WorldWideScience

Sample records for sic particulate reinforced

  1. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  2. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  3. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  4. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites

    International Nuclear Information System (INIS)

    Hong, Soon-Jik; Kim, Hong-Moule; Huh, Dae; Suryanarayana, C.; Chun, Byong Sun

    2003-01-01

    Al 2024-SiC metal matrix composite (MMC) powders produced by centrifugal atomization were hot extruded to investigate the effect of clustering on their mechanical properties. Fracture toughness and tension tests were conducted on specimens reinforced with different volume fractions of SiC. A model was proposed to suggest that the strength of the MMCs could be estimated from the load transfer model approach that takes into consideration the extent of clustering. This model has been successful in predicting the experimentally observed strength and fracture toughness values of the Al 2024-SiC MMCs. On the basis of experimental observations, it is suggested that the strength of particulate-reinforced MMCs may be calculated from the relation: σ y =σ m V m +σ r (V r -V c )-σ r V c , where σ and V represent the yield strength and volume fraction, respectively, and the subscripts m, r, and c represent the matrix, reinforcement, and clusters, respectively

  5. High temperature flow behaviour of SiC reinforced lithium

    Indian Academy of Sciences (India)

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline ...

  6. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  7. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Saha, Partha, E-mail: psaha@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Kishore, Shyam [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India)

    2010-07-15

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  8. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha; Kishore, Shyam

    2010-01-01

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  9. Designing the fiber volume ratio in SiC fiber-reinforced SiC ceramic composites under Hertzian stress

    International Nuclear Information System (INIS)

    Lee, Kee Sung; Jang, Kyung Soon; Park, Jae Hong; Kim, Tae Woo; Han, In Sub; Woo, Sang Kuk

    2011-01-01

    Highlights: → Optimum fiber volume ratios in the SiC/SiC composite layers were designed under Hertzian stress. → FEM analysis and spherical indentation experiments were undertaken. → Boron nitride-pyrocarbon double coatings on the SiC fiber were effective. → Fiber volume ratio should be designed against flexural stress. -- Abstract: Finite element method (FEM) analysis and experimental studies are undertaken on the design of the fiber volume ratio in silicon carbide (SiC) fiber-reinforced SiC composites under indentation contact stresses. Boron nitride (BN)/Pyrocarbon (PyC) are selected as the coating materials for the SiC fiber. Various SiC matrix/coating/fiber/coating/matrix structures are modeled by introducing a woven fiber layer in the SiC matrix. Especially, this study attempts to find the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics under Hertzian stress. The analysis is performed by changing the fiber type, fiber volume ratio, coating material, number of coating layers, and stacking sequence of the coating layers. The variation in the stress for composites in relation to the fiber volume ratio in the contact axial or radial direction is also analyzed. The same structures are fabricated experimentally by a hot process, and the mechanical behaviors regarding the load-displacement are evaluated using the Hertzian indentation method. Various SiC matrix/coating/fiber/coating/matrix structures are fabricated, and mechanical characterization is performed by changing the coating layer, according to the introduction (or omission) of the coating layer, and the number of woven fiber mats. The results show that the damage mode changes from Hertzian stress to flexural stress as the fiber volume ratio increases in composites because of the decreased matrix volume fraction, which intensifies the radial crack damage. The result significantly indicates that the optimum fiber volume ratio in SiC fiber-reinforced SiC ceramics should be designed for

  10. Development and Characterization of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) Reinforced Al-based Nanocomposites

    Science.gov (United States)

    Gujba, Kachalla Abdullahi

    Composites are engineered materials developed from constituent materials; matrix and reinforcements, to attain synergistic behavior at the micro and macroscopic level which are different from the individual materials. The high specific strength, low weight, excellent chemical resistance and fatigue endurance makes these composites superior than other materials despite anisotropic behaviors. Metal matrix composites (MMCs) have excellent physical and mechanical properties and alumium (Al) alloy composites have gained considerable interest and are used in multiple industries including: aerospace, structural and automotive. The aim of this research work is to develop an advanced Al-based nanocomposites reinforced with Carbon nanotubes (CNTs) and silicon carbide particulates (SiCp) nanophases using mechanical alloying and advanced consolidation procedure (Non-conventional) i.e. Spark Plasma Sintering (SPS) using two types of aluminum alloys (Al-7Si-0.3mg and Al-12Si-0.3Mg). Different concentrations of SiCp and CNTs were added and ball milled for different milling periods under controlled atmosphere to study the effect of milling time and the distribution of the second phases. Characterization techniques were used to investigate the morphology of the as received monolithic and milled powder using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-Ray Mapping, X-Ray Diffraction (XRD) and Particle Size Analyses (PSA). The results revealed that the addition of high concentrations of SiCp and CNTs in both alloys aided in refining the structure of the resulting powder further as the reinforcement particles acted like a grinding agent. Good distribution of reinforcing particles was observed from SEM and no compositional fluctuations were observed from the EDS. Some degree of agglomerations was observed despite the ethyl alcohol sonication effect of the CNTs before ball milling. From the XRD; continuous reduction in crystallite size and

  11. Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites

    International Nuclear Information System (INIS)

    Balasubramanian, I.; Maheswaran, R.

    2015-01-01

    Highlights: • AA6063/SiC composites with different weight percent are stir cast. • Resistance properties against indentation, stretching force and sliding force are studied. • Increase in initiation of cleavage facets and reduces the tensile strength for 15% SiC. • Transition from micro ploughing to micro cutting wear mechanism is less due to SiC inclusion. - Abstract: This study investigates the mechanical resistance behaviour of AA6063 particulate composites with the inclusion of micron-sized silicon carbide (SiC) particles with different weight percentages in an AA6063 aluminium matrix. AA6063/SiC particulate composites containing 0, 5, 10, and 15 weight percent of SiC particles were produced by stir casting. Standard mechanical tests were conducted on the composite plates, and the mechanical resistance to indentation, tensile force and sliding force are evaluated. It has been observed that upon addition of SiC particles, the resistance against indentation is increased and the resistance against tensile force is initially increased and then decreased. Furthermore, using scanning electron microscopy (SEM), the fracture appearance of the broken specimen subjected to tensile force and morphological changes in the surface subjected to sliding force are analysed. The SEM images reveal that the addition of SiC particles in the AA6063 aluminium matrix initiates more cleavage facets. This leads to brittle fracture in the specimen subjected to tensile forces and less transition from material displacement to material removal in the specimen subjected to sliding forces

  12. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  13. Bulk Thermoelectric Materials Reinforced with SiC Whiskers

    Science.gov (United States)

    Akao, Takahiro; Fujiwara, Yuya; Tarui, Yuki; Onda, Tetsuhiko; Chen, Zhong-Chun

    2014-06-01

    SiC whiskers have been incorporated into Zn4Sb3 compound as reinforcements to overcome its extremely brittle nature. The bulk samples were prepared by either hot-extrusion or hot-pressing techniques. The obtained products containing 1 vol.% to 5 vol.% SiC whiskers were confirmed to exhibit sound appearance, high density, and fine-grained microstructure. Mechanical properties such as the hardness and fracture resistance were improved by the addition of SiC whiskers, as a result of dispersion strengthening and microstructural refinement induced by a pinning effect. Furthermore, crack deflection and/or bridging/pullout mechanisms are invoked by the whiskers. Regarding the thermoelectric properties, the Seebeck coefficient and electrical resistivity values comparable to those of the pure compound are retained over the entire range of added whisker amount. However, the thermal conductivity becomes large with increasing amount of SiC whiskers because of the much higher conductivity of SiC relative to the Zn4Sb3 matrix. This results in a remarkable degradation of the dimensionless figure of merit in the samples with addition of SiC whiskers. Therefore, the optimum amount of SiC whiskers in the Zn4Sb3 matrix should be determined by balancing the mechanical properties and thermoelectric performance.

  14. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    Unknown

    Verdier (1996) explored the effect of SiC particulate rein- forcements in oxynitride glasses. Like in silicate compo- sites, non-Newtonian behaviour was observed in oxynitride glasses but instead of shear thinning they observed shear thickening. This was attributed to change in composition of grain boundary glass coupled ...

  15. The rheological properties of shear thickening fluid reinforced with SiC nanowires

    Directory of Open Access Journals (Sweden)

    Jianhao Ge

    Full Text Available The rheological properties of shear thickening fluid (STF reinforced with SiC nanowires were investigated in this paper. Pure STF consists of 56 vol% silica nano-particles and polyethylene glycol 400 (PEG 400 solvent was fabricated; and a specific amount of SiC nanowires were dispersed into this pure STF, and then the volume fraction of PEG400 was adjusted to maintain the volume fraction of solid phase in the STF at a constant of 56%. The results showed there was almost 30% increase in the initial and shear thickening viscosity of the STF reinforced with SiC nanowires compared to the pure STF. Combining with the hydrodynamic cluster theory, the effect of the mechanism of SiC nanowire on the viscosity of STF was discussed, and based on the experimental results, an analytical model of viscosity was used to describe the rheological properties of STF, which agreed with the experimental results. Keywords: Shear thickening fluid (STF, Nanowire, Rheology, Viscosity, Analytical model

  16. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    Science.gov (United States)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  17. MICROSTRUCTURAL ANALYSIS OF HOT ISOSTATICALLY PRESSED AL-SIC

    NARCIS (Netherlands)

    Bronsveld, P.M.; Hosson, J.Th. De; Sargent, M.A.; Alsem, W.H.M.

    1991-01-01

    The difference between extruded and hot isostatically pressed (HIP) Al6061 both with a T6 final heat treatment and with a 30 wt.% SiC particulate reinforcement is one of densification. The higher density of the HIP material is not translated into a stronger material. The Mg2Si precipitation is

  18. Determining the fracture resistance of advanced SiC fiber reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Nozawa, T.; Katoh, Y.; Kishimoto, H.

    2007-01-01

    Full text of publication follows: One of the perceived advantages for highly-crystalline and stoichiometric silicon carbide (SiC) and SiC composites, e.g., advanced SiC fiber reinforced chemically-vapor-infiltrated (CVI) SiC matrix composites, is the retention of fast fracture properties after neutron irradiation at high-temperatures (∼1000 deg. C) to intermediate-doses (∼15 dpa). Accordingly, it has been clarified that the maximum allowable stress (or strain) limit seems unaffected in certain irradiation conditions. Meanwhile, understanding the mechanism of crack propagation from flaws, as potential weakest link to cause composite failure, is somehow lacking, despite that determining the strength criterion based on the fracture mechanics will eventually become important considering the nature of composites' fracture. This study aims to evaluate crack propagation behaviors of advanced SiC/SiC and to provide fundamentals on fracture resistance of the composites to define the strength limit for the practical component design. For those purposes, the effects of irreversible energies related to interfacial de-bonding, fiber bridging, and microcrack forming on the fracture resistance were evaluated. Two-dimensional SiC/SiC composites were fabricated by CVI or nano-infiltration and transient-eutectic-phase (NITE ) methods. Hi-Nicalon TM Type-S or Tyranno TM -SA fibers were used as reinforcements. In-plane mode-I fracture resistance was evaluated by the single edge notched bend technique. The key finding is the continuous Load increase with the crack growth for any types of advanced composites, while many studies specified the gradual load decrease for the conventional composites once the crack initiates. This high quasi-ductility appeared due primarily to high friction (>100 MPa) at the fiber/matrix interface using rough SiC fibers. The preliminary analysis based on the linear elastic fracture mechanics, which does not consider the effects of irreversible energy

  19. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    SiC/Al composites are in large-scale production with Al-Si alloy matrices. The same composites with pure Al or low Si matrices need diffusion barriers on the SiC reinforcement to control the interfacial reaction. The present paper describes various approaches taken to obtain protective coatings...... of alumina and zirconia on SiC particulates by sol-gel techniques. Aqueous and organic precursors have been used. The extent of the reaction, i.e., the Si and Al4C3 content in the matrix, was determined by differential thermal analysis and X-ray diffraction. The reaction rates of some coated particulates...... in liquid Al are decreased by as much as one order of magnitude during the first 15 min of immersion. Pretreatments of the SiC surface, the composition and thickness of the coating interphase and heat treatments of the coated materials have been studied, and are discussed in relation to their effect...

  20. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    Science.gov (United States)

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  1. Interlaminar shear strength of SiC matrix composites reinforced by continuous fibers at 900 °C in air

    International Nuclear Information System (INIS)

    Zhang, Chengyu; Gou, Jianjie; Qiao, Shengru; Wang, Xuanwei; Zhang, Jun

    2014-01-01

    Highlights: • The application of SiC fiber could improve ILSS of the SiC matrix composites. • The orientation of the warp fibers plays a critical role in determining ILSS of 2.5D-C/SiC. • The failure mechanisms of 2D composites involve matrix cracking, and interfacial debonding. - Abstract: To reveal the shear properties of SiC matrix composites, interlaminar shear strength (ILSS) of three kinds of silicon carbide matrix composites was investigated by compression of the double notched shear specimen (DNS) at 900 °C in air. The investigated composites included a woven plain carbon fiber reinforced silicon carbide composite (2D-C/SiC), a two-and-a-half-dimensional carbon fiber-reinforced silicon carbide composite (2.5D-C/SiC) and a woven plain silicon carbon fiber reinforced silicon carbide composite (2D-SiC/SiC). A scanning electron microscope was employed to observe the microstructure and fracture morphologies. It can be found that the fiber type and reinforcement architecture have significant impacts on the ILSS of the SiC matrix composites. Great anisotropy of ILSS can be found for 2.5D-C/SiC because of the different fracture resistance of the warp fibers. Larger ILSS can be obtained when the specimens was loaded along the weft direction. In addition, the SiC fibers could enhance the ILSS, compared with carbon fibers. The improvement is attributed to the higher oxidation resistance of SiC fibers and the similar thermal expansion coefficients between the matrix and the fibers

  2. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Science.gov (United States)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  3. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    Science.gov (United States)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  4. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    Science.gov (United States)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  5. Microstructure, thermal behavior and mechanical properties of squeeze cast SiC, ZrO2 or C reinforced ZA27 composites

    International Nuclear Information System (INIS)

    El-khair, M.T. Abou; Lotfy, A.; Daoud, A.; El-Sheikh, A.M.

    2011-01-01

    Research highlights: → ZA27 with 5% SiC, ZrO2 or C particles are synthesized by stirring then squeezed. → Particles refine the structure. 50 MPa decreases porosity% and increases density. → α and β nucleation temperatures of the composites are lower than those of the matrix. → Particles accelerate age hardening and increase peak hardness of the composites → Particles reduce the CTEs of composites compared to those of the matrix. - Abstract: ZA27 alloy based composites were synthesized by stirring method, followed by squeeze casting. Stir casting was employed successfully to incorporate 5 vol.% of various reinforcement particulates, namely, SiC, ZrO 2 or C. The porosity in the composites was decreased by squeeze pressure. The presence of particles and/or application of squeeze pressure during solidification resulted in considerable refinement in the structure of the composites. The microstructures, X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDXA) results indicated that no significant reactions occurred at the interface between the SiC or C particles and ZA27 alloy. However, in case of ZrO 2 reinforced ZA27, the ZrO 2 reacted with Cu present in the molten ZA27 alloy, forming Cu 5 Zr. Thermal analysis showed that both α and β nucleation and growth temperatures of the composites were lower than those of the ZA27 alloy. The presence of particles in the as-cast or squeezed composites led to not only an accelerated age hardening response, but also an increase in the peak hardness of the composites. The values of coefficient of thermal expansion (CTE) of the composites were drastically lower as compared to those of the ZA27 alloy. The tensile properties of the composites decreased as a result of the addition of the particles. Scanning electron microscope (SEM) pictures of the composites indicated that cracks mainly initiated at particle-matrix interface, propagated through the matrix and linked up with other cracks leading to failure of the

  6. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Ru, H.Q., E-mail: ruhq@smm.neu.edu.cn [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Zhang, N.; Liang, B. [Key Laboratory of Advanced Materials Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Addition of nano-SiC particles enhances residual strength and critical temperature. Black-Right-Pointing-Pointer Young's modulus decreases with increasing quenching temperature. Black-Right-Pointing-Pointer Linear relationship between residual strength and thermal shock times is obtained. Black-Right-Pointing-Pointer Rougher fracture surfaces in the SiC-AlON composites are observed. - Abstract: Aluminum oxynitride (AlON) has been considered as a potential ceramic material for high-performance structural and advanced refractory applications. Thermal shock resistance is a major concern and an important performance index of high-temperature ceramics. While silicon carbide (SiC) particles have been proven to improve mechanical properties of AlON ceramic, the high-temperature thermal shock behavior was unknown. The aim of this investigation was to identify the thermal shock resistance and underlying mechanisms of AlON ceramic and 8 wt% SiC-AlON composites over a temperature range between 175 Degree-Sign C and 275 Degree-Sign C. The residual strength and Young's modulus after thermal shock decreased with increasing quenching temperature and thermal shock times due to large temperature gradients and thermal stresses caused by abrupt water-quenching. A linear relationship between the residual strength and thermal shock times was observed in both pure AlON and SiC-AlON composites. The addition of nano-sized SiC particles increased both residual strength and critical temperature from 200 Degree-Sign C in the monolithic AlON to 225 Degree-Sign C in the SiC-AlON composites due to the toughening effect, the lower coefficient of thermal expansion and higher thermal conductivity of SiC. The enhancement of the thermal shock resistance in the SiC-AlON composites was directly related to the change of fracture mode from intergranular cracking along with cleavage-type fracture in the AlON to a rougher fracture surface with ridge

  7. Identification of sigma and OMEGA phases in AA2009/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo, P., E-mail: pilar.rodrigo@urjc.e [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Poza, P.; Utrilla, M.V.; Urena, A. [Departamento de Ciencia e Ingenieria de Materiales, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2009-08-12

    The microstructure evolution during ageing treatment at 170 and 190 deg. C of AA2009/SiC composites, reinforced with 15 vol.% particulates and whiskers, was studied by transmission electron microscopy. Besides theta' and S' phases, the typical hardening precipitates on Al-Cu-Mg alloys, it was found the presence of OMEGA and sigma (Al{sub 5}Cu{sub 6}Mg{sub 2}) phases in the matrix. sigma phase was only found in the matrix of particulate composite, while OMEGA phase appeared in both. This phase has not been previously observed in Al matrix composites based on conventional Al-Cu-Mg alloys.

  8. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Broda, M.

    1998-01-01

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C fiber /SiC matrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2 ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [de

  9. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  10. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    International Nuclear Information System (INIS)

    Bahrami, Mohsen; Helmi, Nader; Dehghani, Kamran; Givi, Mohammad Kazem Besharati

    2014-01-01

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results

  11. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Mohsen, E-mail: Mohsen.bahrami@aut.ac.ir [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Helmi, Nader [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Dehghani, Kamran [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Centre of Excellence in Smart Structures and Dynamical Systems (Iran, Islamic Republic of); Givi, Mohammad Kazem Besharati [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-02-10

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results.

  12. Influence of surface morphology and UFG on damping and mechanical properties of composite reinforced with spinel MgAl{sub 2}O{sub 4}-SiC core-shell microcomposites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Subhash; Pal, Kaushik, E-mail: pl_kshk@yahoo.co.in

    2017-01-15

    Interface between ceramic particulate and matrix is known to control the response of the materials and functionality of the composite. Among numerous physical properties, grain structure of the materials has also played a significant role in defining the behaviour of metal matrix composites. Usually, silicon carbide (SiC) particles show poor interfacial wettability in aluminium melt. Herein, we were successfully synthesized magnesium oxide (MgO) and nanocrystalline magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel coated silicon carbide (SiC) core-shell micro-composites through sol-gel technique to improve the wettability of dispersoids. Core-shell structures of submicron size were thoroughly investigated by various characterization techniques. Further, aluminium matrix composites incorporated with pristine SiC, MgO grafted SiC and MgAl{sub 2}O{sub 4} grafted SiC particles were fabricated by stir casting technique, respectively. Additionally, as-cast composites were processed via friction stir processing (FSP) technique to observe the influence of grain refinement on mechanical and damping properties. Electron back scattered diffraction (EBSD), Field emission scanning electron microscopy (FE-SEM) and X-ray energy dispersion spectroscopy (EDX) analysis were conducted for investigating grain size refinement, adequate dispersion, stability and de-agglomeration of encapsulated SiC particles in aluminium matrix. The mechanical as well as thermal cyclic (from − 100 to 400 °C) damping performance of the as-cast and friction stir processed composites were studied, respectively. Finally, the enhanced properties were attributable to reduced agglomeration, stabilization and proper dispersion of the tailored SiC particles Al matrix. - Highlights: •Synthesizing a novel coating layer of MgO and MgAl{sub 2}O{sub 4} spinel onto SiC particles •Significant improvement in UTS and hardness by reinforcing tailored SiC in Al •Significant grain refinements were obtained through

  13. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  14. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  15. Experimental processing and the effects of cenosphere on some mechanical properties of Al6061-SiC composites

    Science.gov (United States)

    Ashoka, E.; Sharanaprabhu, C. M.; Krishnaraja, G. Kodancha; Kudari, S. K.

    2018-04-01

    In this paper, stir casting technique was utilized to fabricate the hybrid Aluminium alloy (Al 6061) metal matrix reinforced with silicon carbide (SiC) and cenosphere particulates. An Al6061-SiC-Cenosphere hybrid composite is selected with 3wt% of silicon carbide and 3wt%, 6wt% and 9wt% proportions of cenosphere particulates. The uniform distribution of these two reinforcement particulates in Al6061matrix was achieved by stirring and pouring the hybrid composite mixture into the steel mould to accomplish the rectangular shaped casting. These various hybrid composites were studied with respect to its microstructure and some mechanical properties. The rectangular shaped casting of various hybrid composites was machined according to ASTM tensile specimens standards to estimate some mechanical properties. For various cast hybrid composites a comparative study is done with respect to modulus of elasticity, yield stress, percentage elongation and microhardness. Finally, the distribution of particulates and the nature of the tensile specimen fractured surface of various hybrid composites were understood using scanning electron microscope.

  16. Experimental Studies on SiC and Rice Husk Ash Reinforced Al Alloy Composite

    Directory of Open Access Journals (Sweden)

    Shivaprakash Y. M.

    2018-01-01

    Full Text Available In this research work Aluminium alloy with Cu (4.5% as the major alloying element is used as the matrix in which SiC and Rice Husk Ash (RHA are dispersed to develop a hybrid composite. The dispersion is done by the motorized stir casting arrangement. The composite is fabricated by varying the proportions of the reinforcements in the base alloy. The composite specimens were tested for density changes, hardness and the wear. The microstructure images showed a uniform dispersion of the reinforcements in the matrix and this resulted in higher strength to weight ratio. The increase in strength of the composite is probably attributed to the increase in the dislocation density. Also, the abrasive wear resistance of the produced composite is found to be superior as compared to the matrix alloy because of the hard-ceramic particles in the reinforcements.

  17. A comparative study on the tensile and impact properties of Kevlar, carbon, and S-glass/epoxy composites reinforced with SiC particles

    Science.gov (United States)

    Bulut, Mehmet; Alsaadi, Mohamad; Erkliğ, Ahmet

    2018-02-01

    Present study compares the tensile and impact characteristics of Kevlar, carbon and glass fiber reinforced composites with addition of microscale silicon carbide (SiC) within the common matrix of epoxy. The variation of tensile and impact strength values was explored for different content of SiC in the epoxy resin by weight (0, 5, 10, 15 and 20 wt%). Resulting failure characteristics were identified by assisting Charpy impact tests. The influence of interfacial adhesion between particle and fiber/matrix on failure and tensile properties was discussed from obtained results and scanning electron microscopy (SEM) figures. It is concluded from results that the content of SiC particles, and fiber types used as reinforcement are major parameters those effecting on tensile and impact resistance of composites as a result of different interface strength properties between particle-matrix and particle-fiber.

  18. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle

  19. Breakage and debonding of short brittle fibres among particulates in a metal matrix

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    or fracture of a relatively long discontinuous fibre among particulates that do not fail. A cohesive zone model that accounts for normal separation as well as tangential separation is used to represent debonding, while fibre fracture is represented by a critical value of the average tensile stress on a cross......The competition of failure by fibre cracking or decohesion of the fibre-matrix interface is analysed for aluminium reinforced by aligned, short SiC fibres. An axisymmetric unit-cell model containing a number of differently shaped fibres or particulates is used here to represent failure by debonding...

  20. Mechanical properties of Nextel trademark 312 fiber-reinforced SiC matrix composites

    International Nuclear Information System (INIS)

    Vaidyanathan, K.R.; Sankar, J.; Kelkar, A.D.; Weaver, B.

    1995-01-01

    Vapor phase synthesis is emerging as a method for the preparation of near final-shape, ceramic matrix composites for advanced structural applications. Oxide fiber-reinforced silicon carbide matrix composites are currently being developed for these applications. The mechanical properties of Nextel trademark 312 fiber reinforced SiC matrix composites fabricated employing the forced-flow, thermal gradient chemical vapor infiltration process (FCVI) were evaluated at room temperature in pure tension. The composites were fabricated with a 0.15 μm pyrolytic carbon interface layer for improving the toughness of the composite system. Because of the available FCVI apparatus, only short length specimens (7--8 cm) could be fabricated. Room temperature tensile strengths were measured and compared to room temperature flexure strength results for the composite. Excellent toughness and composite behavior was obtained for the composite system. Fractography as well as possible factors responsible for the differences in tensile and flexural strengths for the composite system is presented in this paper

  1. Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Junko; Kawakami, Masashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Kondoh, Katsuyoshi, E-mail: kondoh@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Ayman, El-Sayed; Imai, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan)

    2010-10-01

    Pure titanium (Ti) particulate reinforced pure magnesium (Mg) composite materials were fabricated via powder metallurgy route, and their microstructural and mechanical properties were evaluated. When using the elemental mixture of pure Mg and pure Ti powders and consolidating them by solid-state sintering process, no significant increase in tensile strength of the composites was obtained, because of poor bonding strength at the interface between {alpha}-Mg matrix and Ti particles. In particular, coarse magnesium oxide (MgO) particles of about 100 nm were formed via thermite reaction between TiO{sub 2} surface films of Ti particles and Mg raw powders and resulted in preventing the improvement of the mechanical properties of the composite material. On the other hand, when using the atomized pure Mg composite powders reinforced with Ti particulates, their extruded composite material showed obviously improved tensile strength and good elongation, compared to the extruded pure Mg powder material including no Ti particle. The obvious improvement in the tensile strength was due to the restriction of dislocation movement by Ti reinforcements under applied tensile load.

  2. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques

    Directory of Open Access Journals (Sweden)

    M. Penchal Reddy

    2017-10-01

    Full Text Available In the present study, nano-sized SiC (0, 0.3, 0.5, 1.0 and 1.5 vol% reinforced aluminum (Al metal matrix composites were fabricated by microwave sintering and hot extrusion techniques. The structural (XRD, SEM, mechanical (nanoindentation, compression, tensile and thermal properties (co-efficient of thermal expansion-CTE of the developed Al-SiC nanocomposites were studied. The SEM/EDS mapping images show a homogeneous distribution of SiC nanoparticles into the Al matrix. A significant increase in the strength (compressive and tensile of the Al-SiC nanocomposites with the addition of SiC content is observed. However, it is noticed that the ductility of Al-SiC nanocomposites decreases with increasing volume fraction of SiC. The thermal analysis indicates that CTE of Al-SiC nanocomposites decreases with the progressive addition of hard SiC nanoparticles. Overall, hot extruded Al 1.5 vol% SiC nanocomposites exhibited the best mechanical and thermal performance as compared to the other developed Al-SiC nanocomposites. Keywords: Al-SiC nanocomposites, Microwave sintering, Hot extrusion, Mechanical properties, Thermal expansion

  3. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    International Nuclear Information System (INIS)

    Cabibbo, Marcello; Spigarelli, Stefano

    2011-01-01

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K were carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: → TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. → The evaluation has been extended to different compression temperature conditions. → Linear and Quadratic sum has been proposed and validated. → Hall-Petch was found to be the most prominent strengthening contributions.

  4. An investigation of ductile and brittle reinforcement on the fracture behavior of molybdenum disilicide composites

    International Nuclear Information System (INIS)

    Brooks, D.; Soboyejo, W.O.

    1994-01-01

    The results of an ongoing study of the effects of ductile and brittle reinforcement on the fracture toughness of particulate reinforced molybdenum disilicide matrix composites are presented. MoSi 2 composites reinforced with ductile Nb, Mo, and W particles are compared with MoSi 2 composites reinforced with SiC, TiB 2 , and partially stabilized zirconia (PSZ) particles. The effects of different degrees of yttria stabilization on zirconia reinforced composites will also be examined, as well as the effect of solid solution alloying with WSi 2 . The effects of multiple reinforcement of MoSi 2 with 20 vol.% Nb and 20 vol.% unstabilized zirconia (TZ-0) are discussed. The toughening is rationalized using micromechanical models for crack bridging, transformation toughening, and crack deflection

  5. Mechanical, Spectroscopic and Micro-structural Characterization of Banana Particulate Reinforced PVC Composite as Piping Material

    Directory of Open Access Journals (Sweden)

    B. Dan-asabe

    2016-06-01

    Full Text Available A banana particulate reinforced polyvinyl chloride (PVC composite was developed with considerabley low cost materials having an overall light-weight and good mechanical properties for potential application as piping material. The specimen composite material was produced with the banana (stem particulate as reinforcement using compression molding. Results showed that density and elastic Modulus of the composite decreases and increases respectively with increasing weight fraction of the particulate reinforcement. The tensile strength increased to a maximum of 42 MPa and then decreased steadily. The composition with optimum mechanical property (42 MPa was determined at 8, 62 and 30 % formulation of banana stem particulates (reinforcement, PVC (matrix and Kankara clay (filler respectively with corresponding percentage water absorption of 0.79 %, Young’s Modulus of 1.3 GPa, flexural strength of 92 MPa and density of 1.24 g/cm3. Fourier Transform Infrared (FTIR analysis of the constituents showed identical bands within the range 4000–1000 cm-1 with renown research work. Scanning Electron Microscopy (SEM result showed fairly uniform distribution of constituents’ phases. X-Ray Fluorescence (XRF confirms the X-ray diffraction (XRD result of the presence of minerals of kaolinite, quartz, rutile and illite in the kaolin clay. Comparison with conventional piping materials showed the composite offered a price savings per meter length of 84 % and 25 % when compared with carbon steel and PVC material.

  6. Early stages of sliding wear behaviour of Al2O3 and SiC reinforced aluminium

    International Nuclear Information System (INIS)

    Bonollo, F.; Ceschini, L.; Garagnani, G.L.; Palombarini, G.; Tangerini, I.; Zambon, A.

    1993-01-01

    Al matrix composites reinforced by 10 vol.% Al 2 O 3 and SiC particles were subjected to dry sliding tests against steel using a slider-on-cylinder tribometer. Damage mechanisms were 'micro-machining' of the steel carried out by ceramic particles, plastic deformation and oxidation of the metal matrix, as well as abrasion. The results were discussed on the basis of the third-body wear model. (orig.)

  7. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    Science.gov (United States)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2018-04-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  8. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  9. Microstructure and Mechanical Behaviour of Stir-Cast Al-Mg-Sl Alloy Matrix Hybrid Composite Reinforced with Corn Cob Ash and Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Oluwagbenga Babajide Fatile

    2014-10-01

    Full Text Available In this present study, the microstructural and mechanical behaviour of Al-Mg-Si alloy matrix composites reinforced with silicon carbide (SiC and Corn cob ash (An agro‑waste was investigated. This research work was aimed at assessing the suitability of developing low cost- high performance Al-Mg-Si hybrid composite. Silicon carbide (SiC particulates added with 0,1,2,3 and 4 wt% Corn cob ash (CCA were utilized to prepare 10 wt% of the reinforcing phase with Al-Mg-Si alloy as matrix using two-step stir casting method. Microstructural characterization, density measurement, estimated percent porosity, tensile testing, and micro‑hardness measurement were used to characterize the composites produced. From the results obtained, CCA has great potential to serve as a complementing reinforcement for the development of low cost‑high performance aluminum hybrid composites.

  10. Hot deformation of particulate reinforced Al-4Li-1Mg-0.5Ge-0.2Zr

    International Nuclear Information System (INIS)

    Chanda, T.; Lavernia, E.J.; Wolfenstine, J.

    1991-01-01

    Lithium additions to aluminum give the greatest reduction in density and increase in elastic modulus per wt.% of any known alloying element. The potential for aluminum alloy density reduction through lithium additions is evident by comparing its atomic weight (6.94) to that of aluminum (26.98). Over the past decade, considerable research efforts have been directed towards developing aluminum-lithium alloys, with lithium contents of up to 2.5 wt.%, for aircraft applications, where their low density and increased stiffness can lead to significant improvements in payload capacity. A recent notable example has been the development of a quarternary aluminum-lithium alloy containing silver, (A1-(4.5-6.3) Cu-1.3Li-0.4Ag-0.4Mg-0.14Zr, in wt.%). In an effort to further decrease the density and increase the modulus of aluminum-lithium alloys, research efforts have progressively shifted towards alloys containing higher concentrations of lithium (>3.0 wt.%). Furthermore, aluminum-lithium alloys are being studied as potential candidate matrix materials in metal matrix composites (MMCs), as a result of the observation that lithium effectively enhances the ability of the aluminum matrix to wet the ceramic reinforcement. The extreme reactivity associated with high additions of lithium, and the difficulties associated with processing MMCs, have prompted the development of alternate synthesis approaches. One such approach, spray atomization and co-deposition, is actively being studied as a result of its ability to rapidly quench, reinforce, and consolidate in a single step, thus avoiding the difficulties associated with the handling of fine reactive particulates. The object of the paper is to provide insight into the elevated temperature deformation behavior of high lithium (4 wt.%) aluminum alloys reinforced with SiC particles prepared by spray atomization and co-deposition. The selection of the A1-4Li-1Mg-0.5Ge-0.2Zr wt

  11. Correlations Between Arrangement of Reinforcing Particles and Mechanical Properties in Pressure Die Cast AlSi11-SiC Composites

    Directory of Open Access Journals (Sweden)

    Konopka Z.

    2014-06-01

    Full Text Available The work presents the investigation results concerning the structure of composite pressure die castings with AlSi11 alloy matrix reinforced with SiC particles. Examination has been held for composites containing 10 and 20 volume percent of SiC particles. The arrangement of the reinforcing particles within the matrix has been qualitatively assessed in specimens cut out of the castings. The index of distribution was determined on the basis of particle count in elementary measuring fields. The tensile strength, the yield point and elongation of the obtained composite were measured. Composite castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and various injection gate width values. The regression equation describing the change of the considered arrangement particles index and mechanical properties were found as a function of the pressure die casting parameters. The infuence of particle arrangement in composite matrix on mechanical properties these material was examined and the functions of correlations between values were obtained. The conclusion gives the analysis and the interpretation of the obtained results.

  12. Effect of Reactant Concentration on the Microstructure of SiC Nano wires Grown In Situ within SiC Fiber Preforms

    International Nuclear Information System (INIS)

    Kim, Weon Ju; Kang, Seok Min; Park, Ji Yeon; Ryu, Woo Seog

    2006-01-01

    Silicon carbide fiber-reinforced silicon carbide matrix (SiC f /SiC) composites are considered as advanced materials for control rods and other in-core components of high-temperature gas cooled reactors. Although the carbon fiber-reinforced carbon matrix (C f /C) composites are more mature and have advantages in cost, manufacturability and some thermomechanical properties, the SiC f /SiC composites have a clear advantage in irradiation stability, specifically a lower level of swelling and retention of mechanical properties. This offers a lifetime component for control rod application to HTGRs while the Cf/C composites would require 2-3 replacements over the reactor lifetime. In general, the chemical vapor infiltration (CVI) technique has been used most widely to produce SiC f /SiC composites. Although the technique produces a highly pure SiC matrix, it requires a long processing time and inevitably contains large interbundle pores. The present authors have recently developed 'whisker growing-assisted process,' in which one-dimensional SiC nano structures with high aspect ratios such as whiskers, nano wires and nano rods are introduced into the fiber preform before the matrix infiltration step. This novel method can produce SiC f /SiC composites with a lower porosity and an uniform distribution of pores when compared with the conventional CVI. This would be expected to increase mechanical and thermal properties of the SiC f /SiC composites. In order to take full advantage of the whisker growing strategy, however, a homogeneous growth of long whiskers is required. In this study, we applied the atmospheric pressure CVI process without metallic catalysts for the growth of SiC nano wires within stacked SiC fiber fabrics. We focused on the effect of the concentration of a reactant gas on the growth behavior and microstructures of the SiC nano wires and discussed a controlling condition for the homogenous growth of long SiC nano wires

  13. SYLRAMICTM SiC fibers for CMC reinforcement

    International Nuclear Information System (INIS)

    Jones, Richard E.; Petrak, Dan; Rabe, Jim; Szweda, Andy

    2000-01-01

    Dow Corning researchers developed SYLRAMIC SiC fiber specifically for use in ceramic-matrix composite (CMC) components for use in turbine engine hot sections where excellent thermal stability, high strength and high thermal conductivity are required. This is a stoichiometric SiC fiber with a high degree of crystallinity, high tensile strength, high tensile modulus and good thermal conductivity. Owing to the small diameter, this textile-grade fiber can be woven into 2-D and 3-D structures for CMC fabrication. These properties are also of high interest to the nuclear community. Some initial studies have shown that SYLRAMIC fiber shows very good dimensional stability in a neutron flux environment, which offers further encouragement. This paper will review the properties of SYLRAMIC SiC fiber and then present the properties of polymer impregnation and pyrolysis (PIP) processed CMC made with this fiber at Dow Corning. While these composites may not be directly applicable to applications of interest to this audience, we believe that the properties shown will give good evidence that the fiber should be suitable for high temperature structural applications in the nuclear arena

  14. NewIn-situ synthesis method of magnesium matrix composites reinforced with TiC particulates

    Directory of Open Access Journals (Sweden)

    Zhang Xiuqing

    2006-12-01

    Full Text Available Magnesium matrix composites reinforced with TiC particulates was prepared using a new in-situ synthesis method of remelting and dilution technique. And measurements were performed on the composites. The results of x ray diffraction (XRD analysis confirmed that TiC particulates were synthesized during the sintering process, and they retained in magnesium matrix composites after the remelting and dilution processing. From the microstructure characterization and electron probe microanalysis (EPMA, we could see that fine TiC particulates distributed uniformly in the matrix material.

  15. Microstructure Characteristics of Fe-Matrix Composites Reinforced by In-Situ Carbide Particulates

    Science.gov (United States)

    Huang, Xiaodong; Song, Yanpei

    2017-10-01

    Carbide particulates reinforced iron-matrix composites were prepared by in-situ synthesis reaction between Ti, V and C on liquid alloys surface. The microstructure of the composite was characterized by SEM, TEM and OM. The results showed that the main phases were α-Fe, carbide particulate; besides, there were small amounts of γ-Fe and graphite (G) in the composite. The carbides were TiVC2 and VC in the shape of short bar and graininess. The matrix consisted of martensite and small amounts of retained austenite.

  16. Reinforcement of 2124 Al alloy with low micron SiC and nano Al2O3 via solid-state forming

    CSIR Research Space (South Africa)

    Gxowa, Z

    2015-07-01

    Full Text Available A powder metallurgical process was used to fabricate Metal Matrix Composites (MMCs). A 2124 aluminium alloy was reinforced with 5 and 10 vol. % of Al2O3 (40-70nm) to form Metal Matrix Nano Composites (MMNCs) as well as 10 and 15 vol. % of SiC (1...

  17. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  18. Effect of different sintering aids on thermo-mechanical properties and oxidation of SiC fibers - Reinforced ZrB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Sciti, D., E-mail: diletta.sciti@istec.cnr.it [ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, I-48018 Faenza (Italy); Silvestroni, L. [ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, I-48018 Faenza (Italy); Saccone, G.; Alfano, D. [CIRA, Italian Aerospace Research Center, 81043 Capua (Italy)

    2013-01-15

    Reinforced zirconium diboride composites containing 15 vol% of Hi Nicalon SiC chopped fibers were hot pressed with addition of various sintering additives, Si{sub 3}N{sub 4}, ZrSi{sub 2} or MoSi{sub 2}. Depending on the sintering aid, different densification temperatures were set in the range 1650-1750 Degree-Sign C. Temperature and additive strongly influenced the matrix/fiber interface, which in turn had a strong impact on the mechanical properties and the oxidation behavior at 1650 Degree-Sign C. Even the workability, performed either by conventional machining or electro discharge machining, varied depending on the sintering additive and the secondary phases formed in the system. The system containing Si{sub 3}N{sub 4} turned out to have the highest mechanical properties, but intermediate oxidation resistance; the composite containing ZrSi{sub 2} had the lowest sintering temperature, but displayed the worst oxidation resistance, and finally the composite containing MoSi{sub 2} showed intermediate mechanical properties, but the highest oxidation resistance and lowest degree of damage upon machining. Preliminary measurements of thermal shock resistance by the water quenching method were also carried out. -- Highlights: Black-Right-Pointing-Pointer We produced SiC fibers reinforced ZrB{sub 2} using different sintering aids. Black-Right-Pointing-Pointer The sintering additives affected properties, oxidation and machinability. Black-Right-Pointing-Pointer The system containing Si{sub 3}N{sub 4} had the highest mechanical properties. Black-Right-Pointing-Pointer The composite containing MoSi{sub 2} had the highest oxidation resistance. Black-Right-Pointing-Pointer ZrB{sub 2}-SiC fibers have higher thermal shock resistance than ZrB{sub 2}-SiC particles.

  19. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  20. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn

    2006-07-15

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.

  1. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    International Nuclear Information System (INIS)

    Xue Wenbin

    2006-01-01

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed

  2. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  3. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    Science.gov (United States)

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of extrusion parameters on sic distribution and properties of AA6061/SiC composites produced by kobo method

    Energy Technology Data Exchange (ETDEWEB)

    WoĨniak, Jarosáaw; Kostecki, Marek; Broniszewski, Kamil; Olszyna, Andrzej [Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Bochniak, Wáodzimierz [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Cracow (Poland)

    2013-07-01

    The influence of extrusion parameters on reinforcements distribution and properties of AA6061+x% vol. SiC p (x=0; 2.5; 5; 7.5; 10) composites was discussed in this paper The averages size of AA6061 and SiC particles were 10.6 μ m and 0.42 μ m, respectively. The composites were consolidated via powder metallurgy processing (without the sintering) and extruded by KoBo method. The microstructure was examined on each steps of production. High values of density for all produced composites were achieved. Additionally, hardness and Young’s modulus were investigated. The best reinforcement distribution and mechanical properties were obtained for composites extruded with the highest extrusion ratio. Key words: aluminum alloy, extrusion, aged hardening, metal matrix composites, microstructure.

  5. Micromechanics of fiber pull-out and crack bridging in SCS-6 SiC- CVD SiC composite system at high-temperature

    International Nuclear Information System (INIS)

    El-Azab, A.; Ghoniem, N.M.

    1993-01-01

    A micro mechanical model is developed to study fiber pull-out and crack bridging in fiber reinforced SiC-SiC composites with time dependent thermal creep. By analyzing the creep data for monolithic CVD SiC (matrix) and the SCS-6 SiC fibers in the temperature range 900-1250 degrees C, it is found that the matrix creep rates can be ignored in comparison to those of fibers. Two important relationships are obtained: (1) a time dependent relation between the pull-out stress and the relative sliding distance between the fiber and matrix for the purpose of analyzing pull-out experiments, and (2) the relation between the bridging stress and the crack opening displacement to be used in studying the mechanics and stability of matrix crack bridged by fibers at high temperatures. The present analysis can also be applied to Nicalon-reinforced CVD SiC matrix system since the Nicalon fibers exhibit creep characteristics similar to those of the SCS-6 fibers

  6. synthesis and characterization of al/sic composite made by stir casting method

    International Nuclear Information System (INIS)

    Ghauri, K.M.; Ahmad, A.; Ahmad, R.; Din, K.M.; Chaudhry, J.A.

    2013-01-01

    Ceramics contain a distinctive property of completely absence of slip planes and have least probability of deforming by the application of force. Among these ceramics, the silicon carbide occupies a competent place to be used as a reinforcing agent for aluminum or its alloys. It has the density close to aluminum and is best for making composite having good strength and good heat conductivity. Stir casting has been used to synthesize Al/SiC MMCs by reinforcing silicon carbide particles into aluminum matrix. The reason for using stir casting is to develop technology for the development of MMCs at affordable cost. The selection of SiC as reinforcement and Al as matrix is because of their easy availability. The practical data acquired, analyzed and optimized will be interpreted in the light of information available in the literature and be shared with the relevant industries. The present work was mainly carried out to characterize the SiC/Al composite which was produced by reinforcing the various proportions of SiC (5, 10, 15, 25 and 30%) in aluminum matrix using stir casting technique. Mechanical properties of test specimens made from stir-casted Aluminum-Silicon Carbide composites have been studied using metallographic and mechanical testing techniques. It was observed that as the volume fraction of SiC in the composite is gradually increased, the hardness and toughness increase. However, beyond a level of 25-30 percent SiC, the results are not very consistent, and depend largely on the uniformity of distribution of SiC in the aluminum matrix. (author)

  7. Development of the fabrication process of SiC composite by polycarbosilane

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Kim, Jung Il; Ryu, Woo Seog

    2004-11-01

    This technical report reviewed the fabrication process of fiber reinforced ceramic composites, characteristics of the PIP process, and applications of SiC f /SiC composite to develop a silicon carbide composite by PIP method. Additionally, characteristics and thermal behaviors of a PCS+SiC powder slurry and infiltration behaviors of slurry into the SiC fabric was evaluated. The stacking behaviors of SiC fabrics infiltrated a PCS+SiC powder slurry was also investigated. Using this stacked preforms, SiC f /SiC composites were fabricated by the electron beam curing and pyrolysis process and the thermal oxidation curing and pyrolysis process, respectively. And the characteristics of both composites were compared

  8. Microwave joining of SiC ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Silberglitt, R.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States); Katz, J.D. [Los Alamos National Lab., NM (United States)

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  9. Microstructural characterization of fly ash particulate reinforced AA6063 aluminium alloy for aerospace applications

    Science.gov (United States)

    Razzaq, A. M.; Majid, D. L. Abang Abdul; Ishak, M. R.; Uday, M. B.

    2017-12-01

    Aluminium-fly ash (FA) particulate reinforced composites (AA6063-FA) have been used in automotive and aerospace industries because of their low density and good mechanical properties. Three different weight fraction of FA: 2%, 4% and 6% are added to AA6063 alloy using compocasting method. The effect of FA particulates on microstructure, density and compression strength of AA6063- FA composites are investigated. Field Emission Scanning Electron Microscope (FESEM) micrographs reveal that the FA particulates are uniformly distributed in AA6063 alloy. The results also show that density, compression strength and microstructure of the AA6063-FA composites are significantly influenced by the FA amount. The increase in the weight fraction of FA will improve the microstructure and enhance the compression strength. The density of AA6063-FA composites decreases as the incorporation of FA increases.

  10. Stress-temperature-lifetime response of nicalon fiber-reinforced SiC composites in air

    International Nuclear Information System (INIS)

    Lin, Hua-Tay; Becher, P.F.

    1996-01-01

    Time-to-failure tests were conducted in four-point flexure and in air as a function of stress levels and temperatures to study the lifetime response of various Nicalon fiber-reinforced SiC (designated as Nic/SiC) composites with a graphitic interfacial coating. The results indicated that all of the Nic/SiC composites exhibit a similar stress-dependent failure at applied stress greater than a threshold value. In this case, the lifetimes of the composites increased with decrease in both stress level and test temperature. The lifetime of the composites appeared to be relatively insensitive to the thickness of graphitic interface layer and was enhanced somewhat by the addition of oxidation inhibitors. Electron microscopy and oxidation studies indicated that the life of the Nic/SiC composites was governed by the oxidation of the graphitic interfaces and the on of glass(es) in composites due to the oxidation of the fiber and matrix, inhibitor phases

  11. Low dose irradiation performance of SiC interphase SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Lowden, R.A.; Strizak, J.; More, K.L.; Eatherly, W.S.; Bailey, J.; Williams, A.M.; Osborne, M.C.; Shinavski, R.J.

    1998-01-01

    Reduced oxygen Hi-Nicalon fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either 'porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1 x 10 25 n m -2 (E>0.1 MeV) in the temperature range of 260 to 1060 C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber. (orig.)

  12. Infiltration processing of metal matrix composites using coated ceramic particulates

    Science.gov (United States)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  13. Compared production behavior of borax and unborax premixed SiC reinforcement Al7Si-Mg-TiB alloys composites with semi-solid stir casting method

    Science.gov (United States)

    Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2016-04-01

    The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.

  14. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  15. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers

    International Nuclear Information System (INIS)

    Kimmig, S.; Allen, I.; You, J.H.

    2013-01-01

    A SiC long fiber-reinforced copper composite offers a beneficial combination of high strength and high thermal conductivity at elevated temperatures. Both properties make the composite a promising material for the heat sink of high-heat-flux components. In this work, we developed a novel Cu/SiC f composite using the Sigma fiber. Based on HIP technique, a metallurgical process was established for fabricating high quality specimens using a TiC interface coating. Extensive tensile tests were conducted on the unidirectionally reinforced composite at 20 °C and 300 °C for a wide range of fiber volume fraction (V f ). In this paper, a large amount of test data is presented. The transversal thermal conductivity varies from 260 to 130 W/mK at 500 °C as V f is increased from 13% to 37%. The tensile strength reached up to 1246 MPa at 20 °C for V f = 37.6%, where the fracture strain was limited to 0.8%. The data of both elastic modulus and ultimate strength exhibited a good agreement with the rule-of-mixture predictions indicating a high quality of the materials. The strength of the composite with the Sigma fibers turned out to be superior to those of the SCS6 fibers at 300 °C, although the SCS6 fiber actually has a higher strength than the Sigma fiber. The fractographic pictures of tension test and fiber push-out test manifested a sufficient interfacial bonding

  16. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    International Nuclear Information System (INIS)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K.

    2003-01-01

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications

  17. Casting of particulate Al-base composites

    International Nuclear Information System (INIS)

    Moustafa, S.F.

    1997-01-01

    A molten Al-4 wt.% Cu as well as a Al-13 wt.% Si alloy have been mixed mechanically with particulate of SiC, Al 2 O 3 , or graphite. After the completion of mixing, each mixture was poured into a permanent mould to solidify. To overcome the problem of non-wettability that exists between the investigated particulate and the molten aluminum alloys the particulate was chemically treated by impregnation in a solution containing Na + ions. The loading of SiC or Al 2 O 3 particulate in the produced composites can be as high as 40 wt.%, and for graphite particles it can be 20 wt.%. The mixing time required to introduce and distribute the investigated particles into the molten matrix was as low as five minutes to recluce chemical reactions at the interfaces between them. Processing details and parameters controlling this technique are described. Metallographic examinations as well as tensile tests were carried out to characterize the microstructure, the distribution of the particles and the strength of these composites. The results display that the composites made by this technique have good microstructure and tensile properties. (orig.)

  18. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  19. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting

    International Nuclear Information System (INIS)

    Wang, H.Y.; Huang, L.; Jiang, Q.C.

    2005-01-01

    The fabrication of medium carbon steel-matrix composites locally reinforced with in situ TiB 2 -TiC particulates using self-propagating high-temperature synthesis (SHS) reaction of Ni-Ti-B 4 C system during casting was investigated. X-ray diffraction (XRD) results reveal that the exotherm of 1042 deg. C initiated by heat release of the solid state reaction in the differential thermal analysis (DTA) curve is an incomplete reaction in Ni-Ti-B 4 C system. As-cast microstructures of the in situ processed composites reveal a relatively uniform distribution of TiB 2 -TiC particulates in the locally reinforced regions. Furthermore, the particulate size and micro-porosity in the locally reinforced regions are significantly decreased with the increasing of the Ni content in the preforms. For a Ni content of 30 and 40 wt.%, near fully dense composites locally reinforced with in situ TiB 2 and TiC particulates can be fabricated. Although most of fine TiB 2 and TiC particulates which form by the reaction-precipitation mechanism during SHS reaction are present in the locally reinforced region, some large particulates which form by the nucleation-growth mechanism during solidification are entrapped inside the Fe-rich region located in the reinforcing region or inside the matrix region nearby the interface between matrix and reinforcing region. The hardness of the reinforcing region in the composite is significantly higher than that of the unreinforced medium carbon steel. Furthermore, the hardness values of the composites synthesized from 30 to 40 wt.% Ni-Ti-B 4 C systems are higher than those of the composites synthesized from 10 to 20 wt.% Ni-Ti-B 4 C systems

  20. A comparative study on the property determination of metal matrix composites using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1997-01-01

    Ultrasonic and eddy current methods were developed for the quantitative determination of material properties in particulate reinforced metal matrix composites. The proposed techniques employed measurements of ultrasonic velocity and eddy current conductivity, together with theoretical models which relate the effective anisotropic properties of the composites to their microstructures. The approach was used for a wide range of SiC particulate reinforced Al matrix(SiC p /Al) composites to estimate the particulate volume fractions of the composites. The SiC p volume fraction was calculated by coupling the measured velocity and conductivity with their corresponding model predictions. Both methods were shown to be reliable in determining the reinforcement volume fractions. However, the ultrasonic method was found to be better than the eddy current method, since the electrical conductivity was sensitive to the presence of intermetallic compounds formed during processing stage.

  1. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  2. Internal friction and microplasticity of carbon-fiber-reinforced SiC ceramics; Tanso sen`i kyoka SiC ceramics no hakai zenku katei ni okeru naibu masatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Nishino, Y.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-08-20

    Mechanical responses of carbon-fiber-reinforced SiC ceramics before fracture were measured in the strain range below 2 {times} 10{sup {minus}3} by two experimental methods: mechanical hysteresis and internal friction. Load-deflection curves were obtained by the three-point bending deformation in loading-unloading cycles. A little permanent strain was found after the first cycle even in the range where fracture never occurred. A closed hysteresis loop was observed after several cycles and stabilized with a symmetrical shape after more than twenty cycles. Such a stabilized hysteresis loop is attributed to the steady-state microplastic deformation and may cause the amplitude-dependent internal friction. Internal friction was measured in the fundamental mode of free-free resonant vibration as a function of strain amplitude. With increasing the amount of prestrain in the bending deformation, internal friction increased and became sensitive to the strain amplitude. The amplitude-dependent internal friction in the composites is considered to originate from fiber pull-out or microcrack propagation. The internal friction data were analyzed on the basis of the microplasticity theory and converted into the plastic strain expressed as a function of stress. Therefore, it becomes possible to non-destructively study the forerunning process of fracture of the fiber-reinforced ceramics. 23 refs., 6 figs.

  3. Effect of particle shapes on effective strain gradient of SiC particle reinforced aluminum composites

    International Nuclear Information System (INIS)

    Liu, X; Cao, D F; Mei, H; Liu, L S; Lei, Z T

    2013-01-01

    The stress increments depend not only on the plastic strain but also on the gradient of plastic strain, when the characteristic length scale associated with non-uniform plastic deformation is on the order of microns. In the present research, the Taylor-based nonlocal theory of plasticity (TNT plasticity), with considering both geometrically necessary dislocations and statistically stored dislocations, is applied to investigated the effect of particle shapes on the strain gradient and mechanical properties of SiC particle reinforced aluminum composites (SiC/Al composites). Based on this theory, a two-dimensional axial symmetry cell model is built in the ABAQUS finite element code through its USER-ELEMENT (UEL) interface. Some comparisons with the classical plastic theory demonstrate that the effective stress predicted by TNT plasticity is obviously higher than that predicted by classical plastic theory. The results also demonstrate that the irregular particles cause higher effective gradient strain which is attributed to the fact that angular shape particles give more geometrically.

  4. Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method

    Directory of Open Access Journals (Sweden)

    Omid Yaghobizadeh

    2017-03-01

    Full Text Available The material Cf-C-SiC-Ti3SiC2 is promising for high temperature application. Due to the laminated structure and special properties, the Ti3SiC2 is one of the best reinforcements for Cf-C-SiC composites. In this paper, Cf-C-SiC-Ti3SiC2 composites were fabricated by liquid silicon infiltration (LSI method; the effect of the TiC amount on the various composites properties were studied. For samples with 0, 50 and 90 vol.% of TiC, the results show that bending strength are 168, 190, and 181 MPa; porosities are 3.2, 4.7, and 9%; the fracture toughness are 6.1, 8.9, and 7.8 MPa∙m1/2; interlaminar shear strength are 27, 36, and 30 MPa; the amount of the MAX phase are 0, 8.5, and 5.6 vol.%, respectively. These results show that amount of TiC is not the main effective parameter in synthesis of Ti3SiC2. The existence of carbon promotes the synthesis of Ti3SiC2 indicating that only sufficient carbon content can lead to the appearance of Ti3SiC2 in the LSI process.

  5. Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions

    Science.gov (United States)

    Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo

    1999-11-01

    Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.

  6. Wear behavior of A356/M{sub 7}C{sub 3} and A356/SiC particulate metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Turhan, H. [Univ. of Firat, Dept. of Metallurgy, Elazig (Turkey); Yilmaz, O. [Univ. of Firat, Dept. of Metallurgical Engineering, Elazig (Turkey)

    2002-06-01

    The stability of M{sub 7}C{sub 3} carbides as reinforcement for A356 materials for tribological applications has been investigated. For this purpose, A356/M{sub 7}C{sub 3}, A356/SiC and A356/M{sub 7}C{sub 3}/SiC composites were prepared by powder metallurgy and tested at room temperature against SAE 4620 steel ring and AISI 304 stainless steel counterfaces under loads of 10 - 150 N. For comparison, also unreinforced A356 specimens were processed and tested under the same conditions. The tribological behavior was evaluated by microstructural examination of the wear-effected zones and by weight loss measurements of the specimens and counterfaces. The wear behavior of A356/M{sub 7}C{sub 3} composite gave an excellent result as function of the applied load because the M{sub 7}C{sub 3} particles act as load-bearing elements due to their excellent bonding to the Al matrix, and their interfaces withtood the wear stresses even at the highest applied load. Moreover, the M{sub 7}C{sub 3} particles limited the incorporation of wear debris into the Al matrix and reduced the wear damage occasioned to the steel counterfaces compared to that of A356 Al alloy. (orig.)

  7. The development of SiC whisker fabrication technology for nuclear applications

    International Nuclear Information System (INIS)

    Kang, Thae Khapp; Kuk, Il Hiun; Kim, Chang Kyu; Lee, Jae Chun; Lee, Ho Jin; Park, Soon Dong; Im, Gyeong Soo

    1991-02-01

    Some important experiments for whisker growth reactions, fabrication processes, and experiments for fabricarion of whisker reinforced composites have been performed. In order to investigate growth reaction of SiC whiskers, a conventional carbothermic reaction was tested. Based on the results of carbothermic process, a new process called silicothermic reaction was planned and some basic experiments were performed. Reaction characteristics of silicon monoxide, core material for SiC whisker growth in both of the reactions were investigated for basic data. Additionally, a hydrofluoric acid leaching process was tested for developing SiC whisker recovery process, and powder metallurgy process and melt sqeeze process were tried to develop aluminum-SiC whisker composites. (Author)

  8. In-situ synthesis of SiC particles by the structural evolution of TiCx in Al–Si melt

    International Nuclear Information System (INIS)

    Nie, Jinfeng; Li, Dakui; Wang, Enzhao; Liu, Xiangfa

    2014-01-01

    Highlights: • A facile method to in-situ synthesize SiC was developed utilizing the structural evolution of TiC x in Al–Si melt. • The SiC particles have the size range from 2.5 to 7.5 μm and a block-like morphology. • The SiC particles and (SiC + TiB 2 ) hybrid-particles reinforced Al–18Si composite were prepared. • The wear resistance effect of SiC on the based alloy was investigated. - Abstract: A facile method has been developed to in-situ synthesize SiC particles utilizing the structural instability and evolution of TiC x in Al–Si melt. It is considered that the synthesis of SiC particles occurs via the gradual reaction between TiC x and Si atoms, whilst Si content plays the crucial role in this approach. If the Si content in the melt is above 30%, TiC x directly reacts with Si and Al to form SiC, but the needle-like TiAl x Si y phase formed simultaneously will do harm to the mechanical properties of the composites. Thus, it is proposed to add B element in the melt to transform the TiAl x Si y into TiB 2 particles. Therefore, the SiC and (SiC + TiB 2 ) hybrid-particles reinforced Al–18Si composites were successfully prepared using the method. In the composites, the SiC particles have the size range from 2.5 to 7.5 μm and a block-like morphology. Furthermore, the mechanical properties of base alloy, including the wear resistance and macro-hardness, have been obviously improved by the in-situ SiC particles. Besides, the relevant underlying mechanisms are also discussed

  9. Evolution of the internal friction in SIC particle reinforced 8090 Al-Li metal matrix composite; Evolucion de la friccion interna del material compuesto de matriz Al-Li 8090 reforzado con particulas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Urrutia, I.; Gallego, I.; No, M. L.; San Juan, J. M.

    2001-07-01

    The present study has been undertaken to investigate the mechanisms of thermal stress relief at the range of temperatures below room temperature for the metal matrix composite Al-Li 8090/SiC. For this aim the experimental technique of internal friction has been used which has been showed up very effective. Several thermal cycles from 453 K to 100 K were used in order to measures the internal friction as well as the elastic modules of the material concluding that thermal stresses are relaxed by microplastic deformation around the reinforcements. It has been also related the variation in the elastic modules with the different levels of precipitation. (Author) 18 refs.

  10. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    Science.gov (United States)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  11. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  12. Fatigue properties of particle reinforced aluminium alloys

    International Nuclear Information System (INIS)

    Tabernig, B.J.

    2000-06-01

    In this work the particle reinforced Al-alloys 359 T6 + 20 % SiC and 2124 + 17 % SiC which differ significantly in their production and microstructure are investigated. Standard and in-situ tensile tests show, that in the powder metallurgically produced alloy 2124 reinforcement leads to a higher Young's modulus, yield and ultimate tensile stress where the cast alloy 359 + 20 % SiC exhibit increased stiffness, but low ductility due to cast porosity of some 100 μm. The failure mechanism governed by microstructural parameters is found to play an important role for ductility. The fatigue properties are investigated with specific regard to the influence of the in-service condition (load ratio, temperature, variable amplitude loading) in the foreseen applications in the automobile- and aerospace industry. Standard fatigue tests point out that the endurance limit is improved by reinforcement, but is strongly dependent on the size of given initial defects. The fatigue crack properties are characterised by standard crack growth curves and r(esistance)-curves for the threshold of stress intensity factor range. Both composites exhibit a higher effective threshold than their unreinforced alloys. Furthermore the fatigue resistance described by the R-curve as well as the long crack threshold are improved in the alloy 2124 + 17 % SiC. While in crack growth tests under constant amplitude loading the alloy 2124 + 17 % SiC shows lower crack growth rates than its unreinforced alloy, the opposite case is in the alloy 359 + 20 % SiC at high DK. Periodic overloads lead in the 359 + 20 % SiC to particle fracture at the crack tip and to a steeper increase in the crack growth rate. In the 2124 + 17% SiC the fatigue crack grows predominately in the matrix and a retardation effect due to overloads is observed. In order to describe the fatigue limit of components as a function of initial defect size an analytical concept is developed assuming that the fatigue limit is controlled by the

  13. Cold spraying SiC/Al metal matrix composites: effects of SiC contents and heat treatment on microstructure, thermophysical and flexural properties

    Science.gov (United States)

    Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.

    2018-02-01

    In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.

  14. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  15. Synergetic Effect of Graphene and MWCNTs on Microstructure and Mechanical Properties of Cu/Ti3SiC2/C Nanocomposites

    Science.gov (United States)

    Jiang, Xiaosong; Song, Tingfeng; Shao, Zhenyi; Liu, Wanxia; Zhu, Degui; Zhu, Minhao

    2017-11-01

    Multi-walled carbon nanotubes (MWCNTs) and graphenes have been taken for novel reinforcements due to their unique structure and performance. However, MWCNTs or graphenes reinforced copper matrix composites could not catch up with ideal value due to reinforcement dispersion in metal matrix, wettability to metal matrix, and composite material interface. Taking advantage of the superior properties of one-dimensional MWCNTs and two-dimensional graphenes, complementary performance and structure are constructed to create a high contact area between MWCNTs and graphenes to the Cu matrix. Mechanical alloying, hot pressing, and hot isostatic pressing techniques are used to fabricate Cu matrix self-lubricating nanocomposites. Effects of MWCNTs and graphenes on mechanical properties and microstructures of Cu/Ti3SiC2/C nanocomposites are studied. The fracture and strengthening mechanisms of Cu/Ti3SiC2/C nanocomposites are explored on the basis of structure and composition of Cu/Ti3SiC2/C nanocomposites with formation and function of interface.

  16. Structural Analysis of Polyhedral Oligomeric Silsesquioxane Coated SiC Nanoparticles and Their Applications in Thermoset Polymers

    International Nuclear Information System (INIS)

    Reza-E-Rabby, M.; Jeelani, Sh.; Rangari, V. K.

    2015-01-01

    The SiC nanoparticles (NPs) were sonochemically coated with Octa Isobutyl (OI) polyhedral oligomeric silsesquioxane (POSS) to create a compatible interface between particle and thermoset polymer. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) techniques were used to analyze the structure of OI-POSS coated SiC nanoparticles. These results revealed the formation of a covalent bonding between SiC and OI-POSS. The transmission electron microscopy (TEM) analysis of OI-POSS coated SiC nanoparticles has also shown the indication of attachment between these two nanoparticles. The OI-POSS coated SiC nanoparticles were further reinforced into a thermoset resin system in order to evaluate mechanical and thermal properties of nano composites. The flexural strength, modulus, and glass transition temperature were found to be enhanced while SiC and OI-POSS coated SiC were infused into epoxy system compared to those properties of neat epoxy resin

  17. Structural Analysis of Polyhedral Oligomeric Silsesquioxane Coated SiC Nanoparticles and Their Applications in Thermoset Polymers

    Directory of Open Access Journals (Sweden)

    Md. Reza-E-Rabby

    2015-01-01

    Full Text Available The SiC nanoparticles (NPs were sonochemically coated with OctaIsobutyl (OI polyhedral oligomeric silsesquioxane (POSS to create a compatible interface between particle and thermoset polymer. X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD techniques were used to analyze the structure of OI-POSS coated SiC nanoparticles. These results revealed the formation of a covalent bonding between SiC and OI-POSS. The transmission electron microscopy (TEM analysis of OI-POSS coated SiC nanoparticles has also shown the indication of attachment between these two nanoparticles. The OI-POSS coated SiC nanoparticles were further reinforced into a thermoset resin system in order to evaluate mechanical and thermal properties of nanocomposites. The flexural strength, modulus, and glass transition temperature were found to be enhanced while SiC and OI-POSS coated SiC were infused into epoxy system compared to those properties of neat epoxy resin.

  18. Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications

    Science.gov (United States)

    Ko, Hyunseok

    Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding

  19. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  20. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  1. Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

    Directory of Open Access Journals (Sweden)

    Xinghao Liang

    2018-02-01

    Full Text Available Silicon carbide (SiC is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

  2. Influence wt.% of SiC and borax on the mechanical properties of AlSi-Mg-TiB-SiC composite by the method of semi solid stir casting

    Science.gov (United States)

    Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2017-04-01

    SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.

  3. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites

    International Nuclear Information System (INIS)

    Yi, Danqing; Yu, Pengchao; Hu, Bin; Liu, Huiqun; Wang, Bin; Jiang, Yong

    2013-01-01

    Highlights: • Ni-coated TiC composite powders were prepared by electroless plating. • Iron-based composites reinforced by TiC particles was prepared by HIP. • Mechanical and wear properties were improved with the addition of Ni-coated TiC. • The nickel coating promotes the formation and growth of sintering neck. - Abstract: Ni-coated titanium carbide (TiC) composite powders were prepared by electroless plating (EP). Further, using hot isostatic pressing (HIP), iron matrix composites reinforced with 4 wt% Ni-coated TiC particulates with relative density close to 100% were prepared. The microstructure and phase composition of the Ni-coated powders and the composites were analyzed using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the TiC particles were distributed uniformly in the matrix and were free of segregation or coarsening. Compared to the TiC particles without Ni coating, the reinforced iron-based composites containing the Ni-coated particles showed higher relative densities and better mechanical properties. The density, hardness, tensile strength, and elongation were enhanced to 99.98%, 243 HV, 565 MPa, and 11.7%, respectively in composites containing Ni-coated TiC particles from 99.70%, 210 HV, 514 MPa, and 10.3%, respectively in composites that were prepared using particles without Ni coating. In addition, the mass losses in the composites containing the Ni-coated particles were reduced by 32–75% in the abrasive wear test with various vertical loads. We propose that the nickel coatings on the particulates had a beneficial effect on the microstructure and properties of the reinforced iron-based composites is due to promotion of neck formation and growth between TiC and iron powders during sintering, which enhanced the density of the sintered compact and the bonding strength between the TiC particles and the iron matrix

  4. A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1993-01-01

    Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.

  5. Effect Of SiC Particles On Sinterability Of Al-Zn-Mg-Cu P/M Alloy

    Directory of Open Access Journals (Sweden)

    Rudianto H.

    2015-06-01

    Full Text Available Premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder was analyzed as matrix in this research. Gas atomized powder Al-9Si with 20% volume fraction of SiC particles was used as reinforcement and added into the alloy with varied concentration. Mix powders were compacted by dual action press with compaction pressure of 700 MPa. High volume fraction of SiC particles gave lower green density due to resistance of SiC particles to plastic deformation during compaction process and resulted voids between particles and this might reduce sinterability of this mix powder. Sintering was carried out under ultra high purity nitrogen gas from 565°-580°C for 1 hour. High content of premix Al-5.5Zn-2.5Mg-0.5Cu alloy powder gave better sintering density and reached up to 98% relative. Void between particles, oxide layer on aluminum powder and lower wettability between matrix and reinforcement particles lead to uncompleted liquid phase sintering, and resulted on lower sintering density and mechanical properties on powder with high content of SiC particles. Mix powder with wt90% of Alumix 431D and wt10% of Al-9Si-vf20SiC powder gave higher tensile strength compare to another mix powder for 270 MPa. From chemical compositions, sintering precipitates might form after sintering such as MgZn2, CuAl2 and Mg2Si. X-ray diffraction, DSC-TGA, and SEM were used to characterize these materials.

  6. Microstructure and orientation effects on properties of discontinuous silicon carbide/aluminum composites

    Science.gov (United States)

    Mcdanels, D. L.; Hoffman, C. A.

    1984-01-01

    Composite panels containing up to 40 vol % discontinuous silicon carbide SiC whisker, nodule, or particulate reinforcement in several aluminum matrices are commercially fabricated and the mechanical properties and microstructual characteristics are evaluated. The yield and tensile strengths and the ductility are controlled primarily by the matrix alloy, the temper condition, and the reinforcement content. Particulate and nodule reinforcements are as effective as whisker reinforcement. Increased ductility is attributed to purer, more uniform starting materials and to more mechanical working during fabrication. Comparing mechanical properties with those of other aluminum alloys shows that these low cost, lightweight composites demonstrate very good potential for application to aerospace structures.

  7. The Influence of Pressure Die Casting Parameters on Distribution of Reinforcing Particles in the AlSi11/10% SiC Composite

    Directory of Open Access Journals (Sweden)

    Pasieka A.

    2013-09-01

    Full Text Available The method of pressure die casting of composites with AlSi11 alloy matrix reinforced with 10 vol. % of SiC particles and the analysis of the distribution of particles within the matrix is presented. The composite castings were produced at various values of the piston velocity in the second stage of injection, at diverse intensification pressure values, and various injection gate width values. The distribution of particles over the entire cross-section of the tensile specimen is shown. The index of distribution was determined on the basis of particle count in elementary measuring fields. The regression equation describing the change of the considered index was found as a function of the pressure die casting parameters. The conclusion presents an analysis of the obtained results and their interpretation.

  8. Joining technology—A challenge for the use of SiC components in HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, M., E-mail: marion.herrmann@tu-dresden.de; Meisel, P.; Lippmann, W.; Hurtado, A.

    2016-09-15

    The availability of suitable joining technologies is paramount to the further advancement of ceramic components and their use in HTRs. Among other joining technologies, a modified brazing technology using a laser beam for heating the components to be joined has been developed at TU Dresden. The laser-induced heating behavior of the ceramic material is determined by the interactions between the material and the laser beam. This was shown in two different silicon carbide materials (SSiC and SiC{sub f}-reinforced ceramic material) using a diode laser with wavelengths 808 nm and 940 nm. The laser-based technique was illustrated by three different examples: sealing of monolithic SiC with a pin configuration for fuel claddings, sealing of SiC heat pipes with a length of 1 m, and demonstration of the transferability of the laser technique to fiber-reinforced components by means of a SiC{sub f}/SiCN material. Because the covalent bonding of SiC does not allow conventional welding, much research has been devoted to developing alternative filler systems. Glass or glass–ceramic fillers enable the tailoring of properties such as CTE and viscosity. Glasses are thermally stable up to their glass transition temperatures. It was shown that the crystallization of the yttrium aluminosilicate glass composition of the present work allows it to be used at 1050 °C without any significant changes occurring in braze tightness. For the SiC heat pipes with sodium as the working fluid, a sodium-resistant metal braze consisting of Ni–Ti–Si was formed. The long-term resistance of this filler to sodium at 800 °C was proven. The results demonstrate the possibility of using the laser-based joining technique for the joining of different SiC materials as well as for different brazing materials.

  9. Microstructure and fracture in SiC whisker reinforced 2124 aluminum composite

    Science.gov (United States)

    Nieh, T. G.; Raninen, R. A.; Chellman, D. J.

    1985-01-01

    The microstructures of extruded and hot-rolled 2124 Al-15 percent (by weight) SiC whisker composites have been investigated, experimentally. Among the specific factors studied were: the strength of the whisker-matrix interfaces; (2) the presence of oxides; (3) the presence of defective whiskers; (4) and the presence of distribution of intermetallic compounds, impurities in the SiC(w) powder, and microstructural inhomogeneities. Modifications in the microstructure of the SiC/AL composites due to hot rolling and extrusion are illustrated in a series of microphotographs. It was found that hot rolling along the axis of extrusion was associated with some types of whisker damage, while the whiskers still retain their original orientation. Hot-rolling perpendicular to the axis of extrusion, however, tended to rotate the whiskers and produced a nearly isotropic material. Whisker free zones were virtually eliminated or reduced in size by hot rolling. In situ Auger fractography of the composite showed that the interfacial bonding between the SiC and the Al matrix was good and that Al2O2 had no significant influence on the fracture mechanics of the composite.

  10. Electrochemical Corrosion Behaviour of Alumina-Al 6061 and Silicon Carbide-Al 6061 Metal-Matrix Composites

    International Nuclear Information System (INIS)

    Mohamed, K.E.; Gad, M.M.A.; El-Sayed, A.A.; Moustafa, O.H.

    2001-01-01

    The electrochemical corrosion behaviour of powder metallurgy-processed metal-matrix composites (MMCs)based on Al alloy 6061 reinforced with particulate Al 2 O 3 or Sic has been studied in chloride-containing environment. Also, the corrosion behaviour of the unrein forced Al 6061 produced by the same route investigated. Electrochemical tests were conducted on composites containing 10 and 20 vo l% of both reinforced particulates. Potentiodynamic polarization tests have been carried out in neutral as well as acidic and alkaline de-aerated 10 -3 M Na CI solution. In the neutral environment, the addition of Al 2 O 3 particulates was found to shift both the corrosion potential (E corr ) and the break down potential (E b ) slightly into the positive direction irrespective of the volume fraction added (10 and 20 vo l%). On the other hand , Sic caused a shift of E corr into the active site while the E b value was slightly ennobled. For both composites, the corrosion current values at the break down potentials were almost the same as the unrein forced alloy. In an attempt to further clarify the role of both particulate addition, cathodic polarization runs were conducted in both acidic (ph 3) and alkaline (ph 9)solutions for 20 vo l% of Al 2 O 3 and 20 vo l% Sic composite specimens. This indicated that cathodic current values for Sic composites were higher than those corresponding to the unrein forced alloy 6061, and those for the Al 2 O 3 composites were lower

  11. Solidification of Magnesium (AM50A) / vol%. SiCp composite

    International Nuclear Information System (INIS)

    Zhang, X; Hu, H

    2012-01-01

    Magnesium matrix composite is one of the advanced lightweight materials with high potential to be used in automotive and aircraft industries due to its low density and high specific mechanical properties. The magnesium composites can be fabricated by adding the reinforcements of fibers or/and particles. In the previous literature, extensive studies have been performed on the development of matrix grain structure of aluminum-based metal matrix composites. However, there is limited information available on the development of grain structure during the solidification of particulate-reinforced magnesium. In this work, a 5 vol.% SiC p particulate-reinforced magnesium (AM50A) matrix composite (AM50A/SiC p ) was prepared by stir casting. The solidification behavior of the cast AM50A/SiC p composite was investigated by computer-based thermal analysis. Optical and scanning electron microscopies (SEM) were employed to examine the occurrence of nucleation and grain refinement involved. The results indicate that the addition of SiC p particulates leads to a finer grain structure in the composite compared with the matrix alloy. The refinement of grain structure should be attributed to both the heterogeneous nucleation and the restricted primary crystal growth.

  12. Impact damage, hardness and tribology characterization of epoxy resin based composites reinforced with basalt fibers in combination with TiO_2, BaSO_4 and SiC

    International Nuclear Information System (INIS)

    Babu, T. Narendiranath; Mangalaraja, R.V.; Saravanan, S.; Prabha, D. Rama

    2016-01-01

    Impact damage, hardness characterization, frictional and wear behavior of epoxy resin based composites reinforced with basalt fibers in combination with TiO_2, BaSO_4 and SiC were investigated using an impact testing machine, a hardness testing machine and a pin on disc machine. The basalt contained different fillers and short fibers whose presence varied in steps of weight percentage from 23 % to 50 %. It was fabricated using the conventional hand-layup technique followed by the light compression moulding technique. The frictional behavior of the composite specimen was determined by testing on a pin on disc test machine under different operating conditions. The present investigation focused on the determination of the friction coefficient of epoxy resin based composites reinforced with basalt fibers in combination with the fillers. The effects of basalt short fibers content and load were examined under dry conditions. The results showed that the friction coefficient decreased with the filler contents increase. The hardness and the impact damage of epoxy resin reinforced with basalt fiber was examined and it was found that its reinforcement with basalt fiber along with fillers such as titanium oxide, silicon carbide, barium sulphate and graphite made it more advantageous than other specimens. Keywords: basalt fiber, impact behavior, hardness, wear resistance.

  13. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Wang, X.J.; Gong, W.X.; Wu, K.; Wang, F.H.

    2013-01-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC p /AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO 2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO 2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC p /AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  14. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  15. Evaluation of material properties of SiC particle reinforced aluminum alloy composite using neutron and X-ray diffraction

    International Nuclear Information System (INIS)

    Akiniwa, Yoshiaki; Machiya, Shutaro; Kimura, Hidehiko; Tanaka, Keisuke; Minakawa, Nobuaki; Morii, Yukio; Kamiyama, Takashi

    2006-01-01

    The phase stresses under loading in a monolithic aluminum alloy and an aluminum alloy reinforced with silicon carbide particles were measured by the neutron diffraction method. Under uniaxial loading, the longitudinal and transverse strains in each constituent phase were measured. The diffraction elastic constants for each diffraction plane were investigated as a function of the diffraction intensity by TOF. Single peak analysis was carried out for each diffraction profile. The measured results were compared with the theoretical micromechanical models such as the self-consistent and Mori-Tanaka method using the Eshelby theory (MTE). The accuracy of the elastic constant strongly depends on the diffraction intensity. In order to confirm the rule of mixture, the phase stress was measured by the X-ray method. The macrostress calculated by the rule of mixture agreed very well with the applied stress. Finally, fatigue damage was evaluated by the neutron method. The change of the full width at half maximum in the aluminum phase during fatigue is small. On the other hand, the value in the SiC phase increased steeply just before fracture

  16. Influence of load and reinforcement content on selected tribological properties of Al/SiC/Gr hybrid composites

    Directory of Open Access Journals (Sweden)

    Sandra Veličković

    2018-04-01

    Full Text Available Hybrid materials with the metal matrix are important engineering materials due to their outstanding mechanical and tribological properties. Here are presented selected tribological properties of the hybrid composites with the matrix made of aluminum alloy and reinforced by the silicon carbide and graphite particles. The tribological characteristics of such materials are superior to characteristics of the matrix – the aluminum alloy, as well as to characteristics of the classical metal-matrix composites with a single reinforcing material. Those characteristics depend on the volume fractions of the reinforcing components, sizes of the reinforcing particles, as well as on the fabrication process of the hybrid composites. The considered tribological characteristics are the friction coefficient and the wear rate as functions of the load levels and the volume fractions of the graphite and the SiC particles. The wear rate increases with increase of the load and the Gr particles content and with reduction of the SiC particles content. The friction coefficient increases with the load, as well as with the SiC particles content increase.

  17. Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Pereira dos Santos Tonello, Karolina, E-mail: karolina.pereira@polito.it; Padovano, Elisa; Badini, Claudio; Biamino, Sara; Pavese, Matteo; Fino, Paolo

    2016-04-06

    Nanosized allotropes of carbon have been attracting a lot of attention recently, but despite the steady growth of the number of scientific works on materials based on graphene family, there is still much to be explored. These two-dimensional carbon materials, such as graphene nanoplatelets, multilayer graphene or few layer graphene have emerged as a possible second phase for reinforcing ceramics, resulting in remarkable properties of these composites. Typically, graphene ceramic matrix composites are prepared by a colloidal or a powder route followed by pressure assisted sintering. Recently other traditional ceramic processes, such as tape casting, were also successfully studied. The aim of this research is to fabricate α-SiC multi-layer composites containing 2, 4 and 8 vol% of graphene nanoplatelets (GNP) by tape casting and study the effect of these additions on the mechanical behavior of the composites. In order to achieve this purpose, samples were pressureless sintered and tested for density and mechanical properties. The elastic modulus was measured by the impulse excitation of vibration method, the hardness by Vickers indentation and fracture toughness using micro Vickers indentation and by three-point bending applying the pre-cracked beam approach. Results showed that up to 4 vol%, the density and mechanical properties were directly proportional to the amount of GNP added but showed a dramatic decrease for 8 vol% of GNP. Composites with 4 vol% of GNP had a 23% increment elastic modulus, while the fracture toughness had a 34% increment compared to SiC tapes fabricated under the same conditions. Higher amounts of GNP induces porosity in the samples, thus decreasing the mechanical properties. This study, therefore, indicates that 4% is an optimal amount of GNP and suggests that excessive amounts of GNP are rather detrimental to the mechanical properties of silicon carbide ceramic materials prepared by tape casting.

  18. Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructure and mechanical properties of Zn–27Al based composites reinforced with rice husk ash (RHA, silicon carbide (SiC, and graphite (Cg particles have been investigated. The Zn–27Al composites consisting of varied weight ratios of the reinforcing materials were produced using the stir casting process. Hardness test, tensile properties evaluation, fracture toughness determination, and microstructural examination, were used to characterize the composites produced. Results show that the microstructures of the composites are similar, consisting of the dendritic structure of the Zn–27Al alloy matrix with fine dispersion of the reinforcing particles. The hardness of the composites decreased with increase in the weight percent of RHA (and corresponding decrease in SiC weight percent in the reinforcement. The tensile strength and yield strength decreased slightly with increase in the weight ratio of RHA in the composites with a maximum of 8.5% and 9.6% reductions respectively observed for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement. Although some of the composite compositions containing RHA had slightly higher % elongation values compared with those without RHA, it was generally observed that the % elongation was invariant to the composite RHA content. The fracture toughness of the composites increases with increase in the weight percent of RHA with as much as a 20% increase obtained for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement.

  19. Purity and radioactive decay behaviour of industrial 2D-reinforced SiCf/SiC composites

    International Nuclear Information System (INIS)

    Scholz, H.W.; Zucchetti, M.; Casteleyn, K.; Adelhelm, C.

    1994-01-01

    Ceramic matrix composites based on SiC with continuous fibres (SiC f /SiC) are considered promising structural materials for future fusion devices. It was still to clarify, whether impurities in industrial SiC f /SiC could jeopardise radiological advantages. Experimental impurity analyses revealed a two-dimensionally reinforced SiC f /SiC with the matrix produced by CVI as very pure. Chemo-spectrometric methods were combined with radioactivation methods (CPAA, NAA). A quantification of the main constituents Si, C and O was added. Calculations with the FISPACT-2.4 code and EAF-2 library identified elements detrimental for different low-activation criteria. For the neutron exposure, EEF reactor-study first wall and blanket conditions were simulated. The calculated SiC f /SiC included 48 trace elements. Even under conservative assumptions, all low-activation limits of European interest are fulfilled. Exclusively the hands-on recycling limit for the First Wall can intrinsically not be satisfied with SiC. The theoretical goal of a SiC f /SiC depleted of 28 Si (isotopic tailoring) is critically discussed. ((orig.))

  20. Effect of turning parameters on surface roughness of A356/5% SiC composite produced by electromagnetic stir casting

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, S. P.; Kumar, Sudhir; Kumar, Ajay [Noida Institute of Engineering Technology, U.P (India)

    2012-12-15

    In the present investigation, A356 alloy 5 wt% SiC composite is fabricated by electromagnetic stir casting process. An attempt has been made to investigate the effect of CNC lathe process parameters like cutting speed, depth of cut, and feed rate on surface roughness during machining of A356 alloy 5 wt% SiC particulate metal-matrix composites in dry condition. Response surface methodology (Box Behnken Method) is chosen to design the experiments. The results reveal that cutting speed increases surface roughness decreases, whereas depth of cut and feed increase surface roughness increase. Optimum values of speed (190 m/min), feed (0.14 mm/rev) and depth of cut (0.20 mm) during turning of A356 alloy 5 wt% SiC composites to minimize the surface roughness (3.15>m) have been find out. The mechanical properties of A356 alloy 5 wt% SiC were also analyzed.

  1. Corrosion behaviour of 2124 aluminium alloy-silicon carbide metal matrix composites in sodium chloride environment

    International Nuclear Information System (INIS)

    Singh, Nirbhay; Vadera, K.K.; Ramesh Kumar, A.V.; Singh, R.S.; Monga, S.S.; Mathur, G.N.

    1999-01-01

    Aluminium alloy based particle reinforced metal matrix composites (MMCs) are being considered for a range of applications. Their mechanical properties have been investigated in detail, but more information about their corrosion resistance is needed. In this investigation, the corrosion behaviour of silicon carbide particulates (SiC p )-2124 aluminium metal matrix composites was studied in 3 wt% sodium chloride solution by means of electrochemical technique and optical microscope. The effects of weight percentages and particle size of silicon carbide particulates on corrosion behaviour of the composite were studied in NaCl and it was observed that corrosion rate increases linearly with the increasing weight percentage of SiC p . The corrosion rate of the MMC increases by increasing the size of SiC particles. Anodization improved corrosion resistance of the composites. (author)

  2. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    Science.gov (United States)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  3. Switching Performance Evaluation of Commercial SiC Power Devices (SiC JFET and SiC MOSFET) in Relation to the Gate Driver Complexity

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    and JFETs. The recent introduction of SiC MOSFET has proved that it is possible to have highly performing SiC devices with a minimum gate driver complexity; this made SiC power devices even more attractive despite their device cost. This paper presents an analysis based on experimental results...... of the switching losses of various commercially available Si and SiC power devices rated at 1200 V (Si IGBTs, SiC JFETs and SiC MOSFETs). The comparison evaluates the reduction of the switching losses which is achievable with the introduction of SiC power devices; this includes analysis and considerations...

  4. High-temperature mechanical and material design for SiC composites

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1992-01-01

    Silicon Carbide (SiC) fiber reinforced composites (FRC's) are strong potential candidate structural and high heat flux materials for fusion reactors. During this past decade, they have been vigorously developed for use in aerospace and transportation applications. Recent fusion reactor systems studies, such as ARIES, have concluded that further development of SiC composites will result in significant safety, operational, and waste disposal advantages for fusion systems. A concise discussion of the main material and design issues related to the use of SiC FRC's as structural materials in future fusion systems is given in this paper. The status of material processing of SiC/SiC composites is first reviewed. The advantages and shortcomings of the leading processing technology, known as Chemical Vapor Infiltration are particularly highlighted. A brief outline of the design-relevant physical, mechanical, and radiation data base is then presented. SiC/SiC FRC's possess the advantage of increased apparent toughness under mechanical loading conditions. This increased toughness, however, is associated with the nucleation and propagation of small crack patterns in the structure. Design approaches and failure criteria under these conditions are discussed

  5. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Mostaed, A., E-mail: alimostaed@yahoo.com [Advanced Materials and Nanotechnology Research Center, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, 16765-3381 Pardis Street, Tehran (Iran, Islamic Republic of); Saghafian, H.; Mostaed, E. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Narmak, Tehran (Iran, Islamic Republic of); Shokuhfar, A. [Advanced Materials and Nanotechnology Research Center, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, 16765-3381 Pardis Street, Tehran (Iran, Islamic Republic of); Rezaie, H.R. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Narmak, Tehran (Iran, Islamic Republic of)

    2013-02-15

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal, the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.

  6. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    International Nuclear Information System (INIS)

    Mostaed, A.; Saghafian, H.; Mostaed, E.; Shokuhfar, A.; Rezaie, H.R.

    2013-01-01

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal, the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM

  7. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, H.; Curtin, W.A. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  8. Oxidation resistance in air of 1-D SiC (Hi-nicalon) fibre reinforced silicon nitride ceramic matrix composite

    International Nuclear Information System (INIS)

    Dupel, P.; Veyret, J.B.

    1997-01-01

    The oxidation behaviour of a Si 3 N 4 matrix reinforced with SiC fibres (Hi-nicalon) pre-coated with a 400 nm thick pyrolytic carbon layer has been investigated in dry air in the temperature range 800-1500 C. The same study was performed for individual constituents of the composite (fibre and matrix). Two phenomena are observed in the oxidation behaviour of the composite. At low temperature (T<1200 C), the matrix oxidation is negligible, only the carbon interphase was oxidised creating an annular space between the fibres and the matrix throughout the sample. At high temperature (T≥1300 C) the rate of formation of the oxidation products of the matrix is rapid and a sealing effect is observed. While at these temperatures the interphase is protected in the bulk of the material, the time needed to seal the gap between the fibre and the matrix is too long to prevent its oxidation to a significant depth from the surface. Finally, preliminary results are presented where the consumption of the interphase is completely prevented by applying an external coating which gives oxidation protection from low to high temperature. (orig.)

  9. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  10. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  11. Fatigue Life and Microstructure after Multiple Remelting of A359 Matrix Composites Reinforced with SiC Particles

    Directory of Open Access Journals (Sweden)

    Klasik A.

    2016-12-01

    Full Text Available The article presents the results of fatigue life tests and microstructure examinations of A359 alloy matrix composites (F3S.10S and F3S.30S containing 10 and 30wt% of SiC particles, subjected to multiple remelting by conventional gravity casting. Mechanical characteristics were determined in a modified low cycle fatigue (MLCF test, enabling rapid estimation of fatigue life and other mechanical parameters in practice of any material. Qualitative and quantitative metallographic examinations were also carried out. The quantitative evaluation of microstructure was performed by computer image analysis. A set of geometrical parameters of the reinforcing particles, pores and eutectic precipitates present in the metal matrix was determined. The relationships between the mechanical parameters, structural characteristics and the number of remelting operations were presented. It was found that up to the fourth remelting, the mechanical characteristics, including fatigue life, are slightly deteriorated but decrease gradually in the subsequent operations of remelting. The observed effect is mainly due to the shrinkage porosity occurring as a result of gravity casting. To eliminate this defect, the use of squeeze casting process was recommended. It has also been shown that multiple remelting can be an easy and economically well-founded alternative to other more expensive recycling methods.

  12. Palladium transport in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2012-01-01

    Highlights: ► We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. ► The high temperature mobility of palladium silicides within polycrystalline SiC was studied. ► Corrosion of SiC by Pd was seen in all cases. ► The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. ► The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd 2 Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  13. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  14. Creep behavior for advanced polycrystalline SiC fibers

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-01-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep open-quotes mclose quotes curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261 degrees C), Nicalon S (1256 degrees C), annealed Hi Nicalon (1215 degrees C), Hi Nicalon (1078 degrees C), Nicalon CG (1003 degrees C) and Tyranno E (932 degrees C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests

  15. Palladium transport in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. Black-Right-Pointing-Pointer The high temperature mobility of palladium silicides within polycrystalline SiC was studied. Black-Right-Pointing-Pointer Corrosion of SiC by Pd was seen in all cases. Black-Right-Pointing-Pointer The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. Black-Right-Pointing-Pointer The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd{sub 2}Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  16. Effective moduli of high volume fraction particulate composites

    International Nuclear Information System (INIS)

    Kwon, P.; Dharan, C.K.H.

    1995-01-01

    Predictions using current micromechanics theories for the effective moduli of particulate-reinforced composites tend to break down at high volume fractions of the reinforcing phase. The predictions are usually well below experimentally measured values of the Young's modulus for volume fractions exceeding about 0.6. In this paper, the concept of contiguity, which is a measure of phase continuity, is applied to Mori-Tanaka micromechanics theory. It is shown that contiguity of the second phase increases with volume fraction, leading eventually to a reversal in the roles of the inclusion and matrix. In powder metallurgy practice, it is well known that at high volume fractions, sintering and consolidation of the reinforcement make it increasingly continuous and more like the matrix phase, while the former matrix tends to become more like the inclusion phase. The concept of contiguity applied to micromechanics theory results in very good agreement between the predicted Young's modulus and experimental data on tungsten carbide particulate-reinforced cobalt

  17. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  18. Technique for measuring irradiation creep in polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Hamilton, M.L.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    A bend stress relaxation (BSR) test has been designed to examine irradiation enhanced creep in polycrystalline SiC fibers being considered for fiber reinforcement in SiC/SiC composite. Thermal creep results on Nicalon-CG and Hi-Nicalon were shown to be consistent with previously published data with Hi-Nicalon showing about a 100{degrees}C improvement in creep resistance. Preliminary data was also obtained on Nicalon-S that demonstrated that its creep resistance is greater than that of Hi-Nicalon.

  19. Fabrication and Mechanical Properties of SiCw(p/SiC-Si Composites by Liquid Si Infiltration using Pyrolysed Rice Husks and SiC Powders as Precursors

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2014-03-01

    Full Text Available Dense silicon carbide (SiC matrix composites with SiC whiskers and particles as reinforcement were prepared by infiltrating molten Si at 1550 °C into porous preforms composed of pyrolysed rice husks (RHs and extra added SiC powder in different ratios. The Vickers hardness of the composites showed an increase from 18.6 to 21.3 GPa when the amount of SiC added in the preforms was 20% (w/w, and then decreased to 17.3 GPa with the increase of SiC added in the preforms up to 80% (w/w. The values of flexural strength of the composites initially decreased when 20% (w/w SiC was added in the preform and then increased to 587 MPa when the SiC concentration reached 80% (w/w. The refinement of SiC particle sizes and the improvement of the microstructure in particle distribution of the composites due to the addition of external SiC played an effective role in improving the mechanical properties of the composites.

  20. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    National Research Council Canada - National Science Library

    Michalowski, Radoslw

    1999-01-01

    Fiber-reinforced ganular composites (for instance, fiber-reinforced sand) are considered as construction materials for such applications as subgrades of airfields and roads, aircraft parking facilities, etc...

  1. The control of interface and microstructure of SiC/Al composites by sol-gel techniques

    DEFF Research Database (Denmark)

    Kindl, B.; Liu, Y.L.; Nyberg, E.

    1992-01-01

    A process and additives have been developed to coat SiC whiskers and particulate reinforcements. The treated whiskers are shown to have low reactivity toward the aluminium matrix and to be well dispersed. The process is simple and inexpensive, and it is shown that the mechanical properties of the...

  2. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles

    International Nuclear Information System (INIS)

    Derradji, Mehdi; Ramdani, Noureddine; Zhang, Tong; Wang, Jun; Feng, Tian-tian; Wang, Hui; Liu, Wen-bin

    2015-01-01

    Highlights: • SiC microparticles improve the mechanical properties of phthalonitrile resin. • Excellent thermal stability achieved by adding SiC particles in phthalonitrile resin. • Adding 20 wt.% of SiC microparticles increases the T g by 38 °C. • Silane coupling agent can enhance the adhesion and dispersion of particles/matrix. - Abstract: A new type of composite based on phthalonitrile resin reinforced with silicon carbide (SiC) microparticles was prepared. For various weight ratios ranging between 0% and 20%, the effect of the micro-SiC particles on the mechanical and thermal properties has been studied. Results from thermal analysis revealed that the starting decomposition temperature and the residual weight were significantly improved upon adding the reinforcing phase. At the maximum micro-SiC loading, dynamic mechanical analysis (DMA) showed an important enhancement in both the storage modulus and glass transition temperature (T g ), reaching 3.1 GPa and 338 °C, respectively. The flexural strength and modulus as well as the microhardness were significantly enhanced by adding the microfillers. Tensile test revealed enhancements in the composites toughness upon adding the microparticles. Polarization optical microscope (POM) and scanning electron microscope (SEM) analysis confirmed that mechanical and thermal properties improvements are essentially attributed to the good dispersion and adhesion between the particles and the resin

  3. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  4. High-temperature deformation of SiC-whisker-reinforced MgO-PSZ/mullite composites

    International Nuclear Information System (INIS)

    Parthasarathy, T.A.; Hay, R.S.; Ruh, R.

    1996-01-01

    The effect of 33.5 vol% SiC whisker loading on high-temperature deformation of 1 wt% MgO-38.5 wt% zirconia-mullite composites was studied between 1,300 and 1,400 C. At strain rates of 10 -6 to 5 x 10 -4 /s the creep resistance of zirconia-mullite composites without SiC reinforcement was inferior to monolithic mullite of similar grain size. Analysis of the results suggested that the decreased creep resistance of mullite-zirconia composites compared to pure mullite could be at least partially explained by mechanical effects of the weaker zirconia phase, increased effective diffusivity of mullite by zirconia addition, and to the differences in mullite grain morphology. With SiC whisker reinforcement, the deformation rate at high stress was nearly the same as that of the unreinforced material, but at low stress the creep rates of the SiC-reinforced material were significantly lowered. The stress dependence of the creep rate of unreinforced material suggested that diffusional creep was the operative mechanism, while the reinforced material behaved as if a threshold stress for creep existed. The threshold stress could be rationalized based on a whisker network model. This was supported by data on other whisker-containing materials; however, the threshold stress had a temperature dependence that was orders of magnitude higher than the elastic constants, leaving the physical model incomplete. The effects of residual stresses and amorphous phases at whisker/matrix interfaces are invoked to help complete the physical model for creep threshold stress

  5. Effects of SiC amount on phase compositions and properties of Ti3SiC2-based composites

    Institute of Scientific and Technical Information of China (English)

    蔡艳芝; 殷小玮; 尹洪峰

    2015-01-01

    The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%−30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/TiC−SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15%than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/TiC−SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78μm, was near a half of that of T, 2715μm, at 1500 °C for 20 h. Ti3SiC2/TiC composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC−SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20%SiC added amount.

  6. Effect of SiC Content on Microstructure and Wear Resistance of Laser Cladding SiC/Ni60A Composite Coating

    Directory of Open Access Journals (Sweden)

    ZHAO Long-zhi

    2017-03-01

    Full Text Available The SiC reinforced Ni60A alloy laser cladding coating on the 45 steel substrate was fabricated with the LDM2500-60 semiconductor laser equipment. The effect of SiC content on microstructure, dilution rate, wear resistance, friction coefficient and microhardness was investigated systematically.The results show that with the increase of SiC content, the microstructure of upper coating is refined obviously, the dilution rate, wear resistance, friction coefficient and microhardness increase firstly and then decrease;when the mass fraction of SiC is 20%, the wear resistance of the cladding coating is the best one, in which the wear loss of coating is only 0.0012g and is 1/36.3 of the matrix;the minimum friction coefficient is 0.464, the friction process is the most stable;the highest microhardness of the cladding coating is 1039.9HV0.2, which is 3.5 times of the substrate;but when the mass fraction of SiC is 25%, the microhardness and wear resistance of coating decrease.

  7. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  8. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Merino, S.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2005-01-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al 2 O 3 . 3H 2 O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration

  9. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)]. E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain); Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Carboneras, M. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Arrabal, R. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)

    2005-07-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al{sub 2}O{sub 3} . 3H{sub 2}O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration.

  10. Chemical vapor deposition of SiC on C-C composites as plasma facing materials for fusion application

    International Nuclear Information System (INIS)

    Kim, W. J.; Lee, M. Y.; Park, J. Y.; Hong, G. W.; Kim, J. I.; Choi, D. J.

    2000-01-01

    Because of the low activation and excellent mechanical properties at elevated temperatures, carbon-fiber reinforced carbon(C-C) composites have received much attention for plasma facing materials for fusion reactor and high-temperature structural applications such as aircrafts and space vehicles. These proposed applications have been frustrated by the lack of resistance to hydrogen erosion and oxidation on exposure to ambient oxidizing conditions at high temperature. Although Silicon Carbide (SiC) has shown excellent properties as an effective erosion-and oxidation-protection coating, many cracks are developed during fabrication and thermal cycles in use due to the Coefficients of Thermal Expansion(CTE) mismatch between SiC and C-C composite. In this study, we adopted a pyrolitic carbon as an interlayer between SiC and C-C substrate in order to minimize the CTE mismatch. The oxidation-protection performance of this composite was investigated as well

  11. The corrosion behavior of CVI SiC matrix in SiC{sub f}/SiC composites under molten fluoride salt environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongda [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); School of Graduate, University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Qian [Analysis and Testing Center, Donghua University, Shanghai 201600 (China); Wang, Zhen, E-mail: jeff@mail.sic.ac.cn [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhou, Haijun; Kan, Yanmei; Hu, Jianbao [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Dong, Shaoming, E-mail: smdong@mail.sic.ac.cn [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2017-04-15

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  12. Synthesis and characterization of porous crystalline SiC thin films prepared by radio frequency reactive magnetron sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Afzaal, E-mail: afzaalqamar@gmail.com [Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad, Punjab 42600 (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics, Nilore, Islamabad (Pakistan); Sarwar, Tuba; Ahmed, Nadeem [Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad, Punjab 42600 (Pakistan)

    2011-05-15

    Hexagonal SiC thin films have been deposited using radio frequency reactive magnetron sputtering technique by varying the substrate temperature and other deposition conditions. Prior to deposition surface modification of the substrate Si(1 0 0) played an important role in deposition of the hexagonal SiC structure. The effect of substrate temperature during deposition on structure, composition and surface morphology of the SiC films has been analyzed using atomic force microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. X-ray diffraction in conventional {theta}-2{theta} mode and omega scan mode revealed that the deposited films were crystalline having 8H-SiC structure and crystallinity improved with increase of deposition temperature. The bonding order and Si-C composition within the films showed improvement with the increase of deposition temperature. The surface of thin films grew in the shape of globes and columns depending upon deposition temperature. The optical properties also showed improvement with increase of deposition temperature and the results obtained by ellipsometry reinforced the results of other techniques.

  13. Particles geometry influence in the thermal stress level in an SiC reinforced aluminum matrix composite considering the material non-linear behavior

    International Nuclear Information System (INIS)

    Miranda, Carlos A. de J.; Libardi, Rosani M.P.; Boari, Zoroastro de M.

    2009-01-01

    An analytical methodology was developed to predict the thermal stress level that occurs in a metallic matrix composite reinforced with SiC particles, when the temperature decreases from 600 deg C to 20 deg C during the fabrication process. This analytical development is based on the Eshelby method, dislocation mechanisms, and the Maxwell-Boltzmann distribution model. The material was assumed to have a linear elastic behavior. The analytical results from this formulation were verified against numerical linear analyses that were performed over a set of random non-uniform distribution of particles that covers a wide range of volumetric ratios. To stick with the analytical hypothesis, particles with round geometry were used. Each stress distribution, represented by the isostress curves at ΔT=-580 deg C, was analyzed with an image analyzer. A statistical procedure was applied to obtain the most probable thermal stress level. Analytical and numerical results compared very well. Plastic deformation as well as particle geometry can alter significantly the stress field in the material. To account for these effects, in this work, several numerical analyses were performed considering the non-linear behavior for the aluminum matrix and distinct particle geometries. Two distinct sets of data with were used. To allow a direct comparison, the first set has the same models (particle form, size and distribution) as used previously. The second set analyze quadrilateral particles and present very tight range of volumetric ratio, closer to what is found in actual SiC composites. A simple and fast algorithm was developed to analyze the new results. The comparison of these results with the previous ones shows, as expected, the strong influence of the elastic-plastic behavior of the aluminum matrix on the composite thermal stress distribution due to its manufacturing process and shows, also, a small influence of the particles geometry and volumetric ratio. (author)

  14. New High-Performance SiC Fiber Developed for Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.; Yun, Hee Mann

    2002-01-01

    Sylramic-iBN fiber is a new type of small-diameter (10-mm) SiC fiber that was developed at the NASA Glenn Research Center and was recently given an R&D 100 Award for 2001. It is produced by subjecting commercially available Sylramic (Dow Corning, Midland, MI) SiC fibers, fabrics, or preforms to a specially designed high-temperature treatment in a controlled nitrogen environment for a specific time. It can be used in a variety of applications, but it currently has the greatest advantage as a reinforcement for SiC/SiC ceramic composites that are targeted for long-term structural applications at temperatures higher than the capability of metallic superalloys. The commercial Sylramic SiC fiber, which is the precursor for the Sylramic-iBN fiber, is produced by Dow Corning, Midland, Michigan. It is derived from polymers at low temperatures and then pyrolyzed and sintered at high temperatures using boron-containing sintering aids (ref. 1). The sintering process results in very strong fibers (>3 GPa) that are dense, oxygen-free, and nearly stoichiometric. They also display an optimum grain size that is beneficial for high tensile strength, good creep resistance, and good thermal conductivity (ref. 2). The NASA-developed treatment allows the excess boron in the bulk to diffuse to the fiber surface where it reacts with nitrogen to form an in situ boron nitride (BN) coating on the fiber surface (thus the product name of Sylramic-iBN fiber). The removal of boron from the fiber bulk allows the retention of high tensile strength while significantly improving creep resistance and electrical conductivity, and probably thermal conductivity since the grains are slightly larger and the grain boundaries cleaner (ref. 2). Also, as shown in the graph, these improvements allow the fiber to display the best rupture strength at high temperatures in air for any available SiC fiber. In addition, for CMC applications under oxidizing conditions, the formation of an in situ BN surface layer

  15. Mechanical properties and electrical conductivity of Cu-Cr and Cu-Cr-4% SiC nanocomposites for thermo-electric applications

    International Nuclear Information System (INIS)

    Mula, Suhrit; Sahani, Pankajini; Pratihar, S.K.; Mal, Siddhartha; Koch, Carl C.

    2011-01-01

    Highlights: → Ball-milled Cu-Cr and Cu-Cr-SiC nanopowders successfully consolidated by microwave sintering. → Addition of nanosize SiC in Cu-Cr leads to enhanced sintered density, wear and hardness. → A good combination of wear resistance, hardness and electrical conductivity resulted in Cu 94 Cr 6 -4% SiC. → Microwave suscepting SiC particles played a pivotal role in good densification retaining matrix grains 99 Cr 1 , Cu 94 Cr 6 , Cu 99 Cr 1 -4 wt.% SiC and Cu 94 Cr 6 -4 wt.% SiC (average particle size ∼30 nm). The 50 h ball-milled samples were uniaxially pressed, and then pellets were sintered at 800 deg. C, 900 deg. C and 1000 deg. C for a constant soaking period of 30 min by microwave sintering technique. Microstructural characterization was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Sintered compacts resulted a highly densified compacts (∼95% relative density) while retaining ultra-fine grains (100-200 nm) in the matrix. The mechanical properties, namely, hardness and wear resistance, and electrical conductivity of the sintered specimens were also evaluated. The best combination of mechanical properties (e.g. hardness ∼2.4 GPa) and electrical conductivity (60.3% of IACS) were obtained for Cu 94 Cr 6 -4 wt.% SiC sintered at 900 deg. C. This is possibly due to presence of ultra-fine grains in the bulk samples, good densification and proper bonding between particles. The results were analyzed in the light of interactions of microwaves between metallic matrix and microwave susceptive SiC particulates.

  16. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  17. Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Mohsen, E-mail: Mohsen.bahrami@aut.ac.ir [Faculty of Mining and Materials Engineering, Amirkabir University of Technology (AUT), Hafez Aveenue, Tehran (Iran, Islamic Republic of); Farahmand Nikoo, Mohsen [Faculty of Mining and Materials Engineering, Amirkabir University of Technology (AUT), Hafez Aveenue, Tehran (Iran, Islamic Republic of); Besharati Givi, Mohammad Kazem [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-02-25

    In this paper, a threaded tapered pin tool was employed to fabricate a 2-pass friction stir welded (FSWed) joint. To investigate the benefits of nano-sized SiC particles on microstructural and mechanical properties of the joint, the experiment was repeated while SiC particles had been inserted along the joint line. In another joint, a square pin tool was applied in the second pass to evaluate the effectiveness of switching pin geometry between passes on the aforementioned properties. Microstructural features including grain size, second phase particles and reinforcement distribution were examined via optical and scanning electron microscopy (SEM) techniques. In addition to satisfactory connections between SiC particles and the matrix, the most homogenous particles distribution was observed in the specimen FSWed with both pin tools. This observation was further supported by atomic force microscopy (AFM) examination. Additionally, the foregoing joint demonstrated the maximum tensile strength which was synonymous with its smallest grain size. During tensile testing, SiC-free joint and SiC-reinforced ones fractured from stir zone (SZ) and base metal, respectively. Moreover, SiC-free joint showed necking phenomenon. SEM results showed that the SiC-reinforced specimens possessed ductile fracture morphologies. On the other hand, SiC-free specimen showed a quasi-cleavage fracture mode confirming its moderate percent elongation. In the meantime, SiC-reinforced specimens exhibited superior hardness level to SiC-free specimen.

  18. Influence of reinforcement weight fraction on microstructure and properties of submicron WC-Cop/Cu bulk MMCs prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu, Dongdong; Shen, Yifu

    2007-01-01

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, exhibits a great potential for fabricating complex shaped bulk metal matrix composites (MMCs). In the present work, the submicron WC-10% Co particulate reinforced Cu matrix composites were prepared using DMLS. The influence of reinforcement content on the sintered densification and the attendant microstructures, e.g. the dispersion homogeneity of the reinforcing particulates and the interfacial bonding ability, was investigated using scanning electron microscopy (SEM), energy disperse X-ray (EDX) spectroscopy, and atomic force microscope (AFM). It shows that using a low reinforcement content of 20 wt.% results in a poor densification with severe balling phenomena, due to a higher average composite coefficient of thermal expansion (CTE) and a superheating of the melt. A heterogeneous microstructure with a significant particulate aggregation is obtained at a high reinforcement content of 40 wt.%, because of a limited liquid formation and the resultant high liquid viscosity and reduced Marangoni effect. Using an optimal reinforcement content of 30 wt.% leads to a uniform distribution of the reinforcing particulates and a compatible interfacial microstructure, so as to obtain a favorable sintered density of 90.3% theoretical density

  19. Phenomenological inelastic constitutive equations for SiC and SiC fibers under irradiation

    International Nuclear Information System (INIS)

    El-Azab, A.; Ghoniem, N.M.

    1994-01-01

    Experimental data on irradiation-induced dimensional changes and creep in β-SiC and SiC fibers is analyzed, with the objective of studying the constitutive behavior of these materials under high-temperature irradiation. The data analysis includes empirical representation of irradiation-induced dimensional changes in SiC matrix and SiC fibers as function of time and irradiation temperature. The analysis also includes formulation of simple scaling laws to extrapolate the existing data to fusion conditions on the basis of the physical mechanisms of radiation effects on crystalline solids. Inelastic constitutive equations are then developed for SCS-6 SiC fibers, Nicalon fibers and CVD SiC. The effects of applied stress, temperature, and irradiation fields on the deformation behavior of this class of materials are simultaneously represented. Numerical results are presented for the relevant creep functions under the conditions of the fusion reactor (ARIES IV) first wall. The developed equations can be used in estimating the macro mechanical properties of SiC-SiC composite systems as well as in performing time-dependent micro mechanical analysis that is relevant to slow crack growth and fiber pull-out under fusion conditions

  20. Corrosion behaviour of groundnut shell ash and silicon carbide hybrid reinforced Al-Mg-Si alloy matrix composites in 3.5% NaCl and 0.3M H2SO4 solutions

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo ALANEME

    2015-05-01

    Full Text Available The corrosion behaviour of Al-Mg-Si alloy based composites reinforced with groundnut shell ash (GSA and silicon carbide (SiC was investigated. The aim is to assess the corrosion properties of Al-Mg-Si alloy based hybrid reinforced composites developed using different mix ratios of GSA (a cheaply processed agro waste derivative which served as partial replacement for SiC and SiC as reinforcing materials. GSA and SiC mixed in weight ratios 0:1, 1:3, 1:1, 3:1, and 1:0 were utilized to prepare 6 and 10 wt% of the reinforcing phase with Al‐Mg‐Si alloy as matrix using two‐step stir casting method. Mass loss and corrosion rate measurement was used to study the corrosion behaviour of the produced composites in 3.5% NaCl and 0.3M H2SO4 solutions. The results show that the Al-Mg-Si alloy based composites containing 6 and 10 wt% GSA and SiC in varied weight ratios were resistant to corrosion in 3.5% NaCl solution. The composites were however more susceptible to corrosion in 0.3M H2SO4 solution (in comparison with the 3.5% NaCl solution. It was noted that the Al-Mg-Si/6 wt% GSA-SiC hybrid composite grades containing GSA and SiC in weight ratio 1:3 and 3:1 respectively exhibited superior corrosion resistance in the 0.3M H2SO4 solution compared to other composites produced for this series. In the case of the Al-Mg-Si/10 wt% GSA-SiC hybrid composite grades, the corrosion resistance was relatively superior for the composites containing a greater weight ratio of GSA (75% and 100% in 0.3M H2SO4 solution.

  1. Fiscal 1991-1993 summary report on R and D on new forming technology of composite materials; Fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu 1991 nendo - 1993 nendo sokatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Developed were the materials which can be easily formed by manifesting superplasticity simultaneously with high toughness and high strength through selection of material composition and micronizing of the structure, in regard to composite materials answering to high strength and resistance to high temperature suitable for engines or the like. Developed for ceramic matrix composite materials were composite technology of silicon nitride matrix composites by a casting method, composite technology of Al{sub 2}O{sub 3}/TiC matrix composites by a material preparation method using aqueous slurry, and superplastic forming technology of yttria stabilized zirconia/alumina matrix composites; developed for metallic matrix composite materials were composite technology of reinforced ceramics particulate aluminum alloy matrix composites by a voltex method, composite technology of ceramic short fibers reinforced aluminum alloy composites by a high pressure casting method under reduced pressure, composite technology of titanium matrix composites by a mechanical alloying method, and composite technology of aluminum alloy composites by ceramics particles, superplastic forming technology of SiC whisker reinforced aluminum alloy reinforced composites, and superplastic forming technology of aluminum alloy matrix reinforced composites reinforced by SiC particles. (NEDO)

  2. SIC Industriemonitor najaar 2003

    NARCIS (Netherlands)

    Brouwer, N.; de Nooij, M.; Pomp, M.

    2003-01-01

    In juni 2000 publiceerde de Stichting voor Economisch Onderzoek (SEO) van de Universiteit van Amsterdam in opdracht van Stichting voor Industriebeleid en Communicatie (SIC) een ontwerp voor een SIC industriemonitor met een voorstel voor de inhoud en de structuur van een dergelijke monitor. Op dat

  3. Effect of consolidation techniques on the properties of Al matrix composite reinforced with nano Ni-coated SiC

    Science.gov (United States)

    Abolkassem, Shimaa A.; Elkady, Omayma A.; Elsayed, Ayman H.; Hussein, Walaa A.; Yehya, Hosam M.

    2018-06-01

    Al /Ni-SiC composite was prepared via powder metallurgy technique. SiC particles were coated with 10 wt% nano nickel by electroless deposition, then mixed by three percents (5, 10 and 15 wt%) with Al powder in a ball mill using 10:1 ball to powder ratio for 5 h. Three types of sintering techniques were used to prepare the composite. Uniaxial cold compacted samples were sintered in a vacuum furnace at 600 °C for 1 h. The second group was the vacuum sintered samples which were post-processed by hot isostatic press (HIP) at 600 °C for 1hr under the pressure of 190 MPa. The third group was the hot pressed samples that were consolidated at 550 °C under the uniaxial pressure of 840 MPa. The results showed that the hot pressed samples have the highest densification values (97-100%), followed by the HIP samples (94-98%), then come the vacuum sintered ones (92-96%). X-ray diffraction analysis (XRD) indicated the presence of Al and Al3Ni, which means that all SiC particles were encapsulated with nickel as short peaks for SiC were observed. Hardness results revealed that HIP samples have the highest hardness values. The magnetization properties were improved by increasing SiC/Ni percent, and HIP samples showed the highest magnetization parameter values.

  4. Synthesis of Al4SiC4 powders from kaolin grog, aluminum and carbon black by carbothermal reaction

    Science.gov (United States)

    Yuan, Wenjie; Yu, Chao; Deng, Chengji; Zhu, Hongxi

    2013-12-01

    In this paper, the synthesis of Al4SiC4 used as natural oxide materials by carbothermal reduction was investigated in order to explore the synthesis route with low costs. The samples were calcined by using kaolin grog, aluminum and carbon black as raw materials with the selected proportion at the temperature from 1500 to 1800 ° C for 2 hours under flow argon atmosphere. The phase composition of reaction products were determined by X-ray diffraction. The microstructure and elemental composition of different phases were observed and identified by scanning electron microscopy and energy dispersive spectroscopy. The mechanism of reaction processing was discussed. The results show that Al4SiC4 powders composed of hexagonal plate-like particulates with various sizes and the thickness of less than 20 μm are obtained when the temperature reaches 1800 °C.

  5. Synthesis of Al4SiC4 powders from kaolin grog, aluminum and carbon black by carbothermal reaction

    International Nuclear Information System (INIS)

    Yuan, Wenjie; Yu, Chao; Deng, Chengji; Zhu, Hongxi

    2013-01-01

    In this paper, the synthesis of Al 4 SiC 4 used as natural oxide materials by carbothermal reduction was investigated in order to explore the synthesis route with low costs. The samples were calcined by using kaolin grog, aluminum and carbon black as raw materials with the selected proportion at the temperature from 1500 to 1800 ° C for 2 hours under flow argon atmosphere. The phase composition of reaction products were determined by X-ray diffraction. The microstructure and elemental composition of different phases were observed and identified by scanning electron microscopy and energy dispersive spectroscopy. The mechanism of reaction processing was discussed. The results show that Al 4 SiC 4 powders composed of hexagonal plate-like particulates with various sizes and the thickness of less than 20 μm are obtained when the temperature reaches 1800 °C

  6. Influence of reinforcement weight fraction on microstructure and properties of submicron WC-Co{sub p}/Cu bulk MMCs prepared by direct laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)]. E-mail: dongdonggu@hotmail.com; Shen, Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)]. E-mail: yifushen@nuaa.edu.cn

    2007-04-04

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, exhibits a great potential for fabricating complex shaped bulk metal matrix composites (MMCs). In the present work, the submicron WC-10% Co particulate reinforced Cu matrix composites were prepared using DMLS. The influence of reinforcement content on the sintered densification and the attendant microstructures, e.g. the dispersion homogeneity of the reinforcing particulates and the interfacial bonding ability, was investigated using scanning electron microscopy (SEM), energy disperse X-ray (EDX) spectroscopy, and atomic force microscope (AFM). It shows that using a low reinforcement content of 20 wt.% results in a poor densification with severe balling phenomena, due to a higher average composite coefficient of thermal expansion (CTE) and a superheating of the melt. A heterogeneous microstructure with a significant particulate aggregation is obtained at a high reinforcement content of 40 wt.%, because of a limited liquid formation and the resultant high liquid viscosity and reduced Marangoni effect. Using an optimal reinforcement content of 30 wt.% leads to a uniform distribution of the reinforcing particulates and a compatible interfacial microstructure, so as to obtain a favorable sintered density of 90.3% theoretical density.

  7. A Novel Method for Incorporation of Micron-Sized SiC Particles into Molten Pure Aluminum Utilizing a Co Coating

    Science.gov (United States)

    Mohammadpour, M.; Khosroshahi, R. Azari; Mousavian, R. Taherzadeh; Brabazon, D.

    2015-02-01

    Ceramic particles typically do not have sufficiently high wettability by molten metal for effective bonding during metal matrix composite fabrication. In this study, a novel method has been used to overcome this drawback. Micron-sized SiC particles were coated by a cobalt metallic layer using an electroless deposition method. A layer of cobalt on the SiC particles was produced prior to incorporation in molten pure aluminum in order to improve the injected particle bonding with the matrix. For comparison, magnesium was added to the melt in separate experiments as a wetting agent to assess which method was more effective for particle incorporation. It was found that both of these methods were more effective as regard ceramic particulate incorporation compared with samples produced with as-received SiC particles injected into the pure aluminum matrix. SEM images indicated that cobalt coating of the particles was more effective than magnesium for incorporation of fine SiC particles (below 30 µm), while totally the incorporation percentage of the particles was higher for a sample in which Mg was added as a wetting agent. In addition, microhardness tests revealed that the cobalt coating leads to the fabrication of a harder composite due to increased amount of ceramic incorporation, ceramic-matrix bonding, and possibly also to formation of Al-Co intermetallic phases.

  8. Wear Resistance of TiC Reinforced Cast Steel Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sobula S.

    2017-03-01

    Full Text Available Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.

  9. SIC POVMs and Clifford groups in prime dimensions

    International Nuclear Information System (INIS)

    Zhu Huangjun

    2010-01-01

    We show that in prime dimensions not equal to 3, each group covariant symmetric informationally complete positive operator valued measure (SIC POVM) is covariant with respect to a unique Heisenberg-Weyl (HW) group. Moreover, the symmetry group of the SIC POVM is a subgroup of the Clifford group. Hence, two SIC POVMs covariant with respect to the HW group are unitarily or antiunitarily equivalent if and only if they are on the same orbit of the extended Clifford group. In dimension 3, each group covariant SIC POVM may be covariant with respect to three or nine HW groups, and the symmetry group of the SIC POVM is a subgroup of at least one of the Clifford groups of these HW groups, respectively. There may exist two or three orbits of equivalent SIC POVMs for each group covariant SIC POVM, depending on the order of its symmetry group. We then establish a complete equivalence relation among group covariant SIC POVMs in dimension 3, and classify inequivalent ones according to the geometric phases associated with fiducial vectors. Finally, we uncover additional SIC POVMs by regrouping of the fiducial vectors from different SIC POVMs which may or may not be on the same orbit of the extended Clifford group.

  10. Investigation on Mechanical and Fatigue behaviour of Aluminium Based SiC/ZrO2 Particle Reinforced MMC

    Science.gov (United States)

    Ramesh, S.; Govindaraju, N.; Suryanarayan, C. P.

    2018-04-01

    The study is the work on Aluminium Metal Matrix Composites (MMC’s), which have wider applications in automobile, aerospace and defense industries, hi-tech engineering and power transmission due to their lightweight, high strength and other unique properties. The Aluminium Matrix Composites (AMC’s) refer to a kind of light weight high performance Aluminium centric material system. AMC’s consist of a non-metallic reinforcement which when included into aluminium matrix offers an advantage over the base material. Reinforcements like SiC, B4C, Al2O3, TiC, TiB2, TiO2 are normally preferred to improve mechanical properties of such composites. Here Aluminium 6061 is preferred as matrix material, while silicon carbide (SiC) and Zirconium di-oxide (ZrO2) is selected as reinforcement compounds. Conventional Stir casting procedure is employed to fabricate the necessary composites compositions, which are I. Al:SiC::100:5 and II. Al:ZrO2:SiC::100:3:2. Experimental results depict that the composition II provides higher hardness of 53.6 RHN as opposed to 45.8 RHN of composition I. In tensile strength composition II demonstrates 96.43 N/mm2 as opposed to 67.229 N/mm2 tensile strength of composition II. The fatigue test indicate a expected number of life cycles to failure of 105 cycles for composition II and over 104 cycles for composition I, at stress ranges of 79.062 MPa and 150.651 MPa respectively.

  11. Research on SiC Whisker Prepared by H-PSO

    Directory of Open Access Journals (Sweden)

    WANG Yao

    2017-10-01

    Full Text Available SiC whiskers were prepared on the matrix of graphite by using high hydrogenous silicone oil(PSO as raw material. The effect of surface conditions of graphite and heating temperature on the growth of SiC whisker was mainly studied in this paper. The main factor which affects the nucleation and growth of SiC whisker is the heating temperature, with the heating temperature rising, the production of SiC whisker increases. The surface condition of graphite matrix also influences the growth of SiC whisker. With the nucleation points provided by graphite matrix defects increasing, the production of SiC whisker incleases and SiC whisker starts to overlap with each other. The formation process of SiC whisker includes two steps:nucleation and growth. SiC whisker nucleates at low temperature and grows at high temperature, which follows the VLS (vapor-liquid-solid growth mechanism.

  12. Compósitos SiCf /SiC utilizados em sistemas de proteção térmica SiCf /SiC composites for thermal protection systems

    Directory of Open Access Journals (Sweden)

    M. Florian

    2005-09-01

    Full Text Available Compósitos de carbeto de silício (SiC reforçado com fibras de carbeto de silício (SiCf são materiais candidatos em potencial para utilização em sistemas de proteção térmica em altas temperaturas devido principalmente à boa condutividade térmica na direção da fibra e muito baixa condutividade térmica na direção transversal à fibra, alta dureza, estabilidade térmica e à corrosão por oxidação. O compósito SiCf/SiC possui uma matriz de SiC reforçada com fibras contínuas policristalinas de SiC e é obtido por reações de conversão em altas temperaturas e atmosfera controlada, utilizando o compósito carbono/carbono como precursor. O processo de Reação Química em Vapor (CVR foi utilizado para a fabricação de compósitos SiCf/SiC com alta pureza na fase de SiC-beta. O compósito precursor de carbono/carbono foi fabricado com fibra de carbono não estabilizada e matriz carbonosa derivada da resina fenólica na forma de carbono isotrópico. O compósito convertido exibiu uma densidade de 1,75 g/cm³, com 40% de porosidade aberta e resistência à flexão de 80 MPa medida por ensaio flexão em 4 pontos. A área especifica medida pela técnica de BET é dependente da temperatura de conversão e das condições inicias do precursor de carbono, podendo chegar a 18 m²/g.Composites based on silicon carbide are potential candidate materials for thermal protection systems mainly due to its good thermal conductivity in fiber direction and very low transversal thermal conductivity, high hardness, corrosion and thermal resistance. SiCf/SiC composite presents a SiC matrix reinforced with SiC polycrystalline continuous fibers. The composite was obtained by conversion reactions at high temperature and controlled atmosphere from a carbon/carbon composite precursor. The CVR process was used to fabricate SiC /SiC composite with crystalline high-purity beta-SiC from a carbon-carbon precursor fabricated with non-stabilized carbon fiber and

  13. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers

    International Nuclear Information System (INIS)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-01-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [es

  14. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers; Las tensiones residuales y las propiedades mecánicas de compuestos multicapa de Si3N4/SiC con diferentes capas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-11-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [Spanish] Se ha investigado el efecto de las tensiones residuales en la resistencia, dureza y trabajo de fractura de los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC. Puede ser una manera eficaz de diseñar y optimizar las propiedades mecánicas de los compuestos multicapa de Si3N4/SiC mediante el control de las propiedades de las capas de SiC. Los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC se fabricaron por medio de colado en cinta en medio acuoso y sinterización sin presión. Las tensiones residuales se calcularon mediante el uso de la simulación ANSYS, los valores máximos de las fuerzas de tracción y compresión fueron 553,2 MPa y −552,1 MPa, respectivamente. Se observó una fractura escalonada a partir de las superficies de fractura. La fracción de capas de deslaminación aumenta con la tensión residual, lo que puede mejorar la fiabilidad de los materiales. La fuerza de tracción residual era beneficiosa para la mejora de la dureza y el trabajo de fractura, pero la resistencia de los compuestos disminuyó.

  15. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10 16 N + ions/cm 2 and 3.6 x 10 17 e/cm 2 and 1.08 x 10 18 e/cm 2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  16. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  17. Studies on SiC(p) reinforced Al-Al sub 3 Ni eutectic matrix composites

    International Nuclear Information System (INIS)

    Masrom, A.K.; Foo, L.C.; Ismail, A.B.

    1996-01-01

    An investigation on processing of Al-5.69wt% Ni eutectic with SiC particulate composites is reported. The intermetallic composites are prepared by elemental powder metallurgy route and sintered at two different temperatures, i.e., 600 degree C and 620 degree C. Results show that the metal matrix was Al-Al sub 3 Ni eutectic. The phase analysis by XRD identified the presence of Al sub 3 Ni and Al as dominant phases together with silicon and Al sub 4 C sub 3 phase as minor phases. The Al sub 4 C sub 3 and Si phases are formed during sintering due to SiC-Al interface reaction. SEM micrographs also reveal the formation of microvoid surrounding the SiC particle

  18. Matrix densification of SiC composites by sintering process

    International Nuclear Information System (INIS)

    Kim, Young-Wook; Jang, Doo-Hee; Eom, Jung-Hye; Chun, Yong-Seong

    2007-02-01

    The objectives of this research are to develop a process for dense SiC fiber-SiC composites with a porosity of 5% or less and to develop high-strength SiC fiber-SiC composites with a strength of 500 MPa or higher. To meet the above objectives, the following research topics were investigated ; new process development for the densification of SiC fiber-SiC composites, effect of processing parameters on densification of SiC fiber-SiC composites, effect of additive composition on matrix microstructure, effects of additive composition and content on densification of SiC fiber-SiC composites, mechanical properties of SiC fiber-SiC composites, effect of fiber coating on densification and strength of SiC fiber-SiC composites, development of new additive composition. There has been a great deal of progress in the development of technologies for the processing and densification of SiC fiber-SiC composites and in better understanding of additive-densification-mechanical property relations as results of this project. Based on the progress, dense SiC fiber-SiC composites (≥97%) and high strength SiC fiber-SiC composites (≥600 MPa) have been developed. Development of 2D SiC fiber-SiC composites with a relative density of ≥97% and a strength of ≥600 MPa can be counted as a notable achievement

  19. Improved thermoelectric performance of CdO by adding SiC fibers versus by adding SiC nanoparticles inclusions

    Science.gov (United States)

    Liang, S.; Li, Longjiang

    2018-03-01

    We report the improved thermoelectric (TE) performance of CdO by alloying with SiC fibers. In contrast to the lowered thermoelectric figure of merit (ZT) in a CdO matrix with SiC nanoparticle composites, an appreciable ZT value increment of about 36% (from 0.32 to 0.435) at 1000 K was obtained in the CdO matrix with SiC fiber composites. Both kinds of composites show substantially decreased thermal conductivity due to additional phonon scattering by the nano-inclusions. Compared to the very high electrical resistivity (ρ ˜ 140 μΩ m) for 5 at. % SiC nanoparticle composites, SiC fiber composites favorably maintained a very low ρ (˜30 μΩ m) even with 5 at. % SiC at 1000 K. We think the substantial difference of specific surface areas of these two nano-inclusions (30 m2/g for fibers vs 300 m2/g for nanoparticles) might play a crucial role to fine tune the TE performance. Larger interface could be inductive to diffusion and electron acceptor activation, which affect carrier mobility considerably. This work might hint at an alternative approach to improve TE materials' performance.

  20. Influence of SiC coating thickness on mechanical properties of SiCf/SiC composite

    Science.gov (United States)

    Yu, Haijiao; Zhou, Xingui; Zhang, Wei; Peng, Huaxin; Zhang, Changrui

    2013-11-01

    Silicon carbide (SiC) coatings with varying thickness (ranging from 0.14 μm to 2.67 μm) were deposited onto the surfaces of Type KD-I SiC fibres with native carbonaceous surface using chemical vapour deposition (CVD) process. Then, two dimensional SiC fibre reinforced SiC matrix (2D SiCf/SiC) composites were fabricated using polymer infiltration and pyrolysis (PIP) process. Influences of the fibre coating thickness on mechanical properties of SiC fibre and SiCf/SiC composite were investigated using single-filament test and three-point bending test. The results indicated that flexural strength of the composites initially increased with the increasing CVD SiC coating thickness and reached a peak value of 363 MPa at the coating thickness of 0.34 μm. Further increase in the coating thickness led to a rapid decrease in the flexural strength of the composites. The bending modulus of composites showed a monotonic increase with increasing coating thickness. A chemical attack of hydrogen or other ions (e.g. a C-H group) on the surface of SiC fibres during the coating process, owing to the formation of volatile hydrogen, lead to an increment of the surface defects of the fibres. This was confirmed by Wang et al. [35] in their work on the SiC coating of the carbon fibre. In the present study, the existing ˜30 nm carbon on the surface of KD-I fibre [36] made the fibre easy to be attacked. Deposition of non-stoichiometric SiC, causing a decrease in strength. During the CVD process, a small amount of free silicon or carbon always existed [35]. The existence of free silicon, either disordered the structure of SiC and formed a new source of cracks or attacked the carbon on fibre surface resulting in properties degeneration of the KD-I fibre. The effect of residual stress. The different thermal expansion coefficient between KD-I SiC fibre and CVD SiC coating, which are 3 × 10-6 K-1 (RT ˜ 1000 °C) and 4.6 × 10-6 K-1 (RT ˜ 1000 °C), respectively, could cause residual stress

  1. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    National Research Council Canada - National Science Library

    Michalowski, Radoslw

    1999-01-01

    ... out. This investigation was built on the results of a previous study. Fiber-reinforced granular material was considered as a composite, and a mathematical homogenization scheme was used to arrive at its macroscopic properties...

  2. Residual stress analysis in carbon fiber-reinforced SiC ceramics; Eigenspannungsanalyse in kohlenstoffaserverstaerkten SiC-Keramiken

    Energy Technology Data Exchange (ETDEWEB)

    Broda, M.

    1998-12-31

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C{sub fiber}/SiC{sub matrix} specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface ({mu}m) have been measured using characteristic X-radiation and applying the sin {sup 2}{psi} method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250{mu}m) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [Deutsch] Im Rahmen der Arbeit werden systematische Eigenspannungsanalysen an langfaserverstaerkten SiC-Keramiken durchgefuehrt. Hierbei werden polymerpyrolytisch abgeleitete, laminierte C{sub Faser}/SiC{sub Matrix} Proben und Bauteile untersucht, welche industriell gefertigt wurden. Fuer die zerstoerungsfreie Eigenspannungsermittlung kommen verschiedene Beugungsverfahren zum Einsatz. Dadurch kann die Eigenspannungsverteilung in diesen Proben vollstaendig erfasst werden, d.h. der Eigenspannungszustand im Oberflaechenbereich ({mu}m) wird mit Hilfe charakteristischer Roentgenstrahlung unter Nutzung der sin{sup 2}{psi}-Methode als auch der Streuvektor-Methode beschrieben. Fuer die Analyse der Eigenspannungen im Volumen (cm) wird die Neutronenbeugung herangezogen. Um den Spannungszustand in den einzelnen Fasermatten (ca. 250 {mu}m) in Abhaengigkeit ihrer Lage

  3. Palladium assisted silver transport in polycrystalline SiC

    Energy Technology Data Exchange (ETDEWEB)

    Neethling, J.H., E-mail: Jan.Neethling@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); O' Connell, J.H.; Olivier, E.J. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-10-15

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd-Ag compound at temperatures of 800 and 1000 Degree-Sign C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC-SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag-Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag-Pd compound if present at the IPyC-SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  4. Palladium assisted silver transport in polycrystalline SiC

    International Nuclear Information System (INIS)

    Neethling, J.H.; O’Connell, J.H.; Olivier, E.J.

    2012-01-01

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd–Ag compound at temperatures of 800 and 1000 °C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC–SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag–Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag–Pd compound if present at the IPyC–SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  5. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures

    Directory of Open Access Journals (Sweden)

    Kaibo Nie

    2018-01-01

    Full Text Available In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.

  6. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    Science.gov (United States)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  7. Structure-property relations for silicon nitride matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon fibers

    NARCIS (Netherlands)

    Kooi, B.J.; Hosson, J.Th.M. De; Olivier, C.; Veyret, J.B.

    1999-01-01

    Si3N4 matrix composites reinforced with pyrolytic carbon pre-coated Hi-Nicalon (SiC) fibers, were studied using tensile testing and transmission electron microscopy. Three types of samples were evaluated all with a nominal coating thickness of 200 nm. The composites were densified by hot pressing at

  8. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  9. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V

    Science.gov (United States)

    Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan

    2017-07-01

    Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.

  10. Microanalytical investigation of fibre-reinforced ceramic materials

    International Nuclear Information System (INIS)

    Meier, B.; Grathwohl, G.

    1989-01-01

    Microanalytical investigations have been made on samples of ceramic fibres (SiC fibres, (Nicalon) C fibre coated with TiN) and fibre-reinforced ceramics (SiC-and glass-matrices). High resolution Auger electron spectroscopy (HRAES), electron probe microanalysis (EPMA) and scanning electron microscopy were employed for these examinations. Analysis was best performed with HRAES on account of its lateral and depth resolution. Some of the problems involved in this technique are discussed e.g. electron beam effects. AES depth profiles of ceramic fibres are reported and compared with the surface analysis of fibres in the composites after being broken in situ. (orig.)

  11. Grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    ), raman spectroscopy and X-ray diffraction (XRD) measurements. UV–Visible absorption spectroscopy was used to study optical properties such as optical energy gap (Eg), Urbach's energy (Eu), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constant of PVA as well as PVA......Polyvinyl alcohol (PVA) grafted SiC (PVA-g-SiC)/PVA nanocomposite was synthesized by incorporating PVA grafted silicon carbide (SiC) nanocrystals inside PVA matrix. In-depth structural characterization of resulting nanocomposite was carried out using fourier transform infrared spectroscopy (FTIR...

  12. Design Guidelines for In-Plane Mechanical Properties of SiC Fiber-Reinforced Melt-Infiltrated SiC Composites

    Science.gov (United States)

    Morscher, Gregory N.; Pujar, Vijay V.

    2008-01-01

    In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.

  13. SiC Power MOSFET with Improved Gate Dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, Nick M. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Spencer, Michael G. [Structured Materials Industries, Inc., Piscataway, NJ (United States); Chandrashekhar, Chandra M.V. S. [Structured Materials Industries, Inc., Piscataway, NJ (United States)

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  14. Synthesis of whiskers of SiC microwave assisted; Sintesis de whiskers de SiC asistida por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Garza-Mendez, F. J.; Vanegas, A. J.; Vazquez, B. A.; Garza-Paz, J.

    2013-06-01

    We developed a new process for the synthesis of SiC whiskers assisted by microwaves; this is based on the mixture of silica xerogels and graphite powder. As energy source were used microwaves of 2.45 GHz and 1.0 kW of power RMS. On the other hand, mesoporous silica was synthesized via sol-gel, the precursors used were TEOS/H{sub 2}O and ethanol. Through analysis of the BET is determined the value of average pore size (3.0 nm) and the surface area (1090 m2/g).By mean of X-Ray diffraction it was demonstrated that the silica obtained is an amorphous solid and, the powders obtained in the microwave synthesis are {beta}-SiC. Synthesized SiC powders were observed using a SEM in secondary electron mode, it was observed that this powders consists of SiC whiskers. The effect of microwaves on the synthesis of whiskers of SiC is discussed in the present work. (Author) 19 refs.

  15. D-region ion-neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) - WACCM-SIC and WACCM-rSIC

    Science.gov (United States)

    Kovács, Tamás; Plane, John M. C.; Feng, Wuhu; Nagy, Tibor; Chipperfield, Martyn P.; Verronen, Pekka T.; Andersson, Monika E.; Newnham, David A.; Clilverd, Mark A.; Marsh, Daniel R.

    2016-09-01

    This study presents a new ion-neutral chemical model coupled into the Whole Atmosphere Community Climate Model (WACCM). The ionospheric D-region (altitudes ˜ 50-90 km) chemistry is based on the Sodankylä Ion Chemistry (SIC) model, a one-dimensional model containing 307 ion-neutral and ion recombination, 16 photodissociation and 7 photoionization reactions of neutral species, positive and negative ions, and electrons. The SIC mechanism was reduced using the simulation error minimization connectivity method (SEM-CM) to produce a reaction scheme of 181 ion-molecule reactions of 181 ion-molecule reactions of 27 positive and 18 negative ions. This scheme describes the concentration profiles at altitudes between 20 km and 120 km of a set of major neutral species (HNO3, O3, H2O2, NO, NO2, HO2, OH, N2O5) and ions (O2+, O4+, NO+, NO+(H2O), O2+(H2O), H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, O3-, NO2-, O-, O2, OH-, O2-(H2O), O2-(H2O)2, O4-, CO3-, CO3-(H2O), CO4-, HCO3-, NO2-, NO3-, NO3-(H2O), NO3-(H2O)2, NO3-(HNO3), NO3-(HNO3)2, Cl-, ClO-), which agree with the full SIC mechanism within a 5 % tolerance. Four 3-D model simulations were then performed, using the impact of the January 2005 solar proton event (SPE) on D-region HOx and NOx chemistry as a test case of four different model versions: the standard WACCM (no negative ions and a very limited set of positive ions); WACCM-SIC (standard WACCM with the full SIC chemistry of positive and negative ions); WACCM-D (standard WACCM with a heuristic reduction of the SIC chemistry, recently used to examine HNO3 formation following an SPE); and WACCM-rSIC (standard WACCM with a reduction of SIC chemistry using the SEM-CM method). The standard WACCM misses the HNO3 enhancement during the SPE, while the full and reduced model versions predict significant NOx, HOx and HNO3 enhancements in the mesosphere during solar proton events. The SEM-CM reduction also identifies the important ion-molecule reactions that affect the partitioning of

  16. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    Science.gov (United States)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  17. Influence of defects in SiC (0001) on epitaxial graphene

    International Nuclear Information System (INIS)

    Guo Yu; Guo Li-Wei; Lu Wei; Huang Jiao; Jia Yu-Ping; Sun Wei; Li Zhi-Lin; Wang Yi-Fei

    2014-01-01

    Defects in silicon carbide (SiC) substrate are crucial to the properties of the epitaxial graphene (EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC (0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG. (rapid communication)

  18. [Application of Raman spectroscopy to investigation of CVD-SIC fiber].

    Science.gov (United States)

    Liu, Bin; Yang, Yan-Qing; Luo, Xian; Huang, Bin

    2011-11-01

    The CVD-SiC fiber was studied by using laser Raman spectra. It was found that the sharp TO peak exists in the first SiC deposit layer, indicating the larger SiC grains. But the second SiC deposit layer is with small grains. Raman peak of carbon and silicon was detected respectively in the first and second layer. Compared with that of the single SiC fiber, the TO peaks move to the high wave number for the SiC fiber in SiC(f)/Ti-6Al-4V composite. It indicates that the compressive thermal residual stress is present in the SiC fiber during the fabrication of the composite because of the mismatched coefficient of thermal expansion between Ti-6Al-4V matrix and SiC fiber. The average thermal residual stress of the SiC fiber in SiC(f)/Ti-6Al-4V composite was calculated to be 318 MPa and the residual stress in first deposit layer is 436 MPa which is much higher than that in the second layer.

  19. Effect of type and percentage of reinforcement for optimization of the cutting force in turning of Aluminium matrix nanocomposites using response surface methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarshi, Devinder [DAV Institute of Engineering and Technology, Jalandhar (India); Sharma, Rajesh Kumar [Institute of Technology, Hamirpur (India)

    2016-03-15

    Aluminium matrix composites (AMCs) now hold a significant share of raw materials in many applications. It is of prime importance to study the machinability of such composites so as to enhance their applicability. Sufficient work has been done for studying the machining of AMCs with particle reinforcements of micron range. This paper presents the study of AMCs with particle reinforcement of under micron range i.e. nanoparticles. This paper brings out the results of an experimental investigation of type and weight percent of nanoparticles on the tangential cutting force during turning operation. SiC, Gr and SiC-Gr (in equal proportions) were used with Al-6061 alloy as the matrix phase. The results indicate that composites with SiC require greater cutting force followed by hybrid and then Gr. Increase in the weight percent also significantly affected the magnitude of cutting force. RSM was used first to design and analyze the experiments and then to optimize the turning process and obtain optimal conditions of weight and type of reinforcements for turning operation.

  20. Advance on Al2O3 Particulates Reinforced Aluminum Metal Matrix Composites (Al-MMCs Manufactured by the Power Metallurgy(PM Methods- Improved PM Techniques

    Directory of Open Access Journals (Sweden)

    Xu Lina

    2016-01-01

    Full Text Available Aluminum metal matrix composites (Al-MMCs with Al2O3 particulates as reinforcement fabricated by the power metallurgy (PM methods have gained much attention due to their unique characteristics of the wide range of Al2O3 particles addition, easy-operating process and effectiveness. The improved PM techniques, such as the high energy ball milling, powder extruder and high pressure torsion were applied to further strengthening the properties or/and diminishing the agglomeration of strength particles. The formation of liquid phase assisted densification of compacts to promote the sintering of composites. Complex design of Al2O3 particles with other particles was another efficient method to tailor the properties of Al-MMCs.

  1. SiC as an oxidation-resistant refractory material. Pt. 1

    International Nuclear Information System (INIS)

    Schlichting, J.

    1979-01-01

    Uses his own investigations and gives a literature survey on the oxidation and corrosion behaviour of SiC (in the form of a pure SiC powder, hot-pressed and reaction-sintered materials). The excellent stability of SiC in oxidizing atmosphere is due to the development of protective SiO 2 coatings. Any changes in these protective coatings (e.g. due to impurities with corrosive media, high porosity of SiC, etc.) lead in most cases to increased rates of oxidation and thus restrict the field of application of SiC. (orig.) [de

  2. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  3. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    introduced in the characteristic TO and LO mode of vibration of SiC nanocrystals after grafting procedure.XRD analysis confirmed that the grafting procedure did not alter the crystalline geometry of SiC nanocrystals. TEM and SEM images further support the FTIR and Raman spectroscopic results and confirm...... of semiconducting SiC nanocrystals using a novel method. FTIR spectroscopy reveals the introduction of new peaks corresponding to various functional groups of PVA alongwith the presence of characteristic Si-C vibrational peak in the spectra of grafted SiC nanocrystals. Raman spectra depict the presence of changes...... the presence of PVA layer around SiC nanocrystals. Thermal degradation behavior of PVA-g-SiC nanocrystals has been studied using TGA analysis....

  4. SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures

    Science.gov (United States)

    Abdollahi, Alireza; Ehsani, Naser; Valefi, Zia; Khalifesoltani, Ali

    2017-05-01

    A SiC nanoparticle toughened-SiC/MoSi2-SiC functionally graded oxidation protective coating on graphite was prepared by reactive melt infiltration (RMI) at 1773 and 1873 K under argon atmosphere. The phase composition and anti-oxidation behavior of the coatings were investigated. The results show that the coating was composed of MoSi2, α-SiC and β-SiC. By the variations of Gibbs free energy (calculated by HSC Chemistry 6.0 software), it could be suggested that the SiC coating formed at low temperatures by solution-reprecipitation mechanism and at high temperatures by gas-phase reactions and solution-reprecipitation mechanisms simultaneously. SiC nanoparticles could improve the oxidation resistance of SiC/MoSi2-SiC multiphase coating. Addition of SiC nanoparticles increases toughness of the coating and prevents spreading of the oxygen diffusion channels in the coating during the oxidation test. The mass loss and oxidation rate of the SiC nanoparticle toughened-SiC/MoSi2-SiC-coated sample after 10-h oxidation at 1773 K were only 1.76% and 0.32 × 10-2 g/cm3/h, respectively.

  5. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  6. Machinability and Tribological Properties of Stir Cast LM6/SiC/GR Hybrid Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Tahat Montasser S.

    2016-01-01

    Full Text Available Analysis on machining characteristics in turning of LM6/SiC/Gr hybrid metal matrix composites is made of (Al-11.8%Si/SiC/Gr hybrid metal matrix composites. The process performances such as porosity, wear rate of the composites, tool wear, tool life, specific modulus, surface roughness and material removal rate with equal weight fraction of SiC and Gr particulates of 3%, 7%, 10% and 13% reinforcement are investigated. This experimental analysis and test results on the machinability of Al/SiCMMC will provide essential guidelines to the manufacturers. Hybird metal matrix composites reinforced with graphite particles posses better machinability and tribological properties.

  7. SiC Seeded Crystal Growth

    Science.gov (United States)

    Glass, R. C.; Henshall, D.; Tsvetkov, V. F.; Carter, C. H., Jr.

    1997-07-01

    The availability of relatively large (30 mm) SiC wafers has been a primary reason for the renewed high level of interest in SiC semiconductor technology. Projections that 75 mm SiC wafers will be available in 2 to 3 years have further peaked this interest. Now both 4H and 6H polytypes are available, however, the micropipe defects that occur to a varying extent in all wafers produced to date are seen by many as preventing the commercialization of many types of SiC devices, especially high current power devices. Most views on micropipe formation are based around Frank's theory of a micropipe being the hollow core of a screw dislocation with a huge Burgers vector (several times the unit cell) and with the diameter of the core having a direct relationship with the magnitude of the Burgers vector. Our results show that there are several mechanisms or combinations of these mechanisms which cause micropipes in SiC boules grown by the seeded sublimation method. Additional considerations such as polytype variations, dislocations and both impurity and diameter control add to the complexity of producing high quality wafers. Recent results at Cree Research, Inc., including wafers with micropipe densities of less than 1 cm - 2 (with 1 cm2 areas void of micropipes), indicate that micropipes will be reduced to a level that makes high current devices viable and that they may be totally eliminated in the next few years. Additionally, efforts towards larger diameter high quality substrates have led to production of 50 mm diameter 4H and 6H wafers for fabrication of LEDs and the demonstration of 75 mm wafers. Low resistivity and semi-insulating electrical properties have also been attained through improved process and impurity control. Although challenges remain, the industry continues to make significant progress towards large volume SiC-based semiconductor fabrication.

  8. Stability analysis of SiO2/SiC multilayer coatings

    International Nuclear Information System (INIS)

    Fu Zhiqiang; Jean-Charles, R.

    2006-01-01

    The stability behaviours of SiC coatings and SiO 2 /SiC coatings in helium with little impurities are studied by HSC Chemistry 4.1, the software for analysis of Chemical reaction and equilibrium in multi-component complex system. It is found that in helium with a low partial pressure of oxidative impurities under different total pressure, the key influence factor controlling T cp of SiC depends is the partial pressure of oxidative impurities; T cp of SiC increases with the partial pressure of oxidative impurities. In helium with a low partial pressure of different impurities, the key influence factor of T cs of SiO 2 are both the partial pressure of impurities and the amount of impurities for l mol SiO 2 ; T cs of SiO 2 increases with the partial pressure of oxidative impurities at the same amount of the impurities for 1 mol SiO 2 while it decreases with the amount of the impurities for 1 mm SiO 2 at the same partial pressure of the impurities. The influence of other impurities on T cp of SiC in He-O 2 is studied and it is found that CO 2 , H 2 O and N-2 increase T cp of SiC in He-O 2 while H 2 , CO and CH 4 decrease T cp of SiC He-O 2 . When there exist both oxidative impurities and reductive impurities, their effect on T cs of SiO 2 can be suppressed by the other. In HTR-10 operation atmosphere, SiO 2 /SiC coatings can keep stable status at higher temperature than SiC coatings, so SiO 2 /SiC coatings is more suitable to improve the oxidation resistance of graphite in HTR-10 operation atmosphere compared with SiC coatings. (authors)

  9. Overall mechanical properties of fiber-reinforced metal matrix composites for fusion applications

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2002-01-01

    The high-temperature strength and creep properties are among the crucial criteria for the structural materials of plasma facing components (PFC) of fusion reactors, as they will be subjected to severe thermal stresses. The fiber-reinforced metal matrix composites are a potential heat sink material for the PFC application, since the combination of different material properties can lead to versatile performances. In this article, the overall mechanical properties of two model composites based on theoretical predictions are presented. The matrix materials considered were a precipitation hardened CuCrZr alloy and reduced activation martensitic steel 'Eurofer'. Continuous SiC fibers were used for the reinforcement. The results demonstrate that yield stress, ultimate tensile strength, work hardening rate and creep resistance could be extensively improved by the fiber reinforcement up to fiber content of 40 vol.%. The influence of the residual stresses on the plastic behavior of the composites is also discussed

  10. Effect of fiber coatings on room and elevated temperature mechanical properties of Nicalon trademark fiber reinforced Blackglas trademark ceramic matrix composites (CMCs)

    International Nuclear Information System (INIS)

    Aly, E.I.; Freitag, D.W.; Littlefield, J.E.

    1993-01-01

    With the development of silicon organometallic preceramic polymers as precursors for producing oxidation resistant ceramic matrices, through the polymer pyrolysis route, the fabrication of lightweight, complex advanced aircraft and missile structures from fiber reinforced composites is increasingly becoming more feasible. Besides refinement of processing techniques, the potential for achieving this objective depends upon identifying and developing the proper debond barrier coating layer, between the fiber and the matrix, for optimization of strength, toughness, and durability properties. Blackglas trademark based CMC's reinforced with Nicalon trademark SiC fibers with different types of coatings were fabricated. Coating schemes evaluated include CVD applied single layer boron nitride (BN) composition, dual-layer coatings of BN/SiC, and triple-layer coatings of SiC BN/SiC. Results of tensile and flexural property tests, scanning electron microscopy (SEM) of fracture surfaces, and auger electron spectroscopy (AES) microanalysis of the fiber/matrix interface have been discussed

  11. Fabrication, mechanical characterization of pineapple leaf fiber (PALF) reinforced vinylester hybrid composites

    Science.gov (United States)

    Yogesh, M.; Rao, A. N. Hari

    2018-04-01

    Natural fibre based composites are under intensive study due to their eco friendly nature and peculiar properties. The advantage of natural fibres is their continuous supply, easy and safe handling, and biodegradable nature. Although natural fibres exhibit admirable physical and mechanical properties, it varies with the plant source, species, geography, and so forth. Pineapple leave fibre (PALF) is one of the abundantly available waste materials in India and has not been studied yet. The work has been carried out to fabrication and study the mechanical characterization of Pineapple Leaf fiber reinforced Vinylester composites filled with different particulate fillers. These results are compared with those of a similar set of glass fiber reinforced Vinylester composites filled with same particulate fillers. It is evident that the density values for Pineapple leaf fiber (PALF) - Vinylester composites increase with the particulate filler content and void fractions in these composites also increase. The test results show that with the presence of particulate fillers, micro hardness of the PALF-Vinylester composites has improved. Among all the composites under this investigation, the maximum hardness value is recorded for PALF-Vinylester composite filled with 20 wt% alumina. In this investigation the maximum value of ILSS has been recorded for the PALF-Vinylester composite with 20 wt% of Flyash.

  12. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    International Nuclear Information System (INIS)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-01-01

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E_c_o_r_r) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO_4 and SiO_2.

  13. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swarnima; Sribalaji, M. [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India); Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI) Hyderabad, Balapur P.O., Hyderabad, Andhra Pradesh 500005 (India); Singh, Raghuvir [CSIR-National Metallurgical Laboratory, Jamshedpur, Jharkhand 831007 (India); Keshri, Anup Kumar, E-mail: anup@iitp.ac.in [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E{sub corr}) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO{sub 4} and SiO{sub 2}.

  14. High density plasma via hole etching in SiC

    International Nuclear Information System (INIS)

    Cho, H.; Lee, K.P.; Leerungnawarat, P.; Chu, S.N.G.; Ren, F.; Pearton, S.J.; Zetterling, C.-M.

    2001-01-01

    Throughwafer vias up to 100 μm deep were formed in 4H-SiC substrates by inductively coupled plasma etching with SF 6 /O 2 at a controlled rate of ∼0.6 μm min-1 and use of Al masks. Selectivities of >50 for SiC over Al were achieved. Electrical (capacitance-voltage: current-voltage) and chemical (Auger electron spectroscopy) analysis techniques showed that the etching produced only minor changes in reverse breakdown voltage, Schottky barrier height, and near surface stoichiometry of the SiC and had high selectivity over common frontside metallization. The SiC etch rate was a strong function of the incident ion energy during plasma exposure. This process is attractive for power SiC transistors intended for high current, high temperature applications and also for SiC micromachining

  15. Strength and Deformability of Fiber Reinforced Cement Paste on the Basis of Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Yury Barabanshchikov

    2016-01-01

    Full Text Available The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.

  16. Comparative study of SiC- and Si-based photovoltaic inverters

    Science.gov (United States)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio

    2017-01-01

    This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.

  17. New constructions of approximately SIC-POVMs via difference sets

    Science.gov (United States)

    Luo, Gaojun; Cao, Xiwang

    2018-04-01

    In quantum information theory, symmetric informationally complete positive operator-valued measures (SIC-POVMs) are related to quantum state tomography (Caves et al., 2004), quantum cryptography (Fuchs and Sasaki, 2003) [1], and foundational studies (Fuchs, 2002) [2]. However, constructing SIC-POVMs is notoriously hard. Although some SIC-POVMs have been constructed numerically, there does not exist an infinite class of them. In this paper, we propose two constructions of approximately SIC-POVMs, where a small deviation from uniformity of the inner products is allowed. We employ difference sets to present the first construction and the dimension of the approximately SIC-POVMs is q + 1, where q is a prime power. Notably, the dimension of this framework is new. The second construction is based on partial geometric difference sets and works whenever the dimension of the framework is a prime power.

  18. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  19. Conversion of wood flour/SiO2/phenolic composite to porous SiC ceramic containing SiC whiskers

    Directory of Open Access Journals (Sweden)

    Li Zhong

    2013-01-01

    Full Text Available A novel wood flour/SiO2/phenolic composite was chosen to be converted into porous SiC ceramic containing SiC whiskers via carbothermal reduction. At 1550°C the composite is converted into porous SiC ceramic with pore diameters of 10~40μm, and consisting of β-SiC located at the position of former wood cell walls. β-SiC wire-like whiskers of less than 50 nm in diameter and several tens to over 100 μm in length form within the pores. The surface of the resulting ceramic is coated with β-SiC necklace-like whiskers with diameters of 1~2μm.

  20. Homoepitaxial VPE growth of SiC active layers

    Energy Technology Data Exchange (ETDEWEB)

    Burk, A.A. Jr. [Northrop Grumman Electron. Sensors and Syst. Div., Baltimore, MD (United States); Rowland, L.B. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-01

    SiC active layers of tailored thickness and doping form the heart of all SiC electronic devices. These layers are most conveniently formed by vapor phase epitaxy (VPE). Exacting requirements are placed upon the SiC-VPE layers` material properties by both semiconductor device physics and available methods of device processing. In this paper, the current ability of the SiC-VPE process to meet these requirements is described along with continuing improvements in SiC epitaxial reactors, processes and materials. (orig.) 48 refs.

  1. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  2. Fibre-reinforced SiC ceramics: Properties and applications; Faserverstaerkte SiC-Keramik: Eigenschaften und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Leuchs, M. [MT Aerospace AG, Franz-Josef-Strauss-Str. 5, 86153 Augsburg (Germany)

    2006-04-15

    Composite ceramics can be produced by different processes resulting in different qualities. A composite ceramic material with C or SiC fibres and a SiC matrix is presented which is produced by chemical vapour infiltration (CVI). The material characteristics are defined by the embedding of the fibres in the matrix. For full utilisation of the strength and elasticity of the fibres, weak coupling between the fibres and matrix is required. The measured cracking resistances are similar to those of metals, e.g. grey cast iron. Applications so far have focused on applications where known materials cannot be used, e.g. because of high temperatures, thermoshock and brittle fracture problems, and wear. Examples are control flaps in aerospace applications are exposed to temperatures above 1600 degree C during re-entry into the earth atmosphere and heavy-duty sliding bearings in industrial pumps where ceramic composite materials have been in use for more than a decade. (orig.) [German] Mit Verbundkeramiken ist eine Werkstoffklasse entstanden, bei denen sich verschiedene Herstellverfahren mit unterschiedlichen Qualitaeten entwickelt haben [1]. Es wird eine Verbundkeramik mit C- bzw. SiC-Fasern und SiC-Matrix vorgestellt, die ueber die Infiltration der Fasern mit dem CVI-Verfahren (Chemical Vapour Infiltration) hergestellt wird [2]. Die Eigenschaften werden bestimmt durch die Qualitaet der Einbettung der Fasern in die Matrix. Nur eine schwache Ankopplung zwischen Fasern und Matrix erlaubt es, Festigkeit und Dehnbarkeit der Fasern auszunutzen. Die gemessenen Risswiderstaende solcher Verbundkeramiken liegen im Bereich von Metallen wie zum Beispiel Grauguss. Anwendungen konzentrieren sich bisher auf Gebiete, in denen die bekannten Werkstoffe nicht eingesetzt werden koennen. Gruende hierfuer sind zum Beispiel zu hohe Temperaturen, Thermoschock- und Sproedbruchverhalten und Verschleiss. Beispiele sind Steuerklappen aus dem Bereich der Raumfahrt, die beim Wiedereintritt in die

  3. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  4. About SIC POVMs and discrete Wigner distributions

    International Nuclear Information System (INIS)

    Colin, Samuel; Corbett, John; Durt, Thomas; Gross, David

    2005-01-01

    A set of d 2 vectors in a Hilbert space of dimension d is called equiangular if each pair of vectors encloses the same angle. The projection operators onto these vectors define a POVM which is distinguished by its high degree of symmetry. Measures of this kind are called symmetric informationally complete, or SIC POVMs for short, and could be applied for quantum state tomography. Despite its simple geometrical description, the problem of constructing SIC POVMs or even proving their existence seems to be very hard. It is our purpose to introduce two applications of discrete Wigner functions to the analysis of the problem at hand. First, we will present a method for identifying symmetries of SIC POVMs under Clifford operations. This constitutes an alternative approach to a structure described before by Zauner and Appleby. Further, a simple and geometrically motivated construction for an SIC POVM in dimensions two and three is given (which, unfortunately, allows no generalization). Even though no new structures are found, we hope that the re-formulation of the problem may prove useful for future inquiries

  5. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  6. Research Progress of Optical Fabrication and Surface-Microstructure Modification of SiC

    Directory of Open Access Journals (Sweden)

    Fang Jiang

    2012-01-01

    Full Text Available SiC has become the best candidate material for space mirror and optical devices due to a series of favorable physical and chemical properties. Fine surface optical quality with the surface roughness (RMS less than 1 nm is necessary for fine optical application. However, various defects are present in SiC ceramics, and it is very difficult to polish SiC ceramic matrix with the 1 nm RMS. Surface modification of SiC ceramics must be done on the SiC substrate. Four kinds of surface-modification routes including the hot pressed glass, the C/SiC clapping, SiC clapping, and Si clapping on SiC surface have been reported and reviewed here. The methods of surface modification, the mechanism of preparation, and the disadvantages and advantages are focused on in this paper. In our view, PVD Si is the best choice for surface modification of SiC mirror.

  7. New Possibilities of Power Electronic Structures Using SiC Technology

    Directory of Open Access Journals (Sweden)

    Robert Sul

    2006-01-01

    Full Text Available This paper is dedicated to the recent unprecedented boom of SiC electronic technology. The contribution deals with brief survey of those properties. In particular, the differences (both good and bad between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are given for several large-scale applications on the end of the contribution. The basic properties of SiC material have been discussed already on the beginning of 80’s, also at our university.

  8. SiC nanoparticles as potential carriers for biologically active substances

    Science.gov (United States)

    Guevara-Lora, Ibeth; Czosnek, Cezary; Smycz, Aleksandra; Janik, Jerzy F.; Kozik, Andrzej

    2009-01-01

    Silicon carbide SiC thanks to its many advantageous properties has found numerous applications in diverse areas of technology. In this regard, its nanosized forms often with novel properties have been the subject of intense research in recent years. The aim of this study was to investigate the binding of biologically active substances onto SiC nanopowders as a new approach to biomolecule immobilization in terms of their prospective applications in medicine or for biochemical detection. The SiC nanoparticles were prepared by a two-stage aerosol-assisted synthesis from neat hexamethyldisiloxane. The binding of several proteins (bovine serum albumin, high molecular weight kininogen, immunoglobulin G) on SiC particle surfaces was demonstrated at the levels of 1-2 nanograms per mg of SiC. These values were found to significantly increase after suitable chemical modifications of nanoparticle surfaces (by carbodiimide or 3-aminopropyltrietoxysilane treatment). The study of SiC biocompatibility showed a lack of cytotoxicity against macrophages-like cells below the concentration of 1 mg nanoparticles per mL. In summary, we demonstrated the successful immobilization of the selected substances on the SiC nanoparticles. These results including the cytotoxicity study make nano-SiC highly attractive for potential applications in medicine, biotechnology or molecular detection.

  9. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    Science.gov (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  10. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanis...

  11. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  12. Packaging Technologies for 500C SiC Electronics and Sensors

    Science.gov (United States)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  13. SiC for microwave power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, S.; Siergiej, R.R.; Clarke, R.C.; Agarwal, A.K.; Brandt, C.D. [Northrop Grumman Sci. and Technol. Center, Pittsburgh, PA (United States)

    1997-07-16

    The advantages of SiC for high power, microwave devices are discussed. The design considerations, fabrication, and experimental results are described for SiC MESFETs and SITs. The highest reported f{sub max} for a 0.5 {mu}m MESFET using semi-insulating 4H-SiC is 42 GHz. These devices also showed a small signal gain of 5.1 dB at 20 GHz. Other 4H-SiC MESFETs have shown a power density of 3.3 W/mm at 850 MHz. The largest SiC power transistor reported is a 450 W SIT measured at 600 MHz. The power output density of this SIT is 2.5 times higher than that of comparable silicon devices. SITs have been designed to operate as high as 3.0 GHz, with a 3 cm periphery part delivering 38 W of output power. (orig.) 28 refs.

  14. Formation mechanism of SiC in C-Si system by ion irradiation

    International Nuclear Information System (INIS)

    Hishita, Shunichi; Aizawa, Takashi; Suehara, Shigeru; Haneda, Hajime

    2003-01-01

    The irradiation effects of 2 MeV He + , Ne + , and Ar + ions on the film structure of the C-Si system were investigated with RHEED and XPS. The ion dose dependence of the SiC formation was kinetically analyzed. The SiC formation at moderate temperature was achieved by 2 MeV ion irradiation when the thickness of the initial carbon films was appropriate. The evolution process of the SiC film thickness consisted of the 3 stages. The first stage was the steep increase of the SiC, and was governed by the inelastic collision. The second was the gentle increase of the SiC, and was governed by the diffusion. The last was the decrease of the SiC, and was caused by the sputtering. The formation mechanism of the SiC was discussed. (author)

  15. Residual stress and mechanical properties of SiC ceramic by heat treatment

    International Nuclear Information System (INIS)

    Yoon, H.K.; Kim, D.H.; Shin, B.C.

    2007-01-01

    Full text of publication follows: Silicon carbide is a compound of relatively low density, high hardness, elevated thermal stability and good thermal conductivity, resulting in good thermal shock resistance. Because of these properties, SiC materials are widely used as abrasives and refractories. In this study, SiC single and poly crystals was grown by the sublimation method using the SiC seed crystal and SiC powder as the source material. Mechanical properties of SiC single and poly crystals are carried out by using the nano-indentation method and small punch test after the heat treatment. As a result, mechanical properties of SiC poly crystal had over double than single. And SiC single and poly crystals were occurred residual stress, but residual stress was shown relaxant properties by the effect of heat treatment. (authors)

  16. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Schoebel, M., E-mail: michaels@mail.tuwien.ac.at [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Degischer, H.P. [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, A-1040 Vienna (Austria); Vaucher, S. [Advanced Materials Processing, EMPA - Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Hofmann, M. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Lichtenbergstrasse 1, D-85747 Garching (Germany); Cloetens, P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, F-38043 Grenoble (France)

    2010-11-15

    Aluminum reinforced by 60 vol.% diamond particles has been investigated as a potential heat sink material for high power electronics. Diamond (CD) is used as reinforcement contributing its high thermal conductivity (TC {approx} 1000 W mK{sup -1}) and low coefficient thermal expansion (CTE {approx} 1 ppm K{sup -1}). An Al matrix enables shaping and joining of the composite components. Interface bonding is improved by limited carbide formation induced by heat treatment and even more by SiC coating of diamond particles. An AlSi7 matrix forms an interpenetrating composite three-dimensional (3D) network of diamond particles linked by Si bridges percolated by a ductile {alpha}-Al matrix. Internal stresses are generated during temperature changes due to the CTE mismatch of the constituents. The stress evolution was determined in situ by neutron diffraction during thermal cycling between room temperature and 350 deg. C (soldering temperature). Tensile stresses build up in the Al/CD composites: during cooling <100 MPa in a pure Al matrix, but around 200 MPa in the Al in an AlSi7 matrix. Compressive stresses build up in Al during heating of the composite. The stress evolution causes changes in the void volume fraction and interface debonding by visco-plastic deformation of the Al matrix. Thermal fatigue damage has been revealed by high resolution synchrotron tomography. An interconnected diamond-Si 3D network formed with an AlSi7 matrix promises higher stability with respect to cycling temperature exposure.

  17. Irradiation damages in Ti3SiC2

    International Nuclear Information System (INIS)

    Nappe, J.C.; Grosseau, Ph.; Guilhot, B.; Audubert, F.; Beauvy, M.

    2007-01-01

    Carbides, by their remarkable properties, are considered as possible materials (fuel cans) in reactor of generation IV. Among those studied, Ti 3 SiC 2 is particularly considered because it joins both the ceramics and metals properties. Nevertheless, its behaviour under irradiation is not known. Characterizations have been carried out on samples irradiated at 75 MeV krypton ions. They have revealed that TiO 2 (formed at the surface of Ti 3 SiC 2 ) is pulverized by the irradiation and that the crystal lattice of Ti 3 SiC 2 dilates with c. (O.M.)

  18. Synthesis and Characterization of MAX Ceramics (MAXCERs)

    Science.gov (United States)

    Nelson, Johnny Carl

    This research has focused on the design and development of novel multifunctional MAX reinforced ceramics (MAXCERs). These MAXCERs were manufactured with 1-50 vol% ratios of ceramics to MAX phases. Chapter II reports on the synthesis and tribological behavior of Ti3SiC2 matrix composites by incorporating (1 and 6 vol%) Al2O3, (1 and 5 vol%) BN, and (1 and 5 vol%) B4C ceramic particulate additives in the matrix. All the composites were fabricated by pressureless sintering by using 1 wt% Ni as a sintering agent at 1550 °C for 2 hours. SEM and XRD studies showed that Al2O3 is relatively inert in the Ti3SiC 2 matrix whereas BN and B4C reacted significantly with the Ti3 SiC2 matrix to form TiB2. Detailed tribological studies showed that Ti3SiC2-1wt%Ni (baseline) samples showed dual type tribological behavior where the friction coefficient (micro) was low ( 0.2) during stage 1, thereafter micro increased sharply and transitioned into stage 2 ( 0.8). The addition of Al2O3 as an additive had little effect on the tribological behavior, but the addition of B4C and BN was able to enhance the tribological behavior by increasing the transition distance (TD). Chapter III reports on the synthesis and tribological behavior of TiB2 matrix composites by incorporating (10, 30, and 50 vol%) Ti3SiC2 ceramic particulate additives in the matrix. The fabrication parameters were similar to the Ti3SiC2 samples from Chapter II. There was minimal reaction between the TiB2 and the Ti3SiC2. Detailed tribological studies showed that TiB2 (baseline) and TiB2-10%Ti 3SiC2 samples showed an average micro of 0.29 and 0.28, respectively. TiB2-30%Ti3SiC2 and TiB 2-50%Ti3SiC2 showed dual-type tribological behavior where micro was low ( 0.25) during stage 1, thereafter micro increased gradually and transitioned into stage 2 ( 0.6). Low wear rates were seen for all samples.

  19. TRISO coated fuel particles with enhanced SiC properties

    International Nuclear Information System (INIS)

    Lopez-Honorato, E.; Tan, J.; Meadows, P.J.; Marsh, G.; Xiao, P.

    2009-01-01

    The silicon carbide (SiC) layer used for the formation of TRISO coated fuel particles is normally produced at 1500-1650 deg. C via fluidized bed chemical vapor deposition from methyltrichlorosilane in a hydrogen environment. In this work, we show the deposition of SiC coatings with uniform grain size throughout the coating thickness, as opposed to standard coatings which have larger grain sizes in the outer sections of the coating. Furthermore, the use of argon as the fluidizing gas and propylene as a carbon precursor, in addition to hydrogen and methyltrichlorosilane, allowed the deposition of stoichiometric SiC coatings with refined microstructure at 1400 and 1300 deg. C. The deposition of SiC at lower deposition temperatures was also advantageous since the reduced heat treatment was not detrimental to the properties of the inner pyrolytic carbon which generally occurs when SiC is deposited at 1500 deg. C. The use of a chemical vapor deposition coater with four spouts allowed the deposition of uniform and spherical coatings.

  20. Detail study of SiC MOSFET switching characteristics

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    This paper makes detail study of the latest SiC MOSFETs switching characteristics in relation to gate driver maximum current, gate resistance, common source inductance and parasitic switching loop inductance. The switching performance of SiC MOSFETs in terms of turn on and turn off voltage...

  1. Thermo-Mechanical Properties of Unsaturated Polyester Reinforced with SiliconCarbide Powder And with Chopped Glass Fiber

    Directory of Open Access Journals (Sweden)

    Bushra Hosnie Musa

    2018-02-01

    Full Text Available The work studied the effectoffine silicon carbide (SiC powder with (0,3,5,7wt % on the thermal conductivity and mechanical properties of unsaturated polyester composite in the presence of a fixed amount of chopped glass fiber. The hand lay-up technique was employed to preparethe required samples. Results showed that tensile, impact strength and thermal conductivity increased with increasing the weight fraction of reinforced materials.

  2. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  3. Research Progress on Preparation for Biomass-based SiC Ceramic

    Directory of Open Access Journals (Sweden)

    CUI He-shuai

    2017-08-01

    Full Text Available Silicon carbide (SiC ceramics prepared by the conventional process has excellent properties and wide application prospects, but the increased cost of high-temperature preparation process restricts its further development. In contrast, the abundant porous structure of biomass makes itself to be ideal replacement of SiC ceramic prepared at low temperature. This paper reviewed the structure characteristics, preparation methods, pyrolysis mechanism and influence parameters of biomass-based SiC ceramic, and eventually explored the current problems and development trends of the pretreatment of carbon source and silicon source, the pyrolysis process and the application research on the preparation for biomass-based SiC ceramic.

  4. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan); Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)

    2011-06-15

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  5. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Science.gov (United States)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  6. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    International Nuclear Information System (INIS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I.

    2011-01-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  7. Fabrication of Multi-Layerd SiC Composite Tube for LWR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong; Jung, Choonghwan; Kim, Weonju; Park, Jiyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Jongmin [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, the chemical vapor deposition (CVD) and chemical vapor infiltration (CVI) methods were employed for the fabrication of the composite tubes. SiC ceramics and SiC-based composites have recently been studied for LWR fuel cladding applications because of good mechanical/physical properties, neutron irradiation resistance and excellent compatibility with coolant under severe accident. A multi-layered SiC composite tube as the nuclear fuel cladding is composed of the monolith SiC inner layer, SiC/SiC composite intermediate layer, and monolith SiC outer layer. Since all constituents should be highly pure, stoichiometric to achieve the good properties, it has been considered that the chemical process is a well-suited technique for the fabrication of the SiC phases.

  8. Alumina reinforced tetragonal zirconia (TZP) composites. Final technical report, July 1, 1993--December 31, 1996

    International Nuclear Information System (INIS)

    Shetty, D.K.

    1997-01-01

    This final technical report summarizes the significant research results obtained during the period July 1, 1993 through December 31, 1996 in the DOE-supported research project entitled, open-quotes Alumina Reinforced Tetragonal Zirconia (TZP) Compositesclose quotes. The objective of the research was to develop high-strength and high-toughness ceramic composites by combining mechanisms of platelet, whisker or fiber reinforcement with transformation toughening. The approach used included reinforcement of Celia- or yttria-partially-stabilized zirconia (Ce-TZP or Y-TZP) with particulates, platelets, or continuous filaments of alumina

  9. Ag Transport Through Non-Irradiated and Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Blanchard, James [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-11

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  10. Ag Transport Through Non-Irradiated and Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Blanchard, James

    2016-01-01

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  11. Preparation and infrared absorption properties of buried SiC layers

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Wong, S.P.; Kwok, R.W.M.

    1997-01-01

    Buried SiC layers were formed by using a metal vapor vacuum arc (MEVVA) ion source, with C + ions implanted into Si substrates under different doses. In the present study, the extracted voltage was 50 kV and the ion dose was varied from 3.0 x 10 17 to 1.6 x 10 18 cm -2 . According to infrared absorption measurements, it was fount that the structure of the buried SiC layers depended on the ion dose. Moreover, the results also demonstrated that the buried SiC layers including cubic crystalline SiC could be synthesized at an averaged substrate temperature of lower than 400 degree C with the MEVVA ion source

  12. Effect of preceramic and Zr coating on impregnation behaviors of SiC ceramic composite

    Science.gov (United States)

    Jung, Yang-Il; Kim, Sun-Han; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    SiC fiber-reinforced ceramic composites were fabricated using a polymer impregnation and pyrolysis process. To develop the low temperature process, the pyrolysis was conducted at 600 °C in air. Both a microstructural observation and a mechanical test were utilized for the evaluation of the impregnation. For the impregnation, two kinds of polycarbosilane having a different degree of cross-linking were used. The level of cross-linking affected the ceramic yield of the composites. The cross-linking under oxygen containing atmosphere resulted in a dense matrix and high density of filling. However, tight bonding between the matrix and fibers in the fully dense composite samples, which was obtained using a cross-linking agent of divinylbenzene, turned out to be deteriorative on the mechanical properties. The physical isolation of fibers from matrix phase in the composites was very important to attain a mechanical ductility. The brittle fracture was alleviated by introducing an interphase coating with metallic Zr. The combination of forming the dense matrix and interphase coating should be a necessary condition for the SiCf/SiC fiber-reinforce composite, and it is practicable by controlling the process parameters.

  13. Temperature Dependence of Mechanical Properties of TRISO SiC Coatings

    International Nuclear Information System (INIS)

    Kim, Do Kyung; Park, Kwi Il; Lee, Hyeon Keun; Seong, Young Hoon; Lee, Seung Jun

    2009-04-01

    SiC coating layer has been introduced as protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to excellent mechanical stability at high temperature. It is important to study for high temperature stability in SiC coating layers, because TRISO fuel particles were operating at high temperature around 1000 .deg. C. In this study, the nanoindentation test and micro tensile test were conducted in order to measure the mechanical properties of SiC coating layers at elevated temperature. SiC coating film was fabricated on the carbon substrate using chemical vapor deposition process with different microstructures and thicknesses. Nanoindentation test was performed for the analysis of the hardness, modulus and creep properties up to 500 .deg. C. Impression creep method applied to nanoindentation and creep properties of SiC coating layers were characterized by nanoindentation creep test. The fracture strength of SiC coating layers was measured by the micro tensile method at room temperature and 500 .deg. C. From the results, we can conclude that the hardness and fracture strength are decreased with temperature and no significant change in the modulus is observed with increase in temperature. The deformation mechanism for indentation creep and creep rate changes as the testing temperature increased

  14. Tema 8. Principis físics dels semiconductors (Resum)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2011-01-01

    Resum del "Tema 8. Principis físics dels semiconductors" de l'assignatura "Fonaments Físics de l'Enginyeria I" de "Grau en Enginyeria en So i Imatge" impartit a l'Escola Politècnica Superior de la Universitat d'Alacant.

  15. Effect of wear parameters on dry sliding behavior of Fly Ash/SiC particles reinforced AA 2024 hybrid composites

    Science.gov (United States)

    Bhaskar Kurapati, Vijaya; Kommineni, Ravindra

    2017-09-01

    In the present work AA 2024 alloy reinforced with mixtures of SiC and Fly Ash (FA) particles of 70 µm (5, 10 and 15 wt. %) are fabricated using the stir casting method. Both reinforcements are added in equal weight proportions. The wear test specimens are prepared from both the alloy and composite castings in the dimensions of Ф 4 mm and 30 mm lengths by the wire cut EDM process. The dry sliding wear properties of the prepared composites at room temperature are estimated by pin-on-disc wear testing equipment. The wear characteristics of the composites are studied by conducting the dry sliding wear test over loads of 0.5 Kgf, 1.0 Kgf, 1.5 Kgf, a track diameter of 60 mm and sliding times of 15 min, 30 min, 45min. The experimental results shows that the wear decreases with an increase in the weight percentage of FA and SiC particles in the matrix. Additionally wear increases with an increase in load and sliding time. Further, it is found that the wear resistance of the AA2024-Hybrid composites is higher than that of the AA2024 matrix.

  16. The role of TiB2 in strengthening TiB2 reinforced aluminium casting composites

    International Nuclear Information System (INIS)

    Chen, Z; Kang, H; Zhao, Y; Zheng, Y; Wang, T

    2016-01-01

    With an aim of developing high quality in situ TiB 2 reinforced aluminium foundry alloy based composites, the conventional direct synthesis method was modified into a two-step route. In step one we optimized the halide salt route to fabricate in situ TiB 2 particulate reinforced aluminium matrix composites and in step two we investigated the effects of the Al-5wt.% TiB 2 composite, as a “master composite”, on strengthening the practical foundry alloys. The in situ formed TiB 2 particles play two roles while strengthening the composites: (1) The grain refinement effect that improves the quality of the alloy matrix; and (2) The interactions between the hard particulates and the matrix add extra increment to the material strength. In different alloy systems, TiB 2 may play distinct roles in these two aspects (figure 1). Further analysis of the strengthening mechanisms shows that particle agglomeration behaviour during solidification is responsible for the latter one. The present work details the role of TiB 2 in strengthening TiB 2 reinforced aluminium casting composites. (paper)

  17. Spatial and temporal variability in urban fine particulate matter concentrations

    International Nuclear Information System (INIS)

    Levy, Jonathan I.; Hanna, Steven R.

    2011-01-01

    Identification of hot spots for urban fine particulate matter (PM 2.5 ) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM 2.5 patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM 2.5 concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM 2.5 variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations. - Highlights: →Fine particulate matter (PM 2.5 ) hot spots are hard to identify in urban areas. → Literature conclusions about PM 2.5 hot spots depend on study design and methods. → Hot spots are more likely for short-term concentrations at high spatial density. → Statistical methods illustrate local source impacts beyond regional transport. → Dispersion models and high-resolution monitors are both needed to find hot spots. - Fine particulate matter can vary spatially within large urban areas, in spite of the significant contribution from regional atmospheric transport.

  18. Estudio de la protección del refuerzo de partículas de SiC mediante barreras activas por sol-gel en materiales compuestos de matriz de aluminio

    Directory of Open Access Journals (Sweden)

    Ureña, A.

    2004-04-01

    Full Text Available A microcrystalline, homogeneous and transparent sol – gel silica coating has been developed to avoid the degradation and improve the wettability of aluminium matrix composites reinforced with SiC particles. Composite aluminium matrix samples have been made by cold powder compaction, and the coating efficiency has been checked by melting the samples several temperature and times. The coating reduces the appearance of Al4C3, showing that the degradation resistance of the new material is much higher than that of the uncovered SiC particles composite one.

    Con objeto de prevenir la degradación y mejorar la mojabilidad de los materiales compuestos de matriz de aluminio reforzados con partículas de SiC se ha desarrollado un recubrimiento microcristalino, homogéneo y transparente de SiO2 obtenido por el método sol-gel. La eficacia del recubrimiento como barrera se ha comprobado realizando ensayos de fusión a diferentes tiempos y temperaturas sobre pastillas de material compuesto de matriz de aluminio obtenidas por compactación en frío de polvos. El recubrimiento limita la formación de Al4C3, lo que indica que la resistencia a la degradación del nuevo material es muy superior a la del fabricado con partículas de SiC sin recubrir.

  19. Effect of forging on mechanical properties of rice husk ash-silicon carbide reinforced Al1100 hybrid composites

    Science.gov (United States)

    Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.

    2018-04-01

    During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.

  20. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  1. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  2. An Extension of SIC Predictions to the Wiener Coactive Model.

    Science.gov (United States)

    Houpt, Joseph W; Townsend, James T

    2011-06-01

    The survivor interaction contrasts (SIC) is a powerful measure for distinguishing among candidate models of human information processing. One class of models to which SIC analysis can apply are the coactive, or channel summation, models of human information processing. In general, parametric forms of coactive models assume that responses are made based on the first passage time across a fixed threshold of a sum of stochastic processes. Previous work has shown that that the SIC for a coactive model based on the sum of Poisson processes has a distinctive down-up-down form, with an early negative region that is smaller than the later positive region. In this note, we demonstrate that a coactive process based on the sum of two Wiener processes has the same SIC form.

  3. Synthesis of micro-sized interconnected Si-C composites

    Science.gov (United States)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  4. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    Directory of Open Access Journals (Sweden)

    N. Panwar

    2017-09-01

    Full Text Available In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear rate obtained experimentally. It has been found that tensile strength and impact energy increases while elongation decreases, with increasing weight fraction and decrease in particle size of red mud. The percentage contribution of the effect of factors on SWR is Sliding condition (73.17, speed (7.84, percentage reinforcement (7.35, load (5.75, sliding distance (2.24, and particle size (1.25. It has also been observed that specific wear rate is very low in wet condition. However, it decreases with increase in weight fraction of reinforcement, decrease in load and sliding speed. Al6061/red mud metal matrix composites have shown reasonable strength and wear resistance. The use of red mud in Aluminium composite provides the solution for disposal of red mud and can possibly become an economic replacement of Aluminium and its alloys.

  5. On the mechanical behaviours of a craze in particulate-polymer composites

    Science.gov (United States)

    Zhang, Y. M.; Zhang, W. G.; Fan, M.; Xiao, Z. M.

    2018-05-01

    In polymeric composites, well-defined inclusions are incorporated into the polymer matrix to alleviate the brittleness of polymers. When a craze is initiated in such a composite, the interaction between the craze and the surrounding inclusions will greatly affect the composite's mechanical behaviours and toughness. To the best knowledge of the authors, only little research work has been found so far on the interaction between a craze and the near-by inclusions in particulate-polymer composites. In the current study, the first time, the influences of the surrounding inclusions on the craze are investigated in particulate-polymer composites. The three-phase model is adopted to study the fracture behaviours of the craze affected by multiple inclusions. An iterative procedure is proposed to solve the stress intensity factors. Parametric studies are performed to investigate the influences of the reinforcing particle volume fraction and the shear modulus ratio on fracture behaviours of particulate-polymer composites.

  6. Thermal effects on the mechanical properties of SiC fibre reinforced reaction-bonded silicon nitride matrix composites

    Science.gov (United States)

    Bhatt, R. T.; Phillips, R. E.

    1990-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  7. InP-based photonic integrated circuit platform on SiC wafer.

    Science.gov (United States)

    Takenaka, Mitsuru; Takagi, Shinichi

    2017-11-27

    We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 μm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO 2 /Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.

  8. Factors affecting the corrosion of SiC layer by fission product palladium

    International Nuclear Information System (INIS)

    Dewita, E.

    2000-01-01

    HTR is one of the advanced nuclear reactors which has inherent safety system, graphite moderated and helium gas cooled. In general, these reactors are designed with the TRISO coated particle consist of four coating layers that are porous pyrolytic carbon (PyC). inner dense PyC (IPyC), silicon carbide (SiC), and outer dense PyC (OPyC). Among the four coating layers, the SiC plays an important role beside in retaining metallic fission products, it also provides mechanical strength to fuel particle. However, results of post irradiation examination indicate that fission product palladium can react with and corrode SiC layer, This assessment is conducted to get the comprehension about resistance of SiC layer on irradiation effects, especially in order to increase the fuel bum-up. The result of this shows that the corrosion of SiC layer by fission product palladium is beside depend on the material characteristics of SiC, and also there are other factors that affect on the SiC layer corrosion. Fuel enrichment, bum-up, and irradiation time effect on the palladium flux in fuel kernel. While, the fuel density, vapour pressure of palladium (the degree depend on the irradiation temperature and kernel composition) effect on palladium migration in fuel particle. (author)

  9. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    OpenAIRE

    N. Panwar; R.P. Poonia; G. Singh; R. Dabral; A. Chauhan

    2017-01-01

    In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear...

  10. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite

    International Nuclear Information System (INIS)

    Singh, R.N.

    1990-01-01

    This paper reports that mechanical properties of a monolithic zircon ceramic and zircon-matrix composites uniaxially reinforced with either uncoated or BN-coated silicon carbide monofilaments were measured in flexure between 25 degrees and 1477 degrees C. Monolithic zircon ceramics were weak and exhibited a brittle failure up to abut 1300 degrees C. An increasing amount of the plastic deformation was observed before failure above about 1300 degrees C. In contrast, composites reinforced with either uncoated or BN-coated Sic filaments were stronger and tougher than the monolithic zircon at all test temperatures between 25 degrees and 1477 degrees. The ultimate strength and work-of-fracture of composite samples decreased with increasing temperature. A transgranular matrix fracture was shown by the monolithic and composite samples tested up to about 1200 degrees C, whereas an increasing amount of the intergranular matrix fracture was displayed above 1200 degrees C

  11. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    Unknown

    SiC fibre by chemical vapour deposition on tungsten filament ... CMCs), in defence and industrial applications. SiC has attractive ... porosity along with chemical purity. This is lacking .... reactor. Since mercury is very toxic it should be removed.

  12. The annealing effects on irradiated SiC piezo resistive pressure sensor

    International Nuclear Information System (INIS)

    Almaz, E.; Blue, T. E.; Zhang, P.

    2009-01-01

    The effects of temperature on annealing of Silicon Carbide (SiC) piezo resistive pressure sensor which was broken after high fluence neutron irradiation, were investigated. Previously, SiC piezo resistive sensor irradiated with gamma ray and fast neutron in the Co-60 gamma-ray irradiator and Beam Port 1 (BP1) and Auxiliary Irradiation Facility (AIF) at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) respectively. The Annealing temperatures were tested up to 400 C. The Pressure-Output voltage results showed recovery after annealing process on SiC piezo resistive pressure sensor. The bridge resistances of the SiC pressure sensor stayed at the same level up to 300 C. After 400 C annealing, the resistance values changed dramatically.

  13. Recent progress of ultrahigh voltage SiC devices for particle accelerator

    International Nuclear Information System (INIS)

    Fukuda, Kenji; Tsuji, Takashi; Shiomi, Hiromu; Mizushima, Tomonori; Yonezawa, Yoshiyuki; Kondo, Chikara; Otake, Yuji

    2016-01-01

    Silicon carbide (SiC) is the promising material for next power electronics technology used in the field such as HEV, EV, and railway, electric power infrastructure. SiC enables power devices with low loss to easily operate in an ultrahigh-voltage region because of the high breakdown electric field of SiC. In this paper, we report static and dynamic electric performances of 3300 V class SiC SBDs, IE-MOSFETs, >10 kV PiN diodes and IE-IGBTs. Especially, the electrical characteristics of IE-IGBT with the blocking voltage of 16.5 kV indicate the sufficient ability to convert the thyratron in high power RF system of an accelerator. (author)

  14. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic

    International Nuclear Information System (INIS)

    Reau, A.

    2008-01-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC f /SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC f /SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  15. Detection and analysis of particles with failed SiC in AGR-1 fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D., E-mail: hunnjd@ornl.gov [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M. [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A. [Idaho National Laboratory (INL), P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-09-15

    Highlights: • Cesium release was used to detect SiC failure in HTGR fuel. • Tristructural-isotropic particles with SiC failure were isolated by gamma screening. • SiC failure was studied by X-ray tomography and SEM. • SiC degradation was observed after irradiation and subsequent safety testing. - Abstract: As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of {sup 134}Cs and {sup 137}Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600–1800 °C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were

  16. Transformation from amorphous to nano-crystalline SiC thin films ...

    Indian Academy of Sciences (India)

    Administrator

    phous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering ... Auger electron spectroscopy showed that the carbon incorporation in the .... with a 514 nm Ar+ laser excitation source and the laser.

  17. TiC/Ti3SiC2复合材料的制备及其性能研究%Preparation and properties of TiC/Ti3SiC2 composites

    Institute of Scientific and Technical Information of China (English)

    贾换; 尹洪峰; 袁蝴蝶; 杨祎诺

    2012-01-01

    以粉末Ti,Si,TiC和炭黑为原料,采用反应热压烧结法制备TiC/Ti3SiC2复合材料.借助XRD和SEM研究TiC含量对TiC/Ti3SiC2复合材料相组成、显微结构及力学特性的影响.结果表明:通过热压烧结可以得到致密度较高的TiC/Ti3SiC2复合材料;引入TiC可以促进Ti3SiC2的生成,当引入TiC的质量分数达30%,TiC/Ti3SiC2复合材料的弯曲强度和断裂韧性分别为406.9 MPa,3.7 MPa·m1/2;复合材料中Ti3SiC2相以穿晶断裂为主,TiC晶粒易产生拔出.%TiC/Ti3SiC2 composites were fabricated by reactive hot pressing sintering method using the mixture powder of Ti, Si, C and TiC as raw material. The effect of TiC content on phase composition, microstructure and mechanical properties of TiC/Ti3SiC2 composites was investigated by X-ray diffraction and scanning electron microscopy. The results demonstrate that dense TiC/ Ti3SiC2 composites can be obtained by hot pressing. The addition of TiC into composites can enhance the formation of TisSiC2. When the additional content of TiC reaches 30% (mass fraction) , the flexural strength and fracture toughness of TiC/Ti3SiC2 composite are 406.9 MPa and 3.7 MPa·m-2, respectively. Ti3SiC2 phase displays intergranular fracture and TiC grain pulls out from Ti3SiC2 matrix when TiC/Ti3SiC2 composite fractures.

  18. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  19. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  20. SiC substrate defects and III-N heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Poust, B D [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Koga, T S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Sandhu, R [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Heying, B [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Hsing, R [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Wojtowicz, M [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Khan, A [Department of Electrical Engineering, University of South Carolina, Columbia, SC (United States); Goorsky, M S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2003-05-21

    This study addressed how defects in SiC substrates influence the crystallographic properties of AlGaN/GaN layers deposited by metallorganic vapour phase epitaxy and by molecular beam epitaxy. We employed double crystal reflection x-ray topography using symmetric (0008) and (00012) reflections with CuK{alpha} radiation ({lambda} = 1.54 A) to image dislocations, micropipes, and low angle boundaries in SiC substrates. Lattice strain near the core of a micropipe defect was estimated to be of the order of 10{sup -7}. The substrates investigated exhibited radial patterns of strain and, primarily, of tilt of the order of tens of arcsec. After deposition of the AlGaN and GaN layers, DCXRT images were generated from the substrate (0008) or (00012) and GaN epitaxial layer (0004) reflections. Full-width at half-maximum values ranging from {approx}100 to 300 arcsec were typical of the GaN reflections, while those of the 4H-SiC reflections were {approx}20-70 arcsec. Micropipes, tilt boundaries, and inclusions in the SiC were shown to produce structural defects in the GaN layers. A clear correlation between SiC substrate defects and GaN defects has been established.

  1. SiC substrate defects and III-N heteroepitaxy

    International Nuclear Information System (INIS)

    Poust, B D; Koga, T S; Sandhu, R; Heying, B; Hsing, R; Wojtowicz, M; Khan, A; Goorsky, M S

    2003-01-01

    This study addressed how defects in SiC substrates influence the crystallographic properties of AlGaN/GaN layers deposited by metallorganic vapour phase epitaxy and by molecular beam epitaxy. We employed double crystal reflection x-ray topography using symmetric (0008) and (00012) reflections with CuKα radiation (λ = 1.54 A) to image dislocations, micropipes, and low angle boundaries in SiC substrates. Lattice strain near the core of a micropipe defect was estimated to be of the order of 10 -7 . The substrates investigated exhibited radial patterns of strain and, primarily, of tilt of the order of tens of arcsec. After deposition of the AlGaN and GaN layers, DCXRT images were generated from the substrate (0008) or (00012) and GaN epitaxial layer (0004) reflections. Full-width at half-maximum values ranging from ∼100 to 300 arcsec were typical of the GaN reflections, while those of the 4H-SiC reflections were ∼20-70 arcsec. Micropipes, tilt boundaries, and inclusions in the SiC were shown to produce structural defects in the GaN layers. A clear correlation between SiC substrate defects and GaN defects has been established

  2. A Grande Reportagem no contexto informativo SIC

    OpenAIRE

    Colaço, Vanessa Alexandra Francisco

    2014-01-01

    Os telespectadores querem ver grandes reportagens? Como evoluíram as audiências da Grande Reportagem SIC? É este o produto premium da estação? Terá este formato um investimento e continuidade garantidas? Estas são algumas das questões formuladas e às quais se procurou dar resposta neste Relatório de Estágio. Neste trabalho traça-se o perfil do programa Grande Reportagem SIC, clarificando a linha editorial que lhe serviu de base, procurando perceber as suas dinâmicas e passando em revista mome...

  3. High Temperature Memories in SiC Technology

    OpenAIRE

    Ekström, Mattias

    2014-01-01

    This thesis is part of the Working On Venus (WOV) project. The aim of the project is to design electronics in silicon carbide (SiC) that can withstand the extreme surface environmen  of Venus. This thesis investigates some possible computer memory technologies that could survive on the surface of Venus. A memory must be able to function at 460 °C and after a total radiation dose of at least 200 Gy (SiC). This thesis is a literature survey. The thesis covers several Random-Access Memory (RAM) ...

  4. Defects induced by helium implantation in SiC

    International Nuclear Information System (INIS)

    Oliviero, E.; Barbot, J.F.; Declemy, A.; Beaufort, M.F.; Oliviero, E.

    2008-01-01

    SiC is one of the considered materials for nuclear fuel conditioning and for the fabrication of some core structures in future nuclear generation reactors. For the development of this advance technology, a fundamental research on this material is of prime importance. In particular, the implantation/irradiation effects have to be understood and controlled. It is with this aim that the structural alterations induced by implantation/irradiation in SiC are studied by different experimental techniques as transmission electron microscopy, helium desorption, X-ray diffraction and Rutherford backscattering spectrometry. In this work, the different types of defects induced by helium implantation in SiC, point or primary defects (obtained at low energy (∼100 eV) until spread defects (obtained at higher energy (until ∼2 MeV)) are exposed. The amorphization/recrystallization and swelling phenomena are presented too. (O.M.)

  5. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications....

  6. Pressureless sintering behavior and mechanical properties of ZrB2–SiC composites: effect of SiC content and particle size

    Directory of Open Access Journals (Sweden)

    Mehri Mashhadi

    2015-10-01

    Full Text Available In the present paper, ZrB2–SiC composites were prepared by pressureless sintering at temperatures of 2000–2200 °C for 1 h under argon atmosphere. In order to prepare composite samples, ZrB2 powder was milled for 2 h, then the reinforcing particles including of micron and nano-sized SiC powder were added. The mixtures were formed and, after the pyrolysis, they were sintered. Densification, microstructural and mechanical properties of ZrB2–SiC composites were investigated. The shrinkage of samples was measured both before and after the sintering, and the microstructure of samples was examined using scanning electron microscopy (SEM, equipped with EDS spectroscopy. Both mass fraction and size of SiC powder have a great effect on relative density, porosity, shrinkage, hardness and microstructure of these composites. The highest relative density and hardness were 98.12% and 15.02 GPa, respectively, in ZrB2–10 wt% SiCnano composite sintered at 2200 °C.

  7. ECAP – New consolidation method for production of aluminium matrix composites with ceramic reinforcement

    Directory of Open Access Journals (Sweden)

    Mateja Šnajdar Musa

    2013-06-01

    Full Text Available Aluminium based metal matrix composites are rapidly developing group of materials due to their unique combination of properties that include low weight, elevated strength, improved wear and corrosion resistance and relatively good ductility. This combination of properties is a result of mixing two groups of materials with rather different properties with aluminium as ductile matrix and different oxides and carbides added as reinforcement. Al2O3, SiC and ZrO2 are the most popular choices of reinforcement material. One of the most common methods for producing this type of metal matrix composites is powder metallurgy since it has many variations and also is relatively low-cost method. Many different techniques of compacting aluminium and ceramic powders have been previously investigated. Among those techniques equal channel angular pressing (ECAP stands out due to its beneficial influence on the main problem that arises during powder compaction and that is a non-uniform distribution of reinforcement particles. This paper gives an overview on ECAP method principles, advantages and produced powder composite properties.

  8. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  9. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    Directory of Open Access Journals (Sweden)

    Sonia C. Ferreira

    2014-12-01

    Full Text Available Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp produced by powder metallurgy (PM were anodized under voltage control in tartaric-sulfuric acid (TSA. In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050 anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.

  10. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    Science.gov (United States)

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  11. Mercury partition in the interface between a contaminated lagoon and the ocean: The role of particulate load and composition

    International Nuclear Information System (INIS)

    Pato, P.; Otero, M.; Valega, M.; Lopes, C.B.; Pereira, M.E.; Duarte, A.C.

    2010-01-01

    After having estimated the patterns of flow to the ocean and found some seasonal and tidal differences, mainly with regard to the relative importance of dissolved and particulate fractions, mercury partitioning at the interface between a contaminated lagoon and the Atlantic Ocean was investigated during four tidal cycles in contrasting season and tidal regimes. Mercury was found to be located predominantely in the particulate fraction throughout the year, contributing to its retention within the system. Seasonal conditions, variations in marine and fluvial signals and processes affecting bed sediment resuspension influenced the character and concentration of suspended particulate matter in the water column. Variation in the nature, levels and partitioning of organic carbon in the particulate fraction affected levels of particulate mercury as well as mercury partitioning. These results highlight the dominant role of suspended particulate matter in the distribution of anthropogenic mercury and reinforce the importance of competitive behavior related to organic carbon in mercury scavenging.

  12. Stress Wave attenuation in SiC3D/Al Composite

    International Nuclear Information System (INIS)

    Yuan Chunyuan; Wang Yangwei; Li Guoju; Zhang Xu; Gao Jubin

    2013-01-01

    SiC 3D /Al composite is a kind of special composite with interpenetrating network microstructure. The attenuation properties of stress wave propagation along the SiC 3D /Al composite are studied by a Split Hopkinson Pressure Bar system and FEM simulations, and the attenuation mechanism is discussed in this paper. Results show that the attenuation rate of the stress wave in the composite is up to 1.73MPa·mm −1 . The reduction of the amplitude of waves is caused by that plenty of interfaces between SiC and Al within the composite acting with stress waves. When the incident plane wave reaches the SiC 3D /Al interface, reflection wave and transmission wave propagates in different directions along the irregular interface between SiC phase and aluminium phase due to the impedance mismatch of them, which leads to the divergence of stress wave. At the same time, some stress micro-focuses occurs in the aluminium phase for the complex wave superimposition, and some plastic deformation may take place within such micro-regions, which results in the consumption of stress wave energy. In conclusion, the stress wave attenuation is derived from divergence and consumption of stress wave.

  13. Impact on vehicle fuel economy of the soot loading on diesel particulate filters made of different substrate materials

    International Nuclear Information System (INIS)

    Millo, Federico; Andreata, Maurizio; Rafigh, Mahsa; Mercuri, Davide; Pozzi, Chiara

    2015-01-01

    Wall flow DPFs (Diesel Particulate Filters) are nowadays universally adopted for all European passenger cars. Since the properties of the filter substrate material play a fundamental role in determining the optimal soot loading level to be reached before DPF regeneration, three different filter material substrates (Silicon Carbide, Aluminum Titanate and Cordierite) were investigated in this work, considering different driving conditions, after treatment layouts and regeneration strategies. In the first step of the research, an experimental investigation on the three different substrates over the NEDC (New European Driving Cycle) was performed. The data obtained from experiments were then used for the calibration and the validation of a one dimensional fluid-dynamic engine and after treatment simulation model. Afterward, the model was used to predict the vehicle fuel consumption increments as a function of the exhaust back pressure due to the soot loading for different driving cycles. The results showed that appreciable fuel consumption increments could be noticed only in particular driving conditions, and, as a consequence, in most of the cases the optimal filter regeneration strategy corresponds to reach the highest soot loading that still ensures the component safety even in case of uncontrolled regeneration events. - Highlights: • Three different substrate materials for a Diesel Particulate Filter were investigated. • Fuel consumption increases due to DPF soot loading were generally not appreciable. • Optimal soot loading before regeneration was the highest safeguarding DPF integrity. • SiC substrate showed highest soot load limit and lowest fuel consumption penalties. • AT and Cd substrate properties lead to lower soot load limits than SiC

  14. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  15. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports. Keywords. Biomimetic synthesis; carbonaceous biopreform; biomorphic Si–SiC ceramic composites; porous cellular SiC ceramics. 1. Introduction. In recent years, there has been tremendous ...

  16. Reliability Concerns for Flying SiC Power MOSFETs in Space

    Science.gov (United States)

    Galloway, K. F.; Witulski, A. F.; Schrimpf, R. D.; Sternberg, A. L.; Ball, D. R.; Javanainen, A.; Reed, R. A.; Sierawski, B. D.; Lauenstein, J-M

    2018-01-01

    SiC power MOSFETs are space-ready in terms of typical reliability measures. However, single event burnout (SEB) often occurs at voltages 50% or lower than specified breakdown. Data illustrating burnout for 1200 V devices is reviewed and the space reliability of SiC MOSFETs is discussed.

  17. Pd/CeO2/SiC Chemical Sensors

    Science.gov (United States)

    Lu, Weijie; Collins, W. Eugene

    2005-01-01

    The incorporation of nanostructured interfacial layers of CeO2 has been proposed to enhance the performances of Pd/SiC Schottky diodes used to sense hydrogen and hydrocarbons at high temperatures. If successful, this development could prove beneficial in numerous applications in which there are requirements to sense hydrogen and hydrocarbons at high temperatures: examples include monitoring of exhaust gases from engines and detecting fires. Sensitivity and thermal stability are major considerations affecting the development of high-temperature chemical sensors. In the case of a metal/SiC Schottky diode for a number of metals, the SiC becomes more chemically active in the presence of the thin metal film on the SiC surface at high temperature. This increase in chemical reactivity causes changes in chemical composition and structure of the metal/SiC interface. The practical effect of the changes is to alter the electronic and other properties of the device in such a manner as to degrade its performance as a chemical sensor. To delay or prevent these changes, it is necessary to limit operation to a temperature sensor structures. The present proposal to incorporate interfacial CeO2 films is based partly on the observation that nanostructured materials in general have potentially useful electrical properties, including an ability to enhance the transfer of electrons. In particular, nanostructured CeO2, that is CeO2 with nanosized grains, has shown promise for incorporation into hightemperature electronic devices. Nanostructured CeO2 films can be formed on SiC and have been shown to exhibit high thermal stability on SiC, characterized by the ability to withstand temperatures somewhat greater than 700 C for limited times. The exchanges of oxygen between CeO2 and SiC prevent the formation of carbon and other chemical species that are unfavorable for operation of a SiC-based Schottky diode as a chemical sensor. Consequently, it is anticipated that in a Pd/CeO2/SiC Schottky

  18. Synthesis of boron nitride nanotubes with SiC nanowire as template

    International Nuclear Information System (INIS)

    Zhong, B.; Song, L.; Huang, X.X.; Wen, G.W.; Xia, L.

    2011-01-01

    Highlights: → Boron nitride nanotubes (BNNTs) have been fabricated using SiC nanowires as template. → SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. → A template self-sacrificing mechanism is responsible for the formation of BNNTs. -- Abstract: A novel template method for the preparation of boron nitride nanotubes (BNNTs) using SiC nanowire as template and ammonia borane as precursor is reported. We find out that the SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. The as-prepared products are well characterized by means of complementary analytical techniques. A possible formation mechanism is disclosed. The method developed here paves the way for large scale production of BNNTs.

  19. Nanocrystalline SiC film thermistors for cryogenic applications

    Science.gov (United States)

    Mitin, V. F.; Kholevchuk, V. V.; Semenov, A. V.; Kozlovskii, A. A.; Boltovets, N. S.; Krivutsa, V. A.; Slepova, A. S.; Novitskii, S. V.

    2018-02-01

    We developed a heat-sensitive material based on nanocrystalline SiC films obtained by direct deposition of carbon and silicon ions onto sapphire substrates. These SiC films can be used for resistance thermometers operating in the 2 K-300 K temperature range. Having high heat sensitivity, they are relatively low sensitive to the magnetic field. The designs of the sensors are presented together with a discussion of their thermometric characteristics and sensitivity to magnetic fields.

  20. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting

    International Nuclear Information System (INIS)

    Yang Yafeng; Wang Huiyuan; Liang Yunhong; Zhao Ruyi; Jiang Qichuan

    2007-01-01

    Steel matrix composites locally reinforced with different molar ratios of in situ TiC/TiB 2 particulates (2:1, 1:1 and 1:2, respectively) have been fabricated successfully utilizing the self-propagating high-temperature synthesis (SHS) reactions of Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems during casting. Differential thermal analysis (DTA) and X-ray diffraction (XRD) results reveal that the exothermic reactions of the Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems proceed in such a way that Ni initially reacts with B 4 C and Ti to form Ni 2 B and Ti 2 Ni compounds, respectively, with heat evolution at 1037 deg. C; Subsequently, the external heat and the evolved heat from these exothermic reactions promote the reactions forming TiC and TiB 2 at 1133 deg. C. In the composites reinforced with 1:2 molar ratio of TiC/TiB 2 , almost all TiB 2 grains have clubbed structures, while TiC grains exhibit near-spherical morphologies. Furthermore, TiB 2 grain sizes decrease, with the increase of TiC content. In particular, in the composites reinforced with 2:1 molar ratio of TiC/TiB 2 , it is difficult to find the clubbed TiB 2 grains. Macro-pores and blowholes are absent in the local reinforcing region of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 , while a few macro-pores can be observed in the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . Moreover, the densities of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 are higher than that of the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . The composite reinforced with 1:2 molar ratio of TiC/TiB 2 has the highest hardness and the best wear resistance

  1. Processing of aluminum matrix composites by electroless plating and melt infiltration

    International Nuclear Information System (INIS)

    Leon, C.A.; Bourassa, A.-M.; Drew, R.A.L.

    2000-01-01

    Reduction of the SiC/ Al interaction and enhancement of wetting between reinforcements and molten aluminum was obtained by modifying the ceramic surface with deposition of nickel and copper coatings. The preparation of nickel- and copper-coated ceramic particles as precursors for MMC fabrication was studied. Al 2 O 3 and SiC powders were successfully coated with Ni and Cu using electroless metal plating. Uniform and continuous metal films were deposited on both, alumina and silicon carbide powders XRD showed that the Ni-P deposit was predominantly amorphous, while the copper deposit was essentially polycrystalline. Infiltration results showed that the use of the coated powders enhances the wettability between the matrix and ceramic phase when processing particulate MMCs by a vacuum infiltration technique, giving a porosity-free composite with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterpart samples XRD microstructural analysis of the composites indicates the formation of intermetallic phases such as CuAl 2 , in the case of copper coating, and NiAl and NiAl 3 when nickel-coated powders are infiltrated. Metallization of the ceramics minimizes the interfacial reaction of the SiC/Al composites and promotes wetting of Al 2 O 3 reinforcements with liquid aluminum. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. Plasmon-assisted photoluminescence enhancement of SiC nanocrystals by proximal silver nanoparticles

    International Nuclear Information System (INIS)

    Zhang, N.; Dai, D.J.; Fan, J.Y.

    2012-01-01

    Highlights: ► We studied metal surface plasmon-enhanced photoluminescence in SiC nanocrystals. ► The integrated emission intensity can be enhanced by 17 times. ► The coupling between SiC emission and Ag plasmon oscillation induces the enhancement. ► The enhancement is tunable with varied spacing thickness of electrolytes. - Abstract: Plasmon-enhanced photoluminescence has wide application potential in many areas, whereas the underlying mechanism is still in debate. We report the photoluminescence enhancement in SiC nanocrystal–Ag nanoparticle coupled system spaced by the poly(styrene sulfonic acid) sodium salt/poly(allylamine hydrochloride) polyelectrolyte bilayers. The integrated luminescence intensity can be improved by up to 17 times. Our analysis indicates that the strong coupling between the SiC nanocrystals and the surface plasmon oscillation of the silver nanoparticles is the major cause of the luminescence enhancement. These findings will help to understand the photoluminescence enhancement mechanism as well as widen the applications of the SiC nanocrystals in photonics and life sciences.

  3. The role of Pd in the transport of Ag in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2013-01-01

    This paper presents results in support of a newly proposed transport mechanism to account for the release of Ag from intact TRISO particles during HTR reactor operation. The study reveals that the migration of Ag in polycrystalline SiC can occur in association with Pd, a relatively high yield metallic fission product. The migration takes place primarily along grain boundary routes, seen in the form of distinct Pd, Ag and Si containing nodules. Pd is known to rapidly migrate to the SiC and iPyC interface within TRISO particles during operation. It has been shown to chemically corrode the SiC to form palladium silicides. These palladium silicides are found present along SiC grain boundaries in nodule like form. It is suggested that Ag penetrates these nodules together with the palladium silicide, to form a Pd, Ag and Si solution capable of migrating along SiC grain boundaries over time.

  4. The role of Pd in the transport of Ag in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2013-01-15

    This paper presents results in support of a newly proposed transport mechanism to account for the release of Ag from intact TRISO particles during HTR reactor operation. The study reveals that the migration of Ag in polycrystalline SiC can occur in association with Pd, a relatively high yield metallic fission product. The migration takes place primarily along grain boundary routes, seen in the form of distinct Pd, Ag and Si containing nodules. Pd is known to rapidly migrate to the SiC and iPyC interface within TRISO particles during operation. It has been shown to chemically corrode the SiC to form palladium silicides. These palladium silicides are found present along SiC grain boundaries in nodule like form. It is suggested that Ag penetrates these nodules together with the palladium silicide, to form a Pd, Ag and Si solution capable of migrating along SiC grain boundaries over time.

  5. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15......R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar...

  6. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    OpenAIRE

    Ferreira, Sonia C.; Conde, Ana; Arenas, Mar?a A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodi...

  7. PhySIC: a veto supertree method with desirable properties.

    Science.gov (United States)

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC.

  8. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  9. Large area SiC coating technology of RBSC for semiconductor processing component

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described

  10. Large area SiC coating technology of RBSC for semiconductor processing component

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described.

  11. Characterisation of 10 kV 10 A SiC MOSFET

    DEFF Research Database (Denmark)

    Eni, Emanuel-Petre; Incau, Bogdan Ioan; Munk-Nielsen, Stig

    2015-01-01

    The objective of this paper is to characterize and evaluate the static and dynamic performances of 10 kV 10 A 4H-SIC MOSFETs at high temperatures. The results show good electrical performances of the SiC MOSFETs for high temperature operations. The double-pulse test results showed interesting...

  12. CVD of SiC and AlN using cyclic organometallic precursors

    Science.gov (United States)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  13. Influence of reinforcement grade and matrix composition on corrosion resistance of cast aluminium matrix composites (A3xx.x/SiCp) in a humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Viejo, F.; Carboneras, M. [Departamento de Ciencia de Materiales, Facultad de Quimica Universidad Complutense, 28040, Madrid (Spain); Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica Universidad Complutense, 28040, Madrid (Spain); Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain); Lopez, M.D. [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, 28931, Mostoles, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2003-05-01

    A study of the influence of the silicon carbide (SiC{sub p}) proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) exposed to high relative humid environment was carried out under simulation in a climatic chamber. The matrix of A360/SiC/xxp composites was virtually free of copper while the A380/SiC/xxp matrix contained 3.13-3.45wt% Cu and 1.39-1.44wt% Ni. The kinetics of the corrosion process was studied on the basis of gravimetric tests. The nature of corrosion products was analysed by Scanning Electron Microscopy (SEM) and Low Angle X-Ray Diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion damage to Al/SiCp composites was low at 80% Relative Humidity (RH) and increased with temperature, SiCp proportion, relative humidity and Cu matrix concentration. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Eine Studie zum Einfluss des Siliziumkarbidanteils (SiCp) und der Zusammensetzung des Grundwerkstoffs von vier Aluminiummatrixverbundwerkstoffen (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p), die in Umgebungen mit relativ hoher Feuchtigkeit ausgelagert waren, wurde unter simulierten Bedingungen in einer Klimakammer durchgefuehrt. Die Matrix des A360/SiC/xxp-Verbundwerkstoffs war praktisch Kupfer-frei waehrend die A380/SiC/xxp Matrix 3,13-3,45 Gew.-% Cu und 1,39-1,44 Gew.-% Ni enthielt. Die Kinetik des Korrosionsprozesses wurde auf der Basis von gravimetrischen Messungen studiert. Die Beschaffenheit der Korrosionsprodukte wurde mittelt REM-Untersuchungen und

  14. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes

    DEFF Research Database (Denmark)

    Facciotti, Marco; Boffa, Vittorio; Magnacca, Giuliana

    2014-01-01

    Porous SiC based materials present high mechanical, chemical and thermal robustness, and thus have been largely applied to water-filtration technologies. In this study, commercial SiC microfiltration tubes with nominal pore size of 0.04 m were used as carrier for depositing thin aluminium oxide....... After 5 times coating, a 5.6 µm thick γ-Al2O3 layer was obtained. This membrane shows retention of ~75% for polyethylene glycol molecules with Mn of 8 and 35 kDa, indicating that, despite their intrinsic surface roughness, commercial SiC microfiltration tubes can be applied as carrier for thin...... ultrafiltration membranes. This work also indicates that an improvement of the commercial SiC support surface smoothness may greatly enhance permeance and selectivity of Υ-Al2O3 ultrafiltration membranes by allowing the deposition of thinner defect-free layers....

  15. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  16. Effect of irradiation on thermal expansion of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Senor, D.J.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC f /SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) β-SiC at all temperatures

  17. Qualification of SiC materials for fusion and fission reactors

    International Nuclear Information System (INIS)

    Ryazanov, Alexander

    2009-01-01

    Ceramic materials such as silicon carbide (SiC) and SiC/SiC composites are both considered, due to their high-temperature strength, pseudo-ductile fracture behavior and low-induced radioactivity, as candidate materials for fusion reactor (test blanket module for ITER) and high temperature gas-cooled reactors (HTGR). The radiation swelling and creep of SiC are very important physical phenomena that determine the radiation resistance of them in these reactors. Other important problem which exists especially in fusion reactor is an effect of accumulation of high concentrations of helium atoms in SiC (up to 15000-20000 at.ppm) due to (n,α) nuclear reaction on physical mechanical properties. An understanding of the physical mechanism of this phenomenon is very important for the investigations of helium atom effect on radiation swelling in SiC. In this report a compilation of non-irradiated and irradiated properties of SiC are provided and analyzed in terms of their application to fusion and high temperature gas cooled reactors. Special topic of this report is oriented on the micro structural changes in chemically vapor-deposited (CVD) high-purity beta-SiC during neutron and ion irradiations at elevated temperatures. The evolutions of various radiation induced defects including dislocation loops, network dislocations and cavities are presented here as a function of irradiation temperature and fluencies. These observations are discussed in relation with such irradiation phenomena in SiC as low temperature swelling and cavity swelling. One of the main difficulties in the radiation damage studies of SiC materials lies in the absence of theoretical models and interpretation of many physical mechanisms of radiation phenomena including the radiation swelling and creep. The point defects in ceramic materials are characterized by the charge states and they can have an effective charge. The internal effective electrical field is formed due to the accumulation of charged point

  18. 10kV SiC MOSFET split output power module

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Li, Helong; Uhrenfeldt, Christian

    2015-01-01

    The poor body diode performance of the first generation of 10kV SiC MOSFETs and the parasitic turn-on phenomenon limit the performance of SiC based converters. Both these problems can potentially be mitigated using a split output topology. In this paper we present a comparison between a classical...

  19. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  20. SiC Coating Process Development Using H-PCS in Supercritical CO2

    International Nuclear Information System (INIS)

    Park, Kwangheon; Jung, Wonyoung

    2013-01-01

    We tried SiC coating using supercritical fluids. Supercritical fluids are the substance exists over critical temperature and critical pressure. It is hard to expect that there would be a big change as single-solvent as the fluid is incompressible and the space between the molecules is almost steady. But the fluid which is being supercritical can bring a great change when it is changed its pressure near its critical point, showing its successive change in the density, viscosity, diffusion coefficient and the polarity. We have tested the 'H-PCS into SiC' coating experiment with supercritical CO 2 which has the high penetration, low viscosity as well as the high density and the high solubility that shows the property of the fluid. This experiment is for SiC coating using H-PCS in supercritical CO 2 . It shows the clear difference that the penetration of H-PCS into the SiC between dip coating method and using the supercritical CO 2 If we can make a metal cladding with SiC composites as a protective layer, the use of the cladding will be very broad and diverse. Inherent safe nuclear fuels can be possible that can stand under severe accident conditions. SiC is known to be one of a few materials that maintain very corrosion-resistant properties under tough corrosive environments. The metal cladding with SiC composites as a protective layer will be a high-tech product that can be used in many applications including chemical, material, and nuclear engineering and etc

  1. Tema 8. Principis físics dels semiconductors (Guia del tema)

    OpenAIRE

    Beléndez Vázquez, Augusto

    2011-01-01

    Guia del "Tema 8. Principis físics dels semiconductors" de l'assignatura "Fonaments Físics de l'Enginyeria I" de "Grau en Enginyeria en So i Imatge" impartit a l'Escola Politècnica Superior de la Universitat d'Alacant.

  2. Diodes of nanocrystalline SiC on n-/n+-type epitaxial crystalline 6H-SiC

    Science.gov (United States)

    Zheng, Junding; Wei, Wensheng; Zhang, Chunxi; He, Mingchang; Li, Chang

    2018-03-01

    The diodes of nanocrystalline SiC on epitaxial crystalline (n-/n+)6H-SiC wafers were investigated, where the (n+)6H-SiC layer was treated as cathode. For the first unit, a heavily boron doped SiC film as anode was directly deposited by plasma enhanced chemical vapor deposition method on the wafer. As to the second one, an intrinsic SiC film was fabricated to insert between the wafer and the SiC anode. The third one included the SiC anode, an intrinsic SiC layer and a lightly phosphorus doped SiC film besides the wafer. Nanocrystallization in the yielded films was illustrated by means of X-ray diffraction, transmission electronic microscope and Raman spectrum respectively. Current vs. voltage traces of the obtained devices were checked to show as rectifying behaviors of semiconductor diodes, the conduction mechanisms were studied. Reverse recovery current waveforms were detected to analyze the recovery performance. The nanocrystalline SiC films in base region of the fabricated diodes are demonstrated as local regions for lifetime control of minority carriers to improve the reverse recovery properties.

  3. Effect of Ti and Si interlayer materials on the joining of SiC ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Park, Dong Jun; Park, Jeong Yong; Kim, Weon Ju [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ∼0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ∼100 MPa. The joint interface consisted of TiSi{sub 2}, Ti{sub 3}SiC{sub 2}, and SiC phases formed by a diffusion reaction of Ti and Si.

  4. Effect of Zircon Silicate Reinforcements on the Microstructure and Properties of as Cast Al-4.5Cu Matrix Particulate Composites Synthesized via Squeeze Cast Route

    Directory of Open Access Journals (Sweden)

    E. G. Okafor

    2010-06-01

    Full Text Available The as-cast microstructure and properties of Al-4.5Cu/ZrSiO4 particulate composite synthesized via squeezed casting route was studied, varying the percentage ZrSiO4 in the range of 5-25wt%. The result obtained revealed that addition of ZrSiO4 reinforcements, increased the hardness value and apparent porosity by 107.65 and 34.23% respectively and decrease impact energy by 43.16 %. As the weight percent of ZrSiO4 increases in the matrix alloy, the yield and ultimate tensile strength increased by 156.52 and 155.81% up to a maximum of 15% ZrSiO4 addition respectively. The distribution of the brittle ZrSiO4 phase in the ductile matrix alloy led to increase strength and hardness values. These results had shown that, additions of ZrSiO4 particles to Al-4.5Cu matrix alloy improved properties.

  5. Effect of reinforcement on the cutting forces while machining metal matrix composites–An experimental approach

    Directory of Open Access Journals (Sweden)

    Ch. Shoba

    2015-12-01

    Full Text Available Hybrid metal matrix composites are of great interest for researchers in recent years, because of their attractive superior properties over traditional materials and single reinforced composites. The machinabilty of hybrid composites becomes vital for manufacturing industries. The need to study the influence of process parameters on the cutting forces in turning such hybrid composite under dry environment is essentially required. In the present study, the influence of machining parameters, e.g. cutting speed, feed and depth of cut on the cutting force components, namely feed force (Ff, cutting force (Fc, and radial force (Fd has been investigated. Investigations were performed on 0, 2, 4, 6 and 8 wt% Silicon carbide (SiC and rice husk ash (RHA reinforced composite specimens. A comparison was made between the reinforced and unreinforced composites. The results proved that all the cutting force components decrease with the increase in the weight percentage of the reinforcement: this was probably due to the dislocation densities generated from the thermal mismatch between the reinforcement and the matrix. Experimental evidence also showed that built-up edge (BUE is formed during machining of low percentage reinforced composites at high speed and high depth of cut. The formation of BUE was captured by SEM, therefore confirming the result. The decrease of cutting force components with lower cutting speed and higher feed and depth of cut was also highlighted. The related mechanisms are explained and presented.

  6. SiC Optically Modulated Field-Effect Transistor

    Science.gov (United States)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  7. ToF-MEIS stopping measurements in thin SiC films

    International Nuclear Information System (INIS)

    Linnarsson, M.K.; Khartsev, S.; Primetzhofer, D.; Possnert, G.; Hallén, A.

    2014-01-01

    Electronic stopping in thin, amorphous, SiC films has been studied by time-of-flight medium energy ion scattering and conventional Rutherford backscattering spectrometry. Amorphous SiC films (8, 21 and 36 nm) were prepared by laser ablation using a single crystalline silicon carbide target. Two kinds of substrate films, one with a lower atomic mass (carbon) and one with higher atomic mass (iridium) compared to silicon has been used. Monte Carlo simulations have been used to evaluate electronic stopping from the shift in energy for the signal scattered from Ir with and without SiC. The two kinds of samples are used to illustrate the strength and challenges for ToF-MEIS compared to conventional RBS

  8. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    International Nuclear Information System (INIS)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-01-01

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of β-SiC with traces of α-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time

  9. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-04-25

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of {beta}-SiC with traces of {alpha}-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time.

  10. Feasibility study on the application of carbide (ZrC, SiC) for VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog; Kim, Si Hyeong; Jang, Moon Hee; Lee, Young Woo

    2006-08-15

    A feasibility study on the coating process of ZrC for the TRISO nuclear fuel and applications of SiC as high temperature materials for the core components has performed to develop the fabrication process for the advanced ZrC TRISO fuels and the high temperature structural components for VHTR, respectively. In the case of ZrC coating, studies were focused on the comparisons of the developed coating processes for screening of our technology, the evaluations of the reactions parameters for a ZrC deposition by the thermodynamic calculations and the preliminary coating experiments by the chloride process. With relate to SiC ceramics, our interesting items are as followings; an analysis of applications and specifications of the SiC components and collections of the SiC properties and establishments of data base. For these purposes, applications of SiC ceramics for the GEN-IV related components as well as the fusion reactor related ones were reviewed. Additionally, the on-going activities with related to the ZrC clad and the SiC composites discussed in the VHTR GIF-PMB, were reviewed to make the further research plans at the section 1 in chapter 3.

  11. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  12. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides

    Directory of Open Access Journals (Sweden)

    Mohamed Gobara

    2015-06-01

    Full Text Available A composite consisting of magnesium matrix reinforced with a network of TiC–Ti2AlC–TiB2 particulates has been fabricated using a practical in-situ reactive infiltration technique. The microstructural and phase composition of the magnesium matrix composite (R-Mg was investigated using SEM/EDS and XRD. The analyses revealed the complete formation of TiC, Ti2AlC and TiB2 particles in the magnesium matrix. Comparative compression tests of R-Mg and AZ91D alloy showed that the reinforcing particles improve the mechanical properties of Mg alloy. EIS and potentiodynamic polarization results indicated that the reinforcing particles significantly improve the corrosion resistance of the reinforced alloy in 3.5% NaCl solution.

  13. Fabrication and characterization of aluminium hybrid composites reinforced with fly ash and silicon carbide through powder metallurgy

    Science.gov (United States)

    Bilal Naim Shaikh, Mohd; Arif, Sajjad; Arif Siddiqui, M.

    2018-04-01

    This paper reports the fabrication and characterization of aluminium hybrid composites (AMCs) reinforced with commonly available and inexpensive fly ash (FA, 0, 5, 10 and 15 wt.%) particles along silicon carbide (SiC) using powder metallurgy process. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were employed for microstructural characterization and phase identification respectively. Wear behaviour were investigated using pin-on-disc wear tester for the different combinations of wear parameters like load (10, 20 and 30 N), sliding speed (1.5, 2 and 2.5 m s‑1) and sliding distance (300, 600 and 900 m). SEM confirms the uniform distribution of FA and SiC in aluminium matrix. The hardness of Al/SiC/FA is increased by 20%–25% while wear rate decreased by 15%–40%. From wear analysis, sliding distance was the least significant parameter influencing the wear loss followed by applied load and sliding speed. To identify the mechanism of wear, worn out surface were also analysed by SEM.

  14. Properties of SiC semiconductor detector of fast neutrons investigated using MCNPX code

    International Nuclear Information System (INIS)

    Sedlakova, K.; Sagatova, A.; Necas, V.; Zatko, B.

    2013-01-01

    The potential of silicon carbide (SiC) for use in semiconductor nuclear radiation detectors has been long recognized. The wide bandgap of SiC (3.25 eV for 4H-SiC polytype) compared to that for more conventionally used semiconductors, such as silicon (1.12 eV) and germanium (0.67 eV), makes SiC an attractive semiconductor for use in high dose rate and high ionization nuclear environments. The present work focused on the simulation of particle transport in SiC detectors of fast neutrons using statistical analysis of Monte Carlo radiation transport code MCNPX. Its possibilities in detector design and optimization are presented.(authors)

  15. Determination of irradiation temperature using SiC temperature monitors

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

  16. Synthesis of nanostructured SiC using the pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Zhang, H.X.; Feng, P.X.; Makarov, V.; Weiner, B.R.; Morell, G.

    2009-01-01

    We report the new results on the direct synthesis of nanostructured silicon carbide (SiC) materials using the pulsed laser deposition technique. Scanning electron microscopy images revealed that SiC nanoholes, nanosprouts, nanowires, and nanoneedles were obtained. The crystallographic structure, chemical composition, and bond structure of the nanoscale SiC materials were investigated using X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman scattering spectroscopy. The transverse optical mode and longitudinal optical mode in Raman spectra were found to become sharper as the substrate temperature was increased, while the material structure evolved from amorphous to crystalline

  17. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching

    International Nuclear Information System (INIS)

    Choi, J H; Bano, E; Latu-Romain, L; Dhalluin, F; Chevolleau, T; Baron, T

    2012-01-01

    In this paper, we demonstrate a top-down fabrication technique for nanometre scale silicon carbide (SiC) pillars using inductively coupled plasma etching. A set of experiments in SF 6 -based plasma was carried out in order to realize high aspect ratio SiC nanopillars. The etched SiC nanopillars using a small circular mask pattern (115 nm diameter) show high aspect ratio (7.4) with a height of 2.2 µm at an optimum bias voltage (300 V) and pressure (6 mTorr). Under the optimal etching conditions using a large circular mask pattern with 370 nm diameter, the obtained SiC nanopillars exhibit high anisotropy features (6.4) with a large etch depth (>7 µm). The etch characteristic of the SiC nanopillars under these conditions shows a high etch rate (550 nm min -1 ) and a high selectivity (over 60 for Ni). We also studied the etch profile of the SiC nanopillars and mask evolution over the etching time. As the mask pattern size shrinks in nanoscale, vertical and lateral mask erosion plays a crucial role in the etch profile of the SiC nanopillars. Long etching process makes the pillars appear with a hexagonal shape, coming from the crystallographic structure of α-SiC. It is found that the feature of pillars depends not only on the etching process parameters, but also on the crystallographic structure of the SiC phase. (paper)

  18. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang

    2015-01-23

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  19. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang; Ying, Pengzhan; Wang, Lin; Wei, Guodong; Gao, Fengmei; Zheng, Jinju; Shang, Minhui; Yang, Zuobao; Yang, Weiyou; Wu, Tao

    2015-01-01

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  20. Ceramic-Ceramic Composites Meeting in Belgium.

    Science.gov (United States)

    1987-08-04

    the liquid phase Vidrio , Madrid, Spain) described the use should disappear during the heat treat- of SIC grains as a dispersed phase to ment. The...SiC fiber-reinforced SiO2 glass ma- trix, mullite-zirconia-A120 3-SiC, C-fi- used elastic wave measurements at high ber-reinforced reaction-bonded SiC

  1. Effects of SiC and MgO on aluminabased ceramic foams filters

    OpenAIRE

    CAO Da-li; ZHOU Jing-yi; JIN Yong-ming

    2007-01-01

    Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phas...

  2. Heteroepitaxy of zinc-blende SiC nano-dots on Si substrate by organometallic ion beam

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kiuchi, M.; Sugimoto, S.; Goto, S.

    2006-01-01

    The self-assembled SiC nano-dots were fabricated on Si(111) substrate at low-temperatures using the organometallic ion beam deposition technique. The single precursor of methylsilicenium ions (SiCH 3 + ) with the energy of 100 eV was deposited on Si(111) substrate at 500, 550 and 600 deg. C. The characteristics of the self-assembled SiC nano-dots were analyzed by reflection high-energy electron diffraction (RHEED), Raman spectroscopy and atomic force microscope (AFM). The RHEED patterns showed that the crystal structure of the SiC nano-dots formed on Si(111) substrate was zinc-blende SiC (3C-SiC) and it was heteroepitaxy. The self-assembled SiC nano-dots were like a dome in shape, and their sizes were the length of 200-300 nm and the height of 10-15 nm. Despite the low-temperature of 500 deg. C as SiC crystallization the heteroepitaxial SiC nano-dots were fabricated on Si(111) substrate using the organometallic ion beam

  3. Microstructure of SiC ceramics fabricated by pyrolysis of electron beam irradiated polycarbomethylsilane containing precursors

    International Nuclear Information System (INIS)

    Xu Yunshu; Tanaka, Shigeru

    2003-01-01

    A modified gel-casting method was developed to form the ceramics precursor matrix by using polycarbomehylsilane (PCMS) and SiC powder. The polymer precursor was mixed with SiC powder in toluene, and then the slurry samples were cast into designed shapes. The pre-ceramic samples were then irradiated by 2.0 MeV electron beam generated by a Cockcroft-Walton type accelerator in He gas flow to about 15 MGy. The cured samples were pyrolyzed and sintered into SiC ceramics at 1300degC in Ar gas. The modified gel-casting method leaves almost no internal stress in the pre-ceramic samples, and the electron beam curing not only diminished the amount of pyrolysis gaseous products but also enhanced the interface binding of the polymer converted SiC and the grains of SiC powder. Optical microscope, AFM and SEM detected no visible internal or surface cracks in the final SiC ceramics matrix. A maximum value of 122 MPa of flexural strength of the final SiC ceramics was achieved. (author)

  4. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libao [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Xie Xiaohua [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wang Baofeng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang Ke [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie Jingying [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China) and Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: jyxie@mail.sim.ac.cn

    2006-07-15

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g{sup -1} and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly.

  5. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    International Nuclear Information System (INIS)

    Chen Libao; Xie Xiaohua; Wang Baofeng; Wang Ke; Xie Jingying

    2006-01-01

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g -1 and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly

  6. Wear behavior of Al-7%Si-0.3%Mg/melon shell ash particulate composites.

    Science.gov (United States)

    Abdulwahab, M; Dodo, R M; Suleiman, I Y; Gebi, A I; Umar, I

    2017-08-01

    The present study examined wear characteristics of A356/melon shell ash particulate composites. Dry-sliding the stainless steel ball against specimen disc revealed the abrasive wear behavior of the composites under loads of 2 and 5N. The composite showed lower wear rate of 2.182 × 10 -4 mm 3 /Nm at 20 wt% reinforced material under load of 5N. Results showed that wear rate decreased significantly with increasing weight percentage of melon shell ash particles. Microstructural analyses of worn surfaces of the composites reveal evidence of plastic deformation of matrix phase. The wear resistance of A356 increased considerably with percentage reinforcement. In other words, the abrasive mass loss decreased with increasing percentage of reinforcement addition at the both applied loads. The control sample suffered a highest mass loss at 5 N applied load.

  7. Characterization of SiCf/SiC and CNT/SiC composite materials produced by liquid phase sintering

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Cho, K.S.; Byun, J.H.; Bae, D.S.

    2011-01-01

    This paper dealt with the microstructure and mechanical properties of SiC based composites reinforced with different reinforcing materials. The composites were fabricated using reinforcing materials of carbon nanotubes (CNT) and Tyranno Lox-M SiC chopped fibers. The volume fraction of carbon nanotubes was also varied in this composite system. An Al 2 O 3 -Y 2 O 3 powder mixture was used as a sintering additive in the consolidation of the SiC matrix. The characterization of the composites was investigated by means of SEM and three point bending tests. These composites showed a dense morphology of the matrix region, by the creation of a secondary phase. The composites reinforced with SiC chopped fibers possessed a flexural strength of about 400 MPa at room temperature. The flexural strength of the carbon nanotubes composites had a tendency to decrease with increased volume fraction of the reinforcing material.

  8. Structural and electrical characterization of ion beam synthesized and n-doped SiC layers

    Energy Technology Data Exchange (ETDEWEB)

    Serre, C.; Perez-Rodriguez, A.; Romano-Rodriguez, A.; Morante, J.R. [Barcelona Univ. (Spain). Dept. Electronica; Panknin, D.; Koegler, R.; Skorupa, W. [Forschungszentrum Rossendorf, Dresden (Germany); Esteve, J.; Acero, M.C. [CSIC, Bellaterra (Spain). Centre Nacional de Microelectronica

    2001-07-01

    This work reports preliminary data on the ion beam synthesis of n-doped SiC layers. For this, two approaches have been studied: (i) doping by ion implantation (with N{sup +}) of ion beam synthesized SiC layers and (ii) ion beam synthesis of SiC in previously doped (with P) Si wafers. In the first case, the electrical data show a p-type overcompensation of the SiC layer in the range of temperatures between -50 C and 125 C. The structural (XRD) and in-depth (SIMS, Spreading Resistance) analysis of the samples suggest this overcompensation to be induced by p-type active defects related to the N{sup +} ion implantation damage, and therefore the need for further optimization their thermal processing. In contrast, the P-doped SiC layers always show n-type doping. This is also accompanied by a higher structural quality, being the spectral features of the layers similar to those from the not doped material. Electrical activation of P in the SiC lattice is about one order of magnitude lower than in Si. These data constitute, to our knowledge, the first results reported on the doping of ion beam synthesized SiC layers. (orig.)

  9. A comparative study on electrical characteristics of 1-kV pnp and npn SiC bipolar junction transistors

    Science.gov (United States)

    Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun

    2018-04-01

    We investigate the electrical characteristics of 1-kV pnp SiC bipolar junction transistors (BJTs) and compare them with those of npn SiC BJTs. The base resistance, current gain, and blocking capability are characterized. It is found that the base resistance of pnp SiC BJTs is two orders of magnitude lower than that of npn SiC BJTs. However, the obtained current gains are low below unity in pnp SiC BJTs, whereas npn SiC BJTs exhibit a current gain of 14 without surface passivation. The reason for the poor current gain of pnp SiC BJTs is discussed.

  10. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  11. Detection and Analysis of Particles with Failed SiC in AGR-1 Fuel Compacts

    International Nuclear Information System (INIS)

    Hunn, John D.; Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M.; Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A.

    2014-01-01

    As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of "1"3"4Cs and "1"3"7Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during the AGR-1 irradiation test or post-irradiation safety testing at 1600– 1800°C were identified, and individual particles with abnormally low cesium retention were sorted out with the ORNL Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were related to either fabrication defects or showed extensive Pd corrosion through the SiC where it had been exposed by similar IPyC cracking. (author)

  12. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay

    2013-07-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  13. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  14. Effect of silicon carbide addition on the corrosion behavior of powder metallurgy Cu−30Zn brass in a 3.5 wt% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Mohammed Ali, E-mail: maalmomani7@just.edu.jo [Department of Industrial Engineering, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110 (Jordan); Tyfour, Wa' il Radwan, E-mail: wrtyfou@just.edu.jo [Department of Industrial Engineering, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110 (Jordan); Nemrat, Mohammed Hani, E-mail: mohammednemrat@yahoo.com [Department of Mechanical Engineering, Institute of Applied Technology, Abu Dhabi (United Arab Emirates)

    2016-09-15

    A study was made to evaluate the corrosion behavior when Cu−30Zn alloy is reinforced with different weight fractions of silicon carbide (SiC) particles in a simulated sea solution (3.5 wt% NaCl aqueous solution). The composites were produced via powder metallurgy (PM) route. For the sake of comparison, the corrosion behaviors of unreinforced and reinforced alloy were examined. Electrochemical measurements (potentiodynamic testing) showed that the corrosion rate of the composites decreased with increase of SiC weight percentages, as a result of weak microgalvanic couple between reinforcement particles and Cu−30Zn matrix, and the low possibility of intermetallic phases formation. ANOVA test indicated that the variations of corrosion rate of the composites upon changing weight percentages of SiC particles are statistically significant. Polarization curves showed that the passive film tends to be less stable, and the potential difference between passivation and free corrosion points increased with increase of SiC weight percentages, as SiC cathodically protect the matrix material by sacrificial anodic dissolution of crevice regions about reinforcement particles. Scanning Electron Microscope (SEM) images of the sample's surfaces before and after testing are in agreement with the electrochemical results. - Highlights: • Effect of adding SiC on both uniform and localized corrosion of Cu−30Zn alloy is studied. • Reinforcing Cu−30Zn with nonconductive SiC particles decreases its tendency to uniform and localized corrosion. • Reinforcement particles cathodically protect the matrix material, and retard pit propagation to the matrix.

  15. A route to strong p-doping of epitaxial graphene on SiC

    KAUST Repository

    Cheng, Yingchun; Schwingenschlö gl, Udo

    2010-01-01

    The effects of Au intercalation on the electronic properties of epitaxialgraphenegrown on SiC{0001} substrates are studied using first principles calculations. A graphenemonolayer on SiC{0001} restores the shape of the pristine graphene dispersion

  16. Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique

    Science.gov (United States)

    Arif, Sajjad; Tanwir Alam, Md; Ansari, Akhter H.; Bilal Naim Shaikh, Mohd; Arif Siddiqui, M.

    2018-05-01

    The tribological performance of aluminium hybrid composites reinforced with micro SiC (5 wt%) and nano zirconia (0, 3, 6 and 9 wt%) fabricated through powder metallurgy technique were investigated using statistical and artificial neural network (ANN) approach. The influence of zirconia reinforcement, sliding distance and applied load were analyzed with test based on full factorial design of experiments. Analysis of variance (ANOVA) was used to evaluate the percentage contribution of each process parameters on wear loss. ANOVA approach suggested that wear loss be mainly influenced by sliding distance followed by zirconia reinforcement and applied load. Further, a feed forward back propagation neural network was applied on input/output date for predicting and analyzing the wear behaviour of fabricated composite. A very close correlation between experimental and ANN output were achieved by implementing the model. Finally, ANN model was effectively used to find the influence of various control factors on wear behaviour of hybrid composites.

  17. SiC Composite for Fuel Structure Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yueh, Ken [Electric Power Research Inst. (EPRI), Charlotte, NC (United States)

    2017-12-22

    Extensive evaluation was performed to determine the suitability of using SiC composite as a boiling water reactor (BWR) fuel channel material. A thin walled SiC composite box, 10 cm in dimension by approximately 1.5 mm wall thickness was fabricated using chemical vapor deposition (CVD) for testing. Mechanical test results and performance evaluations indicate the material could meet BWR channel mechanical design requirement. However, large mass loss of up to 21% was measured in in-pile corrosion test under BWR-like conditions in under 3 months of irradiation. A fresh sister sample irradiated in a follow-up cycle under PWR conditions showed no measureable weight loss and thus supports the hypothesis that the oxidizing condition of the BWR-like coolant chemistry was responsible for the high corrosion rate. A thermodynamic evaluation showed SiC is not stable and the material may oxidize to form SiO2 and CO2. Silica has demonstrated stability in high temperature steam environment and form a protective oxide layer under severe accident conditions. However, it does not form a protective layer in water under normal BWR operational conditions due to its high solubility. Corrosion product stabilization by modifying the SiC CVD surface is an approach evaluated in this study to mitigate the high corrosion rate. Titanium and zirconium have been selected as stabilizing elements since both TiSiO4 and ZrSiO4 are insoluble in water. Corrosion test results in oxygenated water autoclave indicate TiSiO4 does not form a protective layer. However, zirconium doped test samples appear to form a stable continuous layer of ZrSiO4 during the corrosion process. Additional process development is needed to produce a good ZrSiC coating to verify functionality of the mitigation concept.

  18. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C

  19. The physics of epitaxial graphene on SiC(0001)

    International Nuclear Information System (INIS)

    Kageshima, H; Hibino, H; Tanabe, S

    2012-01-01

    Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to

  20. Fluorescent SiC with pseudo-periodic moth-eye structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Aijaz, Imran; Ou, Haiyan

    2012-01-01

    White light-emitting diodes (LEDs) consisting of a nitride-based blue LED chip and phosphor are very promising candidates for the general lighting applications as energy-saving sources. Recently, donor-acceptor doped fluorescent SiC has been proven as a highly efficient wavelength converter...... to enhance the extraction efficiency, we present a simple method to fabricate the pseudo-periodic moth-eye structures on the surface of the fluorescent SiC. A thin gold layer is deposited on the fluorescent SiC first. Then the thin gold layer is treated by rapid thermal processing. After annealing, the thin...... gold layer turns into discontinuous nano-islands. The average size of the islands is dependent on the annealing condition which could be well controlled. By using the reactive-ion etching, pseudo-periodic moth-eye structures would be obtained using the gold nano-islands as a mask layer. Reactive...

  1. Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET

    Directory of Open Access Journals (Sweden)

    Frederick Ojiemhende Ehiagwina

    2016-09-01

    Full Text Available Properties of Silicon Carbide Junction Field Effect Transistor (SiC JFET such as high switching speed, low forward voltage drop and high temperature operation have attracted the interest of power electronic researchers and technologists, who for many years developed devices based on Silicon (Si.  A number of power system Engineers have made efforts to develop more robust equipment including circuits or modules with higher power density. However, it was realized that several available power semiconductor devices were approaching theoretical limits offered by Si material with respect to capability to block high voltage, provide low on-state voltage drop and switch at high frequencies. This paper presents an overview of the current applications of SiC JFET in circuits such as inverters, rectifiers and amplifiers. Other areas of application reviewed include; usage of the SiC JFET in pulse signal circuits and boost converters. Efforts directed toward mitigating the observed increase in electromagnetic interference were also discussed. It also presented some areas for further research, such as having more applications of SiC JFET in harsh, high temperature environment. More work is needed with regards to SiC JFET drivers so as to ensure stable and reliable operation, and reduction in the prices of SiC JFETs through mass production by industries.

  2. High temperature oxidation behavior of SiC coating in TRISO coated particles

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Bing; Zhang, Kaihong; Liu, Malin; Shao, Youlin; Tang, Chunhe

    2014-01-01

    Highlights: • High temperature oxidation tests of SiC coating in TRISO particles were carried out. • The dynamic oxidation process was established. • Oxidation mechanisms were proposed. • The existence of silicon oxycarbides at the SiO 2 /SiC interface was demonstrated. • Carbon was detected at the interface at high temperatures and long oxidation time. - Abstract: High temperature oxidation behavior of SiC coatings in tristructural-isotropic (TRISO) coated particles is crucial to the in-pile safety of fuel particles for a high temperature gas cooled reactor (HTGR). The postulated accident condition of air ingress was taken into account in evaluating the reliability of the SiC layer. Oxidation tests of SiC coatings were carried out in the ranges of temperature between 800 and 1600 °C and time between 1 and 48 h in air atmosphere. Based on the microstructure evolution of the oxide layer, the mechanisms and kinetics of the oxidation process were proposed. The existence of silicon oxycarbides (SiO x C y ) at the SiO 2 /SiC interface was demonstrated by X-ray photospectroscopy (XPS) analysis. Carbon was detected by Raman spectroscopy at the interface under conditions of very high temperatures and long oxidation time. From oxidation kinetics calculation, activation energies were 145 kJ/mol and 352 kJ/mol for the temperature ranges of 1200–1500 °C and 1550–1600 °C, respectively

  3. Ion irradiation effects on the matrix phase of SiCf/SiC composites prepared by the whisker growing assisted CVI process

    International Nuclear Information System (INIS)

    Park, Kyeong Hwan; Park, Ji Yeon; Kang, Suk Min; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog

    2005-01-01

    SiC f /SiC composites are one of promising candidates for structural material of the next generation energy system such as GFR and fusion reactors. A number of fabrication methods have been studied for obtaining an outstanding SiC f /SiC composite with a high density, high crystallinity and purity. SiC f /SiC composites consisted of whisker-reinforced matrix have a great potential at the viewpoint both of the fabrication process and the mechanical properties. SiC whiskers formed between SiC fibers improve the densification of SiC matrix during CVI process. In addition, the reinforced whiskers would be likely to enhance the mechanical properties of matrix and SiC f /SiC composite. While there has been significant developmental work on manufacturing the SiC f /SiC composite by the whisker growing assisted CVI process, detailed understanding of what effects the complex in the operating conditions combined with realistic materials property data is not adequately understood. Especially, its irradiation effects are even less clear and not well understood. A method of charged-particle irradiation is the most important R and D topics for simulating the core conditions of the advanced nuclear systems. Many studies on radiation effects of SiC and SiC f /SiC composites using a method of ion irradiation have in progress for R and D of the advanced nuclear systems. In this present work, changes of the mechanical property of SiC whisker-reinforced matrix in SiC f /SiC composite were evaluated by means of the depth sensing indentation method before and after chargedparticle irradiation

  4. Growth of graphene from SiC{0001} surfaces and its mechanisms

    International Nuclear Information System (INIS)

    Norimatsu, Wataru; Kusunoki, Michiko

    2014-01-01

    Graphene, a one-atom-layer carbon material, can be grown by thermal decomposition of SiC. On Si-terminated SiC(0001), graphene nucleates at steps and grows layer-by-layer, and as a result a homogeneous monolayer or bilayer can be obtained. We demonstrate this mechanism both experimentally and theoretically. On the C-face (000 1-bar ), multilayer graphene nucleates not only at steps, but also on the terraces. These differences reflect the distinct differences in the reactivity of these faces. Due to its high quality and structural controllability, graphene on SiC{0001} surfaces will be a platform for high-speed graphene device applications. (paper)

  5. PhySIC_IST: cleaning source trees to infer more informative supertrees.

    Science.gov (United States)

    Scornavacca, Celine; Berry, Vincent; Lefort, Vincent; Douzery, Emmanuel J P; Ranwez, Vincent

    2008-10-04

    Supertree methods combine phylogenies with overlapping sets of taxa into a larger one. Topological conflicts frequently arise among source trees for methodological or biological reasons, such as long branch attraction, lateral gene transfers, gene duplication/loss or deep gene coalescence. When topological conflicts occur among source trees, liberal methods infer supertrees containing the most frequent alternative, while veto methods infer supertrees not contradicting any source tree, i.e. discard all conflicting resolutions. When the source trees host a significant number of topological conflicts or have a small taxon overlap, supertree methods of both kinds can propose poorly resolved, hence uninformative, supertrees. To overcome this problem, we propose to infer non-plenary supertrees, i.e. supertrees that do not necessarily contain all the taxa present in the source trees, discarding those whose position greatly differs among source trees or for which insufficient information is provided. We detail a variant of the PhySIC veto method called PhySIC_IST that can infer non-plenary supertrees. PhySIC_IST aims at inferring supertrees that satisfy the same appealing theoretical properties as with PhySIC, while being as informative as possible under this constraint. The informativeness of a supertree is estimated using a variation of the CIC (Cladistic Information Content) criterion, that takes into account both the presence of multifurcations and the absence of some taxa. Additionally, we propose a statistical preprocessing step called STC (Source Trees Correction) to correct the source trees prior to the supertree inference. STC is a liberal step that removes the parts of each source tree that significantly conflict with other source trees. Combining STC with a veto method allows an explicit trade-off between veto and liberal approaches, tuned by a single parameter.Performing large-scale simulations, we observe that STC+PhySIC_IST infers much more informative

  6. A Short-Circuit Safe Operation Area Identification Criterion for SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Luo, Haoze

    2017-01-01

    This paper proposes a new method for the investigation of the short-circuit safe operation area (SCSOA) of state-of-the-art SiC MOSFET power modules rated at 1.2 kV based on the variations in SiC MOSFET electrical parameters (e.g., short-circuit current and gate–source voltage). According...... to the experimental results, two different failure mechanisms have been identified, both reducing the short-circuit capability of SiC power modules with respect to discrete SiC devices. Based on such failure mechanisms, two short-circuit safety criteria have been formulated: 1) the short-circuit...

  7. Using of the Modern Semiconductor Devices Based on the SiC

    Directory of Open Access Journals (Sweden)

    Pavel Drabek

    2008-01-01

    Full Text Available This paper deals with possibility of application of the semiconductor devices based on the SiC (Silicon Carbide inthe power electronics. Basic synopsis of SiC based materials problems are presented, appreciation of their properties incomparison with current using power semiconductor devices ((IGBT, MOSFET, CoolFET transistors.

  8. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    International Nuclear Information System (INIS)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-01-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  9. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    Science.gov (United States)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  10. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    International Nuclear Information System (INIS)

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-01-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO 2 volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  11. Failure probabilities of SiC clad fuel during a LOCA in public acceptable simple SMR (PASS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Kim, Ho Sik, E-mail: hskim25@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2015-10-15

    Highlights: • Graceful operating conditions of SMRs markedly lower SiC cladding stress. • Steady-state fracture probabilities of SiC cladding is below 10{sup −7} in SMRs. • PASS demonstrates fuel coolability (T < 1300 °C) with sole radiation in LOCA. • SiC cladding failure probabilities of PASS are ∼10{sup −2} in LOCA. • Cold gas gap pressure controls SiC cladding tensile stress level in LOCA. - Abstract: Structural integrity of SiC clad fuels in reference Small Modular Reactors (SMRs) (NuScale, SMART, IRIS) and a commercial pressurized water reactor (PWR) are assessed with a multi-layered SiC cladding structural analysis code. Featured with low fuel pin power and temperature, SMRs demonstrate markedly reduced incore-residence fracture probabilities below ∼10{sup −7}, compared to those of commercial PWRs ∼10{sup −6}–10{sup −1}. This demonstrates that SMRs can serve as a near-term deployment fit to SiC cladding with a sound management of its statistical brittle fracture. We proposed a novel SMR named Public Acceptable Simple SMR (PASS), which is featured with 14 × 14 assemblies of SiC clad fuels arranged in a square ring layout. PASS aims to rely on radiative cooling of fuel rods during a loss of coolant accident (LOCA) by fully leveraging high temperature tolerance of SiC cladding. An overarching assessment of SiC clad fuel performance in PASS was conducted with a combined methodology—(1) FRAPCON-SiC for steady-state performance analysis of PASS fuel rods, (2) computational fluid dynamics code FLUENT for radiative cooling rate of fuel rods during a LOCA, and (3) multi-layered SiC cladding structural analysis code with previously developed SiC recession correlations under steam environments for both steady-state and LOCA. The results show that PASS simultaneously maintains desirable fuel cooling rate with the sole radiation and sound structural integrity of fuel rods for over 36 days of a LOCA without water supply. The stress level of

  12. Effect of Sodium bicarbonate on Fire behaviour of tilled E- Glass Reinforced Epoxy Composites

    Science.gov (United States)

    Girish, S.; Devendra, K.; Bharath, K. N.

    2016-09-01

    Composites such as fibre reinforced polymers give us the good mechanical properties, but their fire behaviour is not appreciable and needs to be improved. In this work, E- glass fiber is used as a reinforcement material and Epoxy resin is used as a matrix with particulate sodium bi-carbonate (NaHCO3) is used as additive. The hand lay-up technique is adopted for the development of composites by varying percentage of additive. All the tests were conducted according to ASTM standards to study the Fire behaviour of the developed composites. The different fire properties like Ignition time, mass loss rate and flame propagation rate of Fiber Reinforced Polymers (FRP) with NaHCO3 are compared with neat FRPs. It is found that the ignition time increases as the percentage of additive is increased.

  13. De interactie van SiC met Fe, Ni en hun legeringen

    NARCIS (Netherlands)

    Schiepers, R.C.J.

    1991-01-01

    De interactie tussen SiC en metalen gebaseerd op Fe en Ni is bestudeerd in het temperatuurtraject 700-1035°C door middel van vaste-stof-diffusiekoppels. In de koppels van SiC met Fe, Ni en hun legeringen treden hevige reakties op, die de vorming van een goede verbinding verhinderen. Door het grate

  14. Manufacturing and characterization of porous SiC for flow channel inserts in dual-coolant blanket designs

    International Nuclear Information System (INIS)

    Bereciartu, Ainhoa; Ordas, Nerea; Garcia-Rosales, Carmen; Morono, Alejandro; Malo, Marta; Hodgson, Eric R.; Abella, Jordi; Sedano, Luis

    2011-01-01

    SiC is the primary candidate for the flow channel inserts in dual-coolant blanket concepts. Porous SiC ceramics are attractive candidates for this non-structural application, since they can satisfy the required properties through a low cost manufacturing route, compared to SiC f /SiC. This work shows first results of the manufacturing of porous SiC ceramics prepared with different amounts of Y 2 O 3 and Al 2 O 3 as sintering additives. C powders were used as pore-formers by their burnout during oxidation after sintering. Comparison of microstructure, porosity, flexural strength, thermal and electrical conductivity and corrosion under Pb-15.7Li of porous SiC without and with sintering additives is presented. The addition of 2.5 wt.% of Y 2 O 3 and Al 2 O 3 improves the mechanical properties, and reduces the thermal and electrical conductivity down to reasonable values. Preliminary corrosion tests under Pb-15.7 Li at 500 deg. C show that the absence of a dense coating on porous SiC leads to poor corrosion behavior.

  15. Small Incision Cataract Surgery (SICS with Clear Corneal Incision and SICS with Scleral Incision – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Md Shafiqul Alam

    2014-01-01

    Full Text Available Background: Age related cataract is the leading cause of blindness and visual impairment throughout the world. With the advent of microsurgical facilities simple cataract extraction surgery has been replaced by small incision cataract surgery (SICS with posterior chamber intra ocular lens implant, which can be done either with clear corneal incision or scleral incision. Objective: To compare the post operative visual outcome in these two procedures of cataract surgery. Materials and method: This comparative study was carried out in the department of Ophthalmology, Delta Medical College & Hospital, Dhaka, Bangladesh, during the period of January 2010 to December 2012. Total 60 subjects indicated for age related cataract surgery irrespective of sex with the age range of 40-80 years with predefined inclusion and exclusion criteria were enrolled in the study. Subjects were randomly and equally distributed in 2 groups; Group A for SICS with clear corneal incision and group B for SICS with scleral incision. Post operative visual out come was evaluated by determining visual acuity and astigmatism in different occasions and was compared between groups. Statistical analysis was done by SPSS for windows version12. Results: The highest age incidence (43.3% was found between 61 to 70 years of age group. Among study subjects 40 were male and 20 were female. Preoperative visual acuity and astigmatism were evenly distributed between groups. Regarding postoperative unaided visual outcome, 6/12 or better visual acuity was found in 19.98% cases in group A and 39.6% cases in group B at 1st week. At 6th week 6/6 vision was found in 36.3% in Group A and 56.1% in Group B and 46.2% in group A and 66% in group B without and with correction respectively. With refractive correction, 6/6 vision was attained in 60% subjects of group A and 86.67% of group B at 8th week. Post operative visual acuity was statistically significant in all occasions. Postoperative astigmatism of

  16. Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sabat, R.K.; Jayalakshmi, S.; Suwas, S.; Gupta, M.

    2014-01-01

    In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B 4 C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B 4 C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B 4 C) BM hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B 4 C) BM hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + x-B 4 C) BM hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B 4 C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B 4 C addition. - Highlights: • Micro-Ti particulates are hybridized with varying weight fractions of nano-B 4 C. • The hybrid mixture was used as hybrid reinforcements in magnesium. • Microstructure and mechanical properties of Mg-(5.6Ti + x-B 4 C) BM are compared with Mg-5.6Ti. • Electron back scattered diffraction (EBSD) analysis conducted to study the microtexture evolution

  17. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  18. Reaction sintering of two-dimensional silicon carbide fiber-reinforced silicon carbide composite by sheet stacking method

    International Nuclear Information System (INIS)

    Yoshida, Katsumi; Mukai, Hideki; Imai, Masamitsu; Hashimoto, Kazuaki; Toda, Yoshitomo; Hyuga, Hideki; Kondo, Naoki; Kita, Hideki; Yano, Toyohiko

    2007-01-01

    Two-dimensionally plain woven SiC fiber-reinforced SiC composite has been developed by reaction sintering using a sheet stacking method in order to further increase mechanical and thermal properties of the composite and to obtain flexibility of manufacturing process of 2D woven SiC/SiC composites which can be applied to the fabrication of larger parts. In addition, sinterability and mechanical properties of the composite were investigated. In this study, relative density of the composites was about 90-93% and a dense composite could be obtained by reaction sintering using the sheet stacking method. The bulk density and maximum bending strength of SiC/SiC composite with a C/SiC weight ratio of 0.6 were higher than that of the composite with C/SiC ratios of 0.5 or 0.7. The values were 2.9 g/cm 3 and 200 MPa, respectively. However, the composites obtained in this study fractured in almost brittle manner due to the lower fiber volume fraction

  19. A route to strong p-doping of epitaxial graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2010-11-09

    The effects of Au intercalation on the electronic properties of epitaxialgraphenegrown on SiC{0001} substrates are studied using first principles calculations. A graphenemonolayer on SiC{0001} restores the shape of the pristine graphene dispersion, where doping levels between strongly n-doped and weakly p-doped can be achieved by altering the Au coverage. We predict that Au intercalation between the two C layers of bilayer graphenegrown on SiC{0001} makes it possible to achieve a strongly p-doped graphene state, where the p-doping level can be controlled by means of the Au coverage.

  20. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  1. Pulsed laser deposition of SiC thin films at medium substrate temperatures

    International Nuclear Information System (INIS)

    Katharria, Y.S.; Kumar, Sandeep; Choudhary, R.J.; Prakash, Ram; Singh, F.; Lalla, N.P.; Phase, D.M.; Kanjilal, D.

    2008-01-01

    Systematic studies of thin silicon carbide (SiC) films deposited on Si (100) substrates using pulsed laser deposition technique at room temperature, 370 deg. C and 480 deg. C are carried out. X-ray photoelectron spectroscopy showed the formation of SiC bonds in the films at these temperatures along with some graphitic carbon clusters. Fourier transform infrared analysis also confirmed the formation of SiC nanocrystallites in the films. Transmission electron microscopy and electron diffraction were used to study the structural properties of nanocrystallites formed in the films. Surface morphological analysis using atomic force microscopy revealed the growth of smooth films

  2. Electrical measurement of radiation effect in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Satoshi; Kamiya, Koji; Kanno, Ikuo [Kyoto Univ. (Japan). Faculty of Engineering] [and others

    1996-04-01

    For aiming to limited resources and environmental conservations on the Earth, development of controlling element workable under high temperature environment was investigated so as to establish a high grade and optimum controlling system. In order to observe changes of electrical properties before and after irradiation and after annealing, and to investigate changes of carrier concentration and movability after irradiating neutron from reactor and accelerator for the SiC single crystal wafer, elucidation on neutron irradiation effect of SiC as well as finding an optimum method on nuclear conversion injection were investigated. For this reason, SiC surface was purified by its etching and was treated thermally at 1000degC for about 30 min. under argon gas atmosphere after vacuum depositing nickel on it. And then, it was irradiated neutron using Kyoto University reactor (LTL), Linac and University of Tokyo reactor (YAYOI) to measure changes of resistivity using van der Pauw. As a result, it was found that LTL irradiation data was under investigation of measuring method, that in Linac no meaning change was observed because of low irradiation, and that only YAYOI data showed increase of resistivity. (G.K.)

  3. Role of Defects in Swelling and Creep of Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Voyles, Paul [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-16

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  4. Role of Defects in Swelling and Creep of Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Voyles, Paul; Sridharan, Kumar; Katoh, Yutai

    2016-01-01

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  5. Control of the graphene growth rate on capped SiC surface under strong Si confinement

    International Nuclear Information System (INIS)

    Çelebi, C.; Yanık, C.; Demirkol, A.G.; Kaya, İsmet İ.

    2013-01-01

    Highlights: ► Graphene is grown on capped SiC surface with well defined cavity size. ► Graphene growth rate linearly increases with the cavity height. ► Graphene uniformity is reduced with thickness. - Abstract: The effect of the degree of Si confinement on the thickness and morphology of UHV grown epitaxial graphene on (0 0 0 −1) SiC is investigated by using atomic force microscopy and Raman spectroscopy measurements. Prior to the graphene growth process, the C-face surface of a SiC substrate is capped by another SiC comprising three cavities on its Si-rich surface with depths varying from 0.5 to 2 microns. The Si atoms, thermally decomposed from the sample surface during high temperature annealing of the SiC cap /SiC sample stack, are separately trapped inside these individual cavities at the sample/cap interface. Our analyses show that the growth rate linearly increases with the cavity height. It was also found that stronger Si confinement yields more uniform graphene layers.

  6. High efficiency three-phase power factor correction rectifier using SiC switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper presents designing procedure of a high efficiency 5 kW silicon-carbide (SiC) based threephase power factor correction (PFC). SiC switches present low capacitive switching loss compared to the alternative Si switches. Therefore, the switching frequency can be increased and hence the siz...

  7. Kronig-Penney-like description for band gap variation in SiC polytypes

    NARCIS (Netherlands)

    Backes, W.H.; Nooij, de F.C.; Bobbert, P.A.; van Haeringen, W.

    1996-01-01

    A one-dimensional Kronig-Penney-like model for envelope wave functions is presented to explain the band gap variation of SiC polytypes. In this model the envelope functions obey discontinuous boundary conditions. The electronic band gaps of cubic and several hexagonal and rhombohedral SiC polytypes

  8. Testing of porous SiC with dense coating under relevant conditions for Flow Channel Insert application

    Energy Technology Data Exchange (ETDEWEB)

    Ordás, N., E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Bereciartu, A.; García-Rosales, C. [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Moroño, A.; Malo, M.; Hodgson, E.R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abellà, J.; Colominas, S. [Institut Químic de Sarrià, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, L. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2014-10-15

    Highlights: • Porous SiC coated by CVD with a dense coating was developed for Flow Channel Inserts (FCI) in dual-coolant blanket concept. • Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives. • Flexural strength, thermal and electrical conductivity, and microstructure of uncoated and coated porous SiC are presented. • Adhesion of coating to porous SiC and its corrosion behavior under Pb-17.5Li at 700 °C are shown. - Abstract: Thermally and electrically insulating porous SiC ceramics are attractive candidates for Flow Channel Inserts (FCI) in dual-coolant blanket concepts thanks to its relatively inexpensive manufacturing route. To prevent tritium permeation and corrosion by Pb-15.7 a dense coating has to be applied on the porous SiC. Despite not having structural function, FCI must exhibit sufficient mechanical strength to withstand strong thermal gradients and thermo-electrical stresses during operation. This work summarizes the results on the development of coated porous SiC for FCI. Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives and a carbonaceous phase as pore former. Sintering was performed in inert gas at 1850–1950 °C during 15 min to 3 h, followed by oxidation at 650 °C to eliminate the carbonaceous phase. The most promising bulk materials were coated with a ∼30 μm thick dense SiC by CVD. Results on porosity, bending tests, thermal and electrical conductivity are presented. The microstructure of the coating, its adhesion to the porous SiC and its corrosion behavior under Pb-17.5Li are also shown.

  9. Deposition of SiC thin films by PECVD

    CERN Document Server

    Cho, N I; Kim, C K

    1999-01-01

    The SiC films were deposited on Si substrate by the decomposition of CH sub 3 SiCl sub 3 (methylthrichlorosilane) molecules in a high frequency discharge field. From the Raman spectra, it is conjectured that the deposited film are formed into the polycrystalline structure. The photon absorption measurement reveal that the band gap of the electron energy state are to be 2.4 eV for SiC, and 2.6 eV for Si sub 0 sub . sub 4 C sub 0 sub . sub 6 , respectively. In the high power density regime, methyl-radicals decompose easily and increases the carbon concentration in plasma and result in the growing films.

  10. Switching Investigations on a SiC MOSFET in a TO-247 Package

    DEFF Research Database (Denmark)

    Anthon, Alexander; Hernandez Botella, Juan Carlos; Zhang, Zhe

    2014-01-01

    This paper deals with the switching behavior of a SiC MOSFET in a TO-247 package. Based on simulations, critical parasitic inductances in the circuit layout are analyzed and their effect on the switching losses highlighted. Especially the common source inductance, a critical parameter in a TO-247...... package, has a major influence on the switching energy. Crucial design guidelines for an improved double pulse test circuit are introduced which are used for practical investigations on the switching behavior. Switching energies of a SiC MOSFET in a TO-247 package is measured depending on varying gate...... resistance and loop inductances. With total switching energy of 340.24 μJ, the SiC MOSFET has more than six times lower switching losses than a regular Si IGBT. Implementing the SiC switches in a 3 kW T-Type inverter topology, efficiency improvements of 0.8 % are achieved and maximum efficiency of 97...

  11. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides

    OpenAIRE

    Gobara, Mohamed; Shamekh, Mohamed; Akid, Robert

    2015-01-01

    A composite consisting of magnesium matrix reinforced with a network of TiC–Ti2AlC–TiB2 particulates has been fabricated using a practical in-situ reactive infiltration technique. The microstructural and phase composition of the magnesium matrix composite (R-Mg) was investigated using SEM/EDS and XRD. The analyses revealed the complete formation of TiC, Ti2AlC and TiB2 particles in the magnesium matrix. Comparative compression tests of R-Mg and AZ91D alloy showed that the reinforcing particle...

  12. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    Science.gov (United States)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  13. Mechanical Properties and Elastic Constants Due to Damage Accumulation and Amorphization in SiC

    International Nuclear Information System (INIS)

    Gao, Fei; Weber, William J.

    2004-01-01

    Damage accumulation due to cascade overlap, which was simulated previously, has been used to study the changes of elastic constants, bulk and elastic moduli as a function of dose. These mechanical properties generally decrease with increasing dose, and the rapid decrease at low-dose level indicates that point defects and small clusters play an important role in the changes of elastic constants rather than topological disorder. The internal strain relaxation has no effect on the elastic constants, C11 and C12, in perfect SiC, but it has a significant influence on all elastic constants calculated in damaged SiC. The elastic constants in the cascade-amorphized (CA) SiC decrease about 19%, 29% and 46% for C11, C12 and C44, respectively. The bulk modulus decrease 23% and the elastic modulus decreases 29%, which is consistent with experimental measurements. The stability of both the perfect SiC and CA-SiC under hydrostatic tension has been also investigated. All mechanical properties in the CA-SiC exhibit behavior similar to that in perfect SiC, but the critical stress at which the CA-SiC becomes structurally unstable is one order of magnitude smaller than that for perfect SiC

  14. Effects of Surface Treatment Processes of SiC Ceramic on Interfacial Bonding Property of SiC-AFRP

    Directory of Open Access Journals (Sweden)

    WEI Ru-bin

    2016-12-01

    Full Text Available To improve the interfacial bonding properties of SiC-aramid fiber reinforced polymer matrix composites (SiC-AFRP, the influences of etching process of SiC ceramic, coupling treatment process, and the adhesives types on the interfacial peel strength of SiC-AFRP were studied. The results show that the surface etching process and coupling treatment process of silicon carbide ceramic can effectively enhance interfacial bonding property of the SiC-AFRP. After soaked the ceramic in K3Fe(CN6 and KOH mixed etching solution for 2 hours, and coupled with vinyl triethoxy silane coupling agent, the interfacial peel strength of the SiC-AFRP significantly increases from 0.45kN/m to 2.20kN/m. EVA hot melt film with mass fraction of 15%VA is ideal for interface adhesive.

  15. Determination of He and D permeability of neutron-irradiated SiC tubes to examine the potential for release due to micro-cracking

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Driven by the need to enlarge the safety margins of light water reactors in both design-basis and beyond-design-basis accident scenarios, the research and development of accident-tolerant fuel (ATF) has become an importance topic in the nuclear engineering and materials community. Continuous SiC fiber-reinforced SiC matrix ceramic composites are under consideration as a replacement for traditional zirconium alloy cladding owing to their high-temperature stability, chemical inertness, and exceptional irradiation resistance. Among the key technical feasibility issues, potential failure of the fission product containment due to probabilistic penetrating cracking has been identified as one of the two most critical feasibility issues, together with the radiolysisassisted hydrothermal corrosion of SiC. The experimental capability to evaluate the hermeticity of SiC-based claddings is an urgent need. In this report, we present the development of a comprehensive permeation testing station established in the Low Activation Materials Development and Analysis laboratory at Oak Ridge National Laboratory. Preliminary results for the hermeticity evaluation of un-irradiated monolithic SiC tubes, uncoated and coated SiC/SiC composite tubes, and neutron-irradiated monolithic SiC tubes at room temperature are exhibited. The results indicate that this new permeation testing station is capable of evaluating the hermeticity of SiC-based tubes by determining the helium and deuterium permeation flux as a function of gas pressure at a high resolution of 8.07 x 10-12 atm-cc/s for helium and 2.83 x 10-12 atm-cc/s for deuterium, respectively. The detection limit of this system is sufficient to evaluate the maximum allowable helium leakage rate of lab-scale tubular samples, which is linearly extrapolated from the evaluation standard used for a commercial as-manufactured light water reactor fuel rod at room temperature. The un-irradiated monolithic SiC tube is hermetic, as

  16. Structural, thermal, dielectric spectroscopic and AC impedance properties of SiC nanoparticles doped PVK/PVC blend

    Science.gov (United States)

    Alghunaim, Naziha Suliman

    2018-06-01

    Nanocomposite films based on poly (N-vinylcarbazole)/polyvinylchloride (PVK/PVC) blend doped with different concentrations of Silicon Carbide (SiC) nanoparticles have been prepared. The X-ray diffraction, Ultra violet-visible spectroscopy, thermogravimetric analysis and electrical spectroscopic has been used to characterize these nanocomposites. The X-ray analysis confirms the semi-crystalline nature of the films. The intensity of the main X-ray peak is decreased due to the interaction between the PVK/PVC and SiC. The main SiC peaks are absent due to complete dissolution of SiC in polymeric matrices. The UV-Vis spectra indicated that the band gap optical energy is affected by adding SiC nanoparticles because the charges transfer complexes between PVK/PVC with amount of SiC. The thermal stability is improved and the estimated values of ε‧ and ε″ are increased with increasing for SiC content due to the free charge carriers which in turn increase the ionic conductivity of the doped samples. The plots of tan δ with frequency are studied. A single peak from the plot between tan δ and Log (f) is appeared and shifted towards the higher frequency confirmed the presence of relaxing dipoles moment.

  17. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  18. Influence of the Sr and Mg Alloying Additions on the Bonding Between Matrix and Reinforcing Particles in the AlSi7Mg/SiC-Cg Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Dolata A. J.

    2016-06-01

    Full Text Available The aim of the work was to perform adequate selection of the phase composition of the composite designated for permanent - mould casting air compressor pistons. The hybrid composites based on AlSi7Mg matrix alloy reinforced with mixture of silicon carbide (SiC and glassy carbon (Cg particles were fabricated by the stir casting method. It has been shown that the proper selection of chemical composition of matrix alloy and its modification by used magnesium and strontium additions gives possibility to obtain both the advantageous casting properties of composite suspensions as well as good bonding between particles reinforcements and matrix.

  19. In-situ synchrotron x-ray study of MgB2 formation when doped by SiC

    Science.gov (United States)

    Abrahamsen, A. B.; Grivel, J.-C.; Andersen, N. H.; Herrmann, M.; Häßler, W.; Birajdar, B.; Eibl, O.; Saksl, K.

    2008-02-01

    We have studied the evolution of the reaction xMg + 2B + ySiC → zMg1-p(B1-qCq)2 + yMg2Si in samples of 1, 2, 5 and 10 wt% SiC doping. We found a coincident formation of MgB2 and Mg2Si, whereas the crystalline part of the SiC nano particles is not reacting at all. Evidence for incorporation of carbon into the MgB2 phase was established from the decrease of the a-axis lattice parameter upon increasing SiC doping. An estimate of the MgB2 lower limit grain size was found to decrease from L100 = 795 Å and L002 = 337 Å at 1 wt% SiC to L100 = 227 Å and L002= 60 Å at 10 wt% SiC. Thus superconductivity might be suppressed at 10 wt% SiC doping due to the grain size approaching the coherence length.

  20. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing; Shao, Youlin; Liu, Bing

    2015-12-15

    Tristructural-isotropic (TRISO) particle has been successful in high temperature gas cooled reactor (HTGR), but an improved design is required for future development. In this paper, the coating layers are reconsidered, and an improved design of TRISO particle with porous SiC inner layer is proposed. Three methods of preparing the porous SiC layer, called high methyltrichlorosilane (MTS) concentration method, high Ar concentration method and hexamethyldisilane (HMDS) method, are experimentally studied. It is indicated that porous SiC layer can be successfully prepared and the density of SiC layer can be adjusted by tuning the preparation parameters. Microstructure and characterization of the improved TRISO coated particle are given based on scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and energy dispersive X-ray (EDX) analysis. It can be found that the improved TRISO coated particle with porous SiC layer can be mass produced successfully. The formation mechanisms of porous SiC layer are also discussed based on the fluidized bed-chemical vapor deposition principle. - Graphical abstract: An improved design of TRISO particle with porous SiC inner layer to replace the inner porous pyrolytic carbon layer was proposed and prepared by FB-CVD method. This new design is aimed to reduce the total internal pressure of the particles by reducing the formation of CO and to reduce the risks of amoeba effect. - Highlights: • An improved design of TRISO particle with porous SiC inner layer was proposed. • Three methods of preparing porous SiC layer are proposed and experimentally studied. • The density of porous SiC layer can be controlled by adjusting experimental parameters. • Formation mechanisms of porous SiC layer were given based on the FB-CVD principle. • TRISO particles with porous SiC inner layer were mass produced successfully.

  1. Thermal-hydraulics analysis of a PWR reactor using zircaloy and carbide silicon reinforced with type S fibers as fuel claddings: Simulation of a channel blockage transient

    Energy Technology Data Exchange (ETDEWEB)

    Matuck, Vinicius; Ramos, Mario C.; Faria, Rochkhudson B.; Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: matuck747@gmail.com, E-mail: patricialire@yahoo.com.br, E-mail: marc5663@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    A detailed thermal-hydraulic reactor model using as reference data from the Angra 2 Final Safety Analysis Report (FSAR) has been developed and SiC reinforced with Hi-Nicalon type S fibers (SiC HNS) was used as fuel cladding. The goal is to compare its behavior from the thermal viewpoint with the Zircaloy, at the steady- state and transient conditions. The RELAP-3D was used to perform the thermal-hydraulic analysis and a blockage transient has been investigated at full power operation. The transient considered is related to total obstruction of a core cooling channel of one fuel assembly. The calculations were performed using a point kinetic model. The reactor behavior after this transient was analyzed and the time evolution of cladding and coolant temperatures mass flow and void fraction are presented. (author)

  2. High efficiency battery converter with SiC devices for residential PV systems

    DEFF Research Database (Denmark)

    Pham, Cam; Teodorescu, Remus; Kerekes, Tamas

    2013-01-01

    The demand for high efficiency and higher power density is a challenge for Si-based semiconductors due to the physical characteristics of material. These can be overcome by employing wide-band-gap materials like SiC. This paper compares a second generator SiC MOSFETs against a normally-on Trench...

  3. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  4. Thermal shock properties of 2D-SiCf/SiC composites

    International Nuclear Information System (INIS)

    Lee, Sang Pill; Lee, Jin Kyung; Son, In Soo; Bae, Dong Su; Kohyama, Akira

    2012-01-01

    This paper dealt with the thermal shock properties of SiC f /SiC composites reinforced with two dimensional SiC fabrics. SiC f /SiC composites were fabricated by a liquid phase sintering process, using a commercial nano-size SiC powder and oxide additive materials. An Al 2 O 3 –Y 2 O 3 –SiO 2 powder mixture was used as a sintering additive for the consolidation of SiC matrix region. In this composite system, Tyranno SA SiC fabrics were also utilized as a reinforcing material. The thermal shock test for SiC f /SiC composites was carried out at the elevated temperature. Both mechanical strength and microstructure of SiC f /SiC composites were investigated by means of optical microscopy, SEM and three point bending test. SiC f /SiC composites represented a dense morphology with a porosity of about 8.2% and a flexural strength of about 160 MPs. The characterization of SiC f /SiC composites was greatly affected by the history of cyclic thermal shock. Especially, SiC f /SiC composites represented a reduction of flexural strength at the thermal shock temperature difference higher than 800 °C.

  5. Growth and characterization of high-purity SiC single crystals

    Science.gov (United States)

    Augustine, G.; Balakrishna, V.; Brandt, C. D.

    2000-04-01

    High-purity SiC single crystals with diameter up to 50 mm have been grown by the physical vapor transport method. Finite element analysis was used for thermal modeling of the crystal growth cavity in order to reduce stress in the grown crystal. Crystals are grown in high-purity growth ambient using purified graphite furniture and high-purity SiC sublimation sources. Undoped crystals up to 50 mm in diameter with micropipe density less than 100 cm -2 have been grown using this method. These undoped crystals exhibit resistivities in the 10 3 Ω cm range and are p-type due to the presence of residual acceptor impurities, mainly boron. Semi-insulating SiC material is obtained by doping the crystal with vanadium. Vanadium has a deep donor level located near the middle of the band gap, which compensates the residual acceptor resulting in semi-insulating behavior.

  6. Hydrogen activated axial inter-conversion in SiC nanowires

    International Nuclear Information System (INIS)

    Ruemmeli, Mark H.; Adebimpe, David B.; Borowiak-Palen, Ewa; Gemming, Thomas; Ayala, Paola; Ioannides, Nicholas; Pichler, Thomas; Huczko, Andrzej; Cudzilo, Stanislaw; Knupfer, Martin; Buechner, Bernd

    2009-01-01

    A facile low pressure annealing route using NH 3 as a hydrogen source for the structural and chemical modification of SiC nanowires (SiCNWs) is presented. The developed route transforms SiCNWs into tubular SiC nanostructures while coaxial SiO 2 /SiCNWs reverse their sheath/core structure. Our findings suggest a decomposition process induced via the preferential substitution of silicon by hydrogen and via the difference in diffusion rates of available atomic species, which leads to axial structural rearrangement. In addition to these effects, the procedure improves the crystallinity of the samples. The process could be exploited as a viable route to manipulate a variety of nanostructures and films for doping and etching and structural manipulation. - Graphical abstract: SiC and SiO 2 /SiCNWs are shown to be structurally modified through a hydrogen activated replacement route which can even lead to the axial inter-conversion of species. The process could be exploited as a viable route to manipulate a variety of nanostructures and films for doping and etching and structural manipulation

  7. Normal Isocurvature Surfaces and Special Isocurvature Circles (SIC)

    Science.gov (United States)

    Manoussakis, Gerassimos; Delikaraoglou, Demitris

    2010-05-01

    An isocurvature surface of a gravity field is a surface on which the value of the plumblines' curvature is constant. Here we are going to study the isocurvature surfaces of the Earth's normal gravity field. The normal gravity field is a symmetric gravity field therefore the isocurvature surfaces are surfaces of revolution. But even in this case the necessary relations for their study are not simple at all. Therefore to study an isocurvature surface we make special assumptions to form a vector equation which will hold only for a small coordinate patch of the isocurvature surface. Yet from the definition of the isocurvature surface and the properties of the normal gravity field is possible to express very interesting global geometrical properties of these surfaces without mixing surface differential calculus. The gradient of the plumblines' curvature function is vertical to an isocurvature surface. If P is a point of an isocurvature surface and "Φ" is the angle of the gradient of the plumblines' curvature with the equatorial plane then this direction points to the direction along which the curvature of the plumbline decreases / increases the most, and therefore is related to the strength of the normal gravity field. We will show that this direction is constant along a line of curvature of the isocurvature surface and this line is an isocurvature circle. In addition we will show that at each isocurvature surface there is at least one isocurvature circle along which the direction of the maximum variation of the plumblines' curvature function is parallel to the equatorial plane of the ellipsoid of revolution. This circle is defined as a Special Isocurvature Circle (SIC). Finally we shall prove that all these SIC lye on a special surface of revolution, the so - called SIC surface. That is to say, a SIC is not an isolated curve in the three dimensional space.

  8. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  9. Ohmic Contacts to P-Type SiC

    National Research Council Canada - National Science Library

    Crofton, John

    2000-01-01

    Alloys of aluminum (Al) have previously been used as ohmic contacts to p-type SiC, however the characteristics and performance of these contacts is drastically affected by the type and composition of the Al alloy...

  10. Electronic Structure and Chemical Bond of Ti3SiC2 and Adding Al Element

    Institute of Scientific and Technical Information of China (English)

    MIN Xinmin; LU Ning; MEI Bingchu

    2006-01-01

    The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation (DFT-DVM) method. When Al element is added into Ti3SiC2, there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3SiC2, adding a proper quantity of Al can promote the formation of Ti3SiC2. The density of state shows that there is a mixed conductor character in both of Ti3SiC2 and adding Al element. Ti3SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.

  11. Tailoring of SiC nanoprecipitates formed in Si

    Energy Technology Data Exchange (ETDEWEB)

    Velisa, G., E-mail: gihan.velisa@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele (Romania); Trocellier, P. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Thomé, L. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR8609, Bât. 108, 91405 Orsay (France); Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Miro, S.; Serruys, Y.; Bordas, É. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Meslin, E. [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Mylonas, S. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR8609, Bât. 108, 91405 Orsay (France); Coulon, P.E. [Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA/DSM/IRAMIS-CNRS, 91128 Palaiseau Cedex (France); Leprêtre, F.; Pilz, A.; Beck, L. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2013-07-15

    The SiC synthesis through single-beam of C{sup +}, and simultaneous-dual-beam of C{sup +} and Si{sup +} ion implantations into a Si substrate heated at 550 °C has been studied by means of three complementary analytical techniques: nuclear reaction analysis (NRA), Raman, and transmission electron microscopy (TEM). It is shown that a broad distribution of SiC nanoprecipitates is directly formed after simultaneous-dual-beam (520-keV C{sup +} and 890-keV Si{sup +}) and single-beam (520-keV C{sup +}) ion implantations. Their shape appear as spherical (average size ∼4–5 nm) and they are in epitaxial relationship with the silicon matrix.

  12. Liquid phase sintered SiC ceramics from starting materials of different grade Cerâmicas à base de SiC sinterizadas via fase líquida a partir de matérias-primas de diferentes purezas

    Directory of Open Access Journals (Sweden)

    V. A. Izhevskyi

    2004-09-01

    Full Text Available Possibility of high performance ceramics manufactured from commercial SiC powder of technical grade has been shown. Sintering behavior and microstructure formation under conditions of liquid phase sintering (LPS with oxynitride sintering aids (AlN-Y2O3 of three SiC-based compositions have been investigated. Two of the compositions were based on Alcoa 1000 SiC powder of technical grade, and the third one, which was used as a reference, was based on H.C. Starck UF-15 fine grade commercial powder. Milling process used for Alcoa 1000 SiC powder granulometry improvement has been investigated in detail, while chemical treatment of milled SiC powders has been used for pick-up impurities removal. Dilatometric experiments showed that SiC powder of technical grade after appropriate treatment exhibits sinterability comparable with the fine grade SiC. Microstructural investigations performed on sintered samples showed that the final microstructure of the Alcoa 1000 SiC based materials was practically identical with the H.C. Starck SiC based reference ones. Preliminary investigations of hardness and fracture toughness were carried out revealing excellent results for the materials produced from cheaper, nationally produced starting powder.Neste trabalho é apresentada a possibilidade de obtenção de cerâmicas de SiC de alto desempenho a partir de matéria-prima comercial de grau técnico. Foi realizado o estudo de sinterização via fase líquida e desenvolvimento microestrutural de três composições à base de SiC tendo como aditivos de sinterização AlN e Y2O3 . Duas destas composições são à base de SiC-1000 da Alcoa, grau técnico, e a terceira, utilizada como referência, à base do UF-15 da H.C. Starck - Alemanha, pó comercial de granulometria fina. O processo de moagem do pó SiC-1000 da Alcoa foi acompanhado por medidas de distribuição granulométrica e posterior ataque químico, para remoção de impurezas. Os pós de grau técnico, ap

  13. Effects of AlN on the densification and mechanical properties of pressureless-sintered SiC ceramics

    Directory of Open Access Journals (Sweden)

    Qisong Li

    2016-02-01

    Full Text Available In the present work, SiC ceramics was fabricated with AlN using B4C and C as sintering aids by a solid-state pressureless-sintered method. The effects of AlN contents on the densification, mechanical properties, phase compositions, and microstructure evolutions of as-obtained SiC ceramics were thoroughly investigated. AlN was found to promote further densification of the SiC ceramics due to its evaporation over 1800 °C, transportation, and solidification in the pores resulted from SiC grain coarsening. The highest relative density of 99.65% was achieved for SiC sample with 15.0 wt% AlN by the pressureless-sintered method at 2130 °C for 1 h in Ar atmosphere. Furthermore, the fracture mechanism for SiC ceramics containing AlN tended to transfer from single transgranular fracture mode to both transgranular fracture and intergranular fracture modes when the sample with 30.0 wt% AlN sintered at 1900 °C for 1 h in Ar. Also, SiC ceramics with 30.0 wt% AlN exhibited the highest fracture toughness of 5.23 MPa m1/2 when sintered at 1900 °C.

  14. Comportamiento frente a la corrosión del material compuesto 2124/SiC

    Directory of Open Access Journals (Sweden)

    López-Caballero, J. A.

    2005-12-01

    Full Text Available A comparative study was performed on the corrosion behaviour of an aluminium matrix composite reinforced with silicon carbide particles, obtained by powder metallurgic. The 2124/SiC material was heat treated using T4 and T6 procedures. The T6 heat treatment induced the formation of several intermetallics and reducing the corrosion resistance. The silicon carbide particles did not have a cathodic behaviour as compared with the aluminium matrix. However, these particles produced a diminution in the corrosion resistance due to the formation of more active zones in the matrix/reinforced interface. These ceramic particles caused intermetallic precipitation and deformation originating in the surrounding zones localized corrosion.

    Se realiza un estudio comparativo del comportamiento frente a la corrosión de la aleación de aluminio 2124 reforzada con partículas de carburo de silicio, obtenida por pulvimetalurgia y con tratamientos térmicos T4 y T6. Los resultados experimentales muestran que el tratamiento térmico T6 induce la formación de numerosos intermetálicos que reducen la resistencia a la corrosión. Las partículas de carburo de silicio no tienen un comportamiento catódico con respecto a la matriz de aluminio, sin embargo, disminuyen la resistencia a la corrosión, ya que generan zonas más activas en la interfase matriz/ refuerzo, debido a la acumulación de dislocaciones, tensiones residuales y a la precipitación de intermetálicos.

  15. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating

    International Nuclear Information System (INIS)

    Shi Lei; Sun Chufeng; Gao Ping; Zhou Feng; Liu Weimin

    2006-01-01

    Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L -1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating

  16. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  17. Exposure Assessment of Particulate Matter from Abrasive Treatment of Carbon and Glass Fibre-Reinforced Epoxy-Composites

    DEFF Research Database (Denmark)

    Jensen, Alexander C. Ø.; Levin, Marcus; Koivisto, Antti J.

    2015-01-01

    The use of composites is ever increasing due to their important structural and chemical features. The composite component production often involves high energy grinding and sanding processes to which emissions workers are potentially exposed. In this study we investigated the machining of carbon...... and glass fibre-reinforced epoxy composite materials at two facilities. We measured particle number concentrations and size distributions of the released material in near field and far field during sanding of glass-and carbon fibre-reinforced composites. We assessed the means of reducing exposure during...

  18. Study on porosity of ceramic SiC using small angle neutron scattering

    International Nuclear Information System (INIS)

    Li Jizhou; Yang Jilian; Kang Jian; Ye Chuntang

    1996-01-01

    The mechanical properties of functional heat-resistant ceramics SiC are significantly influenced by the concentration and dimensions of pores. Small angle neutron scattering measurements for 3 SiC samples with different densities are performed on C1-2 SANS instrument of the University of Tokyo. Two groups of the neutron data are obtained using 8 and 16 m of secondary flight path, 1 and 0.7 nm of neutron wave lengths, respectively. After deduction of background measurement and transmission correction, both neutron data are linked up with each other. The patterns of neutron data of 3 samples with Q range from 0.028∼0.5 nm -1 are almost with axial symmetry, showing that the shape of pores is almost spherical. Using Mellin transform, size distributions of pores in 3 samples are obtained. The average size (∼19 nm) of pores for hot-pressed SiC sample with higher density is smaller than the others (∼ 21 nm). It seems to be the reason why the density of hot-pressed SiC sample is higher than not hot-pressed sample

  19. Thermal effects on the mechanical properties of SiC fiber reinforced reaction bonded silicon nitride matrix (SiC/RBSN) composites

    Science.gov (United States)

    Bhatt, R. T.; Phillips, R. E.

    1988-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  20. The influence of various dielectric parameters on the reststrahlen region of SiC

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Rooyen, I.J. van

    2011-01-01

    The reststrahlen region of SiC is analysed with the goal of establishing the origin of different shapes of this band, by varying the dielectric parameters involved when simulating the reststrahlen region as obtained by infrared reflectance. -- Research highlights: → An anomalous peak observed in the reststrahlen band of SiC was investigated. → The reflection spectrum of SiC in the reststrahlen region was simulated by theoretical calculations. → The influence on the reststrahlen band of the dielectric parameters used in the simulations is discussed. → Dielectric parameters used in the simulations did not yield the anomalous peak that is observed experimentally.

  1. The influence of various dielectric parameters on the reststrahlen region of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.z [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Rooyen, I.J. van [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); National Laser Centre, CSIR, PO Box 395, Pretoria 0001 (South Africa)

    2011-02-01

    The reststrahlen region of SiC is analysed with the goal of establishing the origin of different shapes of this band, by varying the dielectric parameters involved when simulating the reststrahlen region as obtained by infrared reflectance. -- Research highlights: {yields} An anomalous peak observed in the reststrahlen band of SiC was investigated. {yields} The reflection spectrum of SiC in the reststrahlen region was simulated by theoretical calculations. {yields} The influence on the reststrahlen band of the dielectric parameters used in the simulations is discussed. {yields} Dielectric parameters used in the simulations did not yield the anomalous peak that is observed experimentally.

  2. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    International Nuclear Information System (INIS)

    Lee, Hyeon-Geun; Kim, Daejong; Lee, Seung Jae; Park, Ji Yeon; Kim, Weon-Ju

    2017-01-01

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al_2O_3 and Y_2O_3 sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  3. Effect of oxygen on the processes of ion beam synthesis of buried SiC layers in silicon

    International Nuclear Information System (INIS)

    Artamonov, V.V.; Valakh, M.Ya.; Klyuj, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of Si-structures with buried silicon carbide (SiC) layers created by high dose carbon implantation into Cz-Si or Fz-Si wafers followed by high-temperature annealing were studied by Raman and infrared spectroscopy. Effect of additional oxygen implantation on the peculiarities of SiC layer formation was also studied. It was shown that under the same implantation and post-implantation annealing conditions the buried SiC layers are more effectively formed in Cz-Si or in Si subjected to additional oxygen implantation. Thus, oxygen in silicon promotes the SiC layer formation due to SiO x precipitate creation and accommodation of the crystal volume in the region where SiC phase is formed

  4. In situ formation of ZrB2 particulates and their influence on microstructure and tensile behavior of AA7075 aluminum matrix composites

    Directory of Open Access Journals (Sweden)

    J. David Raja Selvam

    2017-02-01

    Full Text Available In situ synthesis of aluminum matrix composites (AMCs has become a popular method due to several advantages over conventional stir casting method. In the present study, AA7075/ZrB2 AMCs reinforced with various content of ZrB2 particulates (0, 3, 6, 9 and 12 wt.% were synthesized by the in situ reaction of molten aluminum with inorganic salts K2ZrF6 and KBF4. The composites were characterized using XRD, OM, SEM, EBSD and TEM. The XRD patterns revealed the formation of ZrB2 particulates without the presence of any other compounds. The formation of ZrB2 particulates refined the grains of aluminum matrix extensively. Most of the ZrB2 particulates were located near the grain boundaries. The ZrB2 particulates exhibited various morphologies including spherical, cylindrical and hexagonal shapes. The size of the ZrB2 particulates was in the order of nano, sub micron and micron level. A good interfacial bonding was observed between the aluminum matrix and the ZrB2 particulates. The in situ formed ZrB2 particulates enhanced the mechanical properties such as microhardness and the ultimate tensile strength. Various strengthening mechanisms were identified.

  5. X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xiaoxia [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Zhang, Xun; Lowe, Tristan [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Blanc, Remi [FEI, 3 Impasse Rudolf Diesel, BP 50227, 33708 Mérignac (France); Rad, Mansoureh Norouzi [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Wang, Ying [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Batail, Nelly; Pham, Charlotte [SICAT SARL, 20 Place des Halles, 67000 Strasbourg (France); Shokri, Nima; Garforth, Arthur A. [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Withers, Philip J. [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Fan, Xiaolei, E-mail: xiaolei.fan@manchester.ac.uk [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom)

    2017-01-15

    Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors based on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.

  6. Porous SiC ceramics fabricated by quick freeze casting and solid state sintering

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available Porous SiC ceramics with uniform microstructure were fabricated by quick freezing in liquid nitrogen and solid state sintering. Poly (vinyl alcohol (PVA was added as binder and pore morphology controller in this work. The microstructure and mechanical properties of porous SiC ceramics could be controlled by the composition of the aqueous slurries. Both solid content of the slurries and PVA content impacted on the pore structures and mechanical properties of the porous SiC ceramics. The solid content of slurries and PVA content varied from 60 to 67.5 wt% and 2–6 wt%, respectively. Besides, the grain morphology of ceramics was also tailored by changing the sintering temperature from 2050 to 2150 °C. Porous SiC ceramics with an average porosity of 42.72%, flexural strength of 59.28 MPa were obtained at 2150 °C from 67.5 wt% slurries with 2 wt% PVA.

  7. Preparation of SiC Compacts by the Rapid Proto typing Machine

    International Nuclear Information System (INIS)

    Abdelrahman, A.A.M.; Ahmed, A.Z.; Elmasry, M.A.A.

    2008-01-01

    The preparation of ceramic green bodies from powders by the rapid proto typing is a promising technique. In this work SiC green bodies were prepared from black SiC powder mixed with 10 wt % organic binder namely Ave be SP G20 starch. Different liquid binders were investigated and were successful in producing strong green bodies such as NH 4 OH in the ph range 9-10 or 1 % HCl solution in water and or a mixture of 1% NH 4 Cl and NH 4 OH in the ph range of 8.5 to 9. The green bodies were then preheated at 200 degree C to eliminate the starch by thermal decomposition. After that these parts were infiltrated using molten silicon at 1450 degree C in Argon atmosphere. Unfortunately it was impossible to infiltrate the green bodies using liquid silicon. Another technique was followed which is dipping of the green bodies in liquid silicon. This method was successful. The densities of the green and dipped bodies were determined and they were examined under the metallo graph and SEM. It was found that no SiC dissolved in the silicon after dipping. This was concluded from the presence of sharp corners of SiC grains

  8. Nanomechanical properties of SiC films grown from C{sub 60} precursors using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morse, K. [Colorado School of Mines, Golden, CO (United States); Balooch, M.; Hamza, A.V.; Belak, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    The mechanical properties of SiC films grown via C{sub 60} precursors were determined using atomic force microscopy (AFM). Conventional silicon nitride and modified diamond cantilever AFM tips were employed to determine the film hardness, friction coefficient, and elastic modulus. The hardness is found to be between 26 and 40 GPa by nanoindentation of the film with the diamond tip. The friction coefficient for the silicon nitride tip on the SiC film is about one third that for silicon nitride sliding on a silicon substrate. By combining nanoindentation and AFM measurements an elastic modulus of {approximately}300 GPa is estimated for these SiC films. In order to better understand the atomic scale mechanisms that determine the hardness and friction of SiC, we simulated the molecular dynamics of a diamond indenting a crystalline SiC substrate.

  9. Effect of organic additives on mechanical properties of SiC ceramics prepared by a modified gelcasting method

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2016-12-01

    Full Text Available A novel and simple gel system of isobutylene and maleic anhydride (PIBM was used to prepare SiC ceramics. The rheological behaviour of the SiC slurries was investigated as function of organic additives. The SiC slurries with 0.2 wt.% PIBM and 0.2 wt.% tetramethylammonium hydroxide (TMAH showed low viscosity, which was favourable for casting SiC green bodies. In order to obtain homogeneous green bodies, polyvinyl alcohol (PVA was used to assist the dispersion of carbon black in the slurries, and polyethylene glycol (PEG was added to inhibit the surface exfoliation of green bodies. The content of PVA was controlled carefully to avoid the warpage of green bodies during the drying process. Finally, homogeneous defect-free SiC green bodies were successfully fabricated via aqueous gelcasting. The SiC ceramics sintered at 2100 °C (prepared from slurries with solid content of 60 wt.% showed an average flexural strength of 305.7 MPa with porosity of 19.92%.

  10. Scanning Electron Microscopic Studies of Microwave Sintered Al-SiC Nanocomposites and Their Properties

    Directory of Open Access Journals (Sweden)

    M. A. Himyan

    2018-01-01

    Full Text Available Al-metal matrix composites (AMMCs reinforced with diverse volume fraction of SiC nanoparticles were synthesized using microwave sintering process. The effects of the reinforcing SiC particles on physical, microstructure, mechanical, and electrical properties were studied. The phase, microstructural, and surface analyses of the composites were systematically conducted using X-ray diffraction (XRD, scanning electron microscope (SEM, and surface profilometer techniques, respectively. The microstructural examination revealed the homogeneous distribution of SiC particles in the Al matrix. Microhardness and compressive strength of nanocomposites were found to be increasing with the increasing volume fraction of SiC particles. Electrical conductivity of the nanocomposites decreases with increasing the SiC content.

  11. A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites

    Directory of Open Access Journals (Sweden)

    Susanta K. Pradhan

    2016-09-01

    Full Text Available This article presents a simple stir casting technique for the development of Fe-aluminides particulate reinforced Al-matrix composites. It has been demonstrated that stirring of super-heated Al-melt by a mild steel plate followed by conventional casting and hot rolled results in uniform dispersion of in situ Al13Fe4 particles in the Al matrix; the amount of reinforcement is found to increase with increasing melt temperature. With reference to base alloy, the developed composite exhibits higher hardness and improved tensile strength without much loss of ductility; since, composite like base alloy undergoes ductile mode of fracture.

  12. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    International Nuclear Information System (INIS)

    He, Jianchao; Wang, Heyi; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-01-01

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  13. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianchao; Wang, Heyi, E-mail: hywang@caep.cn; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-12-15

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  14. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-05-16

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  15. Loss Model and Efficiency Analysis of Tram Auxiliary Converter Based on a SiC Device

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2017-12-01

    Full Text Available Currently, the auxiliary converter in the auxiliary power supply system of a modern tram adopts Si IGBT as its switching device and with the 1700 V/225 A SiC MOSFET module commercially available from Cree, an auxiliary converter using all SiC devices is now possible. A SiC auxiliary converter prototype is developed during this study. The author(s derive the loss calculation formula of the SiC auxiliary converter according to the system topology and principle and each part loss in this system can be calculated based on the device datasheet. Then, the static and dynamic characteristics of the SiC MOSFET module used in the system are tested, which aids in fully understanding the performance of the SiC devices and provides data support for the establishment of the PLECS loss simulation model. Additionally, according to the actual circuit parameters, the PLECS loss simulation model is set up. This simulation model can simulate the actual operating conditions of the auxiliary converter system and calculate the loss of each switching device. Finally, the loss of the SiC auxiliary converter prototype is measured and through comparison it is found that the loss calculation theory and PLECS loss simulation model is valuable. Furthermore, the thermal images of the system can prove the conclusion about loss distribution to some extent. Moreover, these two methods have the advantages of less variables and fast calculation for high power applications. The loss models may aid in optimizing the switching frequency and improving the efficiency of the system.

  16. Pore Formation Process of Porous Ti3SiC2 Fabricated by Reactive Sintering

    Directory of Open Access Journals (Sweden)

    Huibin Zhang

    2017-02-01

    Full Text Available Porous Ti3SiC2 was fabricated with high purity, 99.4 vol %, through reactive sintering of titanium hydride (TiH2, silicon (Si and graphite (C elemental powders. The reaction procedures and the pore structure evolution during the sintering process were systematically studied by X-ray diffraction (XRD and scanning electron microscope (SEM. Our results show that the formation of Ti3SiC2 from TiH2/Si/C powders experienced the following steps: firstly, TiH2 decomposed into Ti; secondly, TiC and Ti5Si3 intermediate phases were generated; finally, Ti3SiC2 was produced through the reaction of TiC, Ti5Si3 and Si. The pores formed in the synthesis procedure of porous Ti3SiC2 ceramics are derived from the following aspects: interstitial pores left during the pressing procedure; pores formed because of the TiH2 decomposition; pores formed through the reactions between Ti and Si and Ti and C powders; and the pores produced accompanying the final phase synthesized during the high temperature sintering process.

  17. Corrosion and wear behavior of functionally graded Al2024/SiC composites produced by hot pressing and consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Fatih; Canakci, Aykut, E-mail: aykut@ktu.edu.tr; Varol, Temel; Ozkaya, Serdar

    2015-09-25

    Highlights: • Functionally graded Al2024/SiC composites were produced by hot pressing. • Effect of the number of graded layers was investigated on the corrosion behavior. • Functionally graded composites has the most corrosion resistant than composites. • Wear mechanisms of Al2024/SiC composites were explained. - Abstract: Functionally graded Al2024/SiC composites (FGMs) with varying percentage of SiC (30–60%) were produced by hot pressing and consolidation method. The effects of SiC content and number of layers of Al2024/SiC FGMs on the corrosion and wear behaviors were investigated. The microstructures of these composites were characterized by a scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The corrosion performances of composites were evaluated by potentiodynamic polarization scans in 3.5% NaCl solution. Corrosion experiments shows that corrosion rate (1109 mpy) of two layered FGMs which containing 50 wt.% SiC were much higher than Al2024 matrix (2569 mpy) and Al2024/50 wt.% SiC composite (2201 mpy). Mechanical properties of these composites were evaluated by microhardness measurements and ball-on-disk wear tests. As the applied load change from 15 to 20 N, the wear rates of the Al2024 increased significantly and wear mechanism transformed from mild to severe wear regime. It has been shown that Al2024/40 wt.% SiC composite has lower wear rate where adhesive and abrasive wear mechanisms play a major role.

  18. Effect of SiC whisker addition on the microstructures and mechanical properties of Ti(C, N)-based cermets

    International Nuclear Information System (INIS)

    Wu, Peng; Zheng, Yong; Zhao, Yongle; Yu, Haizhou

    2011-01-01

    Ti(C, N)-based cermets with addition of SiC whisker (SiC w ) were prepared by vacuum sintering. The microstructures of the prepared cermets were investigated by using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Mechanical properties such as transverse rupture strength (TRS), fracture toughness (K IC ) and hardness (HRA) were also measured. It was found that the grain size of the cermets was affected by the SiC whisker addition. The cermets with 1.0 wt.% SiC whisker addition exhibited the smallest grain size. The porosities of the cermets increased with increasing SiC whisker additions. The addition of the SiC whisker had no influence on the phase constituents of the cermets. Compared with the cermets with no whisker addition, the highest TRS and fracture toughness for cermets with 1.0 wt.% SiC whisker addition increased by about 24% and 29%, respectively. The strengthening mechanisms were attributed to finer grain size, homogeneous microstructure and moderate thickness of rim phase. The toughening mechanisms were characterized by crack deflection, whisker bridging and whisker pulling-out.

  19. Optical study on neutron irradiation effect on hexagonal SiC single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Moritami; Kimura, Itsurou; Kanazawa, Satoshi; Kanno, Ikuo; Kamiya, Koji [Kyoto Univ. (Japan); Nakata, Toshitake; Watanabe, Masanori; Nakagawa, Masuo; Atobe, Kozo

    1996-04-01

    It is well known that SiC is a higher radiation resistant semiconductor on comparison with Si and Ge. Recently, on accompanying with advancement of developing program on nuclear fission reactor on space, development of electronic element workable effectively under severe radiation environment is desired. SiC is expected as one of such elements. Therefore, because of considering importance of understanding the effect on fundamental properties of SiC electronic element under radiation environment before its development, some studies on it was executed. In this paper, according to find out induction of interesting defect center in hexagonal 4H- and 6H-SiC single crystals irradiated with reactor neutron on light absorption and SER test, outlines of these experimental results were reported. (G.K.)

  20. A porous SiC ammonia sensor

    NARCIS (Netherlands)

    Connolly, E.J.; Timmer, B.H.; Pham, H.T.M.; Groeneweg, J.; Sarro, P.M.; Olthuis, Wouter; French, P.J.

    2005-01-01

    When used as the dielectric in a capacitive sensing arrangement, porous SiC has been found to be extremely sensitive to the presence of ammonia (NH3) gas. The exact sensing method is still not clear, but NH3 levels as low as 0.5 ppm could be detected. We report the fabrication and preliminary

  1. Origin of the high p-doping in F intercalated graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2011-08-04

    The atomic and electronic structures of F intercalated epitaxialgraphene on a SiC(0001) substrate are studied by first-principles calculations. A three-step fluorination process is proposed. First, F atoms are intercalated between the graphene and the SiC, which restores the Dirac point in the band structure. Second, saturation of the topmost Si dangling bonds introduces p-doping up to 0.37 eV. Third, F atoms bond covalently to the graphene to enhance the p-doping. Our model explains the highly p-doped state of graphene on SiC after fluorination [A. L. Walter et al., Appl. Phys. Lett. 98, 184102 (2011)].

  2. A Fast Electro-Thermal Co-Simulation Modeling Approach for SiC Power MOSFETs

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Bahman, Amir Sajjad; Iannuzzo, Francesco

    2017-01-01

    The purpose of this work is to propose a novel electro-thermal co-simulation approach for the new generation of SiC MOSFETs, by development of a PSpice-based compact and physical SiC MOSFET model including temperature dependency of several parameters and a Simulink-based thermal network. The PSpice...... the FEM simulation of the DUT’s structure, performed in ANSYS Icepack. A MATLAB script is used to process the simulation data and feed the needed settings and parameters back into the simulation. The parameters for a CREE 1.2 kV/30 A SiC MOSFET have been identified and the electro-thermal model has been...

  3. Development of High-Temperature, High-Power, High-Efficiency, High-Voltage Converters Using Silicon Carbide (SiC) Delivery Order 0003: SiC High Voltage Converters, N-Type Ohmic Contract Development for SiC Power Devices

    National Research Council Canada - National Science Library

    Cheng, Lin; Mazzola, Michael S

    2006-01-01

    ... ? SiC interfaces and silicide top surfaces is important for producing uniformly low contact resistances to achieve device operation at high-current levels without hot spot formation and contact degradation...

  4. Enhanced thermoelectric properties of nano SiC dispersed Bi2Sr2Co2Oy Ceramics

    Science.gov (United States)

    Hu, Qiujun; Wang, Kunlun; Zhang, Yingjiu; Li, Xinjian; Song, Hongzhang

    2018-04-01

    The thermoelectric properties of Bi2Sr2Co2Oy + x wt% nano SiC (x = 0.00, 0.025, 0.05, 0.1, 0.2, and 0.3) prepared by the solid-state reaction method were investigated from 300 K to 923 K. The resistivity can be reduced effectively by adding a small amount of SiC nano particles, which is attributed to the increase of the carrier concentration. At the same time, the Seebeck coefficients can be improved effectively due to the energy filtering effect that low energy carriers are strongly dispersed at the interface between the SiC nano particles and the matrix. The decrease of thermal conductivity is due to the increase of the scattering ability of the phonons by the SiC nanoparticles distributed at the boundary of the matrix. As a result, the Bi2Sr2Co2Oy + x wt% SiC composites exhibit better thermoelectric properties. The maximum ZT value 0.24 is obtained when x = 0.05 at 923 K. Compared with the sample without SiC nano particles, the ZT value is increased by about 59.7%.

  5. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  6. Interface and interaction of graphene layers on SiC(0001[combining macron]) covered with TiC(111) intercalation.

    Science.gov (United States)

    Wang, Lu; Wang, Qiang; Huang, Jianmei; Li, Wei-Qi; Chen, Guang-Hui; Yang, Yanhui

    2017-10-11

    It is important to understand the interface and interaction between the graphene layer, titanium carbide [TiC(111)] interlayer, and silicon carbide [SiC(0001[combining macron])] substrates in epitaxial growth of graphene on silicon carbide (SiC) substrates. In this study, the fully relaxed interfaces which consist of up to three layers of TiC(111) coatings on the SiC(0001[combining macron]) as well as the graphene layers interactions with these TiC(111)/SiC(0001[combining macron]) were systematically studied using the density functional theory-D2 (DFT-D2) method. The results showed that the two layers of TiC(111) coating with the C/C-terminated interfaces were thermodynamically more favorable than one or three layers of TiC(111) on the SiC(0001[combining macron]). Furthermore, the bonding of the Ti-hollow-site stacked interfaces would be a stronger link than that of the Ti-Fcc-site stacked interfaces. However, the formation of the C/Ti/C and Ti/C interfaces implied that the first upper carbon layer can be formed on TiC(111)/SiC(0001[combining macron]) using the decomposition of the weaker Ti-C and C-Si interfacial bonds. When growing graphene layers on these TiC(111)/SiC(0001[combining macron]) substrates, the results showed that the interaction energy depended not only on the thickness of the TiC(111) interlayer, but also on the number of graphene layers. Bilayer graphene on the two layer thick TiC(111)/SiC(0001[combining macron]) was thermodynamically more favorable than a monolayer or trilayer graphene on these TiC(111)/SiC(0001[combining macron]) substrates. The adsorption energies of the bottom graphene layers with the TiC(111)/SiC(0001[combining macron]) substrates increased with the decrease of the interface vertical distance. The interaction energies between the bottom, second and third layers of graphene on the TiC(111)/SiC(0001[combining macron]) were significantly higher than that of the freestanding graphene layers. All of these findings provided

  7. Broadband antireflection nanodome structures on SiC substrate

    DEFF Research Database (Denmark)

    Ou, Yiyu; Zhu, Xiaolong; Møller, Uffe Visbech

    2013-01-01

    Nanodome structures are demonstrated on the SiC substrate by using nanosphere lithography and dry etching. Significant surface antireflection has been observed over a broad spectral range from 400 nm to 1600 nm....

  8. The origin of a peak in the reststrahlen region of SiC

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Rooyen, I.J. van; Henry, A.; Janzén, E.; Olivier, E.J.

    2012-01-01

    A peak in the reststrahlen region of SiC is analyzed in order to establish the origin of this peak. The peak can be associated with a thin damaged layer on the SiC wafers, and a relation is found between surface roughness and the height of this peak, by modeling the damaged layer as an additional layer when simulating the reflectivity from the wafers.

  9. The origin of a peak in the reststrahlen region of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Rooyen, I.J. van [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Henry, A.; Janzen, E. [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Olivier, E.J. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    A peak in the reststrahlen region of SiC is analyzed in order to establish the origin of this peak. The peak can be associated with a thin damaged layer on the SiC wafers, and a relation is found between surface roughness and the height of this peak, by modeling the damaged layer as an additional layer when simulating the reflectivity from the wafers.

  10. Mechanical performance of SiC three-layer cladding in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Angelici Avincola, Valentina, E-mail: valentina.avincola@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Guenoun, Pierre, E-mail: pguenoun@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Shirvan, Koroush, E-mail: kshirvan@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-12-15

    Highlights: • FEA calculations of the stress distribution in SiC three-layer cladding. • Simulation of SiC mechanical performance under operation and accident conditions. • Failure probability analysis of SiC in steady-state and accident conditions. - Abstract: The silicon carbide cladding concept is currently under investigation with regard to increasing the accident tolerance and economic performance of light-water reactor fuels. In this work, the stress fields in the multi-layered silicon carbide cladding for LWR fuels are calculated using the commercial finite element analysis software ADINA. The material properties under irradiation are implemented as a function of temperature. The cladding is studied under operating and accident conditions, specifically for the loss-of-coolant accident (LOCA). During the LOCA, the blowdown and the reflood phases are modeled, including the quench waterfront. The calculated stresses along the cladding thickness show a high sensitivity to the assumptions regarding material properties. The resulting stresses are compared with experimental data and the probability of failure is calculated considering a Weibull model.

  11. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    Science.gov (United States)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-11-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  12. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  13. Methods for growth of relatively large step-free SiC crystal surfaces

    Science.gov (United States)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  14. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  15. Investigation on the Short Circuit Safe Operation Area of SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Luo, Haoze; Iannuzzo, Francesco

    2016-01-01

    This paper gives a better insight of the short circuit capability of state-of-the-art SiC MOSFET power modules rated at 1.2 kV by highlighting the physical limits under different operating conditions. Two different failure mechanisms have been identified, both reducing the short-circuit capability...... of SiC power modules in respect to discrete SiC devices. Based on such failure mechanisms, two short circuit criteria (i.e., short circuit current-based criterion and gate voltage-based criterion) are proposed in order to ensure their robustness under short-circuit conditions. A Safe Operation Area (SOA...

  16. A Kochen–Specker inequality from a SIC

    International Nuclear Information System (INIS)

    Bengtsson, Ingemar; Blanchfield, Kate; Cabello, Adán

    2012-01-01

    Yu and Oh (eprint) have given a state-independent proof of the Kochen–Specker theorem in three dimensions using only 13 rays. The proof consists of showing that a non-contextual hidden variable theory necessarily leads to an inequality that is violated by quantum mechanics. We give a similar proof making use of 21 rays that constitute a SIC (symmetric informationally-complete positive operator-valued measure) and a complete set of MUB (mutually unbiased bases). A theory-independent inequality is also presented using the same 21 rays, as required for experimental tests of contextuality. -- Highlights: ► We find a state-independent Kochen–Specker inequality in dimension 3 with 21 rays. ► The rays constitute a SIC (9 rays) and a complete set of MUB (12 rays). ► Orthogonalities among the rays produce the Hesse configuration. ► The rays also give a state-independent non-contextual hidden variable inequality. ► We show that both inequalities are violated by quantum mechanics.

  17. Study on extrusion process of SiC ceramic matrix

    Science.gov (United States)

    Dai, Xiao-Yuan; Shen, Fan; Ji, Jia-You; Wang, Shu-Ling; Xu, Man

    2017-11-01

    In this thesis, the extrusion process of SiC ceramic matrix has been systematically studied.The effect of different cellulose content on the flexural strength and pore size distribution of SiC matrix was discussed.Reselts show that with the increase of cellulose content, the flexural strength decreased.The pore size distribution in the sample was 1um-4um, and the 1um-2um concentration was more concentrated. It is found that the cellulose content has little effect on the pore size distribution.When the cellulose content is 7%, the flexural strength of the sample is 40.9Mpa. At this time, the mechanical properties of the sample are the strongest.

  18. Two new constructions of approximately SIC-POVMs from multiplicative characters

    Science.gov (United States)

    Luo, Gaojun; Cao, Xiwang

    2017-12-01

    In quantum information theory, symmetric informationally complete positive operator-valued measures (SIC-POVMs) are relevant to quantum state tomography [8], quantum cryptography [15], and foundational studies [16]. In general, it is hard to construct SIC-POVMs and only a few classes of them existed, as we know. Moreover, we do not know whether there exists an infinite class of them. Many researchers tried to construct approximately symmetric informationally complete positive operator-valued measures (ASIC-POVMs). In this paper, we propose two new constructions of ASIC-POVMs for prime power dimensions only by using multiplicative characters over finite fields.

  19. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  20. Oxidation of BN-coated SiC fibers in ceramic matrix composites

    International Nuclear Information System (INIS)

    Sheldon, B.W.; Sun, E.Y.

    1996-01-01

    Thermodynamic calculations were performed to analyze the simultaneous oxidation of BN and SiC. The results show that, with limited amounts of oxygen present, the formation of SiO 2 should occur prior to the formation of B 2 O 3 . This agrees with experimental observations of oxidation in glass-ceramic matrix composites with BN-coated SiC fibers, where a solid SiO 2 reaction product containing little or no boron has been observed. The thermodynamic calculations suggest that this will occur when the amount of oxygen available is restricted. One possible explanation for this behavior is that SiO 2 formation near the external surfaces of the composite closes off cracks or pores, such that vapor phase O 2 diffusion into the composite occurs only for a limited time. This indicates that BN-coated SiC fibers will not always oxidize to form significant amounts of a low-melting, borosilicate glass

  1. High power RF performance test of an improved SiC load

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.H.; Kim, S.H.; Park, Y.J. [Pohang Accelerator Lab., Pohang Inst. of Sceince and Technology, Pohang (KR)] [and others

    1998-11-01

    Two prototypes of SiC loads sustaining a maximum peak power of 50 MW were fabricated by Nihon Koshuha Co. in Japan. The PAL conducted the high power RF performance tests of SiC loads to verify the operation characteristics for the application to the PLS Linac. The in-situ facility for the K 12 module was used for the test, which consists of a modulator and klystron system, waveguide network, vacuum and cooling system, and RF analyzing equipment. As the test results, no breakdown appeared up to 50 MW peak power of 1 {mu}s pulse width at a repetition rate of 50 Hz. However, as the peak power increased above 20 MW at 4 {mu}s with 10 Hz, the breakdown phenomena has been observed. Analysing the test results with the current operation power level of PLS Linac, it is confirmed that the SiC loads well satisfy the criteria of the PLS Linac operation. (author)

  2. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  3. Cl-intercalated graphene on SiC: Influence of van der Waals forces

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of Cl-intercalated epitaxial graphene on SiC are studied by first-principles calculations. By increasing the Cl concentration, doping levels from n-type to slightly p-type are achieved on the SiC(0001) surface, while a wider range of doping levels is possible on the SiC(0001̄) surface. We find that the Cl atoms prefer bonding to the substrate rather than to the graphene. By varying the Cl concentration the doping level can be tailored. Consideration of van der Waals forces improves the distance between the graphene and the substrate as well as the binding energy, but it is not essential for the formation energy. For understanding the doping mechanism the introduction of non-local van der Waals contributions to the exchange correlation functional is shown to be essential. Copyright © EPLA, 2013.

  4. Behaviors of SiC fibers at high temperature

    International Nuclear Information System (INIS)

    Colin, C.; Falanga, V.; Gelebart, L.

    2010-01-01

    On the one hand, considering the improvements of mechanical and thermal behaviours of the last generation of SiC fibers (Hi-Nicalon S, Tyranno SA3); on the other hand, regarding physical and chemical properties and stability under irradiation, SiC/SiC composites are potential candidates for nuclear applications in advanced fission and fusion reactors. CEA must characterize and optimize these composites before their uses in reactors. In order to study this material, CEA is developing a multi-scale approach by modelling from fibers to bulk composite specimen: fibres behaviours must be well known in first. Thus, CEA developed a specific tensile test device on single fibers at high temperature, named MecaSiC. Using this device, we have already characterized the thermoelastic and thermoelectric behaviours of SiC fibers. Additional results about the plastic properties at high temperatures were also obtained. Indeed, we performed tensile tests between 1200 degrees C up to 1700 degrees C to characterize this plastic behaviour. Some thermal annealing, up to 3 hours at 1700 degrees C, had been also performed. Furthermore, we compare the mechanical behaviours with the thermal evolution of the electric resistivity of these SiC fibers. Soon, MecaSiC will be coupled to a new charged particle accelerator. Thus, in this configuration, we will be able to study in-situ irradiation effects on fibre behaviours, as swelling or creep for example

  5. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  6. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    International Nuclear Information System (INIS)

    Van Asch, R.; Verbeek, R.

    2009-10-01

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  7. Thermal shock behaviour of SiC-fibre-reinforced glasses

    International Nuclear Information System (INIS)

    Klug, T.; Reichert, J.; Brueckner, R.

    1992-01-01

    The preparation of two SiC-fibre-reinforced glasses with very different thermal expansion coefficients and glass transition temperatures is described and the influence of long-time temperature and thermal shock behaviour of these composites on the mechanical properties is investigated by means of bending test experiments before and after thermal treatments. It will be shown from experiments and calculations on stresses due to thermal expansion mismatch between fibre and glass matrix that not only best mechanical properties but also best thermal shock behaviour are connected with low tensile intrinsic stresses produced by thermal expansion mismatch during preparation. The thermal shock resistance of the best composite (SiC fibre/DURAN glass) does not show a significant decrease of flexural strength even after 60 shocks from 550 to 25deg C in water, while the bulk glass sample of the same dimension was destroyed by one thermal shock from 350deg C. (orig.) [de

  8. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic; Elaboration de ceramiques nanostructurees en carbure de silicium (SiC): de la synthese de poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMA), 91 - Gif-sur-Yvette (France)

    2008-07-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC{sub f}/SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC{sub f}/SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  9. Effect of LaB6 on the thermal shock property of MoSi2-SiC coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li Ting; Li Hejun; Shi Xiaohong

    2013-01-01

    Highlights: ► LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC multi-composition coatings were coated on C/C composites by pack cementation. ► The microstructure and thermal shock resistance of both coatings were investigated. ► The addition of LaB 6 can increase the compactness, flexural strength and fracture toughness of the MoSi 2 -SiC coating simultaneously. ► Both coatings bond well with the substrates before and after thermal cycling oxidation between 1773 K and room temperature. ► The LaB 6 -MoSi 2 -SiC coated C/C shows better thermal shock resistance than the MoSi 2 -SiC coated C/C. - Abstract: LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coatings were prepared on the surface of carbon/carbon composites by pack cementation method. The crystal structures of the coatings were measured by X-ray diffraction. The morphologies and element distributions were also analyzed by scanning electron microscopy and energy dispersive spectroscopy, respectively. The effect of LaB 6 on the microstructure and thermal shock resistance of MoSi 2 -SiC coating was investigated. The results indicated that the LaB 6 -MoSi 2 -SiC coating possessed a denser structure and superior thermal shock resistance. After 25 times of thermal cycling oxidation between 1773 K and room temperature, the weight losses of the LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coated samples were 0.627% and 2.019%, respectively.

  10. The development of SiC whisker fabrication technology for nuclear applications

    International Nuclear Information System (INIS)

    Kang, Thae Khapp; Kuk, Il Hiun; Lee, Jae Chun; Rhee, Chang Kyu; Lee, Ho Jin; Park, Soon Dong

    1990-02-01

    Important process factors of carbothermic process for the growth of SiC whiskers were investigated. The crystalline form of silicon dioxide, amount of carbon addition, graphite, silicon, catalysts, additive and reaction temperature were chosen as the main factors. Morphology of the resultant products was grouped into 3 different types; whisker,noodle and power types. The addition of catalyst affected in most the formation of SiC whiskers. Effects of catalyst and additive additions and reaction atmospheres on the morphology anf growth of SiC whiskers were investigated, silicon monoxide power and carbon monoxide gas were used as the raw materials. The addition of an iron containing catalyst resulted in a very long thread-like growth of the whiskers, while that of sodium chloride helical curlings. Addition of hydrogen to the non-oxidizing atmosphere enhanced the whisker formations. Crystallization of amorphous silicon monoxide raw powder was investigated at high temperatures up to 1500 deg C in Ar atmosphere using graphite crucible. Up to 900 deg C no crystallization occurred, while at 1100 - 1300 deg C silicon formation, and at 1500 deg C silicon dioxide and silicon carbide formations were detected. A slight weight loss began 1300 deg C, and the weight loss became about 33 % at 1500 deg C. After the formation reaction of SiC whiskers, the reaction products were leached by hydrofluoric acids. The optimum concentration of the hydrofluoric acid was 2 %. (author)

  11. Characteristics of Fabricated SiC Neutron Detectors for Neutron Flux Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Ha, Jang Ho; Park, Se Hwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Ho [Hanyang University, Seoul (Korea, Republic of)

    2011-05-15

    An SPND (Self-powered Neutron Detector) is commonly used for neutron detection in NPP (Nuclear Power Plant) by virtue of un-reactivity for gamma-rays. But it has a drawback, which is that it cannot detect neutrons in real time due to beta emissions (about > 48 s) after reactions between neutrons and {sup 103}Rh in an SPND. And Generation IV reactors such as MSR (Molten-salt reactor), SFR (Sodium-cooled fast reactor), and GFR (Gas-cooled fast reactor) are designed to compact size and integration type. For GEN IV reactor, neutron monitor also must be compact-sized to apply such reactor easily and much more reliable. The wide band-gap semiconductors such as SiC, AlN, and diamond make them an attractive alternative in applications in harsh environments by virtue of the lower operating voltage, faster charge-collection times compared with gas-filled detectors, and compact size.1) In this study, two PIN-type SiC semiconductor neutron detectors, which are for fast neutron detection by elastic and inelastic scattering SiC atoms and for thermal neutron detection by charged particle emissions of 6LiF reaction, were designed and fabricated for NPP-related applications. Preliminary tests such as I-V and alpha response were performed and neutron responses at ENF in HANARO research reactor were also addressed. The application feasibility of the fabricated SiC neutron detector as an in-core neutron monitor was discussed

  12. A comparative study of low energy radiation responses of SiC, TiC and ZrC

    International Nuclear Information System (INIS)

    Jiang, M.; Xiao, H.Y.; Zhang, H.B.; Peng, S.M.; Xu, C.H.; Liu, Z.J.; Zu, X.T.

    2016-01-01

    In this study, an ab initio molecular dynamics method is employed to compare the responses of SiC, TiC and ZrC to low energy irradiation. It reveals that C displacements are dominant in the cascade events of the three carbides. The associated defects in SiC are mainly Frenkel pairs and antisite defects, whereas damage end states in TiC and ZrC generally consist of Frenkel pairs and very few antisite defects are created. It is proposed that the susceptibility to antisite formation in SiC contributes to its crystalline-to-amorphous transformation under irradiation that is observed experimentally. The stronger radiation tolerance of TiC and ZrC than SiC can be originated from their different electronic structures, i.e., the and bonds are a mixture of covalent, metallic, and ionic character, whereas the bond is mainly covalent. The presented results provide underlying mechanisms for defect generation in SiC, TiC and ZrC, and advance the fundamental understanding of the radiation resistances of carbide materials.

  13. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  14. Residual Stress Measurement of SiC tile/Al7075 Hybrid Composites by Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Bok; Lee, Jun Ho; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of); Lee, Sang Bok; Lee, Sang Kwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Muslihd, M. Rifai [Center for Advanced Materials Science and Technology, Tangerang (India)

    2016-05-15

    In this research, SiC which has low density, high compressive strength, and high elastic modulus was used to fabricate the armor plate. In addition, Al which has low density and high toughness was used for a metal matrix of the composites. If two materials are combined, the composite can be effective materials for light weight armor applications. However, the existence of a large difference in coefficients of thermal expansion (CTE) between SiC and Al matrix, SiC/Al composites can have residual stresses while cooled in the fabrication process. Previous research reported that residual stresses in the composites or microstructures have an effect on the fatigue life and their mechanical properties. Some researchers reported about the residual stresses in the SiCp/Al metal matrix composites by numerical simulation systems, X-ray diffraction, and destructive methods. In order to analyze the residual stress of SiC/Al composites, the neutron diffraction as the non-destructive method was performed in this research. The 50 vol.% SiC{sub p}/Al7075 composites and SiC tile inserted 50 vol.% SiC{sub p}/Al7075 hybrid composites were measured to analyze the residual stress of Al (111) and SiC (111). Both samples had the tensile residual stresses in the Al (111) and the compressive residual stresses in the SiC (111) due to the difference in CTE.

  15. Methodology Development for SiC Sensor Signal Modelling in the Nuclear Reactor Radiation Environments

    International Nuclear Information System (INIS)

    Cetnar, J.; Krolikowski, I.P.

    2013-06-01

    This paper deals with SiC detector simulation methodology for signal formation by neutrons and induced secondary radiation as well as its inverse interpretation. The primary goal is to achieve the SiC capability of simultaneous spectroscopic measurements of neutrons and gamma-rays for which an appropriate methodology of the detector signal modelling and its interpretation must be adopted. The process of detector simulation is divided into two basically separate but actually interconnected sections. The first one is the forward simulation of detector signal formation in the field of the primary neutron and secondary radiations, whereas the second one is the inverse problem of finding a representation of the primary radiation, based on the measured detector signals. The applied methodology under development is based on the Monte Carlo description of radiation transport and analysis of the reactor physics. The methodology of SiC detector signal interpretation will be based on the existing experience in neutron metrology developed in the past for various neutron and gamma-ray detection systems. Since the novel sensors based on SiC are characterised by a new structure, yet to be finally designed, the methodology for particle spectroscopic fluence measurement must be developed while giving a productive feed back to the designing process of SiC sensor, in order to arrive at the best possible design. (authors)

  16. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rongzheng; Liu, Malin, E-mail: liumalin@tsinghua.edu.cn; Chang, Jiaxing [Tsinghua University, Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology (China)

    2017-02-15

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H{sub 2} system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  17. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, Rongzheng; Liu, Malin; Chang, Jiaxing

    2017-01-01

    A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H_2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

  18. Oxygen isotopic exchange occurring during dry thermal oxidation of 6H SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vickridge, I.C. E-mail: vickridge@gps.jussieu.fr; Tromson, D.; Trimaille, I.; Ganem, J.-J.; Szilagyi, E.; Battistig, G

    2002-05-01

    SiC is a large band gap semiconductor, promising for high power and high frequency devices. The thermal oxide is SiO{sub 2} however the growth rates of thermal oxide on SiC are substantially slower than on Si, and different along the polar directions (<0 0 0 1-bar> and <0 0 0 1> in the hexagonal polytypes). Thorough understanding of the oxide growth mechanisms may give us new insights into the nature of the SiO{sub 2}/SiC interface, crucial for device applications. We have determined growth kinetics for ultra-dry thermal oxidation of 6H SiC at 1100 deg. C for pressures from 3 to 200 mbar. At 3 mbar, the lowest pressure studied, the oxide growth rates along the two polar directions are virtually the same. At higher pressures growth is faster on the carbon-terminated (0 0 0 1-bar) face. After consecutive oxidations at 1100 deg. C and 100 mbar in {sup 18}O{sub 2} and {sup 16}O{sub 2} gases, {sup 18}O depth profiles show significant isotopic exchange and oxygen movement within the oxide during oxidation.

  19. UV laser drilling of SiC for semiconductor device fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Olaf; Schoene, Gerd; Wernicke, Tim; John, Wilfred; Wuerfl, Joachim; Traenkle, Guenther [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2007-04-15

    Pulsed UV laser processing is used to drill micro holes in silicon carbide (SiC) wafers supporting AlGaN/GaN transistor structures. Direct laser ablation using nanosecond pulses has been proven to provide an efficient way to create through and blind holes in 400 {mu}m thick SiC. When drilling through, openings in the front pads are formed, while blind holes stop {approx}40 {mu}m before the backside and were advanced to the electrical contact pad by subsequent plasma etching without an additional mask. Low induction connections (vias) between the transistor's source pads and the ground on the backside were formed by metallization of the holes. Micro vias having aspect ratios of 5-6 have been processed in 400 {mu}m SiC. The process flow from wafer layout to laser drilling is available including an automated beam alignment that allows a positioning accuracy of {+-}1 {mu}m with respect to existing patterns on the wafer. As proven by electrical dc and rf measurements the laser-assisted via technologies have successfully been implemented into fabrication of AlGaN/GaN high-power transistors.

  20. Biomorphous SiC ceramics prepared from cork oak as precursor

    Science.gov (United States)

    Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.

    2016-04-01

    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.

  1. Investigations on mechanical properties of aluminum hybrid composites

    Directory of Open Access Journals (Sweden)

    Dora Siva Prasad

    2014-01-01

    Full Text Available A double stir casting process was used to fabricate aluminum composites reinforced with various volume fractions of 2, 4, 6, and 8 wt% RHA and SiC particulates in equal proportions. Properties such as hardness, density, porosity and mechanical behavior of the unreinforced and Al/x%RHA/x%SiC (x = 2, 4, 6, and 8 wt% reinforced hybrid composites were examined. Scanning electron microscope (model JSM-6610LV was used to study the microstructural characterization of the composites. It was observed that the hardness and porosity of the hybrid composite increased with increasing reinforcement volume fraction and density decreased with increasing particle content. It was also observed that the UTS and yield strength increase with an increase in the percent weight fraction of the reinforcement particles, whereas elongation decreases with the increase in reinforcement. The increase in strength of the hybrid composites is probably due to the increase in dislocation density. A systematic study of the base alloy and composites was done using the Brinell hardness measurement and the corresponding age hardening curves were obtained. It was observed that in comparison to that of the base aluminum alloy, the precipitation kinetics of the composites were accelerated by adding the reinforcement. This effectively reduced the time for obtaining the maximum hardness by the aging heat treatment.

  2. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  3. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  4. Method of producing silicon carbide articles

    International Nuclear Information System (INIS)

    Milewski, J.V.

    1985-01-01

    A method of producing articles comprising reaction-bonded silicon carbide (SiC) and graphite (and/or carbon) is given. The process converts the graphite (and/or carbon) in situ to SiC, thus providing the capability of economically obtaining articles made up wholly or partially of SiC having any size and shape in which graphite (and/or carbon) can be found or made. When the produced articles are made of an inner graphite (and/or carbon) substrate to which SiC is reaction bonded, these articles distinguish SiC-coated graphite articles found in the prior art by the feature of a strong bond having a gradual (as opposed to a sharply defined) interface which extends over a distance of mils. A method for forming SiC whisker-reinforced ceramic matrices is also given. The whisker-reinforced articles comprise SiC whiskers which substantially retain their structural integrity

  5. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  6. An audit of the knowledge and attitudes of doctors towards Surgical Informed Consent (SIC).

    Science.gov (United States)

    Ashraf, Bushra; Tasnim, Nasira; Saaiq, Muhammad; Zaman, Khaleeq-Uz-

    2014-11-01

    The Surgical Informed Consent (SIC) is a comprehensive process that establishes an information-based agreement between the patient and his doctor to undertake a clearly outlined medical or surgical intervention. It is neither a casual formality nor a casually signed piece of paper. The present study was designed to audit the current knowledge and attitudes of doctors towards SIC at a tertiary care teaching hospital in Pakistan. This cross-sectional qualitative investigation was conducted under the auspices of the Department of Medical Education (DME), Pakistan Institute of Medical Sciences (PIMS), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad over three months period. A 19-item questionnaire was employed for data collection. The participants were selected at random from the list of the surgeons maintained in the hospital and approached face-to-face with the help of a team of junior doctors detailed for questionnaire distribution among them. The target was to cover over 50% of these doctors by convenience sampling. Out of 231 respondents, there were 32 seniors while 199 junior doctors, constituting a ratio of 1:6.22. The respondents variably responded to the questions regarding various attributes of the process of SIC. Overall, the junior doctors performed poorer compared to the seniors. The knowledge and attitudes of our doctors particularly the junior ones, towards the SIC are less than ideal. This results in their failure to avail this golden opportunity of doctor-patient communication to guide their patients through a solidly informative and legally valid SIC. They are often unaware of the essential preconditions of the SIC; provide incomplete information to their patients; and quite often do not ensure direct involvement of their patients in the process. Additionally they lack an understanding of using interactive computer-based programs as well as the concept of nocebo effect of informed consent.

  7. An Audit of the Knowledge and Attitudes of Doctors towards Surgical Informed Consent (SIC

    Directory of Open Access Journals (Sweden)

    Bushra Ashraf

    2014-11-01

    Full Text Available Background The Surgical Informed Consent (SIC is a comprehensive process that establishes an informationbased agreement between the patient and his doctor to undertake a clearly outlined medical or surgical intervention. It is neither a casual formality nor a casually signed piece of paper. The present study was designed to audit the current knowledge and attitudes of doctors towards SIC at a tertiary care teaching hospital in Pakistan. Methods This cross-sectional qualitative investigation was conducted under the auspices of the Department of Medical Education (DME, Pakistan Institute of Medical Sciences (PIMS, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU, Islamabad over three months period. A 19-item questionnaire was employed for data collection. The participants were selected at random from the list of the surgeons maintained in the hospital and approached face-to-face with the help of a team of junior doctors detailed for questionnaire distribution among them. The target was to cover over 50% of these doctors by convenience sampling. Results Out of 231 respondents, there were 32 seniors while 199 junior doctors, constituting a ratio of 1:6.22. The respondents variably responded to the questions regarding various attributes of the process of SIC. Overall, the junior doctors performed poorer compared to the seniors. Conclusion The knowledge and attitudes of our doctors particularly the junior ones, towards the SIC are less than ideal. This results in their failure to avail this golden opportunity of doctor-patient communication to guide their patients through a solidly informative and legally valid SIC. They are often unaware of the essential preconditions of the SIC; provide incomplete information to their patients; and quite often do not ensure direct involvement of their patients in the process. Additionally they lack an understanding of using interactive computer-based programs as well as the concept of nocebo effect of informed

  8. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    International Nuclear Information System (INIS)

    Lillo, T.M.; Rooyen, I.J. van; Wu, Y.Q.

    2016-01-01

    Highlights: • SiC grain orientation determined by TEM-based precession electron diffraction. • Orientation data improved with increasing TEM sample thickness. • Fraction of low angle grain boundaries lower from PED data than EBSD data. • Fractions of high angle and CSL-related boundaries similar to EBSD data. - Abstract: Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. This work reports the effect of transmission electron microscope (TEM) lamella thickness on the quality of data and establishes a baseline comparison to SiC grain boundary characteristics, in an unirradiated TRISO particle, determined previously using a conventional electron backscatter diffraction (EBSD) scanning electron microscope (SEM)-based technique. In general, it was determined that the lamella thickness produced using the standard focused ion beam (FIB) fabrication process (∼80 nm), is sufficient to provide reliable PED measurements, although thicker lamellae (∼120 nm) were found to produce higher quality orientation data. Also, analysis of SiC grain boundary character from the TEM-based PED data showed a much lower fraction of low-angle grain boundaries compared to SEM-based EBSD data from the SiC layer of a TRISO-coated particle made using the same fabrication parameters and a SiC layer deposited at a slightly lower temperature from a surrogate TRISO particle. However, the fractions of high-angle and coincident site lattice (CSL)-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm (Kirchhofer et al., 2013), depending on the fabrication parameters, and since grain boundary fission product precipitates in irradiated TRISO fuel can be nano-sized, the TEM-based PED orientation data

  9. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  10. Interfacial reaction between SiC and aluminium due to extrusion and heat treatment process

    International Nuclear Information System (INIS)

    Junaidah Jai; Fauzi Ismail; Samsiah Sulaiman; Patthi Hussain, Azmi Idris; Yoichi Murakoshi

    1999-01-01

    Chemical interaction between aluminium (Al) and silicon carbide (SiC) produces aluminium carbide (Al 4 C 3 ) which presents potential problems in the production and application of Al/SiC Metal Matrix Composit (MMC). The Al 4 C 3 formed can reduce material properties such as strength in the MMC. This research work investigates the interface reaction in Al 7075/SiC MMC made through hot extrusion process. Mixed Al 7075/SiC MMC powders were pressed at 300 degree C and extruded at 500 degree C, with a reduction ratio of 20:1. The extruded MMC was then heat-treated in air at various temperatures from 560 degree C, 600 degree C, 640 degree C, 700 degree C to 800 degree C in order to observe the interface reaction of the MMC materials. The heat-treated MMCs were then analyzed under the optical microscope, X-ray Diffraction (XRD) Spectroscope and Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDAZ) attachment to observe the interface reaction within the MMCs. This investigation confirms there was interface reaction between SiC and aluminium

  11. Modulating the Surface State of SiC to Control Carrier Transport in Graphene/SiC.

    Science.gov (United States)

    Jia, Yuping; Sun, Xiaojuan; Shi, Zhiming; Jiang, Ke; Liu, Henan; Ben, Jianwei; Li, Dabing

    2018-05-28

    Silicon carbide (SiC) with epitaxial graphene (EG/SiC) shows a great potential in the applications of electronic and photoelectric devices. The performance of devices is primarily dependent on the interfacial heterojunction between graphene and SiC. Here, the band structure of the EG/SiC heterojunction is experimentally investigated by Kelvin probe force microscopy. The dependence of the barrier height at the EG/SiC heterojunction to the initial surface state of SiC is revealed. Both the barrier height and band bending tendency of the heterojunction can be modulated by controlling the surface state of SiC, leading to the tuned carrier transport behavior at the EG/SiC interface. The barrier height at the EG/SiC(000-1) interface is almost ten times that of the EG/SiC(0001) interface. As a result, the amount of carrier transport at the EG/SiC(000-1) interface is about ten times that of the EG/SiC(0001) interface. These results offer insights into the carrier transport behavior at the EG/SiC heterojunction by controlling the initial surface state of SiC, and this strategy can be extended in all devices with graphene as the top layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microwave combustion synthesis of in situ Al{sub 2}O{sub 3} and Al{sub 3}Zr reinforced aluminum matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Heguo, E-mail: zhg1200@sina.com [College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Key Laboratory of Advanced Micro-Nano Materials and Technology, Jiangsu Province Higher Education Institutions, 210094 (China); Synergetic Center for Advanced Materials Research, Jiangsu Province Higher Education Institutions, 210094 (China); Hua, Bo; Cui, Tao; Huang, Jiewen; Li, Jianliang [College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Xie, Zonghan, E-mail: zonghan.xie@adelaide.edu.au [School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia)

    2015-08-15

    Al{sub 2}O{sub 3} and Al{sub 3}Zr reinforced aluminum matrix composites were fabricated from Al and ZrO{sub 2} powders by SiC assisted microwave combustion synthesis. The microstructure and reaction pathways were analyzed by using differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The results showed that the heating rate during microwave synthesis was very high and the entire process took several minutes and that the ignition temperature of the reaction was much lower than that of conventional methods. In addition, the resulting microstructure was found to be finer than that prepared by the conventional methods and no cracks can be seen in the Al{sub 3}Zr reinforcements. As such, the newly developed composites have potential for safety-critical applications where catastrophic failure is not tolerated.

  13. Structural stabilities and electronic properties of fully hydrogenated SiC sheet

    International Nuclear Information System (INIS)

    Wang, Xin-Quan; Wang, Jian-Tao

    2011-01-01

    The intriguing structural and electronic properties of fully hydrogenated SiC honeycomb sheet are studied by means of ab initio calculations. Based on structure optimization and phonon dispersion analysis, we find that both chair-like and boat-like configurations are dynamically stable, and the chair-like conformer is energetically more favored with an energy gain of 0.03 eV per C atom relative to the boat-like one. The chair-like and boat-like conformers are revealed to be nonmagnetic semiconductors with direct band gaps of 3.84 and 4.29 eV, respectively, both larger than 2.55 eV of pristine SiC sheet. The charge density distributions show that the bondings are characterized with covalency for both chair-like and boat-like conformers. -- Highlights: → Structural and electronic properties of fully hydrogenated SiC sheet are studied. → Both chair-like and boat-like configurations are dynamically stable. → While the chair-like conformer is energetically more favored. → The chair-like and boat-like conformers are nonmagnetic semiconductors. → The bondings are characterized with covalency.

  14. Microstructure, Mechanical and Surface Morphological Properties of Al5Ti5Cr Master Alloy as Friction Material Prepared by Stir Die Casting

    Science.gov (United States)

    Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani

    2018-04-01

    Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.

  15. The Benefits of SiC MOSFETs in a T-Type Inverter for Grid-Tie Applications

    DEFF Research Database (Denmark)

    Anthon, Alexander; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    at the expense of increased switching losses since these outer switches must now block the full DC link voltage. Silicon Carbide (SiC) MOSFET devices potentially offer substantial advantage in this context with their lower switching losses, but the benefit of replacing all switching devices in a T-Type inverter...... with SiC MOSFETs is not so clear-cut. This paper now explores this issue by presenting a detailed comparison of the use of Si and SiC devices for a three-level T-Type inverter operating in grid-tie applications. The study uses datasheet values, switching loss measurements and calibrated heat sink thermal...... power level or the switching frequency to be significantly increased for the same device losses. Hence the use of SiC MOSFETS for T-Type inverters can be seen to be an attractive and potentially cost effective alternative, since only two switching devices per phase leg need to be upgraded....

  16. Compaction study of particulate iron-chromium matrix composite reinforced with alumina

    International Nuclear Information System (INIS)

    Saidatulakmar Shamsuddin; Shamsul Baharin Jamaludin; Zuhailawati Hussain; Zainal Arifin Ahmad

    2007-01-01

    Recently, a sharper focus on cost reduction in producing advanced composites systems has increased and leads to an interest in ferrous matrix composite which is cheaper compared to Cobalt, Nickel and their alloys that are scarce, expensive and their dust is especially harmful. In the present investigation, Fe-Cr-Al 2 O 3 composite was prepared using conventional powder metallurgy technique; mixing, compaction and sintering. Consolidation of particulate materials is dependent on the compaction process. As load is increased, the number of contacting asperities increases and they flatten and grow to form a planar contact surface. These asperities eventually merge to form bonding surfaces between particles. This paper focused on finding the optimum compaction parameter in a uniaxial pressing. Six different pressure were studied; (250, 375, 500, 625, 750 and 875)MPa. experimental results show that the optimum compaction parameter is 750 MPa that produced highest linear shrinkage, highest bulk density, lowest porosity and highest hardness value. Every sample has formed binary alloy of Fe-Cr alloy, confirmed by XRD and alumina are homogeneously distributed in the Fe-Cr matrix revealed by optical micrograph and SEM. from EDX, the composites consist of iron, chromium and alumina. (author)

  17. Development of Universal Controller Architecture for SiC Based Power Electronic Building Blocks

    Science.gov (United States)

    2017-10-30

    SiC Based Power Electronic Building Blocks Award Number Title of Research 30 October 2017 SUBMITTED BY D R. HERBERT L. G INN, Pl DEPT. OF...Naval Research , Philadelphia PA, Aug. 2017. • Ginn, H.L. Bakos J., "Development of Universal Controller Architecture for SiC Based Power Electronic...Controller Implementation for MMC Converters", Workshop on Control Architectures for Modular Power Conversion Systems, Office of Naval Research , Arlington VA

  18. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.

    Science.gov (United States)

    Jiang, M; Zheng, J W; Xiao, H Y; Liu, Z J; Zu, X T

    2017-08-24

    ZrC and TiC have been proposed to be alternatives to SiC as fuel-cladding and structural materials in nuclear reactors due to their strong radiation tolerance and high thermal conductivity at high temperatures. To unravel how the presence of defects affects the thermo-physical properties under irradiation, first-principles calculations based on density function theory were carried out to investigate the mechanical and thermal properties of defective ZrC, TiC and SiC. As compared with the defective SiC, the ZrC and TiC always exhibit larger bulk modulus, smaller changes in the Young's and shear moduli, as well as better ductility. The total thermal conductivity of ZrC and TiC are much larger than that of SiC, implying that under radiation environment the ZrC and TiC will exhibit superior heat conduction ability than the SiC. One disadvantage for ZrC and TiC is that their Debye temperatures are generally lower than that of SiC. These results suggest that further improving the Debye temperature of ZrC and TiC will be more beneficial for their applications as fuel-cladding and structural materials in nuclear reactors.

  19. Joining of pressureless-sintered SiC to stainless steel using Ag-Cu alloy and insert-metals

    International Nuclear Information System (INIS)

    Yano, Toyohiko; Takada, Naohiro; Iseki, Takayoshi

    1987-01-01

    Brazing of pressureless-sintered SiC to stainless steel using Ag-28 wt% Cu alloy was studied. In SiC plate joined to stainless steel rod (6 mm in diameter) using an Ag-Cu alloy powder containing 1.5 wt% Ti, the bond strength increased with decreasing brazing temperature and holding time. When the increased size of stainless steel plate (10 x 10 x 4 mm), joining was unsuccessful by the method mentioned above and even with Ti insert-metal. However, simultaneous use of Ti and Mo as insert-metal gave a good bonding in the order SiC/Ti/Mo/stainless steel, because of relaxation of residual stress due to thermal expansion mismatch. The shear strength was 30 - 50 MPa. A thin layer, probably Ti 3 SiC 2 , was observed at the interface between SiC and brazing filler immediately after melting. But with increasing both temperature and time, Ti 5 Si 3 (C) and TiC x were formed if Ti was continuously provided from the brazing filler. Since the interface of Ti 3 SiC 2 and either Ti 5 Si 3 (C) or TiC x seemed to be brittle, the formation of Ti 5 Si 3 (C) and TiC x decreased the bond strength. At lower temperature and short time, a high bond strength is expected when Ti was inserted in contact with SiC. (author)

  20. Manufacturing and characterization of porous SiC for flow channel inserts in dual-coolant blanket designs

    Energy Technology Data Exchange (ETDEWEB)

    Bereciartu, Ainhoa [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Ordas, Nerea, E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Garcia-Rosales, Carmen [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Morono, Alejandro; Malo, Marta; Hodgson, Eric R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abella, Jordi [Institut Quimic de Sarria, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, Luis [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2011-10-15

    SiC is the primary candidate for the flow channel inserts in dual-coolant blanket concepts. Porous SiC ceramics are attractive candidates for this non-structural application, since they can satisfy the required properties through a low cost manufacturing route, compared to SiC{sub f}/SiC. This work shows first results of the manufacturing of porous SiC ceramics prepared with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering additives. C powders were used as pore-formers by their burnout during oxidation after sintering. Comparison of microstructure, porosity, flexural strength, thermal and electrical conductivity and corrosion under Pb-15.7Li of porous SiC without and with sintering additives is presented. The addition of 2.5 wt.% of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} improves the mechanical properties, and reduces the thermal and electrical conductivity down to reasonable values. Preliminary corrosion tests under Pb-15.7 Li at 500 deg. C show that the absence of a dense coating on porous SiC leads to poor corrosion behavior.