  14. TRISO coated fuel particles with enhanced SiC properties

    International Nuclear Information System (INIS)

    Lopez-Honorato, E.; Tan, J.; Meadows, P.J.; Marsh, G.; Xiao, P.

    2009-01-01

    The silicon carbide (SiC) layer used for the formation of TRISO coated fuel particles is normally produced at 1500-1650 deg. C via fluidized bed chemical vapor deposition from methyltrichlorosilane in a hydrogen environment. In this work, we show the deposition of SiC coatings with uniform grain size throughout the coating thickness, as opposed to standard coatings which have larger grain sizes in the outer sections of the coating. Furthermore, the use of argon as the fluidizing gas and propylene as a carbon precursor, in addition to hydrogen and methyltrichlorosilane, allowed the deposition of stoichiometric SiC coatings with refined microstructure at 1400 and 1300 deg. C. The deposition of SiC at lower deposition temperatures was also advantageous since the reduced heat treatment was not detrimental to the properties of the inner pyrolytic carbon which generally occurs when SiC is deposited at 1500 deg. C. The use of a chemical vapor deposition coater with four spouts allowed the deposition of uniform and spherical coatings.

  15. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  16. Telescope and mirrors development for the monolithic silicon carbide instrument of the osiris narrow angle camera

    Science.gov (United States)

    Calvel, Bertrand; Castel, Didier; Standarovski, Eric; Rousset, Gérard; Bougoin, Michel

    2017-11-01

    The international Rosetta mission, now planned by ESA to be launched in January 2003, will provide a unique opportunity to directly study the nucleus of comet 46P/Wirtanen and its activity in 2013. We describe here the design, the development and the performances of the telescope of the Narrow Angle Camera of the OSIRIS experiment et its Silicon Carbide telescope which will give high resolution images of the cometary nucleus in the visible spectrum. The development of the mirrors has been specifically detailed. The SiC parts have been manufactured by BOOSTEC, polished by STIGMA OPTIQUE and ion figured by IOM under the prime contractorship of ASTRIUM. ASTRIUM was also in charge of the alignment. The final optical quality of the aligned telescope is 30 nm rms wavefront error.

  17. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  18. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  19. Effect of gamma radiation on the electrical properties of Polyaniline/silicon carbide heterojunctions

    International Nuclear Information System (INIS)

    Felix, Jorlandio F.; Cunha, Diego L. da; Aziz, Mohsin; Silva, Eronides F. da; Taylor, David; Henini, Mohamed; Azevedo, Walter M. de

    2014-01-01

    Polyaniline thin films have been deposited by a very simple technique on p-type Silicon Carbide (SiC) substrates to fabricate heterojunctions devices with good electrical properties. In this work two heterojunctions devices of Polyaniline (PANI) on p-type 4H–SiC and 6H–SiC substrates were electrically characterized using current- voltage (I-V) in the temperature range 20–430 K Capacitance–frequency (C-f) measurements. Furthermore, impedance and capacitance measurements are carried out to study the effect of gamma irradiation on these devices. Additionally, we demonstrate not only the ease of fabrication of PANI/p-SiC heterostructures, but also we show strong indication that these heterostructures have potential applications as sensors of gamma irradiation. - Highlights: • We demonstrate the fabrication of PANI/p-SiC devices with good electrical properties. • The electrical characteristics of the devices present good reproducibility. • We show that the PANI/p-SiC devices are good candidates for gamma irradiation sensors

  20. Stark tuning and electrical charge state control of single divacancies in silicon carbide

    Science.gov (United States)

    de las Casas, Charles F.; Christle, David J.; Ul Hassan, Jawad; Ohshima, Takeshi; Son, Nguyen T.; Awschalom, David D.

    2017-12-01

    Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects and hinders their coupling to optical cavities. Here, we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show that both 975 nm and 1130 nm excitation can prepare their neutral charge state with near unity efficiency.

  1. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    International Nuclear Information System (INIS)

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-01-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO 2 volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  2. Thermal detection mechanism of SiC based hydrogen resistive gas sensors

    Science.gov (United States)

    Fawcett, Timothy J.; Wolan, John T.; Lloyd Spetz, Anita; Reyes, Meralys; Saddow, Stephen E.

    2006-10-01

    Silicon carbide (SiC) resistive hydrogen gas sensors have been fabricated and tested. Planar NiCr contacts were deposited on a thin 3C-SiC epitaxial film grown on thin Si wafers bonded to polycrystalline SiC substrates. At 673K, up to a 51.75±0.04% change in sensor output current and a change in the device temperature of up to 163.1±0.4K were demonstrated in response to 100% H2 in N2. Changes in device temperature are shown to be driven by the transfer of heat from the device to the gas, giving rise to a thermal detection mechanism.

  3. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1980-01-01

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 1600 0 C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH 3 ) 2 Si units and from 40 to 100 mole percent of CH 3 Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  4. Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, David; Cristallo, Sergio; Piersanti, Luciano [Osservatorio Astronomico di Teramo, INAF, I-64100 Teramo (Italy); Bromley, Stefan T. [Departament de Cincia de Materials i Química Fisica and Institut de Química Terica i Computacional (IQTCUB),Universitat de Barcelona, E-08028 Barcelona (Spain)

    2017-05-10

    Silicon carbide (SiC) grains are a major dust component in carbon-rich asymptotic giant branch stars. However, the formation pathways of these grains are not fully understood. We calculate ground states and energetically low-lying structures of (SiC){sub n}, n = 1, 16 clusters by means of simulated annealing and Monte Carlo simulations of seed structures and subsequent quantum-mechanical calculations on the density functional level of theory. We derive the infrared (IR) spectra of these clusters and compare the IR signatures to observational and laboratory data. According to energetic considerations, we evaluate the viability of SiC cluster growth at several densities and temperatures, characterizing various locations and evolutionary states in circumstellar envelopes. We discover new, energetically low-lying structures for Si{sub 4}C{sub 4}, Si{sub 5}C{sub 5}, Si{sub 15}C{sub 15}, and Si{sub 16}C{sub 16} and new ground states for Si{sub 10}C{sub 10} and Si{sub 15}C{sub 15}. The clusters with carbon-segregated substructures tend to be more stable by 4–9 eV than their bulk-like isomers with alternating Si–C bonds. However, we find ground states with cage geometries resembling buckminsterfullerens (“bucky-like”) for Si{sub 12}C{sub 12} and Si{sub 16}C{sub 16} and low-lying stable cage structures for n ≥ 12. The latter findings thus indicate a regime of cluster sizes that differ from small clusters as well as from large-scale crystals. Thus—and owing to their stability and geometry—the latter clusters may mark a transition from a quantum-confined cluster regime to a crystalline, solid bulk-material. The calculated vibrational IR spectra of the ground-state SiC clusters show significant emission. They include the 10–13 μ m wavelength range and the 11.3 μm feature inferred from laboratory measurements and observations, respectively, although the overall intensities are rather low.

  5. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  6. Key technology for (V)HTR: laser beam joining of SiC

    International Nuclear Information System (INIS)

    Knorr, J.; Lippmann, W.; Reinecke, A.M.; Wolf, R.; Rasper, R.; Kerber, A.; Wolter, A.

    2005-01-01

    Laser beam joining has numerous advantages over other methods presently known. After having been developed successful for brazing silicon carbide for high temperature applications, this technology is now also available for silicon nitride. Thus the field of application of SiC and Si 3 N 4 which are very interesting materials for the nuclear sector is considerably extended thanks to this new technology. Ceramic encapsulation of fuel and absorber increases the margins for operation at very high temperatures. Additionally, without ceramic encapsulation of the main core components, it will be difficult to continue claiming non-catastrophic behaviour for the (V)HTR. (orig.)

  7. A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reese, Samantha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-24

    Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG power modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.

  8. Structural, bonding, anisotropic mechanical and thermal properties of Al4SiC4 and Al4Si2C5 by first-principles investigations

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2016-09-01

    Full Text Available The structural, bonding, electronic, mechanical and thermal properties of ternary aluminum silicon carbides Al4SiC4 and Al4Si2C5 are investigated by first-principles calculations combined with the Debye quasi-harmonic approximation. All the calculated mechanical constants like bulk, shear and Young's modulus are in good agreement with experimental values. Both compounds show distinct anisotropic elastic properties along different crystalline directions, and the intrinsic brittleness of both compounds is also confirmed. The elastic anisotropy of both aluminum silicon carbides originates from their bonding structures. The calculated band gap is obtained as 1.12 and 1.04 eV for Al4SiC4 and Al4Si2C5 respectively. From the total electron density distribution map, the obvious covalent bonds exist between Al and C atoms. A distinct electron density deficiency sits between AlC bond along c axis among Al4SiC4, which leads to its limited tensile strength. Meanwhile, the anisotropy of acoustic velocities for both compounds is also calculated and discussed.

  9. A re-examination of two-step lateral stress history in silicon carbide

    International Nuclear Information System (INIS)

    Dandekar, Dattatraya P.

    2004-01-01

    The observed two-step lateral stress history in silicon carbide, SiC-B under plane shock wave propagation [N. K. Bourne, J. Millett, and I. Pickup, J. Appl. Phys. 81, 6019 (1997)] is attributed to a delayed failure in SiC-B due to propagation of a slow moving front traveling behind the main shock wave. According to this attribution, the first lower magnitude, step corresponds to the lateral stress in intact shock compressed silicon carbide as a result of the fast moving plane shock wave. The second step of higher magnitude, observed after a few hundred nanoseconds, corresponds to the lateral stress in failed silicon carbide due to propagation of the slower moving front. The current analysis, takes into account additional relevant existing results dealing with shock response of SiC-B, and shows that the suggested explanation for the observed phenomenon remains in doubt

  10. Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process

    International Nuclear Information System (INIS)

    Koyanagi, T.; Hinoki, T.; Shimoda, K.; Ozawa, K.; Katoh, Y.

    2014-01-01

    Unidirectional silicon carbide (SiC)-fiber-reinforced SiC matrix (SiC/SiC) composites fabricated by a nano-infiltration and transient eutectic-phase (NITE) process were irradiated with neutrons at 830°C to 5.9 dpa, and at 1270°C to 5.8 dpa. The in-plane and trans-thickness tensile and the inter-laminar shear properties were evaluated at ambient temperature. The mechanical characteristics, including the quasi-ductile behavior, the proportional limit stress, and the ultimate tensile strength, were retained subsequent to irradiation. Analysis of the stress–strain hysteresis loop indicated the increased fiber/matrix interface friction and the decreased residual stresses. The inter-laminar shear strength exhibited a significant decrease following irradiation. (author)

  11. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  12. Use of Silicon Carbide as Beam Intercepting Device Material: Tests, Issues and Numerical Simulations

    CERN Document Server

    Delonca, M; Gil Costa, M; Vacca, A

    2014-01-01

    Silicon Carbide (SiC) stands as one of the most promising ceramic material with respect to its thermal shock resistance and mechanical strengths. It has hence been considered as candidate material for the development of higher performance beam intercepting devices at CERN. Its brazing with a metal counterpart has been tested and characterized by means of microstructural and ultrasound techniques. Despite the positive results, its use has to be evaluated with care, due to the strong evidence in literature of large and permanent volumetric expansion, called swelling, under the effect of neutron and ion irradiation. This may cause premature and sudden failure, and can be mitigated to some extent by operating at high temperature. For this reason limited information is available for irradiation below 100°C, which is the typical temperature of interest for beam intercepting devices like dumps or collimators. This paper describes the brazing campaign carried out at CERN, the results, and the theoretical and numeric...

  13. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    carbon fibre (Cf) reinforced, silicon carbide matrix composites which are ... eral applications, such as automotive brakes, high-efficiency engine systems, ... The PIP method is based on the use of organo metallic pre-ceramic precursors.

  14. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  15. Comparison of diffusion coefficients and activation energies for AG diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Yeo, Sung Hwan; Lee, Young Woo; Cho, Moon Sung

    2015-01-01

    The migration of silver (Ag) in silicon carbide (SiC) and 110mAg through SiC of irradiated tri-structural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is 247.4 kJ·mol -1 from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), 125.3 kJ·mol -1 from integral release experiments (annealing of irradiated TRISO fuel), 121.8 kJ·mol -1 from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and 274.8 kJ·mol -1 from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a

  16. GRANULATION TRIALS OF WASTE THE DUST SILICON CARBIDE FOR UTILIZATION IN METALLURGY

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2016-09-01

    Full Text Available The article presents the results of laboratory granulation tests of dust silicon carbide and the results of research on the selection of the binder and the properties of the granules obtained. The research material was a waste of the silicon carbide powder with a high fragmentation, mixed with a cement or an organic modified starch specimen. Six tests were performed in a disc granulator with 100 cm in diameter. In each series of trial specified: the type and share of the binder, the diameter of the granules, tenderness, type of structure and mechanical properties. Good granules of silicon carbide obtained with the addition of cement binder with 4% of the mass fraction and at least 24 hours of seasoning. The binder should be added twice by powdering, first in a stirred granulator, and again after manufacture. It was found that the resulting granules may be used as a replacement of ferrosilicon in the process of steelmaking.

  17. Reaction sintering of a clay-containing silicon nitride bonded silicon carbide refractory

    International Nuclear Information System (INIS)

    Swenser, S.P.; Cheng, Y.B.

    1998-01-01

    Aspects of the reaction sequence for the reaction bonding of a cast refractory, which in the green state was composed of 79 wt-% SiC grit, 16 wt-% Si powder and 5 wt-% clay were established. As it was fired up to 1600 deg C in flowing N 2 (g), weight gains were noted and phase evolution was monitored by X-ray diffraction. However, details of the reaction sequence were not determined directly from this material because several reaction-bonding processes occurred simultaneously. Reaction features were ascertained by contrasting the weight changes and phase evolution in the refractory with those observed during reaction-bonding of (a) Si and clay without the SiC and (b) SiC and clay without the Si. In addition to silicon nitridation and the development of sialon phases by silicothermal and carbothermal reduction-nitridation processes, indirect evidence suggested that α-Si 3 N 4 formed by the carbothermal reduction-nitridation (CRN) of SiO(g). Copyright (1998) Australasian Ceramic Society

  18. Silicon Carbide Found in K/T Boundary Layer: Implication for Asteroid Collision with Planet Earth

    Science.gov (United States)

    Leung, I. S.; Tsao, C.

    2016-12-01

    An event at the end of the Cretaceous Period 65.5 m.y. ago produced an impact structure 300 km in diameter designated the Chicxulub Crater, located partly on the Yucatan Peninsula and the Caribbian Sea floor. Mass extinction following that event killed 75% of Earth's living species, including dinosaurs. To this date, the killer space object has not been identified, but it was frequently conjectured to be a comet or an asteroid. The goal of our study was to search for evidence which might implicate the culprit. The Chicxulub impact caused extensive wildfires producing Ir-rich dust fallouts in worldwide localities, among which the least contaminated by land-derived sediments may be situated on deep ocean floors. Our study is based on a sample of pelagic clay from the giant piston core LL44-GPC3 taken from the Pacific Plate, north of the Hawaiian Islands (Woods Hole Oceanographic Institution). The 1-cm thick Ir-rich layer was located at a downcore depth of 1055-1056 cm below sea floor. From a 5 cubic cm sample provided by Jim Broda, we found 29 impact glass spherules and 4 silicon carbide (SiC) crystals. SiC has been reported in carbonaceous meteorites. Our findings of SiC in the K/T boundary layer seem to implicate that an asteroid having composition akin to that of carbonaceous chondrites might have been the killer projectile during the Chicxulub event. However, impact by a comet cannot be ruled out, since the mineralogy of cometary dust is as yet unknown.

  19. Ag Transport Through Non-Irradiated and Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Blanchard, James [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-11

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  20. Ag Transport Through Non-Irradiated and Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Blanchard, James

    2016-01-01

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  1. Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites

    International Nuclear Information System (INIS)

    Balasubramanian, I.; Maheswaran, R.

    2015-01-01

    Highlights: • AA6063/SiC composites with different weight percent are stir cast. • Resistance properties against indentation, stretching force and sliding force are studied. • Increase in initiation of cleavage facets and reduces the tensile strength for 15% SiC. • Transition from micro ploughing to micro cutting wear mechanism is less due to SiC inclusion. - Abstract: This study investigates the mechanical resistance behaviour of AA6063 particulate composites with the inclusion of micron-sized silicon carbide (SiC) particles with different weight percentages in an AA6063 aluminium matrix. AA6063/SiC particulate composites containing 0, 5, 10, and 15 weight percent of SiC particles were produced by stir casting. Standard mechanical tests were conducted on the composite plates, and the mechanical resistance to indentation, tensile force and sliding force are evaluated. It has been observed that upon addition of SiC particles, the resistance against indentation is increased and the resistance against tensile force is initially increased and then decreased. Furthermore, using scanning electron microscopy (SEM), the fracture appearance of the broken specimen subjected to tensile force and morphological changes in the surface subjected to sliding force are analysed. The SEM images reveal that the addition of SiC particles in the AA6063 aluminium matrix initiates more cleavage facets. This leads to brittle fracture in the specimen subjected to tensile forces and less transition from material displacement to material removal in the specimen subjected to sliding forces

  2. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business of Innovation Research Phase I proposal seeks to investigate and prove the feasibility of developing highly efficient, ultra-lightweight SiC...

  3. Comparative Study of Si and SiC MOSFETs for High Voltage Class D Audio Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Silicon (Si) Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) are traditional utilised in class D audio amplifiers. It has been proposed to replace the traditional inefficient electrodynamic transducer with the electrostatic transducer. This imposes new high voltage requirements...... on the MOSFETs of class D amplifiers, and significantly reduces the selection of suitable MOSFETs. As a consequence it is investigated, if Silicon-Carbide (SiC) MOSFETs could represent a valid alternative. The theory of pulse timing errors are revisited for the application of high voltage and capactive loaded...... class D amplifiers. It is shown, that SiC MOSFETs can compete with Si MSOFETs in terms of THD. Validation is done using simulations and a 500 V amplifier driving a 100 nF load. THD+N below 0.3 % is reported...

  4. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    Science.gov (United States)

    Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2017-05-01

    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.

  5. Process-property relationships of SiC chemical vapor deposition in the Si/H/C/O system

    International Nuclear Information System (INIS)

    Richardson, C.; Takoudis, C.G.

    1999-01-01

    The thermal, chemical, and physical properties of SiC make it an attractive material for a wide range of applications from wear resistant coatings on tools to high temperature microelectronics operations. A comprehensive thermodynamic analysis has been performed for the Si/H/C/O system from which a priori process-property relationships of the chemical vapor deposition (CVD) of silicon carbide (SiC) are obtained. The parameter space for pure silicon carbide growth is reported for five orders of magnitude of the system water vapor level (1 ppb--100 ppm), four orders of magnitude of system pressure (0.1--760 Torr), and two orders of magnitude of C/Si feed ratio (0.25--20) and H 2 /Si feed ratio (50--10,000). Lower growth temperatures for pure SiC are predicted in clean systems with low system water vapor levels, at stoichiometric to near carbon excess conditions (C/Si ≅ 1 to C/Si > 1), at high carrier gas flow rates (large H 2 /Si feed ratios), and at low operating pressures. Because relative C/Si and H 2 /Si feed ratios have been considered, the predictions in this study are applicable to both multiple and single precursor systems. Further, these results are valid for the CVD of α-SiC as well as β-SiC. Experimental data reported on the growth of α-SiC and β-SiC are found to be in satisfactory agreement with the theoretical predictions, for numerous systems that include multiple and single source, silicon and carbon, species

  6. SiC nanoparticles as potential carriers for biologically active substances

    Science.gov (United States)

    Guevara-Lora, Ibeth; Czosnek, Cezary; Smycz, Aleksandra; Janik, Jerzy F.; Kozik, Andrzej

    2009-01-01

    Silicon carbide SiC thanks to its many advantageous properties has found numerous applications in diverse areas of technology. In this regard, its nanosized forms often with novel properties have been the subject of intense research in recent years. The aim of this study was to investigate the binding of biologically active substances onto SiC nanopowders as a new approach to biomolecule immobilization in terms of their prospective applications in medicine or for biochemical detection. The SiC nanoparticles were prepared by a two-stage aerosol-assisted synthesis from neat hexamethyldisiloxane. The binding of several proteins (bovine serum albumin, high molecular weight kininogen, immunoglobulin G) on SiC particle surfaces was demonstrated at the levels of 1-2 nanograms per mg of SiC. These values were found to significantly increase after suitable chemical modifications of nanoparticle surfaces (by carbodiimide or 3-aminopropyltrietoxysilane treatment). The study of SiC biocompatibility showed a lack of cytotoxicity against macrophages-like cells below the concentration of 1 mg nanoparticles per mL. In summary, we demonstrated the successful immobilization of the selected substances on the SiC nanoparticles. These results including the cytotoxicity study make nano-SiC highly attractive for potential applications in medicine, biotechnology or molecular detection.

  7. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  8. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S

    International Nuclear Information System (INIS)

    Takeda, M.; Urano, A.; Sakamoto, J.; Imai, Y.

    1998-01-01

    Polycarbosilane-derived SiC fibers, Nicalon, Hi-Nicalon, and Hi-Nicalon type S were exposed for 1 to 100 h at 1273-1773 K in air. Oxide layer growth and tensile strength change of these fibers were examined after the oxidation test. As a result, three types of SiC fibers decreased their strength as oxide layer thickness increased. Fracture origins were determined at near the oxide layer-fiber interface. Adhered fibers arised from softening of silicon oxide at high temperature were also observed. In this study, Hi-Nicalon type S showed better oxidation resistance than other polycarbosilane-derived SiC fibers after 1673 K or higher temperature exposure in air for 10 h. This result was explained by the poreless silicon oxide layer structure of Hi-Nicalon type S. (orig.)

  9. Investigation of magnetism in aluminum-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad

    2013-11-01

    The effect of aluminum doping on the structural, electronic and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) is investigated using spin-polarized density functional theory. It is found from the calculation of the formation energies that aluminum substitution for silicon atom is preferred. Our results show that the magnetization depends on the substitutional site, aluminum substitution at silicon site does not introduce any spin-polarization, whereas the aluminum substitution for carbon atom yields a spin polarized, almost dispersionless π band within the original band gap.

  10. Thermodynamic modelling of phase equilibrium in system Ti-B-Si-C, synthesis and phases composition of borides and carbides layers on titanic alloyVT-1 at electron beam treatment in vacuum

    Science.gov (United States)

    Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.

    2017-01-01

    Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.

  11. Modeling chemical and topological disorder in irradiation-amorphized silicon carbide

    International Nuclear Information System (INIS)

    Yuan Xianglong; Hobbs, Linn W.

    2002-01-01

    In order to explore the relationship of chemical disorder to topological disorder during irradiation-induced amorphization of silicon carbide, a topological analysis of homonuclear bond distribution, atom coordination number and network ring size distribution has been carried out for imposed simulated disorder, equilibrated with molecular dynamics (MD) procedures utilizing a Tersoff potential. Starting configurations included random atom positions, β-SiC coordinates chemically disordered over a range of chemical disorder parameters and atom coordinates generated from earlier MD simulations of embedded collision cascades. For random starting positions in embedded simulations, the MD refinement converged to an average Si coordination of 4.3 and an average of 1.4 Si-Si and 1.0 C-C bonds per Si and C site respectively. A chemical disorder threshold was observed (χ≡N C-C /N Si-C >0.3-0.4), below which range MD equilibration resulted in crystalline behavior at all temperatures and above which a glass transition was observed. It was thus concluded that amorphization is driven by a critical concentration of homonuclear bonds. About 80% of the density change at amorphization was attributable to threshold chemical disorder, while significant topological changes occurred only for larger values of the chemical disorder parameter

  12. Fundamentals of Passive Oxidation In SiC and Si3N4

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.

    1998-01-01

    The very slow oxidation kinetics of silicon carbide and silicon nitride, which derive from their adherent and passivating oxide films, has been explored at length in a broad series of studies utilizing thermogravimetric analysis, electron and optical micrography, energy dispersive spectrometry, x-ray diffractometry, micro-analytical depth profiling, etc. Some interesting microstructural phenomena accompanying the process of oxidation in the two materials will be presented. In Si3N4 the oxide is stratified, with an SiO2 topscale (which is relatively impervious to O2)underlain by a coherent subscale of silicon oxynitride which is even less permeable to O2- Such "defence in depth" endows Si3N4 with what is perhaps the highest oxidation resistance of any material, and results in a unique set of oxidation processes. In SiC the oxidation reactions are much simpler, yet new issues still emerge; for instance, studies involving controlled devitrification of the amorphous silica scale confirmed that the oxidation rate of SiC drops by more than an order of magnitude when the oxide scale fully crystallizes.

  13. Formation of SiC using low energy CO2 ion implantation in silicon

    International Nuclear Information System (INIS)

    Sari, A.H.; Ghorbani, S.; Dorranian, D.; Azadfar, P.; Hojabri, A.R.; Ghoranneviss, M.

    2008-01-01

    Carbon dioxide ions with 29 keV energy were implanted into (4 0 0) high-purity p-type silicon wafers at nearly room temperature and doses in the range between 1 x 10 16 and 3 x 10 18 ions/cm 2 . X-ray diffraction analysis (XRD) was used to characterize the formation of SiC in implanted Si substrate. The formation of SiC and its crystalline structure obtained from above mentioned technique. Topographical changes induced on silicon surface, grains and evaluation of them at different doses observed by atomic force microscopy (AFM). Infrared reflectance (IR) and Raman scattering measurements were used to reconfirm the formation of SiC in implanted Si substrate. The electrical properties of implanted samples measured by four point probe technique. The results show that implantation of carbon dioxide ions directly leads to formation of 15R-SiC. By increasing the implantation dose a significant changes were also observed on roughness and sheet resistivity properties.

  14. Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide

    Science.gov (United States)

    Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg

    2018-03-01

    Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.

  15. Synthesis and investigation of silicon carbide nanowires by HFCVD

    Indian Academy of Sciences (India)

    We found that increasing substrate temperature increases silicon and oxygen doping amount. We also found that electrical resistivity and surface roughness increased by increasing substrate temperature. This study showed that SiC nanowires with high density grew on the free catalyst glass substrate, and the alignment of ...

  16. Investigation of planetary milling for nano-silicon carbide reinforced aluminium metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kollo, Lauri, E-mail: lauri.kollo@staff.ttu.e [Laboratory of Advanced Materials Processing, EMPA, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Leparoux, Marc; Bradbury, Christopher R.; Jaeggi, Christian [Laboratory of Advanced Materials Processing, EMPA, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Carreno-Morelli, Efrain; Rodriguez-Arbaizar, Mikel [University of Applied Sciences of Western Switzerland, Design and Materials Unit, 1950 Sion (Switzerland)

    2010-01-21

    High-energy planetary milling was used for mixing aluminium powders with 1 vol.% of silicon carbide (SiC) nanoparticles. A number of milling parameters were modified for constituting the relationship between the energy input from the balls and the hardness of the bulk nanocomposite materials. It was shown that mixing characteristics and reaction kinetics with stearic acid as process control agent can be estimated by normalised input energy from the milling bodies. For this, the additional parameter characterising the vial filling was determined experimentally. Depending on the ball size, a local minimum in filling parameter was found, laying at 25 or 42% filling of the vial volume for the balls with diameter of 10 and 20 mm, respectively. These regions should be avoided to achieve the highest milling efficiency.After a hot compaction, fourfold difference of hardness for different milling conditions was detected. Therewith the hardness of the Al-1 vol.% nanoSiC composite could be increased from 47 HV{sub 0.5} of pure aluminium to 163 HV{sub 0.5} when milling at the highest input energy levels.

  17. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  18. Effect of silicon carbide addition on the corrosion behavior of powder metallurgy Cu−30Zn brass in a 3.5 wt% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Mohammed Ali, E-mail: maalmomani7@just.edu.jo [Department of Industrial Engineering, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110 (Jordan); Tyfour, Wa' il Radwan, E-mail: wrtyfou@just.edu.jo [Department of Industrial Engineering, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110 (Jordan); Nemrat, Mohammed Hani, E-mail: mohammednemrat@yahoo.com [Department of Mechanical Engineering, Institute of Applied Technology, Abu Dhabi (United Arab Emirates)

    2016-09-15

    A study was made to evaluate the corrosion behavior when Cu−30Zn alloy is reinforced with different weight fractions of silicon carbide (SiC) particles in a simulated sea solution (3.5 wt% NaCl aqueous solution). The composites were produced via powder metallurgy (PM) route. For the sake of comparison, the corrosion behaviors of unreinforced and reinforced alloy were examined. Electrochemical measurements (potentiodynamic testing) showed that the corrosion rate of the composites decreased with increase of SiC weight percentages, as a result of weak microgalvanic couple between reinforcement particles and Cu−30Zn matrix, and the low possibility of intermetallic phases formation. ANOVA test indicated that the variations of corrosion rate of the composites upon changing weight percentages of SiC particles are statistically significant. Polarization curves showed that the passive film tends to be less stable, and the potential difference between passivation and free corrosion points increased with increase of SiC weight percentages, as SiC cathodically protect the matrix material by sacrificial anodic dissolution of crevice regions about reinforcement particles. Scanning Electron Microscope (SEM) images of the sample's surfaces before and after testing are in agreement with the electrochemical results. - Highlights: • Effect of adding SiC on both uniform and localized corrosion of Cu−30Zn alloy is studied. • Reinforcing Cu−30Zn with nonconductive SiC particles decreases its tendency to uniform and localized corrosion. • Reinforcement particles cathodically protect the matrix material, and retard pit propagation to the matrix.

  19. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  20. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  1. Thermogravimetric analysis of silicon carbide-silicon nitride fibers at ambient to 1000 C in air

    Science.gov (United States)

    Daniels, J. G.; Ledbetter, F. E., III; Clemons, J. M.; Penn, B. G.

    1984-01-01

    Thermogravimetric analysis of silicon carbide-silicon nitride fibers was carried out at ambient to 1000 C in air. The weight loss over this temperature range was negligible. In addition, the oxidative stability at high temperature for a short period of time was determined. Fibers heated at 1000 C in air for fifteen minutes showed negligible weight loss (i.e., less than 1 percent).

  2. In-pile Hydrothermal Corrosion Evaluation of Coated SiC Ceramics and Composites

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, David [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ang, Caen [Univ. of Tennessee, Knoxville, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Hydrothermal corrosion accelerated by water radiolysis during normal operation is among the most critical technical feasibility issues remaining for silicon carbide (SiC) composite-based cladding that could provide enhanced accident-tolerance fuel technology for light water reactors. An integrated in-pile test was developed and performed to determine the synergistic effects of neutron irradiation, radiolysis, and pressurized water flow, all of which are relevant to a typical pressurized water reactor (PWR). The test specimens were chosen to cover a range of SiC materials and a variety of potential options for environmental barrier coatings. This document provides a summary of the irradiation vehicle design, operations of the experiment, and the specimen loading into the irradiation vehicle.

  3. The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy

    Science.gov (United States)

    McDermid, J. R.; Pugh, M. D.; Drew, R. A. L.

    1989-09-01

    The objective of the present research was to join reaction-bonded silicon carbide (RBSC) to INCONEL 600 (a nickel-based superalloy) for use in advanced heat engine applications using either direct brazing or composite interlayer joining. Direct brazing experiments employed American Welding Society (AWS) BNi-5, a commercial nickel-based brazing alloy, as a filler material; composite interlayers consisted of intimate mixtures of α-SiC and BNi-5 powders. Both methods resulted in the liquid filler metal forming a Ni-Si liquid with the free Si in the RBSC, which, in turn, reacted vigorously with the SiC component of the RBSC to form low melting point constituents in both starting materials and Cr carbides at the metal-ceramic interface. Using solution thermodynamics, it was shown that a Ni-Si liquid of greater than 60 at. pct Ni will decompose a-SiC at the experimental brazing temperature of 1200 ‡C; these calculations are consistent with the experimentally observed composition profiles and reaction morphology within the ceramic. It was concluded that the joining of RBSC to INCONEL 600 using a nickel-based brazing alloy is not feasible due to the inevitability of the filler metal reacting with the ceramic, degrading the high-temperature properties of the base materials.

  4. Determination of the sputter rate variation pattern of a silicon carbide target for radio frequency magnetron sputtering using optical transmission measurements

    International Nuclear Information System (INIS)

    Galvez de la Puente, G.; Guerra Torres, J.A.; Erlenbach, O.; Steidl, M.; Weingaertner, R.; De Zela, F.; Winnacker, A.

    2010-01-01

    We produce amorphous silicon carbide thin films (a-SiC) by radio frequency (rf) magnetron sputtering from SiC bulk target. We present the emission pattern of the rf magnetron with SiC target as a function of process parameters, like target sample distance, rf power, sputtering rate and process gas pressure. The emission pattern is determined by means of thickness distribution of the deposited a-SiC films obtained from optical transmission measurements using a slightly improved method of Swanepoel concerning the determination of construction of the envelopes in the interference pattern of the transmission spectra. A calibration curve is presented which allows the conversion of integrated transmission to film thickness. Holding constant a set of process parameters and only varying the target sample distance the emission pattern of the rf magnetron with SiC target was determined, which allowed us to predict the deposition rate distribution for a wide range of process parameters and target geometry. In addition, we have found that the transmission spectra of the a-SiC films change with time and saturate after approximately 10 days. Within this process no change in thickness is involved, so that the determination of thickness using transmission data is justified.

  5. Chemical compatibility between UO{sub 2} fuel and SiC cladding for LWRs. Application to ATF (Accident-Tolerant Fuels)

    Energy Technology Data Exchange (ETDEWEB)

    Braun, James, E-mail: james.braun@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Guéneau, Christine; Alpettaz, Thierry [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Sauder, Cédric [DEN-Service de Recherches Métallurgiques Appliquées (SRMA), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Brackx, Emmanuelle; Domenger, Renaud [CEA, DEN, Marcoule, Metallography and Chemical Analysis Laboratory, F-30207 Bagnols-sur-Cèze (France); Gossé, Stéphane [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Balbaud-Célérier, Fanny [DEN-Service d’Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-04-15

    Silicon carbide-silicon carbide (SiC/SiC) composites are considered to replace the current zirconium-based cladding materials thanks to their good behavior under irradiation and their resistance under oxidative environments at high temperature. In the present work, a thermodynamic analysis of the UO{sub 2±x}/SiC system is performed. Moreover, using two different experimental methods, the chemical compatibility of SiC towards uranium dioxide, with various oxygen contents (UO{sub 2±x}) is investigated in the 1500–1970 K temperature range. The reaction leads to the formation of mainly uranium silicides and carbides phases along with CO and SiO gas release. Knudsen Cell Mass Spectrometry is used to measure the gas release occurring during the reaction between UO{sub 2+x} and SiC powders as function of time and temperature. These experimental conditions are representative of an open system. Diffusion couple experiments with pellets are also performed to study the reaction kinetics in closed system conditions. In both cases, a limited chemical reaction is observed below 1700 K, whereas the reaction is enhanced at higher temperature due to the decomposition of SiC leading to Si vaporization. The temperature of formation of the liquid phase is found to lie between 1850 < T < 1950 K. - Highlights: •A limited chemical reaction occurs between SiC and UO{sub 2+x} up to 1514 K. •CO gas along with the generation of USi{sub x} are detected over 1514 K in open system. •A liquid phase forms between 1850 and 1950 K in the UO{sub 2+x}/SiC system. •Results are encouraging for the use of SiC/SiC cladding in nuclear reactors.

  6. Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

    Directory of Open Access Journals (Sweden)

    Xinghao Liang

    2018-02-01

    Full Text Available Silicon carbide (SiC is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

  7. Final report. Fabrication of silicon carbide/silicon nitride nanocomposite materials and characterization of their performance; Herstellung von Siliciumcarbid/Siliciumnitrid-Nanocomposite-Werkstoffen und Charakterisierung ihrer Leistungsfaehigkeit. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R.; Woetting, G.; Schmitz, H.W.

    1998-07-01

    The presented activities were initiated by the well known publications of Niihara and Ishizaki. There, the strengthening and toughening of silicon nitride by nanoscaled silicon carbide particles are described. Both authors have used expensive powder production routes to achieve the optimum mechanical properties. However, for a commercial purpose these routes are not applicable due to their high cost and low reproducibility. The production route chosen by H.C. Starck together with CFI and the Fraunhofer-Institute is a powder synthesis based on the carbothermal reaction of silicon nitride as a low cost synthesis method. The investigations were performed for materials made from synthesis powders and other reference materials. The materials were densified with relatively high amounts of conventional sintering additives by gas pressure sintering. It is shown, that the postulated maxima of strength and fracture toughness behaviour at room temperature with maxima at about 5% to 25% nanoscaled SiC cannot be achieved. However, the mechanical high temperature material behaviour is as good as the behaviour of highly developed silicon nitride materials, which are produced by HIP or by consequent minimisation of the additive content with the well known difficulties to densify these materials. An overview will be given here on the powder production route and their specific problems, the mechanical properties, the microstructure and the possible effects of the microstructure, which result in an improvement of the creep resistance. (orig.)

  8. Evaluation of Fracture Stress for the SiC Layer of TRISO-Coated Fuel Particles by A Modified Crush Testing

    International Nuclear Information System (INIS)

    Byun, Thak Sang; Kim, Jin Weon; Miller, James Henry; Snead, Lance Lewis; Hunn, John D.

    2010-01-01

    Fracture stress data for the chemical vapor deposition (CVD) SiC coatings of tri-isotropic (TRISO) carbon/silicon carbide coated fuel particles were obtained using a newly developed testing and evaluation method, and their relationship with microstructure investigated. A crush testing technique using a blanket foil at load-transferring contact has been developed for hemispherical shell SiC specimens based on finite element (FE) analysis results. Mean fracture stress varied with test material in the range of 330-650 MPa, and was connected to the combined characteristics of inner surface roughness and porosity.

  9. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    Science.gov (United States)

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Highly Efficient Optical Pumping of Spin Defects in Silicon Carbide for Stimulated Microwave Emission

    Science.gov (United States)

    Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2018-05-01

    We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.

  11. Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructure and mechanical properties of Zn–27Al based composites reinforced with rice husk ash (RHA, silicon carbide (SiC, and graphite (Cg particles have been investigated. The Zn–27Al composites consisting of varied weight ratios of the reinforcing materials were produced using the stir casting process. Hardness test, tensile properties evaluation, fracture toughness determination, and microstructural examination, were used to characterize the composites produced. Results show that the microstructures of the composites are similar, consisting of the dendritic structure of the Zn–27Al alloy matrix with fine dispersion of the reinforcing particles. The hardness of the composites decreased with increase in the weight percent of RHA (and corresponding decrease in SiC weight percent in the reinforcement. The tensile strength and yield strength decreased slightly with increase in the weight ratio of RHA in the composites with a maximum of 8.5% and 9.6% reductions respectively observed for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement. Although some of the composite compositions containing RHA had slightly higher % elongation values compared with those without RHA, it was generally observed that the % elongation was invariant to the composite RHA content. The fracture toughness of the composites increases with increase in the weight percent of RHA with as much as a 20% increase obtained for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement.

  12. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.

    Science.gov (United States)

    Kappe, C Oliver

    2013-07-16

    In the past few years, the use of microwave energy to heat chemical reactions has become an increasingly popular theme in the scientific community. This nonclassical heating technique has slowly progressed from a laboratory curiosity to an established method commonly used both in academia and in industry. Because of its efficiency, microwave heating dramatically reduces reaction times (from days and hours to minutes and seconds) and improves product purities or material properties among other advantages. Since the early days of microwave chemistry, researchers have observed rate-accelerations and, in some cases, altered product distributions as compared with reactions carried out using classical oil-bath heating. As a result, researchers have speculated that so-called specific or nonthermal microwave effects could be responsible for these differences. Much of the debate has centered on the question of whether the electromagnetic field can exert a direct influence on a chemical transformation outside of the simple macroscopic change in bulk reaction temperature. In 2009, our group developed a relatively simple "trick" that allows us to rapidly evaluate whether an observed effect seen in a microwave-assisted reaction results from a purely thermal phenomenon, or involves specific or nonthermal microwave effects. We use a microwave reaction vessel made from silicon carbide (SiC) ceramic. Because of its high microwave absorptivity, the vessel shields its contents from the electromagnetic field. As a result, we can easily mimic a conventionally heated autoclave experiment inside a microwave reactor under carefully controlled reaction conditions. The switch from an almost microwave transparent glass (Pyrex) to a strongly microwave absorbing SiC reaction vial under otherwise identical reaction conditions (temperature profiles, pressure, stirring speed) then allows us to carefully evaluate the influence of the electromagnetic field on the particular chemical transformation

  13. Dependence of Fracture Toughness on Crystallographic Orientation in Single-Crystalline Cubic (β) Silicon Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pharr, M.; Katoh, Y.; Bei, H.

    2006-01-01

    Along with other desirable properties, the ability of silicon carbide (SiC) to retain high strength after elevated temperature exposures to neutron irradiation renders it potentially applicable in fusion and advanced fission reactors. However, properties of the material such as room temperature fracture toughness must be thoroughly characterized prior to such practical applications. The objective of this work is to investigate the dependence of fracture toughness on crystallographic orientation for single-crystalline β-SiC. X-ray diffraction was first performed on the samples to determine the orientation of the crystal. Nanoindentation was used to determine a hardness of 39.1 and 35.2 GPa and elastic modulus of 474 and 446 GPa for the single-crystalline and polycrystalline samples, respectively. Additionally, crack lengths and indentation diagonals were measured via a Vickers micro-hardness indenter under a load of 100 gf for different crystallographic orientations with indentation diagonals aligned along fundamental cleavage planes. Upon examination of propagation direction of cracks, the cracks usually did not initiate and propagate from the corners of the indentation where the stresses are concentrated but instead from the indentation sides. Such cracks clearly moved along the {1 1 0} family of planes (previously determined to be preferred cleavage plane), demonstrating that the fracture toughness of SiC is comparatively so much lower along this set of planes that the lower energy required to cleave along this plane overpowers the stress-concentration at indentation corners. Additionally, fracture toughness in the <1 1 0> direction was 1.84 MPa·m1/2, lower than the 3.46 MPa·m1/2 measured for polycrystalline SiC (which can serve as an average of a spectrum of orientations), further demonstrating that single-crystalline β-SiC has a strong fracture toughness anisotropy.

  14. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  15. Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Iannello, Christopher J.; Del Castillo, Linda Y.; Fitzpatrick, Fred D.; Mojarradi, Mohammad M.; hide

    2016-01-01

    Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments.

  16. Performance Evaluation of an Automotive-Grade, High Speed Gate Driver for SiC FETs, Type UCC27531, Over a Wide Temperature Range

    Science.gov (United States)

    Boomer, Kristen; Hammoud, Ahmad

    2015-01-01

    Silicon carbide (SiC) devices are becoming widely used in electronic power circuits as replacement for conventional silicon parts due to their attractive properties that include low on-state resistance, high temperature tolerance, and high frequency operation. These attributes have a significant impact by reducing system weight, saving board space, and conserving power. In this work, the performance of an automotive-grade high speed gate driver with potential use in controlling SiC FETs (field-Effect Transistors) in converters or motor control applications was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to assess performance and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.

  17. Micro-Raman spectroscopy as a tool for the characterization of silicon carbide in power semiconductor material processing

    Science.gov (United States)

    De Biasio, M.; Kraft, M.; Schultz, M.; Goller, B.; Sternig, D.; Esteve, R.; Roesner, M.

    2017-05-01

    Silicon carbide (SiC) is a wide band-gap semi-conductor material that is used increasingly for high voltage power devices, since it has a higher breakdown field strength and better thermal conductivity than silicon. However, in particular its hardness makes wafer processing difficult and many standard semi-conductor processes have to be specially adapted. We measure the effects of (i) mechanical processing (i.e. grinding of the backside) and (ii) chemical and thermal processing (i.e. doping and annealing), using confocal microscopy to measure the surface roughness of ground wafers and micro-Raman spectroscopy to measure the stresses induced in the wafers by grinding. 4H-SiC wafers with different dopings were studied before and after annealing, using depth-resolved micro-Raman spectroscopy to observe how doping and annealing affect: i.) the damage and stresses induced on the crystalline structure of the samples and ii.) the concentration of free electrical carriers. Our results show that mechanical, chemical and thermal processing techniques have effects on this semiconductor material that can be observed and characterized using confocal microscopy and high resolution micro Raman spectroscopy.

  18. The effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Freed, Alan D.

    1992-01-01

    This paper examines the effect of the morphology of the SCS6 silicon carbide fiber on the evolution of residual stresses in SiC/Ti composites. A micromechanics model based on the concentric cylinder concept is presented which is used to calculate residual stresses in a SiC/Ti composite during axisymmetric cooling by a spatially uniform temperature change. The silicon carbide fiber is modeled as a layered material with five distinct transversely isotropic and orthotropic, elastic layers, whereas the titanium matrix is taken to be isotropic, with temperature-dependent elastoplastic properties. The results arc compared with those obtained based on the assumption that the silicon carbide fiber is isotropic and homogeneous.

  19. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  20. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  1. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    Science.gov (United States)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  2. New generation of plasma-sprayed mullite coatings on silicon carbide

    Science.gov (United States)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  3. Factors affecting the corrosion of SiC layer by fission product palladium

    International Nuclear Information System (INIS)

    Dewita, E.

    2000-01-01

    HTR is one of the advanced nuclear reactors which has inherent safety system, graphite moderated and helium gas cooled. In general, these reactors are designed with the TRISO coated particle consist of four coating layers that are porous pyrolytic carbon (PyC). inner dense PyC (IPyC), silicon carbide (SiC), and outer dense PyC (OPyC). Among the four coating layers, the SiC plays an important role beside in retaining metallic fission products, it also provides mechanical strength to fuel particle. However, results of post irradiation examination indicate that fission product palladium can react with and corrode SiC layer, This assessment is conducted to get the comprehension about resistance of SiC layer on irradiation effects, especially in order to increase the fuel bum-up. The result of this shows that the corrosion of SiC layer by fission product palladium is beside depend on the material characteristics of SiC, and also there are other factors that affect on the SiC layer corrosion. Fuel enrichment, bum-up, and irradiation time effect on the palladium flux in fuel kernel. While, the fuel density, vapour pressure of palladium (the degree depend on the irradiation temperature and kernel composition) effect on palladium migration in fuel particle. (author)

  4. A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1993-01-01

    Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.

  5. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  6. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  7. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  8. Influence of nanometric silicon carbide on phenolic resin composites

    Indian Academy of Sciences (India)

    The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric ...

  9. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    International Nuclear Information System (INIS)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-01-01

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of β-SiC with traces of α-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time

  10. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-04-25

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of {beta}-SiC with traces of {alpha}-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time.

  11. Gate driver with high common mode rejection and self turn-on mitigation for a 10 kV SiC MOSFET enabled MV converter

    DEFF Research Database (Denmark)

    Dalal, Dipen Narendrabhai; Christensen, Nicklas; Jørgensen, Asger Bjørn

    2017-01-01

    Miller clamp circuit for a 10 kV half bridge SiC MOSFET power module. Designed power supply and the gate driver circuit are verified in a double pulse test setup and a continuous switching operation using the 10 kV half bridge silicon carbide MOSFET power module. An in-depth experimental verification...

  12. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  13. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  14. Silicon carbide and its use as a radiation detector material

    International Nuclear Information System (INIS)

    Nava, F; Bertuccio, G; Cavallini, A; Vittone, E

    2008-01-01

    We present a comprehensive review of the properties of the epitaxial 4H silicon carbide polytype (4H–SiC). Particular emphasis is placed on those aspects of this material related to room, high-temperature and harsh environment ionizing radiation detector operation. A review of the characterization methods and electrical contacting issues and how these are related to detector performance is presented. The most recent data on charge transport parameters across the Schottky barrier and how these are related to radiation spectrometer performance are presented. Experimental results on pixel detectors having equivalent noise energies of 144 eV FWHM (7.8 electrons rms) and 196 eV FWHM at +27 °C and +100 °C, respectively, are reported. Results of studying the radiation resistance of 4H–SiC are analysed. The data on the ionization energies, capture cross section, deep-level centre concentrations and their plausible structures formed in SiC as a result of irradiation with various particles are reviewed. The emphasis is placed on the study of the 1 MeV neutron irradiation, since these thermal particles seem to play the main role in the detector degradation. An accurate electrical characterization of the induced deep-level centres by means of PICTS technique has allowed one to identify which play the main role in the detector degradation. (topical review)

  15. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the

  16. Friction stir spot welding of 2024-T3 aluminum alloy with SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Laali [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-01-15

    In this study, the Friction stir spot welding (FSSW) of 2024-T3 aluminum alloy with 1.6 mm thickness was investigated. The effects of the silicon carbide (SiC) nanoparticles on the metallurgical and mechanical properties were discussed. The effects of particles on tension shear and wear tests were also investigated. The process was conducted at a constant rotational speed of 1000 rpm. Results showed that adding SiC nanoparticles to the weld during FSSW had a major effect on the mechanical properties. In fact, the addition of nanoparticles as barriers prevented grain growth in the Stir zone (SZ). The data obtained in the tensile-shear and wear tests showed that tensile-shear load and wear resistance increased with the addition of SiC nanoparticles, which was attributed to the fine grain size produced in the SZ.

  17. Tribology of silicon-thin-film-coated SiC ceramics and the effects of high energy ion irradiation

    International Nuclear Information System (INIS)

    Kohzaki, Masao; Noda, Shoji; Doi, Harua

    1990-01-01

    The sliding friction coefficients and specific wear of SiC ceramics coated with a silicon thin film (Si/SiC) with and without subsequent Ar + irradiation against a diamond pin were measured with a pin-on-disk tester at room temperature in laboratory air of approximately 50% relative humidity without oil lubrication for 40 h. The friction coefficient of Ar + -irradiated Si/SiC was about 0.05 with a normal load of 9.8 N and remained almost unchanged during the 40 h test, while that of SiC increased from 0.04 to 0.12 during the test. The silicon deposition also reduced the specific wear of SiC to less than one tenth of that of the uncoated SiC. Effectively no wear was detected in Si/SiC irradiated to doses of over 2x10 16 ions cm -2 . (orig.)

  18. The Effect of Grain Size on the Radiation Response of Silicon Carbide and its Dependence on Irradiation Species and Temperature

    Science.gov (United States)

    Jamison, Laura

    In recent years the push for green energy sources has intensified, and as part of that effort accident tolerant and more efficient nuclear reactors have been designed. These reactors demand exceptional material performance, as they call for higher temperatures and doses. Silicon carbide (SiC) is a strong candidate material for many of these designs due to its low neutron cross-section, chemical stability, and high temperature resistance. The possibility of improving the radiation resistance of SiC by reducing the grain size (thus increasing the sink density) is explored in this work. In-situ electron irradiation and Kr ion irradiation was utilized to explore the radiation resistance of nanocrystalline SiC (nc-SiC), SiC nanopowders, and microcrystalline SiC. Electron irradiation simplifies the experimental results, as only isolated Frenkel pairs are produced so any observed differences are simply due to point defect interactions with the original microstructure. Kr ion irradiation simulates neutron damage, as large radiation cascades with a high concentration of point defects are produced. Kr irradiation studies found that radiation resistance decreased with particle size reduction and grain refinement (comparing nc-SiC and microcrystalline SiC). This suggests that an interface-dependent amorphization mechanism is active in SiC, suggested to be interstitial starvation. However, under electron irradiation it was found that nc-SiC had improved radiation resistance compared to single crystal SiC. This was found to be due to several factors including increased sink density and strength and the presence of stacking faults. The stacking faults were found to improve radiation response by lowering critical energy barriers. The change in radiation response between the electron and Kr ion irradiations is hypothesized to be due to either the change in ion type (potential change in amorphization mechanism) or a change in temperature (at the higher temperatures of the Kr ion

  19. Self-Organized Graphene Nanoribbons on SiC(0001) Studied with Scanning Tunneling Microscopy

    Science.gov (United States)

    Torrance, David; Zhang, Baiqian; Hoang, Tien; First, Phillip

    2012-02-01

    Graphene nanoribbons grown directly on nanofacets of SiC(0001) offer an attractive union of top-down and bottom-up fabrication techniques. Nanoribbons have been shown to form on the facets of templated silicon carbide substrates,ootnotetextSprinkle et al., Nat. Nanotech. 5, 727 (2010). but also appear spontaneously along step-bunches on vicinal SiC(0001) miscut slightly towards . These self-organized graphene nanoribbons were characterized with low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) in ultra-high vacuum. Our measurements indicate that the graphene forms a continuous ``buffer layer'' across the SiC(0001) terraces during nanoribbon formation, with the zigzag edge of the buffer layer aligned parallel to the step-bunched nanofacets. Scanning tunneling microscopy/spectroscopy (STM/STS) was used to characterize the topography and electrical characteristics of the graphene nanoribbons. These measurements indicate that the graphene nanoribbons are highly-crystalline with predominantly zigzag edges.

  20. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  1. Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrices

    Science.gov (United States)

    Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.

    2006-11-01

    An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.

  2. Thermodynamic analysis of thermal plasma process of composite zirconium carbide and silicon carbide production from zircon concentrates

    International Nuclear Information System (INIS)

    Kostic, Z.G.; Stefanovic, P.Lj.; Pavlovic; Pavlovic, Z.N.; Zivkovic, N.V.

    2000-01-01

    Improved zirconium ceramics and composites have been invented in an effort to obtain better resistance to ablation at high temperature. These ceramics are suitable for use as thermal protection materials on the exterior surfaces of spacecraft, and in laboratory and industrial environments that include flows of hot oxidizing gases. Results of thermodynamic consideration of the process for composite zirconium carbide and silicon carbide ultrafine powder production from ZrSiO 4 in argon thermal plasma and propane-butane gas as reactive quenching reagents are presented in the paper. (author)

  3. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  4. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  5. Influence of neutron irradiation on etching of SiC in KOH

    Science.gov (United States)

    Mokhov, E. N.; Kazarova, O. P.; Soltamov, V. A.; Nagalyuk, S. S.

    2017-07-01

    The effect of reactor neutron irradiation on the etch rate of SiC in potassium hydroxide has been studied. In the case of high irradiation doses (1019-1021 cm-2), the etch rate of silicon carbide has been shown to drastically rise, especially in the [0001]Si direction. This considerably mitigates the orientation anisotropy of polar face etching. After high-temperature annealing (up to 1200-1400°C), a higher etch rate of irradiated crystals persists. The results have been explained by the high concentration of radiation-induced (partially clustered) defects they contain.

  6. The Benefits of SiC MOSFETs in a T-Type Inverter for Grid-Tie Applications

    DEFF Research Database (Denmark)

    Anthon, Alexander; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    at the expense of increased switching losses since these outer switches must now block the full DC link voltage. Silicon Carbide (SiC) MOSFET devices potentially offer substantial advantage in this context with their lower switching losses, but the benefit of replacing all switching devices in a T-Type inverter...... with SiC MOSFETs is not so clear-cut. This paper now explores this issue by presenting a detailed comparison of the use of Si and SiC devices for a three-level T-Type inverter operating in grid-tie applications. The study uses datasheet values, switching loss measurements and calibrated heat sink thermal...... power level or the switching frequency to be significantly increased for the same device losses. Hence the use of SiC MOSFETS for T-Type inverters can be seen to be an attractive and potentially cost effective alternative, since only two switching devices per phase leg need to be upgraded....

  7. Thermogravimetric analysis of silicon carbide-silicon nitride polycarbosilazane precursor during pyrolysis from ambient to 1000 C

    Science.gov (United States)

    Ledbetter, F. E., III; Daniels, J. G.; Clemons, J. M.; Hundley, N. H.; Penn, B. G.

    1984-01-01

    Thermogravimetric analysis data are presented on the unmeltable polycarbosilazane precursor of silicon carbide-silicon nitride fibers, over the room temperature-1000 C range in a nitrogen atmosphere, in order to establish the weight loss at various temperatures during the precursor's pyrolysis to the fiber material. The fibers obtained by this method are excellent candidates for use in applications where the oxidation of carbon fibers (above 400 C) renders them unsuitable.

  8. POWDER INJECTION MOLDING OF SIC FOR THERMAL MANAGEMENT V

    Directory of Open Access Journals (Sweden)

    Valmikanathan Onbattuvelli

    2012-06-01

    Full Text Available Silicon carbide (SiC exhibits many functional properties that are relevant to applications in electronics, aerospace, defense and automotive industries. However, the successful translation of these properties into final applications lies in the net-shaping of ceramics into fully dense microstructures. Increasing the packing density of the starting powders is one effective route to achieve high sintered density and dimensional precision. The present paper presents an in-depth study on the effects of nanoparticle addition on the powder injection molding process (PIM of SiC powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles are found to have significantly increased powder packing characteristics (solids loading in the powder-polymer mixtures. The influence of nanoparticle addition on the multi-step PIM process is examined. The above results provide new perspectives which could impact a wide range of materials, powder processing techniques and applications.

  9. Contribution of x-ray topography and high-resolution diffraction to the study of defects in SiC

    International Nuclear Information System (INIS)

    Dudley, Michael; Huang Xianrong; Vetter, William M

    2003-01-01

    A short review is presented of the various synchrotron white beam x-ray topography (SWBXT) imaging techniques developed for characterization of silicon carbide (SiC) crystals and thin films. These techniques, including back-reflection topography, reticulography, transmission topography, and a set of section topography techniques, are demonstrated to be particularly powerful for imaging hollow-core screw dislocations (micropipes) and closed-core threading screw dislocations, as well as other defects, in SiC. The geometrical diffraction mechanism commonly underlying these imaging processes is emphasized for understanding the nature and origins of these defects. Also introduced is the application of SWBXT combined with high-resolution x-ray diffraction techniques to complete characterization of 3C/4H or 3C/6H SiC heterostructures, including polytype identification, 3C variant mapping, and accurate lattice mismatch measurements

  10. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    Science.gov (United States)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  11. Stress envelope of silicon carbide composites at elevated temperatures

    International Nuclear Information System (INIS)

    Nozawa, Takashi; Kim, Sunghun; Ozawa, Kazumi; Tanigawa, Hiroyasu

    2014-01-01

    To identify a comprehensive stress envelope, i.e., strength anisotropy map, of silicon carbide fiber-reinforced silicon carbide matrix composite (SiC/SiC composite) for practical component design, tensile and compressive tests were conducted using the small specimen test technique specifically tailored for high-temperature use. In-plane shear properties were, however, estimated using the off-axial tensile method and assuming that the mixed mode failure criterion, i.e., Tsai–Wu criterion, is valid for the composites. The preliminary test results indicate no significant degradation to either proportional limit stress (PLS) or fracture strength by tensile loading at temperatures below 1000 °C. A similarly good tolerance of compressive properties was identified at elevated temperatures, except for a slight degradation in PLS. With the high-temperature test data of tensile, compressive and in-plane shear properties, the stress envelopes at elevated temperatures were finally obtained. A slight reduction in the design limit was obvious at elevated temperatures when the compressive mode is dominant, whereas a negligibly small impact on the design is expected by considering the tensile loading case

  12. Stress envelope of silicon carbide composites at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, Takashi, E-mail: nozawa.takashi67@jaea.go.jp [Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Kim, Sunghun [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ozawa, Kazumi; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2014-10-15

    To identify a comprehensive stress envelope, i.e., strength anisotropy map, of silicon carbide fiber-reinforced silicon carbide matrix composite (SiC/SiC composite) for practical component design, tensile and compressive tests were conducted using the small specimen test technique specifically tailored for high-temperature use. In-plane shear properties were, however, estimated using the off-axial tensile method and assuming that the mixed mode failure criterion, i.e., Tsai–Wu criterion, is valid for the composites. The preliminary test results indicate no significant degradation to either proportional limit stress (PLS) or fracture strength by tensile loading at temperatures below 1000 °C. A similarly good tolerance of compressive properties was identified at elevated temperatures, except for a slight degradation in PLS. With the high-temperature test data of tensile, compressive and in-plane shear properties, the stress envelopes at elevated temperatures were finally obtained. A slight reduction in the design limit was obvious at elevated temperatures when the compressive mode is dominant, whereas a negligibly small impact on the design is expected by considering the tensile loading case.

  13. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    Science.gov (United States)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-11-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  14. Structural, thermal, dielectric spectroscopic and AC impedance properties of SiC nanoparticles doped PVK/PVC blend

    Science.gov (United States)

    Alghunaim, Naziha Suliman

    2018-06-01

    Nanocomposite films based on poly (N-vinylcarbazole)/polyvinylchloride (PVK/PVC) blend doped with different concentrations of Silicon Carbide (SiC) nanoparticles have been prepared. The X-ray diffraction, Ultra violet-visible spectroscopy, thermogravimetric analysis and electrical spectroscopic has been used to characterize these nanocomposites. The X-ray analysis confirms the semi-crystalline nature of the films. The intensity of the main X-ray peak is decreased due to the interaction between the PVK/PVC and SiC. The main SiC peaks are absent due to complete dissolution of SiC in polymeric matrices. The UV-Vis spectra indicated that the band gap optical energy is affected by adding SiC nanoparticles because the charges transfer complexes between PVK/PVC with amount of SiC. The thermal stability is improved and the estimated values of ε‧ and ε″ are increased with increasing for SiC content due to the free charge carriers which in turn increase the ionic conductivity of the doped samples. The plots of tan δ with frequency are studied. A single peak from the plot between tan δ and Log (f) is appeared and shifted towards the higher frequency confirmed the presence of relaxing dipoles moment.

  15. The Affordable Pre-Finishing of Silicon Carbide for Optical Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Creare proposes to develop a novel, laser-assisted, pre-finishing process for chemical vapor deposition (CVD) coated silicon-carbide ceramics. Our innovation will...

  16. Ultrafast nonlinear response of silicon carbide to intense THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Kaltenecker, Korbinian J.

    2017-01-01

    We demonstrate ultrafast nonlinear absorption induced by strong, single-cycle THz fields in bulk, lightly doped 4H silicon carbide. A combination of Zener tunneling and intraband transitions makes the effect as at least as fast as the excitation pulse. The sub-picosecond recovery time makes...

  17. Oxidation of mullite-zirconia-alumina-silicon carbide composites

    International Nuclear Information System (INIS)

    Baudin, C.; Moya, J.S.

    1990-01-01

    This paper reports the isothermal oxidation of mullite-alumina-zirconia-silicon carbide composites obtained by reaction sintering studied in the temperature interval 800 degrees to 1400 degrees C. The kinetics of the oxidation process was related to the viscosity of the surface glassy layer as well as to the crystallization of the surface film. The oxidation kinetics was halted to T ≤ 1300 degrees C, presumably because of crystallization

  18. Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction.

    Science.gov (United States)

    Rajput, S; Chen, M X; Liu, Y; Li, Y Y; Weinert, M; Li, L

    2013-01-01

    When graphene is interfaced with a semiconductor, a Schottky contact forms with rectifying properties. Graphene, however, is also susceptible to the formation of ripples upon making contact with another material. Here we report intrinsic ripple- and electric field-induced effects at the graphene semiconductor Schottky junction, by comparing chemical vapour-deposited graphene transferred on semiconductor surfaces of opposite polarization-the hydrogen-terminated silicon and carbon faces of hexagonal silicon carbide. Using scanning tunnelling microscopy/spectroscopy and first-principles calculations, we show the formation of a narrow Schottky dipole barrier approximately 10 Å wide, which facilitates the observed effective electric field control of the Schottky barrier height. We further find atomic-scale spatial fluctuations in the Schottky barrier that directly follow the undulation of ripples on both graphene-silicon carbide junctions. These findings reveal fundamental properties of the graphene/semiconductor Schottky junction-a key component of vertical graphene devices that offer functionalities unattainable in planar device architecture.

  19. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yuki [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-07

    We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ion battery.

  20. Silicon carbide modified carbon materials. Formation of nanocrystalline SiC from thermochemical processes in the system coal tar pitch/poly(carbosilane)

    Energy Technology Data Exchange (ETDEWEB)

    Czosnek, C.; Janik, J.F.; Olejniczak, Z. [Stanislaw Staszic University of Mining & Meterology, AGH, Krakow (Poland)

    2002-12-01

    Poly(carbosilane) or PCS, (-CH{sub 2}-SiH(CH{sub 3})-){sub n}, is used as a Si-bearing precursor in combination with a coal tar pitch to study thermally induced transformations toward SiC-modified carbon composites. Following mixing of the components in the molten pitch at 160{sup o}C, the mixture is heated under argon atmosphere at 500{sup o}C yielding a solid carbonizate that is further subjected to separate pyrolysis experiments at 1300{sup o}C or 1650{sup o}C. At temperatures up to 500{sup o}C, the PCS reacts with suitable pitch components as well as undergoing decomposition reactions. At higher temperatures, clusters of prevailingly nanocrystalline beta-SiC are confirmed after the 1650{sup o}C pyrolysis step with indications that the formation of the compound starts at 1300{sup o}C. Si-29 MAS NMR, XRD, FT-IR, XPS, and elemental analysis are used to characterize each pyrolysis step, especially, from the viewpoint of transformation of silicon species to silicon carbide in the carbon matrix evolved from the pitch.

  1. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    Science.gov (United States)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  2. Fabricating porous silicon carbide

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  3. Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating

    Science.gov (United States)

    Rizal, Umesh; Swain, Bhabani S.; Rameshbabu, N.; Swain, Bibhu P.

    2018-01-01

    Amorphous silicon carbide (a-SiC:H) thin films were synthesized using trichloromethylsilane by a hot wire chemical vapor deposition process. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy to confirm its chemical bonding, structural network and composition of the a-SiC:H films. The optical microscopy images reveal that hydrogen dilution increased the surface roughness and pore density of a-SiC:H thin film. The Raman spectroscopy and FTIR spectra reveal chemical network consisting of Si-Si, C-C and Si-C bonds, respectively. The XRD spectroscopy and Raman spectroscopy indicate a-SiC:H still has short-range order. In addition, in vitro cytotoxicity test ensures the behavior of cell-semiconductor hybrid to monitor the proper coordination. The live-dead assays and MTT assay reveal an increase in green nucleus cell, and cell viability is greater than 88%, respectively, showing non-toxic nature of prepared a-SiC:H film. Moreover, the result indicated by direct contact assay, and cell prefers to adhere and proliferate on a-SiC:H thin films having a positive effect as artificial heart valve coating material.

  4. Review of experimental studies of zirconium carbide coated fuel particles for high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Minato, Kazuo; Ogawa, Toru; Fukuda, Kousaku

    1995-03-01

    Experimental studies of zirconium carbide(ZrC) coated fuel particles were reviewed from the viewpoints of fuel particle designs, fabrication, characterization, fuel performance, and fission product retentiveness. ZrC is known as a refractory and chemically stable compound, so ZrC is a candidate to replace the silicon carbide(SiC) coating layer of the Triso-coated fuel particles. The irradiation experiments, the postirradiation heating tests, and the out-of-reactor experiments showed that the ZrC layer was less susceptible than the SiC layer to chemical attack by fission products and fuel kernels, and that the ZrC-coated fuel particles performed better than the standard Triso-coated fuel particles at high temperatures, especially above 1600degC. The ZrC-coated fuel particles demonstrated better cesium retention than the standard Triso-coated fuel particles though the ZrC layer showed a less effective barrier to ruthenium than the SiC layer. (author) 51 refs

  5. Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method

    Directory of Open Access Journals (Sweden)

    Omid Yaghobizadeh

    2017-03-01

    Full Text Available The material Cf-C-SiC-Ti3SiC2 is promising for high temperature application. Due to the laminated structure and special properties, the Ti3SiC2 is one of the best reinforcements for Cf-C-SiC composites. In this paper, Cf-C-SiC-Ti3SiC2 composites were fabricated by liquid silicon infiltration (LSI method; the effect of the TiC amount on the various composites properties were studied. For samples with 0, 50 and 90 vol.% of TiC, the results show that bending strength are 168, 190, and 181 MPa; porosities are 3.2, 4.7, and 9%; the fracture toughness are 6.1, 8.9, and 7.8 MPa∙m1/2; interlaminar shear strength are 27, 36, and 30 MPa; the amount of the MAX phase are 0, 8.5, and 5.6 vol.%, respectively. These results show that amount of TiC is not the main effective parameter in synthesis of Ti3SiC2. The existence of carbon promotes the synthesis of Ti3SiC2 indicating that only sufficient carbon content can lead to the appearance of Ti3SiC2 in the LSI process.

  6. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC

    Science.gov (United States)

    Sakwe, S. A.; Müller, R.; Wellmann, P. J.

    2006-04-01

    We have developed a KOH-based defect etching procedure for silicon carbide (SiC), which comprises in situ temperature measurement and control of melt composition. As benefit for the first time reproducible etching conditions were established (calibration plot, etching rate versus temperature and time); the etching procedure is time independent, i.e. no altering in KOH melt composition takes place, and absolute melt temperature values can be set. The paper describes this advanced KOH etching furnace, including the development of a new temperature sensor resistant to molten KOH. We present updated, absolute KOH etching parameters of n-type SiC and new absolute KOH etching parameters for low and highly p-type doped SiC, which are used for quantitative defect analysis. As best defect etching recipes we found T=530 °C/5 min (activation energy: 16.4 kcal/mol) and T=500 °C/5 min (activation energy: 13.5 kcal/mol) for n-type and p-type SiC, respectively.

  7. The Effect of SiC Polytypes on the Heat Distribution Efficiency of a Phase Change Memory.

    Science.gov (United States)

    Aziz, M. S.; Mohammed, Z.; Alip, R. I.

    2018-03-01

    The amorphous to crystalline transition of germanium-antimony-tellurium (GST) using three types of silicon carbide’s structure as a heating element was investigated. Simulation was done using COMSOL Multiphysic 5.0 software with separate heater structure. Silicon carbide (SiC) has three types of structure; 3C-SiC, 4H-SiC and 6H-SiC. These structures have a different thermal conductivity. The temperature of GST and phase transition of GST can be obtained from the simulation. The temperature of GST when using 3C-SiC, 4H-SiC and 6H-SiC are 467K, 466K and 460K, respectively. The phase transition of GST from amorphous to crystalline state for three type of SiC’s structure can be determined in this simulation. Based on the result, the thermal conductivity of SiC can affecting the temperature of GST and changed of phase change memory (PCM).

  8. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  9. A review of oxide, silicon nitride, and silicon carbide brazing

    International Nuclear Information System (INIS)

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed

  10. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  11. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  12. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The First JFET-based Silicon Carbide Active Pixel Sensor UV Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is critically important in the fields of space astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc....

  14. Study of Power Loss Reduction in SEPR Converters for Induction Heating through Implementation of SiC Based Semiconductor Switches

    Directory of Open Access Journals (Sweden)

    Angel Marinov

    2014-08-01

    Full Text Available This paper presents a power loss analysis for a Single Ended Parallel Resonance (SEPR Converter used for induction heating. The analysis includes a comparison of the losses in the electronic switch when the circuit is realized using a conventional Silicon (Si based IGBT or when using Silicon Carbide (SiC based MOSFET. The analysis includes modelling and simulation as well as experimental verification through power loss and heat dissipation measurement. The presented results can be used as a base of comparison between the switches and can be a starting point for efficiency based design of those types of converters.

  15. Al-oxynitride interfacial layer investigations for Pr{sub X}O{sub Y} on SiC and Si

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, K; Karavaev, K; Torche, M; Schwiertz, C; Burkov, Y; Schmeisser, D [Brandenburgische Technische Universitaet Cottbus, Angewandte Physik-Sensorik, K-Wachsmann-Allee 17, 03046 Cottbus (Germany)], E-mail: henkel@tu-cottbus.de

    2008-01-15

    We investigate the dielectric properties of Praseodymium based oxides Pr{sub X}O{sub Y} by preparing MIS (metal insulator semiconductor) structures consisting of Pr{sub X}O{sub Y} as a high-k insulating layer and silicon (Si) or silicon carbide (SiC) as semiconductor substrates. The use of a buffer layer between Pr{sub X}O{sub Y} and the semiconductor is necessary as we found deleterious reactions between these materials such as silicate and graphite formation. Possessing a higher permittivity value ({epsilon}{sub r}) than silicon dioxide (SiO{sub 2}) and good lattice matching in conjunction with similar thermal expansion coefficient to SiC, we focus on aluminum oxynitride (AlON) as a suitable buffer layer for this high-k/wide-bandgap system. In our spectroscopic investigations we found a decrease or indeed prevention of silicon diffusion into the oxide and an increased Pr{sub 2}O{sub 3} fraction after deposition. In electrical characterizations of Pr{sub X}O{sub Y}/AlON stacks we found considerable improvements in the leakage current by several orders on both substrates, especially on silicon where we obtain values down to 10{sup -7}A/cm{sup 2} at a CET (capacitance equivalent thickness) of 4nm. We observed interface state densities in the range of 5 x 10{sup 11}-1 x 10{sup 12}/eVcm{sup 2} and 1-5 x 10{sup 12}/eVcm{sup 2} on Si and SiC, respectively.

  16. Improvements in mechanical properties in SiC by the addition of TiC particles

    International Nuclear Information System (INIS)

    Wei, G.C.; Becher, P.F.

    1984-01-01

    Silicon carbide ceramics containing up to 24.6 vol% dispersed TiC particles yielded fully dense composites by hot-pressing at 2000 0 C with 1 wt% Al and 1 wt% C added. The microstructure consists of fine TiC particles in a fine-grained SiC matrix. Addition of TiC particles increases the critical fracture toughness of SiC (to approx. =6 MPa /SUP ./ m /SUP 1/2/ at 24.6 vol% TiC) and yields high flexure strength (greater than or equal to 680 MPa), with both properties increasing with increasing volume fraction of TiC. The strengths at high temperatures are also improved by the TiC additions. Observations of the fracture path indicate that the improved toughness and strength are a result of crack deflection by the TiC particles

  17. Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form

    International Nuclear Information System (INIS)

    Terrani, K.A.; Kiggans, J.O.; Silva, C.M.; Shih, C.; Katoh, Y.; Snead, L.L.

    2015-01-01

    The consolidation mechanism and resulting properties of the silicon carbide (SiC) matrix of fully ceramic microencapsulated (FCM) fuel form are discussed. The matrix is produced via the nano-infiltration transient eutectic-forming (NITE) process. Coefficient of thermal expansion, thermal conductivity, and strength characteristics of this SiC matrix have been characterized in the unirradiated state. An ad hoc methodology for estimation of thermal conductivity of the neutron-irradiated NITE–SiC matrix is also provided to aid fuel performance modeling efforts specific to this concept. Finally, specific processing methods developed for production of an optimal and reliable fuel form using this process are summarized. These various sections collectively report the progress made to date on production of optimal FCM fuel form to enable its application in light water and advanced reactors

  18. Low dose irradiation performance of SiC interphase SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Lowden, R.A.; Strizak, J.; More, K.L.; Eatherly, W.S.; Bailey, J.; Williams, A.M.; Osborne, M.C.; Shinavski, R.J.

    1998-01-01

    Reduced oxygen Hi-Nicalon fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either 'porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1 x 10 25 n m -2 (E>0.1 MeV) in the temperature range of 260 to 1060 C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber. (orig.)

  19. Technology roadmap for development of SiC sensors at plasma processes laboratory

    Directory of Open Access Journals (Sweden)

    Mariana Amorim Fraga

    2010-08-01

    Full Text Available Recognizing the need to consolidate the research and development (R&D activities in microelectronics fields in a strategic manner, the Plasma Processes Laboratory of the Technological Institute of Aeronautics (LPP-ITA has established a technology roadmap to serve as a guide for activities related to development of sensors based on silicon carbide (SiC thin films. These sensors have also potential interest to the aerospace field due to their ability to operate in harsh environment such as high temperatures and intense radiation. In the present paper, this roadmap is described and presented in four main sections: i introduction, ii what we have already done in the past, iii what we are doing in this moment, and iv our targets up to 2015. The critical technological issues were evaluated for different categories: SiC deposition techniques, SiC processing techniques for sensors fabrication and sensors characterization. This roadmap also presents a shared vision of how R&D activities in microelectronics should develop over the next five years in our laboratory.

  20. Characterization of rare-earth doped Si 3 N4 /SiC micro/nanocomposites

    Directory of Open Access Journals (Sweden)

    Peter Tatarko

    2010-03-01

    Full Text Available Influence of various rare-earth oxide additives (La2O3, Nd2O3, Sm2O3, Y2O3, Yb2O3 and Lu2O3 on the mechanical properties of hot-pressed silicon nitride and silicon nitride/silicon carbide micro/nano-composites has been investigated. The bimodal character of microstructures was observed in all studied materials where elongated β-Si3N4 grains were embedded in the matrix of much finer Si3N4 grains. The fracture toughness values increased with decreasing ionic radius of rare-earth elements. The fracture toughness of composites was always lower than that of monoliths due to their finer Si3N4/SiC microstructures. Similarly, the hardness and bending strength values increased with decreasing ionic radius of rare-earth elements either in monoliths or composites. On the other hand, the positive influence of finer microstructure of the composites on strength was not observed due to the present defects in the form of SiC clusters and non-reacted carbon zones. Wear resistance at room temperature also increased with decreasing ionic radius of rare-earth element. Significantly improved creep resistance was observed in case either of composite materials or materials with smaller radius of RE3+.

  1. The First JFET-Based Silicon Carbide Active Pixel Sensor UV Imager, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is needed in the fields of astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc. proposes to develop a...

  2. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    Science.gov (United States)

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  3. Influence of surface morphology and UFG on damping and mechanical properties of composite reinforced with spinel MgAl{sub 2}O{sub 4}-SiC core-shell microcomposites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Subhash; Pal, Kaushik, E-mail: pl_kshk@yahoo.co.in

    2017-01-15

    Interface between ceramic particulate and matrix is known to control the response of the materials and functionality of the composite. Among numerous physical properties, grain structure of the materials has also played a significant role in defining the behaviour of metal matrix composites. Usually, silicon carbide (SiC) particles show poor interfacial wettability in aluminium melt. Herein, we were successfully synthesized magnesium oxide (MgO) and nanocrystalline magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel coated silicon carbide (SiC) core-shell micro-composites through sol-gel technique to improve the wettability of dispersoids. Core-shell structures of submicron size were thoroughly investigated by various characterization techniques. Further, aluminium matrix composites incorporated with pristine SiC, MgO grafted SiC and MgAl{sub 2}O{sub 4} grafted SiC particles were fabricated by stir casting technique, respectively. Additionally, as-cast composites were processed via friction stir processing (FSP) technique to observe the influence of grain refinement on mechanical and damping properties. Electron back scattered diffraction (EBSD), Field emission scanning electron microscopy (FE-SEM) and X-ray energy dispersion spectroscopy (EDX) analysis were conducted for investigating grain size refinement, adequate dispersion, stability and de-agglomeration of encapsulated SiC particles in aluminium matrix. The mechanical as well as thermal cyclic (from − 100 to 400 °C) damping performance of the as-cast and friction stir processed composites were studied, respectively. Finally, the enhanced properties were attributable to reduced agglomeration, stabilization and proper dispersion of the tailored SiC particles Al matrix. - Highlights: •Synthesizing a novel coating layer of MgO and MgAl{sub 2}O{sub 4} spinel onto SiC particles •Significant improvement in UTS and hardness by reinforcing tailored SiC in Al •Significant grain refinements were obtained through

  4. UV laser drilling of SiC for semiconductor device fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Olaf; Schoene, Gerd; Wernicke, Tim; John, Wilfred; Wuerfl, Joachim; Traenkle, Guenther [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2007-04-15

    Pulsed UV laser processing is used to drill micro holes in silicon carbide (SiC) wafers supporting AlGaN/GaN transistor structures. Direct laser ablation using nanosecond pulses has been proven to provide an efficient way to create through and blind holes in 400 {mu}m thick SiC. When drilling through, openings in the front pads are formed, while blind holes stop {approx}40 {mu}m before the backside and were advanced to the electrical contact pad by subsequent plasma etching without an additional mask. Low induction connections (vias) between the transistor's source pads and the ground on the backside were formed by metallization of the holes. Micro vias having aspect ratios of 5-6 have been processed in 400 {mu}m SiC. The process flow from wafer layout to laser drilling is available including an automated beam alignment that allows a positioning accuracy of {+-}1 {mu}m with respect to existing patterns on the wafer. As proven by electrical dc and rf measurements the laser-assisted via technologies have successfully been implemented into fabrication of AlGaN/GaN high-power transistors.

  5. High-temperature mechanical and material design for SiC composites

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1992-01-01

    Silicon Carbide (SiC) fiber reinforced composites (FRC's) are strong potential candidate structural and high heat flux materials for fusion reactors. During this past decade, they have been vigorously developed for use in aerospace and transportation applications. Recent fusion reactor systems studies, such as ARIES, have concluded that further development of SiC composites will result in significant safety, operational, and waste disposal advantages for fusion systems. A concise discussion of the main material and design issues related to the use of SiC FRC's as structural materials in future fusion systems is given in this paper. The status of material processing of SiC/SiC composites is first reviewed. The advantages and shortcomings of the leading processing technology, known as Chemical Vapor Infiltration are particularly highlighted. A brief outline of the design-relevant physical, mechanical, and radiation data base is then presented. SiC/SiC FRC's possess the advantage of increased apparent toughness under mechanical loading conditions. This increased toughness, however, is associated with the nucleation and propagation of small crack patterns in the structure. Design approaches and failure criteria under these conditions are discussed

  6. Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Tony, Voo Chung Sung; Voon, Chun Hong; Lee, Chang Chuan and others, E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering, University Malaysia (Malaysia)

    2017-11-15

    Silicon carbide nanotube (SiCNTs) has been proven as a suitable material for wide applications in high power, elevated temperature and harsh environment. For the first time, we reported in this article an effective synthesis of SiCNTs by microwave heating of SiO{sub 2} and MWCNTs in molar ratio of 1:1, 1:3, 1:5 and 1:7. Blend of SiO{sub 2} and MWCNTs in the molar ratio of 1:3 was proven to be the most suitable for the high yield synthesis of β-SiCNTs as confirmed by X-ray diffraction pattern. Only SiCNTs were observed from the blend of MWCNTs and SiO{sub 2} in the molar ratio of 1:3 from field emission scanning electron microscopy imaging. High magnification transmission electron microscopy showed that tubular structure of MWCNT was preserved with the inter-planar spacing of 0.25 nm. Absorption bands of Si-C bond were detected at 803 cm-1 in Fourier transform infrared spectrum. Thermal gravimetric analysis revealed that SiCNTs from ratio of 1:3 showed the lowest weight loss. Thus, our synthetic process indicates high yield conversion of SiO{sub 2} and MWCNTs to SiCNTs was achieved for blend of SiO{sub 2} and MWCNTs in molar ratio of 1:3. (author)

  7. REFEL silicon carbide. The development of a ceramic for a nuclear engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, P.; Shennan, J. V.

    1974-10-15

    REFEL silicon carbide is a strong, uniform, fine-grain material which retains its strength and is stable in an oxidizing environment up to 1400 deg C. REFEL silicon carbide tube can be produced in quantity and by a combination of process controls, visual examination, NDT and proof testing, a very consistent product can be made. The material was developed as a nuclear fuel cladding capable of operating at temperatures o 1100 deg C in a CO2-cooled reactor and the combination of excellent physical, mechanical and chemical properties together with product consistency ave confirmed the feasibility of this application. In a series of irradiation experiments, REFEL silicon carbide clad fuel pins have behaved predictably. At irradiation temperatures below about 800 deg C, the thermal conductivity falls sharply, the associate thermal stress increases, and the probability of failure, for the same rating, increases. It has been demonstrated theoretically that this effect can be overcome by halving the tube wall thickness. In addition to the thermal stress enhancement, the strength and Weibull modulus also fall under irradiation and consequently the safe working stress is reduced, Calculations show that in the absence of irradiation a fourfold increase in rating cold be tolerated. Thus, the material should have excellent thermal stress resistance in non-nuclear applications such as gas turbine components. (auth)

  8. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  9. Chemical vapor deposition of SiC on C-C composites as plasma facing materials for fusion application

    International Nuclear Information System (INIS)

    Kim, W. J.; Lee, M. Y.; Park, J. Y.; Hong, G. W.; Kim, J. I.; Choi, D. J.

    2000-01-01

    Because of the low activation and excellent mechanical properties at elevated temperatures, carbon-fiber reinforced carbon(C-C) composites have received much attention for plasma facing materials for fusion reactor and high-temperature structural applications such as aircrafts and space vehicles. These proposed applications have been frustrated by the lack of resistance to hydrogen erosion and oxidation on exposure to ambient oxidizing conditions at high temperature. Although Silicon Carbide (SiC) has shown excellent properties as an effective erosion-and oxidation-protection coating, many cracks are developed during fabrication and thermal cycles in use due to the Coefficients of Thermal Expansion(CTE) mismatch between SiC and C-C composite. In this study, we adopted a pyrolitic carbon as an interlayer between SiC and C-C substrate in order to minimize the CTE mismatch. The oxidation-protection performance of this composite was investigated as well

  10. Characterisation of nuclear dispersion fuels. The non-destructive examination of silicon carbide by selenium immersion

    Energy Technology Data Exchange (ETDEWEB)

    Ambler, J.F.R.; Ferguson, I.F.

    1974-07-15

    The non-destructive microscopic examination of silicon-carbide-coated spheres containing uranium carbide, which involves immersing the coated spheres in selenium, is particularly suited for the examination of flaws in the coats but it is not possible to measure coating thicknesses by this method. Some coats are found to be opaque and this is related to their porosity. (auth)

  11. Fabrication and Mechanical Properties of SiCw(p/SiC-Si Composites by Liquid Si Infiltration using Pyrolysed Rice Husks and SiC Powders as Precursors

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2014-03-01

    Full Text Available Dense silicon carbide (SiC matrix composites with SiC whiskers and particles as reinforcement were prepared by infiltrating molten Si at 1550 °C into porous preforms composed of pyrolysed rice husks (RHs and extra added SiC powder in different ratios. The Vickers hardness of the composites showed an increase from 18.6 to 21.3 GPa when the amount of SiC added in the preforms was 20% (w/w, and then decreased to 17.3 GPa with the increase of SiC added in the preforms up to 80% (w/w. The values of flexural strength of the composites initially decreased when 20% (w/w SiC was added in the preform and then increased to 587 MPa when the SiC concentration reached 80% (w/w. The refinement of SiC particle sizes and the improvement of the microstructure in particle distribution of the composites due to the addition of external SiC played an effective role in improving the mechanical properties of the composites.

  12. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    Science.gov (United States)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2018-04-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  13. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching

    International Nuclear Information System (INIS)

    Choi, J H; Bano, E; Latu-Romain, L; Dhalluin, F; Chevolleau, T; Baron, T

    2012-01-01

    In this paper, we demonstrate a top-down fabrication technique for nanometre scale silicon carbide (SiC) pillars using inductively coupled plasma etching. A set of experiments in SF 6 -based plasma was carried out in order to realize high aspect ratio SiC nanopillars. The etched SiC nanopillars using a small circular mask pattern (115 nm diameter) show high aspect ratio (7.4) with a height of 2.2 µm at an optimum bias voltage (300 V) and pressure (6 mTorr). Under the optimal etching conditions using a large circular mask pattern with 370 nm diameter, the obtained SiC nanopillars exhibit high anisotropy features (6.4) with a large etch depth (>7 µm). The etch characteristic of the SiC nanopillars under these conditions shows a high etch rate (550 nm min -1 ) and a high selectivity (over 60 for Ni). We also studied the etch profile of the SiC nanopillars and mask evolution over the etching time. As the mask pattern size shrinks in nanoscale, vertical and lateral mask erosion plays a crucial role in the etch profile of the SiC nanopillars. Long etching process makes the pillars appear with a hexagonal shape, coming from the crystallographic structure of α-SiC. It is found that the feature of pillars depends not only on the etching process parameters, but also on the crystallographic structure of the SiC phase. (paper)

  14. Progress in Studies on Carbon and Silicon Carbide Nanocomposite Materials

    International Nuclear Information System (INIS)

    Xiao, P.; Chen, J.; Xian-feng, X.

    2010-01-01

    Silicon carbide nanofiber and carbon nanotubes are introduced. The structure and application of nanotubers (nanofibers) in carbon/carbon composites are emphatically presented. Due to the unique structure of nanotubers (nanofibers), they can modify the microstructure of pyrocarbon and induce the deposition of pyrocarbon with high text in carbon/carbon composites. So the carbon/carbon composites modified by CNT/CNF have more excellent properties.

  15. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  16. Thermal Stability of Hi-Nicalon SiC Fiber in Nitrogen and Silicon Environments

    Science.gov (United States)

    Bhatt, R. T.; Garg, A.

    1995-01-01

    The room temperature tensile strength of uncoated and two types of pyrolytic boron nitride coated (PBN and Si-rich PBN) Hi-Nicalon SiC fibers was determined after 1 to 400 hr heat treatments to 1800 C under N2 pressures of 0.1, 2, and 4 MPa, and under 0.1 Mpa argon and vacuum environments. In addition, strength stability of both uncoated and coated fibers embedded in silicon powder and exposed to 0.1 MPa N2 for 24 hrs at temperatures to 1400 C was investigated. The uncoated and both types of BN coated fibers exposed to N2 for 1 hr showed noticeable strength degradation above 1400 C and 1600 C, respectively. The strength degradation appeared independent of nitrogen pressure, time of heat treatment, and surface coatings. TEM microstructural analysis suggests that flaws created due to SiC grain growth are responsible for the strength degradation. In contact with silicon powder, the uncoated and both types of PBN coated fibers degrade rapidly above 1350 C.

  17. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    Science.gov (United States)

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  18. Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications

    Science.gov (United States)

    Ko, Hyunseok

    Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding

  19. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  20. Method for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, Lloyd J.; Willey, Melvin G.; Tiegs, Sue M.; Van Cleve, Jr., John E.

    1982-01-01

    This invention is a device for fracturing particles. It is designed especially for use in "hot cells" designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel material, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.