WorldWideScience

Sample records for sic hydrogen sensor

  1. Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Chen, Liangyu; Biagi-Labiosa, Azlin M.; Ward, Benjamin J.; Lukco, Dorothy; Gonzalez, Jose M., III; Lampard, Peter S.; Artale, Michael A.; Hampton, Christopher L.

    2011-01-01

    This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development.

  2. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  3. Development of Sic Gas Sensor Systems

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.

    2002-01-01

    Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.

  4. Prospects for SiC electronics and sensors

    OpenAIRE

    Nick G. Wright; Alton B. Horsfall; Vassilevski, Konstantin

    2008-01-01

    There has been substantial international research effort in the development of SiC electronics over the last ten years. With promising applications in power electronics, hostile-environment electronics, and sensors, there is considerable industrial interest in SiC as a material for electronics. However, issues relating to crystal growth and the difficulties of material processing have restricted SiC devices to relatively limited use to date. The eventual success of SiC as an electronic techno...

  5. A porous SiC ammonia sensor

    NARCIS (Netherlands)

    Connolly, E.J.; Timmer, B.H.; Pham, H.T.M.; Groeneweg, J.; Sarro, P.M.; Olthuis, Wouter; French, P.J.

    2005-01-01

    When used as the dielectric in a capacitive sensing arrangement, porous SiC has been found to be extremely sensitive to the presence of ammonia (NH3) gas. The exact sensing method is still not clear, but NH3 levels as low as 0.5 ppm could be detected. We report the fabrication and preliminary

  6. SiC device development for high temperature sensor applications

    Science.gov (United States)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-01-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  7. Thin film hydrogen sensor

    Science.gov (United States)

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  8. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  9. Fiber optic hydrogen sensor

    Science.gov (United States)

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  10. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  11. Hydrogen Leak Detection Sensor Database

    Science.gov (United States)

    Baker, Barton D.

    2010-01-01

    This slide presentation reviews the characteristics of the Hydrogen Sensor database. The database is the result of NASA's continuing interest in and improvement of its ability to detect and assess gas leaks in space applications. The database specifics and a snapshot of an entry in the database are reviewed. Attempts were made to determine the applicability of each of the 65 sensors for ground and/or vehicle use.

  12. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  13. Optical Fiber Grating Hydrogen Sensors: A Review.

    Science.gov (United States)

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  14. Atomic-Scale Mechanism of Efficient Hydrogen Evolution at SiC Nanocrystal Electrodes.

    Science.gov (United States)

    Shen, Xiao; Pantelides, Sokrates T

    2013-01-03

    Efficient electrochemical hydrogen evolution at ultrathin 3C-SiC nanocrystal electrodes in acid solutions was recently reported, but the atomic-scale mechanism of the reaction was not identified. Here we report quantum mechanical calculations of pertinent reactions and show that the reaction happens at pre-existing hydrogenated surface Si-H sites through a mechanism that is related to the Volmer-Heyrovsky mechanism that occurs in metals. Here the Heyrovsky reaction occurs as the first step, where an electron from the substrate reacts with a hydronium adsorbed at a Si-H site, creating an H2 molecule and a Si dangling bond. The Volmer reaction follows and regenerates the Si-H. This ordering of reactions is supported by the fact that the hydrogen coverage on SiC electrodes does not depend on the applied voltage, in contrast to the cases of metal electrodes. Moreover, the Volmer reaction, which is a one-step process on metal surface, is a two-step process here. We then show that the rise of the conduction band due to quantum confinement accounts for the fact that only ultrasmall SiC nanocrystals are electrochemically active. We also show that the ability of a Si-H bond to bind a hydronium is essential for the hydrogen evolution to occur at high rate.

  15. Packaging Technology Developed for High-Temperature SiC Sensors and Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Lei, Jih-Fen

    2000-01-01

    A ceramic- and thick-film-materials-based prototype electronic package designed for silicon carbide (SiC) high-temperature sensors and electronics has been successfully tested at 500 C in an oxygen-containing air environment for 500 hours. This package was designed, fabricated, assembled, and electronically evaluated at the NASA Glenn Research Center at Lewis Field with an in-house-fabricated SiC semiconductor test chip. High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as space missions to the inner solar system or the emission control electronics and sensors in aeronautical engines. Single-crystal SiC has such excellent physical and chemical material properties that SiC-based semiconductor electronics can operate at temperatures over 600 C, which is significantly higher than the limit for Si-based semiconductor devices. SiC semiconductor chips were recently demonstrated to be operable at temperatures as high as 600 C, but only in the probe station environment because suitable packaging technology for sensors and electronics at temperatures of 500 C and beyond did not exist. Thus, packaging technology for SiC-based sensors and electronics is immediately needed for both application and commercialization of high-temperature SiC sensors and electronics. In response to this need, researchers at Glenn designed, fabricated, and assembled a prototype electronic package for high-temperature electronics, sensors, and microelectromechanical systems (MEMS) using aluminum nitride (AlN) substrate and gold (Au) thick-film materials. This prototype package successfully survived a soak test at 500 C in air for 500 hours. Packaging components tested included thick-film high-temperature metallization, internal wire bonds, external lead bonds, and a SiC diode chip die-attachment. Each test loop, which was composed of thick-film printed wire, wire bond, and lead bond was subjected to a 50-mA direct current for 250

  16. Optimization of Thermal Neutron Converter in SiC Sensors for Spectral Radiation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Krolikowski, Igor; Cetnar, Jerzy [Department of Nuclear Energy, Faculty of Energy and Fuels at AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Issa, Fatima; Ferrone, Raffaello; Ottaviani, Laurent [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231, 13397 Marseille Cedex 20 (France); Szalkai, Dora; Klix, Axel [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Karlsruhe 76344 (Germany); Vermeeren, Ludo [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lyoussi, Abdalla [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Saenger, Richard [Etudes et Productions Schlumberger, Clamart (France)

    2015-07-01

    Optimization of the neutron converter in SiC sensors is presented. The sensors are used for spectral radiation measurements of thermal and fast neutrons and optionally gamma ray at elevated temperature in harsh radiation environment. The neutron converter, which is based on 10B, allows to detect thermal neutrons by means of neutron capture reaction. Two construction of the sensors were used to measure radiation in experiments. Sensor responses collected in experiments have been reproduced by the computer tool created by authors, it allows to validate the tool. The tool creates the response matrix function describing the characteristic of the sensors and it was used for detailed analyses of the sensor responses. Obtained results help to optimize the neutron converter in order to increase thermal neutron detection. Several enhanced construction of the sensors, which includes the neutron converter based on {sup 10}B or {sup 6}Li, were proposed. (authors)

  17. Overview of North American Hydrogen Sensor Standards

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Kathleen [SRA International, Inc., Colorado Springs, CO (United States); Lopez, Hugo [UL LLC, Chicago, IL (United States); Cairns, Julie [CSA Group, Cleveland, OH (United States); Wichert, Richard [Professional Engineering, Inc.. Citrus Heights, CA (United States); Rivkin, Carl [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-11

    An overview of the main North American codes and standards associated with hydrogen safety sensors is provided. The distinction between a code and a standard is defined, and the relationship between standards and codes is clarified, especially for those circumstances where a standard or a certification requirement is explicitly referenced within a code. The report identifies three main types of standards commonly applied to hydrogen sensors (interface and controls standards, shock and hazard standards, and performance-based standards). The certification process and a list and description of the main standards and model codes associated with the use of hydrogen safety sensors in hydrogen infrastructure are presented.

  18. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  19. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    Science.gov (United States)

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  20. Technology roadmap for development of SiC sensors at plasma processes laboratory

    Directory of Open Access Journals (Sweden)

    Mariana Amorim Fraga

    2010-08-01

    Full Text Available Recognizing the need to consolidate the research and development (R&D activities in microelectronics fields in a strategic manner, the Plasma Processes Laboratory of the Technological Institute of Aeronautics (LPP-ITA has established a technology roadmap to serve as a guide for activities related to development of sensors based on silicon carbide (SiC thin films. These sensors have also potential interest to the aerospace field due to their ability to operate in harsh environment such as high temperatures and intense radiation. In the present paper, this roadmap is described and presented in four main sections: i introduction, ii what we have already done in the past, iii what we are doing in this moment, and iv our targets up to 2015. The critical technological issues were evaluated for different categories: SiC deposition techniques, SiC processing techniques for sensors fabrication and sensors characterization. This roadmap also presents a shared vision of how R&D activities in microelectronics should develop over the next five years in our laboratory.

  1. MIS-based sensors with hydrogen selectivity

    Science.gov (United States)

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  2. Properties of carbonaceous-palladium hydrogen sensor

    Science.gov (United States)

    Kamińska, Anna; Krawczyk, Sławomir; Wronka, Halina; Czerwosz, ElŻbieta; Firek, Piotr; Kalenik, Jerzy; Szmidt, Jan

    2013-07-01

    In this paper we present studies of hydrogen sensors based on nanostructural C-Pd films deposited on alundum substrate with silver or titanium electrodes. These C-Pd films were prepared by PVD method. Films were characterized by SEM and EDS. Sensitivity of films toward hydrogen were measured in specially prepare experimental set-up with small chamber (50ml). Response time was also registered for different percentage of hydrogen / nitrogen mixture (up to 1% of hydrogen).

  3. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  4. Integrated Mirco-Machined Hydrogen Gas Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Frank DiMeoJr. Ing--shin Chen

    2005-12-15

    The widespread use of hydrogen as both an industrial process gas and an energy storage medium requires fast, selective detection of hydrogen gas. This report discusses the development of a new type of solid-state hydrogen gas sensor that couples novel metal hydride thin films with a MEMS (Micro-Electro-Mechanical System) structure known as a micro-hotplate. In this project, Micro-hotplate structures were overcoated with engineered multilayers that serve as the active hydrogen-sensing layer. The change in electrical resistance of these layers when exposed to hydrogen gas was the measured sensor output. This project focused on achieving the following objectives: (1) Demonstrating the capabilities of micro-machined H2 sensors; (2) Developing an understanding of their performance; (3) Critically evaluating the utility and viability of this technology for life safety and process monitoring applications. In order to efficiently achieve these objectives, the following four tasks were identified: (1) Sensor Design and Fabrication; (2) Short Term Response Testing; (3) Long Term Behavior Investigation; (4) Systems Development. Key findings in the project include: The demonstration of sub-second response times to hydrogen; measured sensitivity to hydrogen concentrations below 200 ppm; a dramatic improvement in the sensor fabrication process and increased understanding of the processing properties and performance relationships of the devices; the development of improved sensing multilayers; and the discovery of a novel strain based hydrogen detection mechanism. The results of this program suggest that this hydrogen sensor technology has exceptional potential to meet the stringent demands of life safety applications as hydrogen utilization and infrastructure becomes more prevalent.

  5. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation.

    Science.gov (United States)

    Cheng, Qijin; Tam, Eugene; Xu, Shuyan; Ostrikov, Kostya Ken

    2010-04-01

    Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 degrees C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.

  6. Hysteresis-free nanoplasmonic pd-au alloy hydrogen sensors

    DEFF Research Database (Denmark)

    Wadell, Carl; Nugroho, Ferry Anggoro Ardy; Lidström, Emil

    2015-01-01

    hydrogen sensors. By increasing the amount of Au in the alloy nanoparticles up to 25 atom %, we are able to suppress the hysteresis between hydrogen absorption and desorption, thereby increasing the sensor accuracy to below 5% throughout the investigated 1 mbar to 1 bar hydrogen pressure range. Furthermore......, we observe an 8-fold absolute sensitivity enhancement at low hydrogen pressures compared to sensors made of pure Pd, and an improved sensor response time to below one second within the 0-40 mbar pressure range, that is, below the flammability limit, by engineering the nanoparticle size....

  7. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  8. Fabrication method for a room temperature hydrogen sensor

    Science.gov (United States)

    Seal, Sudipta (Inventor); Shukla, Satyajit V. (Inventor); Ludwig, Lawrence (Inventor); Cho, Hyoung (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  9. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  10. POF hydrogen detection sensor systems for launch vehicles applications

    Science.gov (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    2011-06-01

    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  11. Sensing Performance Study of SiC, a Wide Bandgap Semiconductor Material Platform for Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Wei Du

    2015-01-01

    Full Text Available The sensing properties of a surface plasmon resonance (SPR based waveguide sensor on a wide bandgap semiconductor, silicon carbide (SiC, were studied. Compared to other waveguide sensors, the large bandgap energy of SiC material allows the sensor to operate in the visible and near infrared wavelength range, while the SPR effect by a thin gold film is expected to improve the sensitivity. The confinement factor of the sensor at various wavelengths of the incident light and refractive index of the analyte were investigated using an effective index method. Since the change of analyte type and concentration is reflected by the change of refractive index, the sensing performance can be evaluated by the shift of resonant wavelength from the confinement factor spectrum at different refractive index. The results show that the shift of resonant wavelength demonstrates linear characteristics. A sensitivity of 1928 nm/RIU (refractive index unit shift could be obtained from the refractive index of 1.338~1.348 which attracts research interests because most biological analytes are in this range.

  12. Hydrogen Safety Sensor Performance and Use Gap Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wright, Hannah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Cebolla, Rafael O. [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands; Moretto, Pietro [Joint Research Centre, Petten, the Netherlands

    2017-11-15

    Hydrogen sensors are recognized as an important technology for facilitating the safe implementation of hydrogen as an alternative fuel, and there are numerous reports of a sensor alarm successfully preventing a potentially serious event. However, gaps in sensor metrological specifications, as well as in their performance for some applications, exist.The U.S. Department of Energy (DOE) Fuel Cell Technology Office published a short list of critical gaps in the 2007 and 2012 multiyear project plans; more detailed gap analyses were independently performed by the JRC and NREL. There have been, however, some significant advances in sensor technologies since these assessments, including the commercial availability of hydrogen sensors with fast response times (t90 less than 1 s, which had been an elusive DOE target since 2007), improved robustness to chemical poisons, improved selectivity, and improved lifetime and stability. These improvements, however, have not been universal and typically pertain to select platforms or models. Moreover, as hydrogen markets grow and new applications are being explored, more demands will be imposed on sensor performance. The hydrogen sensor laboratories at NREL and JRC are currently updating the hydrogen safety sensor gap analysis through direct interaction with international stakeholders in the hydrogen community, especially end-users. NREL and the JRC are currently organizing a series of workshops (in Europe and the U.S.) with sensor developers, end-users, and other stakeholders in 2017 to identify technology gaps and to develop a path forward to address them. One workshop is scheduled for May 10 in Brussels, Belgium at the Headquarters of the Fuel Cell and Hydrogen Joint Undertaking. A second workshop is planned at the National Renewable Energy Laboratory in Golden, CO, USA. This presentation will review improvements in sensor technologies in the past 5 to 10 years, identify gaps in sensor performance and use requirements, and identify

  13. NO2 gas sensor based on hydrogenated graphene

    Science.gov (United States)

    Park, Sungjin; Park, Minji; Kim, Sunghyun; Yi, Sum-Gyun; Kim, Myeongjin; Son, Jangyup; Cha, Jongin; Hong, Jongill; Yoo, Kyung-Hwa

    2017-11-01

    We investigated the relationship between defects in graphene and NO2 gas sensitivity of graphene-based gas sensors. Defects were introduced by hydrogen plasma or ultraviolet (UV)/ozone treatment. As the defect concentration increased, the sensitivity was enhanced, and sub-ppb level detection limit was achieved. UV irradiation was used for recovery at room temperature. However, defects generated by ozone treatment, like graphene oxide, were reduced back to graphene by UV irradiation, so the ozone-treated graphene sensor was not stable over time. In contrast, the response of the hydrogenated graphene sensor was very repeatable because defects generated by hydrogenation was stable enough not to be dehydrogenated by UV irradiation. These results demonstrate that the hydrogenated graphene sensor is a highly sensitive and stable NO2 sensor at room temperature.

  14. Fiber-Optic Hydrogen Sensors Based upon Chromogenic Materials

    Science.gov (United States)

    Pitts, Roland

    2002-03-01

    The development of lightweight, low cost, inherently safe, reliable hydrogen sensors is crucial to the development of an infrastructure for a hydrogen-based economy. Since the involvement of hydrogen in the Hindenburg disaster (May 7, 1937), the public perception is that hydrogen is dangerous to use, store, and handle. It will require extraordinary safety measures to ensure the public that hydrogen leaks can be detected and controlled early. Detection requires sensors to be arrayed in locations where explosive concentrations of hydrogen can accumulate, and mitigation of risk requires a control function associated with detection that can trigger alarms or actuate devices to prevent hydrogen concentrations from reaching the explosive limit. The approach at NREL to meet the needs for hydrogen detection that are anticipated in the transportation sector uses thin films to indicate the presence of hydrogen. The thin films react with hydrogen to produce a change in optical properties that can be sensed with a light beam propagating along a fiber-optic element. Sensitivity of the device is 200 ppm hydrogen in air, with response times less than one second. The sensor response is unique to hydrogen. It is inherently safe, in that no wires are used that could provide an ignition source in a monitored space. Sensor films can be deposited inexpensively on the end of commercial fiber optic cables, either glass or polymer. They are lightweight and resistant to interference from electric and magnetic fields. Arrays of sensors can be operated from a single detection and control point. Primary challenges involve stabilizing the response in real environments, where pollutants and contamination of the thin film surface interfere with response, and extending the lifetime of the sensor to periods of interest in the transportation sector.

  15. Silicon carbide-based hydrogen gas sensors for high-temperature applications

    National Research Council Canada - National Science Library

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    .... In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC...

  16. Early forest fire detection using low-energy hydrogen sensors

    Directory of Open Access Journals (Sweden)

    K. Nörthemann

    2013-11-01

    Full Text Available Most huge forest fires start in partial combustion. In the beginning of a smouldering fire, emission of hydrogen in low concentration occurs. Therefore, hydrogen can be used to detect forest fires before open flames are visible and high temperatures are generated. We have developed a hydrogen sensor comprising of a metal/solid electrolyte/insulator/semiconductor (MEIS structure which allows an economical production. Due to the low energy consumption, an autarkic working unit in the forest was established. In this contribution, first experiments are shown demonstrating the possibility to detect forest fires at a very early stage using the hydrogen sensor.

  17. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  18. Rapid Hydrogen and Methane Sensors for Wireless Leak Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under NASA STTR NNK07EA39C, ASR&D developed passive surface acoustic wave (SAW) based hydrogen sensors that utilize Pd nanocluster films on self-assembled...

  19. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    Science.gov (United States)

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  20. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    Directory of Open Access Journals (Sweden)

    Yongming Hu

    2012-04-01

    Full Text Available Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors.

  1. Corrosion resistance of amorphous hydrogenated SiC and diamond-like coatings deposited by r. f. -plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sella, C. (Lab. de Physique des Materiaux, CNRS, 92 Meudon (France)); Lecoeur, J. (Lab. d' Electrochimie Interfaciale, CNRS, 92 Meudon (France)); Sampeur, Y. (ICMC, 91 Le Coudray Montceaux (France)); Catania, P. (ICMC, 91 Le Coudray Montceaux (France))

    1993-10-08

    This paper reports on the properties and corrosion resistance of amorphous hydrogenated carbon and amorphous hydrogenated SiC films deposited by r.f.-plasma-enhanced chemical vapour deposition at low temperatures (below 200 C). SiC coatings were prepared from SiH[sub 4]-CH[sub 4] gas mixtures. Hydrogenated diamond-like coatings were deposited from classical CH[sub 4]-H[sub 2] mixtures. The influence of various deposition parameters was investigated. Microstructural and mechanical properties of the films were studied (density, hydrogen content, nanohardness, internal stress, critical load and friction coefficient). Two examples of corrosion resistance are given: (1) the corrosion resistance and biocompatibility of SiC and diamond-like coatings deposited on metal implants (Ti alloy) (the corrosion resistance is evaluated through potentiodynamic polarization tests in biological media; the biocompatibility of coated and uncoated metals is compared using differentiated human cell cultures); and (2) the corrosion resistance of SiC-coated magnesium in chloride-containing boric borate buffer at pH = 9.3 evaluated from anodic polarization curves and scanning electron microscopy studies. (orig.)

  2. Hydrogen sensor based on metallic photonic crystal slabs.

    Science.gov (United States)

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  3. Demonstration of a prototype hydrogen sensor and electronics package

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Amanda S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brosha, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-03

    This is a progress report for the demonstration of a prototype hydrogen sensor and electronics package. There are five tasks associated with this, and four have been completed as of August 2016: Station Demonstration and Site Recommendation, Order Sensor Equipment, Build Sensors, and Install Sensors. The final task to be completed is Sensor Demonstration and Data Analysis, and expected completion date is January 26, 2017. This progress report details each of the tasks and goes into detail about what is currently being worked on, along with the budget and planned work for July 27, 2016 to January 26, 2017.

  4. Study on Hydrogen Gas concentration to Voltage and Resistance using Semiconductor Hydrogen Gas Sensor

    Directory of Open Access Journals (Sweden)

    Ahmad Arif Hasibuan

    2016-10-01

    Full Text Available Study on hydrogen gas concentration to changes in voltage and resistance using semiconductor hydrogen gas sensor has been done. The system which has been designed will measure any changes in the voltage and resistance of the sensor automatically when the sensor is given a variation of concentration on hydrogen gas. On the condition of gas with low concentration, the sensor output voltage obtained worth 0:08 Volt and the sensor resistance value of 180 KΩ. On the increase in gas concentration causes an increase in sensor output voltage and a decrease in the value of resistance Studi tentang pengaruh konsentrasi kadar gas hidrogen terhadap perubahan tegangan dan resistansi menggunakan sensor gas hidrogen berbasis semikonduktor telah berhasil dilakukan. Sistem yang telah dirancang akan mengukur setiap perubahan tegangan dan resistansi secara digital pada sensor saat diberikan variasi terhadap konsentrasi kadar gas hidrogen. Pada kondisi gas dengan konsentrasi rendah diperoleh tegangan output sensor senilai 0.08 Volt dan nilai resistansi sensor sebesar 180 KΩ. Pada peningkatan konsentrasi gas menyebabkan peningkatan tegangan output sensor dan sebaliknya terjadi penurunan pada nilai resistansi

  5. Estudio de puertas catalíticas en sensores de gas en tecnología de SiC

    Directory of Open Access Journals (Sweden)

    Casals, O.

    2004-04-01

    Full Text Available In this work the chemical and structural characterisation of metallic layers of Pt and TaSix, employed as catalytic gates in high temperature gas sensors based on MOS devices on SiC substrates, is presented. For the study layers of different thickness have been deposited on Si substrates. The results show that the roughness of the layers increases with the reduction of the thickness of Pt and with annealing, which should give rise to an increase in the sensitivity and response speed of the devices. Another consequence of the annealing is the chemical transformation of the gate’s materials that, for thin films of Pt with TaSix, produces the complete transformation of Pt into Pt2Ta, which might affect the catalytic properties of the gate. The first electrical results show that, even with thick and compact Pt layers, the SiC-based MOS tunnel diodes are sensitive to CO and NO2 gases, although the response time is relatively long. its response speed is too slow.

    En este trabajo se presenta un estudio químico y estructural de las capas metálicas de Pt y TaSix utilizadas como puerta catalítica en sensores de gas de alta temperatura basados en dispositivos MOS de SiC. Para ello se han depositado capas de diferentes espesores sobre substratos de Si. Los resultados muestran que con la reducción del espesor de Pt y con un recocido se consigue aumentar la rugosidad de las capas de puerta, lo que debería aumentar la sensibilidad y la velocidad de respuesta de los dispositivos que las incorporasen. Otro efecto del recocido es la transformación química del material de la puerta que, para capas delgadas de Pt con TaSix, produce la transformación total Pt en Pt2Ta, lo que podría afectar a las características catalíticas de la puerta. Los primeros resultados eléctricos indican que, a pesar de que las capas de Pt empleadas son gruesas y compactas, los diodos MOS túnel de SiC son sensibles a los gases CO y NO2, aunque presentan una velocidad

  6. Palladium/aluminum nitride/silicon carbide based hydrogen sensor: A materials approach

    Science.gov (United States)

    Rahman, Md. Habibur

    From the perspective of safety in storing and transporting hydrogen a safe hydrogen infrastructure should include a system of detectors to pinpoint leaks, and generate alarms in order to notify of leakage, and a system of cut-off points, all of which will be regularly tested. Existing techniques for detecting hydrogen have numerous drawbacks especially with respect to high temperature harsh environment. The requirements to overcome these drawbacks often exceed the capabilities of traditional materials, which lead the use of SiC and AlN in developing the proposed sensor: the main focus of this dissertation work. Such devices can operate at temperatures as high as 400°C while ordinary Si-based devices fail at around 140°C. In this work, three different types of SiC as well as two different types of Si substrates were used and four different thicknesses of AlN films were deposited 132 on them to investigate the effects of substrate materials and their carrier concentration, thickness of AlN layer, experimental parameters such as temperature, flow rate, etc. on the electrical as well as sensing behavior of the devices. The device with high carrier concentration substrate can not be operated as conventional MIS capacitor due to the absence of bias induced depletion layer responsible for the bias shift in presence of H2. The sensor response is obtained by measuring the change in the forward current versus voltage profile as a function of the presence of the gas. The device response is strongly flow rate dependent but independent of flow rate for sufficiently high flow, namely 250 sccm and above. The response is independent of AlN thickness at least in the investigated range of 25 nm to 200 nm. In a practical device application the operating temperature has to be controlled as the response magnitude increases with increase in temperature. The device made with 3C-SiC has much lower sensitivity to hydrogen than the device made on 6H-SiC.

  7. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.

  8. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  9. A sensitive nonenzymatic hydrogen peroxide sensor based on ...

    Indian Academy of Sciences (India)

    nanocomposites were then applied to study the electrocatalytic reduction of hydrogen peroxide (H2O2) in 0.01 M. pH 7.0 phosphate buffer medium. Then the Fe3O4–Fe2O3 nanocomposites were used as active electrode material of electrochemical sensors for H2O2 detection The detection sensitivity of the sensor was ...

  10. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    Science.gov (United States)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  11. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    Science.gov (United States)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  12. Integrated Micro-Machined Hydrogen Gas Sensor. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Frank DiMeo, Jr.

    2000-10-02

    This report details our recent progress in developing novel MEMS (Micro-Electro-Mechanical Systems) based hydrogen gas sensors. These sensors couple novel thin films as the active layer on a device structure known as a Micro-HotPlate. This coupling has resulted in a gas sensor that has several unique advantages in terms of speed, sensitivity, stability and amenability to large scale manufacture. This Phase-I research effort was focused on achieving the following three objectives: (1) Investigation of sensor fabrication parameters and their effects on sensor performance. (2) Hydrogen response testing of these sensors in wet/dry and oxygen-containing/oxygen-deficient atmospheres. (3) Investigation of the long-term stability of these thin film materials and identification of limiting factors. We have made substantial progress toward achieving each of these objectives, and highlights of our phase I results include the demonstration of signal responses with and without oxygen present, as well as in air with a high level of humidity. We have measured response times of <0.5 s to 1% H{sub 2} in air, and shown the ability to detect concentrations of <200 ppm. These results are extremely encouraging and suggest that this technology has substantial potential for meeting the needs of a hydrogen based economy. These achievements demonstrate the feasibility of using micro-hotplates structures in conjunction with palladium+coated metal-hydride films for sensing hydrogen in many of the environments required by a hydrogen based energy economy. Based on these findings, they propose to continue and expand the development of this technology in Phase II.

  13. Optimization of Pd Surface Plasmon Resonance sensors for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2011-01-01

    A design to optimize a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, the sensitive layer is deposited on the core of a multimode fiber, after removing the optical cladding. The light is injected in the

  14. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Ganesh E. Patil

    2010-09-01

    Full Text Available Polycrystalline tin oxide (SnO2 thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT. The film was characterized for their phase and morphology by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2, liquefied petroleum gas (LPG, ethanol vapors (C2H5OH, NH3, CO, CO2, Cl2 and O2. The gas sensing characteristics were obtained by measuring the sensor response as a function of various controlling factors like operating temperature, operating voltages (1 V, 5 V, 10 V 15 V, 20 V and 25 V and concentration of gases. The sensor response measurement showed that the SnO2 has maximum response to hydrogen. Furthermore; the SnO2 based sensor exhibited fast response and good recovery towards hydrogen at temperature 150 oC. The result of response towards H2 reveals that SnO2 thin film prepared by SPT would be a suitable material for the fabrication of the hydrogen sensor.

  15. Fabrication of mechano-optical sensors for hydrogen gas

    NARCIS (Netherlands)

    Pham Van So, P.V.S.; Kauppinen, L.J.; Dijkstra, Mindert; van Wolferen, Hendricus A.G.M.; de Ridder, R.M.; Hoekstra, Hugo

    2009-01-01

    We present results related to the fabrication of a novel and highly sensitive mechano-optical sensor for hydrogen gas, based on microcantilevers, supplied with a selective gas absorbing layer (Pd), suspended above a Si3N4 grated waveguide (GWG). Integrated microcantilever-GWG devices have been

  16. Influence of Pt Gate Electrode Thickness on the Hydrogen Gas Sensing Characteristics of Pt/In2O3/SiC Hetero-Junction Devices

    Directory of Open Access Journals (Sweden)

    S. Kandasamy

    2007-09-01

    Full Text Available Hetero-junction Pt/In2O3/SiC devices with different Pt thickness (30, 50 and 90nm were fabricated and their hydrogen gas sensing characteristics have been studied. Pt and In2O3 thin films were deposited by laser ablation. The hydrogen sensitivity was found to increase with decreasing Pt electrode thickness. For devices with Pt thickness of 30 nm, the sensitivity gradually increased with increasing temperature and reached a maximum of 390 mV for 1% hydrogen in air at 530°C. Atomic force microscopy (AFM analysis revealed a decrease in Pt grain size and surface roughness for increasing Pt thickness. The relationship between the gas sensing performance and the Pt film thickness and surface morphology is discussed.

  17. Hydrogen sensor based on a graphene - palladium nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ulrich, E-mail: ulrich.lange@chemie.uni-r.d [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany); Hirsch, Thomas [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany); Mirsky, Vladimir M. [Department of Nanobiotechnology, Lausitz University of Applied Sciences, 01968 Senftenberg (Germany); Wolfbeis, Otto S. [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany)

    2011-04-01

    A composite material was prepared from graphene and palladium nanoparticles (PdNP) by layer-by-layer deposition on gold electrodes. The material was characterized by absorption spectroscopy, scanning electron microscopy, Raman spectroscopy and surface plasmon resonance. Cyclic voltammetry demonstrated the presence of electrocatalytic centers in the palladium decorated graphene. This material can serve as a sensor material for hydrogen at levels from 0.5 to 1% in synthetic air. Pure graphene is poorly sensitive to hydrogen, but incorporation of PdNPs increases its sensitivity by more than an order of magnitude. The effects of hydrogen, nitrogen dioxide and humidity were studied. Sensor regeneration is accelerated in humid air. The sensitivity of the nanocomposite depends on the number of bilayers of graphene-PdNPs.

  18. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert; Brosha, Eric; Mukundan, Rangachary; James, C. Will; Keller, Jay

    2016-12-01

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cell Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.

  19. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  20. 40 A Platinum-porous SiC gas sensor: Investigation sensing properties of H{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Keffous, A., E-mail: keffousa@yahoo.fr [Centre de Recherche en Technologie des Semiconducteurs pourl' energetique (CRTSE), 02Bd, Frantz Fanon, B.P. 140, Algiers (Algeria); Cheriet, A.; Hadjersi, T.; Boukennous, Y.; Gabouze, N.; Boukezzata, A.; Belkacem, Y. [Centre de Recherche en Technologie des Semiconducteurs pourl' energetique (CRTSE), 02Bd, Frantz Fanon, B.P. 140, Algiers (Algeria); Kechouane, M. [Houari Boumediene University (USTHB), Physical Faculty (Algeria); Kerdja, T. [Advanced Technology Center (CDTA) (Algeria); Menari, H.; Berouaken, M.; Talbi, L.; Ouadah, Y. [Centre de Recherche en Technologie des Semiconducteurs pourl' energetique (CRTSE), 02Bd, Frantz Fanon, B.P. 140, Algiers (Algeria)

    2013-01-01

    The present paper reports on a new structure for H{sub 2} gas sensing based on thin porous silicon carbide (PSiC) films. The PSiC layer has been formed by electrochemical etching of SiC films previously deposited onto p-type silicon substrate by pulsed laser deposition (PLD) using 6H-SiC target. Current-voltage (I-V) and current-time (I-t) characteristics have been measured. A thin platinum (Pt) film (40 A thickness) deposited onto PSiC layer has been used as a catalytic metal. The Schottky diode parameters such as ideality factor (n), barrier height ({phi}{sub Bp}) and series resistance (R{sub S}) have been evaluated under different concentrations of H{sub 2} gas. The experimental results show that upon exposure to H{sub 2} gas the barrier height, the ideality factor and the series resistance change significantly. The different changes in the electrical parameters of the structure (increase and decrease as a function of the H{sub 2} concentration) have been explained by the formation of two inversion layers. The first one forms as soon as the gas is in contact with the sensor and the second when the concentration reaches 90 ppm. Subsequently, the effect of gas concentration on the maximum sensitivity value of the sensor has been investigated. A high sensitivity ({Delta}I/I) value around 86% is found at about 1 V bias voltage. In addition, the response and recovery times were determined to be around 55 s and 160 s, respectively. Finally, the structure shows a reversible response for low gas concentration at room temperature.

  1. 800 C Silicon Carbide (SiC) Pressure Sensors for Engine Ground Testing

    Science.gov (United States)

    Okojie, Robert S.

    2016-01-01

    MEMS-based 4H-SiC piezoresistive pressure sensors have been demonstrated at 800 C, leading to the discovery of strain sensitivity recovery with increasing temperatures above 400 C, eventually achieving up to, or near, 100 recovery of the room temperature values at 800 C. This result will allow the insertion of highly sensitive pressure sensors closer to jet, rocket, and hypersonic engine combustion chambers to improve the quantification accuracy of combustor dynamics, performance, and increase safety margin. Also, by operating at higher temperature and locating closer to the combustion chamber, reduction of the length (weight) of pressure tubes that are currently used will be achieved. This will result in reduced costlb to access space.

  2. Hydrogen and Methane Response of Pd Gate MOS Sensor

    Directory of Open Access Journals (Sweden)

    Preeti Pandey

    2009-04-01

    Full Text Available A sensor based on Pd/SiO2/Si MOS capacitor was fabricated on p type (1-6 ΩCm Si with thermal oxide layer of thickness about 33Ǻ. Sensor properties of the MOS structure were studied towards hydrogen (500- 3500 ppm in air and methane gas (1000-2500 ppm in air at room temperature and 140˚C respectively. The response of the sensor was measured as shift in C-V curve of the MOS structure. The sensitivity of the sensor towards the hydrogen (73 % at 0.03 V bias was better than methane (19.1 % at 0.68 V bias. SEM (Scanning electron microscopy and AFM image of the metal film show the porous structure which believed to be facilitating the catalytic oxidation of the insulator surface and higher gas response. High sensitivity of the sensor can be attributed to the change of interface state density on exposure of gases along with the formation of dipole layer.

  3. A sensitive nonenzymatic hydrogen peroxide sensor based on ...

    Indian Academy of Sciences (India)

    The obtained Fe3O4–Fe2O3 nanocomposites were then applied to study the electrocatalytic reduction of hydrogen peroxide (H2O2) in 0.01 M pH 7.0 phosphate buffer medium. Then the Fe3O4–Fe2O3 nanocomposites were used as active electrode material of electrochemical sensors for H2O2 detection The detection ...

  4. Improved Reliability of SiC Pressure Sensors for Long Term High Temperature Applications

    Science.gov (United States)

    Okojie, R. S.; Nguyen, V.; Savrun, E.; Lukco, D.

    2011-01-01

    We report advancement in the reliability of silicon carbide pressure sensors operating at 600 C for extended periods. The large temporal drifts in zero pressure offset voltage at 600 C observed previously were significantly suppressed to allow improved reliable operation. This improvement was the result of further enhancement of the electrical and mechanical integrity of the bondpad/contact metallization, and the introduction of studded bump bonding on the pad. The stud bump contact promoted strong adhesion between the Au bond pad and the Au die-attach. The changes in the zero offset voltage and bridge resistance over time at temperature were explained by the microstructure and phase changes within the contact metallization, that were analyzed with Auger electron spectroscopy (AES) and field emission scanning electron microscopy (FE-SEM).

  5. Summary and Findings from the NREL/DOE Hydrogen Sensor Workshop (June 8, 2011)

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, W.; Burgess, R.; Post, M.; Rivkin, C.

    2012-07-01

    On June 8, 2011, DOE/NREL hosted a hydrogen sensor workshop attended by nearly forty participants from private organizations, government facilities, and academic institutions . The workshop participants represented a cross section of stakeholders in the hydrogen community, including sensor developers, end users, site safety officials, and code and standards developers. The goals of the workshop were to identify critical applications for the emerging hydrogen infrastructure that require or would benefit from hydrogen sensors, to assign performance specifications for sensor deployed in each application, and to identify shortcomings or deficiencies (i.e., technical gaps) in the ability of current sensor technology to meet the assigned performance requirements.

  6. Proton conducting ceramics for potentiometric hydrogen sensors for molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Borland, H.; Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2013-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaZrY, BaCeZrY and SrFeCo ceramics. -- Abstract: Tritium monitoring in lithium–lead eutectic (Pb–15.7Li) is of great importance for the performance of liquid blankets in fusion reactors. Also, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. Potentiometric hydrogen sensors for molten lithium–lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as proton exchange membranes (PEM). In this work the following compounds: BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−α}, Sr(Ce{sub 0.6}-Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−α} and Sr{sub 3}Fe{sub 1.8}Co{sub 2}O{sub 7} have been synthesized in order to be tested as PEM H-probes. Potentiometric measurements of the synthesized ceramic elements at 500 °C have been performed at a fixed hydrogen concentration. The sensors constructed using the proton conductor elements BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr{sub 3}Fe{sub 1.8}Co{sub 0.2}O{sub 7−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation (deviation around 60 mV). In contrast, the sensor constructed using the proton conductor element Sr(Ce{sub 0.6}–Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−δ} showed a deviation higher than 100 mV between experimental an theoretical data.

  7. Early Forest Fire Detection Using Low Energy Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Jürgen Müller

    2016-08-01

    Full Text Available The North-east German Lowlands is a region with one of the highest forest fire risks in Europe. In order to keep damage levels as low as possible, it is important to have an effective early warning system. Such a system is being developed on the basis of a hydrogen sensor, which makes it possible to detect a smouldering forest fire before the development of open flames. The prototype hydrogen sensor produced at the Humboldt University Berlin has a metal/ solid electrolyte/insulator/ semiconductor (MEIS structure, which allows cost-effective production. Due to the low energy consumption, an autarchic working unit could be installed in the forest. Field trials have shown that it is possible to identify a forest fire in its early stages when hydrogen concentrations are still low. A significant change in the signal due to a fire was measured at a distance of about 100m. In view of the potential impacts of climate change, the innovative pre-ignition warning system is an important early diagnosis and monitoring module for the protection of the forests.

  8. Fabrication of Pd Doped WO3 Nanofiber as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Alireza Nikfarjam

    2013-01-01

    Full Text Available Pd doped WO3 fibers were synthesized by electro-spinning. The sol gel method was employed to prepare peroxopolytungstic acid (P-PTA. Palladium chloride and Polyvinyl pyrrolidone (PVP was dissolved in the sol Pd:WO3 = 10% molar ratio. The prepared sol was loaded into a syringe connected to a high voltage of 18.3 kV and electrospun fibers were collected on the alumina substrates. Scanning electron microscope (SEM, X-ray powder diffraction (XRD and X-ray photoelectron spectroscopy (XPS techniques were used to analyze the crystal structure and chemical composition of the fibers after heat treatment at 500 °C. Resistance-sensing measurements exhibited a sensitivity of about 30 at 500 ppm hydrogen in air, and the response and recovery times were about 20 and 30 s, respectively, at 300 °C. Hydrogen gas sensing mechanism of the sensor was also studied.

  9. Fiber Optic Sensors for Leak Detection and Condition Monitoring in Hydrogen Fuel Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal addresses the need for explosion proof, sensitive and reliable hydrogen sensors for NASA and commercial hydrogen fuel systems. It also...

  10. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive orthogonal frequency coded (OFC) surface acoustic wave (SAW) based hydrogen sensors for NASA application...

  11. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application

    DEFF Research Database (Denmark)

    Koren, Klaus; Jensen, Peter Østrup; Kühl, Michael

    2016-01-01

    Hydrogen peroxide (H2O2) is an important member of the reactive oxygen species (ROS) family. Among ROS, H2O2 is considered the most long-lived and can accumulate inside and outside of cells, where it is involved in both vital (signaling) and deadly (toxic) reactions depending on its concentration....... Quantifying H2O2 within biological samples is challenging and often not possible. Here we present a quasi-reversible fiber-optic sensor capable of measuring H2O2 concentrations ranging from 1-100 μM within different biological samples. Based on a Prussian blue/white redox cycle and a simple sensor recharging...

  12. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  13. Physical origin of hydrogen-adsorption-induced metallization of the SiC surface: n-type doping via formation of hydrogen bridge bond.

    Science.gov (United States)

    Chang, Hao; Wu, Jian; Gu, Bing-Lin; Liu, Feng; Duan, Wenhui

    2005-11-04

    We perform first-principles calculations to explore the physical origin of hydrogen-induced semiconductor surface metallization observed in beta-SiC(001)-3 x 2 surface. We show that the surface metallization arises from a novel mechanism of n-type doping of surface band via formation of hydrogen bridge bonds (i.e., Si-H-Si complex). The hydrogen strengthens the weak Si-Si dimers in the subsurface by forming hydrogen bridge bonds, and donates electron to the surface conduction band.

  14. Intramolecularly Hydrogen-Bonded Polypyrroles as Electro-Optical Sensors

    National Research Council Canada - National Science Library

    Nicholson, Jesse

    2001-01-01

    We have developed a new class of polypyrroles bearing both hydrogen-bond acceptor and hydrogen-donor groups such that the intramolecular hydrogen bonding holds the system planar enhancing conjugation...

  15. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  16. Development of a fiber-optic sensor for hydrogen leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Tracy, C.E. [National Renewable Energy Lab., Golden, CO (United States)

    1995-09-01

    The real and perceived risks of hydrogen fuel use, particularly in passenger vehicles, will require extensive safety precautions including hydrogen leak detection. Conventional hydrogen gas sensors require electrical wiring and may be too expensive for deployment in multiple locations within a vehicle. In this recently initiated project, we are attempting to develop a reversible, thin-film, chemochromic sensor that can be applied to the end of a polymer optical fiber. The presence of hydrogen gas causes the film to become darker. A light beam transmitted from a central instrument in the vehicle along the sensor fibers will be reflected from the ends of the fiber back to individual light detectors. A decrease in the reflected light signal will indicate the presence and concentration of hydrogen in the vicinity of the fiber sensor. The typical thin film sensor consists of a layer of transparent, amorphous tungsten oxide covered by a very thin reflective layer of palladium. When the sensor is exposed to hydrogen, a portion of the hydrogen is dissociated, diffuses through the palladium and reacts with the tungsten oxide to form a blue insertion compound, H{sub X}WO{sub 3}- When the hydrogen gas is no longer present, the hydrogen will diffuse out of the H{sub X}WO{sub 3} and oxidize at the palladium/air interface, restoring the tungsten oxide film and the light signal to normal. The principle of this detection scheme has already been demonstrated by scientists in Japan. However, the design of the sensor has not been optimized for speed of response nor tested for its hydrogen selectivity in the presence of hydrocarbon gases. The challenge of this project is to modify the basic sensor design to achieve the required rapid response and assure sufficient selectivity to avoid false readings.

  17. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Walied A. Moussa

    2010-02-01

    Full Text Available Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT patterned on the surface. A thin palladium (Pd film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  18. Optical Sensors for Hydrogen and Oxygen for Unambiguous Detection in Their Mutual Presence Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I SBIR project is to develop sensors that can discriminate the presence of combustible gases like oxygen (O2) in hydrogen (H2) or H2 in O2...

  19. Development of an Inexpensive RGB Color Sensor for the Detection of Hydrogen Cyanide Gas.

    Science.gov (United States)

    Greenawald, Lee A; Boss, Gerry R; Snyder, Jay L; Reeder, Aaron; Bell, Suzanne

    2017-10-27

    An inexpensive red, green, blue (RGB) color sensor was developed for detecting low ppm concentrations of hydrogen cyanide gas. A piece of glass fiber filter paper containing monocyanocobinamide [CN(H2O)Cbi] was placed directly above the RGB color sensor and an on chip LED. Light reflected from the paper was monitored for RGB color change upon exposure to hydrogen cyanide at concentrations of 1.0-10.0 ppm as a function of 25%, 50%, and 85% relative humidity. A rapid color change occurred within 10 s of exposure to 5.0 ppm hydrogen cyanide gas (near the NIOSH recommended exposure limit). A more rapid color change occurred at higher humidity, suggesting a more effective reaction between hydrogen cyanide and CN(H2O)Cbi. The sensor could provide the first real time respirator end-of-service-life alert for hydrogen cyanide gas.

  20. Optical fiber sensor for the continuous monitoring of hydrogen in oil

    NARCIS (Netherlands)

    Mak, T.W.; Westerwaal, R.J.; Slaman, M.J.; Schreuders, H.; van Vugt, A.C.; Victoria, M.; Boelsma, C.; Dam, B.

    2014-01-01

    We demonstrate an optical fiber based hydrogen sensor to determine the dissolved hydrogen concentration in oil. This is of special interest in the prevention of the malfunction of power transformers, which has a significant social, economic and environmental impact. This malfunction is often related

  1. Hafnium - an optical hydrogen sensor spanning six orders in pressure

    NARCIS (Netherlands)

    Boelsma, C.; Bannenberg, L.J.; Van Setten, M. J.; Steinke, N.J.; van Well, A.A.; Dam, B.

    2017-01-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen

  2. Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC.

    Science.gov (United States)

    Trejo, Alejandro; Calvino, Marbella; Ramos, Estrella; Cruz-Irisson, Miguel

    2012-08-22

    A computational study of the dependence of the electronic band structure and density of states on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using ab initio density functional theory and the supercell method. The effects of the porosity and the surface chemistry composition on the energetic stability of pSiC were also investigated. The porous structures were modeled by removing atoms in the [001] direction to produce two different surface chemistries: one fully composed of silicon atoms and one composed of only carbon atoms. The changes in the electronic states of the porous structures as a function of the oxygen (O) content at the surface were studied. Specifically, the oxygen content was increased by replacing pairs of hydrogen (H) atoms on the pore surface with O atoms attached to the surface via either a double bond (X = O) or a bridge bond (X-O-X, X = Si or C). The calculations show that for the fully H-passivated surfaces, the forbidden energy band is larger for the C-rich phase than for the Si-rich phase. For the partially oxygenated Si-rich surfaces, the band gap behavior depends on the O bond type. The energy gap increases as the number of O atoms increases in the supercell if the O atoms are bridge-bonded, whereas the band gap energy does not exhibit a clear trend if O is double-bonded to the surface. In all cases, the gradual oxygenation decreases the band gap of the C-rich surface due to the presence of trap-like states.

  3. Networks of ultrasmall Pd/Cr bilayer nanowires as high performance hydrogen sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X.-Q.; Wang, Y.-L.; Deng, H.; Latimer, M. L.; Xiao, Z.-L.; Pearson, J.; Xu, T.; Wang, H.-H.; Welp, U.; Crabtree, G. W.; Kwok, W.-K. (Center for Nanoscale Materials); ( MSD); (Northern Illinois Univ.); (Illinois Math and Science Academy); (Univ. of Illinois at Chicago)

    2011-01-01

    The newly developed hydrogen sensor, based on a network of ultrasmall pure palladium nanowires sputter-deposited on a filtration membrane, takes advantage of single palladium nanowires' characteristics of high speed and sensitivity while eliminating their nanofabrication obstacles. However, this new type of sensor, like the single palladium nanowires, cannot distinguish hydrogen concentrations above 3%, thus limiting the potential applications of the sensor. This study reports hydrogen sensors based on a network of ultrasmall Cr-buffered Pd (Pd/Cr) nanowires on a filtration membrane. These sensors not only are able to outperform their pure Pd counterparts in speed and durability but also allow hydrogen detection at concentrations up to 100%. The new networks consist of a thin layer of palladium deposited on top of a Cr adhesion layer 1-3 nm thick. Although the Cr layer is insensitive to hydrogen, it enables the formation of a network of continuous Pd/Cr nanowires with thicknesses of the Pd layer as thin as 2 nm. The improved performance of the Pd/Cr sensors can be attributed to the increased surface area to volume ratio and to the confinement-induced suppression of the phase transition from Pd/H solid solution ({alpha}-phase) to Pd hydride ({beta}-phase).

  4. Hafnium-an optical hydrogen sensor spanning six orders in pressure.

    Science.gov (United States)

    Boelsma, C; Bannenberg, L J; van Setten, M J; Steinke, N-J; van Well, A A; Dam, B

    2017-06-05

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material.

  5. Hafnium—an optical hydrogen sensor spanning six orders in pressure

    Science.gov (United States)

    Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.

    2017-01-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material. PMID:28580959

  6. A New Hydrogen Sensor Based on SNS Fiber Interferometer with Pd/WO3 Coating

    Directory of Open Access Journals (Sweden)

    Jinxin Shao

    2017-09-01

    Full Text Available This paper presents a new hydrogen sensor based on a single mode–no core–single mode (SNS fiber interferometer structure. The surface of the no core fiber (NCF was coated by Pd/WO3 film to detect the variation of hydrogen concentration. If the hydrogen concentration changes, the refractive index of the Pd/WO3 film as well as the boundary condition for light propagating in the NCF will all be changed, which will then cause a shift into the resonant wavelength of interferometer. Therefore, the hydrogen concentration can be deduced by measuring the shift of the resonant wavelength. Experimental results demonstrated that this proposed sensor had a high detection sensitivity of 1.26857 nm/%, with good linearity and high accuracy (maximum 0.0055% hydrogen volume error. Besides, it also possessed the advantages of simple structure, low cost, good stability, and repeatability.

  7. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    An increase in produced hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  8. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet

    2005-01-01

    An increase in hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to the lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  9. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity.

    Science.gov (United States)

    Lin, Kaiqun; Lu, Yonghua; Chen, Junxue; Zheng, Rongsheng; Wang, Pei; Ming, Hai

    2008-11-10

    High sensitivity is obtained at larger resonant incident angle if negative diffraction order of metallic grating is used to excite the surface plasmon. A highly sensitive grating-based surface plasmon resonance (SPR) sensor is designed for the hydrogen detection. A thin palladium (Pd) film deposited on the grating surface is used as transducer. The influences of grating period and the thickness of Pd on the performance of sensor are investigated using rigorous coupled-wave analysis (RCWA) method. The sensitivity as well as the width of the SPR curves and reflective amplitude is considered simultaneously for designing the grating-based SPR hydrogen sensor, and a set of optimized structural parameters is presented. The performance of grating-based SPR sensor is also compared with that of conventional prism-based SPR sensor.

  10. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    Science.gov (United States)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  11. Hydrogen Sulfide Micro-Sensor for Biomass Fouling Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hydrogen Sulfide (H2S)is the leading chemical agent causing human fatalities following inhalation exposures. The overall aim of this project is to develop and...

  12. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face

    Science.gov (United States)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming

    2016-01-01

    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  13. InGaP/InGaAs field-effect transistor typed hydrogen sensor

    Science.gov (United States)

    Tsai, Jung-Hui; Liou, Syuan-Hao; Lin, Pao-Sheng; Chen, Yu-Chi

    2018-02-01

    In this article, the Pd-based mixture comprising silicon dioxide (SiO2) is applied as sensing material for the InGaP/InGaAs field-effect transistor typed hydrogen sensor. After wet selectively etching the SiO2, the mixture is turned into Pd nanoparticles on an interlayer. Experimental results depict that hydrogen atoms trapped inside the mixture could effectively decrease the gate barrier height and increase the drain current due to the improved sensing properties when Pd nanoparticles were formed by wet etching method. The sensitivity of the gate forward current from air (the reference) to 9800 ppm hydrogen/air environment approaches the high value of 1674. Thus, the studied device shows a good potential for hydrogen sensor and integrated circuit applications.

  14. Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing.

    Science.gov (United States)

    Perrotton, C; Javahiraly, N; Slaman, M; Dam, B; Meyrueis, P

    2011-11-07

    A new design of a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, a transducer layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The transducer layer is a multilayer stack made of a Silver, a Silica and a Palladium layer. The spectral modulation of the light transmitted by the fiber allows to detect the presence of hydrogen in the environment. The sensor is only sensitive to the Transverse Magnetic polarized light and the Traverse Electric polarized light can be used therefore as a reference signal. A more reliable response is expected for the fiber SPR hydrogen sensor based on spectral modulation instead of on intensity modulation. The multilayer thickness defines the sensor performance. The silica thickness tunes the resonant wavelength, whereas the Silver and Palladium thickness determine the sensor sensitivity. In an optimal configuration (NA = 0.22, 100 μm core radius and transducer length = 1 cm), the resonant wavelength is shifted over 17.6 nm at a concentration of 4% Hydrogen in Argon for the case of the 35 nm Silver/ 100 nm Silica/ 3 nm palladium multilayer.

  15. Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow Through Test Apparatus: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buttner, William J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hartmann, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schmidt, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cebolla, Rafeal O [Joint Research Centre, Petten, the Netherlands; Weidner, Eveline [Joint Research Centre, Petten, the Netherlands; Bonato, Christian [Joint Research Centre, Petten, the Netherlands

    2017-11-06

    Certification of hydrogen sensors to standards often prescribes using large-volume test chambers [1, 2]. However, feedback from stakeholders such as sensor manufacturers and end-users indicate that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow through test methods potentially are an efficient, cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested, in series or in parallel, with an appropriate flow through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of this new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations, but there are potential drawbacks. According to ISO 26142 [1], flow through test methods may not properly simulate ambient applications. In chamber test methods, gas transport to the sensor can be dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Alternatively, in flow through methods, forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. One goal of the current activity in the JRC and NREL sensor laboratories [3, 4] is to develop a validated flow through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics, challenges associated with flow through methods include the ability to control environmental parameters (humidity, pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow through test apparatus design and protocols for the evaluation of

  16. Developing an amperometric hydrogen peroxide sensor for an exhaled breath analysis system

    NARCIS (Netherlands)

    Wiedemair, Justyna; van Dorp, Henriëtte; Olthuis, Wouter; van den Berg, Albert

    In this work, we present a chip-integrated amperometric sensor targeted at the detection of hydrogen peroxide (H2O2) in the gaseous phase. Electrode chips are manufactured in a series of microfabrication steps and characterized electrochemically. Using such devices detection of H2O2 in an aqueous

  17. Demonstration of a Prototype Hydrogen Sensor and Electronics Package - Progress Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Amanda S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brosha, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-14

    This is the second progress report on the demonstration of a prototype hydrogen sensor and electronics package. It goes into detail about the five tasks, four of which are already completed as of August 2016, with the final to be completed by January 26, 2017. Then the budget is detailed along with the planned work for May 27, 2016 to July 27, 2016.

  18. Thermochemical hydrogen sensor based on Pt-coated nanofiber catalyst deposited on pyramidally textured thermoelectric film

    Science.gov (United States)

    Kim, Seil; Song, Yoseb; Lee, Young-In; Choa, Yong-Ho

    2017-09-01

    The hydrogen gas-sensing performance has been systemically investigated of a new type of thermochemical hydrogen (TCH) sensor, composed of pyramidally textured thermoelectric (TE) film and catalytic Pt-coated nanofibers (NFs) deposited over the TE film. The TE film was composed of stoichiometric Bi2Te3, synthesized by means of cost-effective electrochemical deposition onto a textured silicon wafer. The resulting pyramidally textured TE film played a critical role in maximizing hydrogen gas flow around the overlying Pt NFs, which were synthesized by means of electrospinning followed by sputtering and acted as a heating catalyst. The optimal temperature increase of the Pt NFs was determined by means of optimizations of the electrospinning and sputtering durations. The output voltage signal of the optimized TCH sensor based on Pt NFs was 17.5 times higher than that of a Pt thin film coated directly onto the pyramidal TE material by using the same sputtering duration, under the fixed conditions of 3 vol% H2 in air at room temperature. This observation can be explained by the increased surface area of (111) planes accessible on the Pt-coated NFs. The best response time and recovery time observed for the optimized TCH sensor based on Pt-coated NFs were respectively 17 and 2 s under the same conditions. We believe that this type of TCH sensor can be widely used for supersensitive hydrogen gas detection by employing small-size Pt NFs and various chalcogenide thin films with high thermoelectric performance.

  19. Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.J.; Dam, B.; Meyrueis, P.

    2011-01-01

    A new design of a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, a transducer layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The transducer layer is a

  20. Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen.

    Science.gov (United States)

    Kumar, Mohit; Singh Bhati, Vijendra; Ranwa, Sapana; Singh, Jitendra; Kumar, Mahesh

    2017-03-22

    We report highly hydrogen selective Pd contacted ZnO nanorods based sensor detecting low concentration even at low operating temperature of 50 °C. The sensor performance was investigated for various gases such as H2, CH4, H2S and CO2 at different operating temperatures from 50 °C to 175 °C for various gas concentrations ranging from 7 ppm to 10,000 ppm (1%). The sensor is highly efficient as it detects hydrogen even at low concentration of ~7 ppm and at operating temperature of 50 °C. The sensor's minimum limit of detection and relative response at 175 °C were found 7 ppm with ~38.7% for H2, 110 ppm with ~6.08% for CH4, 500 ppm with ~10.06% for H2S and 1% with ~11.87% for CO2. Here, Pd exhibits dual characteristics as metal contact and excellent catalyst to hydrogen molecules. The activation energy was calculated for all the gases and found lowest ~3.658 kJ/mol for H2. Low activation energy accelerates desorption reactions and enhances the sensor's performance.

  1. Superconducting characteristics of short MgB2 wires of long level sensor for liquid hydrogen

    Science.gov (United States)

    Takeda, M.; Inoue, Y.; Maekawa, K.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2015-12-01

    To establish the worldwide storage and marine transport of hydrogen, it is important to develop a high-precision and long level sensor, such as a superconducting magnesium diboride (MgB2) level sensor for large liquid hydrogen (LH2) tanks on board ships. Three 1.7- m-long MgB2 wires were fabricated by an in situ method, and the superconducting characteristics of twenty-four 20-mm-long MgB2 wires on the 1.7-m-long wires were studied. In addition, the static level-detecting characteristics of five 500-mm-long MgB2 level sensors were evaluated under atmospheric pressure.

  2. Research on High Sensitive D-Shaped FBG Hydrogen Sensors in Power Transformer Oil.

    Science.gov (United States)

    Luo, Ying-Ting; Wang, Hong-Bin; Ma, Guo-Ming; Song, Hong-Tu; Li, Chengrong; Jiang, Jun

    2016-10-04

    Dissolved hydrogen is a symbol gas decomposed by power transformer oil for electrical faults such as overheat or partial discharges. A novel D-shaped fiber Bragg grating (D-FBG) sensor is herein proposed and was fabricated with magnetron sputtering to measure the dissolved hydrogen concentration in power transformer oil in this paper. Different from the RI (refractive index)-based effect, D-FBG in this case is sensitive to curvature caused by stress from sensing coating, leading to Bragg wavelength shifts accordingly. The relationship between the D-FBG wavelength shift and dissolved hydrogen concentration in oil was measured experimentally in the laboratory. The detected sensitivity could be as high as 1.96 μL/L at every 1-pm wavelength shift. The results proved that a simple, polished FBG-based hydrogen sensor provides a linear measuring characteristic in the range of low hydrogen concentrations in transformer oil. Moreover, the stable hydrogen sensing performance was investigated by X-ray diffraction analysis.

  3. Determination of hydrogen permeation using metallic sensors of construction similar to bimetallic thermocouples; Determinacao de permeacao de hidrogenio utilizando sensores metalicos de construcao similar a termopares bimetalicos

    Energy Technology Data Exchange (ETDEWEB)

    Maul, Alexandre M. [Ministerio de Ciencia e Tecnologia (MCT), Brasilia, DF (Brazil). Programa de Pos-graduacao em Engenharia e Processos (PIPE- PRH-24/ANP); Ponte, Haroldo A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Correa, Luiz A. [Metaldata Tecnologia de Materiais, Curitiba, PR (Brazil)] (in Memoriam)

    2004-07-01

    Crude oils range in consistency from water to tar-like solids, and in color from clear to black. An average crude oil contains about 84 percent carbon, 14 percent hydrogen, 1 to 3 percent sulfur, and less than 1 percent each of nitrogen, oxygen, metals, and salts. Crude oils are generally classified as paraffinic, naphthenic, or aromatic based on the predominant proportion of similar hydrocarbon molecules. Refinery crude base stocks usually consist of mixtures of two or more different crude oils. Many corrosive processes found in machines, equipment and pipes used in the petroleum industry are directly influenced by hydrogen. The structural damages are caused by hydrogen inclusion in metallic structures, generated by acid media that contain free protons (H{sup +}), by chemical processes that lead to the protons formation, by formation of atomic hydrogen (H0) or even by adsorbed gas hydrogen (H2). The structural damages are varied: hydrogen induced cracking (HIC), blistering, stress corrosion cracking (SSC), stress oriented hydrogen induced cracking (SOHIC). The main problem found in practice is how to detect, in a safe, fast and economically viable way, the formation of hydrogen close to a surface subjected to hydrogen permeation. Within this work, we built a cell for hydrogen generation/permeation to study and evaluate a new hydrogen sensor. This new sensor is composed of two parts, each one build with a couple of dissimilar materials, being a sensor couple, for hydrogen flux measurement, and a reference couple, for temperature corrections. In this sensor, the changes in some physical properties are related with the flow of permeated hydrogen. The results using a prototype model showed good agreement with a traditional Devanathan-Stachurski sensor. (author)

  4. Amperometric mediatorless hydrogen peroxide sensor with horseradish peroxidase encapsulated in peptide nanotubes

    Directory of Open Access Journals (Sweden)

    Hamid Feyzizarnagh

    2016-03-01

    Full Text Available A mediatorless sensor with horseradish peroxidase (HRP enzymes encapsulated inside peptide nanotubes (PNTs has been proposed for amperometric detection of hydrogen peroxide. PNTs not only encapsulate the enzymes to retain their activity and stability, but also can provide direct electron transfer between an electrode and the electroactive sites of HRP without mediators. Experimental results were compared with hydroquinone (HQ-mediated electron transfer results. The PNT/HRP sensor produced a current signal comparable to the HQ/HRP sensor in the entire range of hydrogen peroxide concentrations (0–60 mM. The amperometric signal was the greatest when PNT and HQ were used together. The current signal of the PNT/HQ/HRP system increased rapidly with the hydrogen peroxide concentration while the PNT/HRP and HQ/HRP systems showed a similar increase in the rate of current with hydrogen peroxide. The current-H2O2 concentration relations of the tested systems were analyzed using the Michaelis–Menten type equation. Using PNTs as immobilizing agents for enzymes may circumvent the drawbacks of chemical mediators such as HQ that may interfere with the redox reactions and may cause toxicity problems to enzymes.

  5. Functionalized Carbon Nanotubes with Gold Nanoparticles to Fabricate a Sensor for Hydrogen Peroxide Determination

    Directory of Open Access Journals (Sweden)

    Halimeh Rajabzade

    2012-01-01

    Full Text Available A highly sensitive electrode was prepared based on gold nanoparticles/nanotubes/ionic liquid for measurement of Hydrogen peroxide. Gold nanoparticles of 20–25 nm were synthesized on a nanotube carbon paste electrode by cyclic voltammetry technique while the coverage was controlled by applied potential and time. The gold nanoparticles were modified to form a monolayer on CNT, followed by decoration with ionic liquid for determination of hydrogen peroxide. The experimental conditions, applied potential and pH, for hydrogen peroxide monitoring were optimized, and hydrogen peroxide was determined amperometrically at 0.3 V vs. SCE at pH 7.0. Electrocatalytic effects of gold deposited CNT were observed with respect to unmodified one. The sensitivity obtained was 5 times higher for modified one. The presence of Au particles in the matrix of CNTs provides an environment for the enhanced electrocatalytic activities. The sensor has a high sensitivity, quickly response to H2O2 and good stability. The synergistic influence of MWNT, Au particles and IL contributes to the excellent performance for the sensor. The sensor responds to H2O2 in the linear range from 0.02 µM to 0.3 mM. The detection limit was down to 0.4 µM when the signal to noise ratio is 3.

  6. Research on SiC Whisker Prepared by H-PSO

    Directory of Open Access Journals (Sweden)

    WANG Yao

    2017-10-01

    Full Text Available SiC whiskers were prepared on the matrix of graphite by using high hydrogenous silicone oil(PSO as raw material. The effect of surface conditions of graphite and heating temperature on the growth of SiC whisker was mainly studied in this paper. The main factor which affects the nucleation and growth of SiC whisker is the heating temperature, with the heating temperature rising, the production of SiC whisker increases. The surface condition of graphite matrix also influences the growth of SiC whisker. With the nucleation points provided by graphite matrix defects increasing, the production of SiC whisker incleases and SiC whisker starts to overlap with each other. The formation process of SiC whisker includes two steps:nucleation and growth. SiC whisker nucleates at low temperature and grows at high temperature, which follows the VLS (vapor-liquid-solid growth mechanism.

  7. A Spectrometric Method for Hydrogen Peroxide Concentration Measurement with a Reusable and Cost-Efficient Sensor

    Directory of Open Access Journals (Sweden)

    Cheng-Chih Hsu

    2015-10-01

    Full Text Available In this study we developed a low cost sensor for measuring the concentration of hydrogen peroxide (H2O2 in liquids utilizing a spectrometric method. The sensor was tested using various concentrations of a peroxidase enzyme immobilized on a glass substrate. H2O2 can be catalyzed by peroxidase and converted into water and oxygen. The reagent 4-amino-phenazone takes up oxygen together with phenol to form a colored product that has absorption peaks at 510 nm and 450 nm. The transmission intensity is strongly related to the hydrogen peroxide concentration, so can be used for quantitative analysis. The measurement range for hydrogen peroxide is from 5 × 10−5% to 1 × 10−3% (0.5 ppm to 10 ppm and the results show high linearity. This device can achieve a sensitivity and resolution of 41,400 (photon count/% and 3.49 × 10−5% (0.35 ppm, respectively. The response time of the sensor is less than 3 min and the sensor can be reused for 10 applications with similar performance.

  8. Laser ablation direct writing of metal nanoparticles for hydrogen and humidity sensors.

    Science.gov (United States)

    Beliatis, Michail J; Martin, Nicholas A; Leming, Edward J; Silva, S Ravi P; Henley, Simon J

    2011-02-01

    A UV pulsed laser writing technique to fabricate metal nanoparticle patterns on low-cost substrates is demonstrated. We use this process to directly write nanoparticle gas sensors, which operate via quantum tunnelling of electrons at room temperature across the device. The advantages of this method are no lithography requirements, high precision nanoparticle placement, and room temperature processing in atmospheric conditions. Palladium-based nanoparticle sensors are tested for the detection of water vapor and hydrogen within controlled environmental chambers. The electrical conduction mechanism responsible for the very high sensitivity of the devices is discussed with regard to the interparticle capacitance and the tunnelling resistance.

  9. Design of a smartphone plastic optical fiber chemical sensor for hydrogen sulfide detection

    OpenAIRE

    Sultangazin, Alimzhan; Kusmangaliyev, Janysbek; Aitkulov, Arman; Akilbekova, Dana; Olivero, Massimo; Tosi, Daniele

    2017-01-01

    We present a low-cost, handheld plastic optical fiber (POF) sensor for hydrogen sulfide (H2S) detection integrated onto a smartphone. The sensor uses smartphone flashlight as a source and camera as a pixel-based intensity detector. The POF is interconnected to the smartphone with a 3-D-printed connector on both source/detector sides. The sensing mechanism is embedded in the fiber link, making the system an all-fiber smartphone architecture. A mobile application handles data acquisition on the...

  10. Development of hydrogen sensors based on fiber Bragg grating with a palladium foil for online dissolved gas analysis in transformers

    Science.gov (United States)

    Fisser, Maximilian; Badcock, Rodney A.; Teal, Paul D.; Swanson, Adam; Hunze, Arvid

    2017-06-01

    Hydrogen evolution, identified by dissolved gas analysis (DGA), is commonly used for fault detection in oil immersed electrical power equipment. Palladium (Pd) is often used as a sensing material due to its high hydrogen absorption capacity and related change in physical properties. Hydrogen is absorbed by Pd causing an expansion of the lattice. The solubility, and therefore lattice expansion, increases with increasing partial pressure of hydrogen and decreasing temperature. As long as a phase change is avoided the expansion is reversible and can be utilized to transfer strain into a sensing element. Fiber Bragg gratings (FBG) are a well-established optical fiber sensor (OFS), mainly used for temperature and strain sensing. A safe, inexpensive, reliable and precise hydrogen sensor can be constructed using an FBG strain sensor to transduce the volumetric expansion of Pd due to hydrogen absorption. This paper reports on the development, and evaluation, of an FBG gas sensing OFS and long term measurements of dissolved hydrogen in transformer mineral oil. We investigate the effects of Pd foil cross-section and strain transfer between foil and fiber on the sensitivity of the OFS. Two types of Pd metal sensors were manufactured using modified Pd foil with 20 and 100 μm thickness. The sensors were tested in transformer oil at 90°C and a hydrogen concentration range from 20- 3200 ppm.

  11. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  12. DEVELOPMENT OF SiC DEVICES FOR DIAGNOSTICS AND CONTROL OF COMBUSTION PRODUCTS IN ENERGY PLANT ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ruby N. Ghosh; Peter Tobias

    2003-12-01

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen containing species in chemically reactive, high temperature environments. The response of these metal/insulator/SiC (MISiC) devices to reducing gases has been assumed to be due to the reduction in the metal work function at the metal/oxide interface that shifts the capacitance to lower voltages. From in-situ capacitance-voltage measurements taken under sensor operating conditions we have discovered that two independent mechanisms are responsible for the sensor response to hydrogen and oxygen. We present a model of the device response based on the chemically induced shift of the metal/semiconductor barrier height as well as the passivation and creation of charged states at the SiO{sub 2}/SiC interface. The latter mechanism is much slower than the barrier height shift. Preliminary photoemission experiments have been performed to independently monitor the contribution of the two phenomena. We discuss in detail the effect of these results on sensor design and the choice of operating point for high temperature operation.

  13. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor.

    Science.gov (United States)

    Zhang, Zhangyuan; Zou, Xuming; Xu, Lei; Liao, Lei; Liu, Wei; Ho, Johnny; Xiao, Xiangheng; Jiang, Changzhong; Li, Jinchai

    2015-06-14

    In this work, in order to enhance the performance of graphene gas sensors, graphene and metal oxide nanoparticles (NPs) are combined to be utilized for high selectivity and fast response gas detection. Whether at the relatively optimal temperature or even room temperature, our gas sensors based on graphene transistors, decorated with SnO2 NPs, exhibit fast response and short recovery times (∼1 seconds) at 50 °C when the hydrogen concentration is 100 ppm. Specifically, X-ray photoelectron spectroscopy and conductive atomic force microscopy are employed to explore the interface properties between graphene and SnO2 NPs. Through the complimentary characterization, a mechanism based on charge transfer and band alignment is elucidated to explain the physical originality of these graphene gas sensors: high carrier mobility of graphene and small energy barrier between graphene and SnO2 NPs have ensured a fast response and a high sensitivity and selectivity of the devices. Generally, these gas sensors will facilitate the rapid development of next-generation hydrogen gas detection.

  14. Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors.

    Science.gov (United States)

    Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy

    2017-04-05

    Herein, we report the novel nanostructural interfaces of self-assembled hierarchical ZnO nanotubes/graphene (ZNT/G) with three different growing times of ZNTs on graphene substrates (namely, SH1, SH2, and SH3). Each sample was fabricated with interdigitated electrodes to form hydrogen sensors, and their hydrogen sensing properties were comprehensively studied. The systematic investigation revealed that SH1 sensor exhibits an ultrahigh sensor response even at a low detection level of 10 ppm (14.3%) to 100 ppm (28.1%) compared to those of the SH2 and SH3 sensors. The SH1 sensor was also found to be well-retained with repeatability, reliability, and long-term stability of 90 days under hydrogenation/dehydrogenation processes. This outstanding enhancement in sensing properties of SH1 is attributed to the formation of a strong metalized region in the ZNT/G interface due to the inner/outer surfaces of ZNTs, establishing a multiple depletion layer. Furthermore, the respective band models of each nanostructure were also purposed to describe their heterostructure, which illustrates the hydrogen sensing properties. Moreover, the long-term stability can be ascribed by the heterostructured combination of ZNTs and graphene via a spillover effect. The salient features of this self-assembled nanostructure are its reliability, simple synthesis method, and long-term stability, which makes it a promising candidate for new generation hydrogen sensors and hydrogen storage materials.

  15. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  16. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  17. COMPACT QEPAS SENSOR FOR TRACE METHANE AND AMMONIA DETECTION IN IMPURE HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J; Ferguson, B; Peters, B; Mcwhorter, S

    2011-11-02

    A compact two-gas sensor based on quartz enhanced photoacoustic spectroscopy (QEPAS) was developed for trace methane and ammonia quantification in impure hydrogen. The sensor is equipped with a micro-resonator to confine the sound wave and enhance QEPAS signal. The normalized noise-equivalent absorption coefficients (1{sigma}) of 2.45 x 10{sup -8} cm{sup -1}W/{radical}Hz and 9.1 x 10{sup -9} cm{sup -1}W/{radical}Hz for CH{sub 4} detection at 200 Torr and NH{sub 3} detection at 50 Torr were demonstrated with the QEPAS sensor configuration, respectively. The influence of water vapor on the CH{sub 4} channel was also investigated.

  18. Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen

    Science.gov (United States)

    Dong, L.; Wright, J.; Peters, B.; Ferguson, B. A.; Tittel, F. K.; McWhorter, S.

    2012-05-01

    A compact two-gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was developed for trace methane and ammonia quantification in impure hydrogen. The sensor is equipped with a micro-resonator to confine the sound wave and enhance QEPAS signal. The normalized noise-equivalent absorption coefficients (1 σ) of 2.45×10-8 cm-1 W/√Hz and 9.1×10-9 cm-1 W/√Hz for CH4 detection at 200 Torr and NH3 detection at 50 Torr were demonstrated with the QEPAS sensor configuration, respectively. The influence of water vapor on the CH4 channel was also investigated.

  19. A new low-cost hydrogen sensor build with a thermopile IR detector adapted to measure thermal conductivity

    National Research Council Canada - National Science Library

    M Liess

    2015-01-01

    .... It is exposed to the measured gas environment in its housing. It is shown that, by using a simple driving circuitry, a mass-produced low-cost IR sensor can be used for hydrogen detection in applications such as hydrogen safety and smart gas metering...

  20. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor

    Science.gov (United States)

    Moozarm Nia, Pooria; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    For several decades, hydrogen peroxide has exhibited to be an extremely significant analyte as an intermediate in several biological devices as well as in many industrial systems. A straightforward and novel one-step technique was employed to develop a sensitive non-enzymatic hydrogen peroxide (H2O2) sensor by simultaneous electrodeposition of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO). The electroreduction performance of the CuNPs-rGO for hydrogen peroxide detection was studied by cyclic voltammetry (CV) and chronoamperometry (AMP) methods The CuNPs-rGO showed a synergistic effect of reduced graphene oxide and copper nanoparticles towards the electroreduction of hydrogen peroxide, indicating high reduction current. At detection potential of -0.2 V, the CuNPs-rGO sensor demonstrated a wide linear range up to 18 mM with a detection limit of 0.601 mM (S/N = 3). Furthermore, with addition of hydrogen peroxide, the sensor responded very quickly (<3 s). The CuNPs-rGO presents high selectivity, sensitivity, stability and fast amperometric sensing towards hydrogen peroxide which makes it favorable for the development of non-enzymatic hydrogen peroxide sensor.

  1. Synthesis of surface roughed Pt nanowires and their application as electrochemical sensors for hydrogen peroxide detection.

    Science.gov (United States)

    Gao, Fan; Li, Zhiyang; Ruan, Dajiang; Gu, Zhiyong

    2014-09-01

    In this paper, platinum nanowires with roughed surface textures were fabricated by a galvanostatic electrodeposition method for electrochemical sensors toward hydrogen peroxide detection. The electrochemical behavior of the glassy carbon electrode modified with these nanowires has been studied for oxidation of hydrogen peroxide by using cyclic voltammetry and amperometry in phosphate buffer solution. Surface roughness was found to enhance the sensitivity of the Pt nanowire based electrochemical sensor towards H2O2. The Pt nanowires with rough surfaces displayed higher electrocatalytic response compared to nanowires with smooth surfaces, with a sensitivity of 171 μA mM(-1) cm(-2), and linear dynamic range up to 35 mM. The nanowire concentration effect on the sensing behavior was investigated with the best sensitivity output found at a nanowire concentration of roughly 8.6 x 10(7) number of nanowires/cm2. The new sensor also showed good anti-interference property and exhibited high accuracy when a real water sample containing H2O2 was measured.

  2. Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors

    Science.gov (United States)

    Bouazizi, N.; Ouargli, R.; Nousir, S.; Slama, R. Ben; Azzouz, A.

    2015-02-01

    SBA-15-Fe was synthesized via the incorporation of Fe0 nanoparticles (Fe(0)-Nps) in the mesoporous channels. Electron microscopy and X-ray diffraction showed that dispersion of fine iron NPs occurs mainly inside the channels of SBA-15, producing a slight structure compaction. This was accompanied by a significant improvement of both the affinity towards hydrogen and electrical conductivity, as supported by hydrogen adsorption tests and impedance measurements. CO2 thermal programmed desorption measurements revealed an attenuation of the acid character of the solid surface. This was explained in terms of strong iron interaction with the lattice oxygen atoms that reduces the SiO-H bond polarity. The close vicinity of fine Fe(0)-Nps combined with the large pore size of SBA-15 appear to contribute to a synergistic improvement of the electrical conductivity. The results reported herein open new prospects for SBA-15 as potential adsorbents for hydrogen storage and carriers for hydrogen sensors. The use of iron in lieu of noble metals for designing such materials is a novelty, because such applications of iron-loaded silica have not been envisaged so far due to the high reactivity of iron towards air and water. The development of such technologies, if any, should address this issue.

  3. Non-Intrusive, Real-Time, On-Line Temperature Sensor for Superheated Hydrogen at High Pressure and High Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The SSC needs a hydrogen temperature sensor that can provide high accuracy, fast response and can be operated on a superheated hydrogen (SHH2) environment. This will...

  4. A Nose for Hydrogen Gas: Fast, Sensitive H2Sensors Using Electrodeposited Nanomaterials.

    Science.gov (United States)

    Penner, Reginald M

    2017-08-15

    Hydrogen gas (H 2 ) is odorless and flammable at concentrations above 4% (v/v) in air. Sensors capable of detecting it rapidly at lower concentrations are needed to "sniff" for leaked H 2 wherever it is used. Electrical H 2 sensors are attractive because of their simplicity and low cost: Such sensors consist of a metal (usually palladium, Pd) resistor. Exposure to H 2 causes a resistance increase, as Pd metal is converted into more resistive palladium hydride (PdH x ). Sensors based upon Pd alloy films, developed in the early 1990s, were both too slow and too insensitive to meet the requirements of H 2 safety sensing. In this Account, we describe the development of H 2 sensors that are based upon electrodeposited nanomaterials. This story begins with the rise to prominence of nanowire-based sensors in 2001 and our demonstration that year of the first nanowire-based H 2 sensor. The Pd nanowires used in these experiments were prepared by electrodepositing Pd at linear step-edge defects on a graphite electrode surface. In 2005, lithographically patterned nanowire electrodeposition (LPNE) provided the capability to pattern single Pd nanowires on dielectrics using electrodeposition. LPNE also provided control over the nanowire thickness (±1 nm) and width (±10-15%). Using single Pd nanowires, it was demonstrated in 2010 that smaller nanowires responded more rapidly to H 2 exposure. Heating the nanowire using Joule self-heating (2010) also dramatically accelerated sensor response and recovery, leading to the conclusion that thermally activated H 2 chemisorption and desorption of H 2 were rate-limiting steps in sensor response to and recovery from H 2 exposure. Platinum (Pt) nanowires, studied in 2012, showed an inverted resistance response to H 2 exposure, that is, the resistance of Pt nanowires decreased instead of increased upon H 2 exposure. H 2 dissociatively chemisorbs at a Pt surface to form Pt-H, but in contrast to Pd, it stays on the Pt surface. Pt nanowires

  5. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.

    Science.gov (United States)

    Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling

    2016-02-02

    A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported.

  6. Quantum cascade laser-based sensor system for hydrogen peroxide detection

    Science.gov (United States)

    Ren, Wei; Jiang, Wenzhe; Sanchez, Nancy; Patimisco, Pietro; Spagnolo, Vincenzo; Zah, Chung-en; Xie, Feng; Hughes, Lawrence C.; Griffin, Robert J.; Tittel, Frank K.

    2013-12-01

    A quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor system was developed for the sensitive detection of hydrogen peroxide (H2O2) using its absorption transitions in the v6 fundamental band near 7.73 μm. The recent availability of distributed-feedback quantum cascade lasers (DFB-QCLs) provides convenient access to a strong H2O2 absorption line located at 1295.55 cm-1. Sensor calibration was performed by means of a water bubbler that generated titrated average vapor concentrations. A minimum detection limit of 75 parts per billion (ppb) was achieved at a pressure of 80 torr for a 1 sec data acquisition time. The long-term repeatability and stability of the sensor was investigated by measuring time-varying H2O2 mixtures for ~2 hrs. An Allan deviation analysis was performed to investigate the long-term performance of the QEPAS sensor system, indicating the feasibility of a minimum detection limit of 12 ppb using the optimum data averaging time of 100 sec.

  7. Water photolysis effect on the long-term stability of a fiber optic hydrogen sensor with Pt/WO3

    Science.gov (United States)

    Zhong, Xuexiang; Yang, Minghong; Huang, Chujia; Wang, Gaopeng; Dai, Jixiang; Bai, Wei

    2016-01-01

    One of the technological challenges for hydrogen sensors is long-term stability and reliability. In this article, the UV-light irradiation was introduced into the hydrogen sensing process based on water photolysis effect of Pt/WO3. Ascribing to that, fiber optic hydrogen sensor with Pt/WO3 nanosheets as the sensing element was demonstrated with significantly improved performance of stability. Under UV irradiation, the hydrogen sensor exhibits higher sensitivity and resolution together with a smaller error range than that without UV irradiation. The enhanced performance could be attributed to the effective decomposition of water produced in the hydrogen sensing process due to the water photolysis effect of Pt/WO3. The influence of the water on stability was evaluated using experimental results, and the UV irradiation to remove water was analysed by theoretical and FT-IR spectra. This work provides new strategy of UV-light irradiation to promote the long-term stability of hydrogen sensor using Pt/WO3 as the sensing element. PMID:27966631

  8. Hydrogen Sensor Based on Carbon Nano-tube Fortified by Palladium

    Directory of Open Access Journals (Sweden)

    A. Kazemzadeh

    2009-11-01

    Full Text Available In this paper single-wall carbon Nano-tubes (SWNT were prepared by using chemical – Thermal vapor deposition method and utilizing molybdenum and iron catalysts and silica alumina – base. Methane was passed over catalyst in optimum condition including passing speed equal to 4 lit/min and pressure of 1.27 bar for 2-25 minutes and temperature of furnace was equal to 980 °C and prepared carbon Nano-tubes were sublimated in 1600 °C to achieve 70 % yields. Diameter and specific area of Nano-tubes were 2-15 nm and 400-560 m2/g respectively. Various quantities of palladium chloride were inserted in carbon used for prepared Nano-tubes by utilizing vacuum evaporation which its optimum quantity was 0/10 g in order to enhance sensitivity of carbon Nano-tubes relative to hydrogen to make sensors appropriate for low temperatures. For investigation instruments and determining physical properties, XRD, AFM, SEM and TEM equipments have been applied and prepared. Hydrogen sensor is simple, low cost and ready to use in various environment.

  9. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    Science.gov (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  10. Comparison of three types of fibre optic hydrogen sensors within the frame of CryoFOS project

    Science.gov (United States)

    Guemes, J. Alfredo; Pintado, J. M.; Frovel, M.; Olmo, E.; Obst, A.

    2005-05-01

    Three different sensors for hydrogen detection have been built and tested within a research project for the European Space Agency. One type is a FBG coated with a palladium layer, detecting the hydrogen by metal hindrance, the strains transmitted to the grating by shear. It works only as a detector and can not quantify the H2 percentage in a gas mixture. A main drawback, common with all palladium based sensors, was a strong temperature dependence, which makes its response time too large at low temperatures. The other two types were intensity based sensors; one of them was a micromirror, with a palladium thin layer at the cleaved end, detecting changes in the backreflected light. The other one as a tapered fibre coated also with palladium; hydrogen will change the refractive index of the palladium, and consequently the amount of losses in the evanescent wave. A trade-off analysis of sensor performances was done, comparing reproducibility, repetitiveness, robustness, multiplexability, response time and cost. FBG sensor was found to be the most reliable sensor among the optical fibres sensors considered, and the preferred one for space applications.

  11. Nanoparticle-based electrochemical sensors for the detection of lactate and hydrogen peroxide

    Science.gov (United States)

    Uzunoglu, Aytekin

    In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors in O2-lean environments. To address this challenge, the surface of the sensors must be modified with oxygen rich materials. In this regard, we developed a novel electrochemical lactate biosensor design by exploiting the oxygen storage capacity of CeO2 and CeO 2-CuO nanoparticles. By the introduction of CeO2 nanoparticles into the enzyme layer of the sensors, negative interference effect of ascorbate which resulted from the formation of oxygen-lean regions was eliminated successfully. When CeO2-based design was exposed to higher degree of O2 -depleted environments, however, the response current of the biosensors experienced an almost 21 % decrease, showing that the OSC of CeO2 was not high enough to sustain the enzymatic reactions. When CeO2-CuO nanoparticles, which have 5 times higher OSC than pristine CeO2, were used as an oxygen supply in the enzyme layer, the biosensors did not show any drop in the performance when moving from oxygen-rich to oxygen-lean conditions. In the second part of the study, PdCu/SPCE and PdAg/rGO-based electrochemical H2O2 sensors were designed and their performances were evaluated to determine their sensitivity, linear range, detection limit, and storage stability. In addition, practical applicability of the sensors was studied in human serum. The

  12. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  13. A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta₂O₅/Pd multi-layers film.

    Science.gov (United States)

    Hosoki, Ai; Nishiyama, Michiko; Igawa, Hirotaka; Seki, Atsushi; Watanabe, Kazuhiro

    2014-07-28

    In this paper, a response time of the surface plasmon resonance fiber optic hydrogen sensor has successfully improved with keeping sensor sensitivity high by means of hydrogen curing (immersing) process of annealed Au/Ta2O5/ Pd multi-layers film. The hydrogen curing effect on the response time and sensitivity has been experimentally revealed by changing the annealing temperatures of 400, 600, 800°C and through observing the optical loss change in the H2 curing process. When the 25-nm Au/60-nm Ta2O5/10-nm Pd multi-layers film annealed at 600°C is cured with 4% H2/N2 mixture, it is found that a lot of nano-sized cracks were produced on the Pd surface. After H2 curing process, the response time is improved to be 8 s, which is two times faster than previous reported one in the case of the 25-nm Au/60-nm Ta2O5/3-nm Pd multi-layers film with keeping the sensor sensitivity of 0.27 dB for 4% hydrogen adding. Discussions most likely responsible for this effect are given by introducing the α-β transition Pd structure in the H2 curing process.

  14. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-12-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH{sub 3}){sub 2}OH) precursor showed better electrochemical performance than (AgNO{sub 3}). • The sensor showed superior performance toward H{sub 2}O{sub 2}. - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H{sub 2}O{sub 2}) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H{sub 2}O{sub 2} was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l{sup −1} and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l{sup −1} (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H{sub 2}O{sub 2} sensor.

  15. Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples

    OpenAIRE

    Nasirizadeh, Navid; Shekari, Zahra; Nazari, Ali; Tabatabaee, Masoumeh

    2016-01-01

    A new hydrogen peroxide (H2O2) sensor is fabricated based on a multiwalled carbon nanotube-modified glassy carbon electrode (MWCNT-GCE) and reactive blue 19 (RB). The charge transfer coefficient, α, and the charge transfer rate constant, ks, of RB adsorbed on MWCNT-GCE were calculated and found to be 0.44 ± 0.01 Hz and 1.9 ± 0.05 Hz, respectively. The catalysis of the electroreduction of H2O2 by RB-MWCNT-GCE is described. The RB-MWCNT-GCE shows a dramatic increase in the peak current and a de...

  16. High surface area polyaniline nanofiber synthesized in compressed CO{sub 2} and its application to a hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Quoc Minh; Kim, Sunwook [School of Chemical Engineering, University of Ulsan, Ulsan (Korea, Republic of)

    2016-01-15

    High surface area polyaniline (HSA PANI) nanofibers were synthesized through oxidative polymerization of aniline in compressed CO{sub 2} using cobalt chloride as an additive. SEM and TEM analyses showed that the HSA PANI nanofibers had a coarse surface of very thin nanofibers. The HSA PANI nanofibers had a fairly uniform diameter range of 70-90 nm with a length of 0.5-1 μm, and showed an electrical conductivity (EC) of 3.46 S/cm. TGA analysis revealed that the HSA PANI nanofibers had more doping substances than did ordinary PANI nanofibers. In the case of the HSA PANI nanofibers, direct measurement of the surface area using gas adsorption method showed high value of 68.4m{sup 2}/g, which was nearly twice that of ordinary PANI nanofibers. The HSA PANI nanofibers were used to fabricate the hydrogen sensor, exhibiting a large increase in resistance upon exposure to hydrogen gas. The hydrogen sensor in this work showed excellent characteristics, such as high sensitivity and short response time. The limit of detection (LOD) and limit of quantification (LOQ) of the hydrogen sensor were very low to show 40 ppm and 133 ppm of hydrogen, respectively.

  17. Well-defined and high resolution Pt nanowire arrays for a high performance hydrogen sensor by a surface scattering phenomenon.

    Science.gov (United States)

    Yoo, Hae-Wook; Cho, Soo-Yeon; Jeon, Hwan-Jin; Jung, Hee-Tae

    2015-02-03

    Developing hydrogen (H2) sensors with a high sensitivity, rapid response, long-term stability, and high throughput is one of the critical issues in energy and environmental technology [Hübert et al. Sens. Actuators, B 2011, 157, 329]. To date, H2 sensors have been mainly developed using palladium (Pd) as the channel material because of its high selectivity and strong affinity to the H2 molecule [(Xu et al. Appl. Phys. Lett. 2005, 86, 203104), (Offermans et al. Appl. Phys. Lett. 2009, 94, 223110), (Yang et al. Nano Lett. 2009, 9, 2177), (Yang et al. ACS Nano 2010, 4, 5233), and (Zou et al. Chem. Commun. 2012, 48, 1033)]. Despite significant progress in this area, Pd based H2 sensors suffer from fractures on their structure due to hydrogen adsorption induced volumetric swelling during the α → β phase transition, leading to poor long-term stability and reliability [(Favier et al. Science 2001, 293, 2227), (Walter et al. Microelectron. Eng. 2002, 61–62, 555), and (Walter et al. Anal. Chem. 2002, 74, 1546)]. In this study, we developed a platinum (Pt) nanostructure based H2 sensor that avoids the stability limitations of Pd based sensors. This sensor exhibited an excellent sensing performance, low limit of detection (LOD, 1 ppm), reproducibility, and good recovery behavior at room temperature. This Pt based H2 sensor relies on a highly periodic, small cross sectional dimension (10–40 nm) and a well-defined configuration of Pt nanowire arrays over a large area. The resistance of the Pt nanowire arrays significantly decreased upon exposure to H2 due to reduced electron scattering in the cross section of the hydrogen adsorbed Pt nanowires, as compared to the oxygen terminated original state. Therefore, these well-defined Pt nanowire arrays prepared using advanced lithographic techniques can facilitate the production of high performance H2 sensors.

  18. Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples

    Directory of Open Access Journals (Sweden)

    Navid Nasirizadeh

    2016-01-01

    Full Text Available A new hydrogen peroxide (H2O2 sensor is fabricated based on a multiwalled carbon nanotube-modified glassy carbon electrode (MWCNT-GCE and reactive blue 19 (RB. The charge transfer coefficient, α, and the charge transfer rate constant, ks, of RB adsorbed on MWCNT-GCE were calculated and found to be 0.44 ± 0.01 Hz and 1.9 ± 0.05 Hz, respectively. The catalysis of the electroreduction of H2O2 by RB-MWCNT-GCE is described. The RB-MWCNT-GCE shows a dramatic increase in the peak current and a decrease in the overvoltage of H2O2 electroreduction in comparison with that seen at an RB modified GCE, MWCNT modified GCE, and activated GCE. The kinetic parameters such as α and the heterogeneous rate constant, k', for the reduction of H2O2 at RB-MWCNT-GCE surface were determined using cyclic voltammetry. The detection limit of 0.27μM and three linear calibration ranges were obtained for H2O2 determination at the RB-MWCNT-GCE surface using an amperometry method. In addition, using the newly developed sensor, H2O2 was determined in real samples with satisfactory results.

  19. Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples.

    Science.gov (United States)

    Nasirizadeh, Navid; Shekari, Zahra; Nazari, Ali; Tabatabaee, Masoumeh

    2016-01-01

    A new hydrogen peroxide (H2O2) sensor is fabricated based on a multiwalled carbon nanotube-modified glassy carbon electrode (MWCNT-GCE) and reactive blue 19 (RB). The charge transfer coefficient, α, and the charge transfer rate constant, ks, of RB adsorbed on MWCNT-GCE were calculated and found to be 0.44 ± 0.01 Hz and 1.9 ± 0.05 Hz, respectively. The catalysis of the electroreduction of H2O2 by RB-MWCNT-GCE is described. The RB-MWCNT-GCE shows a dramatic increase in the peak current and a decrease in the overvoltage of H2O2 electroreduction in comparison with that seen at an RB modified GCE, MWCNT modified GCE, and activated GCE. The kinetic parameters such as α and the heterogeneous rate constant, k', for the reduction of H2O2 at RB-MWCNT-GCE surface were determined using cyclic voltammetry. The detection limit of 0.27μM and three linear calibration ranges were obtained for H2O2 determination at the RB-MWCNT-GCE surface using an amperometry method. In addition, using the newly developed sensor, H2O2 was determined in real samples with satisfactory results. Copyright © 2015. Published by Elsevier B.V.

  20. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  1. Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases

    Directory of Open Access Journals (Sweden)

    Nam-Hee Park

    2014-05-01

    Full Text Available A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3 and cold (Pt/α-Al2O3 ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS, combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100–400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%.

  2. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors.

    Science.gov (United States)

    Zhang, Ruizhong; Chen, Wei

    2017-03-15

    Due to the large specific surface area, extraordinary mechanical flexibility, chemical stability, and superior electrical and thermal conductivities, graphene (G)-based materials have recently opened up an exciting field in the science and technology of two-dimensional (2D) nanomaterials with continuously growing academic and technological impetus. In the past several years, graphene-based materials have been well designed, synthesized, and investigated for sensing applications. In this review, we discuss the synthesis and application of graphene-based 2D nanomaterials for the fabrication of hydrogen peroxide (H2O2) electrochemical sensors. In particular, graphene-based nanomaterials as immobilization matrix of heme proteins for the fabrication of enzymatic H2O2 electrochemical biosensors is first summarized. Then, the application of graphene-based electrocatalysts (metal-free, noble-metals and non-noble metals) in constructing non-enzymatic H2O2 electrochemical sensors is discussed in detail. We hope that this review is helpful to push forward the advancement of this academic issue (189 references). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips

    Directory of Open Access Journals (Sweden)

    Malcolm S. Purdey

    2015-12-01

    Full Text Available This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H2O2 concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1 and seminaphtharhodafluor-2 (SNARF2 within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H2O2 over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H2O2 in biological environments using a single optical fibre.

  4. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips.

    Science.gov (United States)

    Purdey, Malcolm S; Thompson, Jeremy G; Monro, Tanya M; Abell, Andrew D; Schartner, Erik P

    2015-12-17

    This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H₂O₂) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H₂O₂ over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H₂O₂ in biological environments using a single optical fibre.

  5. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  6. Detection of Hydrogen Sulphide Gas Sensor Based Nanostructured Ba2CrMoO6 Thick Films

    Directory of Open Access Journals (Sweden)

    A. V. Kadu

    2007-11-01

    Full Text Available Nanocrystalline pure and doped Ba2CrMoO6, having an average crystallite size of 40 nm were synthesized by the sol-gel citrate method. Structural and gas-sensing characteristics were performed by using X-ray diffraction (XRD and sensitivity measurements. The gas sensing properties to reducing gases like Hydrogen sulphide (H2S, liquefied petroleum gas (LPG, carbon monoxide (CO and hydrogen gas (H2 were also discussed. The maximum sensitivity was obtained for 5 wt % Ni doped Ba2CrMoO6 at an operating temperature 250oC for H2S gas. Pd incorporation over 5 wt% Ni doped Ba2CrMoO6 improved the sensitivity, selectivity, response time, and reduced the operating temperature from 250 to 200oC of the sensor for H2S gas. This sensor also shows good satiability.

  7. High performance supercapacitor and non-enzymatic hydrogen peroxide sensor based on tellurium nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Manikandan

    2017-04-01

    Full Text Available Tellurium nanoparticles (Te Nps were synthesized by wet chemical method and characterized by XRD, Raman, FESEM, TEM, XPS, UV–Vis and FL. The Nps were coated on graphite foil and Glassy carbon electrode to prepare the electrodes for supercapacitor and biosensor applications. The supercapacitor performance is evaluated in 2 M KOH electrolyte by both Cyclic Voltammetry (CV and galvanostatic charge-discharge method. From charge-discharge method, Te Nps show a specific capacitance of 586 F/g at 2 mA/cm2 and 100 F/g at 30 mA/cm2 as well as an excellent cycle life (100% after 1000 cycles. In addition, the H2O2 sensor performance of Te Nps modified glassy carbon electrode is checked by CV and Chronoamperometry (CA in phosphate buffer solution (PBS. In the linear range of 0.67 to 8.04 μM of hydrogen peroxide (H2O2, Te NPs show a high sensitivity of 0.83 mA mM−1 cm−2 with a correlation coefficient of 0.995. The detection limit is 0.3 μM with a response time less than 5 s.

  8. Utilization of a palladium-metal oxide semiconductor (Pd-MOS) sensor for on-line monitoring of dissolved hydrogen in anaerobic digestion.

    Science.gov (United States)

    Björnsson, L; Hörnsten, E G; Mattiasson, B

    2001-04-05

    The use of a hydrogen-sensitive palladium-metal oxide semiconductor (Pd-MOS) sensor in combination with a membrane for liquid-to-gas transfer for the detection of dissolved hydrogen was investigated. The system was evaluated with known concentrations of dissolved hydrogen in water. The lowest concentration detected with this set-up was 160 nM. The method was applied to monitoring of a laboratory-scale anaerobic digestion process employing mixed sludge containing mainly food/industrial waste. Pulse loads of glucose were added to the system at different levels of microbial activity, and the microbial status of the culture was reflected in the dissolved hydrogen response. Simultaneous headspace hydrogen measurements were performed, and at the lower levels of dissolved hydrogen no corresponding headspace hydrogen could be detected. When glucose was added to a resting culture the dissolved hydrogen response was rapid and the first response could be detected 9 min after addition of glucose, whereas headspace hydrogen concentrations increased only after 80 to 110 min. This indicates limitations in the liquid-to-gas hydrogen transfer and illustrates the importance of hydrogen monitoring in the liquid. The sensor system developed is flexible, the membrane is easily replaceable, and the probe for liquid-to-gas hydrogen transfer can be adjusted easily to large-scale applications. Copyright 2001 John Wiley & Sons, Inc.

  9. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  10. Influence of Conditions of Pd/SnO2 Nanomaterial Formation on Properties of Hydrogen Sensors

    Science.gov (United States)

    Sokovykh, E. V.; Oleksenko, L. P.; Maksymovych, N. P.; Matushko, I. P.

    2017-06-01

    Metal oxide sensors were created using nanosized tin dioxide obtained by a sol-gel method. Gas-sensitive layers of the sensors were impregnated with PdCl2 solutions of different concentrations to increase sensitivities of the proposed sensors. Influence of different temperature conditions of the sensor formation on the sensor properties was studied. It was found that decreasing duration of high-temperature sensor treatment prevents enlargement of particles of the gas-sensitive materials. It was shown that the sensors based on materials with smaller particle sizes showed higher sensor responses to 40 ppm H2. Obtained results were explained in terms of substantial influence of length of the common boundaries between the material particles of tin dioxide and palladium on the gas-sensitive properties of the sensors. The obtained sensors had possessed a fast response and recovery time and demonstrated stable characteristics during their long-term operation.

  11. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices

    Directory of Open Access Journals (Sweden)

    Jenshan Lin

    2009-06-01

    Full Text Available In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs. ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.

  12. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath

    Science.gov (United States)

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    2017-11-01

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  13. Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Zhang, Yayun; Zhong, Yanmei [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2015-08-30

    Graphical abstract: - Highlights: • A facile method was designed to synthesize Au@Ag@C core-double shell nanocomposites. • Carbon nanomaterials at the outermost layer could protect Au and Ag nanoparticles from oxidation and aggregation. • The Au@Ag@C core-double shell nanocomposites showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide. • The hydrogen peroxide sensor has a wide linear range of 5.0 μM to 4.75 mM and a limit of detection as low as 0.14 μM. - Abstract: The well-designed Au@Ag@C core-double shell nanocomposites were synthesized via a facile method, and were used to fabricate an enzyme-free amperometric hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The size, shape, elementary composition and structure of the nanocomposites were characterized by transmission electron microscope (TEM), energy-dispersed spectrum (EDS) and X-ray diffraction (XRD). The outermost layer of the nanocomposites was amorphous carbon, the second layer was Ag and the core was Au. The Au@Ag@C core-double shell nanocomposites exhibit attractive activity for electrocatalytic reduction of H{sub 2}O{sub 2} according to the electrochemical experiments. It also demonstrates the H{sub 2}O{sub 2} sensor possess well performance with a wide linear range of 5.0 μM to 4.75 mM and a limit of detection (LOD) as low as 0.14 μM (S/N = 3). Furthermore, the interference from the common interfering species, such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided. In a word, the Au@Ag@C nanocomposites are promising candidates for enzyme-free H{sub 2}O{sub 2} sensor.

  14. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  15. Sensor for measuring hydrogen partial pressure in parabolic trough power plant expansion tanks

    Science.gov (United States)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-01

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  16. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  17. Ultrafast and ultrasensitive hydrogen sensors based on self-assembly monolayer promoted 2-dimensional palladium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tao [Darien, IL; Zach, Michael P [Darien, IL; Xiao, Zhili [Naperville, IL

    2008-06-24

    A device and method of making same. The device or hydrogen detector has a non-conducting substrate with a metal film capable of absorbing hydrogen to form a stable metal hydride. The metal film is on the threshold of percolation and is connected to mechanism for sensing a change in electrical resistance in response to the presence of hydrogen in contact with the metal film which causes an increase in conductivity.

  18. Eye readable metal hydride based hydrogen tape sensor for health applications

    NARCIS (Netherlands)

    Ngene, P.; Radeva, T.; Westerwaal, R.; Schreuders, H.; Dam, B.

    Using the change in the intrinsic optical properties of YMg-based thin films upon exposure to hydrogen, we observe the presence of hydrogen at concentrations as low as 20 ppm just by a change in color. The eye-visible color change circumvents the use of any electronics in this device, thereby making

  19. Titanium Dioxide-Based 64∘ YX LiNbO3 Surface Acoustic Wave Hydrogen Gas Sensors

    Directory of Open Access Journals (Sweden)

    A. Z. Sadek

    2008-01-01

    Full Text Available Amorphous titanium dioxide (TiO2 and gold (Au doped TiO2-based surface acoustic wave (SAW sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64∘ YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310∘C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature.

  20. A Room-temperature Hydrogen Gas Sensor Using Palladium-decorated Single-Walled Carbon Nanotube/Si Heterojunction

    Directory of Open Access Journals (Sweden)

    Yong Gang DU

    2016-05-01

    Full Text Available We report a room-temperature (RT hydrogen gas (H2 sensor based on palladium-decorated single-walled carbon nanotube/Si (Pd-SWNTs/Si heterojunction. The current-voltage (I-V curves of the Pd-SWNTs/Si heterojunction in different concentrations of H2 were measured. The experimental results reveal that the Pd-SWNTs/Si heterojunction exhibits high H2 response. After exposure to 0.02 %, 0.05 %, and 0.1 % H2 for 10 min, the resistance of the heterojunction increases dramatically. The response is 122 %, 269 % and 457 %, respectively. A simple interfacial theory is used to understand the gas sensitivity results. This approach is a step toward future CNTs-based gas sensors for practical application.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12925

  1. Enhancing performances of a resistivity-type hydrogen sensor based on Pd/SnO2/RGO nanocomposites.

    Science.gov (United States)

    Peng, Yitian; Zheng, Lulu; Zou, Kun; Li, Cong

    2017-05-26

    Palladium/tin oxide/reduced graphene oxide (Pd/SnO2/RGO) nanocomposites with Pd and SnO2 crystalline nanoparticles of high density and uniformity coated on RGO have been synthesized by a two-step reduction process. A novel hydrogen (H2) sensor based on Pd/SnO2/RGO nanocomposites was fabricated by placing Pd/SnO2/RGO nanocomposites onto a pair of gold electrodes. The Pd/SnO2/RGO nanocomposite-based sensor exhibited higher responses than Pd/RGO to H2 because the introduction of SnO2 nanoparticles enhances H2 adsorption and forms a P-N junction with RGO. The sensor shows a high response of 55% to 10 000 ppm H2, and a low detection limit, fast response, good selectivity and repeatability due to a combination effect of the Pd and SnO2 nanoparticles. The studies provide a novel strategy for great potential applications of graphene-based gas sensors.

  2. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    A CVD system for the production of continuous SiC fibre was set up. The process of SiC coating on 19 m diameter tungsten substrate was studied. Methyl trichloro silane (CH3SiCl3) and hydrogen reactants were used. Effect of substrate temperature (1300–1500°C) and concentration of reactants on the formation of SiC ...

  3. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    philip.feng@case.edu Abstract: We report on exploratory research effort with preliminary results on investigating fundamental radiation effects in...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...create SiC-on-insulator (SiC-on-SiO2) films and structures [4,5]. It is important to understand and control the implantation depth. Presented here

  4. Synthesis of new copper nanoparticle-decorated anchored type ligands: applications as non-enzymatic electrochemical sensors for hydrogen peroxide.

    Science.gov (United States)

    Ensafi, Ali A; Zandi-Atashbar, N; Ghiaci, M; Taghizadeh, M; Rezaei, B

    2015-02-01

    In this work, copper nanoparticles (CuNPs) decorated on two new anchored type ligands were utilized to prepare two electrochemical sensors. These ligands are made from bonding amine chains to silica support including SiO2-pro-NH2 (compound I) and SiO2-pro-NH-cyanuric-NH2 (compound II). The morphology of synthesized CuNPs was characterized by transmission electron microscopy (TEM). The nano-particles were in the range of 13-37 nm with the average size of 23 nm. These materials were used to modify carbon paste electrode. Different electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy and hydrodynamic chronoamperometry, were used to study the sensor behavior. These electrochemical sensors were used as a model for non-enzymatic detection of hydrogen peroxide (H2O2). To evaluate the abilities of the modified electrodes for H2O2 detection, the electrochemical signals were compared in the absence and presence of H2O2. From them, two modified electrodes showed significant responses vs. H2O2 addition. The amperograms illustrated that the sensors were selective for H2O2 sensing with linear ranges of 5.14-1250 μmol L(-1) and 1.14-1120 μmol L(-1) with detection limits of 0.85 and 0.27 μmol L(-1) H2O2, sensitivities of 3545 and 11,293 μA mmol(-1)L and with response times less than 5s for I/CPE and II/CPE, respectively. As further verification of the selected sensor, H2O2 contained in milk sample was analyzed and the obtained results were comparable with the ones from classical control titration method. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. High performance hydrogen sensor based on Mn implanted ZnO nanowires array fabricated on ITO substrate.

    Science.gov (United States)

    Renitta, A; Vijayalakshmi, K

    2017-08-01

    In the present research, we propose a novel approach for the detection of hydrogen gas using Mn implanted ZnO nanowires fabricated onto ITO coated glass substrate by chemical spray pyrolysis deposition. The effect of Mn concentration on the structural, optical and morphological properties of ZnO films were investigated. X-ray diffraction studies showed that the Mn implanted ZnO films were grown as a polycrystalline hexagonal wurtzite phase without any impurities. The (101) peak position of ZnO-Mn films was shifted towards a lower angle with increasing Mn concentration. The optical band gap decreased from 3.45eV to 3.23eV with increasing Mn content. PL spectra, revealed sharp and strong near band edge emission which suggests that ZnO nanowires exhibit high crystalline quality. FE-SEM images of Mn implanted ZnO show perfectly aligned nanowires for all the films fabricated on ITO. The material (Zn, O, Mn) was confirmed by EDX spectra. The hydrogen sensing mechanism of the Mn implanted ZnO nanowire sensor was also discussed. It was found that H2 response was significantly enhanced by more than one order of magnitude with increasing Mn doping concentrations. The studied ZnO-Mn films coated on ITO substrate can be used as a low cost and easy-fabrication hydrogen sensing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide.

    Science.gov (United States)

    Lin, Chia-Yu; Lai, Yi-Hsuan; Balamurugan, A; Vittal, R; Lin, Chii-Wann; Ho, Kuo-Chuan

    2010-06-30

    A conducting fluorine-doped tin oxide (FTO) electrode, first modified with zinc oxide nanorods (ZnONRs) and subsequently attached with photosynthesized silver nanoparticles (AgNPs), designated as AgNPs/ZnONRs/FTO electrode, was used as an amperometric sensor for the determination of hydrogen peroxide. The first layer (ZnONRs) was obtained by chemical bath deposition (CBD), and was utilized simultaneously as the catalyst for the photoreduction of Ag ions under UV irradiation and as the matrix for the immobilization of AgNPs. The aspect ratio of ZnONRs to be deposited was optimized by controlling the number of their CBDs to render enough surface area for Ag deposition, and the amount of AgNPs to be attached was controlled by adjusting the UV-irradiation time. The immobilized AgNPs showed excellent electrocatalytic response to the reduction of hydrogen peroxide. The resultant amperometric sensor showed 10-fold enhanced sensitivity for the detection of H(2)O(2), compared to that without AgNPs, i.e., only with a layer of ZnONRs. Amperometric determination of H(2)O(2) at -0.55 V gave a limit of detection of 0.9 microM (S/N=3) and a sensitivity of 152.1 mA M(-1) cm(-2) up to 0.983 mM, with a response time (steady-state, t(95)) of 30-40 s. The selectivity of the sensor was investigated against ascorbic acid (AA) and uric acid (UA). Energy dispersive X-ray (EDX) analysis, transmission electron microscopic (TEM) image, X-ray diffraction (XRD) patterns, cyclic voltammetry (CV), and scanning electron microscopic (SEM) images were utilized to characterize the modified electrode. Sensing properties of the modified electrode were studied both by CV and amperometric analysis. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Fracture strength estimation of SiC block for IS process

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Hiroaki, E-mail: takegami.hiroaki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Terada, Atsuhiko; Onuki, Kaoru; Hino, Ryutaro [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We proposed a strength estimation method for large-scale SiC structure. Black-Right-Pointing-Pointer The strength estimation was carried out by using the effective volume and the optimized Weibull modulus of SiC. Black-Right-Pointing-Pointer The fracture strength of small-scale SiC obtained from fracture test was well within the estimation of the proposed method. - Abstract: The Japan Atomic Energy Agency has been conducting R and D on thermochemical water-splitting Iodine-Sulfur (IS) process for hydrogen production to meet massive demand in the future hydrogen economy. A concept of sulfuric acid decomposer was developed featuring a heat exchanger block made of SiC. Recent activity has focused on the reliability assessment of SiC block. Although knowing the strength of SiC block is important for the reliability assessment, it is difficult to evaluate a large-scale ceramics structure without destructive test. In this study, a novel approach for strength estimation of SiC structure was proposed. Since accurate strength estimation of individual ceramics structure is difficult, a prediction method of minimum strength in the structure of the same design was proposed based on effective volume theory and optimized Weibull modulus. Optimum value of the Weibull modulus was determined for estimating the lowest strength. The strength estimation line was developed by using the determined modulus. The validity of the line was verified by destructive test of SiC block model, which is small-scale model of the SiC block. The fracture strength of small-scale model satisfied the predicted strength.

  8. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  9. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode.

    Science.gov (United States)

    Zhao, Wei; Wang, Huicai; Qin, Xia; Wang, Xinsheng; Zhao, Zixia; Miao, Zhiying; Chen, Lili; Shan, Miaomiao; Fang, Yuxin; Chen, Qiang

    2009-12-15

    A novel strategy to fabricate hydrogen peroxide (H(2)O(2)) sensor was developed based on multi-wall carbon nanotube/silver nanoparticle nanohybrids (MWCNT/Ag nanohybrids) modified gold electrode. The process to synthesize MWCNT/Ag nanohybrids was facile and efficient. In the presence of carboxyl groups functionalized multi-wall carbon nanotubes (MWCNTs), silver nanoparticles (Ag NPs) were in situ generated from AgNO(3) aqueous solution and readily attached to the MWCNTs convex surfaces at room temperature, without any additional reducing reagent or irradiation treatment. The formation of MWCNT/Ag nanohybrids product was observed by transmission electron microscope (TEM), and the electrochemical properties of MWCNT/Ag nanohybrids modified gold electrode were characterized by electrochemical measurements. The results showed that this sensor had a favorable catalytic ability for the reduction of H(2)O(2). The resulted sensor could detect H(2)O(2) in a linear range of 0.05-17 mM with a detection limit of 5x10(-7)M at a signal-to-noise ratio of 3. The sensitivity was calculated as 1.42 microA/mM at a potential of -0.2 V. Additionally, it exhibited good reproducibility, long-term stability and negligible interference of ascorbic acid (AA), uric acid (UA), and acetaminophen (AP).

  10. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer

    Science.gov (United States)

    Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong

    2017-11-01

    A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.

  11. Non-enzymatic hydrogen peroxide sensor based on Co3O4 ...

    Indian Academy of Sciences (India)

    The Co3O4 nanocubes were prepared by using hydrogen peroxide (H2O2) as oxidant, Co(NO3)2. 6H2O as a cobalt source. The products were characterized in detail by multiform techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The prepared Co3O4 ...

  12. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen

    Directory of Open Access Journals (Sweden)

    Marlene N. Cardoza-Contreras

    2015-12-01

    Full Text Available Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H2 pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H2.

  13. Thermal balance analysis of a micro-thermoelectric gas sensor using catalytic combustion of hydrogen.

    Science.gov (United States)

    Nagai, Daisuke; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-21

    A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Q(catalyst) required for 1 mV of ∆V(gas) was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Q(catalyst) for 200 and 1,000 ppm H₂ was 3.69 μW and 11.7 μW, respectively.

  14. Thermal Balance Analysis of a Micro-Thermoelectric Gas Sensor Using Catalytic Combustion of Hydrogen

    Directory of Open Access Journals (Sweden)

    Daisuke Nagai

    2014-01-01

    Full Text Available A thermoelectric gas sensor (TGS with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Qcatalyst required for 1 mV of ∆Vgas was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Qcatalyst for 200 and 1,000 ppm H2 was 3.69 μW and 11.7 μW, respectively.

  15. Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Slaman, M.; Javahiraly, N.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2011-01-01

    An optical fiber using palladium as sensitive layer is characterized in the range of 450 to 900 nm. The sensitive layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The sensor is based on a measurement technique that uses the surface plasmon resonance

  16. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants

    Directory of Open Access Journals (Sweden)

    Yin Long

    2015-07-01

    Full Text Available A linear hydrogen-bond acidic (HBA linear functionalized polymer (PLF, was deposited onto a bare surface acoustic wave (SAW device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB, dimethyl methylphosphonate (DMMP, mustard gas (HD, chloroethyl ethyl sulphide (2-CEES, 1,5-dichloropentane (DCP and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can’t be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed.

  17. A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode.

    Science.gov (United States)

    Narang, Jagriti; Chauhan, Nidhi; Pundir, C S

    2011-11-07

    We describe the construction of a polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) modified Au electrode for determination of hydrogen peroxide without using peroxidase (HRP). The AuNPs/MWCNT/PANI composite film deposited on Au electrode was characterized by Scanning Electron Microscopy (SEM) and electrochemical methods. Cyclic voltammetric (CV) studies of the electrode at different stages of construction demonstrated that the modified electrode had enhanced electrochemical oxidation of H(2)O(2), which offers a number of attractive features to develop amperometric sensors based on split of H(2)O(2). The amperometric response to H(2)O(2) showed a linear relationship in the range from 3.0 μM to 600.0 μM with a detection limit of 0.3 μM (S/N = 3) and with high sensitivity of 3.3 mA μM(-1). The sensor gave accurate and satisfactory results, when employed for determination of H(2)O(2) in milk and urine.

  18. Optoelectrochemical Hydrogen-Phosphate Ion Sensor Based on Electrochromism of Spinel-Type Oxide Thin-Film Electrode

    Science.gov (United States)

    Shimizu, Youichi; Shiotsuka, Masayuki

    2002-10-01

    An optoelectrochemical hydrogen-phosphate ion sensor based on the electrochromism of a spinel-type oxide thin-film electrode was developed. The MnCo2O4 thin-film electrode exhibited a marked change of the absorbance at 500 nm, under a positive potential of +0.80 V applied to the Ag/AgCl electrode, that was dependent on HPO42- concentration. The change of the absorbance at 500 nm, the sensor signal, had an almost linear dependence on the logarithm of HPO42- concentration between 1.0× 10-6 and 1.0× 10-2 M. The 90% response time, when the electrode potential was changed from +0.80 to 0 V vs Ag/AgCl electrode at 1.0× 10-2 M, was about 40 s at room temperature. The MnCo2O4-based element also showed high HPO42- selectivity among the tested anions of HPO42-, Cl-, NO3-, and SO42-.

  19. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  20. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  1. Synthesis of One-Dimensional SiC Nanostructures from a Glassy Buckypaper

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Mengning; Star, Alexander

    2013-02-21

    A simple and scalable synthetic strategy was developed for the fabrication of one-dimensional SiC nanostructures - nanorods and nanowires. Thin sheets of single-walled carbon nanotubes (SWNTs) were prepared by vacuum filtration and were washed repeatedly with sodium silicate (Na₂SiO₃) solution. The resulting “glassy buckypaper” was heated at 1300 - 1500 °C under Ar/H₂ to allow a solid state reaction between C and Si precursors to form a variety of SiC nanostructures. The morphology and crystal structures of SiC nanorods and nanowires were characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive xray spectroscopy (EDX), electron diffraction (ED) and x-ray diffraction (XRD) techniques. Furthermore, electrical conductance measurements were performed on SiC nanorods, demonstrating their potential applications in high-temperature sensors and control systems.

  2. Molybdenum disulfide nanoparticles decorated reduced graphene oxide: highly sensitive and selective hydrogen sensor

    Science.gov (United States)

    Venkatesan, A.; Rathi, Servin; Lee, In-yeal; Park, Jinwoo; Lim, Dongsuk; Kang, Moonshik; Joh, Han-Ik; Kim, Gil-Ho; Kannan, E. S.

    2017-09-01

    In this work, we report on the hydrogen (H2) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS2) nano particles (NPs) based composite film. The RGO/MoS2 composite exhibited a highly enhanced H2 response (∼15.6%) for 200 ppm at an operating temperature of 60 °C. Furthermore, the RGO/MoS2 composite showed excellent selectivity to H2 with respect to ammonia (NH3) and nitric oxide (NO) which are highly reactive gas species. The composite’s response to H2 is 2.9 times higher than that of NH3 whereas for NO it is 3.5. This highly improved H2 sensing response and selectivity of RGO/MoS2 at low operating temperatures were attributed to the structural integration of MoS2 nanoparticles in the nanochannels and pores in the RGO layer.

  3. Transformation from amorphous to nano-crystalline SiC thin films ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Silicon carbide (SiC) thin films were deposited on Si(111) by the hot wire chemical vapour deposi- tion (HWCVD) technique using silane (SiH4) and methane (CH4) gases without hydrogen dilution. The effects of SiH4 to CH4 gas flow ratio (R) on the structural properties, chemical composition and ...

  4. Transformation from amorphous to nano-crystalline SiC thin films ...

    Indian Academy of Sciences (India)

    Silicon carbide (SiC) thin films were deposited on Si(111) by the hot wire chemical vapour deposition (HWCVD) technique using silane (SiH4) and methane (CH4) gases without hydrogen dilution. The effects of SiH4 to CH4 gas flow ratio (R) on the structural properties, chemical composition and photoluminescence (PL) ...

  5. A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite.

    Science.gov (United States)

    Amanulla, Baishnisha; Palanisamy, Selvakumar; Chen, Shen-Ming; Velusamy, Vijayalakshmi; Chiu, Te-Wei; Chen, Tse-Wei; Ramaraj, Sayee Kannan

    2017-02-01

    A simple and facile green process was used for the synthesis of iron nanoparticles (FeNPs) decorated reduced graphene oxide (rGO) nanocomposite by using Ipomoea pes-tigridis leaf extract as a reducing and stabilizing agent. The as-prepared rGO/FeNPs nanocomposite was characterized by transmission electron microscopy, X-ray spectroscopy and Fourier transform infrared spectroscopy. The nanocomposite was further modified on the glassy carbon electrode and used for non-enzymatic sensing of hydrogen peroxide (H 2 O 2 ). Cyclic voltammetry results reveal that rGO/FeNPs nanocomposite has excellent electro-reduction behavior to H 2 O 2 when compared to the response of FeNPs and rGO modified electrodes. Furthermore, the nanocomposite modified electrode shows 9 and 6 folds enhanced reduction current response to H 2 O 2 than that of rGO and FeNPs modified electrodes. Amperometric method was further used to quantify the H 2 O 2 using rGO/FeNPs nanocomposite, and the response was linear over the concentration ranging from 0.1μM to 2.15mM. The detection limit and sensitivity of the sensor were estimated as 0.056μM and 0.2085μAμM -1 cm -2 , respectively. The fabricated sensor also utilized for detection of H 2 O 2 in the presence of potentially active interfering species, and found high selectivity towards H 2 O 2 . Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure

    Science.gov (United States)

    Li, Zhong; Haidry, Azhar Ali; Wang, Tao; Yao, Zheng Jun

    2017-07-01

    The development of cost-effective gas sensors with improved sensing properties and minimum power consumption for room temperature hydrogen leakage monitoring is in increasing demand. In this context, this report focus on the facile fabrication of ordered mesoporous TiO2 via evaporation-induced self-assembly route. With the controlled doping threshold (3%Co-TiO2), the output resistance change to 1000 ppm H2 is ˜4.1 × 103 with the response time of 66 s. The sensor response exhibits power law dependence with an increase in the hydrogen concentration, where the power law coefficient was found not only specific to the kind of target gas but also related to temperature. Further, the effect of structure integrity with doping level and humidity on sensing characteristics is interpreted in terms of variation in surface potential eVS and depletion region w caused by the adsorption of molecular oxygen O2-.

  7. Non-enzymatic Hydrogen Peroxide Sensors Based on Multi-wall Carbon Nanotube/Pt Nanoparticle Nanohybrids

    Directory of Open Access Journals (Sweden)

    Zhiying Miao

    2014-04-01

    Full Text Available A novel strategy to fabricate a hydrogen peroxide (H2O2 sensor was developed by using platinum (Pt electrodes modified with multi-wall carbon nanotube-platinum nanoparticle nanohybrids (MWCNTs/Pt nanohybrids. The process to synthesize MWCNTs/Pt nanohybrids was simple and effective. Pt nanoparticles (Pt NPs were generated in situ in a potassium chloroplatinate aqueous solution in the presence of multi-wall carbon nanotubes (MWCNTs, and readily attached to the MWCNTs convex surfaces without any additional reducing reagents or irradiation treatment. The MWCNT/Pt nanohybrids were characterized by transmission electron microscope (TEM, and the redox properties of MWCNTs/Pt nanohybrids-modified Pt electrode were studied by electrochemical measurements. The MWCNTs/Pt-modified electrodes exhibited a favorable catalytic ability in the reduction of H2O2. The modified electrodes can be used to detect H2O2 in the range of 0.01–2 mM with a lower detection limit of 0.3 μM at a signal-to-noise ratio of 3. The sensitivity of the electrode to H2O2 was calculated to be 205.80 μA mM−1 cm−2 at working potential of 0 mV. In addition, the electrodes exhibited an excellent reusability and long-term stability as well as negligible interference from ascorbic acid, uric acid, and acetaminophen.

  8. One-Dimensional Vanadium Dioxide Nanostructures for Room Temperature Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Aline Simo

    2015-06-01

    Full Text Available In relation to hydrogen (H2 economy in general and gas sensing in particular, an extensive set of one dimensional (1-D nano-scaled oxide materials are being investigated as ideal candidates for potential gas sensing applications. This is correlated to their set of singular surface characteristics, shape anisotropy and readiness for integrated devices. Nanostructures of well- established gas sensing materials such as Tin Oxide (SnO2, Zinc Oxide (ZnO, Indium (III Oxide (In2O3, and Tungsten Trioxide (WO3 have shown higher sensitivity and gas selectivity, quicker response, faster time recovery, as well as an enhanced capability to detect gases at low concentrations. While the overall sensing characteristics of these so called 1-D nanomaterials are superior, they are efficient at high temperature; generally above 200 0C. This operational impediment results in device complexities in integration that limit their technological applications, specifically in their miniaturized arrangements. Unfortunately, for room temperature applications, there is a necessity to dope the above mentioned nano-scaled oxides with noble metals such as Platinum (Pt, Palladium (Pd, Gold (Au, Ruthenium (Ru. This comes at a cost. This communication reports, for the first time, on the room temperature enhanced H2 sensing properties of a specific phase of pure Vanadium Dioxide (VO2 phase A in their nanobelt form. The relatively observed large H2 room temperature sensing in this Mott type specific oxide seems to reach values as low as 14 ppm H2 which makes it an ideal gas sensing in H2 fuelled systems.

  9. Polycrystalline SiC as source material for the growth of fluorescent SiC layers

    DEFF Research Database (Denmark)

    Kaiser, M.; Hupfer, T.; Jokubavicus, V.

    2013-01-01

    Polycrystalline doped SiC act as source for fluorescent SiC. We have studied the growth of individual grains with different polytypes in the source material. We show an evolution and orientation of grains of different polytypes in polycrystalline SiC ingots grown by the Physical Vapor Transport m...

  10. RECOMBINANT FLUORESCENT SENSOR OF HYDROGEN PEROXIDE HyPer FUSED WITH ADAPTOR PROTEIN Ruk/CIN85: DESIGNING OF EXPRESSION VECTOR AND ITS FUNCTIONAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    А. V. Bazalii

    2015-10-01

    Full Text Available The aim of this study was to design the expression vector encoding fluorescent sensor of hydrogen peroxide HyPer fused with adaptor protein Ruk/CIN85 as well as to check its subcellular distribution and ability to sense hydrogen peroxide. It was demonstrated that in transiently transfected HEK293 and MCF-7 cells Ruk/CIN85-HyPer is concentrated in dot-like vesicular structures of different size while HyPer is diffusely distributed throughout the cell. Using live cell fluorescence microscopy we observed gradual increase in hydrogen peroxide concentration in representative vesicular structures during the time of experiment. Thus, the developed genetic construction encoding the chimeric Ruk/CIN85-HyPer fluorescent protein represents a new tool to study localized H2O2 production in living cells.

  11. A High Frequency (HF) Inductive Power Transfer Circuit for High Temperature Applications Using SiC Schottky Diodes

    Science.gov (United States)

    Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.

    2018-01-01

    Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.

  12. Application of ZnO single-crystal wire grown by the thermal evaporation method as a chemical gas sensor for hydrogen sulfide.

    Science.gov (United States)

    Park, N K; Lee, S Y; Lee, T J

    2011-01-01

    A zinc oxide single-crystal wire was synthesized for application as a gas-sensing material for hydrogen sulfide, and its gas-sensing properties were investigated in this study. The gas sensor consisted of a ZnO thin film as the buffer layer and a ZnO single-crystal wire. The ZnO thin film was deposited over a patterning silicon substrate with a gold electrode by the CFR method. The ZnO single-crystal wire was synthesized over the ZnO thin film using zinc and activated carbon as the precursor for the thermal evaporation method at 800 degrees C. The electrical properties of the gas sensors that were prepared for the growth of ZnO single-crystal wire varied with the amount of zinc contained in the precursor. The charged current on the gas sensors increased with the increasing amount of zinc in the precursor. It was concluded that the charged current on the gas sensors was related to ZnO single-crystal wire growth on the silicon substrate area between the two electrodes. The charged current on the gas sensor was enhanced when the ZnO single-crystal wire was exposed to a H2S stream. The experimental results obtained in this study confirmed that a ZnO single-crystal wire can be used as a gas sensor for H2S.

  13. Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Lukco, Dorothy

    2006-01-01

    Miniaturized hydrogen- and hydrocarbon-gas sensors, heretofore often consisting of Schottky diodes based on catalytic metal in contact with SiC, can be improved by incorporating palladium oxide (PdOx, where 0 less than or equal to x less than or equal to 1) between the catalytic metal and the SiC. In prior such sensors in which the catalytic metal was the alloy PdCr, diffusion and the consequent formation of oxides and silicides of Pd and Cr during operation at high temperature were observed to cause loss of sensitivity. However, it was also observed that any PdOx layers that formed and remained at PdCr/SiC interfaces acted as barriers to diffusion, preventing further deterioration by preventing the subsequent formation of metal silicides. In the present improvement, the lesson learned from these observations is applied by placing PdOx at the catalytic metal/SiC interfaces in a controlled and uniform manner to form stable diffusion barriers that prevent formation of metal silicides. A major advantage of PdOx over other candidate diffusion-barrier materials is that PdOx is a highly stable oxide that can be incorporated into gas sensor structures by use of deposition techniques that are standard in the semiconductor industry. The PdOx layer can be used in a gas sensor structure for improved sensor stability, while maintaining sensitivity. For example, in proof-of-concept experiments, Pt/PdOx/SiC Schottky-diode gas sensors were fabricated and tested. The fabrication process included controlled sputter deposition of PdOx to a thickness of 50 Angstroms on a 400-m-thick SiC substrate, followed by deposition of Pt to a thickness of 450 Angstroms on the PdOx. The SiC substrate (400 microns in thickness) was patterned with photoresist and a Schottky-diode photomask. A lift-off process completed the definition of the Schottky-diode pattern. The sensors were tested by measuring changes in forward currents at a bias potential of 1 V during exposure to H2 in N2 at temperatures

  14. Switching Performance Evaluation of Commercial SiC Power Devices (SiC JFET and SiC MOSFET) in Relation to the Gate Driver Complexity

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    and JFETs. The recent introduction of SiC MOSFET has proved that it is possible to have highly performing SiC devices with a minimum gate driver complexity; this made SiC power devices even more attractive despite their device cost. This paper presents an analysis based on experimental results...... of the switching losses of various commercially available Si and SiC power devices rated at 1200 V (Si IGBTs, SiC JFETs and SiC MOSFETs). The comparison evaluates the reduction of the switching losses which is achievable with the introduction of SiC power devices; this includes analysis and considerations...

  15. Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time.

    Science.gov (United States)

    Petruci, João Flávio da Silveira; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2014-01-07

    Hydrogen sulfide is a highly corrosive, harmful, and toxic gas produced under anaerobic conditions within industrial processes or in natural environments, and plays an important role in the sulfur cycle. According to the U.S. Occupational Safety and Health Administration (OSHA), the permissible exposure limit (during 8 hours) is 10 ppm. Concentrations of 20 ppm are the threshold for critical health issues. In workplace environments with human subjects frequently exposed to H2S, e.g., during petroleum extraction and refining, real-time monitoring of exposure levels is mandatory. Sensors based on electrochemical measurement principles, semiconducting metal-oxides, taking advantage of their optical properties, have been described for H2S monitoring. However, extended response times, limited selectivity, and bulkiness of the instrumentation are common disadvantages of the sensing techniques reported to date. Here, we describe for the first time usage of a new generation of compact gas cells, i.e., so-called substrate-integrated hollow waveguides (iHWGs), combined with a compact Fourier transform infrared (FTIR) spectrometer for advanced gas sensing of H2S. The principle of detection is based on the immediate UV-assisted conversion of the rather weak IR-absorber H2S into much more pronounced and distinctively responding SO2. A calibration was established in the range of 10-100 ppm with a limit of detection (LOD) at 3 ppm, which is suitable for occupational health monitoring purposes. The developed sensing scheme provides an analytical response time of less than 60 seconds. Considering the substantial potential for miniaturization using e.g., a dedicated quantum cascade laser (QCL) in lieu of the FTIR spectrometer, the developed sensing approach may be evolved into a hand-held instrument, which may be tailored to a variety of applications ranging from environmental monitoring to workplace safety surveillance, process analysis and clinical diagnostics, e.g., breath

  16. Evaluation of a new electrochemical sensor for selective detection of non-enzymatic hydrogen peroxide based on hierarchical nanostructures of zirconium molybdate.

    Science.gov (United States)

    Vinoth Kumar, J; Karthik, R; Chen, Shen-Ming; Raja, N; Selvam, V; Muthuraj, V

    2017-08-15

    The construction and characterization of selective and sensitive non-enzymatic hydrogen peroxide (H2O2) electrochemical sensor based on sphere-like zirconium molybdate (ZrMo2O8) nanostructure are reported for the first time. The sphere-like ZrMo2O8 were prepared via a simple hydrothermal route followed by annealing process. The structural and morphological properties were investigated by various analytical and spectroscopic techniques such as XRD, Raman, SEM, EDX, TEM, and XPS analysis. Furthermore, the electrochemical properties were investigated by cyclic voltammetry and amperometric techniques. The obtained results displayed that the prepared ZrMo2O8 materials hold excellent-crystallinity, well-defined sphere-like formation and demonstrated superior electrochemical properties. Interestingly, the electrochemical H2O2 sensor was constructed based on ZrMo2O8 nanostructure on the glassy carbon electrode exhibited wide linear response ranges, good sensitivity and lower detection limit (LOD). The estimated sensitivity, wide linear ranges and LOD of the fabricated electrochemical sensor was 2.584μAμM(-1)cm(-2), 0.05-523, 543-3053μM and 0.01μM respectively. The proposed sensor had excellent selectivity even in the presence of biologically co-interfering substances such as uric acid, dopamine, ascorbic acid and glucose. This effortless, fast, inexpensive technique for constructing a modified electrode is a gorgeous approach to the growth of new sensors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Lateral boron distribution in polycrystalline SiC source materials

    DEFF Research Database (Denmark)

    Linnarsson, M. K.; Kaiser, M.; Liljedahl, R.

    2013-01-01

    Polycrystalline SiC containing boron and nitrogen are used in growth of fluorescent SiC for white LEDs. Two types of doped polycrystalline SiC have been studied in detail with secondary ion mass spectrometry: sintered SiC and poly-SiC prepared by sublimation in a physical vapor transport setup. T...

  18. SiC Optically Modulated Field-Effect Transistor

    Science.gov (United States)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  19. Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C{sub 60}-Cs-IL nanocomposite modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Bakyas, Kobra; Zare Dizajdizi, Behruz

    2016-07-01

    A sensitive hydrogen peroxide (H{sub 2}O{sub 2}) sensor was constructed based on copper nanoparticles/methylene blue/multiwall carbon nanotubes–fullerene–chitosan–ionic liquid (CuNPs/MB/MWCNTs–C{sub 60}–Cs–IL) nanocomposites. The MB/MWCNTs–C{sub 60}–Cs–IL and CuNPs were modified glassy carbon electrode (GCE) by the physical adsorption and electrodeposition of copper nitrate solution, respectively. The physical morphology and chemical composition of the surface of modified electrode was investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The electrochemical properties of CuNPs/MB/MWCNTs–C{sub 60}–Cs–IL/GCE were investigated by cyclic voltammetry (CV) and amperometry techniques and the sensor exhibited remarkably strong electrocatalytic activities toward the reduction of hydrogen peroxide. The peak currents possess a linear relationship with the concentration of H{sub 2}O{sub 2} in the range of 0.2 μM to 2.0 mM, and the detection limit is 55.0 nM (S/N = 3). In addition, the modified electrode was used to determine H{sub 2}O{sub 2} concentration in human blood serum sample with satisfactory results. - Highlights: • CuNPs/MB/MWCNT-C{sub 60}-Cs-IL/GC electrode was constructed by layer-by-layer method. • The catalytic performance of the sensor was studied with the use of amperometric technique. • The constructed sensor showed enhanced electrocatalytic activity toward the reduction of H{sub 2}O{sub 2}. • The CuNPs/MB/MWCNT-C{sub 60}-Cs-IL/GC electrode demonstrated high stability for the detection of H{sub 2}O{sub 2}.

  20. Preparation of biomorphic SiC ceramics

    Directory of Open Access Journals (Sweden)

    Egelja A.

    2008-01-01

    Full Text Available This paper deals with a new method for producing non-oxide ceramic using wood as a template. SiC with a woodlike microstructure has been prepared by carbothermal reduction reactions of Tilia wood/TEOS composite at 1873K. The porous carbon preform was infiltrated with TEOS (Si(OC2H54, as a source of silica, without pressure at 298K. The morphology of resulting porous SiC ceramics, as well as the conversion mechanism of wood to SiC ceramics, have been investigated by scanning electron microscopy (SEM/EDS and X-ray diffraction analysis (XRD. Obtained SiC ceramics consists of β-SiC with traces of α-SiC.

  1. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan

    2002-07-01

    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  2. Surface modification of silicon nanowire field-effect devices with Si-C and Si-N bonded Monolayers

    NARCIS (Netherlands)

    Masood, M.N.

    2011-01-01

    The research work was mainly focused on the surface modification/surface functionalization of active-gate areas of silicon nanowire field-effect transistor devices (Si-NW FET) using hydrogen terminated surfaces, Si-C and Si-N bonded monolayers and subsequent bioimmobilization for biosensor

  3. Growth of thin SiC films on Si single crystal wafers with a microwave excited plasma of methane gas

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per

    2013-01-01

    Wehave studied the growth and properties of SiC films on Siwafers, under ultrahigh vacuumbackground con- ditions, using a remote-, microwave excited,methane plasma as a source of active carbon and hydrogen,while the Si substrates were held at a temperature of near 700 °C. The reaction is diffusio...

  4. Development of sensitive amperometric hydrogen peroxide sensor using a CuNPs/MB/MWCNT-C60-Cs-IL nanocomposite modified glassy carbon electrode.

    Science.gov (United States)

    Roushani, Mahmoud; Bakyas, Kobra; Zare Dizajdizi, Behruz

    2016-07-01

    A sensitive hydrogen peroxide (H2O2) sensor was constructed based on copper nanoparticles/methylene blue/multiwall carbon nanotubes-fullerene-chitosan-ionic liquid (CuNPs/MB/MWCNTs-C60-Cs-IL) nanocomposites. The MB/MWCNTs-C60-Cs-IL and CuNPs were modified glassy carbon electrode (GCE) by the physical adsorption and electrodeposition of copper nitrate solution, respectively. The physical morphology and chemical composition of the surface of modified electrode was investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The electrochemical properties of CuNPs/MB/MWCNTs-C60-Cs-IL/GCE were investigated by cyclic voltammetry (CV) and amperometry techniques and the sensor exhibited remarkably strong electrocatalytic activities toward the reduction of hydrogen peroxide. The peak currents possess a linear relationship with the concentration of H2O2 in the range of 0.2μM to 2.0mM, and the detection limit is 55.0nM (S/N=3). In addition, the modified electrode was used to determine H2O2 concentration in human blood serum sample with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Zhang, Cong; Zhang, Di; Ma, Min; Wang, Weizhen; Chen, Qiang, E-mail: qiangchen@nankai.edu.cn

    2016-01-01

    Non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensors were fabricated on the basis of glassy carbon (GC) electrode modified with palladium (Pd) core-platinum (Pt) nanodendrites (Pt-NDs) and poly (diallyldimethylammonium chloride) (PDDA)-coated reduced graphene oxide (rGO). A facile wet-chemical method was developed for preparing Pd core-Pt nanodendrites. In this approach, the growth of Pt NDs was directed by Pd nanocrystal which could be regarded as seed. The PDDA-coated rGO could form uniform film on the surface of GC electrode, which provided a support for Pd core- Pt NDs adsorption by self-assembly. The morphologies of the nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (spectrum). Electrocatalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. The sensor fabricated by Pd core-Pt NDs/PDDA-rGO/GCE exhibited high sensitivity (672.753 μA mM{sup −1} cm{sup −2}), low detection limit (0.027 μM), wider linear range (0.005–0.5 mM) and rapid response time (within 5 s). Besides, it also exhibited superior reproducibility, excellent anti-interference performance and long-term stability. The present work could afford a viable method and efficient platform for fabricating all kinds of amperometric sensors and biosensors. - Highlights: • A facial wet-chemical method was developed for preparing Pd core-Pt nanodendrites. • The morphologies of graphene and Pd core-Pt nanodendrites were characterized. • A novel H{sub 2}O{sub 2} sensor was fabricated by nano-assembly. • The performance of H{sub 2}O{sub 2} sensor was evaluated by cyclic voltammetry and chronoamperometric methods.

  6. Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite.

    Science.gov (United States)

    Liu, Ying; Lei, Jianping; Ju, Huangxian

    2008-01-15

    A kind of nanocomposites with good dispersion in water was prepared through noncovalent adsorption of toluidine blue (Tb) on multiwalled carbon nanotubes (MWCNT) for electric communication between horseradish peroxidase (HRP) and electrode. The nanocomposites could be conveniently cast on electrode surface. With the aid of chitosan, HRP was then immobilized on the nanostructure to form a reagentless amperometric sensor for hydrogen peroxide. UV-vis spectroscopy and electrochemical impedance spectroscopy were used to characterize the adsorption of Tb on MWCNT. The presence of both Tb as mediator of electron transfer and MWCNT as conductor enhanced greatly the enzymatic response to the reduction of hydrogen peroxide. The novel biosensor exhibited fast response towards hydrogen peroxide with a detection limit of 1.7x10(-6)M and the linear range extended up to 4x10(-4)M without the interference of ascorbic acid and uric acid. The Michaelis-Menten constant (K'(m)) of the immobilized HRP was evaluated to be 0.16mM.

  7. Integrated photonic filters based on SiC multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, M.A., E-mail: mv@isel.ipl.pt [Electronics Telecommunication and Computer Dept. ISEL, R. Conselheiro Emídio Navarro, 1949-014, Lisboa (Portugal); CTS-UNINOVA, Quinta da Torre, Monte da Caparica, 2829-516, Caparica (Portugal); Vieira, M. [Electronics Telecommunication and Computer Dept. ISEL, R. Conselheiro Emídio Navarro, 1949-014, Lisboa (Portugal); CTS-UNINOVA, Quinta da Torre, Monte da Caparica, 2829-516, Caparica (Portugal); DEE-FCT-UNL, Quinta da Torre, Monte da Caparica, 2829-516, Caparica (Portugal); Louro, P.; Silva, V.; Fantoni, A. [Electronics Telecommunication and Computer Dept. ISEL, R. Conselheiro Emídio Navarro, 1949-014, Lisboa (Portugal); CTS-UNINOVA, Quinta da Torre, Monte da Caparica, 2829-516, Caparica (Portugal)

    2013-06-15

    Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p–i–n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and a two building-blocks active circuit are presented and give insight into the physics of the device.

  8. Magnetism in nanocrystalline SiC films

    Science.gov (United States)

    Semenov, A. V.; Pashchenko, V. O.; Khirnyi, V. F.; Kozlovskyi, A. A.; Mateichenko, P. V.

    2015-11-01

    Magnetism been studied in two series of nanocrystalline SiC films obtained by the method of direct deposition of ions with an energy of ~100 eV at temperatures 1150 °C and 1200 C. There were separated the contributions of diamagnetism, paramagnetism and superparamagnetism+ferromagnetism. Magnetization value of the films correlates with the deposition temperature. In the films deposited at higher temperatures the value of magnetization was by 1.5 times lower. It was concluded that induced magnetism in nanocrystalline SiC films is caused by interaction of magnetic moments of neutral VSiVC divacancies in separate nanocrystals. The estimated concentration of neutral VSiVC divacancies in nanocrystalline SiC films is ~1020 cm-3.

  9. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States)] [and others

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  10. Interfacial Charge States in Graphene on SiC Studied by Noncontact Scanning Nonlinear Dielectric Potentiometry.

    Science.gov (United States)

    Yamasue, Kohei; Fukidome, Hirokazu; Funakubo, Kazutoshi; Suemitsu, Maki; Cho, Yasuo

    2015-06-05

    We investigate pristine and hydrogen-intercalated graphene synthesized on a 4H-SiC(0001) substrate by using noncontact scanning nonlinear dielectric potentiometry (NC-SNDP). Permanent dipole moments are detected at the pristine graphene-SiC interface. These originate from the covalent bonds of carbon atoms of the so-called buffer layer to the substrate. Hydrogen intercalation at the interface eliminates these covalent bonds and the original quasi-(6×6) corrugation, which indicates the conversion of the buffer layer into a second graphene layer by the termination of Si bonds at the interface. NC-SNDP images suggest that a certain portion of the Si dangling bonds remains even after hydrogen intercalation. These bonds are thought to act as charged impurities reducing the carrier mobility in hydrogen-intercalated graphene on SiC.

  11. Oxygen reduction and methanol oxidation behaviour of SiC based Pt nanocatalysts for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Stamatin, Serban Nicolae; Andersen, Shuang Ma

    2013-01-01

    Research with proton exchange membrane fuel cells has demonstrated their important potential as providers of clean energy. The commercialization of this type of fuel cell needs a breakthrough in electrocatalyst technology to reduce the relatively large amount of noble metal platinum used...... with the present carbon based substrates. We have recently examined suitably sized silicon carbide (SiC) particles as catalyst supports for fuel cells based on the stable chemical and mechanical properties of this material. In the present study, we have continued our work with studies of the oxygen reduction...... and methanol oxidation reactions of SiC supported catalysts and measured them against commercially available carbon based catalysts. The deconvolution of the hydrogen desorption signals in CV cycles shows a higher contribution of Pt (110) & Pt (111) peaks compared to Pt (100) for SiC based supports than...

  12. The origin of high electrocatalytic activity of hydrogen peroxide reduction reaction by a g-C3N4/HOPG sensor.

    Science.gov (United States)

    Gomez, C G; Silva, A M; Strumia, M C; Avalle, L B; Rojas, M I

    2017-08-10

    Graphitic carbon nitride (g-C3N4) was synthesized from a low-cost precursor by means of a thermal process. The product was characterized by several spectroscopic techniques and the crystallinity was analyzed by X-ray diffraction. In the manufacture of the sensor, g-C3N4 was chemically exfoliated and a film was placed on the surface of a Highly Oriented Pyrolytic Graphite (HOPG). We compared the electrocatalytic activities of g-C3N4/HOPG and pristine HOPG surfaces as sensors for H2O2 quantification in buffer solution at pH 7. The results indicate that the surface of g-C3N4/HOPG exhibits striking analytical stability as well as reproducibility, enabling a reliable and sensitive determination within the 0.12-120 μM interval with a detection limit of 0.12 μM. These results suggest that this g-C3N4 film is a really particularly good nano-structured material to be applied as a biosensor. Chemical and physical factors are responsible for the outstanding electrocatalytic activity observed. The N in the g-C3N4 allows huge uptake of H2O2 through the hydrogen-bonding interaction and the change in the electronic structure since the HOPG/g-C3N4 heterojunction favors the charge transfer process through the interface.

  13. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianchao; Wang, Heyi, E-mail: hywang@caep.cn; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-12-15

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  14. Universal Converter Using SiC

    Energy Technology Data Exchange (ETDEWEB)

    Dallas Marckx; Brian Ratliff; Amit Jain; Matthew Jones

    2007-01-01

    The grantee designed a high power (over 1MW) inverter for use in renewable and distributed energy systems, such as PV cells, fuel cells, variable speed wind turbines, micro turbines, variable speed gensets and various energy storage methods. The inverter uses 10,000V SiC power devices which enable the use of a straight-forward topology for medium voltage (4,160VAC) without the need to cascade devices or topologies as is done in all commercial, 4,160VAC inverters today. The use of medium voltage reduces the current by nearly an order of magnitude in all current carrying components of the energy system, thus reducing size and cost. The use of SiC not only enables medium voltage, but also the use of higher temperatures and switching frequencies, further reducing size and cost. In this project, the grantee addressed several technical issues that stand in the way of success. The two primary issues addressed are the determination of real heat losses in candidate SiC devices at elevated temperature and the development of high temperature packaging for SiC devices.

  15. Hyper, a Hydrogen Peroxide Sensor, Indicates the Sensitivity of the Arabidopsis Root Elongation Zone to Aluminum Treatment

    Directory of Open Access Journals (Sweden)

    Alejandra Hernández-Barrera

    2015-01-01

    Full Text Available Emerging evidence indicates that some reactive oxygen species (ROS, such as the superoxide anion radical and hydrogen peroxide (H2O2, are central regulators of plant responses to biotic and abiotic stresses. Thus, the cellular levels of ROS are thought to be tightly regulated by an efficient and elaborate pro- and antioxidant system that modulates the production and scavenging of ROS. Until recently, studies of ROS in plant cells have been limited to biochemical assays and the use of fluorescent probes; however, the irreversible oxidation of these fluorescent probes makes it impossible to visualize dynamic changes in ROS levels. In this work, we describe the use of Hyper, a recently developed live cell probe for H2O2 measurements in living cells, to monitor oxidative stress in Arabidopsis roots subjected to aluminum treatment. Hyper consists of a circularly permuted YFP (cpYFP inserted into the regulatory domain of the Escherichia coli hydrogen peroxide-binding protein (OxyR, and is a H2O2-specific ratiometric, and therefore quantitative, probe that can be expressed in plant and animal cells. Now we demonstrate that H2O2 levels drop sharply in the elongation zone of roots treated with aluminum. This response could contribute to root growth arrest and provides evidence that H2O2 is involved in early Al sensing.

  16. Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, Ramani; Prakash, Jyoti; Dakshinamoorthy, Sathiyamoorthy [Bhabha Atomic Research Centre, Mumbai (India). Powder Metallurgy Div.; Nuwad, Jitendra; Sivan Pillai, Chirakarumpil Gopalan; Tyagi, Avesh Kumar [Bhabha Atomic Research Centre, Mumbai (India). Chemistry Div.

    2012-10-15

    Silicon carbide coating was developed using chemical vapor deposition on carbon substrate as a protective coating. The present studies were carried out with methyl trichlorosilane as the SiC precursor, at 1673K along with hydrogen and argon as carrier gas using a high-temperature vertical graphite reactor. The SiC coatings were characterized by means of X-ray diffraction for phase identification. Scanning electron microscopy analysis with energy dispersive X-ray spectrometer was also carried out for microstructure and elemental analysis. From the morphological study of different SiC deposits obtained at varying operating parameters it was observed that methyl trichlorosilane feed rate and hydrogen flow rate play a major role in deciding the nature of deposits and the argon percentage in the mixed gas also plays a vital role. (orig.)

  17. Vacancies in SiC nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Kityk, I.V.; Makowska-Janusik, M. [Technical Univ. of Czestochowa (Poland). Inst. of Phys.; Kassiba, A.; Charpentier, C. [Laboratoire de Physique de l' Etat Condense, UPRES-A6087, Universite du Maine, Avenue Olivier Messiaen, 72085 Cedex 9, LeMans (France); Tuesu, K. [Research Informatic Science Department, Tohoku University, 2-1-4 Katahira, Aoba-ku, 982-12, Sendai (Japan); Ling, Y. [Michigan Molecular Institute, 48640, Midland, MI (United States)

    2000-08-31

    Origin of vacancies in the large-sized SiC nanocrystals (higher than 10 nm) has been investigated using theoretical band structure calculations and experimental electronic paramagnetic resonance (EPR) measurements. Influence of geometry sizes on appearance of concrete vacancy has been studied. The theoretical approach includes self-consistent norm-conserving pseudopotential band energy calculations and geometry structure optimisation. The performed calculations show that the presence of the vacancies is a necessary attribute of the SiC nanocrystallites. Moreover, the type and concentration of the vacancies are dependent on the nanoparticle geometry. We have revealed that spin-polarised states of intracrystallite vacancies differ essentially from vacancies in the bulk crystals. A comparison between the performed theoretical simulations and obtained EPR experimental data shows the possibility of using the proposed methods for prediction of vacancy appearance in the binary nanocrystallites and possibility for their operation. (orig.)

  18. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review

    Science.gov (United States)

    Casady, J. B.; Johnson, R. W.

    1996-10-01

    Silicon carbide (SiC), a material long known with potential for high-temperature, high-power, high-frequency, and radiation hardened applications, has emerged as the most mature of the wide-bandgap (2.0 eV ≲ Eg ≲ 7.0 eV) semiconductors since the release of commercial 6HSiC bulk substrates in 1991 and 4HSiC substrates in 1994. Following a brief introduction to SiC material properties, the status of SiC in terms of bulk crystal growth, unit device fabrication processes, device performance, circuits and sensors is discussed. Emphasis is placed upon demonstrated high-temperature applications, such as power transistors and rectifiers, turbine engine combustion monitoring, temperature sensors, analog and digital circuitry, flame detectors, and accelerometers. While individual device performances have been impressive (e.g. 4HSiC MESFETs with fmax of 42 GHz and over 2.8 W mm -1 power density; 4HSiC static induction transistors with 225 W power output at 600 MHz, 47% power added efficiency (PAE), and 200 V forward blocking voltage), material defects in SiC, in particular micropipe defects, remain the primary impediment to wide-spread application in commercial markets. Micropipe defect densities have been reduced from near the 1000 cm -2 order of magnitude in 1992 to 3.5 cm -2 at the research level in 1995.

  19. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron–Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Yun Tu

    2017-02-01

    Full Text Available Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG fabricated in hydrogen (H2-loaded boron–germanium (B–Ge co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging.

  20. Development of Amperometric Hydrogen Peroxide Sensor Based on Horseradish Peroxidase-Immobilized Poly(Thiophene-co-EpoxyThiophene

    Directory of Open Access Journals (Sweden)

    Young-Taeg Lee

    2008-07-01

    Full Text Available A modified electrode for hydrogen peroxide (H2O2 sensing was prepared via thiophene (Th with epoxy group. Thiophene (EpoxyTh with epoxy group was synthesized by reaction of 3-bromothiophene and glycidyl methacrylate (GMA in acetonitrile according to Heck Reaction. The electrocopolymerization of Th and EpoxyTh was performed on the surface of indium tin oxide (ITO electrode by cycling the potential between -1.0 and +2.5 V in mixture of thiophene (Th and EpoxyTh. Poly(Th-co- EpoxyTh grown onto the ITO electrode was successfully confirmed by SEM, AFM, and water contact angle analysis, respectively. Finally, the HRP was immobilized on the surface of poly(Th-co-EpoxyTh electrode by covalent binding. The amperometric response of the HRP-immobilized poly(Th-co-EpoxyTh electrode for H2O2 was examined by cyclic voltammetry (CV. The HRP-immobilized poly(Th-co-EpoxyTh electrode showed linearity from 0.1 to 30 mM H2O2, good reproducibility, and long life time.

  1. Fluorescent sensors based on quinoline-containing styrylcyanine: determination of ferric ions, hydrogen peroxide, and glucose, pH-sensitive properties and bioimaging.

    Science.gov (United States)

    Yang, Xiaodong; Zhao, Peiliang; Qu, Jinqing; Liu, Ruiyuan

    2015-08-01

    A novel styrylcyanine-based fluorescent probe 1 was designed and synthesized via facile methods. Ferric ions quenched the fluorescence of probe 1, whereas the addition of ferrous ions led to only small changes in the fluorescence signal. When hydrogen peroxide was introduced into the solution containing probe 1 and Fe(2+) , Fe(2+) was oxidized to Fe(3+), resulting in the quenching of the fluorescence. The probe 1/Fe(2+) solution fluorescence could also be quenched by H2 O2 released from glucose oxidation by glucose oxidase (GOD), which means that probe 1/Fe(2+) platform could be used to detect glucose. Probe 1 is fluorescent in basic and neutral media but almost non-fluorescent in strong acidic environments. Such behaviour enables it to work as a fluorescent pH sensor in both the solution and solid states and as a chemosensor for detecting volatile organic compounds with high acidity and basicity. Subsequently, the fluorescence microscopic images of probe 1 in live cells and in zebrafish were achieved successfully, suggesting that the probe has good cell membrane permeability and a potential application for imaging in living cells and living organisms. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Redox mediated synthesis of hierarchical Bi2O3/MnO2 nanoflowers: a non-enzymatic hydrogen peroxide electrochemical sensor.

    Science.gov (United States)

    Ray, Chaiti; Dutta, Soumen; Roy, Anindita; Sahoo, Ramkrishna; Pal, Tarasankar

    2016-03-21

    Uniform hierarchical Bi2O3/MnO2 nanoflowers (BM NFs) are fabricated via a reaction strategy by combining redox reaction and hydrothermal treatment. This wet chemical method reports for the first time a one pot synthesis of Bi2O3/MnO2 nanoflowers via a thermodynamically allowed galvanic reaction between Bi(0) and KMnO4 in aqueous solution under modified hydrothermal (MHT) conditions. The Bi2O3/MnO2 NF composites are then applied as a catalyst for electrochemical hydrogen peroxide detection. Exceedingly high H2O2 detection sensitivity (0.914 μA μM(-1) cm(-2)) lies in a wide linear range of 0.2-290 μM and the detection limit goes down to 0.05 μM (S/N = 3) for non-enzymatic detection of H2O2 in solution. This prototype sensor demonstrates an admirable analytical performance considering its long-term stability, good reproducibility and acceptable selectivity against common interfering species. The employment of the stable nanocomposite for real sample analysis makes it a deliverable for H2O2 sensing.

  3. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  4. SiC Power MOSFET with Improved Gate Dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, Nick M; Tompa, Gary S; Spencer, Michael G; Chandrashekhar, Chandra MVS

    2010-08-23

    In this STTR program, Structured Materials Industries (SMI), and Cornell University are developing novel gate oxide technology, as a critical enabler for silicon carbide (SiC) devices. SiC is a wide bandgap semiconductor material, with many unique properties. SiC devices are ideally suited for high-power, highvoltage, high-frequency, high-temperature and radiation resistant applications. The DOE has expressed interest in developing SiC devices for use in extreme environments, in high energy physics applications and in power generation. The development of transistors based on the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) structure will be critical to these applications.

  5. SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40{angstrom} in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

  6. A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Huan Chen

    Full Text Available In bacteria, OxyR is a peroxide sensor and transcription regulator, which can sense the presence of reactive oxygen species and induce antioxidant system. When the cells are exposed to H(2O(2, OxyR protein is activated via the formation of a disulfide bond between the two conserved cysteine residues (C199 and C208. In Deinococcus radiodurans, a previously unreported special characteristic of DrOxyR (DR0615 is found with only one conserved cysteine. dr0615 gene mutant is hypersensitive to H(2O(2, but only a little to ionizing radiation. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that the conserved cysteine (C210 is necessary for sensing H(2O(2, but its mutation did not alter the binding characteristics of OxyR on DNA. Under oxidant stress, DrOxyR is oxidized to sulfenic acid form, which can be reduced by reducing reagents. In addition, quantitative real-time PCR and global transcription profile results showed that OxyR is not only a transcriptional activator (e.g., katE, drb0125, but also a transcriptional repressor (e.g., dps, mntH. Because OxyR regulates Mn and Fe ion transporter genes, Mn/Fe ion ratio is changed in dr0615 mutant, suggesting that the genes involved in Mn/Fe ion homeostasis, and the genes involved in antioxidant mechanism are highly cooperative under extremely oxidant stress. In conclusion, these findings expand the OxyR family, which could be divided into two classes: typical 2-Cys OxyR and 1-Cys OxyR.

  7. Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [College of Chemical Engineering, Sichuan University, Chengdu, 610064 (China); Hu, Yu [College of Material Science and Enginneering, Sichuan University, Chengdu, 610064 (China); Zeng, Hongmei [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Zhong, Lin, E-mail: zhonglin@scu.edu.cn [College of Chemical Engineering, Sichuan University, Chengdu, 610064 (China); Liu, Kewei; Cao, Hongmei [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Li, Wei [College of Material Science and Enginneering, Sichuan University, Chengdu, 610064 (China); Yan, Hongjian, E-mail: hjyan@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China)

    2017-05-05

    Highlights: • SiC was recovered from photovoltaic industry waste. • The recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides. • The recovered SiC shows photocatalytic H{sub 2} evolution from water. - Abstract: In recent years, the focus on creating a dependable and efficient means to recycle or recover the valuable parts from the waste material has drawn significantly attention as an environmentally friendly way to deal with the industrial wastes. The silicon carbide (SiC) crystalline is one of reusable material in the slurry wastes generated during wafer slicing. Here we report the use of recovered SiC from the slurry wastes as photocatalysts to produce hydrogen in the presence of Na{sub 2}SO{sub 3}-Na{sub 2}S as electron donor. The recovered SiC were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy spectra (XPS), UV–vis (UV–vis) spectroscopy, and photoluminescence (PL) spectroscopy. The morphology of SiC loaded with 1 wt% Pt as cocatalyst by thermal-reduction method was observed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). The experimental results reveal that the recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides on the surface of the SiC. The highest hydrogen production rate is 191.8 μmol h{sup −1} g{sup −1}. This study provides a way to recycle crystalline SiC from the discharged waste in the photovoltaic industry and reuse it as photocatalyst to yield hydrogen with the advantage of low energy consumption, low pollution and easy operation.

  8. 500?C SiC JFET Driver Circuits and Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed development, SiC JFET control circuitry and normally-off SiC JFET power switch will be integrated in a single SiC chip that will provide digital...

  9. Wafer-scale epitaxial graphene on SiC for sensing applications

    Science.gov (United States)

    Karlsson, Mikael; Wang, Qin; Zhao, Yichen; Zhao, Wei; Toprak, Muhammet S.; Iakimov, Tihomir; Ali, Amer; Yakimova, Rositza; Syväjärvi, Mikael; Ivanov, Ivan G.

    2015-12-01

    The epitaxial graphene-on-silicon carbide (SiC-G) has advantages of high quality and large area coverage owing to a natural interface between graphene and SiC substrate with dimension up to 100 mm. It enables cost effective and reliable solutions for bridging the graphene-based sensors/devices from lab to industrial applications and commercialization. In this work, the structural, optical and electrical properties of wafer-scale graphene grown on 2'' 4H semi-insulating (SI) SiC utilizing sublimation process were systemically investigated with focus on evaluation of the graphene's uniformity across the wafer. As proof of concept, two types of glucose sensors based on SiC-G/Nafion/Glucose-oxidase (GOx) and SiC-G/Nafion/Chitosan/GOx were fabricated and their electrochemical properties were characterized by cyclic voltammetry (CV) measurements. In addition, a few similar glucose sensors based on graphene by chemical synthesis using modified Hummer's method were also fabricated for comparison.

  10. A novel nonenzymatic sensor based on LaNi{sub 0.6}Co{sub 0.4}O{sub 3} modified electrode for hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhen [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); School of Chemistry and Chemical Engineering, Linyi University, 18 TongDa Road, Linyi 276005 (China); Gu Shuqing [Department of Chemistry, Shanghai University, Shanghai 200444 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ding Yaping, E-mail: wdingyp@sina.com [Department of Chemistry, Shanghai University, Shanghai 200444 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Jin Jindi [Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2012-10-01

    Graphical abstract: CVs recorded on the bare CPE (a) and LNC/CPE (c) with 0.3 mM H{sub 2}O{sub 2}, LNC/CPE (b) without H{sub 2}O{sub 2} in 0.1 M NaOH. Scan rate: 100 mV s{sup -1}. Highlights: Black-Right-Pointing-Pointer The sensor exhibited wide linear range and low detection limit. Black-Right-Pointing-Pointer The sensor possesses high sensitivity and fast response. Black-Right-Pointing-Pointer The sensor was used for detection of hydrogen peroxide and glucose. Black-Right-Pointing-Pointer The proposed sensor has good stability and reproducibility. Black-Right-Pointing-Pointer The sensor was applied in toothpaste and serum samples with satisfactory results. - Abstract: In this paper, LaNi{sub 0.6}Co{sub 0.4}O{sub 3} (LNC) nanoparticles were synthesized by the sol-gel method, and the structure and morphology of LNC nanoparticles were characterized by X-ray diffraction spectrum, scanning electron microscopy and transmitting electron microscopy. And then, LNC was used to modify carbon paste electrode (CPE) without any adhesive to fabricate hydrogen peroxide and glucose sensor, and the results demonstrated that LNC exhibited strong electrocatalytical activity by cyclic voltammetry and amperometry. In H{sub 2}O{sub 2} determination, linear response was obtained in the concentration range of 10 nM-100 {mu}M with a detection limit of 1.0 nM. In glucose determination, there was the linear region of 0.05-200 {mu}M with a detection limit of 8.0 nM. Compared with other reports, the proposed sensor also displayed high sensitivity toward H{sub 2}O{sub 2} (1812.84 {mu}A mM{sup -1} cm{sup -2}) and glucose (643.0 {mu}A mM{sup -1} cm{sup -2}). Moreover, this prepared sensor was applied to detect glucose in blood serum and hydrogen peroxide in toothpaste samples with satisfied results, indicating its possibility in practical application.

  11. Electron Spectroscopy Study of SiC,

    Science.gov (United States)

    1983-09-01

    Liquid nitrogen cooling is supplied to the central copper block of the sample holder by flexible spiral stainless steel capillary. This cooling facility...sapphire disks from thinner copper blocks at both sides. The outer copper blocks hold 1.5 mm diameter W rods to which are welded a pair of 0.375 mm...sputtering was sufficient to implant F+ and Ar+ ions deep enough in the SiC surface layer, so that the implanted F and Ar could not be removed-by thermal

  12. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  13. Synthesis of biomorphic SiC ceramic from bamboo charcoal.

    Science.gov (United States)

    Zhu, Jiangtao; Kwong, Fung Luen; Ng, Dickon Hang Leung

    2009-02-01

    Biomorphic SiC ceramic was successfully synthesized by reaction sintering between bamboo charcoal and a Si/SiO2 powder mixture. The charcoal was converted into an entirely SiC ceramic inherited with the original bamboo structure. Samples were characterized according to their crystallinity, morphology, microstructures and pore structures. We found that various morphological SiC structures were formed in different parts of the charcoal which depended on the morphology of the textures. The length of SiC nanowires were up to micron size. They were grown in the direction. The number of micropores in the converted biomorphic SiC was less than the original bamboo charcoal, but the pore diameter was larger.

  14. Structural characterization of SiC nanoparticles

    Science.gov (United States)

    Sun, Baoxing; Xie, Ruobing; Yu, Cun; Li, Cheng; Xu, Hongjie

    2017-10-01

    The structure and size of SiC nanoparticles were studied by different characterization methods including small angle X-ray scattering (SAXS), transmission electron microscope (TEM), and X-ray diffraction (XRD). The results showed that particle size distributions determined respectively from SAXS and TEM are comparable and follow the log-normal function. The size distribution of the particles is between 10 to 100 nm with most of them being in the range of 20–50 nm. The average particle size is around 42 nm. XRD identifies the phase of the SiC nanoparticles and suggests the average size of the single crystalline domain to be around 21 nm. The combined results from XRD and SAXS suggest the existence of many polycrystals, which is confirmed by the HRTEM observation of particles with twins and stacking faults. The material synthesis methods leading to various particle sizes are also discussed. Project supported by the National Natural Science Foundation of China (No. 11505273) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA02000000).

  15. Epitaxial sic devices for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, M; Menichelli, D.; Pini, S.; Sciortino, S. [INFN, Firenze (Italy); Firenze Univ., Firenze (Italy). Dipartimento di Energetica; Bucciolini, M. [INFN, Firenze (Italy); Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; Nava, F. [Modena Univ., Modena (Italy). Dipartimento di Fisica; INFN, Bologna (Italy)

    2002-07-01

    The current response of SiC on-line dosimeters to {gamma}-radiation from{sup 60}Co and {sup 167}Cs {gamma}-sources, X-photons and 22MeV electrons from linear accelerator has been investigated. The devices used are 4H-SiC epitaxial n-type layer deposited onto a 4H-SiC n{sup +} type substrate wafer doped with nitrogen. Single-pad Schottky contacts have been produced by deposition of a 1000A gold film on the epitaxial layer and ohmic contacts have been deposited on the rear substrate side. The detector has been then embedded in epoxy resin and studied in the dose and dose-rate ranges 0.1-1 Gy 0.1-10Gy/min. A signal response comparable to that of silicon standard dosimeters has been measured with the unbiased SiC device. The released charge and induced current have been observed to increase linearly respectively with the dose and dose-rate. A preliminary study on the changes in the sensibility of the device after a {gamma}-rays accumulated dose up to 10kGy is also presented.

  16. Processing of sintered alpha SiC

    Science.gov (United States)

    Storm, R. S.

    1984-01-01

    Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.

  17. The Effect of Fiber Architecture on Matrix Cracking in Sic/sic Cmc's

    Science.gov (United States)

    Morscher, Gregory N.

    2005-01-01

    Applications incorporating silicon carbide fiber reinforced silicon carbide matrix composites (CMC's) will require a wide range of fiber architectures in order to fabricate complex shape. The stress-strain response of a given SiC/SiC system for different architectures and orientations will be required in order to design and effectively life-model future components. The mechanism for non-linear stress-strain behavior in CMC's is the formation and propagation of bridged-matrix cracks throughout the composite. A considerable amount of understanding has been achieved for the stress-dependent matrix cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated Si. This presentation will outline the effect of 2D and 3D architectures and orientation on stress-dependent matrix-cracking and how this information can be used to model material behavior and serve as the starting point foe mechanistic-based life-models.

  18. Tracing the incorporation of water in SiO{sub 2}/SiC structures formed by oxide deposition and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, S.A., E-mail: silma.alberton@ufrgs.br [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Pitthan, E. [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Soares, G.V. [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Instituto de Física, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Stedile, F.C. [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900 Porto Alegre, RS (Brazil)

    2014-08-01

    Water vapor incorporation in SiO{sub 2} films, obtained by thermal oxidation and/or sputter deposition, on SiC and Si was investigated. Isotopically enriched water was used to allow the {sup 2}H (deuterium) quantification and the {sup 18}O profiling by nuclear reaction analyses. The incorporation of hydrogen from water vapor in SiO{sub 2}/SiC and SiO{sub 2}/Si structures, whose films were deposited by sputtering, occurred mainly in the SiO{sub 2} film/substrate interfacial region. Exposure to water vapor led to isotopic exchange between oxygen from the water vapor and oxygen from SiO{sub 2} films deposited on SiC and on Si substrates. Longer thermal oxidation times of the SiC prior to the deposition of the SiO{sub 2} film led to larger amounts of D incorporated. The thermal growth of a very thin SiO{sub 2} film followed by the deposition of SiO{sub 2} led to the lowest amounts of D incorporated. These results were correlated with the improvement in the electrical characteristics observed for SiO{sub 2}/SiC structures obtained by these routes.

  19. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  20. Compatibility of SiC and SiC Composites with Molten Lead

    Energy Technology Data Exchange (ETDEWEB)

    H Tunison

    2006-03-07

    The choice of structural material candidates to contain Lead at 1000 C are limited in number. Silicon carbide composites comprise one choice of possible containment materials. Short term screening studies (120 hours) were undertaken to study the behavior of Silicon Carbide, Silicon Nitride, elemental Silicon and various Silicon Carbide fiber composites focusing mainly on melt infiltrated composites. Isothermal experiments at 1000 C utilized graphite fixtures to contain the Lead and material specimens under a low oxygen partial pressure environment. The corrosion weight loss values (grams/cm{sup 2} Hr) obtained for each of the pure materials showed SiC (monolithic CVD or Hexoloy) to have the best materials compatibility with Lead at this temperature. Increased weight loss values were observed for pure Silicon Nitride and elemental Silicon. For the SiC fiber composite samples those prepared using a SiC matrix material performed better than Si{sub 3}N{sub 4} as a matrix material. Composites prepared using a silicon melt infiltration process showed larger corrosion weight loss values due to the solubility of silicon in lead at these temperatures. When excess silicon was removed from these composite samples the corrosion performance for these material improved. These screening studies were used to guide future long term exposure (both isothermal and non-isothermal) experiments and Silicon Carbide composite fabrication work.

  1. Polymer precursors for SiC ceramic materials

    Science.gov (United States)

    Litt, Morton H.

    1986-01-01

    Work on precursor polymers to SiC was performed, concentrating on polymers made from decamethyl cyclohexasilyene units. The initial approach was to synthesize mixed diphenyl decamethyl cyclohexasilane, dephenylate, and polymerize. This produced polymers which had yields of up to 50 percent SiC. (Theoretical yield is 75 percent). The present approach is to make the polymer through the intermediate trans-1,4-diphenyl decamethyl cyclohexasilane. This should produce a crystalline polymer and high strength fibers. These will be thermally decomposed to SiC fibers. This requires new chemistry which is currently being studied.

  2. Detail study of SiC MOSFET switching characteristics

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    This paper makes detail study of the latest SiC MOSFETs switching characteristics in relation to gate driver maximum current, gate resistance, common source inductance and parasitic switching loop inductance. The switching performance of SiC MOSFETs in terms of turn on and turn off voltage...... and current are presented. Switching losses analysis is made according to the experiment results. The switching characteristics study and switching losses analysis could give some guidelines of gate driver IC and gate resistance selection, switching losses estimation and circuit design of SiC MOSFETs....

  3. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanism...... is analysed in detail. According to the analysis, the optimal circuit design to minimize the parasitic parametric is introduced for a clean switching waveform. Experiment results show the clean switching waveform of SiC MOSFET. Guidelines are established for circuit design....

  4. Characteristics of Commercial SiC and Synthetic SiC as an Aggregate in Geopolymer Composites

    Science.gov (United States)

    Irfanita, R.; Afifah, K. N.; Asrianti; Subaer

    2017-03-01

    This main objective of this study is to investigate the effect silicon carbide (SiC) as an aggregate on the mechanical strength and microstructure of the geopolymer composites. The geopolymers binder were produced by using alkaline activation method of metakaolin and cured at 70oC for 2 hours. In this study commercial and synthetic SiC were used as aggregate to produce composite structure. Synthetic SiC was produced from rice husk ash and coconut shell carbon calcined at 750oC for 2 hours. The addition of SiC in geopolymers paste was varied from 0.25g, 0.50g to 0.75g to form geopolymers composites. The chemical compositions and crystallinity level of SiC and the resulting composites were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC and the composites were examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The physical and mechanical properties of the samples were determined based on apparent porosity, bulk density, and three bending flexural strength measurements. The results showed that the commercial and synthetic SiC were effectively produced geopolymers composites with different microstructure, physical and mechanical strength.

  5. Aerospace Sensor Systems: From Sensor Development To Vehicle Application

    Science.gov (United States)

    Hunter, Gary W.

    2008-01-01

    This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.

  6. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  7. Microwave joining of SiC ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Silberglitt, R.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States); Katz, J.D. [Los Alamos National Lab., NM (United States)

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  8. SiC MOSFETs based split output half bridge inverter

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2014-01-01

    . This paper makes the current commutation mechanism and efficiency analysis of half bridge with split output based on SiC MOSFETs. Current commutation process analysis is illustrated together with LTspice simulation and afterwards, verified by the experimental results of a double pulse test circuit with split......Body diode of SiC MOSFETs has a relatively high forward voltage drop and still experiences reverse recovery phenomenon. Half bridge with split output aims to decouple both the body diode and junction capacitance of SiC MOSFETs, therefore achieving a reduced switching loss in a bridge configuration...... output. The double pulse test shows the devices' current during commutation process and the reduced switching losses of SiC MOSFETs compared to that of the traditional half bridge. The efficiency comparison is presented with experimental results of half bridge power inverter with split output...

  9. Development of SiC Large Tapered Crystal Growth

    Science.gov (United States)

    Neudeck, Phil

    2011-01-01

    Research Focus Area: Power Electronics, Temperature Tolerant Devices. Demonstrate initial feasibility of totally new "Large Tapered Crystal" (LTC) process for growing vastly improved large-diameter wide-band gap wafers. Addresses Targets: The goal of this research is to experimentally investigate and demonstrate feasibility of the key unproven LTC growth processes in SiC. Laser-assisted growth of long SiC fiber seeds. Radial epitaxial growth enlargement of seeds into large SiC boules. Uniqueness and Impacts open a new technology path to large-diameter SiC and GaN wafers with 1000-fold defect density improvement at 2-4 fold lower cost. Leapfrog improvement in wide band gap power device capability and cost.

  10. SiC Avalanche Photodiodes and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aymont Technology, Inc. (Aymont) will demonstrate the feasibility of SiC p-i-n avalanche photodiodes (APD) arrays. Aymont will demonstrate 4 x 4 arrays of 2 mm2 APDs...

  11. SiC power MOSFETs performance, robustness and technology maturity

    OpenAIRE

    Castellazzi, Alberto; Fayyaz, Asad; Romano, G; Yang, Li; Riccio, M.; Irace, A.

    2016-01-01

    Relatively recently, SiC power MOSFETs have transitioned from being a research exercise to becoming an industrial reality. The potential benefits that can be drawn from this technology in the electrical energy conversion domain have been amply discussed and partly demonstrated. Before their widespread use in the field, the transistors need to be thoroughly investigated and later validated for robustness and longer term stability and reliability. This paper proposes a review of commercial SiC ...

  12. Synthesis of micro-sized interconnected Si-C composites

    Science.gov (United States)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  13. Excimer laser assisted chemical machining of SiC ceramic

    Science.gov (United States)

    Hibi, Yuko; Enomoto, Yuji; Kikuchi, Kaoru; Shikata, Nobuo; Ogiso, Hisato

    1995-02-01

    A highly effective method of machining ceramic has been newly developed using a krypton fluoride (KrF) excimer laser with a 248 nm wavelength. The laser was irradiated on SiC in water to form a soft hydrous oxide layer by photochemical reaction. The softened layer was then cut with a diamond tool to form a mirror surface finish. The optimum conditions were found for both high machining rate and better surface integrity of SiC.

  14. Fabrication of SiC mat by radiation processing

    Science.gov (United States)

    Kang, Phil-Hyun; Jeun, Joon-Pyo; Seo, Dong-Kwon; Nho, Young-Chang

    2009-07-01

    Silicon carbide (SiC) exhibits many important properties, such as high intrinsic strength, stiffness, and high temperature stability. Therein, it is considered to be one of the most promising candidates for reinforcement of advanced ceramic matrix composites. The use of preceramic polymers presents the possibility of solving the intricacies involved in obtaining a new generation of ceramic materials. In this study, a radiation processing method was used to fabricate a cured polycarbosilane mat as a preceramic polymer. The polycarbosilane mat was cured by electron beam (e-beam) irradiation up to 10 MGy in an inert gas atmosphere. Next, the e-beam-cured PCS mat, as green fiber, was carbonized to produce the SiC mat. The conversion process of the PCS mat into the SiC mat was investigated by SEM, FT-IR, XRD, and TGA. According to FT-IR analysis, the Si-H peak intensity was observed to decrease as the polymer structure changed from polycarbosilane to SiC. The XRD patterns of SiC showed the diffraction peaks at (1 1 1), (2 2 0), and (3 1 1) which indicated the emergence of β-SiC. TGA curve shows that weight percent of residue of electrospun PCS mat, e-beam-cured PCS mat and pyrolyzed SiC mat up to 1000 °C were 72.5%, 88.3%, and 99.2%, respectively.

  15. SPHERICAL INDENTATION OF SiC

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Johanns, Kurt E [ORNL

    2007-01-01

    Instrumented Hertzian indentation testing was performed on several grades of SiCs and the results and preliminary interpretations are presented. The grades included hot-pressed and sintered compositions. One of the hot-pressed grades was additionally subjected to high temperature heat treatment to produce a coarsened grain microstructure to enable the examination of exaggerated grain size on indentation response. Diamond spherical indenters were used in the testing. Indentation load, indentation depth of penetration, and acoustic activity were continually measured during each indentation test. Indentation response and postmortem analysis of induced damage (e.g., ring/cone, radial and median cracking, quasi-plasticity) are compared and qualitatively as a function of grain size. For the case of SiC-N, the instrumented spherical indentation showed that yielding initiated at an average contact stress 12-13 GPa and that there was another event (i.e., a noticeable rate increase in compliance probably associated with extensive ring and radial crack formations) occurring around an estimated average contact stress of 19 GPa.

  16. Recombination-induced formation of hydrogen-defect complexes in 4H and 6H-SiC: electrical and optical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Koshka, Y.; Los, A.; Mazzola, M.S.; Sankin, I

    2003-12-31

    The phenomenon of recombination-induced passivation of defects with hydrogen was investigated in SiC polytypes. Excitation of the hydrogenated samples with above-band gap light at low temperatures resulted in formation of different non-metastable hydrogen-related luminescence centres. Electrical measurements revealed strong recombination-induced passivation of electrical activity of aluminium and boron acceptors in p-type SiC epilayers, which in some cases resulted in inversion of the conductivity type. Athermal migration of hydrogen is considered as a possible mechanism for the observed phenomena.

  17. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices

    Science.gov (United States)

    Neudeck, Philip G.

    1999-01-01

    Commercial epilayers are known to contain a variety of crystallographic imperfections. including micropipes, closed core screw dislocations. low-angle boundaries, basal plane dislocations, heteropolytypic inclusions, and non-ideal surface features like step bunching and pits. This paper reviews the limited present understanding of the operational impact of various crystal defects on SiC electrical devices. Aside from micropipes and triangular inclusions whose densities have been shrinking towards manageably small values in recent years, many of these defects appear to have little adverse operational and/or yield impact on SiC-based sensors, high-frequency RF, and signal conditioning electronics. However high-power switching devices used in power management and distribution circuits have historically (in silicon experience) demanded the highest material quality for prolonged safe operation, and are thus more susceptible to operational reliability problems that arise from electrical property nonuniformities likely to occur at extended crystal defects. A particular emphasis is placed on the impact of closed-core screw dislocations on high-power switching devices, because these difficult to observe defects are present in densities of thousands per cm,in commercial SiC epilayers. and their reduction to acceptable levels seems the most problematic at the present time.

  18. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    Science.gov (United States)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  19. Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation.

    Science.gov (United States)

    Merino, P; Švec, M; Martinez, J I; Jelinek, P; Lacovig, P; Dalmiglio, M; Lizzit, S; Soukiassian, P; Cernicharo, J; Martin-Gago, J A

    2014-01-01

    Polycyclic aromatic hydrocarbons as well as other organic molecules appear among the most abundant observed species in interstellar space and are key molecules to understanding the prebiotic roots of life. However, their existence and abundance in space remain a puzzle. Here we present a new top-down route to form polycyclic aromatic hydrocarbons in large quantities in space. We show that aromatic species can be efficiently formed on the graphitized surface of the abundant silicon carbide stardust on exposure to atomic hydrogen under pressure and temperature conditions analogous to those of the interstellar medium. To this aim, we mimic the circumstellar environment using ultra-high vacuum chambers and investigate the SiC surface by in situ advanced characterization techniques combined with first-principles molecular dynamics calculations. These results suggest that top-down routes are crucial to astrochemistry to explain the abundance of organic species and to uncover the origin of unidentified infrared emission features from advanced observations.

  20. Immobilization of functional oxide nanoparticles on silicon surfaces via Si-C bonded polymer brushes.

    Science.gov (United States)

    Xu, F J; Wuang, S C; Zong, B Y; Kang, E T; Neoh, K G

    2006-05-01

    A method for immobilizing and mediating the spatial distribution of functional oxide (such as SiO2 and Fe3O4) nanoparticles (NPs) on (100)-oriented single crystal silicon surface, via Si-C bonded poly(3-(trimethoxysilyl)propyl methacrylate) (P(TMSPM)) brushes from surface-initiated atom transfer radical polymerization (ATRP) of (3-(trimethoxysilyl)propyl methacrylate) (TMSPM), was described. The ATRP initiator was covalently immobilized via UV-induced hydrosilylation of 4-vinylbenzyl chloride (VBC) with the hydrogen-terminated Si(100) surface (Si-H surface). The surface-immobilized Fe3O4 NPs retained their superparamagnetic characteristics and their magnetization intensity could be mediated by adjusting the thickness of the P(TMSPM) brushes.

  1. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    Energy Technology Data Exchange (ETDEWEB)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O' Malley, K.; Ruiz, A.

    2012-09-01

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  2. Amorphization of SiC under ion and neutron irradiation

    Science.gov (United States)

    Snead, L. L.; Zinkle, S. J.; Hay, J. C.; Osborne, M. C.

    1998-05-01

    This paper presents results on the microstructure and physical properties of SiC amorphized by both ion and neutron irradiation. Specifically, 0.56 MeV Si ions have been implanted in single crystal 6H-SiC from ambient through >200°C and the critical threshold for amorphization was measured as a function of the irradiation temperature. From a high resolution transmission electron microscopy (HRTEM) study of the crystalline to amorphous transition region in these materials, elongated pockets of amorphous material oriented parallel to the free surface are observed. Single crystal 6H-SiC and hot pressed and sintered 6H and 3C SiC were neutron irradiated at approximately 70°C to a dose of ˜2.56 dpa causing complete amorphization. Property changes resulting from the crystal to amorphous transition in SiC include a density decrease of 10.8%, a hardness decrease from 38.7 to 21.0 GPa, and a decrease in elastic modulus from 528 to 292 GPa. Recrystallization of the amorphized, single crystal 6H-SiC appears to occur in two stages. In the temperature range of ˜800-1000°C, crystallites nucleate and slowly grow. In the temperature range of 1125-1150°C spontaneous nucleation and rapid growth of crystallites occur. It is further noted that amorphized 6H (alpha) SiC recrystallizes to highly faulted fcc (beta) SiC.

  3. ELID grinding of SiC ultra lightweight mirror

    Science.gov (United States)

    Eto, Hiroaki; Dai, Yutang; Ebizuka, Noboru; Saito, Yasutaka; Suzuki, Toru; Lin, Weimin; Ohmori, Hitoshi; Ebisuzaki, Toshikazu; Takami, Hideki

    2017-11-01

    Silicon carbide (SiC) is the most advantageous as the material of various telescope mirrors, because SiC has high stiffness, high thermal conductivity, low thermal expansion and low density and so on [1] [2]. However, since SiC is very hard, it is difficult to obtain the surfaces efficiently by using ordinary grinding method. Therefore, we developed the ultra lightweight mirror by ELID (ELectrolytic In-process Dressing) grinding method and ultra-precision grinding machine. ELID grinding method is the new grinding technology which one of authors invented, produces the quality of the high surface efficiently, and is effective in processing of a very hard material, such as crystalline silicon and sapphire, ceramics, glasses, hard metals and so on. SiC mirror for space telescope is designed as regular polygon rib structures in the rear face for reducing weight, and both the optical face and the backside ribs are so thin that deformation of the mirror cannot disregard. Therefore, in order to feed back deformation of the mirror to the orbit of grinding wheel, it is necessary to analyze deformation. In this research, we present the results which fabricated mirrors of sintered SiC by the ELID grinding method, the numerical calculation results of the profile deformations analyzed by FEM, and new jig for Φ360mm a mirror.

  4. Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2010-09-01

    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

  5. Optimal Base Station Placement for Wireless Sensor Networks with Successive Interference Cancellation

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2015-01-01

    Full Text Available We consider the base station placement problem for wireless sensor networks with successive interference cancellation (SIC to improve throughput. We build a mathematical model for SIC. Although this model cannot be solved directly, it enables us to identify a necessary condition for SIC on distances from sensor nodes to the base station. Based on this relationship, we propose to divide the feasible region of the base station into small pieces and choose a point within each piece for base station placement. The point with the largest throughput is identified as the solution. The complexity of this algorithm is polynomial. Simulation results show that this algorithm can achieve about 25% improvement compared with the case that the base station is placed at the center of the network coverage area when using SIC.

  6. Thermochemistry and growth mechanism of SiC nanowires

    Science.gov (United States)

    Chen, Jianjun; Ding, Lijuan; Xin, Lipeng; Zeng, Fan; Chen, Jun

    2017-09-01

    The chemical reaction thermodynamics and a novel two-stage growth mechanism of SiC nanowires synthesized by carbothermal reduction reactions were investigated based on the Si-C-O systems over a wide temperature range (1050 ≤ T ≤ 2000 K). The carbothermal reduction reaction process involves the fast formation of gaseous SiO and CO crucial intermediates, and the further carbon reduction of SiO to SiC. The relationship between the free energy changes and temperature at different pressures was also discussed. Some fundamental data in the work can help to analyze the thermochemistry of the carbothermal reduction reaction in the Si-C-O system, which is beneficial to optimize the temperature, pressure and the input precursors for controlling the SiC nanowire growth.

  7. Formation of SiC thin films by chemical vapor deposition with vinylsilane precursor

    Science.gov (United States)

    Doi, Takuma; Takeuchi, Wakana; Jin, Yong; Kokubun, Hiroshi; Yasuhara, Shigeo; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have examined the formation of SiC thin films by chemical vapor deposition (CVD) using vinylsilane and investigated the chemical bonding state and crystallinity of the prepared SiC thin films. We achieved the formation of a Si–H–less SiC film at growth temperatures as low as 600 °C. Also, we investigated the in situ doping effect of N by the incorporation of NH3 gas in the SiC growth and demonstrated that the chemical composition of N in SiC thin films was controlled by adjusting the NH3 flow rate. In addition, we examined the growth of SiC thin films on a Cu substrate and achieved the formation of a SiC thin film while avoiding any significant reaction between SiC and Cu at a growth temperature of 700 °C.

  8. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  9. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  10. Status and Prospects of SiC Power Devices

    Science.gov (United States)

    Bakowski, Mietek

    Silicon Carbide (SiC) power devices offer significant benefits of improved efficiency, dynamic performance and reliability of electronic and electric systems. The challenges and prospects of SiC power device development are reviewed considering different device types. A close correlation between an exponential increase of current handling capability during the last ten years and improvement in substrate quality is demonstrated. The voltage range of silicon and SiC unipolar and bipolar power devices with respect to the on-state voltage is determined based on device simulations. 4H-SiC unipolar devices are potentially superior to all silicon devices up to 5kV design voltage and to all SiC bipolar devices up to 5-6kV design voltage for temperatures up to 150°C. The low end of SiC unipolar devices is determined to be around 200V design voltage provided substrate resistance is reduced by reducing the thickness of the substrate down to 100μm. The influence of reduced channel mobility on the specific on-resistance of 4H-SiC and 3C-SiC DMOSFETs is shown. It has been demonstrated that 3C-SiC DMOSFETs could be a better choice compared to 4H-SiC DMOSFETs in the voltage range below 1.2kV utilising better channel mobility and larger substrate size obtainable in the near future in 3C-SiC polytype. An impact of the super junction (SJ) concept on silicon and SiC MOSFET specific on-resistance limits is demonstrated.

  11. Recent developments in SiC single-crystal electronics

    Science.gov (United States)

    Ivanov, P. A.; Chelnokov, V. E.

    1992-07-01

    The present paper is an analytical review of the last five or six years of research and development in SiC. It outlines the major achievements in single crystal growth and device technology. Electrical performance of SiC devices designed during these years and some new trends in SiC electronics are also discussed. During the 1980s the studies on sublimation and liquid-phase epitaxial growth of SiC single crystal were continued successfully. At that time, such methods as chemical vapour deposition, thermal oxidation, 'dry' plasma etching and ion implantation which yielded good results with silicon, came into use. As a result of the technological progress, discrete devices appeared, which incorporated the potential advantages of SiC as a wide bandgap material. Among these were high temperature (500-600 degrees C) rectifier diodes and field-effect transistors, high efficiency light-emitting diodes for the short-wave region of the visible spectrum, and detectors of ultraviolet radiation. It should be stressed that the devices were of commercial quality and could be applied in various fields (control systems of automobile engines, aerospace apparatus, geophysical equipment, colour displays in information systems, etc.). The developments in technology and the promising results of research on electrical performance of the devices already available give hope that in the near future SiC may become the basic material for power microwave devices, and for thermo- and radiation-resistant integrated circuits. This process can be stimulated by further perfection of single-crystal substrates of large area, by development of stable high temperature ohmic contacts, micro- and heterostructures.

  12. Detection Simulation of SiC Semiconductor Detector

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Yeop; Kim, Jeong Dong; Lee, Yong Deok; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In a high radiation environment, it has received attention as a material for detecting radiation (neutron). As the field of application of a SIC neutron detector, the semiconductor detector used in cosmic rays was proposed by Ruddy. Recently, X-ray and low-energy gamma ray spectrometry with SiC detectors has been reported. Its usability has recently been being proved in neutron dose surveillance in BNCT (Boron-Capture Neutron Therapy), thermal neutron detection in a waste drum, nuclear material surveillance, and fast neutron detection. In addition, in 2006, an experiment was actually performed by Natsume on spent nuclear fuel. SIC is suitable for radiation surveillance in a complex radiation field emitted from spent nuclear fuel and the pyropocess process. In the radiation field of spent nuclear fuel, neutrons and gamma rays are generated. In this research, the performance of a SiC detector made at KAERI was evaluated to obtain a discriminated neutron signal. First, using neutron ({sup 252}Cf), alpha ({sup 241}Am), and gamma ({sup 60}Co) sources, a SiC semi- conductor detector was tested. The energy spectrum in a complex radiation field was simulated using the MCNPX 2.5. Finally, the experimental results by Ruddy were compared with the simulation results. Research result, whether the SiC semiconductor detector operating or not was confirmed through the simulation according to the neutron, gamma. The simulation results were similar to those of Ruddy. A further study is underway to investigate the discriminated neutron signal of a complex radiation field.

  13. MICROSTRUCTURAL ANALYSIS OF HOT ISOSTATICALLY PRESSED AL-SIC

    OpenAIRE

    Bronsveld, P.M.; Hosson, J.Th. De; Sargent, M.A.; Alsem, W.H.M.

    1991-01-01

    The difference between extruded and hot isostatically pressed (HIP) Al6061 both with a T6 final heat treatment and with a 30 wt.% SiC particulate reinforcement is one of densification. The higher density of the HIP material is not translated into a stronger material. The Mg2Si precipitation is favoured by the presence of the SiC reinforcement in both samples. HIP powder metallurgy material reveals clearly the original powder particle boundaries, in contrast to the more smeared-out stringers i...

  14. Supernova Reverse Shocks and SiC Growth

    OpenAIRE

    Deneault, E. A. -N.; Clayton, D. D.; Heger, A.

    2003-01-01

    We present new mechanisms by which the isotopic compositions of X-type grains of presolar SiC are altered by reverse shocks in Type II supernovae. We address three epochs of reverse shocks: pressure wave from the H envelope near t = 10$^6$s; reverse shock from the presupernova wind near 10$^8-10^9$s; reverse shock from the ISM near 10$^{10}$s. Using 1-D hydrodynamics we show that the first creates a dense shell of Si and C atoms near 10$^6$s in which the SiC surely condenses. The second rever...

  15. Studi Spektroskopi Electron Spin Resonance (Esr Lapisan Tipis Amorf Silikon Karbon (A-Sic:H Hasil Deposisi Metode Dc Sputtering

    Directory of Open Access Journals (Sweden)

    Rosari Saleh

    2002-04-01

    Full Text Available The dangling bond defect density in sputtered amorphous silicon carbon alloys have been studied by electron spin resonance (ESR. The results show that the spin density decreased slightly with increasing methane fl ow rate (CH4. The infl uence of carbon and hydrogen incorporation on g-value revealed that for CH4 fl ow rate up to 8 sccm, the ESR signal is dominated by defects characteristic of a-Si:H fi lms and for CH4 fl ow rate higher than 8 sccm the g-value decreased towards those usually found in a-C:H fi lms. Infrared (IR results suggest that as CH4 fl ow rate increases more carbon and hydrogen is incorporated into the fi lms to form Si-H, Si-C and C-H bonds. A direct relation between the IR results and the defect density and g-value is observed.

  16. Epitaxial grapheme on SiC(0001) and SiC(000-1): a photoelectron diffraction (XPD) study

    Energy Technology Data Exchange (ETDEWEB)

    Lima, L.H.; Siervo, A.; Landers, R. [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Goncalves, A.B.; Lacerda, R.G. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Tapia, P.H. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile)

    2011-07-01

    Full text. A flat, single layer of graphite known as grapheme has become the focus of studies due to its exceptional properties and fascinating applications. Large scale grapheme layers for a possible application can be grown epitaxially on SiC by Si sublimation. Even before the interest in grapheme, the surface of SiC was already extensively studied. It exhibits a large variety of surface reconstructions and these reconstructions are very dependent of sample preparation and orientation (0001) or (000-1). In this study, we show a preliminary investigation of the structural properties of grapheme layers on SiC (0001) e SiC (000-1) by photoelectron diffraction (XPD). The surfaces were prepared by heating the 1x1 surface to temperatures of about 1150 deg C in high ultra vacuum and the various reconstructions were monitored by Low Energy Electron Diffraction (LEED) and X-Ray Photoelectron Spectroscopy (XPS). In particular for the Si-terminated surface, that is SiC(0001), the interface between grapheme and SiC is characterized by the so-called (6{radical}3 x 6{radical}3) R30 deg reconstruction (buffer layer). The interpretation of this reconstruction, which is the initial stage of graphitization, has lead to controversy in the literature. We will further discuss the buffer layer structure in terms of the XPD results. The XPD experiments were performed at SGM beam line at LNLS using photons with 400/450 eV probing the Si2p and C1s core level. The C1s signal was separate in to contributions from volume and surface and compares the experimental results with photoelectron multiple scattering calculations performed with the MSCD package

  17. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd nanoparticles (NPs in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  18. Stress Analysis of SiC MEMS Using Raman Spectroscopy

    Science.gov (United States)

    Ness, Stanley J.; Marciniak, M. A.; Lott, J. A.; Starman, L. A.; Busbee, J. D.; Melzak, J. M.

    2003-03-01

    During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Industry is looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to characterize poly-Si MEMS devices made with the MUMPS® process. Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. This research attempts to use Raman spectroscopy to analyze the stress in SiC MEMS made with the MUSiC® process. Raman spectroscopy is performed on 1-2-micron-thick SiC thin films deposited on silicon, silicon nitride, and silicon oxide substrates. The most common poly-type of SiC found in thin film MEMS made with the MUSiC® process is 3C-SiC. Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.

  19. Passivation of SiC device surfaces by aluminum oxide

    Science.gov (United States)

    Hallén, A.; Usman, M.; Suvanam, S.; Henkel, C.; Martin, D.; Linnarsson, M. K.

    2014-03-01

    A steady improvement in material quality and process technology has made electronic silicon carbide devices commercially available. Both rectifying and switched devices can today be purchased from several vendors. This successful SiC development over the last 25 years can also be utilized for other types of devices, such as light emitting and photovoltaic devices, however, there are still critical problems related to material properties and reliability that need to be addressed. This contribution will focus on surface passivation of SiC devices. This issue is of utmost importance for further development of SiC MOSFETs, which so far has been limited by reliability and low charge carrier surface mobilities. Also bipolar devices, such as BJTs, LEDs, or PV devices will benefit from more efficient and reliable surface passivation techniques in order to maintain long charge carrier lifetimes. Silicon carbide material enables the devices to operate at higher electric fields, higher temperatures and in more radiation dense applications than silicon devices. To be able to utilize the full potential of the SiC material, it is therefore necessary to develop passivation layers that can sustain these more demanding operation conditions. In this presentation it will also be shown that passivation layers of Al2O3 deposited by atomic layer deposition have shown superior radiation hardness properties compared to traditional SiO2-based passivation layers.

  20. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to β spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of.

  1. MICROSTRUCTURAL ANALYSIS OF HOT ISOSTATICALLY PRESSED AL-SIC

    NARCIS (Netherlands)

    Bronsveld, P.M.; Hosson, J.Th. De; Sargent, M.A.; Alsem, W.H.M.

    1991-01-01

    The difference between extruded and hot isostatically pressed (HIP) Al6061 both with a T6 final heat treatment and with a 30 wt.% SiC particulate reinforcement is one of densification. The higher density of the HIP material is not translated into a stronger material. The Mg2Si precipitation is

  2. Conducted EMI in Inverters with SiC Transistors

    NARCIS (Netherlands)

    Gong, X.

    2013-01-01

    Conducted EMI in Inverters with SiC Transistors Electromagnetic Interference (EMI) is the main side effect accompanied with the fast voltage and current switching transients in power electronics applications. Compliance of the Electromagnetic Compatibility (EMC) standard is prescribed for any power

  3. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and ...

  4. Crystal growth and characterization of fluorescent SiC

    DEFF Research Database (Denmark)

    Wellmann, P.; Kaiser, M.; Hupfer, T.

    Silicon carbide (SiC) is widely used as substrate for nitride based light emitting diodes (LEDs). For today’s white LEDs mainly a sandwich structure of a blue or ultra violet LED and a yellowish phosphorus is used. In the frame of European project we study a concept to implement the functionality...

  5. Performance of bulk SiC radiation detectors

    CERN Document Server

    Cunningham, W; Lamb, G; Scott, J; Mathieson, K; Roy, P; Bates, R; Thornton, P; Smith, K M; Cusco, R; Glaser, M; Rahman, M

    2002-01-01

    SiC is a wide-gap material with excellent electrical and physical properties that may make it an important material for some future electronic devices. The most important possible applications of SiC are in hostile environments, such as in car/jet engines, within nuclear reactors, or in outer space. Another area where the material properties, most notably radiation hardness, would be valuable is in the inner tracking detectors of particle physics experiments. Here, we describe the performance of SiC diodes irradiated in the 24 GeV proton beam at CERN. Schottky measurements have been used to probe the irradiated material for changes in I-V characteristics. Other methods, borrowed from III-V research, used to study the irradiated surface include atomic force microscope scans and Raman spectroscopy. These have been used to observe the damage to the materials surface and internal lattice structure. We have also characterised the detection capabilities of bulk semi-insulating SiC for alpha radiation. By measuring ...

  6. Porous Alumina Ceramics Modified with SiC Nanopowder

    OpenAIRE

    Zaķe-Tiļuga, I; Švinka, R; Švinka, V

    2011-01-01

    The aim of this study was to clarify how addition of plasma synthesized SiC nanopowder (up to 5 wt%) affect some properties (e.g., shrinkage, bending strength and thermal shock resistance) of porous alumina ceramics produced by slip casting method.

  7. Low Temperature Photoluminescence of 6H fluorescent SiC

    DEFF Research Database (Denmark)

    Wei, Yi; Künecke, Ulrike; Jokubavicius, Valdas

    We have presented the low temperature photoluminescence (PL) measurements of three 6H fluorescent Silicon Carbide (f-SiC) samples. The epilayers of the f-SiC samples were nitrogenboron co-doped and grown by fast sublimation growth process (FSGP) method on the bulk 6H SiC substrates. The doping...

  8. Ultra-High Temperature Sensors Based on Optical Property

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2008-09-30

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  9. First principle identification of SiC monolayer as an efficient catalyst for CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sinthika, S., E-mail: ranjit.t@res.srmuniv.ac.in, E-mail: sinthika90@gmail.com; Thapa, Ranjit, E-mail: ranjit.t@res.srmuniv.ac.in, E-mail: sinthika90@gmail.com [SRM Research Institute, SRM University, Kattankulathur 603203, Tamil Nadu (India); Reddy, C. Prakash [Department of Physics and Nanotechnology, SRM University, Kattankulathur 603203, Tamil Nadu (India)

    2015-06-24

    Using density functional theory, we investigated the electronic properties of SiC monolayer and tested its catalytic activity toward CO oxidation. The planar nature of a SiC monolayer is found to stable and is a high band gap semiconductor. CO interacts physically with SiC surface, whereas O{sub 2} is adsorbed with moderate binding. CO oxidation on SiC monolayer prefers the Eley Rideal mechanism over the Langmuir Hinshelwood mechanism, with an easily surmountable activation barrier during CO{sub 2} formation. Overall metal free SiC monolayer can be used as efficient catalyst for CO oxidation.

  10. Hydrogen gas detector card

    Directory of Open Access Journals (Sweden)

    Francisco Sánchez Niño

    2016-04-01

    Full Text Available A small card used for detecting hydrogen gas in a crystal growth system by the liquid phase epitaxy technique was designed and built. The small size of the card enables its portability to other laboratories where leakage detection of hydrogen or other flammable gas is required. Card dimensions are approximately 10 cm long and 5 cm wide enabling easy transportation. The design is based on a microcontroller which reads the signal from the hydrogen sensor and internally compares the read value with preset values. Depending on the signal voltage a red, yellow or green LED will light to indicate the levels of concentration of the flammable gas. The card is powered by a 9 V battery.

  11. Hydrogen Generator

    Science.gov (United States)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  12. In situ growth of SiC nanowires on RS-SiC substrate(s)

    Science.gov (United States)

    Yang, Wen; Araki, Hiroshi; Hu, Quanli; Ishikawa, Nobuhiro; Suzuki, Hiroshi; Noda, Tetsuji

    2004-03-01

    SiC nanowires over 10 μm in length and 20-100 nm in diameter have been synthesized by a novel in situ chemical vapor growth process on RS-SiC plates. The SiC nanowires were identified as single crystal β-SiC with Si-C chemistry. The growth direction of the nanowires is . The growth mechanism is discussed and a kinetic vapor-solid growth mechanism is proposed. The process demonstrates the possibility to fabricate SiC nanowires in ceramic matrix composites, such as continuous SiC fibers reinforced SiC matrix composites, with the SiC nanowires uniformly dispersed in the matrix.

  13. Synthesis of whiskers of SiC microwave assisted; Sintesis de whiskers de SiC asistida por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Garza-Mendez, F. J.; Vanegas, A. J.; Vazquez, B. A.; Garza-Paz, J.

    2013-06-01

    We developed a new process for the synthesis of SiC whiskers assisted by microwaves; this is based on the mixture of silica xerogels and graphite powder. As energy source were used microwaves of 2.45 GHz and 1.0 kW of power RMS. On the other hand, mesoporous silica was synthesized via sol-gel, the precursors used were TEOS/H{sub 2}O and ethanol. Through analysis of the BET is determined the value of average pore size (3.0 nm) and the surface area (1090 m2/g).By mean of X-Ray diffraction it was demonstrated that the silica obtained is an amorphous solid and, the powders obtained in the microwave synthesis are {beta}-SiC. Synthesized SiC powders were observed using a SEM in secondary electron mode, it was observed that this powders consists of SiC whiskers. The effect of microwaves on the synthesis of whiskers of SiC is discussed in the present work. (Author) 19 refs.

  14. Sensors Increase Productivity in Harsh Environments

    Science.gov (United States)

    2008-01-01

    California's San Juan Capistrano-based Endevco Corporation licensed three patents covering high-temperature, harsh-environment silicon carbide (Si-C) pressure sensors from Glenn Research Center. The company is exploring their use in government markets, as well as in commercial markets, including commercial jet testing, deep well drilling applications where pressure and temperature increase with drilling depth, and in automobile combustion chambers.

  15. Native point defects on hydrogen-passivated 4H-SiC (0001) surface and the effects on metal adsorptions.

    Science.gov (United States)

    Wang, Tingting; Liu, Guiwu; Li, Yuanyuan; Hou, Haigang; Xu, Ziwei; Wang, Mingsong; Qiao, Guanjun

    2017-07-14

    With the continued expansion of silicon carbide's (SiC) applications, atomistic understanding on the native point defects of its surfaces, particularly on those of the hydrogen-passivated (HP) 4H-SiC (0001) surface, becomes imperative. Using first-principles calculations, the structures and formation energies of several typical native point defects (e.g., ISi, IC, VSi, VC, and SiC) on the (0001) HP-surface of 4H-SiC were systematically explored, including the effects of the unit cell size, environmental condition, charge state, and hydrogen incorporation. Furthermore, their adsorptions of Ag (Mo) atom on these defective sites were systematically investigated. The formation energies of these defects in the HP-surface, clean surface, and bulk SiC were concluded together with their thermodynamic concentrations in the HP-surface estimated. The influences of these defects to metal (Ag, Mo) adsorptions of HP-surfaces were concluded. Based on these conclusions, the wettability improvement between the metal liquid and ion (Ag or Mo) implanted SiC substrates in the previous studies can be well understood at the atomistic scale. This study provides a theoretical guideline to SiC surface modification for the production of metal-SiC composites, brazing of SiC with metals, fabrication of electronic devices, or the growth of two dimensional nanofilms.

  16. Safe Detection System for Hydrogen Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Robert A. [Intelligent Optical Systems, Inc., Torrance, CA (United States); Beshay, Manal [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  17. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  18. Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO{sub 2}/Si substrate via a microwave-assisted chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, J.J., E-mail: j1j2h72@yahoo.com [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Department of Physics, College of Science, University of Basrah, Basrah (Iraq); Mahdi, M.A. [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Department of Physics, College of Science, University of Basrah, Basrah (Iraq); Chin, C.W.; Abu-Hassan, H. [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Hassan, Z., E-mail: zai@usm.my [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer Highly quality ZnO nanorods arrays were grown on SiO{sub 2} substrate using chemical solution. Black-Right-Pointing-Pointer We use PVA-Zn(OH){sub 2} nanocomposites as seed layer to grow ZnO nanorods. Black-Right-Pointing-Pointer ZnO nanorods arrays show good sensitivity at room temperature to H{sub 2} gas. - Abstract: High-quality zinc oxide (ZnO) nanorod arrays were grown on a silicon dioxide (SiO{sub 2}/Si) substrate via a microwave irradiation-assisted chemical solution method. The SiO{sub 2}/Si substrate was seeded with polyvinyl alcohol-Zn (OH){sub 2} nanocomposites prior to the complete growth of ZnO nanorods through a chemical solution method. X-ray diffraction, field-emission scanning electron microscope, and photoluminescence results indicated the high quality of the produced ZnO nanorods. The hydrogen (H{sub 2})-sensing capabilities of the ZnO nanorod arrays were investigated at room temperature (RT), and the sensitivity was 294% in the presence of 1000 ppm of H{sub 2}. The sensing measurements for H{sub 2} gas at various temperatures (25-250 Degree-Sign C) were repeatable for over 100 min. The sensor exhibited a sensitivity of 1100% at 250 Degree-Sign C upon exposure to 1000 ppm of H{sub 2}. Hysteresis was observed in the sensor at different H{sub 2} concentrations at different temperatures. Moreover, the response times ranged from 60 to 25 s over the range of operating temperatures from RT to 250 Degree-Sign C.

  19. Intercalated europium metal in epitaxial graphene on SiC

    Science.gov (United States)

    Anderson, Nathaniel A.; Hupalo, Myron; Keavney, David; Tringides, Michael C.; Vaknin, David

    2017-10-01

    X-ray magnetic circular dichroism (XMCD) reveals the magnetic properties of intercalated europium metal under graphene on SiC(0001). The intercalation of Eu nanoclusters (average size 2.5 nm) between graphene and SiC substate are formed by deposition of Eu on epitaxially grown graphene that is subsequently annealed at various temperatures while keeping the integrity of the graphene layer. Using sum-rules analysis of the XMCD of Eu M4 ,5 edges at T =15 K, our samples show paramagnetic-like behavior with distinct anomaly at T ≈90 K, which may be related to the Nèel transition, TN=91 K, of bulk metal Eu. We find no evidence of ferromagnetism due to EuO or antiferromagnetism due to Eu2O3 , indicating that the graphene layer protects the intercalated metallic Eu against oxidation over months of exposure to atmospheric environment.

  20. Deposition of SiC thin films by PECVD

    CERN Document Server

    Cho, N I; Kim, C K

    1999-01-01

    The SiC films were deposited on Si substrate by the decomposition of CH sub 3 SiCl sub 3 (methylthrichlorosilane) molecules in a high frequency discharge field. From the Raman spectra, it is conjectured that the deposited film are formed into the polycrystalline structure. The photon absorption measurement reveal that the band gap of the electron energy state are to be 2.4 eV for SiC, and 2.6 eV for Si sub 0 sub . sub 4 C sub 0 sub . sub 6 , respectively. In the high power density regime, methyl-radicals decompose easily and increases the carbon concentration in plasma and result in the growing films.

  1. POWDER INJECTION MOLDING OF SIC FOR THERMAL MANAGEMENT V

    Directory of Open Access Journals (Sweden)

    Valmikanathan Onbattuvelli

    2012-06-01

    Full Text Available Silicon carbide (SiC exhibits many functional properties that are relevant to applications in electronics, aerospace, defense and automotive industries. However, the successful translation of these properties into final applications lies in the net-shaping of ceramics into fully dense microstructures. Increasing the packing density of the starting powders is one effective route to achieve high sintered density and dimensional precision. The present paper presents an in-depth study on the effects of nanoparticle addition on the powder injection molding process (PIM of SiC powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles are found to have significantly increased powder packing characteristics (solids loading in the powder-polymer mixtures. The influence of nanoparticle addition on the multi-step PIM process is examined. The above results provide new perspectives which could impact a wide range of materials, powder processing techniques and applications.

  2. Surface functionalization and biomedical applications based on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yakimova, R; Petoral, R M Jr; Yazdi, G R; Vahlberg, C; Spetz, A Lloyd; Uvdal, K [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden)

    2007-10-21

    The search for materials and systems, capable of operating long term under physiological conditions, has been a strategy for many research groups during the past years. Silicon carbide (SiC) is a material, which can meet the demands due to its high biocompatibility, high inertness to biological tissues and to aggressive environment, and the possibility to make all types of electronic devices. This paper reviews progress in biomedical and biosensor related research on SiC. For example, less biofouling and platelet aggregation when exposed to blood is taken advantage of in a variety of medical implantable materials while the robust semiconducting properties can be explored in surface functionalized bioelectronic devices. (review article)

  3. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  4. Progress of d0 magnetism in SiC

    Science.gov (United States)

    Wang, Yutian; Liu, Chenguang; Zhang, Yuming

    2017-03-01

    The properties of defect-induced ferromagnetism ({{{d}}}0 magnetism) in SiC belong to carbon-based material which has been systematically investigated after graphite. In this paper, we reviewed our research progress about {{{d}}}0 magnetism in two aspects, i.e., magnetic source and magnetic coupling mechanism. The {{{V}}}{{Si}} {{{V}}}{{C}} divacancies have been evidenced as the probable source of {{{d}}}0 magnetism in SiC. To trace the ferromagnetic source in microscopic and electronic view, the p electrons of the nearest-neighbor carbon atoms, which are around the {{{V}}}{{Si}} {{{V}}}{{C}} divacancies, are sourced. For magnetic coupling mechanism, a higher divacancy concentration leads to stronger paramagnetic interaction but not stronger ferromagnetic coupling. So the {{{d}}}0 magnetism can probably be explained as a local effect which is incapable of scaling up with the volume.

  5. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  6. Oxidation Behavior and Mechanism of Al4SiC4 in MgO-C-Al4SiC4 System

    Directory of Open Access Journals (Sweden)

    Huabai Yao

    2017-06-01

    Full Text Available Al4SiC4 powder with high purity was synthesized using the powder mixture of aluminum (Al, silicon (Si, and carbon (C at 1800 °C in argon. Their oxidation behavior and mechanism in a MgO-C-Al4SiC4 system was investigated at 1400–1600 °C. XRD, SEM, and energy dispersive spectrometry (EDS were adopted to analyze the microstructure and phase evolution. The results showed that the composition of oxidation products was closely related to the atom diffusion velocity and the compound oxide layer was generated on Al4SiC4 surface. In addition, the effect of different CO partial pressure on the oxidation of Al4SiC4 crystals was also studied by thermodynamic calculation. This work proves the great potential of Al4SiC4 in improving the MgO-C materials.

  7. SiC Microsensor with Piezoresistive Diamond Sensing Elements

    Science.gov (United States)

    1992-12-31

    AD-A.61 346 SiC MICROSENSOR WITH PIEZORESISTIVE DIAMOND SENSING ELEMENTS Kuli/e Semiconductor Products, Inc Principal Investigator: Dr. A.D. Kurtz...Davidson and A.D. Kurtz 7. PERORMING ORGANIZATION NAM.(S) ANO AD-SS-ES) PIRJQAMr( OAGANLM Kulite Semiconductor Products, Inc. REPORT NUMBER One Willow...techniques have been developed for Si, which allow the fabrication of integral force collector- piezoresistor networks [2]. However, there are fundamental

  8. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline phase. Further, with the addition of 40 vol.% SiC additions, the strain rate sensitivity of flow stress decreased. While the activation energy for flow in LAS was 300 kJ/mole, it increased to 995 kJ/mole with the ...

  9. 1 GHz, 200 C, SiC MESFET Clapp Oscillator

    Science.gov (United States)

    Ponchak, George E.; Schwartz, Zachary D.

    2005-01-01

    A SiC Clapp oscillator frabricated on an alumina substrate with chip capacitors and spiral inductors is designed for high temperature operation at 1 gigahertz. The oscillator operated from 30 to 200 C with an output power of 21.8 dBm at 1 gigahertz and 200 C. The efficiency at 200 C is 15 percent. The frequency variation over the temperature range is less than 0.5 percent.

  10. Modelling of ion implantation in SiC crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chakarov, Ivan [SILVACO International, 4701 Patrick Henry Drive, Building 2, Santa Clara, CA 95054 (United States)]. E-mail: ivan.chakarov@silvaco.com; Temkin, Misha [SILVACO International, 4701 Patrick Henry Drive, Building 2, Santa Clara, CA 95054 (United States)

    2006-01-15

    An advanced electronic stopping model for ion implantation in SiC has been implemented within the binary collision approximation. The model has been thoroughly tested and validated for Al implantation into 4H-, 6H-SiC under different initial implant conditions. A very good agreement between calculated and experimental profiles has been achieved. The model has been integrated in an industrial technology CAD process simulator.

  11. Smart and Intelligent Sensors

    Science.gov (United States)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  12. Surface engineering of SiC via sublimation etching

    Energy Technology Data Exchange (ETDEWEB)

    Jokubavicius, Valdas, E-mail: valjo@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping (Sweden); Yazdi, Gholam R.; Ivanov, Ivan G. [Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping (Sweden); Niu, Yuran; Zakharov, Alexei [Max Lab, Lund University, S-22100 Lund (Sweden); Iakimov, Tihomir; Syväjärvi, Mikael; Yakimova, Rositsa [Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping (Sweden)

    2016-12-30

    Highlights: • Comparison of 6H-, 4H- and 3C-SiC sublimation etching. • Effects of Si-C and Si-C-Ta chemical systems on etching mechanisms. • Effect of etching ambient on surface reconstruction. • Application of etched 4H-SiC surface for the growth of graphene nanoribbons is illustrated. - Abstract: We present a technique for etching of SiC which is based on sublimation and can be used to modify the morphology and reconstruction of silicon carbide surface for subsequent epitaxial growth of various materials, for example graphene. The sublimation etching of 6H-, 4H- and 3C-SiC was explored in vacuum (10{sup −5} mbar) and Ar (700 mbar) ambient using two different etching arrangements which can be considered as Si-C and Si-C-Ta chemical systems exhibiting different vapor phase stoichiometry at a given temperature. The surfaces of different polytypes etched under similar conditions are compared and the etching mechanism is discussed with an emphasis on the role of tantalum as a carbon getter. To demonstrate applicability of such etching process graphene nanoribbons were grown on a 4H-SiC surface that was pre-patterned using the thermal etching technique presented in this study.

  13. SYLRAMIC™ SiC fibers for CMC reinforcement

    Science.gov (United States)

    Jones, Richard E.; Petrak, Dan; Rabe, Jim; Szweda, Andy

    2000-12-01

    Dow Corning researchers developed SYLRAMIC SiC fiber specifically for use in ceramic-matrix composite (CMC) components for use in turbine engine hot sections where excellent thermal stability, high strength and high thermal conductivity are required. This is a stoichiometric SiC fiber with a high degree of crystallinity, high tensile strength, high tensile modulus and good thermal conductivity. Owing to the small diameter, this textile-grade fiber can be woven into 2-D and 3-D structures for CMC fabrication. These properties are also of high interest to the nuclear community. Some initial studies have shown that SYLRAMIC fiber shows very good dimensional stability in a neutron flux environment, which offers further encouragement. This paper will review the properties of SYLRAMIC SiC fiber and then present the properties of polymer impregnation and pyrolysis (PIP) processed CMC made with this fiber at Dow Corning. While these composites may not be directly applicable to applications of interest to this audience, we believe that the properties shown will give good evidence that the fiber should be suitable for high temperature structural applications in the nuclear arena.

  14. Sensors for Highly Toxic Gases: Methylamine and Hydrogen Chloride Detection at Low Concentrations in an Ionic Liquid on Pt Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Krishnan Murugappan

    2015-10-01

    Full Text Available Commercially available Pt screen printed electrodes (SPEs have been employed as possible electrode materials for methylamine (MA and hydrogen chloride (HCl gas detection. The room temperature ionic liquid (RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([C2mim][NTf2] was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV, differential pulse voltammetry (DPV and square wave voltammetry (SWV, with no significant differences in the limits of detection (LODs between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases. The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL limits of the two gases (5 ppm for HCl and 10 ppm for MA, suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released.

  15. Atomic probe microscopy of 3C SiC films grown on 6H SiC substrates

    Science.gov (United States)

    Steckl, A. J.; Roth, M. D.; Powell, J. A.; Larkin, D. J.

    1993-01-01

    The surface of 3C SiC films grown on 6H SiC substrates has been studied by atomic probe microscopy in air. Atomic-scale images of the 3C SiC surface have been obtained by STM which confirm the 111 line type orientation of the cubic 3C layer grown on the 0001 plane type surface of the hexagonal 6H substrate. The nearest-neighbor atomic spacing for the 3C layer has been measured to be 3.29 +/- 0.2 A, which is within 7 percent of the bulk value. Shallow terraces in the 3C layer have been observed by STM to separate regions of very smooth growth in the vicinity of the 3C nucleation point from considerably rougher 3C surface regions. These terraces are oriented at right angles to the growth direction. Atomic force microscopy has been used to study etch pits present on the 6H substrate due to high temperature HCl cleaning prior to CVD growth of the 3C layer. The etch pits have hexagonal symmetry and vary in depth from 50 nm to 1 micron.

  16. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  17. Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO2 nanorods

    Science.gov (United States)

    Tahir, Muhammad Nawaz; André, Rute; Sahoo, Jugal Kishore; Jochum, Florian D.; Theato, Patrick; Natalio, Filipe; Berger, Rüdiger; Branscheid, Robert; Kolb, Ute; Tremel, Wolfgang

    2011-09-01

    We describe the reconstitution of apo-horse radish peroxidase (apo-HRP) onto TiO2 nanorods functionalized with a multifunctional polymer. After functionalization, the horse radish peroxidase (HRP) functionalized TiO2 nanorods were well dispersible in aqueous solution, catalytically active and biocompatible, and they could be used to quantify and image H2O2 which is a harmful secondary product of cellular metabolism. The shape, size and structure of TiO2 nanorods (anatase) were analyzed by transmission electron microscopy (TEM), high resolution TEM (HRTEM), electron diffraction (ED) and X-ray diffraction (XRD). The surface functionalization, HRP reconstitution and catalytic activity were confirmed by UV-Vis, FT-IR, CLSM and atomic force microscopy (AFM). Biocompatibility and cellular internalization of active HRP reconstituted TiO2 nanorods were confirmed by a classical MTT cytotoxicity assay and confocal laser scanning microscopy (CLSM) imaging, respectively. The intracellular localization allowed H2O2 detection, imaging and quantification in HeLa cells. The polymer functionalized hybrid system creates a complete sensor including a ``cell positioning system'' in each single particle. The flexible synthetic concept with functionalization by post-polymerization modification allows introduction of various dyes for sensitisation at different wavelengths and introduction of various anchor groups for anchoring on different particles.We describe the reconstitution of apo-horse radish peroxidase (apo-HRP) onto TiO2 nanorods functionalized with a multifunctional polymer. After functionalization, the horse radish peroxidase (HRP) functionalized TiO2 nanorods were well dispersible in aqueous solution, catalytically active and biocompatible, and they could be used to quantify and image H2O2 which is a harmful secondary product of cellular metabolism. The shape, size and structure of TiO2 nanorods (anatase) were analyzed by transmission electron microscopy (TEM), high

  18. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  19. Characterization of femtosecond-laser-induced periodic structures on SiC substrates

    Science.gov (United States)

    Miyagawa, Reina; Ohno, Yutaka; Deura, Momoko; Yonenaga, Ichiro; Eryu, Osamu

    2018-02-01

    We investigated the crystalline state of femtosecond-laser-induced periodic structures using a transmission electron microscope (TEM). The core of the 200-nm-pitch periodic nanostructures on SiC retained a high crystalline quality continued from the SiC substrate, where the crystal orientation was aligned with that of the SiC substrate. These results suggest that the periodic nanostructures were formed by periodic etching and not by rearrangement. At high laser power, microstructures with sizes larger than 2 µm were formed on the periodic nanostructures. The microstructures were amorphous and extended from the amorphous SiC layer that covered the periodic nanostructures.

  20. Review of data on irradiation creep of monolithic SiC

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Youngblood, G.E.; Hamilton, M.L. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    An effort is now underway to design an irradiation creep experiment involving SiC composites to SiC fibers. In order to successfully design such an experiment, it is necessary to review and assess the available data for monolithic SiC to establish the possible bounds of creep behavior for the composite. The data available show that monolithic SiC will indeed creep at a higher rate under irradiation compared to that of thermal creep, and surprisingly, it will do so in a temperature-dependant manner that is typical of metals.

  1. Formation and characterization of porous SiC by anodic oxidation using potassium persulfate solution

    Science.gov (United States)

    Iwasa, Y.; Kamiyama, S.; Iwaya, M.; Takeuchi, T.; Akasaki, I.

    2018-01-01

    The formation process of porous SiC by anodic oxidation was investigated, aiming at the generation of pure white light with a high color rendering index (CRI) and high luminous efficiency. The efficiency of white light emission from porous SiC and its wavelength are strongly dependent on the porous structure such as the average pore size and porosity. In this study, we examined the structure and optical properties of porous SiC by adding potassium persulfate (K2S2O8) as an oxidant in HF solution to control the porosity of porous SiC formed by anodic oxidation. By increasing the amount of the oxidant, we enhanced the integrated light emission intensity of porous SiC to 81 times that of bulk SiC. Through the study of porous SiC we demonstrated that the peak wavelength of the porous SiC could be controlled from 370 to 500 nm. Porous SiC created by anodic oxidation was thus proven to have great potential for realizing high-CRI white light generation using LEDs.

  2. New Possibilities of Power Electronic Structures Using SiC Technology

    Directory of Open Access Journals (Sweden)

    Robert Sul

    2006-01-01

    Full Text Available This paper is dedicated to the recent unprecedented boom of SiC electronic technology. The contribution deals with brief survey of those properties. In particular, the differences (both good and bad between SiC electronics technology and well-known silicon VLSI technology are highlighted. Projected performance benefits of SiC electronics are given for several large-scale applications on the end of the contribution. The basic properties of SiC material have been discussed already on the beginning of 80’s, also at our university.

  3. Small Incision Cataract Surgery (SICS with Clear Corneal Incision and SICS with Scleral Incision – A Comparative Study

    Directory of Open Access Journals (Sweden)

    Md Shafiqul Alam

    2014-01-01

    Full Text Available Background: Age related cataract is the leading cause of blindness and visual impairment throughout the world. With the advent of microsurgical facilities simple cataract extraction surgery has been replaced by small incision cataract surgery (SICS with posterior chamber intra ocular lens implant, which can be done either with clear corneal incision or scleral incision. Objective: To compare the post operative visual outcome in these two procedures of cataract surgery. Materials and method: This comparative study was carried out in the department of Ophthalmology, Delta Medical College & Hospital, Dhaka, Bangladesh, during the period of January 2010 to December 2012. Total 60 subjects indicated for age related cataract surgery irrespective of sex with the age range of 40-80 years with predefined inclusion and exclusion criteria were enrolled in the study. Subjects were randomly and equally distributed in 2 groups; Group A for SICS with clear corneal incision and group B for SICS with scleral incision. Post operative visual out come was evaluated by determining visual acuity and astigmatism in different occasions and was compared between groups. Statistical analysis was done by SPSS for windows version12. Results: The highest age incidence (43.3% was found between 61 to 70 years of age group. Among study subjects 40 were male and 20 were female. Preoperative visual acuity and astigmatism were evenly distributed between groups. Regarding postoperative unaided visual outcome, 6/12 or better visual acuity was found in 19.98% cases in group A and 39.6% cases in group B at 1st week. At 6th week 6/6 vision was found in 36.3% in Group A and 56.1% in Group B and 46.2% in group A and 66% in group B without and with correction respectively. With refractive correction, 6/6 vision was attained in 60% subjects of group A and 86.67% of group B at 8th week. Post operative visual acuity was statistically significant in all occasions. Postoperative astigmatism of

  4. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  5. Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene.

    Science.gov (United States)

    Giesbers, A J M; Uhlířová, K; Konečný, M; Peters, E C; Burghard, M; Aarts, J; Flipse, C F J

    2013-10-18

    We show ferromagnetic properties of hydrogen-functionalized epitaxial graphene on SiC. Ferromagnetism in such a material is not directly evident as it is inherently composed of only nonmagnetic constituents. Our results nevertheless show strong ferromagnetism with a saturation of 0.9μ(B)/hexagon projected area, which cannot be explained by simple magnetic impurities. The ferromagnetism is unique to hydrogenated epitaxial graphene on SiC, where interactions with the interfacial buffer layer play a crucial role. We argue that the origin of the observed ferromagnetism is governed by electron correlation effects of the narrow Si dangling bond states in the buffer layer exchange coupled to localized states in the hydrogenated graphene layer. This forms a quasi-three-dimensional ferromagnet with a Curie temperature higher than 300 K.

  6. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1942-10-16

    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  7. Seeing Hydrogen in Colors: Low-Cost and Highly Sensitive Eye Readable Hydrogen Detectors

    NARCIS (Netherlands)

    Ngene, P.; Radeva, T.; Slaman, M.J.; Westerwaal, R.J.; Schreuders, H.; Dam, B.

    2014-01-01

    There is a great interest in the development of reliable and low-cost hydrogen sensors for applications in the hydrogen economy, industrial processes, space application, detection of environmental pollution, and biomedical applications. Here, a new type of optical detector that indicates the

  8. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.; Ferraris, M.; Katoh, Yutai

    2017-03-31

    This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiation temperatures: 800oC, 500oC, and 400oC.

  9. Piezoelectric Analysis of Saw Sensor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Vladimír KUTIŠ

    2013-06-01

    Full Text Available In this contribution modeling and simulation of surface acoustic waves (SAW sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses were performed using FEM code ANSYS.

  10. Structural Consequences of Hydrogen Intercalation of Epitaxial Graphene on SiC(0001)

    Science.gov (United States)

    2014-10-23

    Similar studies on such analogous systems will prove critical to the development, understanding, and utilization in these promising new graphene systems... Fuhrer , “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4), 206–209 (2008). 21M. Orlita, C. Faugeras, P

  11. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    Science.gov (United States)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT SiC

  12. Synthesis of SiC from rice husk in a plasma reactor

    Indian Academy of Sciences (India)

    Abstract. A new route for production of SiC from rice husk is reported by employing thermal plasma technique. The formation of -SiC is observed in a short time of 5 min. The samples are characterized by XRD and SEM.

  13. Study of indentation induced cracks in MoSi2-reaction bonded SiC ...

    Indian Academy of Sciences (India)

    Unknown

    SiC ceramics. O P CHAKRABARTI*, P K DAS and S MONDAL. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. MoSi2–RBSC composite samples were prepared by infiltration of Si–2 at.% Mo melt into a preform of commercial SiC and petroleum coke powder. The infiltrated sample had a ...

  14. Broadband Antireflection and Light Extraction Enhancement in Fluorescent SiC with Nanodome Structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Zhu, Xiaolong; Jokubavicius, Valdas

    2014-01-01

    We demonstrate a time-efficient and low-cost approach to fabricate Si3N4 coated nanodome structures in fluorescent SiC. Nanosphere lithography is used as the nanopatterning method and SiC nanodome structures with Si3N4 coating are formed via dry etching and thin film deposition process. By using...

  15. Characterisation of 10 kV 10 A SiC MOSFET

    DEFF Research Database (Denmark)

    Eni, Emanuel-Petre; Incau, Bogdan Ioan; Munk-Nielsen, Stig

    2015-01-01

    The objective of this paper is to characterize and evaluate the static and dynamic performances of 10 kV 10 A 4H-SIC MOSFETs at high temperatures. The results show good electrical performances of the SiC MOSFETs for high temperature operations. The double-pulse test results showed interesting beh...

  16. 10kV SiC MOSFET split output power module

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Li, Helong; Uhrenfeldt, Christian

    2015-01-01

    The poor body diode performance of the first generation of 10kV SiC MOSFETs and the parasitic turn-on phenomenon limit the performance of SiC based converters. Both these problems can potentially be mitigated using a split output topology. In this paper we present a comparison between a classical...

  17. Using of the Modern Semiconductor Devices Based on the SiC

    Directory of Open Access Journals (Sweden)

    Pavel Drabek

    2008-01-01

    Full Text Available This paper deals with possibility of application of the semiconductor devices based on the SiC (Silicon Carbide inthe power electronics. Basic synopsis of SiC based materials problems are presented, appreciation of their properties incomparison with current using power semiconductor devices ((IGBT, MOSFET, CoolFET transistors.

  18. Development of Simulink-Based SiC MOSFET Modeling Platform for Series Connected Devices

    DEFF Research Database (Denmark)

    Tsolaridis, Georgios; Ilves, Kalle; Reigosa, Paula Diaz

    2016-01-01

    A new MATLAB/Simulink-based modeling platform has been developed for SiC MOSFET power modules. The modeling platform describes the electrical behavior f a single 1.2 kV/ 350 A SiC MOSFET power module, as well as the series connection of two of them. A fast parameter initialization is followed...

  19. The first muon beam from a new highly-intense DC muon source, MuSIC

    Science.gov (United States)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  20. Interaction between magnetic moments and itinerant carriers in d0 ferromagnetic SiC

    Science.gov (United States)

    Liu, Yu; Yuan, Ye; Liu, Fang; Böttger, Roman; Anwand, Wolfgang; Wang, Yutian; Semisalova, Anna; Ponomaryov, Alexey N.; Lu, Xia; N'Diaye, Alpha T.; Arenholz, Elke; Heera, Viton; Skorupa, Wolfgang; Helm, Manfred; Zhou, Shengqiang

    2017-05-01

    Elucidating the interaction between magnetic moments and itinerant carriers is an important step to spintronic applications. Here, we investigate magnetic and transport properties in d0 ferromagnetic SiC single crystals prepared by postimplantation pulsed laser annealing. Magnetic moments are contributed by the p states of carbon atoms, but their magnetic circular dichroism is different from that in semi-insulating SiC samples. The anomalous Hall effect and negative magnetoresistance indicate the influence of d0 spin order on free carriers. The ferromagnetism is relatively weak in N-implanted SiC compared with that in Al-implanted SiC after annealing. The results suggest that d0 magnetic moments and itinerant carriers can interact with each other, which will facilitate the development of SiC spintronic devices with d0 ferromagnetism.

  1. The influence of carbon on the structure of preceramic polymer derived SiC

    Energy Technology Data Exchange (ETDEWEB)

    Kolaya, L.E.; Lewis, N. [Lockheed Martin Corp., Schenectady, NY (United States)

    1997-01-01

    The microstructure of SiC produced from allyl-hydridopolycarbosilane (AHPCS) was studied after thermal treatments at temperatures up to 1600 C. SiC samples were prepared in contact with pyrocarbon, carbon fiber, carbon felt, carbon powder, and graphite. Each of these configurations was examined using optical, scanning electron, and transmission electron microscopy. The resultant microstructure of the SiC in the vicinity of the carbon/graphite source was different for each sample. In some cases the grains were uniform, equiaxed and about the same size as SiC grains derived from neat AHPCS. Other samples exhibited accelerated grain growth in the vicinity of the carbon, and occasionally appeared to mimic the original carbon structure. Understanding and controlling such behavior will facilitate the fabrication of polymer derived stoichiometric SiC, and also has significant implications for the fabrication of SiC/SiC composites with a pyrocarbon interface and polymer derived matrix.

  2. A Short-Circuit Safe Operation Area Identification Criterion for SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Luo, Haoze

    2017-01-01

    This paper proposes a new method for the investigation of the short-circuit safe operation area (SCSOA) of state-of-the-art SiC MOSFET power modules rated at 1.2 kV based on the variations in SiC MOSFET electrical parameters (e.g., short-circuit current and gate–source voltage). According......-circuit-current-based criterion; and 2) the gate-voltage-based criterion. The applicability of these two criteria makes possible the SCSOA evaluation of SiC MOSFETs with some safety margins in order to avoid unnecessary failures during their SCSOA characterization. SiC MOSFET power modules from two different manufacturers...... are experimentally tested in order to demonstrate the procedure of the method. The obtained results can be used to have a better insight of the SCSOA of SiC MOSFETs and their physical limits....

  3. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    Science.gov (United States)

    Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  4. Cohort profile: the Social Inequality in Cancer (SIC) cohort study.

    Science.gov (United States)

    Nordahl, Helene; Hvidtfeldt, Ulla Arthur; Diderichsen, Finn; Rod, Naja Hulvej; Osler, Merete; Frederiksen, Birgitte Lidegaard; Prescott, Eva; Tjønneland, Anne; Lange, Theis; Keiding, Niels; Andersen, Per Kragh; Andersen, Ingelise

    2014-12-01

    The Social Inequality in Cancer (SIC) cohort study was established to determine pathways through which socioeconomic position affects morbidity and mortality, in particular common subtypes of cancer. Data from seven well-established cohort studies from Denmark were pooled. Combining these cohorts provided a unique opportunity to generate a large study population with long follow-up and sufficient statistical power to develop and apply new methods for quantification of the two basic mechanisms underlying social inequalities in cancer-mediation and interaction. The SIC cohort included 83 006 participants aged 20-98 years at baseline. A wide range of behavioural and biological risk factors such as smoking, physical inactivity, alcohol intake, hormone replacement therapy, body mass index, blood pressure and serum cholesterol were assessed by self-administered questionnaires, physical examinations and blood samples. All participants were followed up in nationwide demographic and healthcare registries. For those interested in collaboration, further details can be obtained by contacting the Steering Committee at the Department of Public Health, University of Copenhagen, at inan@sund.ku.dk. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  5. Crucial effect of SiC particles on in situ synthesized mullite whisker reinforced Al2O3-SiC composite during microwave sintering

    Directory of Open Access Journals (Sweden)

    Meng Wei

    2017-06-01

    Full Text Available Mullite whisker reinforced Al2O3-SiC composites were in situ synthesized by microwave sintering at 1500°C for 30min. The influence of SiC particle size on heating process and properties of Al2O3-SiC composite were investigated. The XRD and SEM techniques were carried out to characterize the samples. The thermal shock resistance and flexural strength of the samples were examined through water quenching and three-point bending methods, respectively. It was found that the bridging of mullite whisker appeared between Al2O3 and SiC particles which enhanced the thermal shock resistance. A so-called local hot spot effect was proposed dependent on the coupling of SiC particles with microwave, which was the unique feature of microwave sintering. The maximal thermal shock resistance and flexural strength were obtained for the samples with SiC particle size of ~5μm.

  6. Introduction of nano-laminate Ti3SiC2 and SiC phases into Cf-C composite by liquid silicon infiltration method

    Directory of Open Access Journals (Sweden)

    Omid Yaghobizadeh

    2017-03-01

    Full Text Available The material Cf-C-SiC-Ti3SiC2 is promising for high temperature application. Due to the laminated structure and special properties, the Ti3SiC2 is one of the best reinforcements for Cf-C-SiC composites. In this paper, Cf-C-SiC-Ti3SiC2 composites were fabricated by liquid silicon infiltration (LSI method; the effect of the TiC amount on the various composites properties were studied. For samples with 0, 50 and 90 vol.% of TiC, the results show that bending strength are 168, 190, and 181 MPa; porosities are 3.2, 4.7, and 9%; the fracture toughness are 6.1, 8.9, and 7.8 MPa∙m1/2; interlaminar shear strength are 27, 36, and 30 MPa; the amount of the MAX phase are 0, 8.5, and 5.6 vol.%, respectively. These results show that amount of TiC is not the main effective parameter in synthesis of Ti3SiC2. The existence of carbon promotes the synthesis of Ti3SiC2 indicating that only sufficient carbon content can lead to the appearance of Ti3SiC2 in the LSI process.

  7. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers

    Directory of Open Access Journals (Sweden)

    Shichao Liu

    2017-07-01

    Full Text Available The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2 MPa and −552.1 MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased.

  8. Effect of SiC particle addition on microstructure of Mg2Si/Al composite

    Directory of Open Access Journals (Sweden)

    Zhao Yuguang

    2014-03-01

    Full Text Available In the present study, by adding SiC particles into Al-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced Al matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in Al matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/Al composites were investigated by using scanning electron microscopy (SEM and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 μm to 30 μm. The size of primary Al dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS was observed in the presence of SiC particles.

  9. Low dose irradiation performance of SiC interphase SiC/SiC composites

    Science.gov (United States)

    Snead, L. L.; Osborne, M. C.; Lowden, R. A.; Strizak, J.; Shinavski, R. J.; More, K. L.; Eatherly, W. S.; Bailey, J.; Williams, A. M.

    1998-03-01

    Reduced oxygen Hi-Nicalon™ fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either `porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1×10 25 n m -2 ( E>0.1 MeV) in the temperature range of 260 to 1060°C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber.

  10. Hydrogen effect in (Al-Ti)-SiC particle metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Solovioff, G.; Eliezer, D. (Dept. of Materials Engineering, Ben-Gurion Univ. of the Negev, Beer-Sheva (Israel)); Lavernia, E.J. (Dept. of Mechanical and Aerospace Engineering, California Univ., Irvine (United States))

    1992-12-30

    The development of advanced air frames and propulsion systems has generated significant research and development activity in the area of light-weight high temperature intermetallic alloys. Exposure to hydrogen results in the severe embrittlement of many intermetallics. In the present study the microstructure of spray-atomized and codeposited metal matrix composites (MMCs) were characterized following hydrogen charging. The results show that, under severe conditions such as exposure to NaCl solutions at cathodic charging conditions, initial crack propagation in (Al-Ti)-SiC[sub p] MMCs (which SiC[sub p] represents SiC particles) occurs without any applied stress. It is also important to note that hydrogen charging increases the amount of hydrogen in the material. There is always the possibility of preferential hydrogen accumulation at the large number of incoherent interfaces between the reinforcement particulates and the matrix. The phenomenology of hydrogen embrittlement and possible mechanisms of embrittlement are discussed. (orig.).

  11. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  12. Hydrogen usage

    Energy Technology Data Exchange (ETDEWEB)

    1942-10-22

    This short tabular report listed the number of m/sup 3/ of hydrogen required for a (metric) ton of product for various combinations of raw material and product in a hydrogenation procedure. In producing auto gasoline, bituminous coal required 2800 m/sup 3/, brown coal required 2400 m/sup 3/, high-temperature-carbonization tar required 2100 m/sup 3/, bituminous coal distillation tar required 1300 m/sup 3/, brown-coal low-temperature-carbonization tar required 850 m/sup 3/, petroleum residues required 900 m/sup 3/, and gas oil required 500 m/sup 3/. In producing diesel oil, brown coal required 1900 m/sup 3/, whereas petroleum residues required 500 m/sup 3/. In producing diesel oil, lubricants, and paraffin by the TTH (low-temperature-hydrogenation) process, brown-coal low-temperature-carbonization tar required 550 m/sup 3/. 1 table.

  13. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  14. Detection and analysis of particles with failed SiC in AGR-1 fuel compacts

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D., E-mail: hunnjd@ornl.gov [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M. [Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831-6093 (United States); Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A. [Idaho National Laboratory (INL), P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-09-15

    Highlights: • Cesium release was used to detect SiC failure in HTGR fuel. • Tristructural-isotropic particles with SiC failure were isolated by gamma screening. • SiC failure was studied by X-ray tomography and SEM. • SiC degradation was observed after irradiation and subsequent safety testing. - Abstract: As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact SiC coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of {sup 134}Cs and {sup 137}Cs are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600–1800 °C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were

  15. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications.

    Science.gov (United States)

    Eng, Alex Yong Sheng; Sofer, Zdenek; Šimek, Petr; Kosina, Jiri; Pumera, Martin

    2013-11-11

    Hydrogenated graphenes exhibit a variety of properties with potential applications in devices, ranging from a tunable band gap to fluorescence, ferromagnetism, and the storage of hydrogen. We utilize a one-step microwave-irradiation process in hydrogen plasma to create highly hydrogenated graphene from graphite oxides. The procedure serves the dual purposes of deoxygenation and concurrent hydrogenation of the carbon backbone. The effectiveness of the hydrogenation process is investigated on three different graphite oxides (GOs), which are synthesized by using the Staudenmaier, Hofmann, and Hummers methods. A systematic characterization of our hydrogenated graphenes is performed using UV/Vis spectroscopy, SEM, AFM, Raman spectroscopy, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), combustible elemental analysis, and electrical conductivity measurements. The highest hydrogenation extent is observed in hydrogenated graphene produced from the Hummers-method GO, with a hydrogen content of 19 atomic % in the final product. In terms of the removal of oxygen groups, microwave exfoliation yields graphenes with very similar oxygen contents despite differences in their parent GOs. In addition, we examine the prospective application of hydrogenated graphenes as electrochemical transducers through a cyclic voltammetry (CV) study. The highly hydrogenated graphenes exhibit fast heterogeneous electron-transfer rates, suggestive of their suitability for electrochemical applications in electrodes, supercapacitors, batteries, and sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sensors and devices containing ultra-small nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhili

    2017-04-11

    A network of nanowires may be used for a sensor. The nanowires are metallic, each nanowire has a thickness of at most 20 nm, and each nanowire has a width of at most 20 nm. The sensor may include nanowires comprising Pd, and the sensor may sense a change in hydrogen concentration from 0 to 100%. A device may include the hydrogen sensor, such as a vehicle, a fuel cell, a hydrogen storage tank, a facility for manufacturing steel, or a facility for refining petroleum products.

  17. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  18. Fabrication of SiC hardened bodies with geopolymer binders using a warm press method

    Science.gov (United States)

    Hashimoto, Shinobu; Kubota, Kosuke; Ando, Kotaro; Tsutani, Masaki; Diko, Yusuke; Honda, Sawao; Iwamoto, Yuji

    2017-09-01

    Novel SiC hardened bodies with geopolymer binders using a warm press method were fabricated. In this study, two methods were tried. The first method used a conventional powder mixture consisted of SiC and geopolymer particles as starting materials. In the second method, SiC particles was first immersed in hydrochloric acid solution with 2.5 mol/L and then heated at 1200 °C for 6 h to form a reactive aluminosilicate layer at the surface of SiC particles. Subsequently, the resultant SiC particles mixed with a fixed amount of sodium hydroxide solution with various concentrations were put into a steel mold which was set in the warm press device. This second method was defined as a chemical assist processing. As this warm press condition, heating temperature was 130 °C and pressed at 240 MPa for 30 min simultaneously. When a powder mixture consisted of geopolymer and SiC particles was used, the compressive strength of the hardened bodies decreased with the amount of SiC particles. On the contrary, when the chemical assist processing method was selected, the compressive strength of the hardened bodies increased with the concentration of the sodium hydroxide solution. When the sodium hydroxide solution was 4 mol/L was used, the compressive strength of the hardened body reached to 170 MPa which was the maximum value in this study.

  19. Versatile Hydrogen

    Indian Academy of Sciences (India)

    Hydrogen is probably the most intriguing ele- ment in the periodic table. Although it is only the seventh most abundant element on earth, it is the most abundant element in the uni- verse. It combines with almost all the ele- ments of the periodic table, except for a few transition elements, to form binary compounds of the type E.

  20. Polycrystalline SiC fibers from organosilicon polymers

    Science.gov (United States)

    Lipowitz, Jonathan; Rabe, James A.; Zank, Gregg A.

    1991-01-01

    Various organosilicon polymers have been converted into small diameter, fine-grained silicon carbide fibers by melt spinning, crosslinking, and pyrolyzing to greater than 1600 C. The high pyrolysis temperature densifies the fiber and causes CO evolution which removes nearly all oxygen. An additive prevents the loss of strength normally associated with such treatments. Silicon carbide fibres with up to 2.6 GPa (380 ksi) tensile strength, greater than 420 GPa (greater than 60 Msi) elastic modulus, and 3.1-3.2 mg/cu m density have been prepared via this process. Their microstructure consists of greater than 95 wt pct B-SiC crystallites averaging 30-40 nm diameter, with varying amounts of graphitic carbon between the SiC grains. Under inert conditions, the fibers can be thermally aged at least 12 h/1800 C with minimal change in properties.

  1. Creep of chemically vapour deposited SiC fibres

    Science.gov (United States)

    Dicarlo, J. A.

    1986-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with negligible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  2. Relativistic energies for the SiC radical

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chun-Sheng [Southwest Petroleum University, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu (China); Shui, Zheng-Wei [Southwest Petroleum University, School of Vocational and Technical Education, Nanchong (China)

    2015-11-15

    The analytical solutions of the Dirac equation with the modified Rosen-Morse potential energy model have been explored. Under the condition of the spin symmetry, we present the bound state energy equation. In the nonrelativistic limit, the relativistic energy equation becomes the nonrelativistic energy form deduced within the framework of the Schroedinger equation. We find that the relativistic effect of the relative motion of the ions leads to a little decrease in the vibrational energies when the vector potential is equal to the scalar potential for the electronic ground state of the SiC radical, while to an increase in those if the vector potential is greater than the scalar potential. (orig.)

  3. SiC MOSFET Switching Power Amplifier Project Summary

    Science.gov (United States)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex

    2017-10-01

    Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.

  4. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available The effects of hydrogen on various metals and the use of metal hydrides for hydrogen storage are discussed. The mechanisms of, and differences between, hydrogen embrittlement and hydrogen attack of ferritic steels are compared, common sources...

  5. Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers; Las tensiones residuales y las propiedades mecánicas de compuestos multicapa de Si3N4/SiC con diferentes capas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Liua, S.; Lia, Y.; Chena, P.; Lia, W.; Gaoa, S.; Zhang, B.; Yeb, F.

    2017-11-01

    The effect of residual stresses on the strength, toughness and work of fracture of Si3N4/SiC multilayered composites with different SiC layers has been investigated. It may be an effective way to design and optimize the mechanical properties of Si3N4/SiC multilayered composites by controlling the properties of SiC layers. Si3N4/SiC multilayered composites with different SiC layers were fabricated by aqueous tape casting and pressureless sintering. Residual stresses were calculated by using ANSYS simulation, the maximum values of tensile and compressive stresses were 553.2MPa and −552.1MPa, respectively. Step-like fracture was observed from the fracture surfaces. Fraction of delamination layers increased with the residual stress, which can improve the reliability of the materials. Tensile residual stress was benefit to improving toughness and work of fracture, but the strength of the composites decreased. [Spanish] Se ha investigado el efecto de las tensiones residuales en la resistencia, dureza y trabajo de fractura de los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC. Puede ser una manera eficaz de diseñar y optimizar las propiedades mecánicas de los compuestos multicapa de Si3N4/SiC mediante el control de las propiedades de las capas de SiC. Los compuestos multicapa de Si3N4/SiC con diferentes capas de SiC se fabricaron por medio de colado en cinta en medio acuoso y sinterización sin presión. Las tensiones residuales se calcularon mediante el uso de la simulación ANSYS, los valores máximos de las fuerzas de tracción y compresión fueron 553,2 MPa y −552,1 MPa, respectivamente. Se observó una fractura escalonada a partir de las superficies de fractura. La fracción de capas de deslaminación aumenta con la tensión residual, lo que puede mejorar la fiabilidad de los materiales. La fuerza de tracción residual era beneficiosa para la mejora de la dureza y el trabajo de fractura, pero la resistencia de los compuestos disminuyó.

  6. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  7. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices (Invited)

    Science.gov (United States)

    Neudeck, Philip G.

    1999-01-01

    As illustrated by the invited paper at this conference and other works, SiC wafers and epilayers contain a variety of crystallographic imperfections, including micropipes, closed-core screw dislocations, grain boundaries, basal plane dislocations, heteropolytypic inclusions, and surfaces that are often damaged and contain atomically rough features like step bunching and growth pits or hillocks. Present understanding of the operational impact of various crystal imperfections on SiC electrical devices is reviewed, with an emphasis placed on high-field SiC power devices and circuits.

  8. A route to strong p-doping of epitaxial graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2010-11-09

    The effects of Au intercalation on the electronic properties of epitaxialgraphenegrown on SiC{0001} substrates are studied using first principles calculations. A graphenemonolayer on SiC{0001} restores the shape of the pristine graphene dispersion, where doping levels between strongly n-doped and weakly p-doped can be achieved by altering the Au coverage. We predict that Au intercalation between the two C layers of bilayer graphenegrown on SiC{0001} makes it possible to achieve a strongly p-doped graphene state, where the p-doping level can be controlled by means of the Au coverage.

  9. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  10. Fiber-optic temperature sensor using a spectrum-modulating semiconductor etalon

    Science.gov (United States)

    Beheim, Glenn; Fritsch, Klaus; Anthan, Donald J.

    1988-01-01

    Described is a fiber-optic temperature sensor that uses a spectrum modulating SiC etalon. The spectral output of this type of sensor may be analyzed to obtain a temperature measurement which is largely independent of the transmission properties of the sensor's fiber-optic link. A highly precise laboratory spectrometer is described in detail, and this instrument is used to study the properties of this type of sensor. Also described are a number of different spectrum analyzers that are more suitable for use in a practical thermometer.

  11. Effect of SiC particle size on the microstructure and properties of cold-sprayed Al/SiCp composite coating

    Science.gov (United States)

    Yu, Min; Hua, Junwei

    2017-07-01

    The Al5056/SiC composite coatings were prepared by cold spraying. Experimental results show that the SiC content in the composite coating deposited with the SiC powder having an average size of 67 μm (Al5056/SiC-67) is similar to that deposited with the SiC powder having an average size of 27 μm (Al5056/SiC-27). The microhardness and cohesion strength of Al5056/SiC-67 coating are higher than those of the Al5056/SiC-27 coating. In addition, the Al5056/SiC-67 coating having a superior wear resistance because of the coarse SiC powder with a superior kinetic energy contributes to the deformation resistance of the matrix Al5056 particles.

  12. Re-evaluation of SiC permeation coefficients at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasushi, E-mail: yama3707@kansai-u.ac.jp [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Murakami, Yuichiro; Yamaguchi, Hirosato; Yamamoto, Takehiro; Yonetsu, Daigo [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Noborio, Kazuyuki [Hydrogen Isotope Research Center, Univ. of Toyama, Toyama, Toyama 930-8555 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • The deuterium permeation coefficients of CVD-SiC at 600–950 °C were evaluated. • The wraparound flow was reduced to less than 1/100th of the permeation flow. • CVD-SiC materials are very effective as hydrogen isotope permeation barriers. - Abstract: Since 2007, our group has studied the deuterium permeation and diffusion coefficients for SiC materials at temperatures above 600 °C as a means of evaluating the tritium inventory and permeation in fusion blankets. During such measurements, control and evaluation of the wraparound flow through the sample holder are important, and so the heated sample holder is enclosed by a glass tube and kept under vacuum during experimental trials. However, detailed studies regarding the required degree of vacuum based on model calculations have shown that the wraparound flow is much larger than expected, and so can affect measurements at high temperatures. We therefore modified the measurement apparatus based on calculations involving reduced pressure in the glass tube, and are now confident that the measurement error is only several percent, even at 950 °C. In this paper, recent experimental results obtained with a chemical vapor deposition (CVD)-SiC sample over the temperature range of 600–950 °C are presented, showing that the permeation coefficient for CVD-SiC is more than three orders of magnitude smaller than that for stainless steel (SS316) at 600 °C, and that at 950 °C, the coefficient for CVD-SiC is almost equal to that for SUS316 at 550 °C.

  13. An optical waveguide acid vapor sensor.

    Science.gov (United States)

    Ballantine, D S; Callahan, D; Maclay, G J; Stetter, J R

    1992-12-01

    An optical waveguide sensor for the detection of acid vapors is described. The chemically sensitive reagent coating consists of bromothymol blue indicator suspended in a Nafion polymer film. The sensor uses a 562 nm LED source and a phototransistor detector. Response to hydrochloric acid and hydrogen sulphide vapours is both rapid and reversible, with an estimated detection limit for hydrogen sulphide of less than 15 ppm. The sensors exhibits generalized response to protonic acid vapours, but does not produce an indicator response to carbon dioxide, even at large concentrations (1100 mg/l.) in the presence of water vapor. The sensor exhibits a systematic interference from water vapor which may be corrected by a different approach, either using a reference sensor (Nafion/no indicator) or by monitoring sensor response at two wavelengths.

  14. Mechanical Spectroscopy of MgB2 Containing Sic / Spektroskopia Mechaniczna MgB2 Zawierającego Sic

    Directory of Open Access Journals (Sweden)

    Silva M.R.

    2015-12-01

    Full Text Available The compound magnesium diboride (MgB2 has been well-known since the 1950s; however, its superconducting properties were unknown. Intrinsic characteristics of MgB2 make this material a promising candidate for technological applications, although the low value of the irreversibility field and the decrease in critical current density with the increase in the magnetic field considerably reduce its utility. The present work aimed to study the effect of carbon-based doping on anelastic properties of MgB2 as measured by mechanical spectroscopy. The samples were prepared by using the powder-intube method. The samples were made with 5, 7.5, and 10 wt.% of silicon carbide (SiC. The results reveal complex mechanical loss spectra caused by the interaction between point defects and surface defects in the crystalline lattice of MgB2.

  15. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  16. A Hydrogen Leak Detection System for Aerospace and Commercial Applications

    Science.gov (United States)

    Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1995-01-01

    Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.

  17. Extreme Environment SiC Wireless Sensor Suite for Nuclear Thermal Propulsion Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this program, APEI, Inc. will build on successful demonstrations of SiC-based wireless transmitter designs in high temperature and high mechanical load...

  18. Extreme Environment SiC Wireless Sensor Suite for Nuclear Thermal Propulsion Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There are a number of critical telemetry measurements to be monitored under continuous field operation, including temperature data across the reactor chamber and the...

  19. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  20. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  1. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  2. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow....... At a device level, the focus is on improving the light extraction efficiency due to the rather high refractive index of SiC by nanostructuring the surface of SiC. Both periodic nanostructures made by e-beam lithography and nanosphere lithography and random nanostructures made by self-assembled Au nanosphere...... fluorescent Boron-Nitrogen co-doped 6H SiC is optimized in terms of source material, growth condition, dopant concentration, and carrier lifetime by using photoluminescence, pump-probe spectroscopy etc. The internal quantum efficiency is measured and the methods to increase the efficiency have been explored...

  3. Research Progress on Preparation for Biomass-based SiC Ceramic

    Directory of Open Access Journals (Sweden)

    CUI He-shuai

    2017-08-01

    Full Text Available Silicon carbide (SiC ceramics prepared by the conventional process has excellent properties and wide application prospects, but the increased cost of high-temperature preparation process restricts its further development. In contrast, the abundant porous structure of biomass makes itself to be ideal replacement of SiC ceramic prepared at low temperature. This paper reviewed the structure characteristics, preparation methods, pyrolysis mechanism and influence parameters of biomass-based SiC ceramic, and eventually explored the current problems and development trends of the pretreatment of carbon source and silicon source, the pyrolysis process and the application research on the preparation for biomass-based SiC ceramic.

  4. Breakthrough in Power Electronics from SiC: May 25, 2004 - May 31, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Marckx, D. A.

    2006-03-01

    This report explores the premise that silicon carbide (SiC) devices would reduce substantially the cost of energy of large wind turbines that need power electronics for variable speed generation systems.

  5. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I of this project, APEI, Inc. proved the feasibility of creating ultra-lightweight power converters (utilizing now emerging silicon carbide [SiC] power...

  6. Promise and Challenges of High-Voltage SiC Bipolar Power Devices

    Directory of Open Access Journals (Sweden)

    Tsunenobu Kimoto

    2016-11-01

    Full Text Available Although various silicon carbide (SiC power devices with very high blocking voltages over 10 kV have been demonstrated, basic issues associated with the device operation are still not well understood. In this paper, the promise and limitations of high-voltage SiC bipolar devices are presented, taking account of the injection-level dependence of carrier lifetimes. It is shown that the major limitation of SiC bipolar devices originates from band-to-band recombination, which becomes significant at a high-injection level. A trial of unipolar/bipolar hybrid operation to reduce power loss is introduced, and an 11 kV SiC hybrid (merged pin-Schottky diodes is experimentally demonstrated. The fabricated diodes with an epitaxial anode exhibit much better forward characteristics than diodes with an implanted anode. The temperature dependence of forward characteristics is discussed.

  7. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  8. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business of Innovation Research Phase I proposal seeks to investigate and prove the feasibility of developing highly efficient, ultra-lightweight SiC...

  9. Decentralized Nonlinear Controller Based SiC Parallel DC-DC Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is aimed at demonstrating the feasibility of a Decentralized Control based SiC Parallel DC-DC Converter Unit (DDCU) with targeted application for...

  10. Carbon Nanotube (CNT) and Carbon Fiber Reinforced SiC Optical Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M Cubed has developed and patented technology to make carbon fiber reinforced SiC composites and components. In addition, the feasibility of doubling the toughness...

  11. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Johnson, Erik; Skou, Eivind Morten

    2013-01-01

    on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan......A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell...

  12. Synthesis of boron nitride nanotubes with SiC nanowire as template

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Song, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2011-09-15

    Highlights: {yields} Boron nitride nanotubes (BNNTs) have been fabricated using SiC nanowires as template. {yields} SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. {yields} A template self-sacrificing mechanism is responsible for the formation of BNNTs. -- Abstract: A novel template method for the preparation of boron nitride nanotubes (BNNTs) using SiC nanowire as template and ammonia borane as precursor is reported. We find out that the SiC nanowires could be effectively etched out by the vapors decomposed from ammonia borane, leading to the formation of BNNTs. The as-prepared products are well characterized by means of complementary analytical techniques. A possible formation mechanism is disclosed. The method developed here paves the way for large scale production of BNNTs.

  13. Large area SiC coating technology of RBSC for semiconductor processing component

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2001-06-01

    As the semiconductor process is developed for the larger area wafer and the larger-scale integration, the processing fixtures are required to have excellent mechanical and high temperature properties. This highlights the importance of silicon carbide-based materials as a substitute for quartz-based susceptors. In this study, SiC coating technology on reaction sintered (RS) SiC with thickness variation of +/- 10% within a diameter of 8 inch by low pressure chemical vapor deposition has been developed for making a plate type SiC fixture such as heater, baffle, etc., with a diameter of 12 inch. Additionally, a state of art on fabrication technology and products of the current commercial SiC fixtures has been described.

  14. Detection of effective recombination centers in fluorescent SiC using thermally stimulated luminescence

    DEFF Research Database (Denmark)

    Wei, Yi; Künecke, Ulrike; Wellmann, Peter

    Two n-type 6H fluorescent SiC (f-SiC) samples have been characterized using thermally stimulated luminescence (TSL) spectroscopy, where the dominant carriers recombination regime has been found via the numerical simulations....

  15. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Science.gov (United States)

    2010-07-01

    ..., and Confectionery Stores); Except 311340—Exception is limited to facilities primarily engaged in the... premises (previously classified under SIC 5441, Candy, Nut, and Confectionery Stores); Except 311811—Retail...

  16. SUPERPOLISHED SI COATED SIC OPTICS FOR RAPID MANUFACTURE OF LARGE APERTURE UV AND EUV TELESCOPES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG/Tinsley proposes an innovative optical manufacturing process that will allow the advancement of state-of-the-art Silicon Carbide (SiC) mirrors for large aperture...

  17. Visible Blind SiC Array with Low Noise Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To date, we have (i) designed and fabricated both common cathode and common anode SiC detector arrays; (ii) designed and fabricated the detector packaging (FPA), and...

  18. Brazing of SiC using Cu-Si non reactive alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gasse, A. [C.E.A., CEREM-DEM, Grenoble (France); Chaumat, G. [C.E.A., CEREM-DEM, Grenoble (France); Rado, C. [INPG/LTCM-ENSEEG, Saint Martin d`Heres (France); Eustathopoulos, N. [INPG/LTCM-ENSEEG, Saint Martin d`Heres (France)

    1995-12-31

    SiC was brazed with a Cu 24 at% Si alloy under high vacuum at 1473 K. This alloy well wets SiC without any measurable reactivity and after cooling, leads to an interface which appears to be strong. It was found that the degree of filling of the joint by the alloy depends mainly on the geometry of the ceramic-metal-vapour system. It is shown that geometrical factors influence the kinetics of deoxidation of both alloys and SiC surfaces and, as a consequence, considerably modify the wetting kinetics and filling of the joint. Successful helium-tight tube/plate brazed joints have been obtained. Nevertheless, thermal expansion mismatch remains considerable between the SiC and the Cu-Si alloy. Further work is needed to improve the mechanical behaviour of such junctions to avoid crack formation. (orig./MM)

  19. Switching Investigations on a SiC MOSFET in a TO-247 Package

    DEFF Research Database (Denmark)

    Anthon, Alexander; Hernandez Botella, Juan Carlos; Zhang, Zhe

    2014-01-01

    This paper deals with the switching behavior of a SiC MOSFET in a TO-247 package. Based on simulations, critical parasitic inductances in the circuit layout are analyzed and their effect on the switching losses highlighted. Especially the common source inductance, a critical parameter in a TO-247...... package, has a major influence on the switching energy. Crucial design guidelines for an improved double pulse test circuit are introduced which are used for practical investigations on the switching behavior. Switching energies of a SiC MOSFET in a TO-247 package is measured depending on varying gate...... resistance and loop inductances. With total switching energy of 340.24 μJ, the SiC MOSFET has more than six times lower switching losses than a regular Si IGBT. Implementing the SiC switches in a 3 kW T-Type inverter topology, efficiency improvements of 0.8 % are achieved and maximum efficiency of 97...

  20. Effect of hydrogenation on Al-related photoluminescence in 6H--SiC

    Energy Technology Data Exchange (ETDEWEB)

    Koshka, Yaroslav; Mazzola, Michael S.

    2001-08-06

    Interaction of hydrogen with Al acceptors in SiC is investigated using low-temperature photoluminescence (PL) spectroscopy. Hydrogenation is performed in hydrogen plasma using a standard inductively coupled plasma etching system. Appearance of H-related PL peaks after hydrogenation is accompanied with a significant reduction in relative intensity of Al bound exciton (Al--BE) PL. A gradual quenching of the remaining Al--BE photoluminescence is observed in hydrogenated samples under excitation with above band gap light, resulting in a complete disappearance of Al--BE PL emission. High-temperature annealing completely restores the shape of the PL spectrum to its prehydrogenation form. {copyright} 2001 American Institute of Physics.

  1. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  2. Properties of thin films for high temperature flow sensors

    Science.gov (United States)

    Albin, Sacharia

    1991-01-01

    Requirements of material parameters of high temperature flow sensors are identified. Refractory metal silicides offer high temperature sensitivity and high frequency response and are stable up to 1000 C. Intrinsic semiconductors of high band gap are also considered as sensor elements. SiC and diamond are identified. Combined with substrates of low thermal and electrical conductivity, such as quartz or Al2O3, these materials meet several requirements of high sensitivity and frequency response. Film deposition and patterning techniques suitable for these materials are identified.

  3. Final Technical Report - 300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng-Po; Shaddock, David; Sandvik, Peter; Saia, Rich; Amita Patil, Alexey Vert; Zhang, Tan

    2012-11-30

    A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can be used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.

  4. Modeling the Elastic Modulus of 2D Woven CVI SiC Composites

    Science.gov (United States)

    Morscher, Gregory N.

    2006-01-01

    The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.

  5. Effect of dopants on the morphology of porous SiC

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    Porous SiC samples with different doping level were fabricated and investigated by using anodic oxidation method. The morphology of the porous structures was explained by space charge layer width, which was affected by the free carrier-dopants concentration.......Porous SiC samples with different doping level were fabricated and investigated by using anodic oxidation method. The morphology of the porous structures was explained by space charge layer width, which was affected by the free carrier-dopants concentration....

  6. Josephson coupling in junctions made of monolayer graphene on SiC

    OpenAIRE

    Jouault, B.; Charpentier, S.; Massarotti, D.; Michon, A.; Paillet, M.; Huntzinger, J. -R.; Tiberj, A.; Zahab, A.; Bauch, T.; Lucignano, P.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2016-01-01

    Graphene on silicon carbide (SiC) has proved to be highly successful in Hall conductance quantization for its homogeneity at the centimetre scale. Robust Josephson coupling has been measured in co-planar diffusive Al/monololayer graphene/Al junctions. Graphene on SiC substrates is a concrete candidate to provide scalability of hybrid Josephson graphene/superconductor devices, giving also promise of ballistic propagation.

  7. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  8. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  9. Investigation on the Short Circuit Safe Operation Area of SiC MOSFET Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Luo, Haoze; Iannuzzo, Francesco

    2016-01-01

    This paper gives a better insight of the short circuit capability of state-of-the-art SiC MOSFET power modules rated at 1.2 kV by highlighting the physical limits under different operating conditions. Two different failure mechanisms have been identified, both reducing the short-circuit capability......) of the studied SiC MOSFET power modules is formulated based on the two proposed criteria....

  10. Passivation of surface-nanostructured f-SiC and porous SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang; Ou, Yiyu

    The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper.......The further enhancement of photoluminescence from nanostructured fluorescent silicon carbide (f-SiC) and porous SiC by using atomic layer deposited (ALD) Al2O3 is studied in this paper....

  11. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals

    Science.gov (United States)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish; Ram, Sita; Sharma, Pawan K.

    2017-07-01

    In the present work, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to ascertain the grafting of an organic layer of polyvinyl alcohol (PVA) onto the surface of semiconducting SiC nanocrystals using a novel method. FTIR spectroscopy reveals the introduction of new peaks corresponding to various functional groups of PVA alongwith the presence of characteristic Si-C vibrational peak in the spectra of grafted SiC nanocrystals. Raman spectra depict the presence of changes introduced in the characteristic TO and LO mode of vibration of SiC nanocrystals after grafting procedure. XRD analysis confirmed that the grafting procedure did not alter the crystalline geometry of SiC nanocrystals. TEM and SEM images further support the FTIR and Raman spectroscopic results and confirm the presence of PVA layer around SiC nanocrystals. Thermal degradation behavior of PVA-g-SiC nanocrystals has been studied using TGA analysis.

  12. Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET

    Directory of Open Access Journals (Sweden)

    Frederick Ojiemhende Ehiagwina

    2016-09-01

    Full Text Available Properties of Silicon Carbide Junction Field Effect Transistor (SiC JFET such as high switching speed, low forward voltage drop and high temperature operation have attracted the interest of power electronic researchers and technologists, who for many years developed devices based on Silicon (Si.  A number of power system Engineers have made efforts to develop more robust equipment including circuits or modules with higher power density. However, it was realized that several available power semiconductor devices were approaching theoretical limits offered by Si material with respect to capability to block high voltage, provide low on-state voltage drop and switch at high frequencies. This paper presents an overview of the current applications of SiC JFET in circuits such as inverters, rectifiers and amplifiers. Other areas of application reviewed include; usage of the SiC JFET in pulse signal circuits and boost converters. Efforts directed toward mitigating the observed increase in electromagnetic interference were also discussed. It also presented some areas for further research, such as having more applications of SiC JFET in harsh, high temperature environment. More work is needed with regards to SiC JFET drivers so as to ensure stable and reliable operation, and reduction in the prices of SiC JFETs through mass production by industries.

  13. Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications.

    Science.gov (United States)

    Hart, Amelia H C; Koizumi, Ryota; Hamel, John; Owuor, Peter Samora; Ito, Yusuke; Ozden, Sehmus; Bhowmick, Sanjit; Syed Amanulla, Syed Asif; Tsafack, Thierry; Keyshar, Kunttal; Mital, Rahul; Hurst, Janet; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-04-19

    The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.

  14. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  15. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  16. Color Changing Material for Hydrogen Leak Detection

    Science.gov (United States)

    Victor, Megan E.

    2014-01-01

    Kennedy Space Center scientists developed a hydrogen leak sensor utilizing a combination of chemochromic pigment and polymer that can be molded or fiber spun into rigid or flexible shapes such as tape. The sensor turns a dark color when exposed to hydrogen gas. This sensor has proven to be very effective for pinpointing the exact location of leaks in hydrogen gas lines and fittings at launch pads. Kennedy Space Center exclusively licensed this technology to the University of Central Florida (UCF), who also holds patents that are complimentary to KSC's. UCF has bundled the patents and exclusively licensed the portfolio to HySense Technology LLC, a startup company founded by a UCF professor who supports the UCF Florida Solar Energy Center (FSEC). HySense has fully developed its product (known as Intellipigment"TM"), and currently has five commercial customers. The company recently won the $100,000 first-place award at the CAT5 innovation competition at the Innovation Concourse of the Southeast: Safety & Manufacturing event in Orlando, FL. Commercial production and sales of this technology by HySense Technology will make this leak sensor widely available for use by NASA, DoD, and industries that utilize hydrogen gas.

  17. Synergistic effect of displacement damage, helium and hydrogen on microstructural change of SiC/SiC composites fabricated by reaction bonding process

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, T.; Igawa, N.; Wakai, E.; Jitsukawa, S. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Hasegawa, A. [Tohoku Univ., Dept. of Quantum Science and Energy Engr., Sendai (Japan)

    2007-07-01

    Full text of publication follows: Continuous silicon carbide (SiC) fiber reinforced SiC matrix (SiC/SiC) composites are known to be attractive candidate materials for first wall and blanket components in fusion reactors. In the fusion environment, helium and hydrogen are produced and helium bubbles can be formed in the SiC by irradiation of 14-MeV neutrons. Authors reported the synergistic effect of helium and hydrogen as transmutation products on swelling behavior and microstructural change of the SiC/SiC composites fabricated by chemical vapor infiltration (CVI) process. Authors also reported about the fabrication of high thermal conductive SiC/SiC composites by reaction bonding (RB) process. The matrix fabricated by RB process has different microstructures such as bigger grain size of SiC and including Si phase as second phase from that by CVI process. It is, therefore, investigated the synergistic effect of displacement damage, helium and hydrogen as transmutation products on the microstructure of SiC/SiC composite by RB process in this study. The SiC/SiC composites by RB process were irradiated by the simultaneous triple ion irradiation (Si{sup 2+}, He{sup +} and H{sup +}) at 800 and 1000 deg. C. The displacement damage was induced by 6.0 MeV Si{sup 2+} ion irradiation up to 10 dpa. The microstructures of irradiated SiC/SiC composites by RB process were observed by TEM. The double layer of carbon and SiC as interphase between fiber and matrix by a chemical vapor deposition (CVD) was coated on SiC fibers in the SiC/SiC composites by RB process. The TEM observation revealed that He bubbles were formed both in the matrix by RB and SiC interphase by CVD process. Almost all He bubbles were formed at the grain boundary in SiC interphase by CVD process. On the other hand, He bubbles were formed both at the grain boundary and in Si grain of the matrix by RB process. The average size of He bubbles in the matrix by RB was smaller than that in SiC interphase by CVD

  18. An electrochemical hydrogen meter for measuring hydrogen in sodium using a ternary electrolyte mixture

    CERN Document Server

    Sridharan, R; Nagaraj, S; Gnanasekaran, T; Periaswami, G

    2003-01-01

    An electrochemical sensor for measuring hydrogen concentration in liquid sodium that is based on a ternary mixture of LiCl, CaCl sub 2 and CaHCl as the electrolyte has been developed. DSC experiments showed the eutectic temperature of this ternary system to be approx 725 K. Impedance spectroscopic analysis of the electrolyte indicated ionic conduction through a molten phase at approx 725 K. Two electrochemical hydrogen sensors were constructed using the ternary electrolyte of composition 70 mol% LiCl:16 mol% CaHCl:14 mol% CaCl sub 2 and tested at 723 K in a mini sodium loop and at hydrogen levels of 60-250 ppb in sodium. The sensors show linear response in this concentration range and are capable of detecting a change of 10 ppb hydrogen in sodium over a background level of 60 ppb. Identification of this electrolyte system and its use in a sensor for measuring hydrogen in sodium are described in this paper.

  19. Enhanced TiC/SiC Ohmic contacts by ECR hydrogen plasma pretreatment and low-temperature post-annealing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingbing [School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Qin, Fuwen [State Key Laboratory of Material Modification by Laser, Ion and Electron Beam (Ministry of Education), Dalian University of Technology, Dalian 116024 (China); Wang, Dejun, E-mail: dwang121@dlut.edu.cn [School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-11-15

    Highlights: • Low-temperature ECR microwave hydrogen plasma were pretreated for moderately doped (1 × 10{sup 18} cm{sup −3}) SiC surfaces. • The relationship among Ohmic properties, the SiC surface properties and TiC/SiC interface properties were established. • Interface band structures were analyzed to elucidate the mechanism by which the Ohmic contacts were formed. - Abstract: We proposed an electronic cyclotron resonance (ECR) microwave hydrogen plasma pretreatment (HPT) for moderately doped (1 × 10{sup 18} cm{sup −3}) SiC surfaces and formed ideal TiC/SiC Ohmic contacts with significantly low contact resistivity (1.5 × 10{sup −5} Ω cm{sup 2}) after low-temperature annealing (600 °C). This is achieved by reducing barrier height at TiC/SiC interface because of the release of pinned Fermi level by surface flattening and SiC surface states reduction after HPT, as well as the generation of donor-type carbon vacancies, which reduced the depletion-layer width for electron tunneling after annealing. Interface band structures were analyzed to elucidate the mechanism of Ohmic contact formations.

  20. Metamaterial Sensors

    Directory of Open Access Journals (Sweden)

    Jing Jing Yang

    2013-01-01

    Full Text Available Metamaterials have attracted a great deal of attention due to their intriguing properties, as well as the large potential applications for designing functional devices. In this paper, we review the current status of metamaterial sensors, with an emphasis on the evanescent wave amplification and the accompanying local field enhancement characteristics. Examples of the sensors are given to illustrate the principle and the performance of the metamaterial sensor. The paper concludes with an optimistic outlook regarding the future of metamaterial sensor.

  1. Sensor networks

    NARCIS (Netherlands)

    Chatterjea, Supriyo; Thurston, J.; Kininmonth, S.; Havinga, Paul J.M.

    2006-01-01

    This article describes the details of a sensor network that is currently being deployed at the Great Barrier Reef in Australia. The sensor network allows scientists to retrieve sensor data that has a high spatial and temporal resolution. We give an overview of the energy-efficient data aggregation

  2. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built

  3. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    Science.gov (United States)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2017-04-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  4. A review of SiC reactive ion etching in fluorinated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yih, P.H. [Bell Labs., Orlando, FL (United States). Lucent Technologies; Saxena, V.; Steckl, A.J. [Cincinnati Univ., OH (United States). Dept. of Electrical and Computer Engineering

    1997-07-01

    Research and development in semiconducting silicon carbide (SiC) technology has produced significant progress in the past five years in many areas: material (bulk and thin film) growth, device fabrication, and applications. A major factor in this rapid growth has been the development of SiC bulk crystals and the availability of crystalline substrates. Current leading applications for SiC devices include high power and high temperature devices and light emitting diodes. Due to the strong bonding between Si and C (Si-C = 1.34 x Si-Si), wet chemical etching can only be performed at high temperature. Therefore, plasma-based (``dry``) etching plays the crucial role of patterning SiC for the fabrication of various electronic devices. In the past several years, reactive ion etching (RIE) of SiC polytypes (3C and 6H) has been investigated in fluorinated gases (primarily CHF{sub 3}, CBrF{sub 3}, CF{sub 4}, SF{sub 6}, and NF{sub 3}), usually mixed with oxygen and occasionally with other additives or in a mixture of fluorinated gases. In this paper, a review of SiC RIE is presented. The primary emphasis is on etching of the 3C and 6H polytypes, but some results on RIE of the 4H polytype are included. The paper covers the basic etching mechanisms, provides typical etching properties in selected plasma conditions, discusses the effects of changes in various etching parameters, such as plasma pressure, density and power, etching time, etc. The etching of features of sizes varying from sub-{mu}m to tens of {mu}m`s is addressed. Finally, optimum etching conditions and trade-offs are considered for various device configurations. (orig.) 122 refs.

  5. A Review of SiC Reactive Ion Etching in Fluorinated Plasmas

    Science.gov (United States)

    Yih, P. H.; Saxena, V.; Steckl, A. J.

    1997-07-01

    Research and development in semiconducting silicon carbide (SiC) technology has produced significant progress in the past five years in many areas: material (bulk and thin film) growth, device fabrication, and applications. A major factor in this rapid growth has been the development of SiC bulk crystals and the availability of crystalline substrates. Current leading applications for SiC devices include high power and high temperature devices and light emitting diodes. Due to the strong bonding between Si and C (Si-C = 1.34×Si-Si), wet chemical etching can only be performed at high temperature. Therefore, plasma-based (dry) etching plays the crucial role of patterning SiC for the fabrication of various electronic devices. In the past several years, reactive ion etching (RIE) of SiC polytypes (3C and 6H) has been investigated in fluorinated gases (primarily CHF3, CBrF3, CF4, SF6, and NF3), usually mixed with oxygen and occasionally with other additives or in a mixture of fluorinated gases. In this paper, a review of SiC RIE is presented. The primary emphasis is on etching of the 3C and 6H polytypes, but some results on RIE of the 4H polytype are included. The paper covers the basic etching mechanisms, provides typical etching properties in selected plasma conditions, discusses the effects of changes in various etching parameters, such as plasma pressure, density and power, etching time, etc. The etching of features of sizes varying from sub-m to tens of μm's is addressed. Finally, optimum etching conditions and trade-offs are considered for various device configurations.

  6. The benefits and current progress of SiC SGTOs for pulsed power applications

    Science.gov (United States)

    Ogunniyi, Aderinto; O'Brien, Heather; Lelis, Aivars; Scozzie, Charles; Shaheen, William; Agarwal, Anant; Zhang, Jon; Callanan, Robert; Temple, Victor

    2010-10-01

    Silicon Carbide (SiC) is an extremely attractive material for semiconductor power devices because of its electrical and physical characteristics. This paper describes the benefits of utilizing SiC Super Gate Turn-Off thyristors (SGTO) in pulsed power applications, reviews the current progress and development of SiC GTOs, and presents the static and pulsed characteristics of large area GTOs with high blocking capabilities. The wide pulsed evaluation of the 0.5 cm 2 SiC SGTOs has been demonstrated and reported by the Army Research Laboratory (ARL). This paper presents the wide pulsed capabilities of the 1 cm 2 SiC SGTOs. The 1 cm 2 SiC SGTO devices handled up to twice the peak current of the 0.5 cm 2 SiC SGTOs at a 1 ms pulse width. The wide pulsed evaluation of these devices was demonstrated at ARL. ARL evaluated the static and pulsed characteristics of six of these devices. The devices had a forward blocking voltage rating of 9 kV and a trigger requirement of a negative pulse of 1 A to the gate for a millisecond pulse width. These devices were pulsed as high as 3.5 kA at 1 ms, equating to an action rate of 6 × 10 3 A 2 s and a current density of 4.8 kA/cm 2, based on the device active area. The narrow pulsed evaluation of this device has been demonstrated by Cree Inc. A peak current of 12.8 kA with a pulse width of 17 μs (corresponding to 12.8 kA/cm 2 based on the chip size) was conducted with this device.

  7. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    Science.gov (United States)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  8. Catalytic hydrogen peroxide decomposition La1-xSrxCoO3-δ perovskite oxides

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the

  9. Material Demand Studies: Materials Sorption of Vaporized Hydrogen Peroxide

    Science.gov (United States)

    2010-06-01

    agreement with the peroxide concentration from the iodometric titration was typically in error by approximately 15% due to the slight variation in...Verification of both sensors was conducted during each run. using the average value from three iodometric titrations on the VHP stream entering and exiting...The hydrogen peroxide sensor performance verification, using the wet- chemical titration method, showed that both the inlet and outlet sensors were

  10. Behaviors of hydrogen in C-SiC films with IR and SIMS analyses

    CERN Document Server

    Huang, N K; Xiong, Q; Liu, Y G; Wang, D Z; Lei, J R

    2002-01-01

    C-SiC films with different content of SiC were prepared with magnetron sputtering deposition followed by Ar sup + ion bombardment. Secondary ion mass spectroscopy depth profiles of hydrogen for the samples of C-SiC coated stainless steel and stainless steel substrate after H sup + ion implantation and thermal annealing show different hydrogen concentrations in C-SiC coatings and stainless steel. Infrared (IR) transmission measurement was selected to study the mechanism of hydrogen retention by C-SiC films. The vibrational spectra in the range between 400 and 3200 cm sup - sup 1 in IR transmission spectra show the Si-CH sub 3 , Si-CH sub 2 , Si-H, CH sub 2 , CH sub 3 etc. bonds, which are responsible for retaining hydrogen. Apart from the mode above, there also exist bonds related to carbon and silicon such as Si-C, C=C. The contamination of oxygen entered the film to form C=O and SiO sub 2 configurations and hydrogen contamination also formed Si-CH sub 2 mode in the films.

  11. Estimation of the hydrogen concentration in rat tissue using an airtight tube following the administration of hydrogen via various routes

    Science.gov (United States)

    Liu, Chi; Kurokawa, Ryosuke; Fujino, Masayuki; Hirano, Shinichi; Sato, Bunpei; Li, Xiao-Kang

    2014-01-01

    Hydrogen exerts beneficial effects in disease animal models of ischemia-reperfusion injury as well as inflammatory and neurological disease. Additionally, molecular hydrogen is useful for various novel medical and therapeutic applications in the clinical setting. In the present study, the hydrogen concentration in rat blood and tissue was estimated. Wistar rats were orally administered hydrogen super-rich water (HSRW), intraperitoneal and intravenous administration of hydrogen super-rich saline (HSRS), and inhalation of hydrogen gas. A new method for determining the hydrogen concentration was then applied using high-quality sensor gas chromatography, after which the specimen was prepared via tissue homogenization in airtight tubes. This method allowed for the sensitive and stable determination of the hydrogen concentration. The hydrogen concentration reached a peak at 5 minutes after oral and intraperitoneal administration, compared to 1 minute after intravenous administration. Following inhalation of hydrogen gas, the hydrogen concentration was found to be significantly increased at 30 minutes and maintained the same level thereafter. These results demonstrate that accurately determining the hydrogen concentration in rat blood and organ tissue is very useful and important for the application of various novel medical and therapeutic therapies using molecular hydrogen. PMID:24975958

  12. Theoretical characterization of the SiC3H- anion.

    Science.gov (United States)

    Inostroza, N; Senent, M L

    2010-11-14

    Highly correlated ab initio methods are used to predict the equilibrium structures and spectroscopic parameters of the SiC(3)H(-) anion. The total energies and physical properties are reported using CASSCF/MRCI, RCCSD(T), and RCCSD(T)-F12 approaches and extended basis sets. The search of stable geometries leads to a total of 12 isomers (4 linear and 8 cyclic), for which electronic ground states have close-shell configurations. The stability of the linear form, l-SiC(3)H(-), is prominent. For the most stable linear isomer, the B(e) equilibrium rotational constant has been calculated with RCCSD(T) and a complete basis set. Core-correlation and vibrational effects have been taken into account to predict a B(0) of 2621.68 MHz for l-SiC(3)H(-) and 2460.48 MHz for l-SiC(3)D(-). The dipole moment of l-SiC(3)H(-) was found to be 2.9707 D with CASSCF/aug-cc-pV5Z and the electron affinity to be 2.7 eV with RCCSD(T)-F12A/aug-cc-pVTZ. Anharmonic spectroscopic parameters are derived from a quadratic, cubic, and quartic RCCSD(T)-F12A force field and second order perturbation theory. CASSCF/MRCI vertical excitations supply three metastable electronic states, (1)Σ(+) (3)Σ(+) and (3)Δ. Electron affinities calculated for a series of chains type SiC(n)H and SiC(n) (n=1-5) allow us to discuss the anion formation probabilities.

  13. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film

    Energy Technology Data Exchange (ETDEWEB)

    Li, M. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Y., E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Y.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Zhang, X.; Xi, T.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, S.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100871 (China)

    2012-01-15

    Amorphous SiC film has been successfully fabricated on the surface of WE43 magnesium alloy by plasma enhanced chemical vapour deposition (PECVD) technique. The microstructure and elemental composition were analyzed by transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS), respectively. The immersion test indicated that SiC film could efficiently slow down the degradation rate of WE43 alloy in simulated body fluid (SBF) at 37 {+-} 1 Degree-Sign C. The indirect toxicity experiment was conducted using L929 cell line and the results showed that the extraction medium of SiC coated WE43 alloys exhibited no inhibitory effect on L929 cell growth. The in vitro hemocompatibility of the samples was investigated by hemolysis test and blood platelets adhesion test, and it was found that the hemolysis rate of the coated WE43 alloy decreased greatly, and the platelets attached on the SiC film were slightly activated with a round shape. It could be concluded that SiC film prepared by PECVD made WE43 alloy more appropriate to biomedical application.

  14. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon-Geun, E-mail: hglee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Daejong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Seung Jae [KEPCO Nuclear Fuel, 242, Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Park, Ji Yeon; Kim, Weon-Ju [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-01-15

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  15. Characteristics of Al-Si-Mg Reinforced SiC Composites Produced by Stir Casting Route

    Science.gov (United States)

    Zulfia, A.; Zhakiah, T.; Dhaneswara, D.; Sutopo

    2017-05-01

    Al-Si-Mg alloy that is strengthened by silicon carbide particles has the potential to have excellent mechanical properties with light weight. In this study, metal matrix composites reinforced silicon carbide from 2 vf-% to 15 vf-% and magnesium amounted to 10 wt-% as an external dopant were fabricated by stir casting route. The magnesium was added to promote the wetting between Al matrix and reinforced SiC. The process involved SiC blended inside the molten Al by a stirrer with a rotational speed of 500 rpm at 800 °C for 2 minutes and degassed with Ar gas for 4 minutes to remove all of the gas content in the molten Al. The molten composite was then cast into the plate and tensile test sample molds. The effect of SiC addition on the mechanical properties and microstructure of the composites was investigated. The result showed that the optimum tensile strength was reached at 8 vf-% SiC with the value of 175 MPa, while the elongation was 9.1%. The maximum hardness and wear rate were achieved at 10 vf-% SiC with the values of 57 HRB and 0.0022 mm3/m, respectively. Such increase was related to the microstructures dominated by the presence of Chinese script, primary and eutectic Mg2Si which were contributed to the mechanical properties of the composites.

  16. Nucleation and void formation mechanisms in SiC thin film growth on Si by carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.P.; Steckl, A.J. [Univ. of Cincinnati, OH (United States)

    1995-02-01

    The nucleation mechanisms for SiC thin films on Si were investigated by interrupting the growth at very brief times ({approximately}1 to 10 s) using rapid thermal chemical vapor deposition in conjunction with hydrocarbon carbonization. The resulting SiC nuclei and films on Si have been studied by scanning electron microscopy and atomic force microscopy. The hydrocarbon partial pressure in the gas stream was found to determine the nucleation mode. Low precursor concentration results in initial three-dimensional (island) growth which enables the study or trench and void formation. Voids were observed to initiate when two neighboring nuclei come in contact. Trenches in the Si substrate surround each isolated nucleus, with the trench depth increasing with the diameter of the island. SiC films grown for a nominal reaction time of 1 s indicate that increasing the propane concentration results in decreases in SiC grain size and surface roughness and an increase in the nuclei density. A model is proposed for the nucleation process of SiC growth on Si by carbonization consisting of the following key steps: (1) the initial nucleation density is determined by the precursor concentration; (2) lateral and vertical growth of individual nuclei proceeds by consumption of Si atoms around their periphery, forming trenches in the substrate; (3) Si voids are formed in the Si substrate near the SiC/Si interface when nuclei grow large enough to come in contact and, thus, restrict the supply of Si atoms.

  17. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can...

  18. Highly flexible and robust N-doped SiC nanoneedle field emitters

    KAUST Repository

    Chen, Shanliang

    2015-01-23

    Flexible field emission (FE) emitters, whose unique advantages are lightweight and conformable, promise to enable a wide range of technologies, such as roll-up flexible FE displays, e-papers and flexible light-emitting diodes. In this work, we demonstrate for the first time highly flexible SiC field emitters with low turn-on fields and excellent emission stabilities. n-Type SiC nanoneedles with ultra-sharp tips and tailored N-doping levels were synthesized via a catalyst-assisted pyrolysis process on carbon fabrics by controlling the gas mixture and cooling rate. The turn-on field, threshold field and current emission fluctuation of SiC nanoneedle emitters with an N-doping level of 7.58 at.% are 1.11 V μm-1, 1.55 V μm-1 and 8.1%, respectively, suggesting the best overall performance for such flexible field emitters. Furthermore, characterization of the FE properties under repeated bending cycles and different bending states reveal that the SiC field emitters are mechanically and electrically robust with unprecedentedly high flexibility and stabilities. These findings underscore the importance of concurrent morphology and composition controls in nanomaterial synthesis and establish SiC nanoneedles as the most promising candidate for flexible FE applications. © 2015 Nature Publishing Group All rights reserved.

  19. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  20. Ag Transport Through Non-Irradiated and Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Blanchard, James [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-11

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  1. Smart sensors

    Science.gov (United States)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  2. Scalable in situ growth of SnO2 nanoparticle chains on SiC ultrathin fibers via a facile sol-gel-flame method

    Science.gov (United States)

    Wang, Yingde; Wang, Bing; Lei, Yongpeng; Wu, Nan; Han, Cheng; Gou, Yanzi; Fang, Dong

    2015-04-01

    SnO2 nanoparticle chains (SNPCs) were controllably in situ grown on the electrospun SiC ultrathin fibers (SUFs) by a scalable sol-gel-flame method to form a flexible mat. While bulk SnO2 was obtained by relatively slow pyrolysis in conventional horizontal tube furnace. The effect of process parameters on the microstructure and morphology of SNPCs/SUFs mats was discussed. I-V characteristics of the SNPCs/SUFs mats revealed a nonlinear curve, indicating the formation of Schottky-type junctions. The composite fibers mats also exhibited broad and strong emission bands between 400 and 650 nm. This may be attributed to the existence of a large amount of oxygen vacancies and defects in SNPCs caused by the fast pyrolysis process. Such composite fibers mats may have great potentials in high-temperature gas sensors, light-emitting diodes and lithium-ion storages, etc.

  3. Effect of silicon source and carbon source on the morphology of SiC powders

    Science.gov (United States)

    Wang, Zhao; Wang, Shu-lin; Ji, Jia-you; Xu, Man

    2017-11-01

    Silicon carbide (SiC) powders were prepared by carbothermal reduction method with silica fume and carbon-white as the silicon source; glucose, phenolic resin, polyvinyl pyrrolidone (PVP) as carbon source. The effects of reaction temperature, silicon source and carbon source on the morphology of silicon carbide powder were investigated. The result shows that: The optimum temperature for preparation of silicon carbide powder was 1400 °C When the glucose was used as carbon source, the morphology of SiC powder was greatly affected by the kinds of silicon sources; When the phenolic resin and PVP were used as carbon source, the morphology of SiC powder was greatly influenced by the carbon source.

  4. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay

    2013-07-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  5. Friction stir spot welding of 2024-T3 aluminum alloy with SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Laali [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-01-15

    In this study, the Friction stir spot welding (FSSW) of 2024-T3 aluminum alloy with 1.6 mm thickness was investigated. The effects of the silicon carbide (SiC) nanoparticles on the metallurgical and mechanical properties were discussed. The effects of particles on tension shear and wear tests were also investigated. The process was conducted at a constant rotational speed of 1000 rpm. Results showed that adding SiC nanoparticles to the weld during FSSW had a major effect on the mechanical properties. In fact, the addition of nanoparticles as barriers prevented grain growth in the Stir zone (SZ). The data obtained in the tensile-shear and wear tests showed that tensile-shear load and wear resistance increased with the addition of SiC nanoparticles, which was attributed to the fine grain size produced in the SZ.

  6. Characteristics of hot-pressed fiber-reinforced ceramics with SiC matrix

    Science.gov (United States)

    Miyoshi, Tadahiko; Kodama, Hironori; Sakamoto, Hiroshi; Goto, Akihiro; Iijima, Shiroo

    1989-11-01

    Silicon carbide ceramics’ matrix composites with SiC or C filaments were fabricated through hot pressing, and the effects of the filament pullout on their fracture toughness were experimentally investigated. The C-rich coating layers on the SiC filaments were found to have a significant effect on the frictional stress at the filament/matrix interfaces, through assising the filamet pullout from the matrix. Although the coating layers were apt to burn out in the sintering process of SiC matrix compposites, a small addition of carbon to the raw materials was found to be effective for the retention of the layers on the fibers, thus increasing the fracture toughness of the composites. The fracture toughness of the C filament/SiC matrix composite increased with temperature due to the larger interfacial frictional stress at higher temperatures, because of the higher thermal expansion of the filament in the radial direction than that of the matrix.

  7. Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC

    Science.gov (United States)

    Ristoscu, C.; Socol, G.; Ghica, C.; Mihailescu, I. N.; Gray, D.; Klini, A.; Manousaki, A.; Anglos, D.; Fotakis, C.

    2006-04-01

    Pulse shaping introduces the method that makes possible the production of tunable arbitrary shaped pulses. We extend this method to control the prevalent growth of cubic SiC films on Si (1 0 0) substrates by pulsed laser deposition at temperatures around 973 K from a SiC target in vacuum. We used a laser system generating 200 fs pulses duration at 800 nm with 600 μJ at 1 kHz. The obtained structures are investigated by electron microscopy, X-ray diffraction and profilometry. We observed grains embedded in an amorphous texture, characteristic in our opinion to the depositions obtained with very short pulses. We present a comparison of deposited films with and without pulse shaping. Pulse shaping promotes increased crystallization and results in the deposition of thin structures of cubic SiC with a strongly reduced density of particulates, under similar deposition conditions.

  8. Al4SiC4 wurtzite crystal: Structural, optoelectronic, elastic, and piezoelectric properties

    Directory of Open Access Journals (Sweden)

    L. Pedesseau

    2015-12-01

    Full Text Available New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al4SiC4. A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al4SiC4 material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude that the Al4SiC4 material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.

  9. Heteroepitaxial growth of SiC on Si by gas source MBE with silacyclobutane

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Steckl, A.J. [Cincinnati Univ., OH (United States). Nanoelectronics Lab.; Loboda, M.J. [Dow Corning Corp., Midland, MI (United States)

    1998-06-01

    3C-SiC films have been grown by MBE on Si(100) and Si(111) from the organosilane precursor silacyclobutane at temperatures of 800 to 1000 C and pressures of 1 to 5 x 10{sup -6} Torr. The chemical composition of the grown films provided by SIMS indicates a Si to C atomic ratio of about 1. The chemical structure of SiC was confirmed by FTIR. The surface morphology and crystallinity of SiC films were studied by SEM and RHEED. X-ray diffraction reveals that SiC films grown on Si(111) with the presence of native oxide exhibit better crystallinity than those grown on Si(111) surfaces from which the oxide is removed in-situ prior to growth. (orig.) 11 refs.

  10. Origin of the high p-doping in F intercalated graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2011-08-04

    The atomic and electronic structures of F intercalated epitaxialgraphene on a SiC(0001) substrate are studied by first-principles calculations. A three-step fluorination process is proposed. First, F atoms are intercalated between the graphene and the SiC, which restores the Dirac point in the band structure. Second, saturation of the topmost Si dangling bonds introduces p-doping up to 0.37 eV. Third, F atoms bond covalently to the graphene to enhance the p-doping. Our model explains the highly p-doped state of graphene on SiC after fluorination [A. L. Walter et al., Appl. Phys. Lett. 98, 184102 (2011)].

  11. Fluorescent SiC with pseudo-periodic moth-eye structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Aijaz, Imran; Ou, Haiyan

    2012-01-01

    White light-emitting diodes (LEDs) consisting of a nitride-based blue LED chip and phosphor are very promising candidates for the general lighting applications as energy-saving sources. Recently, donor-acceptor doped fluorescent SiC has been proven as a highly efficient wavelength converter...... material much superior to the phosphors in terms of high color rendering index value and long lifetime. The light extraction efficiency of the fluorescent SiC based all semiconductor LED light sources is usually low due to the large refractive index difference between the semiconductor and air. In order......-eye structure as an effective and simple method to enhance the extraction efficiency of fluorescent SiC based white LEDs.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  12. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes

    DEFF Research Database (Denmark)

    Facciotti, Marco; Boffa, Vittorio; Magnacca, Giuliana

    2014-01-01

    . After 5 times coating, a 5.6 µm thick γ-Al2O3 layer was obtained. This membrane shows retention of ~75% for polyethylene glycol molecules with Mn of 8 and 35 kDa, indicating that, despite their intrinsic surface roughness, commercial SiC microfiltration tubes can be applied as carrier for thin......Porous SiC based materials present high mechanical, chemical and thermal robustness, and thus have been largely applied to water-filtration technologies. In this study, commercial SiC microfiltration tubes with nominal pore size of 0.04 m were used as carrier for depositing thin aluminium oxide...... (Al2O3) ultrafiltration membranes. These ultrafiltration membranes were obtained by coating, drying and calcination of a colloidal suspension of boehmite particles. After calcination, the membrane material consisted of nano-sized Υ-Al2O3 crystallites and had a narrow pore size distribution...

  13. Cl-intercalated graphene on SiC: Influence of van der Waals forces

    KAUST Repository

    Cheng, Yingchun

    2013-01-01

    The atomic and electronic structures of Cl-intercalated epitaxial graphene on SiC are studied by first-principles calculations. By increasing the Cl concentration, doping levels from n-type to slightly p-type are achieved on the SiC(0001) surface, while a wider range of doping levels is possible on the SiC(0001̄) surface. We find that the Cl atoms prefer bonding to the substrate rather than to the graphene. By varying the Cl concentration the doping level can be tailored. Consideration of van der Waals forces improves the distance between the graphene and the substrate as well as the binding energy, but it is not essential for the formation energy. For understanding the doping mechanism the introduction of non-local van der Waals contributions to the exchange correlation functional is shown to be essential. Copyright © EPLA, 2013.

  14. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...... arrays towards potassium ferrocyanide. A sensor application was demonstrated by amperometric detection of hydrogen peroxide concentrations in the range of 0.1 to5 mM. Planar electrodes were fabricated by hot embossing of a microfluidic channel with sloped sidewalls into a PEDOT covered COC bulk material...

  15. An Audit of the Knowledge and Attitudes of Doctors towards Surgical Informed Consent (SIC

    Directory of Open Access Journals (Sweden)

    Bushra Ashraf

    2014-11-01

    Full Text Available Background The Surgical Informed Consent (SIC is a comprehensive process that establishes an informationbased agreement between the patient and his doctor to undertake a clearly outlined medical or surgical intervention. It is neither a casual formality nor a casually signed piece of paper. The present study was designed to audit the current knowledge and attitudes of doctors towards SIC at a tertiary care teaching hospital in Pakistan. Methods This cross-sectional qualitative investigation was conducted under the auspices of the Department of Medical Education (DME, Pakistan Institute of Medical Sciences (PIMS, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU, Islamabad over three months period. A 19-item questionnaire was employed for data collection. The participants were selected at random from the list of the surgeons maintained in the hospital and approached face-to-face with the help of a team of junior doctors detailed for questionnaire distribution among them. The target was to cover over 50% of these doctors by convenience sampling. Results Out of 231 respondents, there were 32 seniors while 199 junior doctors, constituting a ratio of 1:6.22. The respondents variably responded to the questions regarding various attributes of the process of SIC. Overall, the junior doctors performed poorer compared to the seniors. Conclusion The knowledge and attitudes of our doctors particularly the junior ones, towards the SIC are less than ideal. This results in their failure to avail this golden opportunity of doctor-patient communication to guide their patients through a solidly informative and legally valid SIC. They are often unaware of the essential preconditions of the SIC; provide incomplete information to their patients; and quite often do not ensure direct involvement of their patients in the process. Additionally they lack an understanding of using interactive computer-based programs as well as the concept of nocebo effect of informed

  16. Fabrication of SiC Reinforced Zr0{sub 2} Composites via Polymeric Precursor Route

    Energy Technology Data Exchange (ETDEWEB)

    Mistarihi, Qusai M.; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This indicates that as a result of the decomposition of the SMP-730 at temperatures less than or equal to 1500 .deg. C, amorphous SiC was formed. This study suggests that a higher compaction pressure followed by an intermediate decomposition temperature of the polymeric precursor and a higher sintering temperature are needed in order to fabricate interconnected SiC-ZrO{sub 2} composites. A. Ortona et al. fabricated ZrB2-SiC composites with SiC phase surrounding the grains of ZrB2 matrix through a polymeric precursor route by using Si and phenol. S. Li et al. measured the thermal conductivity of Al composites reinforced with a continuous phase SiC and SiC particles and found that the difference in the thermal conductivity measured at room temperature was about 70.2 W/m.K. To the best of authors' knowledge, no study has been performed about the fabrication of the connected SiC microstructure to improve the thermophysical properties of oxides. Zirconium dioxide (ZrO{sub 2}) is one of the potential candidates for use as a matrix for inert matrix fuels (IMF) due to its low neutron absorption cross section, chemical stability, and the compatibility with water. Irradiation and chemical stability testes performed on yttria stabilized zirconia (YSZ) and calcium stabilized zirconia (CSZ) have shown that they have a good irradiation and chemical stability. Despite the good irradiation and chemical stability, its low thermal conductivity is considered the main disadvantage of YSZ. Core loading with the YSZ IMF pellets experienced about a 100 K higher center line temperature than the limit specified for UO{sub 2}.

  17. Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations

    Science.gov (United States)

    Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.

    2017-11-01

    Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.

  18. Novel Hydrogen Bioreactor and Detection Apparatus.

    Science.gov (United States)

    Rollin, Joseph A; Ye, Xinhao; Del Campo, Julia Martin; Adams, Michael W W; Zhang, Y-H Percival

    2016-01-01

    In vitro hydrogen generation represents a clear opportunity for novel bioreactor and system design. Hydrogen, already a globally important commodity chemical, has the potential to become the dominant transportation fuel of the future. Technologies such as in vitro synthetic pathway biotransformation (SyPaB)-the use of more than 10 purified enzymes to catalyze unnatural catabolic pathways-enable the storage of hydrogen in the form of carbohydrates. Biohydrogen production from local carbohydrate resources offers a solution to the most pressing challenges to vehicular and bioenergy uses: small-size distributed production, minimization of CO2 emissions, and potential low cost, driven by high yield and volumetric productivity. In this study, we introduce a novel bioreactor that provides the oxygen-free gas phase necessary for enzymatic hydrogen generation while regulating temperature and reactor volume. A variety of techniques are currently used for laboratory detection of biohydrogen, but the most information is provided by a continuous low-cost hydrogen sensor. Most such systems currently use electrolysis for calibration; here an alternative method, flow calibration, is introduced. This system is further demonstrated here with the conversion of glucose to hydrogen at a high rate, and the production of hydrogen from glucose 6-phosphate at a greatly increased reaction rate, 157 mmol/L/h at 60 °C.

  19. Mechanism of Enhancement in Electromagnetic Properties of MgB2 by Nano SiC Doping

    NARCIS (Netherlands)

    Dou, S.X.; Shcherbakova, O.; Yeoh, W.K.; Kim, J.H.; Soltanian, S.; Wang, X.L.; Senatore, C.; Flukiger, R.; Dhalle, Marc M.J.; Husnjak, O.; Babic, E.

    2007-01-01

    A comparative study of pure, SiC, and C doped MgB2 wires has revealed that the SiC doping allowed C substitution and MgB2 formation to take place simultaneously at low temperatures. C substitution enhances Hc2, while the defects, small grain size, and nanoinclusions induced by C incorporation and

  20. A hydrogen ice cube

    NARCIS (Netherlands)

    Peters, C.J.; Schoonman, J.; Schrauwers, A.

    2004-01-01

    Hydrogen is considered to be a highly promising energy carrier. Nonetheless, before hydrogen can become the fuel of choice for the future a number of slight problems will have to be overcome. For example, how can hydrogen be safely stored? Motor vehicles running on hydrogen may be clean in concept

  1. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  2. Two new constructions of approximately SIC-POVMs from multiplicative characters

    Science.gov (United States)

    Luo, Gaojun; Cao, Xiwang

    2017-12-01

    In quantum information theory, symmetric informationally complete positive operator-valued measures (SIC-POVMs) are relevant to quantum state tomography [8], quantum cryptography [15], and foundational studies [16]. In general, it is hard to construct SIC-POVMs and only a few classes of them existed, as we know. Moreover, we do not know whether there exists an infinite class of them. Many researchers tried to construct approximately symmetric informationally complete positive operator-valued measures (ASIC-POVMs). In this paper, we propose two new constructions of ASIC-POVMs for prime power dimensions only by using multiplicative characters over finite fields.

  3. Neurocisticercosis racemosa (sic), diagnóstico orientado por neuroimágenes

    OpenAIRE

    Carlos Hugo Zapata; Sergio Alberto Vargas; Carlos Santiago Uribe

    2017-01-01

    La neurocisticercosis es la primera causa de parasitosis del sistema nervioso central y de epilepsia adquirida en países en desarrollo. Sus manifestaciones clínicas, especialmente de la variante racemosa (sic), son pleomorfas e inespecíficas, características que hacen de su diagnóstico un desafío para el clínico. El objetivo de este informe fue describir dos casos de neurocisticercosis racemosa (sic), en los cuales las neuroimágenes permitieron hacer el diagnóstico definitivo. El primer ca...

  4. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    OpenAIRE

    Kim, Weon-Ju; Kim, Daejong; Park, Ji Yeon

    2013-01-01

    The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiC)n interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs t...

  5. Spallation recoil II: Xenon evidence for young SiC grains

    Science.gov (United States)

    Ott, U.; Altmaier, M.; Herpers, U.; Kuhnhenn, J.; Merchel, S.; Michel, R.; Mohapatra, R. K.

    2005-11-01

    We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ˜1190 and ˜268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ˜0.19 μm, which implies retention of ˜70% for 126Xe produced in "typical" presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ˜66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ-spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe-N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ˜5% lower in Xe-N than in Q-Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe-N (e.g., as in Q-Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale

  6. Development of Gate and Base Drive Using SiC Junction Field Effect Transistors

    Science.gov (United States)

    2008-05-01

    junction transistor ( BJT ). The circuit rapidly drove a SiC BJT on and off with 4H-SiC semiconductor devices to perform to 150 °C. For the gate of an n...Figures iv List of Tables iv SiC Power Transistors : Focus on JFETs 1 JFET Background 1 JFETs Used, and Circuit Using Normally-Off JFET to Drive BJT On...induction transistors . JFET Background JFET and MOS have unipolar conduction without conductivity modulation by injected minority carriers as for BJT

  7. Role of Defects in Swelling and Creep of Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Voyles, Paul [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-16

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  8. Quasi-Freestanding multilayer graphene films on the carbon face of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, D. A.; Hwang, C. G.; Fedorov, A. V.; Lanzara, A.

    2010-06-30

    The electronic band structure of as-grown and doped graphene grown on the carbon face of SiC is studied by high-resolution angle-resolved photoemission spectroscopy, where we observe both rotations between adjacent layers and AB-stacking. The band structure of quasi-freestanding AB-bilayers is directly compared with bilayer graphene grown on the Si-face of SiC to study the impact of the substrate on the electronic properties of epitaxial graphene. Our results show that the C-face films are nearly freestanding from an electronic point of view, due to the rotations between graphene layers.

  9. High efficiency battery converter with SiC devices for residential PV systems

    DEFF Research Database (Denmark)

    Pham, Cam; Teodorescu, Remus; Kerekes, Tamas

    2013-01-01

    The demand for high efficiency and higher power density is a challenge for Si-based semiconductors due to the physical characteristics of material. These can be overcome by employing wide-band-gap materials like SiC. This paper compares a second generator SiC MOSFETs against a normally-on Trench ...... JFETs and theirs performances in a high efficiency battery converter for residential photovoltaic systems. The prototypes are 3 kW converters with more than 98% efficiency and high simplicity and power density....

  10. System for the growth of bulk SiC crystals by modified CVD techniques

    Science.gov (United States)

    Steckl, Andrew J.

    1994-01-01

    The goal of this program was the development of a SiC CVD growth of films thick enough to be useful as pseudo-substrates. The cold-walled CVD system was designed, assembled, and tested. Extrapolating from preliminary evaluation of SiC films grown in the system at relatively low temperatures indicates that the growth rate at the final temperatures will be high enough to make our approach practical. Modifications of the system to allow high temperature growth and cleaner growth conditions are in progress. This program was jointly funded by Wright Laboratory, Materials Directorate and NASA LeRC and monitored by NASA.

  11. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    In the present work, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to ascertain the grafting of an organic layer of polyvinyl alcohol (PVA) onto the surface...... introduced in the characteristic TO and LO mode of vibration of SiC nanocrystals after grafting procedure.XRD analysis confirmed that the grafting procedure did not alter the crystalline geometry of SiC nanocrystals. TEM and SEM images further support the FTIR and Raman spectroscopic results and confirm...

  12. Brazing of SiC using Cu-Si non reactive alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gasse, A.; Chaumat, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. d`Etudes des Materiaux; Rado, C.; Eustathopoulos, N. [Institut National Polytechnique, 38 - Grenoble (France)

    1995-12-31

    Wetting and adherence of filler metals on ceramics used to be achieved with active elements such as titanium. However, sessile drop experiments had already showed that a Cu 24 at % Si alloy has excellent wetting and adherence properties on SiC substrates under high vacuum without any measurable reactivity. Despite this good wetting, incomplete filling of joints was sometimes observed with such alloys in certain brazing experiments. This discrepancy is explained by a detailed analysis of Cu-Si alloy wetting mechanisms on SiC and confirmed by brazing experiments in different geometries. (authors). 8 figs.

  13. A Novel DBC Layout for Current Imbalance Mitigation in SiC MOSFET Multichip Power Modules

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2016-01-01

    This paper proposes a novel Direct Bonded Copper (DBC) layout for mitigating the current imbalance among the paralleled SiC MOSFET dies in multichip power modules. Compared to the traditional layout, the proposed DBC layout significantly reduces the circuit mismatch and current coupling effect......, which consequently improves the current sharing among the paralleled SiC MOSFET dies in power module. Mathematic analysis and circuit model of the DBC layout are presented to elaborate on the superior features of the proposed DBC layout. Simulation and experimental results further verify the theoretical...

  14. A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis

    DEFF Research Database (Denmark)

    Ceccarelli, L.; Reigosa, P. D.; Iannuzzo, F.

    2017-01-01

    The aim of this paper is to provide an extensive overview about the state-of-art commercially available SiC power MOSFET, focusing on their short-circuit ruggedness. A detailed literature investigation has been carried out, in order to collect and understand the latest research contribution within...... this topic and create a survey of the present scenario of SiC MOSFETs reliability evaluation and failure mode analysis, pointing out the evolution and improvements as well as the future challenges in this promising device technology....

  15. A Novel DBC Layout for Current Imbalance Mitigation in SiC MOSFET Multichip Power Modules

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2016-01-01

    This letter proposes a novel direct bonded copper (DBC) layout for mitigating the current imbalance among the paralleled SiC MOSFET dies in multichip power modules. Compared to the traditional layout, the proposed DBC layout significantly reduces the circuit mismatch and current coupling effect......, which consequently improves the current sharing among the paralleled SiC MOSFET dies in power module. Mathematic analysis and circuit model of the DBC layout are presented to elaborate the superior features of the proposed DBC layout. Simulation and experimental results further verify the theoretical...

  16. CVD solutions for new directions in SiC and GaN epitaxy

    OpenAIRE

    Li, Xun

    2015-01-01

    This thesis aims to develop a chemical vapor deposition (CVD) process for the new directions in both silicon carbon (SiC) and gallium nitride (GaN) epitaxial growth. The properties of the grown epitaxial layers are investigated in detail in order to have a deep understanding. SiC is a promising wide band gap semiconductor material which could be utilized for fabricating high-power and high-frequency devices. 3C-SiC is the only polytype with a cubic structure and has superior physical properti...

  17. Improvement of Strength and Oxidation Resistance for SiC/graphite Composites by SiC coating

    Science.gov (United States)

    Yang, Wanli; Shi, Zhongqi; Li, Hongwei; Li, Zhen; Jin, Zhihao; Qiao, Guanjun

    2011-03-01

    SiC/graphite composites with exelent machinable properties and thermal shock behaviour were successfully fabricated by pressureless sintering at 1700°C in nitrogen atmosphere. A dipping infiltration process was applied to improve the strength and oxidation resistance of the composites. Dense SiC coating was covered on the composites' surface by heat-treating at 1400°C in nitrogen atmosphere with dipping infiltration of silica sol and phenolic resin solutions. The flexural strength of the SiC coated composites were improved from 60 MPa to 140 MPa obviously, and the weight loss of the SiC coated composites was reduced more than 20 % comparing with the uncoated composites by oxidation resistance testing at 1000 °C for 24 h in air. SEM micrographs shows that SiC coating was surrounded the surface of pores and XRD pattern revealed that the new layer was SiC.

  18. Advanced Sensor Arrays and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Ryter, John Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramaiyan, Kannan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brosha, Eric L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    Novel sensor packaging elements were designed, fabricated, and tested in order to facilitate the transition of electrochemical mixed-potential sensors toward commercialization. Of the two designs completed, the first is currently undergoing field trials, taking direct measurements within vehicle exhaust streams, while the second is undergoing preliminary laboratory testing. The sensors’ optimal operating conditions, sensitivity to hydrogen, and long-­term baseline stability were also investigated. The sensing capabilities of lanthanum chromite (La0.8Sr0.2CrO3) and indium-­doped tin oxide (ITO) working electrodes were compared, and the ITO devices were selected for pre-­commercial field trials testing at a hydrogen fuel cell vehicle fueling station in California. Previous data from that fueling station were also analyzed, and the causes of anomalous baseline drift were identified.

  19. Testing of porous SiC with dense coating under relevant conditions for Flow Channel Insert application

    Energy Technology Data Exchange (ETDEWEB)

    Ordás, N., E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Bereciartu, A.; García-Rosales, C. [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Moroño, A.; Malo, M.; Hodgson, E.R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abellà, J.; Colominas, S. [Institut Químic de Sarrià, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, L. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2014-10-15

    Highlights: • Porous SiC coated by CVD with a dense coating was developed for Flow Channel Inserts (FCI) in dual-coolant blanket concept. • Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives. • Flexural strength, thermal and electrical conductivity, and microstructure of uncoated and coated porous SiC are presented. • Adhesion of coating to porous SiC and its corrosion behavior under Pb-17.5Li at 700 °C are shown. - Abstract: Thermally and electrically insulating porous SiC ceramics are attractive candidates for Flow Channel Inserts (FCI) in dual-coolant blanket concepts thanks to its relatively inexpensive manufacturing route. To prevent tritium permeation and corrosion by Pb-15.7 a dense coating has to be applied on the porous SiC. Despite not having structural function, FCI must exhibit sufficient mechanical strength to withstand strong thermal gradients and thermo-electrical stresses during operation. This work summarizes the results on the development of coated porous SiC for FCI. Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives and a carbonaceous phase as pore former. Sintering was performed in inert gas at 1850–1950 °C during 15 min to 3 h, followed by oxidation at 650 °C to eliminate the carbonaceous phase. The most promising bulk materials were coated with a ∼30 μm thick dense SiC by CVD. Results on porosity, bending tests, thermal and electrical conductivity are presented. The microstructure of the coating, its adhesion to the porous SiC and its corrosion behavior under Pb-17.5Li are also shown.

  20. Gas sensor with attenuated drift characteristic

    Science.gov (United States)

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  1. Aptamer Sensors

    OpenAIRE

    Marrazza, Giovanna

    2017-01-01

    In the last years, great progress has been accomplished in the development of aptamer sensors with different transducers. In order to improve the sensitivity of these biosensors, several methodologies have been employed. In this Special Issue, the state of art and the future trends in the field of aptamer sensors have been explored.

  2. Microfabricated Multianalyte Sensor Arrays for Metabolite Monitoring

    Science.gov (United States)

    2005-09-01

    Americans with diabetes may be 50 percent higher. It is the leading cause of blindness and kidney failure among others. Intensive treatment with the goal of...Microsensors" Sensors & Actuators B 2005, 105, 365-377. 13. Zahr, A.; de Villiers, M.; Pishko, M. "Encapsulation of Drug Nanoparticles in Self-Assembled...Grimes, C. "A Room Temperature TiO2 -Nanotube Hydrogen Sensor Able to Photoactively Self-clean from Environmental Contamination" J. Mater. Res. 2004

  3. Soldier sensor

    Science.gov (United States)

    Kossives, Dean P.

    2010-04-01

    A new sensor system, whose functionality is not reliant on mass spectrometric or ionization methods, is combined with a substrate technology which allows for separately optimized control circuits and standardized advanced sensors in a simple packaging methodology to foster an entirely new generation of modular optical sensors. These sensors will be based on biologic and chromic compounds. The compounds will utilize reversible reaction chemistry to enable self cleaning. The detector's operation is based on simple changes in absorbance, reflectance, color, or other optical properties. The time to saturation of the sensor will determine the relative concentration in the air. A detection scheme based on these properties will function in high background levels and also be able to pick up low level concentrations as well.

  4. Pathogen Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Irudayaraj

    2009-10-01

    Full Text Available The development of sensors for detecting foodborne pathogens has been motivated by the need to produce safe foods and to provide better healthcare. However, in the more recent times, these needs have been expanded to encompass issues relating to biosecurity, detection of plant and soil pathogens, microbial communities, and the environment. The range of technologies that currently flood the sensor market encompass PCR and microarray-based methods, an assortment of optical sensors (including bioluminescence and fluorescence, in addition to biosensor-based approaches that include piezoelectric, potentiometric, amperometric, and conductometric sensors to name a few. More recently, nanosensors have come into limelight, as a more sensitive and portable alternative, with some commercial success. However, key issues affecting the sensor community is the lack of standardization of the testing protocols and portability, among other desirable elements, which include timeliness, cost-effectiveness, user-friendliness, sensitivity and specificity. [...

  5. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  6. A microBio reactor for hydrogen production.

    Energy Technology Data Exchange (ETDEWEB)

    Volponi, Joanne V.; Walker, Andrew William

    2003-12-01

    The purpose of this work was to explore the potential of developing a microfluidic reactor capable of enzymatically converting glucose and other carbohydrates to hydrogen. This aggressive project was motivated by work in enzymatic hydrogen production done by Woodward et al. at OWL. The work reported here demonstrated that hydrogen could be produced from the enzymatic oxidation of glucose. Attempts at immobilizing the enzymes resulted in reduced hydrogen production rates, probably due to buffer compatibility issues. A novel in-line sensor was also developed to monitor hydrogen production in real time at levels below 1 ppm. Finally, a theoretical design for the microfluidic reactor was developed but never produced due to the low production rates of hydrogen from the immobilized enzymes. However, this work demonstrated the potential of mimicking biological systems to create energy on the microscale.

  7. Hydrogen nanobubble at normal hydrogen electrode

    Science.gov (United States)

    Nakabayashi, S.; Shinozaki, R.; Senda, Y.; Yoshikawa, H. Y.

    2013-05-01

    Electrochemically formed hydrogen nanobubbles at a platinum rotating disk electrode (RDE) were detected by re-oxidation charge. The dissolution time course of the hydrogen nanobubbles was measured by AFM tapping topography under open-circuit conditions at stationary platinum and gold single-crystal electrodes. The bubble dissolution at platinum was much faster than that at gold because two types of diffusion, bulk and surface diffusion, proceeded at the platinum surface, whereas surface diffusion was prohibited at the gold electrode. These findings indicated that the electrochemical reaction of normal hydrogen electrode partly proceeded heterogeneously on the three-phase boundary around the hydrogen nanobubble.

  8. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A novel biomimetic approach in designing and fabricating engineering ceramic materials has gained much interest in recent times. Following this approach, synthesis has been made of dense Si–SiC duplex ceramic composites and highly porous SiC ceramics in the image of the morphological features inherent in ...

  9. SiC MODIFICATIONS TO MELCOR FOR SEVERE ACCIDENT ANALYSIS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brad J. Merrill; Shannon M Bragg-Sitton

    2013-09-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) Light Water Reactor (LWR) Sustainability Program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. The Fuels Pathway within this program focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement (e.g. fully ceramic cladding). The DOE-NE Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) is also conducting research on materials for advanced, accident tolerant fuels and cladding for application in operating LWRs. To aide in this assessment, a silicon carbide (SiC) version of the MELCOR code was developed by substituting SiC in place of Zircaloy in MELCOR’s reactor core oxidation and material property routines. The purpose of this development effort is to provide a numerical capability for estimating the safety advantages of replacing Zr-alloy components in LWRs with SiC components. This modified version of the MELCOR code was applied to the Three Mile Island (TMI-2) plant accident. While the results are considered preliminary, SiC cladding showed a dramatic safety advantage over Zircaloy cladding during this accident.

  10. Localized Surface Plasmon on 6H SiC with Ag Nanoparticles

    DEFF Research Database (Denmark)

    Wei, Yi; Fadil, Ahmed; Ou, Haiyan

    2017-01-01

    ) of the emissions of the donor-acceptor pairs of the SiC substrate. Roomtemperature measurements of photoluminescence (PL), transmittance and time-resolved photoluminescence (TRPL) were applied to characterize the LSP resonances. Through the finitedifference time-domain (FDTD) simulation of the LSP resonance...

  11. Residual stress measurements in an SiC continuous fiber reinforced Ti matrix composite

    NARCIS (Netherlands)

    Willemse, P.F.; Mulder, F.M.; Wei, W.; Rekveldt, M.Th.; Knight, K.S.

    2000-01-01

    During the fabrication of ceramic fiber reinforced metal matrix composites mismatch stresses will be introduced due to differences in thermal expansion coefficients between the matrix and the fibers. Calculations, based on a coaxial cylinder model, [1 and 2] predict that, for a Ti matrix SiC

  12. A Comparison of SiC Power Switches for High-Rel Defense Applications (preprint)

    Science.gov (United States)

    2007-07-01

    junction transistor ( BJT ). The VJFET is principally valued for having demonstrated the highest current and voltage combinations, positive...for defense applications. They are the vertical junction field effect transistor (VJFET), the metal-oxide-semiconductor FET (MOSFET), and the bipolar...most technologically ready SiC power switch, the vertical junction field effect transistor (VJFET), has been demonstrated in preproduction devices at

  13. Temperature dependence of a microstructured SiC coherent thermal source

    Science.gov (United States)

    Hervé, Armande; Drévillon, Jérémie; Ezzahri, Younès; Joulain, Karl; De Sousa Meneses, Domingos; Hugonin, Jean-Paul

    2016-09-01

    By ruling a grating on a polar material that supports surface phonon-polaritons such as silicon carbide (SiC), it is possible to create directional and monochromatic thermal sources. So far, most of the studies have considered only materials with room temperature properties as the ones tabulated in Palik's handbooks. Recently, measurements have provided experimental data of the SiC dielectric function at different temperatures. Here we study, numerically, the effect of the temperature dependence of the dielectric function on the thermal emission of SiC gratings (1D grating, in a first approach), heated at different temperatures. When materials are heated, the position of the grating emissivity peak shifts towards higher wavelength values. A second consequence of the temperature dependence of optical properties is that room temperature designed gratings are not optimal for higher temperatures. However, by modifying the grating parameters, it is possible to find an emission peak, with a maximum of emissivity near 1, for each temperature. We tried first to catch some patterns in the emissivity variation. Then, we obtained a grating, which leads to an optimum emissivity for all available temperature data for SiC.

  14. Nanocrystalline Grapheme Layer Induced on Surface of SiC Thin Film by Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hanbyul; Jeon, Youngeun; Jung, Sungchul; Kwak, Jinsung; Kim, Sung Youb; Kwon, Soonyong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Ko, Jaehyeon [Hallym Univ., Chuncheon (Korea, Republic of); Lee, Byung Cheol; Kang, Hyun Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    It is observed that a graphene layer forms on the surface of a thin film of SiC by irradiating electron beam (e-beam) directly on the sample surface in high vacuum ({approx}10{sup -6} Torr) environment. A SiC thin film was deposited on a sapphire substrate by RF magnetron sputtering at the substrate temperature of {approx}200 .deg. C. The e-beam irradiation on the sample surface was performed at an acceleration voltage of 8 kV. The graphene layer formation was revealed by the characteristic peaks (D, G, 2D) in the measured Raman spectra. Based on the relatively large D peak in the Raman spectra, the formed graphene layer is thought to be nanocrystalline. The quality of e-beam induced graphene layer was found to be improved noticeably by a Ni film over-coating on the SiC thin film before electron beam irradiation, which is confirmed by the significant changes of measured Raman spectra compared with the spectra without Ni over-coating. The Ni film is believed to enhance the carbon adatom motion, leading to the formation of graphene layer with larger grain size. Our experimental results propose a plausible method for directly writing graphene patterns on SiC thin film just by irradiating e-beam on the sample surface without using conventional pattering processes.

  15. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) power supply for the Power Processing Unit (PPU) of...

  16. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    Unknown

    Jones 1975). The next generation aircraft engines need lighter high performance structural materials with high temperature capabilities (Sorensen 1993). ... 1997). Ti–6Al–4V/sigma-1240(SiC) composites exhibit a high elastic stiffness (axial elastic modulus above 200 GPa) and fracture strength (UTS ≈ 1⋅8 GPa) and a ...

  17. Machinability evaluation of Al–4% Cu–7.5% SiC metal matrix ...

    Indian Academy of Sciences (India)

    Machinability evaluation of Al–4%Cu–7.5%SiC metal matrix composite (MMC) prepared by powder metallurgy (P/M) process is presented. Specimens are prepared with 99.85% pure aluminum added with 4% copper and 7.5% silicon carbide particles by volume fraction. Scanning electron microscope image shows even ...

  18. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Science.gov (United States)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  19. Fabrication and characterization of Ti3SiC2–SiC nanocomposite by ...

    Indian Academy of Sciences (India)

    Administrator

    in situ reaction synthesis of TiC/Si/Al powders. BAOYAN LIANG†, MINGZHI WANG*, ... The microstructure and mechanical properties of Ti3SiC2–SiC nanocomposite fabricated by in situ hot pressing (HP) synthesis process were .... 7 mm × 27 mm bars for measuring the three-point bend- ing strength with a span of 20 mm. 3.

  20. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.