WorldWideScience

Sample records for si-p dimers dissociative

  1. Model, First-Principle Calculation of Ammonia Dissociation on Si(100 Surface. Importance of Proton Tunneling

    Directory of Open Access Journals (Sweden)

    Marek Z. Zgierski

    2003-06-01

    Full Text Available Abstract: The dissociation of an ammonia molecule on a cluster of Si atoms simulating the 100 silicon crystal structure with two Si dimers has been investigated by means of the DFT and an approximate instanton methods. The model corresponds to the low coverage limit of the surface. Absolute rate constants of two different dissociation paths are evaluated together with deuterium isotope effects. It is demonstrated that, even at room temperatures, the process is dominated by tunneling and that dissociation to a silicon atom of the adjacent dimer, rather than a silicon within the same dimer, is the prevailing mechanism. This leads to creation of a metastable structure which will slowly decay through a two-step hydrogen atom migration towards the absolute minimum on the potential energy surface corresponding to the NH2 group and the hydrogen atom residing in the same dimer.

  2. Carbene supported dimer of heavier ketenimine analogue with p and si atoms.

    Science.gov (United States)

    Roy, Sudipta; Dittrich, Birger; Mondal, Totan; Koley, Debasis; Stückl, A Claudia; Schwederski, Brigitte; Kaim, Wolfgang; John, Michael; Vasa, Suresh Kumar; Linser, Rasmus; Roesky, Herbert W

    2015-05-20

    A cyclic alkyl(amino) carbene (cAAC) stabilized dimer [(cAAC)Si(P-Tip)]2 (2) (Tip = 2,4,6-triisopropylphenyl) is reported. 2 can be considered as a dimer of the heavier ketenimine (R2C═C═N-R) analogue. The dark-red rod-shaped crystals of 2 were synthesized by reduction of the precursor, cAAC-dichlorosilylene-stabilized phosphinidene (cAAC)SiCl2→P-Tip with sodium napthalenide. The crystals of 2 are storable at room temperature for several months and stable up to 215 °C under an inert atmosphere. X-ray single-crystal diffraction revealed that 2 contains a cyclic nonplanar four-membered SiPSiP ring. Magnetic susceptibility measurements confirmed the singlet spin ground state of 2. Cyclic voltammetry of 2 showed a quasi-reversible one-electron reduction indicating the formation of the corresponding radical anion 2(•-), which was further characterized by EPR measurements in solution. The electronic structure and bonding of 2 and 2(•-) were studied by theoretical calculations. The experimentally obtained data are in good agreement with the calculated values.

  3. Dissociation dynamics of anionic and excited neutral fragments of gaseous SiCl4 following Cl 2p and Si 2p core-level excitations

    International Nuclear Information System (INIS)

    Chen, J M; Lu, K T; Lee, J M; Chou, T L; Chen, H C; Chen, S A; Haw, S C; Chen, T H

    2008-01-01

    The state-selective dissociation dynamics for anionic and excited neutral fragments of gaseous SiCl 4 following Cl 2p and Si 2p core-level excitations were characterized by combining measurements of the photon-induced anionic dissociation, x-ray absorption and UV/visible dispersed fluorescence. The transitions of core electrons to high Rydberg states/doubly excited states in the vicinity of both Si 2p and Cl 2p ionization thresholds of gaseous SiCl 4 lead to a remarkably enhanced production of anionic, Si - and Cl - , fragments and excited neutral atomic, Si*, fragments. This enhancement via core-level excitation near the ionization threshold of gaseous SiCl 4 is explained in terms of the contributions from the Auger decay of doubly excited states, shake-modified resonant Auger decay, or/and post-collision interaction. These complementary results provide insight into the state-selective anionic and excited neutral fragmentation of gaseous molecules via core-level excitation.

  4. Yeast hexokinase: substrate-induced association--dissociation reactions in the binding of glucose to hexokinase P-II.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1976-06-15

    A method is described for the purification of native hexokinases P-I and P-II from yeast using preparative isoelectric focussing to separate the isozymes. The binding of glucose to hexokinase P-II, and the effect of this on the monomer--dimer association--dissociation reaction have been investigated quantitatively by a combination of titrations of intrinsic protein fluorescence and equilibrium ultracentrifugation. Association constants for the monomer-dimer reaction decreased with increasing pH, ionic strength and concentration of glucose. Saturating concentrations of glucose did not bring about complete dissociation of the enzyme showing that both sites were occupired in the dimer. At pH 8.0 and high ionic strength, where the enzyme existed as monomer, the dissociation constant of the enzyme-glucose complex was 3 X 10(-4) mol 1(-1) and was independent of the concentration of enzyme. Binding to the dimeric form at low pH and ionic strength (I=0.02 mol 1(-1), pH less than 7.5) was also independent of enzyme concentration (in the range 10-1000 mug ml-1) but was much weaker. The process could be described by a single dissociation constant, showing that the two available sites on the dimer were equivalent and non-cooperative; values of the intrinsic dissociation constant varied from 2.5 X 10(-3) mol 1(-1) at pH 7.0 to 6 X 10(-3) at pH 6.5. Under intermediate conditions (pH 7.0, ionic strength=0.15 mol 1(-1)), where monomer and dimer coexisted, the binding of glucose showed weak positive cooperatively (Hill coefficient 1.2); in addition, the binding was dependent upon the concentration of enzyme in the direction of stronger binding at lower concentrations. The results show that the phenomenon of half-sites reactivity observed in the binding of glucose to crystalline hexokinase P-II does not occur in solution; the simplest explanation of our finding the two sites to be equivalent is that the dimer results from the homologous association of two identical subunits.

  5. Study of DNA Origami Dimerization and Dimer Dissociation Dynamics and of the Factors that Limit Dimerization.

    Science.gov (United States)

    Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Popov, Mary; Khara, Dinesh C; Nir, Eyal

    2018-06-01

    Organizing DNA origami building blocks into higher order structures is essential for fabrication of large structurally and functionally diverse devices and molecular machines. Unfortunately, the yields of origami building block attachment reactions are typically not sufficient to allow programed assembly of DNA devices made from more than a few origami building blocks. To investigate possible reasons for these low yields, a detailed single-molecule fluorescence study of the dynamics of rectangular origami dimerization and origami dimer dissociation reactions is conducted. Reactions kinetics and yields are investigated at different origami and ion concentrations, for different ion types, for different lengths of bridging strands, and for the "sticky end" and "weaving welding" attachment techniques. Dimerization yields are never higher than 86%, which is typical for such systems. Analysis of the dynamic data shows that the low yield cannot be explained by thermodynamic instability or structural imperfections of the origami constructs. Atomic force microscopy and gel electrophoresis evidence reveal self-dimerization of the origami monomers, likely via blunt-end interactions made possible by the presence of bridging strands. It is suggested that this mechanism is the major factor that inhibits correct dimerization and means to overcome it are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Measurement of the {sup 26}Si(p,γ){sup 27}P cross section via the Coulomb dissociation of {sup 27}P

    Energy Technology Data Exchange (ETDEWEB)

    Marganiec, Justyna [TU Darmstadt (Germany); EMMI-GSI Darmstadt (Germany); GSI Darmstadt (Germany); Beceiro-Novo, Saul; Cortina Gil, Dolores [Universidade de Santiago de Compostela (Spain); Typel, Stefan; Heil, Michael; Suemmerer, Klaus [GSI Darmstadt (Germany); Wimmer, Christine [Goethe-Universitaet, Frankfurt am Main (Germany); Aumann, Thomas [TU Darmstadt (Germany); GSI Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    The reaction {sup 26}Si(p,γ){sup 27}P can, under certain conditions, be significant in the context of the astrophysical rp process. Since {sup 26}Si has a short half-life, the reaction was investigated via the time-reversed process, the Coulomb dissociation (CD) of {sup 27}P into {sup 26}Si and proton. The differential CD cross sections can be converted to radiative-capture cross sections via virtual-photon theory and detailed balance. The experiment was performed at the LAND/R{sup 3}B setup at GSI Darmstadt. The secondary {sup 27}P beam was produced by fragmentation of {sup 36}Ar and impinged onto a Pb target. The incoming beam particles and outgoing reaction products were identified and tracked event by event. Corrections were applied to select only transitions directly to the {sup 26}Si ground state and to remove contributions from nuclear processes and reactions in layers outside the target. The results are compared to potential-model calculations of the CD of {sup 27}P. Consequences for the astrophysical rp process are discussed.

  7. Dissociative recombination of the weakly bound NO-dimer cation: Cross sections and three-body dynamics

    NARCIS (Netherlands)

    Petrignani, A.; Andersson, P.U.; Pettersson, J.B.C.; Thomas, R.; Hellberg, F.; Ehlerding, A.; Larsson, M.; Zande, W.J. van der

    2005-01-01

    Dissociative recombination (DR) of the dimer ion (NO)(2)(+) has been studied at the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory, Stockholm. The experiments were aimed at determining details on the strongly enhanced thermal rate coefficient for the dimer, interpreting the

  8. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    Science.gov (United States)

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  9. Electromagnetic dissociation of relativistic [sup 28]Si by nucleon emission

    Energy Technology Data Exchange (ETDEWEB)

    Sonnadara, U.J.

    1992-12-01

    A detailed study of the electromagnetic dissociation of [sup 28]Si by nucleon emission at E[sub lab]/A = 14.6 (GeV/nucleon was carried out with [sup 28]Si beams interacting on [sup 208]Pb). [sup 120]Sn. [sup 64]C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z[sub T] and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of [sup 28]Si [yields] p+[sup 27]Al and [sup 28]Si [yields] n+[sup 27]Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in [sup 28]Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear [sup 28]Si([sub [gamma],p])[sup 27]Al and [sup 28]Si([sub [gamma],n])[sup 27]Si. The possibilities of observing double giant dipole resonance excitations in [sup 28]Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  10. Dissociative multiple photoionization of SiBr4 and GeBr4 in the VUV and X-ray regions: a comparative study of inner-shell processes involving Si(2p, 2s), Ge(3d, 3p, 3s), and Br(3d, 3p, 3s)

    International Nuclear Information System (INIS)

    Boo, Bong Hyun; Saito, Norio

    2003-01-01

    Dissociative multiple photoionization of MBr 4 (M=Si, Ge) in the Si(2p, 2s), Ge(3d, 3s, 3p), and Br(3d, 3p, 3s) inner-shell regions has been studied by using time-of-flight (TOF) mass spectrometry coupled to synchrotron radiation in the ranges of 50∼944 eV for SiBr 4 and 50∼467 eV for GeBr 4 . Total photoion and photoion-photoion coincidence (PIPICO) yields have been measured as functions of the photon energy. Here, giant shape resonances have been observed beyond the thresholds of the 3d shells owing to the Br(3d 10 )→Br(3d 9 -f) excitation, showing the similar patterns for both of the systems. The ranges and the intensities of the shape resonances are found to be tremendously broad and enhanced, respectively, by the tetrahedral arrangement of the bromine ligands. In addition to the giant resonances, we have observed discrete features corresponding to the Br(3d), Si(2p), and Si(2s) in SiBr 4 and to the Br(3d), Ge(3p), and Ge(3s) in GeBr 4 . The dissociation processes of multiply charged parent ions have also been evaluated from the variations of photoelectron-photoion coincidence (PEPICO) and PIPICO yields with the photon energy. Over the entire energies examined, most efficient PIPICO channels involve Br + -Br + , Br + -MBr + , and M + -Br + (M=Si, Ge), the formation of which indicates that the total destruction of the molecules is a dominant process in the dissociative photoionization of the molecules

  11. Dimer-flipping-assisted diffusion on a Si(001) surface

    International Nuclear Information System (INIS)

    Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.

    2000-01-01

    The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows

  12. Experimental and Theoretical Study of the Rotation of Si Ad-dimers on the Si(100) Surface

    DEFF Research Database (Denmark)

    Swartzentruber, B. S.; Smith, A. P.; Jonsson, Hannes

    1996-01-01

    Scanning tunneling microscopy measurements and first principles density functional theory calculations are used to study the rate of the rotational transition of Si ad-dimers on top of the surface dimer rows of Si(100). The rotation rate and the relative population of the two stable orientations ...... of the ad-dimers are measured as a function of the applied electric field to extract the zero-field behavior. The measured relative stability of the two configurations is used to test the accuracy of various functionals for density functional theory calculations....

  13. Dimerization of nitrophorin 4 at low pH and comparison to the K1A mutant of nitrophorin 1.

    Science.gov (United States)

    Berry, Robert E; Yang, Fei; Shokhireva, Tatiana K; Amoia, Angela M; Garrett, Sarah A; Goren, Allena M; Korte, Stephanie R; Zhang, Hongjun; Weichsel, Andrzej; Montfort, William R; Walker, F Ann

    2015-01-20

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer-dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and (1)H{(15)N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The "closed loop" form of the A-B and G-H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.

  14. Electromagnetic dissociation of relativistic 28Si by nucleon emission

    Energy Technology Data Exchange (ETDEWEB)

    Sonnadara, Upal Jayasiri [Univ. of Pittsburgh, PA (United States)

    1992-12-01

    A detailed study of the electromagnetic dissociation of 28Si by nucleon emission at Elab/A = 14.6 (GeV/nucleon was carried out with 28Si beams interacting on 208Pb). 120Sn. 64C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge ZT and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of 28Sip+27Al and 28Si → n+27Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in 28Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear 28Si(γ,p)27Al and 28Si(γ,n)27Si. The possibilities of observing double giant dipole resonance excitations in 28Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  15. A possible highly active supported Ni dimer catalyst for O{sub 2} dissociation: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Yanxing, E-mail: 2016025@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Xilin; Mao, Jianjun [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)

    2017-04-30

    Graphical abstract: The minimum energy paths (MEPs) for the dissociation process of O{sub 2} on the surfaces of bare YSZ (111) and Ni{sub n}/YSZ (111) (n = 1, 2 and 3). - Highlights: • The catalytic activity of supported metal catalysts is closely related to the size of metal particles. • The dissociation of O{sub 2} on the YSZ (111) surface is largely enhanced by the supported Ni cluster. • The supported Ni dimer is predicted to be the smallest Ni cluster needed for efficient O{sub 2} dissociation. • The results would provide an important reference to improve the activity and efficiency of the Ni/YSZ(111) nanocomposite catalysts in cost-effective materials. - Abstract: The adsorption and dissociation of O{sub 2} on the supported small nickel clusters with one-, two-, three-Ni atoms on yttria-stabilized zirconia (YSZ) (111) surfaces, as well as those on the bare YSZ(111) and Ni(111) surfaces are comparatively studied using ab initio density functional theory calculations. It is found that the dissociation of O{sub 2} on the YSZ(111) surface is largely enhanced by the supported Ni dimer, which is predicted to be the smallest Ni cluster needed for efficient O{sub 2} dissociation. The results would provide an important reference to improve the activity and efficiency of the Ni/YSZ(111) nanocomposite catalysts in cost-effective materials.

  16. Dimers at Ge/Si(001) surfaces: Ge coverage dependent quenching, reactivation of flip-flop motion, and interaction with dimer vacancy lines

    International Nuclear Information System (INIS)

    Hirayama, H.; Mizuno, H.; Yoshida, R.

    2002-01-01

    We studied Ge coverage (θ Ge ) dependent quenching, reactivation of the flip-flop motion, and interaction with dimer vacancy lines (DVLs) of dimers on Ge/Si(001) surfaces using a scanning tunneling microscope (STM) combined with a molecular beam epitaxy apparatus. Deposition of ∼0.3 ML (monolayer) Ge quenched the flip-flop motion, making all dimers asymmetric. Further deposition introduced DVLs at θ Ge ≥∼0.5 ML, and symmetric dimer domains appeared again locally at θ≥1.5 ML. High-resolution STM images indicated that asymmetric dimer rows always invert their phase in alternation with buckled dimer's up-end at the DVLs. Low-temperature STM images indicated that the symmetric dimer domains were due to flip-flopping of asymmetric dimers activated by large θ Ge at room temperature. The symmetric dimer domains extended along the dimer rows over the DVLs due to the phase correlation

  17. Relativistic and non-relativistic electronic molecular-structure calculations for dimers of 4p-, 5p-, and 6p-block elements.

    Science.gov (United States)

    Höfener, Sebastian; Ahlrichs, Reinhart; Knecht, Stefan; Visscher, Lucas

    2012-12-07

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga(2) to Br(2) , the 5p-block dimers In(2) to I(2) , and their atoms. Extended basis sets up to pentuple zeta are employed and energies extrapolated to the complete basis-set limit. Relativistic and non-relativistic results for the dissociation energy D(e) are in close agreement with each other and previously published data, provided non-relativistic or scalar-relativistic results are corrected for spin-orbit contributions taken from the literature. An exception is Te(2) where theoretical results scatter by 0.085 eV. By virtue of this agreement it is unexpected that comparison with the experimental D(0) or D(e) dissociation energies (zero-point vibrational effects are negligible in this context) reveal errors larger than 0.1 eV for Ga(2), Ge(2), and Sb(2). Only relativistic treatments are presented for the 6p-block cases Tl(2) to At(2). Sufficient agreement with experimental data is found only for Pb(2) and Bi(2), the deviation of the computed and experimental D(0) values for Po(2) is again larger than 0.1 eV. Deviations of 0.1 eV between the computed and experimental D(0) values are a major reason for concern and call for additional investigations in both fields to clarify the situation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol; Srivastava, Pooja; Choi, Keunsu

    2016-01-01

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.

  19. Early stage oxynitridation process of Si(001) surface by NO gas: Reactive molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, 5, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Nanomaterial Science and Technology, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Srivastava, Pooja; Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, 5, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792 (Korea, Republic of)

    2016-03-28

    Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.

  20. Determination of the Tetramer-Dimer Equilibrium Constant of Rabbit ...

    African Journals Online (AJOL)

    Hemoglobin is a tetrameric protein which is able to dissociate into dimers. The dimers can in turn dissociate into tetramers. It has been found that dimers are more reactive than tetramers. The difference in the reactivity of these two species has been used to determine the tetramerdimer dissociation constant of various ...

  1. Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer

    DEFF Research Database (Denmark)

    Kollipost, F.; Larsen, René Wugt; Domanskaya, A.V.

    2012-01-01

    The highest frequency hydrogen bond fundamental of formic acid dimer, ν24 (Bu), is experimentally located at 264 cm−1. FTIR spectra of this in-plane bending mode of (HCOOH)2 and band centers of its symmetric D isotopologues (isotopomers) recorded in a supersonic slit jet expansion are presented...... thermodynamics treatment of the dimerization process up to room temperature. We obtain D0 = 59.5(5) kJ/mol as the best experimental estimate for the dimer dissociation energy at 0 K. Further improvements have to wait for a more consistent determination of the room temperature equilibrium constant....

  2. Analysis of the dimerized Sb/Si(001)-(2x1) surface by x-ray standing waves

    International Nuclear Information System (INIS)

    Lyman, P.F.; Qian, Y.; Bedzyk, M.J.

    1994-12-01

    X-ray standing wave measurements were undertaken to study the bonding position of Sb adatoms on the Sb-saturated Si(001)-(2x1) surface. Using the (004) and (022) Bragg reflections, the authors find that the Sb atoms form dimers, and that the center of the Sb ad-dimers lies 1.64 angstrom above the bulk-like Si(004) surface atomic plane. These in-plane results are compared to two structural models consisting of dimers whose bonds are parallel to the surface plane and whose centers are either shifted or unshifted (parallel to the dimer bond direction) relative to the underlying substrate planes. The authors thus find two special cases consistent with these data: one with symmetric (unshifted) dimers having a dimer bond length of 2.81 angstrom, and the other with midpoint-shifted dimers, having a bond length of 2.88 angstrom and a lateral shift of 0.21 angstrom

  3. Dissociative scattering of low-energy SiF{sub 3}{sup +} and SiF{sup +} ions (5-200 eV) on Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hiroyuki; Baba, Yuji; Sasaki, T A [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Dissociative scattering of molecular SiF{sub 3}{sup +} and SiF{sup +} ions from a Cu(100) single crystal surface has been investigated in the incident energy range from 5 eV to 200 eV with a scattering angle of 77deg. The scattered ion intensity of dissociative ions and parent molecular ions were measured as a function of incident ion energy. The observed data show that onset energies of dissociation for SiF{sub 3}{sup +} and SiF{sup +} ions are 30 eV and 40 eV, respectively. The obtained threshold energies are consistent with a impulsive collision model where the dissociation of incident ion is caused by vibrational excitation during collision. (author)

  4. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    International Nuclear Information System (INIS)

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-01-01

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair

  5. Revealing the Dimeric Crystal and Solution Structure of β-Lactoglobulin at pH 4 and Its pH and Salt Dependent Monomer–Dimer Equilibrium

    DEFF Research Database (Denmark)

    Khan, Sanaullah; Ipsen, Richard; Almdal, Kristoffer

    2018-01-01

    The dimeric structure of bovine β-lactoglobulin A (BLGA) at pH 4.0 was solved to 2.0 Å resolution. Fitting the BLGA pH 4.0 structure to SAXS data at low ionic strength (goodness of fit R-factor = 3.6%) verified the dimeric state in solution. Analysis of the monomer–dimer equilibrium at varying pH...... and ionic strength by SAXS and scattering modeling showed that BLGA is dimeric at pH 3.0 and 4.0, shifting toward a monomer at pH 2.2, 2.6, and 7.0 yielding monomer/dimer ratios of 80/20%, 50/50%, and 25/75%, respectively. BLGA remained a dimer at pH 3.0 and 4.0 in 50–150 mM NaCl, whereas the electrostatic...... shielding raised the dimer content at pH 2.2, 2.6, and 7.0, i.e., below and above the pI. Overall, the findings provide new insights into the molecular characteristics of BLGA relevant for dairy product formulations and for various biotechnological and pharmaceutical applications....

  6. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium.

    Science.gov (United States)

    Hjörleifsson, Jens G; Ásgeirsson, Bjarni

    2017-09-26

    The effect of ionic strength on enzyme activity and stability varies considerably between enzymes. Ionic strength is known to affect the catalytic activity of some alkaline phosphatases (APs), such as Escherichia coli AP, but how ions affect APs is debated. Here, we studied the effect of various ions on a cold-adapted AP from Vibrio splendidus (VAP). Previously, we have found that the active form of VAP is extremely unstable at low ionic strengths. Here we show that NaCl increased the activity and stability of VAP and that the effect was pH-dependent in the range of pH 7-10. The activity profile as a function of pH formed two maxima, indicating a possible conformational change. Bringing the pH from the neutral to the alkaline range was accompanied by a large increase in both the K i for inorganic phosphate (product inhibition) and the K M for p-nitrophenyl phosphate. The activity transitions observed as the pH was varied correlated with structural changes as monitored by tryptophan fluorescence. Thermal and urea-induced inactivation was shown to be accompanied by neither dissociation of the active site metal ions nor dimer dissociation. This would suggest that the inactivation involved subtle changes in active site conformation. Furthermore, the VAP dimer equilibrium was studied for the first time and shown to highly favor dimerization, which was dependent on pH and NaCl concentration. Taken together, the data support a model in which anions bind to some specific acceptor in the active site of VAP, resulting in great stabilization and catalytic rate enhancement, presumably through a different mechanism.

  7. Investigation of split-off dimers on the Si(001)2x1 surface

    International Nuclear Information System (INIS)

    Schofield, S.R.; O'Brien, J.L.; Curson, N.J.; Simmons, M.Y.; Clark, R.G.

    2002-01-01

    Full text: A detailed knowledge of the nature of crystalline defects on the Si(001)2x1 surface is becoming increasingly important as more research effort is dedicated to producing atomic-scale electronic devices. Here we present high-resolution scanning tunnelling microscopy (STM) images and ab initio pseudopotential calculations of an unusual defect of the silicon (001) surface called the split-off dimer. In high-resolution filled-state images, split-off dimers appear as a pair of protrusions, in contrast to the surrounding surface dimers that appear as 'bean-shaped' protrusions. We show that π-bonding does not exist between the atoms of the split-off dimer, but instead, the dimer atoms form π-bonds with two second layer atoms as part of a tetramer bonding arrangement. We discuss the strain associated with split-off dimer defects and describe how this strain significantly affects the bonding arrangements and local density of states around these defects

  8. Initial oxidation processes of Si(001) surfaces by supersonic O2 molecular beams. Different oxidation mechanisms for clean and partially-oxidized surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    Potential energy barriers for dissociative chemisorption of O 2 molecules on Si(001) clean surfaces were investigated using supersonic O 2 molecular beams and photoemission spectroscopy. Relative initial sticking probabilities of O 2 molecules and the saturated oxygen amount on the Si(001) surface were measured as a function of incident energy of O 2 molecules. Although the probability was independent on the incident energy in the region larger than 1 eV, the saturated oxygen amount was dependent on the incident energy without energy thresholds. An Si-2p photoemission spectrum of the Si(001) surface oxidized by thermal O 2 gas revealed the oxygen insertion into dimer backbond sites. These facts indicate that a reaction path of the oxygen insertion into dimer backbonds through bridge sites is open for the clean surface oxidation, and the direct chemisorption probability at the backbonds is negligibly small comparing with that at the bridge sites. (author)

  9. Ab initio investigation of isomerism in not rigid dimer molecules of (LiAB)2 salts with 20 valent electrons (AB-=BO-, AlO-, BS-, AlS-, CN-, CP-, SiN-, SiP-)

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; MakKi, M.L.; Shlojer, P.R.

    1999-01-01

    Ab initio calculations of potential energy surfaces in neighborhood of key structures of non rigid dimer molecules of lithium salts of (LiAB) 2 type - (LiBO) 2 , (LiAlO) 2 , (LiBS) 2 , (LiAlS) 2 , (LiCN) 2 , (LiSiN) 2 , (LiCP) 2 , (LiSiP) 2 - with 20 valent electrons are done in the framework of MP2/6-31G8//HF/6-31G* + ZPE(HF/6-31G*) and MP4SDTQ/6-31G*//MP2/6-31G* + ZPE(MP2/6-31G*) approximations. Totality of low-lying isomers containing four- and six-membered cycles with lithium bridges is localized. It is shown that for all cycles not rigidity to high deformation of angles in the case of low energy changes is characterized. Equilibrium geometrical parameters, relative energy and energy of isomer decomposition, frequency and intensities of normal vibrations are determined [ru

  10. Addimer diffusions on Si(100)

    International Nuclear Information System (INIS)

    Lee, Gun Do; Wang, C. Z.; Lu, Z. Y.; Ho, K. M.

    1999-01-01

    The diffusion pathways along the trough and between the trough and the dimer row on the Si(100) surface are investigated by tight-binding molecular dynamics calculations using the environment dependent tight-binding silicon potential and by ab initio calculations using the Car-Parrinello method. The studies discover new diffusion pathways consisting of rotation of addimer. The calculated energy barrier are in excellent agreement with experiment. The rotational diffusion pathway between the trough and the dimer row is much more energetically favorable than other diffusion pathways by parallel and perpendicular addimer. The new pathway along the trough is nearly same as the energy barrier of the diffusion pathway by dissociation of the addimer

  11. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers...... in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic ß-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization...... and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization...

  12. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    Science.gov (United States)

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  13. Photo-dissociation of hydrogen passivated dopants in gallium arsenide

    International Nuclear Information System (INIS)

    Tong, L.; Larsson, J.A.; Nolan, M.; Murtagh, M.; Greer, J.C.; Barbe, M.; Bailly, F.; Chevallier, J.; Silvestre, F.S.; Loridant-Bernard, D.; Constant, E.; Constant, F.M.

    2002-01-01

    A theoretical and experimental study of the photo-dissociation mechanisms of hydrogen passivated n- and p-type dopants in gallium arsenide is presented. The photo-induced dissociation of the Si Ga -H complex has been observed for relatively low photon energies (3.48 eV), whereas the photo-dissociation of C As -H is not observed for photon energies up to 5.58 eV. This fundamental difference in the photo-dissociation behavior between the two dopants is explained in terms of the localized excitation energies about the Si-H and C-H bonds

  14. Exploiting pH-Regulated Dimer-Tetramer Transformation of Concanavalin A to Develop Colorimetric Biosensing of Bacteria.

    Science.gov (United States)

    Xu, Xiahong; Yuan, Yuwei; Hu, Guixian; Wang, Xiangyun; Qi, Peipei; Wang, Zhiwei; Wang, Qiang; Wang, Xinquan; Fu, Yingchun; Li, Yanbin; Yang, Hua

    2017-05-03

    Gold nanoparticles (AuNPs) aggregation-based colorimetric biosensing remains a challenge for bacteria due to their large size. Here we propose a novel colorimetric biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk samples based on pH-regulated transformation of dimer/tetramer of Concanavalin A (Con A) and the Con A-glycosyl recognition. Briefly, antibody-modified magnetic nanoparticles was used to capture and concentrate E. coli O157:H7 and then to label with Con A; pH adjusted to 5 was then applied to dissociate Con A tetramer to release dimer, which was collected and re-formed tetramer at pH of 7 to cause the aggregation of dextran-modified AuNPs. The interesting pH-dependent conformation-transformation behavior of Con A innovated the design of the release from the bacteria surface and then the reconstruction of Con A. Therefore, we realized the sensitive colorimetric biosensing of bacteria, which are much larger than AuNPs that is generally not suitable for this kind of method. The proposed biosensor exhibited a limit of detection down to 41 CFU/mL, short assay time (~95 min) and satisfactory specificity. The biosensor also worked well for the detection in milk sample, and may provide a universal concept for the design of colorimetric biosensors for bacteria and virus.

  15. Silicon isotope separation utilizing infrared multiphoton dissociation of Si2F6 irradiated with two-color CO2 laser light

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Hashimoto, Masashi; Arai, Shigeyoshi

    2002-01-01

    Silicon isotope separation has been done by utilizing the Infrared Multiphoton Dissociation (IRMPD) of Si 2 F 6 irradiated with two-color CO 2 laser lights. The two-color excitation method improved the separation efficiency keeping the high enrichment factors. For example, 99.74% of 28 Si was obtained at 49.63% dissociation of Si 2 F 6 after the simultaneous irradiation of 200 pulses with 966.23 cm -1 photons (0.084 J/cm 2 ) and 954.55 cm -1 photons (0.658 J/cm 2 ), while 2000 pulses were needed to obtain 99.35% of 28 Si at 35.6% dissociation in the case of only one-color irradiation at 954.55 cm -1 (0.97 J/cm 2 ). (author)

  16. Conformational lock and dissociative thermal inactivation of lentil seedling amine oxidase.

    Science.gov (United States)

    Moosavi-Nejad, S Zahra; Moosavi-Movahedi, Ali-Akbar; Rezaei-Tavirani, Mostafa; Floris, Giovanni; Medda, Rosaria

    2003-03-31

    The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.

  17. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  18. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations

    International Nuclear Information System (INIS)

    Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin

    2003-01-01

    We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed

  19. Adsorption and dissociation of oxygen molecules on Si(111)-(7×7) surface

    International Nuclear Information System (INIS)

    Niu, Chun-Yao; Wang, Jian-Tao

    2013-01-01

    The adsorption and dissociation of O 2 molecules on Si(111)-(7×7) surface have been studied by first-principles calculations. Our results show that all the O 2 molecular species adsorbed on Si(111)-(7×7) surface are unstable and dissociate into atomic species with a small energy barrier about 0.1 eV. The single O 2 molecule adsorption tends to form an ins×2 or a new metastable ins×2* structure on the Si adatom sites and the further coming O 2 molecules adsorb on those structures to produce an ad-ins×3 structure. The ad-ins×3 structure is indeed highly stable and kinetically limited for diving into the subsurface layer to form the ins×3-tri structure by a large barrier of 1.3 eV. Unlike the previous views, we find that all the ad-ins, ins×2, and ad-ins×3 structures show bright images, while the ins×2*, ins×3, and ins×3-tri structures show dark images. The proposed oxidation pathways and simulated scanning tunneling microscope images account well for the experimental results and resolve the long-standing confusion and issue about the adsorption and reaction of O 2 molecules on Si(111) surface

  20. Surface-site-selective study of valence electronic states of a clean Si(111)-7x7 surface using Si L23VV Auger electron and Si 2p photoelectron coincidence measurements

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Tahara, Masashi; Nagaoka, Shin-ichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2011-01-01

    Valence electronic states of a clean Si(111)-7x7 surface are investigated in a surface-site-selective way using high-resolution coincidence measurements of Si pVV Auger electrons and Si 2p photoelectrons. The Si L 23 VV Auger electron spectra measured in coincidence with energy-selected Si 2p photoelectrons show that the valence band at the highest density of states in the vicinity of the rest atoms is shifted by ∼0.95 eV toward the Fermi level (E F ) relative to that in the vicinity of the pedestal atoms (atoms directly bonded to the adatoms). The valence-band maximum in the vicinity of the rest atoms, on the other hand, is shown to be shifted by ∼0.53 eV toward E F relative to that in the vicinity of the pedestal atoms. The Si 2p photoelectron spectra of Si(111)-7x7 measured in coincidence with energy-selected Si L 23 VV Auger electrons identify the topmost surface components, and suggest that the dimers and the rest atoms are negatively charged while the pedestal atoms are positively charged. Furthermore, the Si 2p-Si L 23 VV photoelectron Auger coincidence spectroscopy directly verifies that the adatom Si 2p component (usually denoted by C 3 ) is correlated with the surface state just below E F (usually denoted by S 1 ), as has been observed in previous angle-resolved photoelectron spectroscopy studies.

  1. Dynamics of the water dimer + nitric oxide collision

    Energy Technology Data Exchange (ETDEWEB)

    Ree, Jong Baik [Dept. of Chemistry Education, Chonnam National University, Gwangju (Korea, Republic of); Kim, Yoo Hang [Dept. of Chemistry, Inha University, Incheon (Korea, Republic of); Shin, Hyung Kyu [Dept. of Chemistry, University of Nevada, Nevada (Korea, Republic of)

    2017-02-15

    Collision-induced intermolecular energy transfer and intramolecular vibrational redistribution in the collision of a water dimer and nitric oxide are studied by use of quasiclassical procedures. Intermolecular energy flow is shown to occur mainly through a direct-mode mechanism transferring relatively large amounts in strong collisions. About a quarter of the energy initially deposited in the dimer transfers to the ground state NO, while the rest redistributes among internal motions of the collision system. The main portion of initial energy deposited in the dimer redistributes in the stretches of the donor monomer through the 1:1 resonance followed by in the bend through the 1:2 resonance. Energy transfer from the excited NO to the ground-state dimer is equally efficient, transferring more than half the initial excitation to the donor monomer, the efficiency that is attributed to the internal modes operating as energy reservoirs. The hydrogen bond shares about 15% of the initial excitation stored in both dimer-to-NO and NO-to-dimer processes as a result of strong coupling of the hydrogen bond with the proton-donor OH bond of the monomer. A small fraction of collisions proceeds through a complex-mode mechanism and lead to NO dissociation, the dissociated O atom showing a propensity to form a new hydrogen bond.

  2. Metal-porphyrin interactions. V. Kinetics of cyanide addition to a water soluble iron porphyrin dimer(1)

    Energy Technology Data Exchange (ETDEWEB)

    Hambright, P; Rishnamurthy, M K

    1975-01-01

    The kinetics of cyanide addition to the water-soluble oxybridged iron dimer of tetra (p-sulophenyl) porphin indicate that HCN is the reactant. The rate law is of the form: Rate = (3.8 +- 0.2) x 10/sup 4/ (Fe dimer) (HCN)/(1 + (3.1 +- 0.3) x 10/sup 10/ (H/sup +/)) at 25/sup 0/ ..mu.. = 0.7 (NaNO/sub 3/). The cyano iron dimer dissociates into dicyano iron monomers by two pathways, one first order in (H/sup +/), and one proportional to (H/sup +/)(CN/sup -/)/sup 2/. The mechanism of this dimer reaction is compared to iron porphyrin monomer systems.

  3. Reaction paths of phosphine dissociation on silicon (001)

    International Nuclear Information System (INIS)

    Warschkow, O.; McKenzie, D. R.; Curson, N. J.; Schofield, S. R.; Marks, N. A.; Wilson, H. F.; Radny, M. W.; Smith, P. V.; Reusch, T. C. G.; Simmons, M. Y.

    2016-01-01

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH 3 ) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH 2 +H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH 2 fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH 3 stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments

  4. Structural origin of Si-2p core-level shifts from Si(100)-c[4x2] surface: A spectral x-ray photoelectron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States); Denlinger, J. [Univ. of Wisconsin, Milwaukee, WI (United States)][Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have performed angle-resolved x-ray photoelectron diffraction (XPD) from a Si(100)-c(4x2) surface to study the structural origin of Si-2p core-level shifts. In the experiment, the highly resolved surface Si-2p core-level spectra were measured as a fine grid of hemisphere and photon energies, using the SpectroMicroscopy Facility {open_quotes}ultraESCA{close_quotes} instrument. By carefully decomposing the spectra into several surface peaks, the authors are able to obtain surface-atom resolved XPD patterns. Using a multiple scattering analysis, they derived a detailed atomic model for the Si(100)-c(4x2) surface. In this model, the asymmetric dimers were found tilted by 11.5 plus/minus 2.0 degrees with bond length of 2.32 plus/minus 0.05{angstrom}. By matching model XPD patterns to experiment, the authors can identify which atoms in the reconstructed surface are responsible for specific photoemission lines in the 2p spectrum.

  5. Spontaneous dissociation of Co2(CO8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

    Directory of Open Access Journals (Sweden)

    Kaliappan Muthukumar

    2012-07-01

    Full Text Available We present experimental results and theoretical simulations of the adsorption behavior of the metal–organic precursor Co2(CO8 on SiO2 surfaces after application of two different pretreatment steps, namely by air plasma cleaning or a focused electron beam pre-irradiation. We observe a spontaneous dissociation of the precursor molecules as well as autodeposition of cobalt on the pretreated SiO2 surfaces. We also find that the differences in metal content and relative stability of these deposits depend on the pretreatment conditions of the substrate. Transport measurements of these deposits are also presented. We are led to assume that the degree of passivation of the SiO2 surface by hydroxyl groups is an important controlling factor in the dissociation process. Our calculations of various slab settings, using dispersion-corrected density functional theory, support this assumption. We observe physisorption of the precursor molecule on a fully hydroxylated SiO2 surface (untreated surface and chemisorption on a partially hydroxylated SiO2 surface (pretreated surface with a spontaneous dissociation of the precursor molecule. In view of these calculations, we discuss the origin of this dissociation and the subsequent autocatalysis.

  6. Reaction paths of phosphine dissociation on silicon (001)

    Energy Technology Data Exchange (ETDEWEB)

    Warschkow, O.; McKenzie, D. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Curson, N. J. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Schofield, S. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Physics and Astronomy, University College, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Marks, N. A. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Discipline of Physics & Astronomy, Curtin University, GPO Box U1987, Perth, WA (Australia); Wilson, H. F. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); CSIRO Virtual Nanoscience Laboratory, Parkville, VIC 3052 (Australia); School of Applied Sciences, RMIT University, Melbourne, VIC 3000 (Australia); Radny, M. W.; Smith, P. V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Reusch, T. C. G.; Simmons, M. Y. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-07

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH{sub 3}) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH{sub 2}+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH{sub 2} fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH{sub 3} stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments.

  7. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    DEFF Research Database (Denmark)

    Hofener, S.; Ahlrichs, R.; Knecht, S.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga2 to Br2, the 5p-block dimers In2 to I2, and their atoms. Extended basis sets up...

  8. Silicon isotope separation utilizing infrared multiphoton dissociation of Si{sub 2}F{sub 6} irradiated with two-color CO{sub 2} laser light

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Atsushi; Ohba, Hironori; Hashimoto, Masashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishii, Takeshi; Ohya, Akio [Nuclear Development Corp., Tokai, Ibaraki (Japan); Arai, Shigeyoshi [Hill Research Co. Ltd., Tokyo (Japan)

    2002-08-01

    Silicon isotope separation has been done by utilizing the Infrared Multiphoton Dissociation (IRMPD) of Si{sub 2}F{sub 6} irradiated with two-color CO{sub 2} laser lights. The two-color excitation method improved the separation efficiency keeping the high enrichment factors. For example, 99.74% of {sup 28}Si was obtained at 49.63% dissociation of Si{sub 2}F{sub 6} after the simultaneous irradiation of 200 pulses with 966.23 cm{sup -1} photons (0.084 J/cm{sup 2}) and 954.55 cm{sup -1} photons (0.658 J/cm{sup 2}), while 2000 pulses were needed to obtain 99.35% of {sup 28}Si at 35.6% dissociation in the case of only one-color irradiation at 954.55 cm{sup -1} (0.97 J/cm{sup 2}). (author)

  9. Structure determination of the Si(001)-(2 x 1)-H reconstruction by surface X-ray diffraction: Weakening of the dimer bond by the addition of hydrogen

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Baker, J.; Nielsen, M.

    2000-01-01

    The atomic structure of the monohydride Si(001)-(2 x 1)-H reconstruction has been investigated by surface X-ray diffraction. Atomic relaxations down to the eighth layer have been determined. The bond length of the hydrogenated silicon dimers was found to be 2.47 +/- 0.02 Angstrom. which is longer...... than the dimer bond of the clean (2 x 1)-reconstructed Si(001) surface and also 5% longer than the bulk bond length of 2.35 Angstrom. The differences to the (2 x 1) structure of the clean surface are discussed in terms of the elimination of the weak pi-bond character of the dimer bond by the addition...

  10. D2 dissociative adsorption on and associative desorption from Si(100): Dynamic consequences of an ab initio potential energy surface

    DEFF Research Database (Denmark)

    Luntz, A. C.; Kratzer, Peter

    1996-01-01

    favors the symmetric one. Under the conditions of many experiments, either could dominate. The calculations show quite weak dynamic coupling to the Si lattice for both paths, i.e., weak surface temperature dependences to dissociation and small energy loss to the lattice upon desorption......Dynamical calculations are reported for D-2 dissociative chemisorption on and associative desorption from a Si(100) surface. These calculations use the dynamically relevant effective potential which is based on an ab initio potential energy surface for the ''pre-paired'' species. Three coordinates...

  11. Photoionization of helium dimers

    International Nuclear Information System (INIS)

    Havermeier, Tilo

    2010-01-01

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  12. The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer

    DEFF Research Database (Denmark)

    Danielsson, Jens; Liljedahl, Leena; Ba´ra´ny-Wallje, Elsa

    2008-01-01

    . Sml1 belongs to the class of intrinsically disordered proteins with a high degree of dynamics and very little stable structure. Earlier suggestions for a dimeric structure of Sml1 were confirmed, and from translation diffusion NMR measurements, a dimerization dissociation constant of 0.1 mM at 4...... natively disordered proteins....

  13. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions.

    Science.gov (United States)

    Zhang, Siyuan; Naab, Benjamin D; Jucov, Evgheni V; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L; Timofeeva, Tatiana V; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R

    2015-07-20

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2 , yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2 ) dissociation and of D2 -to-A electron transfer, D2 reacts with A to form D(+) and A(-) by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D(+) /0.5 D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9 V vs. FeCp2 (+/0) ) (Cp=cyclopentadienyl) due to cancelation of trends in the D(+/0) potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions

    KAUST Repository

    Zhang, Siyuan

    2015-06-18

    Dimers of 2-substituted N,N\\'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A- by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9V vs. FeCp2+/0) (Cp=cyclopentadienyl) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions

    KAUST Repository

    Zhang, Siyuan; Naab, Benjamin D.; Jucov, Evgheni V.; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L.; Timofeeva, Tatiana V.; Risko, Chad; Bredas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R.

    2015-01-01

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A- by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9V vs. FeCp2+/0) (Cp=cyclopentadienyl) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations.

    Science.gov (United States)

    Guan, Jiwen; Hu, Yongjun; Zou, Hao; Cao, Lanlan; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2012-09-28

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH(3)COOH)(n)·H(+), the feature related to the fragment ions (CH(3)COOH)H(+)·COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH(3)COOH)·H(+) and (CH(3)COOH)H(+)·COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH(3)COOH)H(+)·COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH(3)COOH)(+) becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH(3)COOH)·CH(3)CO(+). Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  17. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations

    Science.gov (United States)

    Guan, Jiwen; Hu, Yongjun; Zou, Hao; Cao, Lanlan; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2012-09-01

    In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH3COOH)n.H+, the feature related to the fragment ions (CH3COOH)H+.COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH3COOH).H+ and (CH3COOH)H+.COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH3COOH)H+.COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH3COOH)+ becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH3COOH).CH3CO+. Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.

  18. Electron transfer reactions induced by the triplet state of thiacarbocyanine dimers

    International Nuclear Information System (INIS)

    Chibisov, Alexander K.; Slavnova, Tatyana D.; Goerner, Helmut

    2004-01-01

    The photoinduced electron transfer between either cationic 5,5 ' -dichloro-3,3 ' ,9-triethylthiacarbocyanine (1) or a structurally similar anionic dye (2) and appropriate donors, e.g. ascorbic acid, and acceptors, e.g. methyl viologen, was studied by ns-laser photolysis. In aqueous solution the dyes in the ground state are present as an equilibrated mixture of dimers and monomers, whereas the triplet state is mainly populated from dimers. The triplet states of both dimers and monomers are quenched by electron donors or acceptors and the rate constant for quenching is generally 2-4 times higher for dimers than for monomers. The kinetics of triplet decay and radical formation and decay as a result of primary and secondary electron transfer were analyzed. While the one-electron reduced dimer decays due to back reactions, the one-electron oxidized dimer rapidly dissociates into the monomer and the monomeric dye radical. For the dimeric dye/donor/acceptor systems the primary photoinduced electron transfer occurs either from the donor or to the acceptor yielding the dimeric dye radicals. The one-electron reduced dimer can be efficiently oxidized by acceptors, e.g. the rate constant for reaction of the dimeric dye radical of 1 with methyl viologen (photoreductive pathway of sensitization) is 1.6x10 9 M -1 s -1 . The photooxidative pathway of sensitization is more complicated; after dissociation of the dimeric dye radical, the monomeric dye radical is reduced in a secondary electron transfer from ascorbic acid, e.g. with a rate constant of 1x10 9 M -1 s -1 for 2, yielding the monomer. On increasing the donor concentration the photooxidative pathway of sensitization is switched to a photoreductive one

  19. Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

    KAUST Repository

    Mantega, M.

    2012-07-19

    We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.

  20. Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

    KAUST Repository

    Mantega, M.; Rungger, I.; Naydenov, B.; Boland, J. J.; Sanvito, S.

    2012-01-01

    We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.

  1. Aromatic C-Nitroso Compounds and Their Dimers: A Model for Probing the Reaction Mechanisms in Crystalline Molecular Solids

    Directory of Open Access Journals (Sweden)

    Ivana Biljan

    2017-12-01

    Full Text Available This review is focused on the dimerization and dissociation of aromatic C-nitroso compounds and their dimers, the reactions that could be used as a convenient model for studying the thermal organic solid-state reaction mechanisms. This molecular model is simple because it includes formation or breaking of only one covalent bond between two nitrogen atoms. The crystalline molecular solids of nitroso dimers (azodioxides dissociate by photolysis under the cryogenic conditions, and re-dimerize by slow warming. The thermal re-dimerization reaction is examined under the different topotactic conditions in crystals: disordering, surface defects, and phase transformations. Depending on the conditions, and on the molecular structure, aromatic C-nitroso compounds can associate to form one-dimensional polymeric structures and are able to self-assemble on gold surfaces.

  2. RDE-4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA.

    Science.gov (United States)

    Parker, Greg S; Eckert, Debra M; Bass, Brenda L

    2006-05-01

    In organisms ranging from Arabidopsis to humans, Dicer requires dsRNA-binding proteins (dsRBPs) to carry out its roles in RNA interference (RNAi) and micro-RNA (miRNA) processing. In Caenorhabditis elegans, the dsRBP RDE-4 acts with Dicer during the initiation of RNAi, when long dsRNA is cleaved to small interfering RNAs (siRNAs). RDE-4 is not required in subsequent steps, and how RDE-4 distinguishes between long dsRNA and short siRNA is unclear. We report the first detailed analysis of RDE-4 binding, using purified recombinant RDE-4 and various truncated proteins. We find that, similar to other dsRBPs, RDE-4 is not sequence-specific. However, consistent with its in vivo roles, RDE-4 binds with higher affinity to long dsRNA. We also observe that RDE-4 is a homodimer in solution, and that the C-terminal domain of the protein is required for dimerization. Using extracts from wild-type and rde-4 mutant C. elegans, we show that the C-terminal dimerization domain is required for the production of siRNA. Our findings suggest a model for RDE-4 function during the initiation of RNAi.

  3. P300 is attenuated during dissociative episodes.

    Science.gov (United States)

    Kirino, Eiji

    2006-02-01

    The present study examined the pathophysiology of dissociative phenomena using the P300 component of event-related potentials, quantitative electroencephalography (QEEG), and morphology measures of computed tomography scan. Event-related potentials during an auditory oddball paradigm and QEEG in resting state were recorded. Patients exhibited attenuation of P300 amplitudes compared with controls during dissociative episodes, but exhibited recovery to control levels in remission. Patients had a larger Sylvian fissure-brain ratio than did controls. QEEG findings revealed no significant differences between the patients and controls or between episodes and remission in the patient group. Attenuation of the P300 can be interpreted as the result of a negative feedback loop from the medial temporal lobe to the cortex, which decreases the amount of information flow, allocation of attentional resources, and updating of working memory to avoid both excessive long-term memory system activity in medial temporal lobe and resurgence of affect-laden memories.

  4. Water dimers in the atmosphere III: equilibrium constant from a flexible potential.

    Science.gov (United States)

    Scribano, Yohann; Goldman, Nir; Saykally, R J; Leforestier, Claude

    2006-04-27

    We present new results for the water dimer equilibrium constant K(p)(T) in the range 190-390 K, using a flexible potential energy surface fitted to spectroscopical data. The increased numerical complexity due to explicit consideration of the monomer vibrations is handled via an adiabatic (6 + 6)d decoupling between intra- and intermolecular modes. The convergence of the canonical partition function of the dimer is ensured by computing all energy levels up to dissociation for total angular momentum values J = 0-5 and using an extrapolation scheme to higher values. The newly calculated values for K(p)(T) are in very good agreement with available experimental data at room temperature. At higher temperatures, an analysis of the convergence of the partition function reveals that quasi-bound states are likely to contribute to the equilibrium constant. Additional thermodynamical quantities (deltaG, deltaH, deltaS, and C(p)) have also been determined and fit to quadratic expressions a + bT + cT2.

  5. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    Science.gov (United States)

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  6. The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.

    Science.gov (United States)

    Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y

    2015-07-28

    Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.

  7. Dimers of nineteen-electron sandwich compounds: Crystal and electronic structures, and comparison of reducing strengths

    KAUST Repository

    Mohapatra, Swagat Kumar

    2014-10-03

    The dimers of some Group 8 metal cyclopentadienyl/ arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the Xray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central C-C σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these C-C bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2]2, rather similar (-1.97 to-2.15 V vs. FeCp2 +/0 in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed.

  8. Dimers of nineteen-electron sandwich compounds: Crystal and electronic structures, and comparison of reducing strengths

    KAUST Repository

    Mohapatra, Swagat Kumar; Fonari, Alexandr; Risko, Chad; Yesudas, Kada; Moudgil, Karttikay; Delcamp, Jared Heath; Timofeeva, Tatiana V.; Bredas, Jean-Luc; Marder, Seth R.; Barlow, Stephen J.

    2014-01-01

    The dimers of some Group 8 metal cyclopentadienyl/ arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the Xray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central C-C σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these C-C bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2]2, rather similar (-1.97 to-2.15 V vs. FeCp2 +/0 in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed.

  9. Electron Capture Dissociation of Weakly Bound Polypeptide Polycationic Complexes

    DEFF Research Database (Denmark)

    Haselmann, Kim F; Jørgensen, Thomas J D; Budnik, Bogdan A

    2002-01-01

    as well as specific complexes of modified glycopeptide antibiotics with their target peptide. The weak nature of bonding is substantiated by blackbody infrared dissociation, low-energy collisional excitation and force-field simulations. The results are consistent with a non-ergodic ECD cleavage mechanism.......We have previously reported that, in electron capture dissociation (ECD), rupture of strong intramolecular bonds in weakly bound supramolecular aggregates can proceed without dissociation of weak intermolecular bonds. This is now illustrated on a series of non-specific peptide-peptide dimers...

  10. Practical routes to (SiH₃)₃P: applications in group IV semiconductor activation and in group III-V molecular synthesis.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, A V G; Tolle, J; D' Costa, V R; Menendez, J; Kouvetakis, J

    2010-05-21

    The (SiH₃)₃P hydride is introduced as a practical source for n-doping of group IV semiconductors and as a highly-reactive delivery agent of -(SiH₃)₂P functionalities in exploratory synthesis. In contrast to earlier methods, the compound is produced here in high purity quantitative yields via a new single-step method based on reactions of SiH₃Br and (Me₃Sn)₃P, circumventing the need for toxic and unstable starting materials. As an initial demonstration of its utility we synthesized monosubstituted Me₂M-P(SiH₃)₂ (M = Al, Ga, In) derivatives of Me₃M containing the (SiH₃)₂P ligand for the first time, in analogy to the known Me₂M-P(SiMe₃)₂ counterparts. A dimeric structure of Me₂M-P(SiH₃)₂ is proposed on the basis of spectroscopic characterizations and quantum chemical simulations. Next, in the context of materials synthesis, the (SiH₃)₃P compound was used to dope germanium for the first time by building a prototype p(++)Si(100)/i-Ge/n-Ge photodiode structure. The resultant n-type Ge layers contained active carrier concentrations of 3-4 × 10¹⁹ atoms cm⁻³ as determined by spectroscopic ellipsometry and confirmed by SIMS. Strain analysis using high resolution XRD yielded a Si content of 4 × 10²⁰ atoms cm⁻³ in agreement with SIMS and within the range expected for incorporating Si₃P type units into the diamond cubic Ge matrix. Extensive characterizations for structure, morphology and crystallinity indicate that the Si co-dopant plays essentially a passive role and does not compromise the device quality of the host material nor does it fundamentally alter its optical properties.

  11. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.

    Science.gov (United States)

    Niu, Gang; Capellini, Giovanni; Hatami, Fariba; Di Bartolomeo, Antonio; Niermann, Tore; Hussein, Emad Hameed; Schubert, Markus Andreas; Krause, Hans-Michael; Zaumseil, Peter; Skibitzki, Oliver; Lupina, Grzegorz; Masselink, William Ted; Lehmann, Michael; Xie, Ya-Hong; Schroeder, Thomas

    2016-10-12

    The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO 2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

  12. Abrupt GaP/Si hetero-interface using bistepped Si buffer

    Energy Technology Data Exchange (ETDEWEB)

    Ping Wang, Y., E-mail: yanping.wang@insa-rennes.fr; Kuyyalil, J.; Nguyen Thanh, T.; Almosni, S.; Bernard, R.; Tremblay, R.; Da Silva, M.; Létoublon, A.; Rohel, T.; Tavernier, K.; Le Corre, A.; Cornet, C.; Durand, O. [UMR FOTON, CNRS, INSA Rennes, Rennes F-35708 (France); Stodolna, J.; Ponchet, A. [CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 04 (France); Bahri, M.; Largeau, L.; Patriarche, G. [Laboratoire de Photonique et Nanostructures, CNRS UPR 20, Route de Nozay, Marcoussis 91460 (France); Magen, C. [LMA, INA-ARAID, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2015-11-09

    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth.

  13. Abrupt GaP/Si hetero-interface using bistepped Si buffer

    International Nuclear Information System (INIS)

    Ping Wang, Y.; Kuyyalil, J.; Nguyen Thanh, T.; Almosni, S.; Bernard, R.; Tremblay, R.; Da Silva, M.; Létoublon, A.; Rohel, T.; Tavernier, K.; Le Corre, A.; Cornet, C.; Durand, O.; Stodolna, J.; Ponchet, A.; Bahri, M.; Largeau, L.; Patriarche, G.; Magen, C.

    2015-01-01

    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth

  14. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.

    Science.gov (United States)

    Rawlings, Renata A; Krishnan, Vishalakshi; Walter, Nils G

    2011-04-29

    RNA interference is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response to viruses and retrotransposons. During viral infection, the RNase-III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs) 21-24 nucleotides in length and helps load them into the RNA-induced silencing complex (RISC) to guide the cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressors (RSS) that tightly, and presumably quantitatively, bind siRNAs to thwart RNA-interference-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus, as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding [(1.69 ± 0.07) × 10(8) M(-)(1) s(-1)] and marked dissociation (k(off)=0.062 ± 0.002 s(-1)). We also observe that p19 efficiently competes with recombinant Dicer and inhibits the formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    Science.gov (United States)

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  16. Thermal diffusivity measurement for p-Si and Ag/p-Si by photoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi, E-mail: mohammed55865@yahoo.com [Department of Physics, Faculty of Science, Universiti PutraMalaysia (UPM), Serdang (Malaysia)

    2015-10-15

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f{sub c.} In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm{sup 2}/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon. (author)

  17. Thermal Diffusivity Measurement for p-Si and Ag/p-Si by Photoacoustic Technique

    Science.gov (United States)

    Hussein, Mohammed Jabbar; Yunus, W. Mahmood Mat; Kamari, Halimah Mohamed; Zakaria, Azmi

    2015-10-01

    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f c . In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm2/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon.

  18. Dimers of nineteen-electron sandwich compounds: crystal and electronic structures, and comparison of reducing strengths.

    Science.gov (United States)

    Mohapatra, Swagat K; Fonari, Alexandr; Risko, Chad; Yesudas, Kada; Moudgil, Karttikay; Delcamp, Jared H; Timofeeva, Tatiana V; Brédas, Jean-Luc; Marder, Seth R; Barlow, Stephen

    2014-11-17

    The dimers of some Group 8 metal cyclopentadienyl/arene complexes and Group 9 metallocenes can be handled in air, yet are strongly reducing, making them useful n-dopants in organic electronics. In this work, the X-ray molecular structures are shown to resemble those of Group 8 metal cyclopentadienyl/pentadienyl or Group 9 metal cyclopentadienyl/diene model compounds. Compared to those of the model compounds, the DFT HOMOs of the dimers are significantly destabilized by interactions between the metal and the central CC σ-bonding orbital, accounting for the facile oxidation of the dimers. The lengths of these CC bonds (X-ray or DFT) do not correlate with DFT dissociation energies, the latter depending strongly on the monomer stabilities. Ru and Ir monomers are more reducing than their Fe and Rh analogues, but the corresponding dimers also exhibit much higher dissociation energies, so the estimated monomer cation/neutral dimer potentials are, with the exception of that of [RhCp2 ]2 , rather similar (-1.97 to -2.15 V vs. FeCp2 (+/0) in THF). The consequences of the variations in bond strength and redox potentials for the reactivity of the dimers are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Samuel Lara-Gonzalez

    Full Text Available The dimeric nature of triosephosphate isomerases (TIMs is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  20. Energetics and dynamics of Pt dimers on Pt(110)-(1x2)

    International Nuclear Information System (INIS)

    Linderoth, T.R.; Horch, S.; Petersen, L.; Helveg, S.; Schoenning, M.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F.

    2000-01-01

    The stability and dynamics of Pt dimers on Pt(110)-(1x2) are studied using fast-scanning, variable-temperature STM. The kinetics of both dissociation and association of dimers have been quantified from a direct analysis of time-lapse STM movies. The extracted barriers are at variance with results from ab initio calculations, and we speculate that the discrepancies are due to trace amounts of gas impurities such as CO

  1. Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.

    Science.gov (United States)

    Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie

    2016-02-12

    Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    Science.gov (United States)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  3. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo

    2010-06-09

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  4. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    NARCIS (Netherlands)

    Hoefener, S.; Ahlrichs, R.; Knecht, S.; Visscher, L.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga

  5. Structural and Thermodynamic Properties of the Argon Dimer: A Computational Chemistry Exercise in Quantum and Statistical Mechanics

    Science.gov (United States)

    Halpern, Arthur M.

    2010-01-01

    Using readily available computational applications and resources, students can construct a high-level ab initio potential energy surface (PES) for the argon dimer. From this information, they can obtain detailed molecular constants of the dimer, including its dissociation energy, which compare well with experimental determinations. Using both…

  6. Dimer and String Formation during Low Temperature Silicon Deposition on Si(100)

    DEFF Research Database (Denmark)

    Smith, A. P.; Jonsson, Hannes

    1996-01-01

    We present theoretical results based on density functional theory and kinetic Monte Carlo simulations of silicon deposition and address observations made in recently reported low temperature scanning tunneling microscopy studies. A mechanism is presented which explains dimer formation on top...... of the substrate's dimer rows at 160 K and up to room temperature, while between-row dimers and longer strings of adatoms (''diluted dimer rows'') form at higher temperature. A crossover occurs at around room temperature between two different mechanisms for adatom diffusion in our model....

  7. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.

    Science.gov (United States)

    Griffiths, Scott; Mesarich, Carl H; Saccomanno, Benedetta; Vaisberg, Abraham; De Wit, Pierre J G M; Cox, Russell; Collemare, Jérôme

    2016-06-21

    Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families.

  8. Role of quaternary structure in muscle creatine kinase stability: tryptophan 210 is important for dimer cohesion.

    Science.gov (United States)

    Perraut, C; Clottes, E; Leydier, C; Vial, C; Marcillat, O

    1998-07-01

    A mutant of the dimeric rabbit muscle creatine kinase (MM-CK) in which tryptophan 210 was replaced has been studied to assess the role of this residue in dimer cohesion and the importance of the dimeric state for the native enzyme stability. Wild-type protein equilibrium unfolding induced by guanidine hydrochloride occurs through intermediate states with formation of a molten globule and a premolten globule. Unlike the wild-type enzyme, the mutant inactivates at lower denaturant concentration and the loss of enzymatic activity is accompanied by the dissociation of the dimer into two apparently compact monomers. However, the Stokes radius of the monomer increases with denaturant concentration as determined by size exclusion chromatography, indicating that, upon monomerization, the protein structure is destabilized. Binding of 8-anilinonaphthalene-1-sulfonate shows that the dissociated monomer exposes hydrophobic patches at its surface, suggesting that it could be a molten globule. At higher denaturant concentrations, both wild-type and mutant follow similar denaturation pathways with formation of a premolten globule around 1.5-M guanidine, indicating that tryptophan 210 does not contribute to a large extent to the monomer conformational stability, which may be ensured in the dimeric state through quaternary interactions.

  9. Inhibition of cyclobutane pyrimidine dimer formation in epidermal p53 gene of UV-irradiated mice by alpha-tocopherol

    International Nuclear Information System (INIS)

    Chen, W.; Barthelman, M.; Martinez, J.; Alberts, D.; Gensler, H.L.

    1997-01-01

    Mutations or alterations in the p53 gene have been observed in 50-100% of ultraviolet light (UV)-induced squamous cell carcinoma in humans and animals. Most of the mutations occurred at dipyrimidine sequences, suggesting that pyrimidine dimers in the p53 gene play a role in the pathogenesis of cutaneous squamous cell carcinoma. We previously showed that topical alpha-tocopherol prevents UV-induced skin carcinogenesis in the mouse. In the present study we asked whether topical alpha-tocopherol reduces the level of UV-induced cyclobutane pyrimidine dimers in the murine epidermal p53 gene. Mice received six dorsal applications of 25 mg each of alpha-tocopherol, on alternate days, before exposure to 500 J/m2 of UV-B irradiation. Mice were killed at selected times after irradiation. The level of dimers in the epidermal p53 gene was measured using the T4 endonuclease V assay with quantitative Southern hybridization. Topical alpha-tocopherol caused a 55% reduction in the formation of cyclobutane pyrimidine dimers in the epidermal p53 gene. The rate of reduction of pyrimidine dimers between 1 and 10 hours after irradiation was similar in UV-irradiated mice, regardless of alpha-tocopherol treatment. Therefore, the lower level of cyclobutane pyrimidine dimers in UV-irradiated mice treated with alpha-tocopherol than in control UV-irradiated mice resulted from the prevention of formation of the dimers, and not from enhanced repair of these lesions. Our results indicate that alpha-tocopherol acts as an effective sunscreen in vivo, preventing the formation of premutagenic DNA lesions in a gene known to be important in skin carcinogenesis

  10. Effects of recoil-implanted oxygen on depth profiles of defects and annealing processes in P{sup +}-implanted Si studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kitano, Tomohisa; Watanabe, Masahito; Kawano, Takao; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa

    1996-04-01

    Effects of oxygen atoms recoiled from SiO{sub 2} films on depth profiles of defects and annealing processes in P{sup +}-implanted Si were studied using monoenergetic positron beams. For an epitaxial Si specimen, the depth profile of defects was found to be shifted toward the surface by recoil implantation of oxygen atoms. This was attributed to the formation of vacancy-oxygen complexes and a resultant decrease in the diffusion length of vacancy-type defects. The recoiled oxygen atoms stabilized amorphous regions introduced by P{sup +}-implantation, and the annealing of these regions was observed after rapid thermal annealing (RTA) at 700degC. For a Czochralski-grown Si specimen fabricated by through-oxide implantation, the recoiled oxygen atoms introduced interstitial-type defects upon RTA below the SiO{sub 2}/Si interface, and such defects were dissociated by annealing at 1000degC. (author)

  11. Phosphorous dimerization in GaP high-pressure polymorph

    Energy Technology Data Exchange (ETDEWEB)

    Lavina, Barbara [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC), Dept. of Physics and Astronomy; Kim, Eunja [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Physics and Astronomy; Cynn, Hyunchae [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seaborg, Kelly [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC), Dept. of Physics and Astronomy; Siska, Emily [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC); Meng, Yue [Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab., High Pressure Collaborative Access Team (HPCAT); Evans, Williams [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    We report on the experimental and theoretical characterization of a novel GaP polymorph formed by laser heating of a single crystal of GaP-II in its stable region near 43 GPa. Thereby formed unstrained multigrain sample at 43 GPa and 1300 K, allowed high-resolution crystallographic analysis. We find an oS24 as an energetically optimized crystal structure contrary to oS8 reported by Nelmes et al. (1997). Our DFT calculation confirms a stable existence of oS24 between 18 – 50 GPa. The emergence of the oS24 structure is related to the differentiation of phosphorous atoms between those forming P-P dimers and those forming P-Ga bonds only. Bonding anisotropy explains the symmetry lowering with respect to what is generally expected for semiconductors high-pressure polymorphs. The metallization of GaP does not occur through a uniform change of the nature of its bonds but through the formation of an anisotropic phase containing different bond types.

  12. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs.

    Science.gov (United States)

    Zhang, Huifang M; Su, Yue; Guo, Songchuan; Yuan, Ji; Lim, Travis; Liu, Jing; Guo, Peixuan; Yang, Decheng

    2009-09-01

    Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively.

  13. Benchmarking surface signals when growing GaP on Si in CVD ambients

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, Henning

    2010-10-26

    The present work investigates the formation of GaP films prepared on Si(100) surfaces and their anti-phase disorder in metalorganic vapor phase epitaxy (MOVPE) ambients. GaP films grown on Si(100) substrates served as a lattice matched model system for the crucial III-V/Si(100) interface to form silicon-based quasi substrates. A variety of surface-sensitive methods was required to establish suitable silicon substrate preparation and subsequent GaP growth free of anti-phase domains (APDs) by analyzing the substrate surface, the interface and the epitaxial films resulting from the heteroepitaxial nucleation process. Thorough investigations in the MOVPE ambients and an appropriate improvement of the equipment and of the VPE preparation process of the substrates led to clean Si(100) surfaces free of oxygen and other contaminants, as was evidenced by Xray photoelectron spectroscopy. Predominantly double-layer stepped Si(100) surfaces, as a prerequisite for subsequent III-V integration, were obtained for 0.1 , 2 and 6 misorientation in [011] direction. In contrast to standard preparation in ultra-high vacuum (UHV), the double-layer steps on 0.1 and 2 samples featured dimers oriented perpendicular to the step edges, contradicting well-established results with and without hydrogen coverage obtained in UHV. This striking difference was attributed to the presence of hydrogen as a process gas in the MOVPE environment leading to a silicon surface covered by monohydrides after substrate preparation, as was determined by Fourier-transform infrared spectroscopy (FTIR), while reflectance anisotropy spectroscopy (RAS) showed the absence of hydrogen termination at higher temperatures. On these substrates, optical in situ spectroscopy was established as a method for the quantitative evaluation of the APD content in GaP heteroepitaxy. The analysis required a detailed understanding of the GaP(100) surface reconstructions, which have been described theoretically in the literature and

  14. Dissociative electron attachment and anion-induced dimerization in pyruvic acid

    Czech Academy of Sciences Publication Activity Database

    Zawadzki, Mateusz; Ranković, Miloš; Kočišek, Jaroslav; Fedor, Juraj

    2018-01-01

    Roč. 20, č. 10 (2018), s. 6838-6844 ISSN 1463-9076 R&D Projects: GA ČR GA17-04844S; GA ČR GJ16-10995Y Institutional support: RVO:61388955 Keywords : pyruvic acid * electron attachment * dimerization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  15. D-dimers (DD) in CVST.

    Science.gov (United States)

    Wang, Hui Fang; Pu, Chuan Qiang; Yin, Xi; Tian, Cheng Lin; Chen, Ting; Guo, Jun Hong; Shi, Qiang

    2017-06-01

    We were interested in further confirming whether D-dimers (DD) are indeed elevated in cerebral venous sinus thrombosis (CVST) as reported in those studies. CVST patients who had a plasma D-dimer test (139 cases) were included and divided into two groups: elevated D-dimer group (EDG) (>0.5 μg/mL; 65 cases) and normal D-dimer group (NDG) (≤0.5 μg/mL; 74 cases). The two groups were compared in terms of demographic data, clinical manifestation, laboratory and imaging data, using inferential statistical methods. The chi-squared and Fisher exact test showed that, compared to the NDG (74 cases), patients with elevated D-dimer levels were more likely to have a shorter symptom duration (SD) (30 ± 83.9 versus 90 ± 58.9 d, p = 0.003), more risk factors (75.4% versus 52.7%, p = 0.006), higher multiple venous sinus involvement (75.4% versus 59.5%, p = 0.037), increased fibrinogen (43.1% versus 18.9%, p = 0.037) and higher levels of blood glucose (18.3% versus 11%, p = 0.037). According to correlation analyses, D-dimer levels were positively correlated with number of venous sinuses involvement (NVS) (r = 0.321, p = 0.009) in the EDG. Multivariate logistic regression analysis showed that SD (OR, 0.025; 95% CI, 1.324-6.043; p = 0.000), NVS (OR, 1.573; 95% CI, 1.15-2.151; p = 0.005) and risk factors (OR, 3.321; 95% CI, 1.451-7.564; p = 0.004) were significantly different between the two groups. D-dimer is elevated in patients with acute/subacute CVST.

  16. VUV spectroscopy of rare gas van der Waals dimers

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.

    1982-01-01

    We have undertaken a systematic study of the photoionization spectra of the homonuclear and heteronuclear rare gas dimers in order to better understand the nature of the bonding in the Rydberg states adnd ions of these molecules. We have obtained results for Ar 2 , Kr 2 , Xe 2 , NeAr, NeKr, NeXe, ArKr, ArXe, and KrXe. Of the remaining dimer species (Ne 2 and the Herare gas dimers), only Ne 2 has been studied using photoionization mass spectrometry. The results of the present series of experiments provide information both on the excited states of the neutral dimers and on the ground and excited states of the dimer ions. Using the data obtained in these measurements, we are able to compile for the first time a nearly complete list of ground state dissociation energies for the homonuclear and heteronuclear rare gas dimer ions. Somewhat less complete results are obtained for the excited states of these species. The observed trends in binding energy provide an excellent example of the systematic changes that occur as a result of changes in atomic orbital energies, polarizability, and internuclear distance, and these trends can be explained qualitatively in terms of simple molecular orbital theory

  17. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form.

    Directory of Open Access Journals (Sweden)

    Javed M Khan

    Full Text Available Banana lectin (BL is a homodimeric protein categorized among jacalin-related family of lectins. The effect of acidic pH was examined on conformational stability of BL by using circular dichroism, intrinsic fluorescence, 1-anilino-8-napthalene sulfonate (ANS binding, size exclusion chromatography (SEC and dynamic light scattering (DLS. During acid denaturation of BL, the monomerization of native dimeric protein was found at pH 2.0. The elution profile from SEC showed two different peaks (59.65 ml & 87.98 ml at pH 2.0 while single peak (61.45 ml at pH 7.4. The hydrodynamic radii (R h of native BL was 2.9 nm while at pH 2.0 two species were found with R h of 1.7 and 3.7 nm. Furthermore at, pH 2.0 the secondary structures of BL remained unaltered while tertiary structure was significantly disrupted with the exposure of hydrophobic clusters confirming the existence of molten globule like state. The unfolding of BL with different subunit status was further evaluated by urea and temperature mediated denaturation to check their stability. As inferred from high Cm and ΔG values, the monomeric form of BL offers more resistance towards chemical denaturation than the native dimeric form. Besides, dimeric BL exhibited a Tm of 77°C while no loss in secondary structures was observed in monomers even up to 95°C. To the best of our knowledge, this is the first report on monomeric subunit of lectins showing more stability against denaturants than its native dimeric state.

  18. Structure and energetics of InN and GaN dimers

    Science.gov (United States)

    Šimová, Lucia; Tzeli, Demeter; Urban, Miroslav; Černušák, Ivan; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.

    2008-06-01

    Large-scale mapping of various dimers of indium nitride and gallium nitride in singlet and triplet electronic states is reported. Second-order perturbation theory with Møller-Plesset partitioning of the Hamiltonian (MP2) and coupled-cluster with single and double excitations corrected for the triple excitations (CCSD(T)) are used for the geometry determinations and evaluation of excitation and dissociation energies. For gallium and nitrogen we have used the singly augmented correlation-consistent triple-zeta basis set (aug-cc-pVTZ), for indium we have used the aug-cc-pVTZ-pseudopotential basis set. The dissociation energies are corrected for basis set superposition error (BBSE) including geometrical relaxation of the monomers. We compare and discuss the similarities and dissimilarities in the structural patterns and energetics of both groups of isomers, including the effect of the BSSE. Our computations show that there are not only different ground states for In 2N 2 and Ga 2N 2 but also different numbers of stable stationary points on their potential energy surface. We compare our results with the molecular data published so far for these systems.

  19. Structure and energetics of InN and GaN dimers

    International Nuclear Information System (INIS)

    Simova, Lucia; Tzeli, Demeter; Urban, Miroslav; Cernusak, Ivan; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.

    2008-01-01

    Large-scale mapping of various dimers of indium nitride and gallium nitride in singlet and triplet electronic states is reported. Second-order perturbation theory with Moller-Plesset partitioning of the Hamiltonian (MP2) and coupled-cluster with single and double excitations corrected for the triple excitations (CCSD(T)) are used for the geometry determinations and evaluation of excitation and dissociation energies. For gallium and nitrogen we have used the singly augmented correlation-consistent triple-zeta basis set (aug-cc-pVTZ), for indium we have used the aug-cc-pVTZ-pseudopotential basis set. The dissociation energies are corrected for basis set superposition error (BBSE) including geometrical relaxation of the monomers. We compare and discuss the similarities and dissimilarities in the structural patterns and energetics of both groups of isomers, including the effect of the BSSE. Our computations show that there are not only different ground states for In 2 N 2 and Ga 2 N 2 but also different numbers of stable stationary points on their potential energy surface. We compare our results with the molecular data published so far for these systems

  20. Dimerization of A-[alpha]-[SiNb3W9O40]7- by pH-controlled formation of individual Nb−µ-O−Nb linkages

    Science.gov (United States)

    Gyu-Shik Kim; Huadong Zeng; Wade A. Neiwert; Jennifer J. Cowan; Donald VanDerveer; Craig L. Hill; Ira A. Weinstock

    2003-01-01

    The reversible, stepwise formation of individual Nb−µ-O−Nb linkages during acid condensation of 2 equiv of A-[alpha]-[SiNb3W9O40]7- (1) to the tri-µ-oxo-bridged structure A-[alpha]-[Si2Nb6W18O77]8- (4) is demonstrated by a combination of X-ray crystallography and variable-pD solution 183W and 29Si NMR spectroscopy. Addition of DCl to a pD 8.4...

  1. Extremely improved InP template and GaInAsP system growth on directly-bonded InP/SiO2-Si and InP/glass substrate

    International Nuclear Information System (INIS)

    Matsumoto, Keiichi; Makino, Tatsunori; Kimura, Katsuya; Shimomura, Kazuhiko

    2013-01-01

    We have developed an ultrathin InP template with low defect density on SiO 2 -Si and glass substrate by employing wet etching and wafer direct bonding technique. We have demonstrated epitaxial growth on these substrates and GaInAs/InP multiple quantum well layers were grown by low pressure metal-organic vapor-phase epitaxy. Photoluminescence measurements of the layers show that they are optically active and we have obtained almost the same intensity from these substrates compared to the InP substrate. These results may be attributed to improvement of InP template quality and should provide further improvements in device performance realized on SiO 2 -Si and glass substrate. And, these are promising results in terms of integration of InP-based several functional optical devices on SiO 2 -Si and glass substrate. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. The yeast cell fusion protein Prm1p requires covalent dimerization to promote membrane fusion.

    Directory of Open Access Journals (Sweden)

    Alex Engel

    2010-05-01

    Full Text Available Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion.

  3. A computational study on the energetics and mechanisms for the dissociative adsorption of SiH{sub x}(x = 1–4) on W(1 1 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.H.; Raghunath, P.; Lin, M.C., E-mail: chemmcl@emory.edu

    2016-01-30

    Graphical abstract: - Highlights: • Behavior of the SiH{sub x} species on the W surface under cat-CVD conditions. • The adsorption and dissociation mechanisms of SiH{sub x}(x = 1–4) species on W(1 1 1) surface. • H-migration to its neighboring W atoms is more favorable compared to H{sub 2} elimination. - Abstract: The adsorption and dissociation mechanisms of SiH{sub x}(x = 1–4) species on W(1 1 1) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH{sub 4} on a top site, T-SiH{sub 4(a)}, it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH{sub 3}, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH{sub 2}, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiH{sub x} species on the W(1 1 1) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiH{sub x(a)} to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x = 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiH{sub x−1} within ± 1 kcal/mol.

  4. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds.

    Science.gov (United States)

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V; Zimic, Mirko

    2014-12-01

    Recombinant wild-pyrazinamidase from H37Rv Mycobacterium tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Atomic Layer Deposition of Al2O3 on H-Passivated GeSi: Initial Surface Reaction Pathways with H/GeSi(100)-2 × 1

    International Nuclear Information System (INIS)

    Yu, Shi; Qing-Qing, Sun; Lin, Dong; Han, Liu; Shi-Jin, Ding; Wei, Zhang

    2009-01-01

    The reaction mechanisms of Al(CH 3 ) 3 (TMA) adsorption on H-passivated GeSi(100)-2 × 1 surface are investigated with density functional theory. The Si–Ge and Ge–Ge one-dimer cluster models are employed to represent the GeSi(100)-2 × 1 surface with different Ge compositions. For a Si-Ge dimer of a H-passivated SiGe surface, TMA adsorption on both Si–H * and Ge–H * sites is considered. The activation barrier of TMA with the Si–H * site (1.2eV) is higher than that of TMA with the Ge-H * site (0.91 eV), which indicates that the reaction proceeds more slowly on the Si-H * site than on the Ge-H * site. In addition, adsorption of TMA is more energetically favorable on the Ge–Ge dimer than on the Si–Ge dimer of H-passivated SiGe. (atomic and molecular physics)

  6. Atomic-scale study of the adsorption of calcium fluoride on Si(100) at low-coverage regime

    International Nuclear Information System (INIS)

    Chiaravalloti, Franco; Dujardin, Gerald; Riedel, Damien; Pinto, Henry P.; Foster, Adam S.

    2011-01-01

    We investigate, experimentally and theoretically, the initial stage of the formation of Ca/Si and Si/F structures that occurs during the adsorption of CaF 2 molecules onto a bare Si(100) surface heated to 1000 K in a low-coverage regime (0.3 monolayer). A low-temperature (5 K) scanning tunneling microscope (STM) is used to observe the topographies and the electronic properties of the exposed silicon surfaces. Our atomic-scale study reveals that several chemical reactions arise during CaF 2 deposition, such as dissociation of the CaF 2 molecules and etching of the surface silicon dimers. The experimental and calculated STM topographies are compared using the density functional theory, and this comparison enables us to identify two types of reacted structures on the Si(100) surface. The first type of observed complex surface structure consists of large islands formed with a semiperiodic sequence of 3 x 2 unit cells. The second one is made of isolated Ca adatoms adsorbed at specific sites on the Si(100)-2 x 1 surface.

  7. Evolution of magnetization due to asymmetric dimerization: theoretical considerations and application to aberrant oligomers formed by apoSOD1(2SH).

    Science.gov (United States)

    Sekhar, Ashok; Bain, Alex D; Rumfeldt, Jessica A O; Meiering, Elizabeth M; Kay, Lewis E

    2016-02-17

    A set of coupled differential equations is presented describing the evolution of magnetization due to an exchange reaction whereby a pair of identical monomers form an asymmetric dimer. In their most general form the equations describe a three-site exchange process that reduces to two-site exchange under certain limiting conditions that are discussed. An application to the study of sparsely populated, transiently formed sets of aberrant dimers, symmetric and asymmetric, of superoxide dismutase is presented. Fits of concentration dependent CPMG relaxation dispersion profiles provide measures of the dimer dissociation constants and both on- and off-rates. Dissociation constants on the order of 70 mM are extracted from fits of the data, with dimeric populations of ∼2% and lifetimes of ∼6 and ∼2 ms for the symmetric and asymmetric complexes, respectively. This work emphasizes the important role that NMR relaxation experiments can play in characterizing very weak molecular complexes that remain invisible to most biophysical approaches.

  8. The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation

    International Nuclear Information System (INIS)

    Şahin, Yılmaz; Aydoğan, Şakir; Ekinci, Duygu; Turut, Abdulmecit

    2016-01-01

    Some X-ray irradiation-induced electrical characteristics of the Au/anthraquinone/p-Si and the Au/pyridine/p-Si junction devices have been investigated. The experimental ideality factors increased for both devices with increasing irradiation dose from 25 Gy to 150 Gy. These values ranged from 1.10 to 1.52 for Au/anthraquinone/p-Si and from 1.46 to 1.77 for Au/pyridine/p-Si, respectively. Furthermore, the barrier height of Au/anthraquinone/p-Si increased with increasing irradiation dose from 0.75 to 0.91 eV, whereas it displayed about a constant value for Au/pyridine/p-Si. In addition, the series resistance of both devices increased with x-ray dose too. The increase in the series resistance with x-ray irradiation has been attributed to the decrease in the active dopant densities. It was seen that the ionization damage is effective on most of the junction characteristics. The leakage current of the Au/anthraquinone/p-Si device decreased with x-ray irradiation since the irradiation induced the formation of electron-hole pairs and hydroquinone structure, and thus some of them are trapped by the interface states. The degradation of the I-V curves of Au/pyridine/p-Si/Al device is attributed to the variation of the surface or interface states distribution for the devices. The reverse and forward bias currents relatively increased after x-ray irradiation because of the decrease in bulk lifetime. In addition, ATR-FTIR spectra of anthraquinone and pyridine films showed that pyridine is more stable than anthraquinone under x-ray irradiation. - Highlights: • Two junction devices based on organic materials were fabricated. • The effect of the x-ray irradiation on devices were examined. • Both devices showed x-irradiation-dependence.

  9. The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Yılmaz [Department of Physics, Faculty of Sciences, University of Atatürk, 25240 Erzurum (Turkey); Aydoğan, Şakir, E-mail: saydogan@atauni.edu.tr [Department of Physics, Faculty of Sciences, University of Atatürk, 25240 Erzurum (Turkey); Ekinci, Duygu [Department of Chemistry, Faculty of Sciences, University of Atatürk, 25240 Erzurum (Turkey); Turut, Abdulmecit [Department of Engineering Physics, Faculty of Sciences, Istanbul Medeniyet University (Turkey)

    2016-11-01

    Some X-ray irradiation-induced electrical characteristics of the Au/anthraquinone/p-Si and the Au/pyridine/p-Si junction devices have been investigated. The experimental ideality factors increased for both devices with increasing irradiation dose from 25 Gy to 150 Gy. These values ranged from 1.10 to 1.52 for Au/anthraquinone/p-Si and from 1.46 to 1.77 for Au/pyridine/p-Si, respectively. Furthermore, the barrier height of Au/anthraquinone/p-Si increased with increasing irradiation dose from 0.75 to 0.91 eV, whereas it displayed about a constant value for Au/pyridine/p-Si. In addition, the series resistance of both devices increased with x-ray dose too. The increase in the series resistance with x-ray irradiation has been attributed to the decrease in the active dopant densities. It was seen that the ionization damage is effective on most of the junction characteristics. The leakage current of the Au/anthraquinone/p-Si device decreased with x-ray irradiation since the irradiation induced the formation of electron-hole pairs and hydroquinone structure, and thus some of them are trapped by the interface states. The degradation of the I-V curves of Au/pyridine/p-Si/Al device is attributed to the variation of the surface or interface states distribution for the devices. The reverse and forward bias currents relatively increased after x-ray irradiation because of the decrease in bulk lifetime. In addition, ATR-FTIR spectra of anthraquinone and pyridine films showed that pyridine is more stable than anthraquinone under x-ray irradiation. - Highlights: • Two junction devices based on organic materials were fabricated. • The effect of the x-ray irradiation on devices were examined. • Both devices showed x-irradiation-dependence.

  10. Implantation of P ions in SiO2 layers with embedded Si nanocrystals

    International Nuclear Information System (INIS)

    Kachurin, G.A.; Cherkova, S.G.; Volodin, V.A.; Kesler, V.G.; Gutakovsky, A.K.; Cherkov, A.G.; Bublikov, A.V.; Tetelbaum, D.I.

    2004-01-01

    The effect of 10 13 -10 16 cm -2 P ions implantation and of subsequent annealing on Si nanocrystals (Si-ncs), formed preliminarily in SiO 2 layers by the ion-beam synthesis, has been studied. Photoluminescence (PL), Raman spectroscopy, high resolution electron microscopy (HREM), X-Ray Photoelectron Spectroscopy (XPS) and optical absorption were used for characterizations. The low fluence implantations have shown even individual displacements in Si-ncs quench their PL. Restoration of PL from partly damaged Si-ncs proceeds at annealing less than 1000 deg. C. In the low fluence implanted and annealed samples an increased Si-ncs PL has been found and ascribed to the radiation-induced shock crystallization of stressed Si nanoprecipitates. Annealing at temperatures under 1000 deg. C are inefficient when P ion fluences exceed 10 14 cm -2 , thus becoming capable to amorphize Si-ncs. High crystallization temperature of the amorphized Si-ncs is attributed to a counteraction of their shell layers. After implantation of the highest P fluences an enhanced recovery of PL was found from P concentration over 0.1 at.%. Raman spectroscopy and HREM showed an increased Si-ncs number in such layers. The effect resembles the impurity-enhanced crystallization, known for heavily doped bulk Si. This effect, along with the data obtained by XPS, is considered as an indication P atoms are really present inside the Si-ncs. However, no evidence of free electrons appearance has been observed. The fact is explained by an increased interaction of electrons with the donor nuclei in Si-ncs

  11. A computational study on the energetics and mechanisms for the dissociative adsorption of SiHx(x = 1-4) on W(1 1 1) surface

    Science.gov (United States)

    Lin, Y. H.; Raghunath, P.; Lin, M. C.

    2016-01-01

    The adsorption and dissociation mechanisms of SiHx(x = 1-4) species on W(1 1 1) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH4 on a top site, T-SiH4(a), it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH3, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH2, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiHx species on the W(1 1 1) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiHx(a) to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x = 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiHx-1 within ± 1 kcal/mol.

  12. Field-based scanning tunneling microscope manipulation of antimony dimers on Si(001)

    NARCIS (Netherlands)

    Rogge, S.; Timmerman, R.H.; Scholte, P.M.L.O.; Geerligs, L.J.; Salemink, H.W.M.

    2001-01-01

    The manipulation of antimony dimers, Sb2, on the silicon (001) surface by means of a scanning tunneling microscope (STM) has been experimentally investigated. Directed hopping of the Sb2 dimers due the STM tip can dominate over the thermal motion at temperatures between 300 and 500 K. Statistics on

  13. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  14. High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy.

    Science.gov (United States)

    Piccirilli, Federica; Plotegher, Nicoletta; Ortore, Maria Grazia; Tessari, Isabella; Brucale, Marco; Spinozzi, Francesco; Beltramini, Mariano; Mariani, Paolo; Militello, Valeria; Lupi, Stefano; Perucchi, Andrea; Bubacco, Luigi

    2017-10-17

    The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sheets sequentially unfold using the unique possibility offered by high-pressure Fourier transform infrared spectroscopy. The results point toward the formation of kinetic traps in the energy landscape of aS fibril disassembly and the presence of transient partially folded species during the process. Since we found that the dissociation of wild-type aS fibrils by high pressure is reversible upon pressure release, the disassembled molecules likely retain structural information that favors fibril reformation. To deconstruct the role of the different regions of aS sequence in this process, we measured the high-pressure dissociation of amyloids formed by covalent chimeric dimers of aS (syn-syn) and by the aS deletion mutant that lacks the C-terminus, i.e., aS (1-99). The results allowed us to single out the role of dimerization and that of the C-terminus in the complete maturation of fibrillar aS. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    Science.gov (United States)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  16. Synthesis, X-ray structure, and hydrolytic chemistry of the high potent antiviral polyniobotungstate A-[alpha]-[Si2Nb6W18O77]8–

    Science.gov (United States)

    Gyu-Shik Kim; Huadong Zeng; Jeffrey T. Rhule; Ira A. Weinstock; Craig L. Hill

    1999-01-01

    Potently antiviral polyniobotungstates have been structurally characterized; the dimer A-[alpha]-[Si2Nb6W18O77]8– cleaves cleanly to the monomer A-[alpha]-[SiNb3W9O40]7– within 1 min in aqueous solution buffered at physiological (neutral) pH establishing that the monomer and not the dimer is pharmacologically relevant.

  17. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    Science.gov (United States)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  18. Surface diffusion of carbon atom and carbon dimer on Si(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhu, J.; Pan, Z.Y.; Wang, Y.X.; Wei, Q.; Zang, L.K.; Zhou, L.; Liu, T.J.; Jiang, X.M.

    2007-01-01

    Carbon (C) atom and carbon dimer (C2) are known to be the main projectiles in the deposition of diamond-like carbon (DLC) films. The adsorption and diffusion of the C adatom and addimer (C2) on the fully relaxed Si(0 0 1)-(2 x 1) surface was studied by a combination of the molecular dynamics (MD) and Monte Carlo (MC) simulation. The adsorption sites of the C and C2 on the surface and the potential barriers between these sites were first determined using the semi-empirical many-body Brenner and Tersoff potential. We then estimated their hopping rates and traced their pathways. It is found that the diffusion of both C and C2 is strongly anisotropic in nature. In addition, the C adatom can diffuse a long distance on the surface while the adsorbed C2 is more likely to be confined in a local region. Thus we can expect that smoother films will be formed on the Si(0 0 1) surface with single C atoms as projectile at moderate temperature, while with C2 the films will grow in two-dimensional islands. In addition, relatively higher kinetic energy of the projectile, say, a few tens of eV, is needed to grow DLC films of higher quality. This is consistent with experimental findings

  19. Multiscale modeling of a conditionally disordered pH-sensing chaperone.

    Science.gov (United States)

    Ahlstrom, Logan S; Law, Sean M; Dickson, Alex; Brooks, Charles L

    2015-04-24

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pK(a) (logarithmic acid dissociation constant) calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. "pH triggers" that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pK(a) value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Implantation of P ions in SiO{sub 2} layers with embedded Si nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kachurin, G.A. E-mail: kachurin@isp.nsc.ru; Cherkova, S.G.; Volodin, V.A.; Kesler, V.G.; Gutakovsky, A.K.; Cherkov, A.G.; Bublikov, A.V.; Tetelbaum, D.I

    2004-08-01

    The effect of 10{sup 13}-10{sup 16} cm{sup -2} P ions implantation and of subsequent annealing on Si nanocrystals (Si-ncs), formed preliminarily in SiO{sub 2} layers by the ion-beam synthesis, has been studied. Photoluminescence (PL), Raman spectroscopy, high resolution electron microscopy (HREM), X-Ray Photoelectron Spectroscopy (XPS) and optical absorption were used for characterizations. The low fluence implantations have shown even individual displacements in Si-ncs quench their PL. Restoration of PL from partly damaged Si-ncs proceeds at annealing less than 1000 deg. C. In the low fluence implanted and annealed samples an increased Si-ncs PL has been found and ascribed to the radiation-induced shock crystallization of stressed Si nanoprecipitates. Annealing at temperatures under 1000 deg. C are inefficient when P ion fluences exceed 10{sup 14} cm{sup -2}, thus becoming capable to amorphize Si-ncs. High crystallization temperature of the amorphized Si-ncs is attributed to a counteraction of their shell layers. After implantation of the highest P fluences an enhanced recovery of PL was found from P concentration over 0.1 at.%. Raman spectroscopy and HREM showed an increased Si-ncs number in such layers. The effect resembles the impurity-enhanced crystallization, known for heavily doped bulk Si. This effect, along with the data obtained by XPS, is considered as an indication P atoms are really present inside the Si-ncs. However, no evidence of free electrons appearance has been observed. The fact is explained by an increased interaction of electrons with the donor nuclei in Si-ncs.

  1. Hydrogen interaction kinetics of Ge dangling bonds at the Si0.25Ge0.75/SiO2 interface

    International Nuclear Information System (INIS)

    Stesmans, A.; Nguyen Hoang, T.; Afanas'ev, V. V.

    2014-01-01

    The hydrogen interaction kinetics of the GeP b1 defect, previously identified by electron spin resonance (ESR) as an interfacial Ge dangling bond (DB) defect occurring in densities ∼7 × 10 12  cm −2 at the SiGe/SiO 2 interfaces of condensation grown (100)Si/a-SiO 2 /Ge 0.75 Si 0.25 /a-SiO 2 structures, has been studied as function of temperature. This has been carried out, both in the isothermal and isochronal mode, through defect monitoring by capacitance-voltage measurements in conjunction with ESR probing, where it has previously been demonstrated the defects to operate as negative charge traps. The work entails a full interaction cycle study, comprised of analysis of both defect passivation (pictured as GeP b1 -H formation) in molecular hydrogen (∼1 atm) and reactivation (GeP b1 -H dissociation) in vacuum. It is found that both processes can be suitably described separately by the generalized simple thermal (GST) model, embodying a first order interaction kinetics description based on the basic chemical reactions GeP b1  + H 2  → GeP b1 H + H and GeP b1 H → GeP b1  + H, which are found to be characterized by the average activation energies E f  = 1.44 ± 0.04 eV and E d  = 2.23 ± 0.04 eV, and attendant, assumedly Gaussian, spreads σE f  = 0.20 ± 0.02 eV and σE d  = 0.15 ± 0.02 eV, respectively. The substantial spreads refer to enhanced interfacial disorder. Combination of the separately inferred kinetic parameters for passivation and dissociation results in the unified realistic GST description that incorporates the simultaneous competing action of passivation and dissociation, and which is found to excellently account for the full cycle data. For process times t a  ∼ 35 min, it is found that even for the optimum treatment temperature ∼380 °C, only ∼60% of the GeP b1 system can be electrically silenced, still far remote from device grade level. This

  2. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Fu, Jianqin; Deng, Banglin; Liu, Jingping; Wang, Linjun; Xu, Zhengxin; Yang, Jing; Shu, Gequn

    2014-01-01

    Highlights: • The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. • Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. • The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. • At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large

  3. Ab initio calculation on the low-lying excited states of Si2+ cation including spin–orbit coupling

    International Nuclear Information System (INIS)

    Liu, Yanlei; Zhai, Hongsheng; Zhang, Xiaomei; Liu, Yufang

    2013-01-01

    Highlights: • 24 Λ–S states are correlated to the dissociation limit of Si( 3 P g ) + Si + ( 2 P u ) are first reported. • The dissociation energies of the calculated electronic states are predicted in our work. • It is first time that the entire 54 Ω states generated from the 24 Λ–S states have been studied. • PECs of Λ–S and Ω states are depicted with the aid of avoided crossing rule between the same symmetry. - Abstract: Ab initio all-electron relativistic calculations of the low-lying excited states of Si 2 + have been performed at MRCI+Q/AVQZ level. The calculated electronic states, including 12 doublet and 12 quartet Λ–S states, are correlated to the dissociation limit of Si( 3 P g ) + Si + ( 2 P u ). Spin–orbit interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian, which causes the entire 24 Λ–S states to split into 54 Ω states. This is the first time that spin–orbit coupling (SOC) calculation has been performed on Si 2 + . The obtained potential energy curves (PECs) of Λ–S and Ω states are respectively depicted with the aid of the avoided crossing rule between the same symmetry. The spectroscopic constants of the bound Λ–S and Ω states are determined, and excellent agreements with the latest theoretical results are achieved

  4. Electronic structure and bonding in the ternary silicide YNiSi3

    International Nuclear Information System (INIS)

    Sung, Gi Hong; Kang, Dae Bok

    2003-01-01

    An analysis of the electronic structure and bonding in the ternary silicide YNiSi 3 is made, using extended Hueckel tight-binding calculations. The YNiSi 3 structure consists of Ni-capped Si 2 dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of (Y 3+ )(Ni 0 )(Si 3 ) 3- for YNiSi 3 constitutes a good starting point to describe its electronic structure. Si atoms receive electrons form the most electropositive Y in YNiSi 3 , and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the π orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi 3 can be rewritten as (Y 3+ )(Ni 2- )(Si 2- )(Si-Si) + , making the Si 2 layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si 2 double layer possesses single bonds within a dimer with a partial double bond character. Stronger Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si 2 π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis

  5. Thermal dissociation and unfolding of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2005-01-01

    The thermal stability of human insulin was studied by differential scanning microcalorimetry and near-UV circular dichroism as a function of zinc/protein ratio, to elucidate the dissociation and unfolding processes of insulin in different association states. Zinc-free insulin, which is primarily...... dimeric at room temperature, unfolded at approximately 70 degrees C. The two monomeric insulin mutants Asp(B28) and Asp(B9),Glu(B27) unfolded at higher temperatures, but with enthalpies of unfolding that were approximately 30% smaller. Small amounts of zinc caused a biphasic thermal denaturation pattern...... of insulin. The biphasic denaturation is caused by a redistribution of zinc ions during the heating process and results in two distinct transitions with T(m)'s of approximately 70 and approximately 87 degrees C corresponding to monomer/dimer and hexamer, respectively. At high zinc concentrations (>or=5 Zn(2...

  6. The novel eutectic microstructures of Si-Mn-P ternary alloy

    International Nuclear Information System (INIS)

    Wu Yaping; Liu Xiangfa

    2010-01-01

    The microstructures of Si-Mn-P alloy manufactured by the technique of combining phosphorus transportation and alloy melting were investigated using electron probe micro-analyzer (EPMA). The phase compositions were determined by energy spectrum and the varieties of eutectic morphologies were discussed. It is found that there is no ternary compound but Si, MnP and MnSi 1.75-x could appear when the Si-Mn-P alloy's composition is proper. Microstructure is greatly refined by rapid solidification technique and the amount of eutectic phases change with faster cooling rates. Moreover, primary Si or MnP are surrounded firstly by the binary eutectic (Si + MnP) and then the ternary eutectic (Si + MnSi 1.75-x + MnP) which also exhibit binary structures due to divorced eutectic determined by the particularity of some Si-Mn-P alloys.

  7. Validated thermodynamic prediction of AlP and eutectic (Si) solidification sequence in Al-Si cast alloys

    International Nuclear Information System (INIS)

    Liang, S M; Schmid-Fetzer, R

    2016-01-01

    The eutectic microstructure in hypoeutectic Al-Si cast alloys is strongly influenced by AlP particles which are potent nuclei for the eutectic (Si) phase. The solidification sequence of AlP and (Si) phases is, thus, crucial for the nucleation of eutectic silicon with marked impact on its morphology. This study presents this interdependence between Si- and P-compositions, relevant for Al-Si cast alloys, on the solidification sequence of AlP and (Si). These data are predicted from a series of thermodynamic calculations. The predictions are based on a self-consistent thermodynamic description of the Al-Si-P ternary alloy system developed recently. They are validated by independent experimental studies on microstructure and undercooling in hypoeutectic Al-Si alloys. A constrained Scheil solidification simulation technique is applied to predict the undercooling under clean heterogeneous nucleation conditions, validated by dedicated experimental observations on entrained droplets. These specific undercooling values may be very large and their quantitative dependence on Si and P content of the Al alloy is presented. (paper)

  8. Diffusion and adsorption of dimers on reconstructed Pt(1 1 0) surfaces: First principle and EAM studies

    Science.gov (United States)

    Matrane, I.; Mazroui, M.; Sbiaai, K.

    2018-03-01

    We present a density functional theory (DFT) and embedded atom method (EAM) studies of Pt2 , Au2 and AuPt dimers adsorption and diffusion on the clean Pt (1 1 0) (1 × 1) surface and (1 × 2) (1 × 3) and (1 × 4) missing row reconstructed geometries. As a first step, adsorption energies are calculated for all considered dimers, and their stability is checked by computing the binding energies. Furthermore, the energy barriers for the elementary diffusion mechanisms (concerted jump, dissociation-reassociation and leapfrog) are calculated for dimers diffusion on all considered geometries. The potential energy profile for the leapfrog mechanism is provided for dimers diffusion on the (1 × 2) (1 × 3) and (1 × 4) missing row reconstructed geometries. Our results show that each of the three dimers exhibits a qualitatively different behaviours. In addition, the obtained results provide interesting atomistic information about dimers stability and mobility, which is required for understanding the macroscopic kinetics of crystal growth.

  9. GaAsP solar cells on GaP/Si with low threading dislocation density

    International Nuclear Information System (INIS)

    Yaung, Kevin Nay; Vaisman, Michelle; Lang, Jordan; Lee, Minjoo Larry

    2016-01-01

    GaAsP on Si tandem cells represent a promising path towards achieving high efficiency while leveraging the Si solar knowledge base and low-cost infrastructure. However, dislocation densities exceeding 10"8 cm"−"2 in GaAsP cells on Si have historically hampered the efficiency of such approaches. Here, we report the achievement of low threading dislocation density values of 4.0–4.6 × 10"6 cm"−"2 in GaAsP solar cells on GaP/Si, comparable with more established metamorphic solar cells on GaAs. Our GaAsP solar cells on GaP/Si exhibit high open-circuit voltage and quantum efficiency, allowing them to significantly surpass the power conversion efficiency of previous devices. The results in this work show a realistic path towards dual-junction GaAsP on Si cells with efficiencies exceeding 30%.

  10. Evolution of a novel Si-18Mn-16Ti-11P alloy in Al-Si melt and its influence on microstructure and properties of high-Si Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Zhou

    Full Text Available A novel Si-18Mn-16Ti-11P master alloy has been developed to refine primary Si to 14.7 ± 1.3 μm, distributed uniformly in Al-27Si alloy. Comparing with traditional Cu-14P and Al-3P, Si-18Mn-16Ti-11P provided a much better refining effect, with in-situ highly active AlP. The refined Al-27Si alloy exhibited a CTE of 16.25 × 10−6/K which is slightly higher than that of Sip/Al composites fabricated by spray deposition. The UTS and elongation of refined Al-27Si alloy were increased by 106% and 235% comparing with those of unrefined alloy. It indicates that the novel Si-18Mn-16Ti-11P alloy is more suitable for high-Si Al-Si alloys and may be a candidate for refining hypereutectic Al-Si alloy for electronic packaging applications. Moreover, studies showed that TiP is the only P-containing phase in Si-18Mn-16Ti-11P master alloy. A core-shell reaction model was established to reveal mechanism of the transformation of TiP to AlP in Al-Si melts. The transformation is a liquid-solid diffusion reaction driven by chemical potential difference and the reaction rate is controlled by diffusion. It means sufficient holding time is necessary for Si-18Mn-16Ti-11P master alloy to achieve better refining effect. Keywords: Hypereutectic Al-Si alloy, Primary Si, Refinement, AlP, Thermal expansion behavior, Si-18Mn-16Ti-11P master alloy

  11. Lithium ion mobility in lithium phosphidosilicates: Crystal structure, {sup 7}Li, {sup 29}Si, and {sup 31}P MAS NMR spectroscopy, and impedance spectroscopy of Li{sub 8}SiP{sub 4} and Li{sub 2}SiP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Toffoletti, Lorenzo; Landesfeind, Johannes; Klein, Wilhelm; Gasteiger, Hubert A.; Faessler, Thomas F. [Department of Chemistry, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747, Garching bei Muenchen (Germany); Kirchhain, Holger; Wuellen, Leo van [Department of Physics, University of Augsburg, Universitaetsstrasse 1, 86159, Augsburg (Germany)

    2016-12-05

    The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li{sub 8}SiP{sub 4} and Li{sub 2}SiP{sub 2}, are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7) x 10{sup -6} Scm{sup -1} at 0 C to 1.2(2) x 10{sup -4} Scm{sup -1} at 75 C (Li{sub 8}SiP{sub 4}) and from 6.1(7) x 10{sup -8} Scm{sup -1} at 0 C to 6(1) x 10{sup -6} Scm{sup -1} at 75 C (Li{sub 2}SiP{sub 2}), as determined by impedance measurements. Temperature-dependent solid-state {sup 7}Li NMR spectroscopy revealed low activation energies of about 36 kJ mol{sup -1} for Li{sub 8}SiP{sub 4} and about 47 kJ mol{sup -1} for Li{sub 2}SiP{sub 2}. Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by {sup 7}Li, {sup 29}Si, and {sup 31}P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP{sub 4} anions and Li counterions. Li{sub 8}SiP{sub 4} contains isolated SiP{sub 4} units surrounded by Li atoms, while Li{sub 2}SiP{sub 2} comprises a three-dimensional network based on corner-sharing SiP{sub 4} tetrahedra, with the Li ions located in cavities and channels. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Oxidation Behavior of HfB2-SiC Materials in Dissociated Environments

    Science.gov (United States)

    Ellerby, Don; Irby, Edward; Johnson, Sylvia M.; Beckman, Sarah; Gusman, Michael; Gasch, Matthew

    2002-01-01

    Hafnium diboride based materials have shown promise for use in extremely high temperature applications, such as sharp leading edges on future reentry vehicles. During reentry, the oxygen and nitrogen in the atmosphere are dissociated by the shock layer ahead of the sharp leading edge such that surface reactions are determined by reactions of monatomic oxygen and nitrogen rather than O2, and N2. Simulation of the reentry environment on the ground requires the use of arc jet (plasma jet) facilities that provide monatomic species and are the closest approximation to actual flight conditions. Simple static or flowing oxidation studies under ambient pressures and atmospheres are not adequate to develop an understanding of a materials behavior in flight. Arc jet testing is required to provide the appropriate stagnation pressures, heat fluxes, enthalpies, heat loads and atmospheres encountered during flight. This work looks at the response of HfB2/SiC materials exposed to various simulated reentry environments.

  13. Fabrication and characterization of Au dimer antennas on glass pillars with enhanced plasmonic response

    DEFF Research Database (Denmark)

    Sadeghi, Pedram; Wu, Kaiyu; Rindzevicius, Tomas

    2017-01-01

    We report on the fabrication and dark-field spectroscopy characterization of Au dimer nanoantennas placed on top of SiO2 nanopillars. The reported process enables the fabrication of nanopillar dimers with gaps down to 15 nm and heights up to 1 μm. A clear dependence of the plasmonic resonance...

  14. A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization.

    Science.gov (United States)

    Fossé, P; Motté, N; Roumier, A; Gabus, C; Muriaux, D; Darlix, J L; Paoletti, J

    1996-12-24

    Retroviral genomes consist of two identical RNA molecules joined noncovalently near their 5'-ends. Recently, two models have been proposed for RNA dimer formation on the basis of results obtained in vitro with human immunodeficiency virus type 1 RNA and Moloney murine leukemia virus RNA. It was first proposed that viral RNA dimerizes by forming an interstrand quadruple helix with purine tetrads. The second model postulates that RNA dimerization is initiated by a loop-loop interaction between the two RNA molecules. In order to better characterize the dimerization process of retroviral genomic RNA, we analyzed the in vitro dimerization of avian sarcoma-leukosis virus (ASLV) RNA using different transcripts. We determined the requirements for heterodimer formation, the thermal dissociation of RNA dimers, and the influence of antisense DNA oligonucleotides on dimer formation. Our results strongly suggest that purine tetrads are not involved in dimer formation. Data show that an autocomplementary sequence located upstream from the splice donor site and within a major packaging signal plays a crucial role in ASLV RNA dimer formation in vitro. This sequence is able to form a stem-loop structure, and phylogenetic analysis reveals that it is conserved in 28 different avian sarcoma and leukosis viruses. These results suggest that dimerization of ASLV RNA is initiated by a loop-loop interaction between two RNA molecules and provide an additional argument for the ubiquity of the dimerization process via loop-loop interaction.

  15. Simulation studies of the n{sup +}n{sup -} Si sensors having p-spray/p-stop implant for the SiD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Pooja; Ranjan, Kirti [Centre for Detector and Related Software Technology, Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Bhardwaj, Ashutosh, E-mail: abhardwaj@physics.du.ac.in [Centre for Detector and Related Software Technology, Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Shivpuri, R.K.; Bhattacharya, Satyaki [Centre for Detector and Related Software Technology, Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2011-12-01

    Silicon Detector (SiD) is one of the proposed detectors for the future International Linear Collider (ILC). In the innermost vertex of the ILC, Si micro-strip sensors will be exposed to the neutron background of around 1-1.6 Multiplication-Sign 10{sup 10} 1 MeV equivalent neutrons cm{sup -2} year{sup -1}. The p{sup +}n{sup -}n{sup +} double-sided Si strip sensors are supposed to be used as position sensitive sensors for SiD. The shortening due to electron accumulation on the n{sup +}n{sup -} side of these sensors leads to uniform spreading of signal over all the n{sup +} strips and thus ensuring good isolation between the n{sup +} strips becomes one of the major issues in these sensors. One of the possible solutions is the use of floating p-type implants introduced between the n{sup +} strips (p-stops) and another alternative is the use of uniform layer of p-type implant on the entire n-side (p-spray). However, pre-breakdown micro-discharge is reported because of the high electric field at the edge of the p-stop/p-spray. An optimization of the implant dose profile of the p-stop and p-spray is required to achieve good electrical isolation while ensuring satisfactory breakdown performance of the Si sensors. Preliminary results of the simulation study performed on the n{sup +}n{sup -} Si sensors having p-stop and p-spray using device simulation program, ATLAS, are presented.

  16. Soybean P34 Probable Thiol Protease Probably Has Proteolytic Activity on Oleosins.

    Science.gov (United States)

    Zhao, Luping; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei; Chen, Yeming

    2017-07-19

    P34 probable thiol protease (P34) and Gly m Bd 30K (30K) show high relationship with the protease of 24 kDa oleosin of soybean oil bodies. In this study, 9 day germinated soybean was used to separate bioprocessed P34 (P32) from bioprocessed 30K (28K). Interestingly, P32 existed as dimer, whereas 28K existed as monomer; a P32-rich sample had proteolytic activity and high cleavage site specificity (Lys-Thr of 24 kDa oleosin), whereas a 28K-rich sample showed low proteolytic activity; the P32-rich sample contained one thiol protease. After mixing with purified oil bodies, all P32 dimers were dissociated and bound to 24 kDa oleosins to form P32-24 kDa oleosin complexes. By incubation, 24 kDa oleosin was preferentially hydrolyzed, and two hydrolyzed products (HPs; 17 and 7 kDa) were confirmed. After most of 24 kDa oleosin was hydrolyzed, some P32 existed as dimer, and the other as P32-17 kDa HP. It was suggested that P32 was the protease.

  17. Dissociation of 1P states in hot QCD Medium Using Quasi-Particle Model

    Science.gov (United States)

    Nilima, Indrani; Agotiya, Vineet Kumar

    2018-03-01

    We extend the analysis of a very recent work [1] to study the dissociation phenomenon of 1P states of the charmonium and bottomonium spectra (χc and χb) in a hot QCD medium using Quasi-Particle Model. This study employed a medium modified heavy quark potential which has quite different form in the sense that it has a lomg range Coulombic tail in addition to the Yukawa term even above the deconfinement temperature. Then we study the flavor dependence of their binding energies and explore the nature of dissociation temperatures by employing the Quasi-Particle debye mass for pure gluonic and full QCD case. Interestingly, the dissociation temperatures obtained by employing EoS1 and EoS2 with the Γ criterion, is closer to the upper bound of the dissociation temperatures which are obtained by the dissolution of a given quarkonia state by the mean thermal energy of the quasi-partons in the hot QCD/QGP medium.

  18. InP-based photonic integrated circuit platform on SiC wafer.

    Science.gov (United States)

    Takenaka, Mitsuru; Takagi, Shinichi

    2017-11-27

    We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 μm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO 2 /Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.

  19. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yaping; Wang Shujun; Li Hui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2009-05-27

    The modification effect of a Si-P master alloy on Al-24%Si alloy was investigated by using electron probe micro-analyzer (EPMA) and optical microscopy (OM). The dissolution problem of the Si-P master alloys was solved by changing the sequence of addition. When the Si-P master alloy was added into Al melt before the addition of silicon, the best modification effect could be achieved. The modification parameters of the master alloy on Al-24%Si alloy were optimized through designing and analyzing the orthogonal experiment, and their influences on the modification effect were discussed. The results show that the influence of temperature on the modification effect is the greatest, followed by the addition level, and the holding time is the least. The optimized modification parameters are the modification temperature of 810 deg. C, the addition level of 0.35 wt.%, the holding time of 30 min + 50 min whose meaning is that the Si-P master alloy is added firstly to the molten Al, and silicon is added 30 min later, then holding another 50 min. In addition, the modification mechanism of the Si-P master alloy on Al-24%Si alloy was also discussed.

  20. Diffractive dissociation in pp→Δ++π-p

    International Nuclear Information System (INIS)

    Antunes, A.C.B.; Santoro, A.F.S.; Souza, M.H.G.

    1983-01-01

    The complete calculation for pp→Δ ++ π - p diffractive dissociation reaction at high energy in the framework of the Three Components Deck Model is made. This calculation suffers from some difficulties originated by the (3/2 + , 3/2 + , 1 - ) vertex that appears in one of the components. The main technical details are given and so this paper remains essentially technical. The conclusion, based on the results obtained, is that the structures of 'zeros' or dips predicted by the Model can not be analytically seen because of the complexity of the formulae involved. But numerical calculations for several distributions are performed. A strong interference among the three components may appear according to a particular choice of the parameters. (Author) [pt

  1. Glycolipid Biosurfactants Activate, Dimerize, and Stabilize Thermomyces lanuginosus Lipase in a pH-Dependent Fashion.

    Science.gov (United States)

    Madsen, Jens Kvist; Kaspersen, Jørn Døvling; Andersen, Camilla Bertel; Nedergaard Pedersen, Jannik; Andersen, Kell Kleiner; Pedersen, Jan Skov; Otzen, Daniel E

    2017-08-15

    We present a study of the interactions between the lipase from Thermomyces lanuginosus (TlL) and the two microbially produced biosurfactants (BSs), rhamnolipid (RL) and sophorolipid (SL). Both RL and SL are glycolipids; however, RL is anionic, while SL is a mixture of anionic and non-ionic species. We investigate the interactions of RL and SL with TlL at pH 6 and 8 and observe different effects at the two pH values. At pH 8, neither RL nor SL had any major effect on TlL stability or activity. At pH 6, in contrast, both surfactants increase TlL's thermal stability and fluorescence and activity measurements indicate interfacial activation of TlL, resulting in 3- and 6-fold improved activity in SL and RL, respectively. Nevertheless, isothermal titration calorimetry reveals binding of only a few BS molecules per lipase. Size-exclusion chromatography and small-angle X-ray scattering suggest formation of TlL dimers with binding of small amounts of either RL or SL at the dimeric interface, forming an elongated complex. We conclude that RL and SL are compatible with TlL and constitute promising green alternatives to traditional surfactants.

  2. Identification and characterization of dimeric oxidation products of p-cymene-2,3-diol isolated from Thymus vulgaris L.

    Science.gov (United States)

    Rainis, Guido; Ternes, Waldemar

    2014-01-08

    The aim of this study was to investigate the oxidation products of p-cymene-2,3-diol, a major antioxidative constituent of thyme (Thymus vulgaris L.). Although a dimeric form of p-cymene-2,3-diol and some derivative substances exhibiting valuable food technological and health-promoting properties have been reported in earlier publications, no obvious correlation has been shown between these substances. A modified HPLC-ESI-MS method made it possible to prove that two dimers, 3,4,3',4'-tetrahydroxy-5,5'-diisopropyl-2,2'-dimethylbiphenyl (1) and the newly identified 3',4'-dihydroxy-5,5'-diisopropyl-2,2'-dimethylbiphenyl-3,4-dione (2), are oxidation products of p-cymene-2,3-diol. 2 was characterized by the fragmentation pattern determined by multiple mass spectrometry, (1)H NMR, (13)C NMR, H-H COSY, HSQC, and HMBC. Both biphenyls were also quantitated in freeze-dried thyme as well as in a food matrix spiked with thyme extract. Model experiments using raw and cooked minced pork meat as matrix and sodium nitrite as oxidizing and reduction agent with and without ascorbic acid as protective reagent showed the correlation between food processing and dimer generation.

  3. Electroluminescence of erbium in Al/α-Si:H(Er)/p-c-Si/Al structure

    International Nuclear Information System (INIS)

    Kon'kov, I.O.; Kuznetsov, A.N.; Pak, P.E.; Terukov, E.I.; Granitsyna, L.S.

    2001-01-01

    It is informed for the first time on the observation of the erbium intensive electroluminescence from the amorphous hydrated silicon layer by application of the Al/α-Si:H(Er)/p-c-Si/Al structure in the direct shift mode. The above structure is the n-p-heterostructure with the barrier values of 0.3-0.4 eV for the electrons and 0.9-1.1 eV for the holes. The electroluminescence efficiency is evaluated at the level ∼ 2 x 10 -5 . The electroluminescence effect in the Al/α-Si:H(Er)/p-c-Si/Al structure is connected with the hole tunneling from the crystal silicon by the amorphous silicon localized states with the subsequent release into the valent zone [ru

  4. Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity

    Science.gov (United States)

    Ermakova, Elena; Miller, Michelle C; Nesmelova, Irina V; López-Merino, Lara; Berbís, Manuel Alvaro; Nesmelov, Yuri; Tkachev, Yaroslav V; Lagartera, Laura; Daragan, Vladimir A; André, Sabine; Cañada, F Javier; Jiménez-Barbero, Jesús; Solís, Dolores; Gabius, Hans-Joachim; Mayo, Kevin H

    2013-01-01

    The product of p53-induced gene 1 is a member of the galectin family, i.e., galectin-7 (Gal-7). To move beyond structural data by X-ray diffraction, we initiated the study of the lectin by nuclear magnetic resonance (NMR) and circular dichroism spectroscopies, and molecular dynamics (MD) simulations. In concert, our results indicate that lactose binding to human Gal-7 induces long-range effects (minor conformational shifts and changes in structural dynamics) throughout the protein that result in stabilization of the dimer state, with evidence for positive cooperativity. Monte Carlo fits of 15N-Gal-7 HSQC titrations with lactose using a two-site model yield K1 = 0.9 ± 0.6 × 103 M−1 and K2 = 3.4 ± 0.8 × 103 M−1. Ligand binding-induced stabilization of the Gal-7 dimer was supported by several lines of evidence: MD-based calculations of interaction energies between ligand-loaded and ligand-free states, gel filtration data and hetero-FRET spectroscopy that indicate a highly reduced tendency for dimer dissociation in the presence of lactose, CD-based thermal denaturation showing that the transition temperature of the lectin is significantly increased in the presence of lactose, and saturation transfer difference (STD) NMR using a molecular probe of the monomer state whose presence is diminished in the presence of lactose. MD simulations with the half-loaded ligand-bound state also provided insight into how allosteric signaling may occur. Overall, our results reveal long-range effects on Gal-7 structure and dynamics, which factor into entropic contributions to ligand binding and allow further comparisons with other members of the galectin family. PMID:23376190

  5. Large enhancement of functional activity of active site-inhibited factor VIIa due to protein dimerization: insights into mechanism of assembly/disassembly from tissue factor.

    Science.gov (United States)

    Stone, Matthew D; Harvey, Stephen B; Martinez, Michael B; Bach, Ronald R; Nelsestuen, Gary L

    2005-04-26

    Active site-inhibited blood clotting factor VIIa (fVIIai) binds to tissue factor (TF), a cell surface receptor that is exposed upon injury and initiates the blood clotting cascade. FVIIai blocks binding of the corresponding enzyme (fVIIa) or zymogen (fVII) forms of factor VII and inhibits coagulation. Although several studies have suggested that fVIIai may have superior anticoagulation effects in vivo, a challenge for use of fVIIai is cost of production. This study reports the properties of dimeric forms of fVIIai that are cross-linked through their active sites. Dimeric wild-type fVIIai was at least 75-fold more effective than monomeric fVIIai in blocking fVIIa association with TF. The dimer of a mutant fVIIai with higher membrane affinity was 1600-fold more effective. Anticoagulation by any form of fVIIai differed substantially from agents such as heparin and showed a delayed mode of action. Coagulation proceeded normally for the first minutes, and inhibition increased as equilibrium binding was established. It is suggested that association of fVIIa(i) with TF in a collision-dependent reaction gives equal access of inhibitor and enzyme to TF. Assembly was not influenced by the higher affinity and slower dissociation of the dimer. As a result, anticoagulation was delayed until the reaction reached equilibrium. Properties of different dissociation experiments suggested that dissociation of fVIIai from TF occurred by a two-step mechanism. The first step was separation of TF-fVIIa(i) while both proteins remained bound to the membrane, and the second step was dissociation of the fVIIa(i) from the membrane. These results suggest novel actions of fVIIai that distinguish it from most of the anticoagulants that block later steps of the coagulation cascade.

  6. First-principle study of the AlP/Si interfacial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Dai Hongshang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Du Jing [School of Science, Shandong Jianzhu University, Jinan 250101 (China); Wang Li; Peng Chuanxiao [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.c [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Shandong Binzhou Bohai Piston Co. Ltd., Binzhou 256602, Shandong (China)

    2010-01-15

    AlP is heterogeneous nucleation substrate of primary Si in hypereutectic Al-Si alloys, while studies on the nucleation mechanism at atomic level are absent. The pseudopotential-based DFT calculations have been carried out to investigate the atomic and electronic structure, bonding and adhesion of the AlP/Si interface. In total, eight geometries have been investigated, in which the interfacial stacking sequence is different. The favorable interfaces can be deduced for the reason that adhesive interface energies (W{sub ad}) are different, which cannot be obtained from the traditional mismatch theory. The interfacial density of states and Mulliken population are also investigated. It is found that the main bond between AlP and Si is covalent Al-Si or P-Si bond, accompanying some ionic characteristic.

  7. Effects of antimony (Sb) on electron trapping near SiO{sub 2}/4H-SiC interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, P. M.; Jiang, Zenan; Basile, A. F. [Physics Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Zheng, Yongju; Dhar, Sarit [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2016-07-21

    To investigate the mechanism by which Sb at the SiO{sub 2}/SiC interface improves the channel mobility of 4H-SiC MOSFETs, 1 MHz capacitance measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements were performed on Sb-implanted 4H-SiC MOS capacitors. The measurements reveal a significant concentration of Sb donors near the SiO{sub 2}/SiC interface. Two Sb donor related CCDLTS peaks corresponding to shallow energy levels in SiC were observed close to the SiO{sub 2}/SiC interface. Furthermore, CCDLTS measurements show that the same type of near-interface traps found in conventional dry oxide or NO-annealed capacitors are present in the Sb implanted samples. These are O1 traps, suggested to be carbon dimers substituted for O dimers in SiO{sub 2}, and O2 traps, suggested to be interstitial Si in SiO{sub 2}. However, electron trapping is reduced by a factor of ∼2 in Sb-implanted samples compared with samples with no Sb, primarily at energy levels within 0.2 eV of the SiC conduction band edge. This trap passivation effect is relatively small compared with the Sb-induced counter-doping effect on the MOSFET channel surface, which results in improved channel transport.

  8. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites.

    Science.gov (United States)

    Shevlyagin, A V; Goroshko, D L; Chusovitin, E A; Galkin, K N; Galkin, N G; Gutakovskii, A K

    2015-10-05

    By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p(+)-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 10(9) cm × Hz(1/2)/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2.

  9. Dissociation of nucleosomal particles by chemical modification. Equivalence of the two binding sites for H2A.H2B dimers

    International Nuclear Information System (INIS)

    Jordano, J.; Nieto, M.A.; Palacian, E.

    1985-01-01

    Treatment of nucleosomal particles with dimethylmaleic anhydride, a reagent for protein amino groups, is accompanied by a biphasic release of histones H2A plus H2B; one H2A.H2B dimer is more easily released than the other. This behavior allows the preparation of nucleosomal particles containing only one H2A.H2B dimer, which were complemented with 125 I-labeled H2A.H2B. These reconstituted particles, which contain one labeled and one unlabeled H2A.H2B dimer, were treated with the amount of reagent needed to release one of the two H2A.H2B dimers. Radioactivity was equally distributed between residual particles and released proteins, which is consistent with equivalent binding sites in the nucleosomal particle for H2A.H2B dimers, rather than with intrinsically different sites. The asymmetric release of H2A.H2B dimers would be caused by a change in the binding site of one dimer following the release of the other. This behavior might be related to the structural dynamics of nucleosomes

  10. A novel ITO/AZO/SiO2/p-Si frame SIS heterojunction fabricated by magnetron sputtering

    International Nuclear Information System (INIS)

    He, Bo; Wang, HongZhi; Li, YaoGang; Ma, ZhongQuan; Xu, Jing; Zhang, QingHong; Wang, ChunRui; Xing, HuaiZhong; Zhao, Lei; Rui, YiChuan

    2013-01-01

    Highlights: •Because the ITO/AZO double films lead to a great decrease of the lateral resistance. •The photon current can easily flow through top film entering the Cu front contact. •High photocurrent is obtained under a reverse bias. -- Abstract: The novel ITO/AZO/SiO 2 /p-Si SIS heterojunction has been fabricated by low temperature thermal oxidation an ultrathin silicon dioxide and RF sputtering deposition ITO/AZO double films on p-Si (1 0 0) polished substrate. The microstructural, optical and electrical properties of the ITO/AZO antireflection films were characterized by XRD, SEM, UV–VIS spectrophotometer, four point probe and Hall effect measurement, respectively. The results show that ITO/AZO films are of good quality. And XPS was carried out on the ultrathin SiO 2 film. The heterojunction shows strong rectifying behavior under a dark condition, which reveals that formation of a diode between AZO and p-Si. The ideality factor and the saturation current of this diode is 2.7 and 8.68 × 10 −5 A, respectively. High photocurrent is obtained under a reverse bias when the crystalline quality of ITO/AZO double films is good enough to transmit the light into p-Si. We can see that under reverse bias conditions the photocurrent of ITO/AZO/SiO 2 /p-Si SIS heterojunction is much higher than the photocurrent of AZO/SiO 2 /p-Si SIS heterojunction. Because the high quality crystallite and the good conductivity of ITO film which prepared by magnetron-sputtering on AZO film lead to a great decrease of the lateral resistance. The photon induced current can easily flow through ITO layer entering the Cu front contact. Thus, high photocurrent is obtained under a reverse bias

  11. Study of the Reaction 2-(p-Nitrophenylethyl Bromide + OH− in Dimeric Micellar Solutions

    Directory of Open Access Journals (Sweden)

    María Luisa Moyá

    2011-11-01

    Full Text Available The dehydrobromination reaction 2-(p-nitrophenylethyl bromide + OH− was investigated in several alkanediyl-a-w-bis(dodecyldimethylammonium bromide, 12-s-12,2Br− (with s = 2, 3, 4, 5, 6, 8, 10, 12 micellar solutions, in the presence of NaOH 5 × 10−3 M. The kinetic data were quantitatively rationalized within the whole surfactant concentration range by using an equation based on the pseudophase ion-exchange model and taking the variations in the micellar ionization degree caused by the morphological transitions into account. The agreement between the theoretical and the experimental data was good in all the dimeric micellar media studied, except for the 12-2-12,2Br− micellar solutions. In this case, the strong tendency to micellar growth shown by the 12-2-12,2Br− micelles could be responsible for the lack of accordance. Results showed that the dimeric micelles accelerate the reaction more than two orders of magnitude as compared to water.

  12. Depth profiling of hydrogen passivation of boron in Si(100)

    Science.gov (United States)

    Huang, L. J.; Lau, W. M.; Simpson, P. J.; Schultz, P. J.

    1992-08-01

    The properties of SiO2/p-Si were studied using variable-energy positron-annihilation spectroscopy and Raman spectroscopy. The oxide film was formed by ozone oxidation in the presence of ultraviolet radiation at room temperature. Both the positron-annihilation and Raman analyses show that chemical cleaning of boron-doped p-type Si(100) using concentrated hydrofluoric acid prior to the oxide formation leads to hydrogen incorporation in the semiconductor. The incorporated hydrogen passivates the boron dopant by forming a B-H complex, the presence of which increases the broadening of the line shape in the positron-annihilation analysis, and narrows the linewidth of the Raman peak. Annealing of the SiO2/Si sample at a moderate temperature of 220 °C in vacuum was found sufficient to dissociate the complex and reactivate the boron dopant.

  13. Simulation of the oxidation pathway on Si(100) using high-resolution EELS

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia (CNR-ISM), Rome (Italy); Dipartimento di Fisica, Universita di Roma ' ' Tor Vergata' ' , Roma (Italy); European Theoretical Spectroscopy Facility (ETSF), Roma (Italy); Caramella, Lucia; Onida, Giovanni [Dipartimento di Fisica, Universita degli Studi di Milano (Italy); European Theoretical Spectroscopy Facility (ETSF), Milano (Italy)

    2012-06-15

    We compute high-resolution electron energy loss spectra (HREELS) of possible structural motifs that form during the dynamic oxidation process on Si(100), including the important metastable precursor silanone and an adjacent-dimer bridge (ADB) structure that may seed oxide formation. Spectroscopic fingerprints of single site, silanone, and ''seed'' structures are identified and related to changes in the surface bandstructure of the clean surface. Incorporation of oxygen into the silicon lattice through adsorption and dissociation of water is also examined. Results are compared to available HREELS spectra and surface optical data, which are closely related. Our simulations confirm that HREELS offers complementary evidence to surface optical spectroscopy, and show that its high sensitivity allows it to distinguish between energetically and structurally similar oxidation models. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A methodology of SiP testing based on boundary scan

    Science.gov (United States)

    Qin, He; Quan, Haiyang; Han, Yifei; Zhu, Tianrui; Zheng, Tuo

    2017-10-01

    System in Package (SiP) play an important role in portable, aerospace and military electronic with the microminiaturization, light weight, high density, and high reliability. At present, SiP system test has encountered the problem on system complexity and malfunction location with the system scale exponentially increase. For SiP system, this paper proposed a testing methodology and testing process based on the boundary scan technology. Combining the character of SiP system and referencing the boundary scan theory of PCB circuit and embedded core test, the specific testing methodology and process has been proposed. The hardware requirement of the under test SiP system has been provided, and the hardware platform of the testing has been constructed. The testing methodology has the character of high test efficiency and accurate malfunction location.

  15. Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation.

    Directory of Open Access Journals (Sweden)

    Hugo I Contreras-Treviño

    Full Text Available Species A rotavirus non-structural protein 3 (NSP3 is a translational regulator that inhibits or, under some conditions, enhances host cell translation. NSP3 binds to the translation initiation factor eIF4G1 and evicts poly-(A binding protein (PABP from eIF4G1, thus inhibiting translation of polyadenylated mRNAs, presumably by disrupting the effect of PABP bound to their 3'-ends. NSP3 has a long coiled-coil region involved in dimerization that includes a chaperone Hsp90-binding domain (HS90BD. We aimed to study the role in NSP3 dimerization of a segment of the coiled-coil region adjoining the HS90BD. We used a vaccinia virus system to express NSP3 with point mutations in conserved amino acids in the coiled-coil region and determined the effects of these mutations on translation by metabolic labeling of proteins as well as on accumulation of stable NSP3 dimers by non-dissociating Western blot, a method that separates stable NSP3 dimers from the monomer/dimerization intermediate forms of the protein. Four of five mutations reduced the total yield of NSP3 and the formation of stable dimers (W170A, K171E, R173E and R187E:K191E, whereas one mutation had the opposite effects (Y192A. Treatment with the proteasome inhibitor MG132 revealed that stable NSP3 dimers and monomers/dimerization intermediates are susceptible to proteasome degradation. Surprisingly, mutants severely impaired in the formation of stable dimers were still able to inhibit host cell translation, suggesting that NSP3 dimerization intermediates are functional. Our results demonstrate that rotavirus NSP3 acquires its function prior to stable dimer formation and remain as a proteasome target throughout dimerization.

  16. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-01-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10 6 cm -2 . A threshold current density of J th ∼1.65 kA/cm 2 for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods

  17. Comparison between Si/SiO_2 and InP/Al_2O_3 based MOSFETs

    International Nuclear Information System (INIS)

    Akbari Tochaei, A.; Arabshahi, H.; Benam, M. R.; Vatan-Khahan, A.; Abedininia, M.

    2016-01-01

    Electron transport properties of InP-based MOSFET as a new channel material with Al_2O_3 as a high-k dielectric oxide layer in comparison with Si-based MOSFET are studied by the ensemble Monte Carlo simulation method in which the conduction band valleys in InP are based on three valley models with consideration of quantum effects (effective potential approach). I_d–V_d characteristics for Si-based MOSFET are in good agreement with theoretical and experimental results. Our results show that I_d of InP-based MOSFET is about 2 times that of Si-based MOSFET. We simulated the diagrams of longitudinal and transverse electric fields, conduction band edge, average electron velocity, and average electron energy for Si-based MOSFET and compared the results with those for InP-based MOSFET. Our results, as was expected, show that the transverse electric field, the conduction band edge, the electron velocity, and the electron energy in a channel in the InP-based MOSFET are greater than those for Si-based MOSFET. But the longitudinal electric field behaves differently at different points of the channel.

  18. Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (0 0 1) surface

    International Nuclear Information System (INIS)

    Baek, Seung-Bin; Kim, Dae-Hee; Kim, Yeong-Cheol

    2012-01-01

    The adsorption and the surface reaction of bis-diethylaminosilane (SiH 2 [N(C 2 H 5 ) 2 ] 2 , BDEAS) as a Si precursor on an OH-terminated Si (0 0 1) surface were investigated to understand the initial reaction mechanism of the atomic layer deposition (ALD) process using density functional theory. The bond dissociation energies between two atoms in BDEAS increased in the order of Si-H, Si-N, and the rest of the bonds. Therefore, the relatively weak Si-H and Si-N bonds were considered for bond breaking during the surface reaction. Optimum locations of BDEAS for the Si-H and Si-N bond breaking were determined on the surface, and adsorption energies of 0.43 and 0.60 eV, respectively, were obtained. The Si-H bond dissociation energy of the adsorbed BDEAS on the surface did not decrease, so that a high reaction energy barrier of 1.60 eV was required. On the other hand, the Si-N bond dissociation energy did decrease, so that a relatively low reaction energy barrier of 0.52 eV was required. When the surface reaction energy barrier was higher than the adsorption energy, BDEAS would be desorbed from the surface instead of being reacted. Therefore, the Si-N bond breaking would be dominantly involved during the surface reaction, and the result is in good agreement with the experimental data in the literature.

  19. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation

    Science.gov (United States)

    Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2014-02-01

    The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.

  20. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.

    Science.gov (United States)

    Suyama, Keitaro; Taniguchi, Suguru; Tatsubo, Daiki; Maeda, Iori; Nose, Takeru

    2016-04-01

    Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature-dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin-derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin-derived polypeptide (Val-Pro-Gly-Val-Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n>40) is required for coacervation. In the present study, a series of elastin-derived peptide (Phe-Pro-Gly-Val-Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin-derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature-dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet-turn-sheet motif involving a type II β-turn-like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin-derived peptides, but also as base materials for developing various temperature-sensitive biomedical and industrial products. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  1. Ge 3P 6Si 2O 25: A cage structure closely related to the intersecting tunnel structure KMo 3P 6Si 2O 25

    Science.gov (United States)

    Leclaire, A.; Raveau, B.

    1988-08-01

    A germanosilicophosphate Ge 3P 6Si 2O 25 has been isolated. Its structure was solved from a single-crystal study in the space group P overline31c . Its cell parameters are a = b = 7.994(1) Å, c = 16.513(2) Å, Z = 2. The refinement by full-matrix least-squares calculations leads to R = 0.043 with 686 independent reflections. The structure of this oxide is built up from corner-sharing PO 4 and SiO 4 tetrahedra and GeO 6 octahedra. One observes a feature common to several silicophosphates: the presence of the structural unit P 6Si 2O 25 built up from a disilicate group sharing its corners with six PO 4 tetrahedra. The structural relationships between this oxide and the silicophosphates AMo 3P 6Si 2O 25 and Si 3P 6Si 2O 25 (or Ge 3P 6 Ge 2O 25) are described.

  2. EPR parameters of E centers inν-SiO2 from first-principles calculations

    International Nuclear Information System (INIS)

    Giacomazzi, Luigi; Martin-Samos, L.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Richard, N.

    2014-01-01

    A first-principles investigation of E' centers in vitreous silica (ν-SiO 2 ) based on calculations of the electron paramagnetic resonance (EPR) parameters is presented. The EPR parameters are obtained by exploiting the gauge including projector augmented wave method as implemented in the QUANTUM-ESPRESSO package. First, we analyze the EPR parameters of a large number of Si 2 dimers. The g tensor of the Si 2 dimers is shown to possess an average rhombic symmetry and larger g principal values with respect to those observed, e.g., for the E 'γ center in silica. Furthermore, the g principal values clearly show a linear trend with the Si-Si dimer length. Our results suggest that the Si 2 dimers could correspond to an unidentified paramagnetic center, though occasionally the calculated g principal values of the Si 2 dimer might be compatible with those found experimentally for the E' δ center. Next, we generate non dimer configurations by a procedure involving structural relaxations in the subsequent positively charged states. In particular, puckered, un-puckered, doubly puckered, and forward-oriented configurations are generated. The distributions of the calculated EPR parameters of the puckered and un-puckered configurations further support the assignment of the E' γ center to an unpaired spin localized at a threefold coordinated silicon dangling bond. Moreover, by analyzing Fermi contacts and g tensors of the puckered and forward-oriented configurations, we suggest the assignment of the E' α center to the latter type of configurations. This work also suggests that the differences in the EPR parameters of E' α and E' γ centers mainly arise from the strained geometry of the silicon dangling bond. In the forward-oriented configurations, one Si-O bond is about 0.2 Angstroms longer than the remaining two, whereas in the silicon dangling bond of the puckered and un-puckered configurations, all three bonds have a length of ≅1

  3. Carbon nanotube on Si(001): structural and electronic properties

    International Nuclear Information System (INIS)

    Orellana, W.; Fazzio, A.; Miwa, R.W.

    2003-01-01

    Full text: The promising nanoscale technology based on carbon nanotubes has attracted much attention due to the unique electronic, chemical and mechanical properties of the nanotubes. Single-wall carbon nanotubes (SWCNs) provide an ideal atomically uniform one dimensional (1D) conductors, having a strong electronic confinement around its circumference, which can be retained up to room temperature[1]. This interesting property may lead one to consider SWCNs as 1D conductors for the development of nanoscale electronic devices. In this work the structural and electronic properties of the contact between a metallic (6,6) SWCN adsorbed on a silicon (001) surface are studied from first-principles total-energy calculations. We consider two adsorption sites for the tube on the Si(001) surface: on the top of the Si-dimer rows and on the surface 'trench' between two consecutive dimer rows. Our results show a chemical bond between the nanotube and Si(001) when the tube is located along the 'trench', which corresponds to the only bound structure. We find a binding energy per tube length of 0.21 eV/angstrom. We also verified that the binding energy depends on the rotation of the tube. Typically, a rotation of 15 deg can reduce the binding energy up to 0.07 eV/angstrom. Our calculated electronic properties indicate that the most stable structure shows a subband associated to the tube/surface bond that cross the Fermi level. This result indicates an enhanced metallic behavior along the tube/surface contact characterizing a 1D quantum wire. The charge transfer between the Si surface and the tube is also discussed. [1] Z. Yao, C. Dekker, and P. Avouris in Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris Eds., (Springer, Berlin 2001), p. 147. (author)

  4. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    International Nuclear Information System (INIS)

    Huang, J.Sh.; Lee, K.W.; Tseng, Y.H.

    2014-01-01

    Both β-FeSi 2 and BaSi 2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi 2 /p-Si and n-Si/i-BaSi 2 /p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi 2 /p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi 2 /p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%). These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.

  5. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Huang

    2014-01-01

    Full Text Available Both β-FeSi2 and BaSi2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi2/p-Si and n-Si/i-BaSi2/p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi2/p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi2/p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%. These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.

  6. Reduction in interface defect density in p-BaSi2/n-Si heterojunction solar cells by a modified pretreatment of the Si substrate

    Science.gov (United States)

    Yamashita, Yudai; Yachi, Suguru; Takabe, Ryota; Sato, Takuma; Emha Bayu, Miftahullatif; Toko, Kaoru; Suemasu, Takashi

    2018-02-01

    We have investigated defects that occurred at the interface of p-BaSi2/n-Si heterojunction solar cells that were fabricated by molecular beam epitaxy. X-ray diffraction measurements indicated that BaSi2 (a-axis-oriented) was subjected to in-plane compressive strain, which relaxed when the thickness of the p-BaSi2 layer exceeded 50 nm. Additionally, transmission electron microscopy revealed defects in the Si layer near steps that were present on the Si(111) substrate. Deep level transient spectroscopy revealed two different electron traps in the n-Si layer that were located at 0.33 eV (E1) and 0.19 eV (E2) below the conduction band edge. The densities of E1 and E2 levels in the region close to the heterointerface were approximately 1014 cm-3. The density of these electron traps decreased below the limits of detection following Si pretreatment to remove the oxide layers from the n-Si substrate, which involved heating the substrate to 800 °C for 30 min under ultrahigh vacuum while depositing a layer of Si (1 nm). The remaining traps in the n-Si layer were hole traps located at 0.65 eV (H1) and 0.38 eV (H2) above the valence band edge. Their densities were as low as 1010 cm-3. Following pretreatment, the current versus voltage characteristics of the p-BaSi2/n-Si solar cells under AM1.5 illumination were reproducible with conversion efficiencies beyond 5% when using a p-BaSi2 layer thickness of 100 nm. The origin of the H2 level is discussed.

  7. Identification of photoluminescence P line in indium doped silicon as In{sub Si}-Si{sub i} defect

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Kevin, E-mail: klauer@cismst.de; Möller, Christian [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); Schulze, Dirk [TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Ahrens, Carsten [Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg (Germany)

    2015-01-15

    Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN{sub x}:H/SiO{sub x} stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetime in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by A{sub Si}-Si{sub i}, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In{sub Si}-Si{sub i} in neutral charge state and C{sub 2v} configuration.

  8. Structural Characterization of Monomeric/Dimeric State of p59fyn SH2 Domain.

    Science.gov (United States)

    Huculeci, Radu; Kieken, Fabien; Garcia-Pino, Abel; Buts, Lieven; van Nuland, Nico; Lenaerts, Tom

    2017-01-01

    Src homology 2 (SH2) domains are key modulators in various signaling pathways allowing the recognition of phosphotyrosine sites of different proteins. Despite the fact that SH2 domains acquire their biological functions in a monomeric state, a multitude of reports have shown their tendency to dimerize. Here, we provide a technical description on how to isolate and characterize by gel filtration, circular dichroism (CD), and nuclear magnetic resonance (NMR) each conformational state of p59 fyn SH2 domain.

  9. Evaluation excitation functions for "2"8Si(n,p)"2"8Al, "3"1P(n,p)"3"1Si, and "1"1"3In(n,γ)"1"1"4"mIn reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.

    2014-10-01

    Cross section data for "2"8Si(n,p)"2"8Al, "3"1P(n,p)"3"1Si and "1"1"3In(n,γ)"1"1"4"mIn reactions are needed for solving a wide spectrum of scientific and technical tasks. The excitation function of "2"8Si(n,p)"2"8Al reaction refers to the nuclear data involved in fusion reactor design calculations. The "2"8Si(n,p)"2"8Al reaction is interesting also as the monitor reaction for measurements at fusion facilities. Activation detectors on the basis of the 31P(n,p)31Si reaction are commonly used in the reactor dosimetry. The "1"1"3In(n,γ)"1"1"4"mIn reaction is promising regarding reactor dosimetry application for two reasons. First, due to the "1"1"4"mIn decay parameters which are rather suitable for activation measurements. Half-life of "1"1"4"mIn is equal to T_1/_2 = (49.51 ± 0.01) days and gamma spectrum accompanying decay has only one line with energy 190.27 keV and intensity (15.56 ± 0.15)%. Second, the "1"1"3In(n,γ)"1"1"4"mIn reaction rate may be measured by using one activation detector simultaneously with the "1"1"5In(n,γ)"1"1"6"mIn reaction. Preliminary analysis of existing evaluated excitation functions for "2"8Si(n,p)"2"8Al, "3"1P(n,p)"3"1Si and "1"1"3In(n,γ)"1"1"4"mIn reactions show that new evaluations are needed for all above mentioned reactions. This report is devoted to the preparation of the new evaluations of cross sections data and related covariance matrixes of uncertainties for the "2"8Si(n,p)"2"8Al, "3"1P(n,p)"3"1Si and "1"1"3In(n,γ)"1"1"4"mIn reactions.

  10. Vibrational interference effects in x-ray emission of a model water dimer: implications for the interpretation of the liquid spectrum.

    Science.gov (United States)

    Ljungberg, M P; Pettersson, L G M; Nilsson, A

    2011-01-28

    We apply the Kramers-Heisenberg formula to a model water dimer to discuss vibrational interference in the x-ray emission spectrum of the donor molecule for which the core-ionized potential energy surface is dissociative but bounded by the accepting molecule. A long core-hole lifetime leads to decay from Zundel-like, fully delocalized vibrational states in the intermediate potential without involvement of a specific dissociated component. Comparison is made to a model with an unbound intermediate state allowing dissociation to infinity which gives a sharp, fully dissociated feature, and a broad molecular peak at long core-hole life time. The implications of the vibrational interference effect on the liquid water spectrum are discussed and it is proposed that this mainly gives rise to an isotope-dependent asymmetrical broadening of the lone pair peak.

  11. Mechanism of phosphorus passivation of near-interface oxide traps in 4H–SiC MOS devices investigated by CCDLTS and DFT calculation

    Science.gov (United States)

    Jayawardena, Asanka; Shen, X.; Mooney, P. M.; Dhar, Sarit

    2018-06-01

    Interfacial charge trapping in 4H–SiC MOS capacitors with P doped SiO2 or phospho-silicate glass (PSG) as a gate dielectric has been investigated with temperature dependent capacitance–voltage measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements. The measurements indicate that P doping in the dielectric results in significant reduction of near-interface electron traps that have energy levels within 0.5 eV of the 4H–SiC conduction band edge. Extracted trap densities confirm that the phosphorus induced near-interface trap reduction is significantly more effective than interfacial nitridation, which is typically used for 4H–SiC MOSFET processing. The CCDLTS measurements reveal that the two broad near-interface trap peaks, named ‘O1’ and ‘O2’, with activation energies around 0.15 eV and 0.4 eV below the 4H–SiC conduction band that are typically observed in thermal oxides on 4H–SiC, are also present in PSG devices. Previous atomic scale ab initio calculations suggested these O1 and O2 traps to be carbon dimers substituted for oxygen dimers (CO=CO) and interstitial Si (Sii) in SiO2, respectively. Theoretical considerations in this work suggest that the presence of P in the near-interfacial region reduces the stability of the CO=CO defects and reduces the density of Sii defects through the network restructuring. Qualitative comparison of results in this work and reported work suggest that the O1 and O2 traps in SiO2/4H–SiC MOS system negatively impact channel mobility in 4H–SiC MOSFETs.

  12. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  13. Rational design of monocrystalline (InP)(y)Ge(5-2y)/Ge/Si(100) semiconductors: synthesis and optical properties.

    Science.gov (United States)

    Sims, Patrick E; Chizmeshya, Andrew V G; Jiang, Liying; Beeler, Richard T; Poweleit, Christian D; Gallagher, James; Smith, David J; Menéndez, José; Kouvetakis, John

    2013-08-21

    In this work, we extend our strategy previously developed to synthesize functional, crystalline Si(5-2y)(AlX)y {X = N,P,As} semiconductors to a new class of Ge-III-V hybrid compounds, leading to the creation of (InP)(y)Ge(5-2y) analogues. The compounds are grown directly on Ge-buffered Si(100) substrates using gas source MBE by tuning the interaction between Ge-based P(GeH3)3 precursors and In atoms to yield nanoscale "In-P-Ge3" building blocks, which then confer their molecular structure and composition to form the target solids via complete elimination of H2. The collateral production of reactive germylene (GeH2), via partial decomposition of P(GeH3)3, is achieved by simple adjustment of the deposition conditions, leading to controlled Ge enrichment of the solid product relative to the stoichiometric InPGe3 composition. High resolution XRD, XTEM, EDX, and RBS indicate that the resultant monocrystalline (InP)(y)Ge(5-2y) alloys with y = 0.3-0.7 are tetragonally strained and fully coherent with the substrate and possess a cubic diamond-like structure. Molecular and solid-state ab initio density functional theory (DFT) simulations support the viability of "In-P-Ge3" building-block assembly of the proposed crystal structures, which consist of a Ge parent crystal in which the P atoms form a third-nearest-neighbor sublattice and "In-P" dimers are oriented to exclude energetically unfavorable In-In bonding. The observed InP concentration dependence of the lattice constant is closely reproduced by DFT simulation of these model structures. Raman spectroscopy and ellipsometry are also consistent with the "In-P-Ge3" building-block interpretation of the crystal structure, while the observation of photoluminescence suggests that (InP)(y)Ge(5-2y) may have important optoelectronic applications.

  14. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  15. The composition of the saturated vapor and enthalpies of dimerization of rubidium and cesium pivalates

    International Nuclear Information System (INIS)

    Khoretonenko, N.M.; Rykov, A.N.; Korenev, Yu.M.

    1998-01-01

    The rubidium and cesium pivalates sublimation processes are studied through the Knudsen effusion method with the mass-spectral analysis of the gaseous phase composition. It is established that MPiv and M 2 Piv 2 and in small amounts M 3 Piv 3 and M 4 Piv 4 constitute the basic components in the saturated vapour of the rubidium and cesium pivalates. Sublimation enthalpies (kJ/mole) of monomers Δ S H T 0 =163.5±7.2 and dimers Δ S H T 0 (Cs 2 Piv 2 )-192.1±9.6 are determined. Dissociation enthalpies (kJ/mole) of the M 2 Piv 2 dimers by the second(2) and the third (3) laws of thermodynamics: Δ D H T 0 (Cs 2 Piv 2 )=137.1±5.4(2), Δ D H T 0 (Rb 2 Piv 2 )=138.2±10.2 (3); Δ D H T 0 (Cs 2 Piv 2 )-134.9±9.3 (2), Δ D H T 0 (Cs 2 Piv 2 )=136.8±10.8 (3) are calculated. Temperature dependence equations (210-300 deg C of partial pressures (Pa) of the MPiv, M 2 Piv 2 molecules: InP(RbPiv)=-(20099±674)/T+34.6±1.2; InP(Rb 2 Piv 2 )=-(23707±734)/T+40.4±1.4; InP(CsPiv)=-(19666±866)/T+34.1±1.6; InP(Cs 2 Piv 2 )=-(23106±1155)/T+39.5±2.1 are obtained

  16. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2012-01-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on p-silicon (Si substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M of zincate bath and fixed pH (11.00-11.10. Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD indicates the formation of polycrystalline single phase ZnO with strong c-axis orientation. The structural characteristics of the films were found to be a sensitive function of film thickness. The degree of orientation was found to be a function of film thickness and a maximum was found at around 2.2 µm. Scanning electron microscopy (SEM reveals the formation of sub-micrometer crystallites on silicon substrate. The coverage of crystallites (grains on substrate surface increases with number of dipping. Dense film containing grains distributed throughout the surface is obtained at large thicknesses. The ohmic nature of silver (Ag on ZnO and Aluminum (Al on p-Si was confirmed by I-V measurements. I-V characteristic of the p-Si/n-ZnO heterojunction was studied and rectification was observed. The maximum value of forward to reverse current ratio was ~15 at 3.0 V.

  17. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    Directory of Open Access Journals (Sweden)

    Shampa Mondal

    2013-02-01

    Full Text Available Zinc oxide (ZnO thin films were deposited on p-silicon (Si substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M of zincate bath and fixed pH (11.00-11.10. Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD indicates the formation of polycrystalline single phase ZnO with strong c-axis orientation. The structural characteristics of the films were found to be a sensitive function of film thickness. The degree of orientation was found to be a function of film thickness and a maximum was found at around 2.2 µm. Scanning electron microscopy (SEM reveals the formation of sub-micrometer crystallites on silicon substrate. The coverage of crystallites (grains on substrate surface increases with number of dipping. Dense film containing grains distributed throughout the surface is obtained at large thicknesses. The ohmic nature of silver (Ag on ZnO and Aluminum (Al on p-Si was confirmed by I-V measurements. I-V characteristic of the p-Si/n-ZnO heterojunction was studied and rectification was observed. The maximum value of forward to reverse current ratio was ~15 at 3.0 V.

  18. Structure and dimerization of the catalytic domain of the protein phosphatase Cdc14p, a key regulator of mitotic exit in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kobayashi, Junya; Matsuura, Yoshiyuki

    2017-10-01

    In the budding yeast Saccharomyces cerevisiae, the protein phosphatase Cdc14p orchestrates various events essential for mitotic exit. We have determined the X-ray crystal structures at 1.85 Å resolution of the catalytic domain of Cdc14p in both the apo state, and as a complex with S160-phosphorylated Swi6p peptide. Each asymmetric unit contains two Cdc14p chains arranged in an intimately associated homodimer, consistent with its oligomeric state in solution. The dimerization interface is located on the backside of the substrate-binding cleft. Structure-based mutational analyses indicate that the dimerization of Cdc14p is required for normal growth of yeast cells. © 2017 The Protein Society.

  19. The dissociation constants of the cytostatic bosutinib by nonlinear least-squares regression of multiwavelength spectrophotometric and potentiometric pH-titration data.

    Science.gov (United States)

    Meloun, Milan; Nečasová, Veronika; Javůrek, Milan; Pekárek, Tomáš

    2016-02-20

    Potentiometric and spectrophotometric pH-titration of the multiprotic cytostatics bosutinib for dissociation constants determination were compared. Bosutinib treats patients with positive chronic myeloid leukemia. Bosutinib exhibits four protonatable sites in a pH range from 2 to 11, where two pK are well separated (ΔpK>3), while the other two are near dissociation constants. In the neutral medium, bosutinib occurs in the slightly water soluble form LH that can be protonated to the soluble cation LH4(3+). The molecule LH can be dissociated to still difficultly soluble anion L(-). The set of spectra upon pH from 2 to 11 in the 239.3-375.0nm was divided into two absorption bands: the first one from 239.3 to 290.5nm and the second from 312.3 to 375.0nm, which differ in sensitivity of chromophores to a pH change. Estimates of pK of the entire set of spectra were compared with those of both absorption bands. Due to limited solubility of bosutinib the protonation in a mixed aqueous-methanolic medium was studied. In low methanol content of 3-6% three dissociation constants can be reliably determined with SPECFIT/32 and SQUAD(84) and after extrapolation to zero content of methanol they lead to pKc1=3.43(12), pKc2=4.54(10), pKc3=7.56(07) and pKc4=11.04(05) at 25°C and pKc1=3.44(06), pKc2=5.03(08) pKc3=7.33(05) and pKc4=10.92(06) at 37°C. With an increasing content of methanol in solvent the dissociation of bosutinib is suppressed and the percentage of LH3(2+) decreases and LH prevails. From the potentiometric pH-titration at 25°C the concentration dissociation constants were estimated with ESAB pKc1=3.51(02), pKc2=4.37(02), pKc3=7.97(02) and pKc4=11.05(03) and with HYPERQUAD: pKc1=3.29(12), pKc2=4.24(10), pKc3=7.95(07) and pKc4=11.29(05). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Formation of Si{sup 1+} in the early stages of the oxidation of the Si[001] 2 × 1 surface

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Gomez, Alberto, E-mail: aherrerag@cinvestav.mx [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Aguirre-Tostado, Francisco-Servando [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600 (Mexico); Pianetta, Piero [SLAC National Accelerator Center, Menlo Park, California 94025 (United States)

    2016-03-15

    The early stages of the oxidation of the Si[001] 2 × 1 surface were studied with synchrotron radiation photoelectron spectroscopy. The analysis was based on the block approach, which is a refinement of spectra-subtraction that accounts for changes on the background signal and for band-bending shifts. By this method, it was possible to robustly show that the formation of Si{sup 1+} is due to oxygen bonding to the upper dimer atoms. Our results contrast with ab initio calculation, which indicates that the most favorable bonding site is the back-bond of the down-dimer.

  1. The strain effect in the surface barrier structures prepared on the basis of n-Si and p-Si

    International Nuclear Information System (INIS)

    Mamatkarimov, O.O.; Tuychiev, U.A.

    2004-01-01

    Full text: One of the ways of creation of large deformations in small volume of the semiconductor is the deformation created by a needle. At insignificant change of external influence the large deformation under a needle in small volume of the semiconductor the significant change of electrophysical parameters of the semiconductor in small volume is created. Therefore, in the present work the results of researches of local pressure influence on physical properties of surface barrier structures has been performed on the basis of silicon with Ni and Mn impurity. The relative changes of a direct current made on the basis n-Si and p-Si from a different degree of compensation are given depending on size of local pressure are shown. Change of current in structures Au-Si -Sb with specific resistance of base ρ=80 Ω·cm and ρ=200 Ω·cm are I p /I 0 =3-3.5 times and I P /I ) =2-2.5 times at pressure P=1.6·10 8 Pa respectively. These data show, that in structures received on the basis of initial silicon, change of a direct current with pressure is in inverse proportion to size of resistance of base of the diode. And in structures Au-Si -Sb with specific resistance of base ρ=5·10 2 Ω·cm and ρ=3·10 3 Ω·cm these changes accordingly are I P /I 0 =7 and I P /I 0 =14. Changes of direct current relative to initial value for structures on the basis p-Si with specific resistance ρ=7·10 2 Ω·cm and ρ=4·10 3 Ω·cm) are I P /I 0 =9 and I P /I 0 =16 respectively. The same changes of direct current of structures on the basis P-Si at local pressure are I P /I 0 =2-2.5. The given values I P /I 0 testify that as in structures Au-Si -Sb, and structures Sb-p-Si -Au, unlike structures on the basis of initial silicon, the values I P /I 0 are increased with increase of specific resistance of base of structures

  2. Syntheses and characterization of novel P/Si polysilsesquioxanes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Chiu Yiechan; Liu Fangyi; Ma, C.-C.M.; Chou, I.-C.; Riang Linawati; Chiang, C.-L.; Yang, J.-C.

    2008-01-01

    Phosphorus-containing polysilsesquioxane (PSSQ) was introduced into diglycidyl ether of bisphenol A epoxy (DGEBA) to generate a novel P/Si PSSQ nanocomposite. A series of nanocomposites was fabricated by changing the content of the 2-(diphenylphosphino)ethyltriethoxysilane (DPPETES) monomer or P/Si PSSQ cured with DGEBA epoxy and modified epoxy. The structure, thermal properties and flame-retardancy of the P/Si PSSQ nanocomposites were characterized by FT-IR, solid-state 29 Si NMR, thermogravimetric analysis (TGA) and limited oxygen index (LOI) instruments. The nano-sizes of the particles in P/Si PSSQ were approximately 30-50 nm, and the polarity of nanocomposites might generate the nanophase-separated structure from transmission electron microscopy (TEM). The urethane-like side group of the modified epoxy and the fabrication of oligomers in the curing reaction affected the T d5 values of nanocomposites. TGA and LOI results indicated that the char yield (29 wt%) increased and the nanocomposites were not very flammable (LOI = 30). The hybrid materials also exhibited high thermal stability, good flame-retardance and a lack of phase separation

  3. EELS measurements of boron concentration profiles in p-a-Si and nip a-Si solar cells

    DEFF Research Database (Denmark)

    Van Aken, Bas B.; Duchamp, Martial; Boothroyd, Chris

    2012-01-01

    The p-type Si layer in a-Si and μc-Si solar cells on foil needs to fulfil several important requirements. The layer is necessary to create the electric field that separates the photo-generated charge carriers; the doping also increases the conductivity to conduct the photocurrent to the front......-3, using core-loss EELS combined with numerical analysis. We control the band gap and activation energy of p-a-SiC by varying the B2H6 and CH4 flow during deposition in the process chamber. We have found a linear relation between the activation energy of the dark conductivity Eact and the optical...... band gap E04. Modelling shows that the optimum efficiency in nip solar cells is obtained when the p-a-SiC band gap is slightly larger than the band gap of the absorber layer. We have assessed the potential of core-loss EELS for detecting B and C concentrations as low as 1020cm-3 in a spatially resolved...

  4. Weld microstructure in cast AlSi9/SiC(p metal matrix composites

    Directory of Open Access Journals (Sweden)

    J. Wysocki

    2009-04-01

    Full Text Available Welded joint in cast AlSi9/SiC/20(p metal matrix composite by manual TIG arc welding using AlMg5 filler metal has been described inhis paper. Cooling curves have been stated, and the influence in distribution of reinforced particles on crystallization and weldmicrostructure. Welded joint mechanical properties have been determined: hardness and tensile.

  5. Structure of a novel shoulder-to-shoulder p24 dimer in complex with the broad-spectrum antibody A10F9 and its implication in capsid assembly.

    Directory of Open Access Journals (Sweden)

    Ying Gu

    Full Text Available Mature HIV-1 viral particles assemble as a fullerene configuration comprising p24 capsid hexamers, pentamers and dimers. In this paper, we report the X-ray crystal structures of the p24 protein from natural HIV-1 strain (BMJ4 in complex with Fab A10F9, which recognizes a conserved epitope in the C-terminal domain of the BMJ4 p24 protein. Our structures reveal a novel shoulder-to-shoulder p24 dimerization mode that is mediated by an S-S bridge at C177. Consistent with these structures, the shoulder-to-shoulder dimer that was obtained from the BMJ4 strain was also observed in p24 proteins from other strains by the introduction of a cysteine residue at position 177. The potential biological significance was further validated by the introduction of a C177A mutation in the BMJ4 strain, which then displays a low infectivity. Our data suggest that this novel shoulder-to-shoulder dimer interface trapped by this unique S-S bridge could represent a physiologically relevant mode of HIV-1 capsid assembly during virus maturation, although Cys residue itself may not be critical for HIV-I replication.

  6. Interaction between 14-3-3β and PrP influences the dimerization of 14-3-3 and fibrillization of PrP106-126.

    Science.gov (United States)

    Han, Jun; Song, Qin-Qin; Sun, Peng; Zhang, Jin; Wang, Xu; Song, Juan; Li, Gong-Qi; Liu, Ying-Hui; Mei, Guo-Yong; Shi, Qi; Tian, Chan; Chen, Cao; Gao, Chen; Zhao, Bo; Dong, Xiao-Ping

    2014-02-01

    Proteins of the 14-3-3 family are universal participate in multiple cellular processes. However, their exact role in the pathogenesis of prion diseases remains unclear. In this study, we proposed that human PrP was able to form molecular complex with 14-3-3β. The domains responsible for the interactions between PrP and 14-3-3β were mapped at the segments of amino acid (aa) residues 106-126 within PrP and aa 1-38 within 14-3-3β. Homology modeling revealed that the key aa residues for molecular interaction were D22 and D23 in 14-3-3β as well as K110 in PrP. Mutations in these aa residues inhibited the interaction between the two proteins in vitro. Our results also showed that recombinant PrP encouraged 14-3-3β dimer formation, whereas PrP106-126 peptide inhibited it. Recombinant 14-3-3β disaggregated the mature PrP106-126 fibrils in vitro. Moreover, the PrP-14-3-3 protein complexes were observed in the brain tissues of normal and scrapie agent 263K infected hamsters. Colocalization of PrP and 14-3-3 was seen in the cytoplasm of human neuroblastoma cell line SH-SY5Y, as well as human cervical cancer cell line HeLa transiently expressing full-length human PrP. Our current data suggest the neuroprotection of PrPC and neuron damage caused by PrPSc may be associated with their functions of 14-3-3 dimerization regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    International Nuclear Information System (INIS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-01-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm 2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm −2 of Nickle-63 ( 63 Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure. - Highlights: • Silicon parameters were studied in betavoltaic batteries. • Studied betavoltaic batteries include p-n and Schottky barrier structures. • The p-n structure has higher conversion efficiency.

  8. Surface hopping simulation of vibrational predissociation of methanol dimer

    Science.gov (United States)

    Jiang, Ruomu; Sibert, Edwin L.

    2012-06-01

    The mixed quantum-classical surface hopping method is applied to the vibrational predissociation of methanol dimer, and the results are compared to more exact quantum calculations. Utilizing the vibrational SCF basis, the predissociation problem is cast into a curve crossing problem between dissociative and quasibound surfaces with different vibrational character. The varied features of the dissociative surfaces, arising from the large amplitude OH torsion, generate rich predissociation dynamics. The fewest switches surface hopping algorithm of Tully [J. Chem. Phys. 93, 1061 (1990), 10.1063/1.459170] is applied to both diabatic and adiabatic representations. The comparison affords new insight into the criterion for selecting the suitable representation. The adiabatic method's difficulty with low energy trajectories is highlighted. In the normal crossing case, the diabatic calculations yield good results, albeit showing its limitation in situations where tunneling is important. The quadratic scaling of the rates on coupling strength is confirmed. An interesting resonance behavior is identified and is dealt with using a simple decoherence scheme. For low lying dissociative surfaces that do not cross the quasibound surface, the diabatic method tends to overestimate the predissociation rate whereas the adiabatic method is qualitatively correct. Analysis reveals the major culprits involve Rabi-like oscillation, treatment of classically forbidden hops, and overcoherence. Improvements of the surface hopping results are achieved by adopting a few changes to the original surface hopping algorithms.

  9. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    Science.gov (United States)

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Solar cells based on InP/GaP/Si structure

    Science.gov (United States)

    Kvitsiani, O.; Laperashvil, D.; Laperashvili, T.; Mikelashvili, V.

    2016-10-01

    Solar cells (SCs) based on III-V semiconductors are reviewed. Presented work emphases on the Solar Cells containing Quantum Dots (QDs) for next-generation photovoltaics. In this work the method of fabrication of InP QDs on III-V semiconductors is investigated. The original method of electrochemical deposition of metals: indium (In), gallium (Ga) and of alloys (InGa) on the surface of gallium phosphide (GaP), and mechanism of formation of InP QDs on GaP surface is presented. The possibilities of application of InP/GaP/Si structure as SC are discussed, and the challenges arising is also considered.

  11. Study of strained-Si p-channel MOSFETs with HfO2 gate dielectric

    Science.gov (United States)

    Pradhan, Diana; Das, Sanghamitra; Dash, Tara Prasanna

    2016-10-01

    In this work, the transconductance of strained-Si p-MOSFETs with high-K dielectric (HfO2) as gate oxide, has been presented through simulation using the TCAD tool Silvaco-ATLAS. The results have been compared with a SiO2/strained-Si p-MOSFET device. Peak transconductance enhancement factors of 2.97 and 2.73 has been obtained for strained-Si p-MOSFETs in comparison to bulk Si channel p-MOSFETs with SiO2 and high-K dielectric respectively. This behavior is in good agreement with the reported experimental results. The transconductance of the strained-Si device at low temperatures has also been simulated. As expected, the mobility and hence the transconductance increases at lower temperatures due to reduced phonon scattering. However, the enhancements with high-K gate dielectric is less as compared to that with SiO2.

  12. Improvement of n-ZnO/p-Si photodiodes by embedding of silver nanoparticles

    International Nuclear Information System (INIS)

    Hu, Zhan-Shuo; Hung, Fei-Yi; Chang, Shoou-Jinn; Chen, Kuan-Jen; Tseng, Yi-Wei; Huang, Bohr-Ran; Lin, Bo-Cheng; Chou, Wei-Yang; Chang, Jay

    2011-01-01

    The photo-current of n-ZnO/p-Si heterojunction photodiodes was improved by embedding Ag nanoparticles in the interface (ZnO/nano-P Ag /p-Si), and the ratio between photo- and dark-current increased by about three orders more than that of a n-ZnO/p-Si specimen. The improvement in the photo-current resulted from the light scattering of embedded Ag nanoparticles. The I–V curve of n-ZnO/p-Si degraded after thermal treatment (A-ZnO/p-Si) because the silicon robbed the oxygen from ZnO to form amorphous silicon dioxide and left an oxygen vacancy. Notably, the properties of ZnO/nano-P Ag /p-Si were better in the time-dependent photoresponse under 10 V bias. Ag nanoparticles (15–20 nm) scattered the UV light randomly and increased the probability for the absorption of ZnO to enhance the properties of the photodiode.

  13. Surface reconstruction switching induced by tensile stress of DB steps: From Ba/Si(0 0 1)- 2 × 3 to Ba/Si(0 0 1)-4° off- 3 × 2

    Science.gov (United States)

    Kim, Hidong; Lkhagvasuren, Altaibaatar; Zhang, Rui; Seo, Jae M.

    2018-05-01

    The alkaline-earth metal adsorption on Si(0 0 1) has attracted much interest for finding a proper template in the growth of high- κ and crystalline films. Up to now on the flat Si(0 0 1) surface with double domains and single-layer steps, the adsorbed Ba atoms are known to induce the 2 × 3 structure through removing two Si dimers and adding a Ba atom per unit cell in each domain. In the present investigation, the Si(0 0 1)-4° off surface with DB steps and single domains has been employed as a substrate and the reconstruction at the initial stage of Ba adsorption has been investigated by scanning tunneling microscopy and synchrotron photoemission spectroscopy. On this vicinal and single domain terrace, a novel 3 × 2 structure rotated by 90° from the 2 × 3 structure has been found. Such a 3 × 2 structure turns out to be formed by adding a Ba atom and a Si dimer per unit cell. This results from the fact that the adsorbed Ba2+ ions with a larger ionic radius relieve tensile stress on the original Si dimers exerted by the rebonded atoms at the DB step.

  14. Study of the nuclear spin-orbit interaction by performing the transfer reaction 36S(d,p)37S and 34Si(d,p)35Si

    International Nuclear Information System (INIS)

    Burgunder, G.

    2011-12-01

    The spin-orbit interaction depends on the spin orientation of the nucleons with respect to their angular momenta as well as on the derivative of the nuclear density. Even though this density dependence is used in all mean field model, it has never been tested yet due to the lack of data. We propose an original method to test this density dependence by comparing a bubble nucleus ( 34 Si) to a normal nucleus ( 36 S). The 34 Si exhibits a central density which is depleted by a factor of two which induces a non-zero central density derivative and should change the strength of the spin orbit interaction for the inner orbits such as the p orbits (L=1). By performing (d,p) transfer reactions with 36 S and 34 Si beams, the p(3/2) and p(1/2) spin orbit splitting can be inferred for these nuclei. Depending on the models, the spin-orbit splitting varies from 7% (VlowK interaction) up to 70% (Relativistic mean field approach). Beams of 36 S and 34 Si, produced at the LISE spectrometer at 20 A.MeV, were impinged onto a CD 2 target. Tracking the beam particles was achieved using 2 xy beam tracking gas detectors. Protons emitted were detected by 4 multi-segmented Si detectors (MUST2) placed at backwards angles. Gammas issued from the excited states decay were detected in the 4 EXOGAM segmented Germanium detectors. Transfer like nuclei were identified with an ionization chamber and a plastic detector. The excitation energy spectra of the 37 S and 35 Si are determined up to about 7 MeV. Spectroscopic factors and energies of p and f states are derived for the first time in 35 Si. The two nuclei show strong similarity for the f spin-orbit partners, whereas the p(3/2) - p(1/2) energy gap is reduced by 55%. (author)

  15. Comparison between Si/SiO{sub 2} and InP/Al{sub 2}O{sub 3} based MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Tochaei, A., E-mail: amirakbari182@gmail.com; Arabshahi, H.; Benam, M. R. [Payame Noor University, Department of Physics (Iran, Islamic Republic of); Vatan-Khahan, A.; Abedininia, M. [Khayyam University, Department of Physics (Iran, Islamic Republic of)

    2016-11-15

    Electron transport properties of InP-based MOSFET as a new channel material with Al{sub 2}O{sub 3} as a high-k dielectric oxide layer in comparison with Si-based MOSFET are studied by the ensemble Monte Carlo simulation method in which the conduction band valleys in InP are based on three valley models with consideration of quantum effects (effective potential approach). I{sub d}–V{sub d} characteristics for Si-based MOSFET are in good agreement with theoretical and experimental results. Our results show that I{sub d} of InP-based MOSFET is about 2 times that of Si-based MOSFET. We simulated the diagrams of longitudinal and transverse electric fields, conduction band edge, average electron velocity, and average electron energy for Si-based MOSFET and compared the results with those for InP-based MOSFET. Our results, as was expected, show that the transverse electric field, the conduction band edge, the electron velocity, and the electron energy in a channel in the InP-based MOSFET are greater than those for Si-based MOSFET. But the longitudinal electric field behaves differently at different points of the channel.

  16. Structural and thermodynamic characteristics of X2MYH2 compounds (M Al, Ga, In; X = F, Cl, Br, I; Y = N, P, As) - the products of hydrohalogen elimination from X3MYH3 donor-acceptor complexes

    International Nuclear Information System (INIS)

    Timoshkin, A.Yu.; Suvorov, A.V.; Shefer, G.F.

    2001-01-01

    Geometrical and thermodynamic characteristics of complexes X 2 MYH 2 (M Al, Ga, In; X = F, Cl, Br, I; Y = N, P, As) were obtained by the method of density functional B3LYP. It is shown that nitrogen complexes X 2 MNH 2 have a plane structure, whereas phosphorus and arsenic complexes are pyramidal. In the process of HX elimination the dissociation energy of M-Y bond is strengthened essentially (by 150-270 kJ/mol), which makes dissociation of X 2 MYH 2 into components quite inefficient from thermodynamic viewpoint even at temperatures of about 1000 deg C. Dimerization enthalpies of X 2 MYH 2 lie in the range 40 (Y = P, As) - 260 (Y=N) kJ/mol. Thus, dimers [X 2 MNH 2 ] 2 can be intermediate products in the processes of nitrides chemical precipitation from gaseous phase of donor-acceptor complexes [ru

  17. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Shikata

    2014-06-01

    Full Text Available We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz, which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ∼ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ∼7 and ∼50 ps in a concentrated regime (∼15 and ∼30 ps in a dilute regime, respectively. The fast mode was simply attributed to the rotational motion of the (monomeric NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz2, due to a strong dipole-dipole interaction between nitro groups.

  18. Bonding temperature dependence of GaInAsP/InP laser diode grown on hydrophilically directly bonded InP/Si substrate

    Science.gov (United States)

    Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko

    2018-02-01

    The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.

  19. STM imaging of buried P atoms in hydrogen-terminated Si for the fabrication of a Si:P quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, L.; Curson, N.J.; Hallam, T.; Simmons, M.Y.; Clark, R.G

    2004-10-01

    The fabrication of atomic-scale devices in silicon requires the encapsulation of dopant atoms which have been incorporated into the silicon surface at atomically precise positions using scanning tunnelling microscopy (STM) lithography. During silicon encapsulation, it is important to minimise segregation and diffusion of dopant atoms in order to retain the lithography defined device structure. Buried dopant imaging using STM is capable of imaging dopant atoms such as phosphorus after encapsulation in silicon several monolayers below the silicon surface, thus making it possible to check the integrity of the device structure. To fabricate buried phosphorus-doped samples, we use phosphine gas as a source of phosphorus atoms and incorporate the phosphorus atoms into a Si(001) surface during an annealing step. Molecular beam epitaxy is used to encapsulate the dopant atoms with several monolayers of silicon. After encapsulation, we hydrogen terminate the silicon surface in order to image the buried phosphorus dopants using STM. We show that a buried phosphorus atom appears as a bright glow superimposed on the silicon dimer structure in empty state STM images, whereas filled state images only show a very faint protrusion in the vicinity of the phosphorus atom. We highlight the importance of our results for the fabrication of atomic-scale devices.

  20. STM imaging of buried P atoms in hydrogen-terminated Si for the fabrication of a Si:P quantum computer

    International Nuclear Information System (INIS)

    Oberbeck, L.; Curson, N.J.; Hallam, T.; Simmons, M.Y.; Clark, R.G.

    2004-01-01

    The fabrication of atomic-scale devices in silicon requires the encapsulation of dopant atoms which have been incorporated into the silicon surface at atomically precise positions using scanning tunnelling microscopy (STM) lithography. During silicon encapsulation, it is important to minimise segregation and diffusion of dopant atoms in order to retain the lithography defined device structure. Buried dopant imaging using STM is capable of imaging dopant atoms such as phosphorus after encapsulation in silicon several monolayers below the silicon surface, thus making it possible to check the integrity of the device structure. To fabricate buried phosphorus-doped samples, we use phosphine gas as a source of phosphorus atoms and incorporate the phosphorus atoms into a Si(001) surface during an annealing step. Molecular beam epitaxy is used to encapsulate the dopant atoms with several monolayers of silicon. After encapsulation, we hydrogen terminate the silicon surface in order to image the buried phosphorus dopants using STM. We show that a buried phosphorus atom appears as a bright glow superimposed on the silicon dimer structure in empty state STM images, whereas filled state images only show a very faint protrusion in the vicinity of the phosphorus atom. We highlight the importance of our results for the fabrication of atomic-scale devices

  1. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Sun, Y. T.; Omanakuttan, G.; Lourdudoss, S.

    2015-01-01

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm 2 at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm 2 , an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon

  2. The origin of narrowing of the Si 2p coincidence photoelectron spectroscopy main line of Si(1 0 0) surface

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2011-01-01

    Highlights: → The Si 2p coincidence photoelectron spectroscopy (PES) main line of Si(1 0 0) is calculated. → The PES main line shows an asymmetric line shape change compared to the singles one. → The narrowing of the coincidence Si 2p PES main line is well reproduced. → The inherent mechanism of APECS is explained by a many-body theory. - Abstract: The Si 2p photoelectron spectroscopy (PES) main line of Si(1 0 0) surface measured in coincidence with the singles (noncoincidence) Si L 2,3 -VV Auger-electron spectroscopy (AES) elastic peak is calculated. The agreement with the experiment is good. The present work is the first many-body calculation of the experimental coincidence PES spectrum of solid surface. The narrowing of the coincidence Si 2p PES main line compared to the singles one is due to the mechanism inherent in the coincidence PES. The inherent mechanism is explained by a many-body theory by which photoemission and Auger-electron emission are treated on the same footing.

  3. Adsorption of thiophene on a Si(0 0 1)-2 x 1 surface studied by photoelectron spectroscopy and diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, M. [Research Institute of Electronics, Shizuoka University, Johoku, Hamamatsu 432-8011 (Japan)]. E-mail: romshimo@rie.shizuoka.ac.jp; Ikejima, Y. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yajima, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yagi, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Goto, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Gunnella, R. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan); UdR INFM, Department of Physics, University of Camerino, Camerino 62032 (Italy); Abukawa, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan); Fukuda, Y. [Research Institute of Electronics, Shizuoka University, Johoku, Hamamatsu 432-8011 (Japan); Kono, S. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2004-10-15

    Chemisorption of thiophene on a Si(0 0 1) surface has been studied by synchrotron radiation induced photoelectron spectroscopy (SRPES). Two adsorption-related components in Si 2p and S 2p spectra are observed after exposure of thiophene. It is suggested that the two components of Si 2p are ascribed to silicon bonded to hydrocarbon and sulfur. The core-level shift resolved photoelectron diffraction (PED) result indicates that the low-kinetic-energy component of S 2p can be ascribed to 2,5-dihydrothiophehe (DHT)-like species. Another S 2p component could be assigned to dissociated sulfur based on the results of PED and time evolution of the spectrum under irradiation. These assignments are consistent with the core-level shift of S 2p.

  4. Adsorption of thiophene on a Si(0 0 1)-2 x 1 surface studied by photoelectron spectroscopy and diffraction

    International Nuclear Information System (INIS)

    Shimomura, M.; Ikejima, Y.; Yajima, K.; Yagi, T.; Goto, T.; Gunnella, R.; Abukawa, T.; Fukuda, Y.; Kono, S.

    2004-01-01

    Chemisorption of thiophene on a Si(0 0 1) surface has been studied by synchrotron radiation induced photoelectron spectroscopy (SRPES). Two adsorption-related components in Si 2p and S 2p spectra are observed after exposure of thiophene. It is suggested that the two components of Si 2p are ascribed to silicon bonded to hydrocarbon and sulfur. The core-level shift resolved photoelectron diffraction (PED) result indicates that the low-kinetic-energy component of S 2p can be ascribed to 2,5-dihydrothiophehe (DHT)-like species. Another S 2p component could be assigned to dissociated sulfur based on the results of PED and time evolution of the spectrum under irradiation. These assignments are consistent with the core-level shift of S 2p

  5. Photoelectrochemical study of Si type P

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Decker, F.

    1984-01-01

    Electrochemical reductions were studied at p-Si electrode under illumination and in the dark. Charge transfer mechanisms from the conduction and the valence band to different redox ions in solution were distinguished. Photoelectrochemical solar energy conversion has been studied as a particular case. (C.L.B.) [pt

  6. The growth of Zn on a Si(1 0 0)-2x1 surface

    International Nuclear Information System (INIS)

    Xie Zhaoxiong; Tanaka, Ken-ichi

    2005-01-01

    Adsorption of Zn atoms on a Si(1 0 0)-2x1 surface was studied by scanning tunneling microscopy at room temperature. Narrow lines are grown perpendicular to the Si-dimer rows of the [1 1 0] direction at low coverage. The narrow line is formed by arraying rectangular Zn 3 dots, where a dot is composed of one Zn atom on a Si dimer and the other two in the neighboring two hollow sites. When the Si(1 0 0)-2x1 surface is covered with one monolayer of Zn, a 4x1 structure is established. More deposition of Zn on the 4x1 monolayer grows into three-dimensional Zn islands

  7. Dimers of G-Protein Coupled Receptors as Versatile Storage and Response Units

    Directory of Open Access Journals (Sweden)

    Michael S. Parker

    2014-03-01

    Full Text Available The status and use of transmembrane, extracellular and intracellular domains in oligomerization of heptahelical G-protein coupled receptors (GPCRs are reviewed and for transmembrane assemblies also supplemented by new experimental evidence. The transmembrane-linked GPCR oligomers typically have as the minimal unit an asymmetric ~180 kDa pentamer consisting of receptor homodimer or heterodimer and a G-protein αβγ subunit heterotrimer. With neuropeptide Y (NPY receptors, this assembly is converted to ~90 kDa receptor monomer-Gα complex by receptor and Gα agonists, and dimers/heteropentamers are depleted by neutralization of Gαi subunits by pertussis toxin. Employing gradient centrifugation, quantification and other characterization of GPCR dimers at the level of physically isolated and identified heteropentamers is feasible with labeled agonists that do not dissociate upon solubilization. This is demonstrated with three neuropeptide Y (NPY receptors and could apply to many receptors that use large peptidic agonists.

  8. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu

    2017-01-01

    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  9. Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures

    Science.gov (United States)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Bondarev, I. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2018-04-01

    Present review touches upon a subject of magnetotransport phenomena in hybrid structures which consist of ferromagnetic or nonmagnetic metal layer, layer of silicon oxide and silicon substrate with n- or p-type conductivity. Main attention will be paid to a number gigantic magnetotransport effects discovered in the devices fabricated on the base of the M/SiO2/n(p)-Si (M is ferromagnetic or paramagnetic metal) hybrid structures. These effects include bias induced dc magnetoresistance, gigantic magnetoimpedance, dc magnetoresistance induced by an optical irradiation and lateral magneto-photo-voltaic effect. The magnetoresistance ratio in ac and dc modes for some of our devices can exceed 106% in a magnetic field below 1 T. For lateral magneto-photo-voltaic effect, the relative change of photo-voltage in magnetic field can reach 103% at low temperature. Two types of mechanisms are responsible for sensitivity of the transport properties of the silicon based hybrid structures to magnetic field. One is related to transformation of the energy structure of the (donor) acceptor states including states near SiO2/n(p)-Si interface in magnetic field. Other mechanism is caused by the Lorentz force action. The features in behaviour of magnetotransport effects in concrete device depend on composition of the used structure, device topology and experimental conditions (bias voltage, optical radiation and others). Obtained results can be base for design of some electronic devices driven by a magnetic field. They can also provide an enhancement of the functionality for existing sensors.

  10. Dissociative symptoms and neuroendocrine dysregulation in depression.

    Science.gov (United States)

    Bob, Petr; Fedor-Freybergh, Peter; Jasova, Denisa; Bizik, Gustav; Susta, Marek; Pavlat, Josef; Zima, Tomas; Benakova, Hana; Raboch, Jiri

    2008-10-01

    Dissociative symptoms are traditionally attributed to psychological stressors that produce dissociated memories related to stressful life events. Dissociative disorders and dissociative symptoms including psychogenic amnesia, fugue, dissociative identity-disorder, depersonalization, derealization and other symptoms or syndromes have been reported as an epidemic psychiatric condition that may be coexistent with various psychiatric diagnoses such as depression, schizophrenia, borderline personality disorder or anxiety disorders. According to recent findings also the somatic components of dissociation may occur and influence brain, autonomic and neuroendocrine functions. At this time there are only few studies examining neuroendocrine response related to dissociative symptoms that suggest significant dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis. The aim of the present study is to perform examination of HPA axis functioning indexed by basal cortisol and prolactin and test their relationship to psychic and somatoform dissociative symptoms. Basal cortisol and prolactin and psychic and somatoform dissociative symptoms were assessed in 40 consecutive inpatients with diagnosis of unipolar depression mean age 43.37 (SD=12.21). The results show that prolactin and cortisol as indices of HPA axis functioning manifest significant relationship to dissociative symptoms. Main results represent highly significant correlations obtained by simple regression between psychic dissociative symptoms (DES) and serum prolactin (R=0.55, p=0.00027), and between somatoform dissociation (SDQ-20) and serum cortisol (R=-0.38, p=0.015). These results indicate relationship between HPA-axis reactivity and dissociative symptoms in unipolar depressive patients that could reflect passive coping behavior and disengagement.

  11. Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H

    International Nuclear Information System (INIS)

    Focsa, A.; Slaoui, A.; Charifi, H.; Stoquert, J.P.; Roques, S.

    2009-01-01

    Surface passivation of bare silicon or emitter region is of great importance towards high efficiency solar cells. Nowadays, this is usually accomplished by depositing an hydrogenated amorphous silicon nitride (a-SiNx:H) layer on n + p structures that serves also as an excellent antireflection layer. On the other hand, surface passivation of p-type silicon is better assured by an hydrogenated amorphous silicon (a-Si:H) layer but suffers from optical properties. In this paper, we reported the surface passivation of p-type and n-type silicon wafers by using an a-Si:H/SiNx:H double layer formed at low temperature (50-400 deg. C) with ECR-PECVD technique. We first investigated the optical properties (refraction index, reflectance, and absorbance) and structural properties by FTIR (bonds Si-H, N-H) of the deposited films. The hydrogen content in the layers was determined by elastic recoil detection analysis (ERDA). The passivation effect was monitored by measuring the minority carrier effective lifetime vs. different parameters such as deposition temperature and amorphous silicon layer thickness. We have found that a 10-15 nm a-Si film with an 86 nm thick SiN layer provides an optimum of the minority carriers' lifetime. It increases from an initial value of about 50-70 μs for a-Si:H to about 760 and 800 μs for a-Si:H/SiNx:H on Cz-pSi and FZ-nSi, respectively, at an injection level 2 x 10 15 cm -3 . The effective surface recombination velocity, S eff , for passivated double layer on n-type FZ Si reached 11 cm/s and for FZ-pSi-14 cm/s, and for Cz-pSi-16-20 cm/s. Effect of hydrogen in the passivation process is discussed.

  12. Epitaxial growth of InP on SI by MOCVD

    International Nuclear Information System (INIS)

    Konushi, F.; Seki, A.; Kudo, J.; Sato, H.; Kakimoto, S.; Fukushima, T.; Kubota, Y.; Koba, M.

    1988-01-01

    The authors have studied the heteroepitaxial growth of InP on large diameter Si substrates using MOCVD. A new MOCVD system with four inch wafer size capability was utilized in the growth. Single domain InP films have been successfully grown on four inch Si substrates by using a new heterostructure with a thin GaAs intermediate layer. In this paper, the authors describe the crystalline quality and residual stress of InP epilayers, estimated by etch pit density and x-ray diffraction, respectively. The authors also reports on the reduction of EPD by post-growth annealing

  13. Elastic and proton dissociative J/ψ photoproduction at low Wγp with the H1 detector at HERA

    International Nuclear Information System (INIS)

    Huber, Florian

    2013-02-01

    Elastic and proton dissociative photoproduction of J/ψ mesons is measured with the H1 detector at the HERA electron proton collider in the photon virtuality phase space of Q 2 2 . Two data sets are analysed, one measured with a nominal proton beam energy of 920 GeV, corresponding to an ep centre of mass energy of 318 GeV and one recorded with a reduced beam energy of 460 GeV, corresponding to an ep centre of mass energy of 225 GeV. The combination of the two data sets allow to perform the J/ψ measurement with central tracks in an extended kinematic phase space in a photon proton centre of mass energy range of 20 GeV γp -1 and 10.8 pb -1 , respectively, corresponding to more than two times the statistics used in previous H1 analyses. Due to an online selection purely based on tracks both leptonic decay channels J/ψ→ee and J/ψ→μμ are available for the analysis. Elastic (γp→ J/ψp) and proton dissociative (γp→ J/ψY) differential γp cross sections are determined in a simultaneous measurement as function of the squared momentum transfer at the proton vertex t and as function of W γp by means of an unfolding procedure, taking not only all bin correlations into account, but also the correlation between the elastic and proton dissociative process. The obtained elastic and proton dissociative differential cross sections are analysed in a simultaneous fit, taking the full statistical covariance matrices and systematic uncertainty sources into account.

  14. SDS-facilitated in vitro formation of a transmembrane B-type cytochrome is mediated by changes in local pH

    DEFF Research Database (Denmark)

    Weber, M.; Schneider, D.; Prodöhl, A.

    2011-01-01

    cytochrome b(559)', which can be efficiently assembled in vitro from a heme-binding PsbF homo-dimer by combining free heme with the apo-cytochrome b(559)'. Unfolding of the protein dissolved in the mild detergent dodecyl maltoside may be induced by addition of SDS, which at high concentrations leads to dimer...... dissociation. Surprisingly, absorption spectroscopy reveals that heme binding and cytochrome formation at pH 8.0 are optimal at intermediate SDS concentrations. Stopped-flow kinetics revealed that genuine conformational changes are involved in heme binding at these SDS concentrations. GPS (Global Protein...... folding State mapping) NMR measurements showed that optimal heme binding is intimately related to a change in the degree of histidine protonation. In the absence of SDS, the pH curve for heme binding is bell-shaped with an optimum at around pH 6-7. At alkaline pH values, the negative electrostatic...

  15. The Co-60 gamma-ray irradiation effects on the Al/HfSiO4/p-Si/Al MOS capacitors

    Science.gov (United States)

    Lok, R.; Kaya, S.; Karacali, H.; Yilmaz, E.

    2017-12-01

    In this work, the initial interface trap density (Nit) to examine device compability for microelectronics and then the Co-60 gamma irradiation responses of Al/HfSiO4/p-Si/Al (MOS) capacitors were investigated in various dose ranges up to 70 Gy. Pre-irradiation response of the devices was evaluated from high frequency (HF) and low frequency (LF) capacitance method and the Nit was calculated as 9.91 × 1011 cm-2 which shows that the HfSiO4/p-Si interface quality is convenient for microelectronics applications. The irradiation responses of the devices were carried out from flat-band and mid-gap voltage shifts obtained from stretch of capacitance characteristics prior to and after irradiation. The results show that the flat band voltages very slightly shifted to positive voltage values demonstrating the enhancement of negative charge trapping in device structure. The sensitivity of the Al/HfSiO4/p-Si/Al MOS capacitors was found to be 4.41 mV/Gy for 300 nm-thick HfSiO4 gate dielectrics. This value approximately 6.5 times smaller compared to the same thickness conventional SiO2 based MOS devices. Therefore, HfSiO4 exhibits crucial irradiation tolerance in gamma irradiation environment. Consequently, HfSiO4 dielectrics may have significant usage for microelectronic technology as a radiation hard material where radiation field exists such as in space applications.

  16. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.

    Science.gov (United States)

    Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih

    2013-11-22

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  17. Ohmic Contacts to P-Type SiC

    National Research Council Canada - National Science Library

    Crofton, John

    2000-01-01

    Alloys of aluminum (Al) have previously been used as ohmic contacts to p-type SiC, however the characteristics and performance of these contacts is drastically affected by the type and composition of the Al alloy...

  18. Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.

    Science.gov (United States)

    Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C

    2018-05-07

    Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.

  19. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Metaferia, Wondwosen; Kataria, Himanshu; Sun, Yan-Ting; Lourdudoss, Sebastian

    2015-01-01

    In an attempt to achieve an InP–Si heterointerface, a new and generic method, the corrugated epitaxial lateral overgrowth (CELOG) technique in a hydride vapor phase epitaxy reactor, was studied. An InP seed layer on Si (0 0 1) was patterned into closely spaced etched mesa stripes, revealing the Si surface in between them. The surface with the mesa stripes resembles a corrugated surface. The top and sidewalls of the mesa stripes were then covered by a SiO 2 mask after which the line openings on top of the mesa stripes were patterned. Growth of InP was performed on this corrugated surface. It is shown that growth of InP emerges selectively from the openings and not on the exposed silicon surface, but gradually spreads laterally to create a direct interface with the silicon, hence the name CELOG. We study the growth behavior using growth parameters. The lateral growth is bounded by high index boundary planes of {3 3 1} and {2 1 1}. The atomic arrangement of these planes, crystallographic orientation dependent dopant incorporation and gas phase supersaturation are shown to affect the extent of lateral growth. A lateral to vertical growth rate ratio as large as 3.6 is achieved. X-ray diffraction studies confirm substantial crystalline quality improvement of the CELOG InP compared to the InP seed layer. Transmission electron microscopy studies reveal the formation of a direct InP–Si heterointerface by CELOG without threading dislocations. While CELOG is shown to avoid dislocations that could arise due to the large lattice mismatch (8%) between InP and Si, staking faults could be seen in the layer. These are probably created by the surface roughness of the Si surface or SiO 2 mask which in turn would have been a consequence of the initial process treatments. The direct InP–Si heterointerface can find applications in high efficiency and cost-effective Si based III–V semiconductor multijunction solar cells and optoelectronics integration. (paper)

  20. Is the dissociative adult suggestible? A test of the trauma and fantasy models of dissociation.

    Science.gov (United States)

    Kluemper, Nicole S; Dalenberg, Constance

    2014-01-01

    Psychologists have long assumed a connection between traumatic experience and psychological dissociation. This hypothesis is referred to as the trauma model of dissociation. In the past decade, a series of papers have been published that question this traditional causal link, proposing an alternative fantasy model of dissociation. In the present research, the relationship among dissociation, suggestibility, and fantasy proneness was examined. Suggestibility was measured through the Gudjonsson Scale of Interrogative Suggestibility (GSS) as well as an autobiographically based version of this measure based on the events of September 11, 2001. Consistent with prior research and with the trauma model, dissociation correlated positively with trauma severity (r = .32, p suggestibility measure. Although some participants did become quite emotional during the procedure, the risk/benefit ratio was perceived by almost all participants to be positive, with more reactive individuals evaluating the procedure more positively. The results consistently support the trauma model of dissociation and fail to support the fantasy model of dissociation.

  1. Characterization of oxygen dimer-enriched silicon detectors

    CERN Document Server

    Boisvert, V; Moll, M; Murin, L I; Pintilie, I

    2005-01-01

    Various types of silicon material and silicon p+n diodes have been treated to increase the concentration of the oxygen dimer (O2i) defect. This was done by exposing the bulk material and the diodes to 6 MeV electrons at a temperature of about 350 °C. FTIR spectroscopy has been performed on the processed material confirming the formation of oxygen dimer defects in Czochralski silicon pieces. We also show results from TSC characterization on processed diodes. Finally, we investigated the influence of the dimer enrichment process on the depletion voltage of silicon diodes and performed 24 GeV/c proton irradiations to study the evolution of the macroscopic diode characteristics as a function of fluence.

  2. Three dimensions of dissociative amnesia.

    Science.gov (United States)

    Dell, Paul F

    2013-01-01

    Principal axis factor analysis with promax rotation extracted 3 factors from the 42 memory and amnesia items of the Multidimensional Inventory of Dissociation (MID) database (N = 2,569): Discovering Dissociated Actions, Lapses of Recent Memory and Skills, and Gaps in Remote Memory. The 3 factors' shared variance ranged from 36% to 64%. Construed as scales, the 3 factor scales had Cronbach's alpha coefficients of .96, .94, and .93, respectively. The scales correlated strongly with mean Dissociative Experiences Scale scores, mean MID scores, and total scores on the Structured Clinical Interview for DSM-IV Dissociative Disorders-Revised (SCID-D-R). What is interesting is that the 3 amnesia factors exhibited a range of correlations with SCID-D-R Amnesia scores (.52, .63, and .70, respectively), suggesting that the SCID-D-R Amnesia score emphasizes gaps in remote memory over amnesias related to dissociative identity disorder. The 3 amnesia factor scales exhibited a clinically meaningful pattern of significant differences among dissociative identity disorder, dissociative disorder not otherwise specified-1, dissociative amnesia, depersonalization disorder, and nonclinical participants. The 3 amnesia factors may have greater clinical utility for frontline clinicians than (a) amnesia as discussed in the context of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, nosology of the dissociative disorders or (b) P. Janet's (1893/1977 ) 4-fold classification of dissociative amnesia. The author recommends systematic study of the phenomenological differences within specific dissociative symptoms and their differential relationship to specific dissociative disorders.

  3. Cross sections and reaction rates for 23Na(p,n) 23Mg, 27Al(p,n) 27Si, 27Al(α,n) 30P, 29Si(α,n) 32S, and 30Si(α,n) 33S

    International Nuclear Information System (INIS)

    Flynn, D.S.; Sekharan, K.K.; Hiller, B.A.; Laumer, H.; Weil, J.L.; Gabbard, F.

    1978-01-01

    The total neutron production cross sections for the 23 Na(p,n) 23 Mg, 27 Al(p,n) 27 Si, 27 Al(α,n) 30 P, 29 Si(α,n) 32 S, and 30 Si(α,n) 33 S reactions have been measured for bombarding energies from threshold to 6.3 MeV. The neutron detector was a 60-cm diameter sphere of polyethylene with eight 10 BF 3 counters and was insensitive to the angle and energy of the emitted neutrons. Cross sections for inverse reactions have been obtained using the principle of detailed balance. The data have been used to determine parameters for statistical model calculations to facilitate extrapolation of cross sections to higher bombarding energies. These reactions are relevant to problems of nucleosynthesis and stellar evolution and to studies of radiation damage. Nucleosynthesis reaction rates, N/sub A/(sigmav), were determined for the reactions studied and are tabulated for temperatures ranging from 0.4 x 10 9 to 10.0 x 10 9 K

  4. Heterojunction photodetector based on graphene oxide sandwiched between ITO and p-Si

    Science.gov (United States)

    Ahmad, H.; Tajdidzadeh, M.; Thandavan, T. M. K.

    2018-02-01

    The drop casting method is utilized on indium tin oxide (ITO)-coated glass in order to prepare a sandwiched ITO/graphene oxide (ITO/GO) with silicon dioxide/p-type silicon (SiO2/p-Si) heterojunction photodetector. The partially sandwiched GO layer with SiO2/p-Si substrate exhibits dual characteristics as it showed good sensitivity towards the illumination of infrared (IR) laser at wavelength of 974 nm. Excellent photoconduction is also observed for current-voltage (I-V) characteristics at various laser powers. An external quantum efficiency greater than 1 for a direct current bias voltage of 0 and 3 V reveals significant photoresponsivity of the photodetector at various laser frequency modulation at 1, 5 and 9 Hz. The rise times are found to be 75, 72 and 70 μs for 1, 5 and 9 Hz while high fall times 455, 448 and 426 are measured for the respective frequency modulation. The fabricated ITO/GO-SiO2/p-Si sandwiched heterojunction photodetector can be considered as a good candidate for applications in the IR regions that do not require a high-speed response.

  5. Childhood Traumatic Experiences, Dissociative Symptoms, and Dissociative Disorder Comorbidity Among Patients With Panic Disorder: A Preliminary Study.

    Science.gov (United States)

    Ural, Cenk; Belli, Hasan; Akbudak, Mahir; Tabo, Abdulkadir

    2015-01-01

    This study assessed childhood trauma history, dissociative symptoms, and dissociative disorder comorbidity in patients with panic disorder (PD). A total of 92 psychotropic drug-naive patients with PD, recruited from outpatient clinics in the psychiatry department of a Turkish hospital, were involved in the study. Participants were assessed using the Structured Clinical Interview for DSM-IV Dissociative Disorders (SCID-D), Dissociation Questionnaire, Panic and Agoraphobia Scale, Panic Disorder Severity Scale, and Childhood Trauma Questionnaire. Of the patients with PD, 18 (19%) had a comorbid dissociative disorder diagnosis on screening with the SCID-D. The most prevalent disorders were dissociative disorder not otherwise specified, dissociative amnesia, and depersonalization disorders. Patients with a high degree of dissociation symptoms and dissociative disorder comorbidity had more severe PD than those without (p dissociation and PD. Among all of the subscales, the strongest relationship was with childhood emotional abuse. Logistic regression analysis showed that emotional abuse and severity of PD were independently associated with dissociative disorder. In our study, a significant proportion of the patients with PD had concurrent diagnoses of dissociative disorder. We conclude that the predominance of PD symptoms at admission should not lead the clinician to overlook the underlying dissociative process and associated traumatic experiences among these patients.

  6. The two-state dimer receptor model: a general model for receptor dimers.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  7. Surface-site-selective study of valence electronic structures of clean Si(100)-2x1 using Si-L23VV Auger electron-Si-2p photoelectron coincidence spectroscopy

    International Nuclear Information System (INIS)

    Kakiuchi, Takuhiro; Nagaoka, Shinichi; Hashimoto, Shogo; Fujita, Narihiko; Tanaka, Masatoshi; Mase, Kazuhiko

    2010-01-01

    Valence electronic structures of a clean Si(100)-2x1 surface are investigated in a surface-site-selective way using Si-L 23 VV Auger electron-Si-2p photoelectron coincidence spectroscopy. The Si-L 23 VV Auger electron spectra measured in coincidence with Si-2p photoelectrons emitted from the Si up-atoms or Si 2nd-layer of Si(100)-2x1 suggest that the position where the highest density of valence electronic states located in the vicinity of the Si up-atoms is shifted by 0.8 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. Furthermore, the valence band maximum in the vicinity of the Si up-atoms is indicated to be shifted by 0.1 eV towards lower binding energy relative to that in the vicinity of the Si 2nd-layer. These results are direct evidence of the transfer of negative charge from the Si 2nd-layer to the Si up-atoms. (author)

  8. Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles.

    Science.gov (United States)

    Kellner, Dominik; Weger, Maximilian; Gini, Andrea; Mancheño, Olga García

    2017-01-01

    The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc) 2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero)-Diels-Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  9. Room-temperature annealing of Si implantation damage in InP

    International Nuclear Information System (INIS)

    Akano, U.G.; Mitchell, I.V.

    1991-01-01

    Spontaneous recovery at 295 K of Si implant damage in InP is reported. InP(Zn) and InP(S) wafers of (100) orientation have been implanted at room temperature with 600 keV Si + ions to doses ranging from 3.6x10 11 to 2x10 14 cm -2 . Room-temperature annealing of the resultant damage has been monitored by the Rutherford backscattering/channeling technique. For Si doses ≤4x10 13 cm -2 , up to 70% of the initial damage (displaced atoms) annealed out over a period of ∼85 days. The degree of recovery was found to depend on the initial level of damage. Recovery is characterized by at least two time constants t 1 2 ∼100 days. Anneal rates observed between 295 and 375 K are consistent with an activation energy of 1.2 eV, suggesting that the migration of implant-induced vacancies is associated with the reordering of the InP lattice

  10. Rectifying magnetic tunnel diode like behavior in Co2MnSi/ZnO/p-Si heterostructure

    Science.gov (United States)

    Maji, Nilay; Nath, T. K.

    2018-04-01

    The rectifying magnetic tunnel diode like behavior has been observed in Co2MnSi/ZnO/p-Si heterostructure. At first an ultra thin layer of ZnO has been deposited on p-Si (100) substrate with the help of pulsed laser deposition (PLD). After that a highly spin-polarized Heusler alloy Co2MnSi (CMS) film (250 nm) has been grown on ZnO/p-Si using electron beam physical vapor deposition technique. The phase purity of the sample has been confirmed through high resolution X-Ray diffraction technique. The electrical transport properties have been investigated at various isothermal conditions in the temperature range of 77-300 K. The current-voltage characteristics exhibit an excellent rectifying tunnel diode like behavior throughout the temperature regime. The current (I) across the junction has been found to decrease with the application of an external magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. The magnetic field dependent JMR behavior of our heterostructure has been investigated in the same temperature range. Our heterostructure clearly demonstrates a giant positive JMR at 78 K (˜264%) and it starts decreasing with increasing temperature. If we compare our results with earlier reported results on other heterostructures, it can be seen that the JMR value for our heterojunction saturates at a much lower external magnetic field, thus creating it a better alternative for spin tunnel diodes in upcoming spintronics device applications.

  11. Molecular modeling of alkyl monolayers on the Si (100)-2 x 1 surface

    NARCIS (Netherlands)

    Lee, M.V.; Guo, D.; Linford, M.R.; Zuilhof, H.

    2004-01-01

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 × 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal

  12. Symmetry Breakdown in Ground State Dissociation of HD+

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Wells, E.; Carnes, K. D.; Krishnamurthi, Vidhya; Weaver, O. L.; Esry, B. D.

    2000-01-01

    Experimental studies of the dissociation of the electronic ground state of HD + following ionization of HD by fast proton impact indicate that the H + +D 1s dissociation channel is more likely than the H1s+D + dissociation channel by about 7% . This isotopic symmetry breakdown is due to the finite nuclear mass correction to the Born-Oppenheimer approximation which makes the 1sσ state 3.7 meV lower than the 2pσ state at the dissociation limit. The measured fractions of the two dissociation channels are in agreement with coupled-channels calculations of 1sσ to 2pσ transitions. (c) 2000 The American Physical Society

  13. Non-switching to switching transferring mechanism investigation for Ag/SiO x /p-Si structure with SiO x deposited by HWCVD

    Science.gov (United States)

    Liu, Yanhong; Wang, Ruoying; Li, Zhongyue; Wang, Song; Huang, Yang; Peng, Wei

    2018-04-01

    We proposed and fabricated an Ag/SiO x /p-Si sandwich structure, in which amorphous SiO x films were deposited through hot wire chemical vapor deposition (HWCVD) using tetraethylorthosilicate (TEOS) as Si and O precursor. Experimental results indicate that the I–V properties of this structure transfer from non-switching to switching operation as the SiO x deposition temperature increased. The device with SiO x deposited at high deposition temperature exhibits typical bipolar switching properties, which can be potentially used in resistive switching random accessible memory (RRAM). The transferring mechanism from non-switching to switching can be ascribed to the change of structural and electronic properties of SiO x active layer deposited at different temperatures, as evidenced by analyzing FTIR spectrum and fitting its I–V characteristics curves. This work demonstrates a safe and practicable low-temperature device-grade SiO x film deposition technology by conducting HWCVD from TEOS.

  14. C and Si delta doping in Ge by CH_3SiH_3 using reduced pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Ueno, Naofumi; Sakuraba, Masao; Murota, Junichi; Mai, Andreas; Tillack, Bernd

    2016-01-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH_3SiH_3 is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H_2 or N_2 carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N_2 as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH_3SiH_3 is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H_2 as carrier gas, lower incorporated C is observed in comparison to Si. CH_3SiH_3 injected with H_2 carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N_2 at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH_3SiH_3 exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH_3SiH_3 adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  15. A dissociative electron attachment cross-section estimator

    International Nuclear Information System (INIS)

    Munro, James J; Harrison, Stephen; Fujimoto, Milton M; Tennyson, Jonathan

    2012-01-01

    Dissociative electron attachment (DEA) is the major process where molecules are destroyed in low-energy plasmas. DEA cross sections are therefore important for a whole variety of applications but are both hard to measure or compute accurately. A method for estimating DEA cross sections based a simple resonance plus survival model is presented. Test results are presented for DEA of molecular oxygen and molecular chlorine, for which experimental measurements are available for comparison, and SiBr and SiBr 2 , for which no previous data is available. The estimator has been implemented as part of Quantemol-N expert system which uses the R-matrix method to predict resonance positions and widths.

  16. Pd(OAc2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles

    Directory of Open Access Journals (Sweden)

    Dominik Kellner

    2017-08-01

    Full Text Available The palladium-catalyzed dimerization of isoprene is a practical approach of synthesizing monoterpenes. Though several highly selective methods have been reported, most of them still required pressure or costly ligands for attaining the active system and desired selectivity. Herein, we present a simple and economical procedure towards the tail-to-tail dimer using readily available Pd(OAc2 and inexpensive triphenylphosphine as ligand. Furthermore, simple screw cap vials are employed, allowing carrying out the reaction at low pressure. In addition, the potential of the dimer as a chemical platform for the preparation of heterocyclic terpenes by subsequent (hetero-Diels–Alder or [4 + 1]-cycloadditions with nitrenes is also depicted.

  17. Systematics of 2-body diffractive dissociations and search of double diffractive dissociation in K-p interactions at 14.3 GeV/c

    International Nuclear Information System (INIS)

    Pons, Yvette.

    1977-12-01

    The diffractive dissociation mechanism is shown to be general when looking at 22 mesonic or baryonic threshold enhancements. The dissociation systems are all produced peripherally and present the property of slope-mass correlation. The production slopes and cross-sections mainly depend on the diffractive excitation mass. The comparison of the results with those from the I.S.R. shows that dissociation systems are very similar in their effective mass shape, momentum transfer structure and angular distributions at center-of-mass energies differing by a factor of ten. Evidence for double diffractive dissociation mechanism is found in 2 exclusive reactions at a cross section level of 5-10+-2 μb. The factorisation hypothesis seems well verified [fr

  18. Elastic and proton dissociative J/{psi} photoproduction at low W{sub {gamma}p} with the H1 detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Florian

    2013-02-15

    Elastic and proton dissociative photoproduction of J/{psi} mesons is measured with the H1 detector at the HERA electron proton collider in the photon virtuality phase space of Q{sup 2}p}<110 GeV. The integrated luminosity for both data sets are 130 pb{sup -1} and 10.8 pb{sup -1}, respectively, corresponding to more than two times the statistics used in previous H1 analyses. Due to an online selection purely based on tracks both leptonic decay channels J/{psi}{yields}ee and J/{psi}{yields}{mu}{mu} are available for the analysis. Elastic ({gamma}p{yields} J/{psi}p) and proton dissociative ({gamma}p{yields} J/{psi}Y) differential {gamma}p cross sections are determined in a simultaneous measurement as function of the squared momentum transfer at the proton vertex t and as function of W{sub {gamma}p} by means of an unfolding procedure, taking not only all bin correlations into account, but also the correlation between the elastic and proton dissociative process. The obtained elastic and proton dissociative differential cross sections are analysed in a simultaneous fit, taking the full statistical covariance matrices and systematic uncertainty sources into account.

  19. Serum Potassium Levels Inversely Correlate with D-Dimer In Patients with Acute-Onset Atrial Fibrillation

    International Nuclear Information System (INIS)

    Cervellin, Gianfranco; Bonfanti, Laura; Picanza, Alessandra; Lippi, Giuseppe

    2015-01-01

    D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared to subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared with subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. The aim of this study was to investigate correlations between D-dimer and serum potassium in acute-onset AF (AAF). To investigate the potential correlation between the values of serum potassium and D-dimer in patients with AAF, we retrospectively reviewed clinical and laboratory data of all emergency department visits for AAF in 2013. Among 271 consecutive AAF patients with D-dimer assessments, those with hypokalemia (n = 98) had significantly higher D-dimer values than normokalemic patients (139 versus 114 ng/mL, p = 0.004). The rate of patients with D-dimer values exceeding the diagnostic cut-off was higher in the group of patients with hypokalemia than in those with normal serum potassium (26.5% versus 16.2%; p = 0.029). An inverse and highly significant correlation was found between serum potassium and D-dimer (r = −0.21; p < 0.001), even after adjustments for age and sex (beta coefficient −94.8; p = 0.001). The relative risk for a positive D-dimer value attributed to hypokalemia was 1.64 (95% CI, 1.02 to 2.63; p = 0.040). The correlation remained statistically significant in patients free from antihypertensive drugs (r = −0.25; p = 0.018), but not in those taking angiotensin-receptor blockers, angiotensin-converting enzyme inhibitors, or diuretics. The inverse correlation between values of potassium and D-dimer in patients with AAF provides important and complementary information about the thromboembolic risk of these patients

  20. Serum Potassium Levels Inversely Correlate with D-Dimer In Patients with Acute-Onset Atrial Fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Cervellin, Gianfranco, E-mail: gcervellin@ao.pr.it; Bonfanti, Laura; Picanza, Alessandra; Lippi, Giuseppe [1Academic Hospital of Parma (Italy)

    2015-03-15

    D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared to subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared with subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. The aim of this study was to investigate correlations between D-dimer and serum potassium in acute-onset AF (AAF). To investigate the potential correlation between the values of serum potassium and D-dimer in patients with AAF, we retrospectively reviewed clinical and laboratory data of all emergency department visits for AAF in 2013. Among 271 consecutive AAF patients with D-dimer assessments, those with hypokalemia (n = 98) had significantly higher D-dimer values than normokalemic patients (139 versus 114 ng/mL, p = 0.004). The rate of patients with D-dimer values exceeding the diagnostic cut-off was higher in the group of patients with hypokalemia than in those with normal serum potassium (26.5% versus 16.2%; p = 0.029). An inverse and highly significant correlation was found between serum potassium and D-dimer (r = −0.21; p < 0.001), even after adjustments for age and sex (beta coefficient −94.8; p = 0.001). The relative risk for a positive D-dimer value attributed to hypokalemia was 1.64 (95% CI, 1.02 to 2.63; p = 0.040). The correlation remained statistically significant in patients free from antihypertensive drugs (r = −0.25; p = 0.018), but not in those taking angiotensin-receptor blockers, angiotensin-converting enzyme inhibitors, or diuretics. The inverse correlation between values of potassium and D-dimer in patients with AAF provides important and complementary information about the thromboembolic risk of these patients.

  1. Effect of Al and AlP on the microstructure of Mn-30 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2008-04-15

    Effect of Al and AlP particles on the microstructure of near eutectic Mn-Si alloy (Mn-30 wt.%Si) was studied by Electron Probe Micro-analyzer (EPMA) and Differential Scanning Calorimeter (DSC). Crystal lattice correspondence analyses show that both Al and AlP have good lattice matching coherence relationships with MnSi phase, and the addition of Al and AlP particles results in an abnormal eutectic structure, i.e. the eutectic constitution MnSi and Mn{sub 5}Si{sub 3} precipitate separately: MnSi precipitates firstly, and then the Mn{sub 5}Si{sub 3} phase.

  2. Characterization of electronic charged states of P-doped Si quantum dots using AFM/Kelvin probe

    International Nuclear Information System (INIS)

    Makihara, Katsunori; Xu, Jun; Ikeda, Mitsuhisa; Murakami, Hideki; Higashi, Seiichiro; Miyazaki, Seiichi

    2006-01-01

    Phosphorous doping to Si quantum dots was performed by a pulse injection of 1% PH 3 diluted with He during the dot formation on thermally grown SiO 2 from thermal decomposition of pure SiH 4 , and electron charging to and discharging from P-doped Si dots were studied to characterize their electronic charged states using a Kelvin probe technique in atomic force microscopy (AFM). The potential change corresponding to the extraction of one electron from each of the P-doped Si dots was observed after applying a tip bias as low as + 0.2 V while for undoped Si dots, with almost the same size as P-doped Si dots, almost the same amount of the potential change was detectable only when the tip bias was increased to ∼ 1 V. It is likely that, for P-doped Si dots, the electron extraction from the conduction band occurs and results in a positively charged state with ionized P donor

  3. An investigation into the 2 Si(p,gamma)30P reaction

    International Nuclear Information System (INIS)

    Oberholzer, P.

    1978-01-01

    In the experiment reported here, information was obtained on the energy levels of 30 P by means of the 2 Si(p,gamma) 30 P-reaction. The experimental work was done with two accelerators, the 3 MV Van de Graaff- accelerator of the AEB and the 2,5 MV Van de Graaff-accelerator of the P.U. for C.H.E. A 60 cm 3 - and a 80 cm 3 Ge(Li)-detector were used. The excitation curve of the 2 Si + p-reaction was measured in the 1,3 - 2,0 MeV energy range. In order to calculate proton energies which were more accurate, the Q-value of the reaction was redetermined. The gamma decay of 12 resonances in the energy range l,l - 1,9 MeV was studied. The branching ratios of 25 bound levels in 30 P were determined, as well as the excitation energy and branching ratios of two new bound levels. A different value for the excitation energy of one bound level was found. The mean lifetimes of 12 bound levels were measured by means of the doppler shift attenuation method and the results were compared to those of other groups using different methods of lifetime measurement. Spin and parity assignments based on Weisskopf estimates were made for a number of resonance states, as well as for one new bound state. The experimental results were compared with the results of two models

  4. Characterization of Ni-P-SiO2 nano-composite coating on magnesium

    Science.gov (United States)

    Sadreddini, S.; Salehi, Z.; Rassaie, H.

    2015-01-01

    In this study, the effects of SiO2 nanoparticles added to the electroless Ni-P coating were studied. The surface morphology, corrosion behavior, hardness and porosity of Ni-P-SiO2composite were investigated. The related microstructure was investigated through field emission scanning electron microscopy (FESEM) and the amount of SiO2 was examined by Energy Dispersive Analysis of X-ray (EDX). The corrosion behavior was evaluated through electrochemical impedance spectroscopy (EIS) and polarization techniques. The results illustrated that with increasing the quantity of the SiO2 nanoparticles, the corrosion rate decreased and the hardness increased.

  5. Synthesis and Crystal Structure of a New Ruthenium Silicophosphate: RuP 3SiO 11

    Science.gov (United States)

    Fukuoka, Hiroshi; Imoto, Hideo; Saito, Taro

    1996-01-01

    A new ruthenium silicophosphate RuP3SiO11was obtained and the structure was determined by single-crystal X-ray diffraction. It crystallizes in the trigonal space groupR3cwitha= 8.253(3)Å,c= 39.317(4)Å,V= 2319(2)Å3,Z= 12,R= 0.029, andRW= 0.026. The structure is composed of RuO6, Si2O7, and P2O7units. The Si2O7unit shares the six oxygen atoms with six P2O7units, while the P2O7unit shares the six oxygen atoms with two Si2O7units and four RuO6octahedra. The anionic part forms an infinite three-dimensional network of silicophosphate. RuP3SiO11is isotypic with MoP3SiO11.

  6. Characterization of anodic SiO2 films on P-type 4H-SiC

    International Nuclear Information System (INIS)

    Woon, W.S.; Hutagalung, S.D.; Cheong, K.Y.

    2009-01-01

    The physical and electronic properties of 100-120-nm thick anodic silicon dioxide film grown on p-type 4H-SiC wafer and annealed at different temperatures (500, 600, 700, and 800 deg. C ) have been investigated and reported. Chemical bonding of the films has been analyzed by Fourier transform infra red spectroscopy. Smooth and defect-free film surface has been revealed under field emission scanning electron microscope. Atomic force microscope has been used to study topography and surface roughness of the films. Electronic properties of the film have been investigated by high frequency capacitance-voltage and current-voltage measurements. As the annealing temperature increased, refractive index, dielectric constant, film density, SiC surface roughness, effective oxide charge, and leakage current density have been reduced until 700 deg. C . An increment of these parameters has been observed after this temperature. However, a reversed trend has been demonstrated in porosity of the film and barrier height between conduction band edge of SiO 2 and SiC

  7. A route to strong p-doping of epitaxial graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2010-11-09

    The effects of Au intercalation on the electronic properties of epitaxialgraphenegrown on SiC{0001} substrates are studied using first principles calculations. A graphenemonolayer on SiC{0001} restores the shape of the pristine graphene dispersion, where doping levels between strongly n-doped and weakly p-doped can be achieved by altering the Au coverage. We predict that Au intercalation between the two C layers of bilayer graphenegrown on SiC{0001} makes it possible to achieve a strongly p-doped graphene state, where the p-doping level can be controlled by means of the Au coverage.

  8. An interaction site of the envelope proteins of Semliki Forest virus that is preserved after proteolytic activation

    International Nuclear Information System (INIS)

    Zhang Xinyong; Kielian, Margaret

    2005-01-01

    Semliki Forest virus (SFV) membrane fusion is mediated by the viral E1 protein at acidic pH and regulated by the dimeric interaction of E1 with the E2 membrane protein. During low pH-triggered fusion, the E2/E1 heterodimer dissociates, freeing E1 to drive membrane fusion. E2 is synthesized as a precursor, p62, which is processed to mature E2 by the cellular protease furin. Both the dissociation of the p62/E1 dimer and the fusion reaction of p62 virus have a more acidic pH threshold than that of the mature E2 virus. We have previously isolated SFV mutations that allow virus growth in furin-deficient cells. Here we have used such pci mutations to compare the interactions of the p62/E1 and E2/E1 dimers. Our data suggest that there is an important p62/E1 dimer interaction site identified by an E2 R250G mutation and that this interaction is maintained after processing to the mature E2 protein

  9. Origin of the high p-doping in F intercalated graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2011-08-04

    The atomic and electronic structures of F intercalated epitaxialgraphene on a SiC(0001) substrate are studied by first-principles calculations. A three-step fluorination process is proposed. First, F atoms are intercalated between the graphene and the SiC, which restores the Dirac point in the band structure. Second, saturation of the topmost Si dangling bonds introduces p-doping up to 0.37 eV. Third, F atoms bond covalently to the graphene to enhance the p-doping. Our model explains the highly p-doped state of graphene on SiC after fluorination [A. L. Walter et al., Appl. Phys. Lett. 98, 184102 (2011)].

  10. P and Si functionalized MXenes for metal-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2017-04-10

    MXenes are a family of two-dimensional materials, composed of early transition metal carbides, nitrides, and carbonitrides, with great potential in energy storage systems, in particular in electrodes for Li, Na, K-ion batteries. However, so far the capacities are not competitive. In this context, we investigate P and Si functionalized MXenes for metal-ion battery applications, using first-principles calculations, since P and Si provide reaction products with high ion content. Replacement of the F and OH ligands of Ti2C and V2C with P and Si is demonstrated to be feasible (energy barriers of less than 0.128 eV) and the ion diffusion barriers turn out to be less than 0.32 eV. Importantly, the Li, Na, and K capacities are predicted to be 1767 mAh g−1, 711 mAh g−1, and 711 mAh g−1, respectively, thus being much higher than in the case of F and OH functionalization.

  11. D-dimer as marker for microcirculatory failure: correlation with LOD and APACHE II scores.

    Science.gov (United States)

    Angstwurm, Matthias W A; Reininger, Armin J; Spannagl, Michael

    2004-01-01

    The relevance of plasma d-dimer levels as marker for morbidity and organ dysfunction in severely ill patients is largely unknown. In a prospective study we determined d-dimer plasma levels of 800 unselected patients at admission to our intensive care unit. In 91% of the patients' samples d-dimer levels were elevated, in some patients up to several hundredfold as compared to normal values. The highest mean d-dimer values were present in the patient group with thromboembolic diseases, and particularly in non-survivors of pulmonary embolism. In patients with circulatory impairment (r=0.794) and in patients with infections (r=0.487) a statistically significant correlation was present between d-dimer levels and the APACHE II score (P<0.001). The logistic organ dysfunction score (LOD, P<0.001) correlated with d-dimer levels only in patients with circulatory impairment (r=0.474). On the contrary, patients without circulatory impairment demonstrated no correlation of d-dimer levels to the APACHE II or LOD score. Taking all patients together, no correlations of d-dimer levels with single organ failure or with indicators of infection could be detected. In conclusion, d-dimer plasma levels strongly correlated with the severity of the disease and organ dysfunction in patients with circulatory impairment or infections suggesting that elevated d-dimer levels may reflect the extent of microcirculatory failure. Thus, a therapeutic strategy to improve the microcirculation in such patients may be monitored using d-dimer plasma levels.

  12. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    Science.gov (United States)

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-05-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.

  13. Dissociation kinetics of Fe(III)- and Al(III)-natural organic matter complexes at pH 6.0 and 8.0 and 25 °C

    Science.gov (United States)

    Jones, Adele M.; Pham, A. Ninh; Collins, Richard N.; Waite, T. David

    2009-05-01

    The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.

  14. Preparation of ZnO film on p-Si and I-V characteristics of p-Si/n-ZnO

    OpenAIRE

    Mondal, Shampa; Kanta, Kalyani Prasad; Mitra, Partha

    2012-01-01

    Zinc oxide (ZnO) thin films were deposited on p-silicon (Si) substrate from ammonium zincate bath following a chemical dipping technique called SILAR. Films in the thickness range 0.5-4.5 µm could be prepared by varying the number of dipping for a fixed concentration (0.125 M) of zincate bath and fixed pH (11.00-11.10). Higher values of dipping produced nonadherent and poor quality films. Structural characterization by X-ray diffraction (XRD) indicates the formation of polycrystalline single ...

  15. Influence of Si and Ge on the magnetic phase transition and magnetocaloric properties of MnFe(P, Si, Ge)

    International Nuclear Information System (INIS)

    Cam Thanh, D.T.; Brueck, E.; Tegus, O.; Klaasse, J.C.P.; Buschow, K.H.J.

    2007-01-01

    Recently, we found a large magnetocaloric effect (MCE) and favourable magnetic properties in low cost and nontoxic MnFe(P, Si, Ge) compounds [D.T. Cam Thanh, E. Brueck, O. Tegus, J.C.P. Klaasse, T.J. Gortenmulder, K.H.J. Buschow, J. Appl. Phys. 99 (2006) 08Q107]. These compounds are promising for magnetic refrigeration applications. One of the interesting points in these compounds is a nonlinear dependence of the Curie temperature (T C ) on Si concentration. This dependence is associated with the change in the lattice parameters a and c, and their ratio c/a. Compounds with larger a parameter and smaller c/a ratio have higher T C . It is clear that Si and Ge atoms play an important role in the magnetic and magnetocaloric properties in the MnFe(P, Si, Ge) compounds. In this paper, we study the effect of Si and Ge on the magnetic phase transition in these materials. Our study shows that the temperature of the phase transition, from paramagnetic to ferromagnetic, can be tuned in the room temperature range without losing giant magnetocaloric properties

  16. Surface PIXE analysis of phosphorus in a thin SiO2 (P, B) CVD layer deposited onto Si substrate

    International Nuclear Information System (INIS)

    Roumie, M.; Nsouli, B.

    2001-01-01

    Phosphorus determination, at level of percent, in Si matrix is not an easy analytical task. The analyzed materials arc Borophosphosilicate glass which are an important component of silicon based semiconductor technology. It's a thin SiO2 layer (400 nm) doped with boron and phosphorus using, in general, CVD (Chemical Vapor Deposition) process, in order to improve its plasticity, and deposited onto Si substrate. Therefore, the mechanical behaviour of the CVD SiO2 (P, B) layer is very sensitive to the phosphorus concentration. In this work we explore the capability of FIXE (Particle Induced X-ray Emission) to monitor a rapid and accurate quantification of P which is usually very low in such materials (few percent of the thin CVD layer deposited onto a silicon substrate). A systematic study is undertaken using Proton (0.5-3 MeV energy) and helium (1-3 MeV energy) beams, different thickness of X-ray absorber (131 and 146 μm of Kapton filter) and different tilting angles (0,45,60 and 80 deg.). The optimized measurement conditions should improve the P signal detection comparing to the Si and Background ones

  17. H{sub 2}-Ar dilution for improved c-Si quantum dots in P-doped SiN{sub x}:H thin film matrix

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia [Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Zhang, Weijia, E-mail: zwjghx@126.com [Center of Condensed Matter and Material Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); State key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-02-28

    Highlights: • Phosphorous-doped SiN{sub x}:H thin films containing c-Si QDs were prepared by PECVD in H{sub 2}-Ar mixed dilution under low temperature. • QD density and QD size can be controlled by tuning H{sub 2}/Ar flow ratio. • The sample prepared at the H{sub 2}/Ar flow ratio of 100/100 possesses both wide band gap and excellent conductivity. • Detail discussion has been presented for illustrating the influence of H{sub 2}/Ar mixed dilution on the crystallization process and P-doping. - Abstract: Phosphorus-doped hydrogenated silicon nitride (SiN{sub x}:H) thin films containing crystalline silicon quantum dot (c-Si QD) was prepared by plasma enhanced chemical vapor deposition (PECVD) using hydrogen-argon mixed dilution. The effects of H{sub 2}/Ar flow ratio on the structural, electrical and optical characteristics of as-grown P-doped SiN{sub x}:H thin films were systematically investigated. Experimental results show that crystallization is promoted by increasing the H{sub 2}/Ar flow ratio in dilution, while the N/Si atomic ratio is higher for thin film deposited with argon-rich dilution. As the H{sub 2}/Ar flow ratio varies from 100/100 to 200/0, the samples exhibit excellent conductivity owing to the large volume fraction of c-Si QDs and effective P-doping. By adjusting the H{sub 2}/Ar ratio to 100/100, P-doped SiN{sub x}:H thin film containing tiny and densely distributed c-Si QDs can be obtained. It simultaneously possesses wide optical band gap and high dark conductivity. Finally, detailed discussion has been made to analyze the influence of H{sub 2}-Ar mixed dilution on the properties of P-doped SiN{sub x}:H thin films.

  18. Study of the interface in n{sup +}{mu}c-Si/p-type c-Si heterojunctions: role of the fluorine chemistry in the interface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Grimaldi, A.; Sacchetti, A.; Capezzuto, P.; Ambrico, M.; Bruno, G.; Roca, Francesco

    2003-03-03

    Investigation of n-p heterojunction solar cells obtained by depositing a n-type thin silicon films either amorphous or microcrystalline on p-type c-Si is carried out. The study is focused on the improvement of the c-Si surface and emitter layer/c-Si substrate interface. The peculiarity is the use of SiF{sub 4}-based plasmas for the in situ dry cleaning and passivation of the c-Si surface and for the PECVD deposition of the emitter layer that can be either amorphous (a-Si:H,F) or microcrystalline ({mu}c-Si). The use of SiF{sub 4} instead of the conventional SiH{sub 4} results in a lower hydrogen content in the film and in a reduction of the interaction of the c-Si surface with hydrogen atoms. Furthermore, the dependence of the heterojunction solar cell photovoltaic parameters on the insertion of an intrinsic buffer layer between the n-type thin silicon layer and the p-type c-Si substrate is discussed.

  19. On the problem of silica solubility at high pH

    International Nuclear Information System (INIS)

    Eikenberg, J.

    1990-07-01

    The aqueous system Na 2 O-H 2 O-SiO 2 is considered to play an important role when strong alkaline pore waters of a cement based intermediate level radioactive waste repository intrude into the rock formations surrounding the near field. Under such conditions unknown quantities of silica may dissolve. Therefore the pH-dependence of the solubility of amorphous silica and quartz is investigated by a parameter variation study using the geochemical speciation code MINEQL/EIR. Published silica solubility data obtained in sodium hydroxide solutions at 25 and 90 o C are compared with the results of four models which use different proposed values of the rather uncertain equilibrium constants. Of main interest is the question of whether, in a high pH region, the silica solubility can be explained with different monomeric species only, or to what extent additional polymeric silica species have to be considered as well. The solubility of amorphous silica at 25 o C is well understood up to a pH of about 10.5, where it is determined by the solubility product and the first dissociation constant of monomeric silic acid. The most probable cause of the increased solubility of amorphous silica in the region between pH 10.5 and 11.3 is the formation of dimers, trimers and tetramers. Below a total silica concentration of 0.001 M and pH ≤ 10.0, however, polymerisation proves to be insignificant. Besides low temperature studies using amorphous silica, the solubility of quartz has also been measured in NaOH solutions at 90 o C. As is the case at lower temperatures, the reported values for the second dissociation constant at 90 o C scatter widely. It can be shown that in a NaOH medium up to 0.1 M only mononuclear silica species are stable. Therefore it is concluded that the trend of monomers to form polymers decreases strongly with temperature. In strong NaOH solutions at elevated temperatures, silica-sodium ion pairing seems to gain importance. (author) 12 figs., 9 tabs., 65 refs

  20. Effect of BaSi2 template growth duration on the generation of defects and performance of p-BaSi2/n-Si heterojunction solar cells

    Science.gov (United States)

    Yachi, Suguru; Takabe, Ryota; Deng, Tianguo; Toko, Kaoru; Suemasu, Takashi

    2018-04-01

    We investigated the effect of BaSi2 template growth duration (t RDE = 0-20 min) on the defect generation and performance of p-BaSi2/n-Si heterojunction solar cells. The p-BaSi2 layer grown by molecular beam epitaxy (MBE) was 15 nm thick with a hole concentration of 2 × 1018 cm-3. The conversion efficiency η increased for films grown at long t RDE, owing to improvements of the open-circuit voltage (V OC) and fill factor (FF), reaching a maximum of η = 8.9% at t RDE = 7.5 min. However, η decreased at longer and shorter t RDE owing to lower V OC and FF. Using deep-level transient spectroscopy, we detected a hole trap level 190 meV above the valence band maximum for the sample grown without the template (t RDE = 0 min). An electron trap level 106 meV below the conduction band minimum was detected for a sample grown with t RDE = 20 min. The trap densities for both films were (1-2) × 1013 cm-3. The former originated from the diffusion of Ba into the n-Si region; the latter originated from defects in the template layer. The crystalline qualities of the template and MBE-grown layers were discussed. The root-mean-square surface roughness of the template reached a minimum of 0.51 nm at t RDE = 7.5 min. The a-axis orientation of p-BaSi2 thin films degraded as t RDE exceeded 10 min. In terms of p-BaSi2 crystalline quality and solar cell performance, the optimum t RDE was determined to be 7.5 min, corresponding to approximately 4 nm in thickness.

  1. Origin of the high p-doping in F intercalated graphene on SiC

    KAUST Repository

    Cheng, Yingchun; Kaloni, T. P.; Huang, G. S.; Schwingenschlö gl, Udo

    2011-01-01

    and the SiC, which restores the Dirac point in the band structure. Second, saturation of the topmost Si dangling bonds introduces p-doping up to 0.37 eV. Third, F atoms bond covalently to the graphene to enhance the p-doping. Our model explains the highly p

  2. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    International Nuclear Information System (INIS)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-01-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N 2 . Then respectively RCA1(i.e., boiling in NH 3 +H 2 O 2 +6H 2 O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H 2 O 2 +6H 2 O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N 2 . After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ∼ 4,2 10 -6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N 2 . Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ∼ 1 10 -6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I–V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C–V measurements were performed with HP 4192A (50–13 MHz) LF Impedance Analyzer at room temperature and in dark. (paper)

  3. Investigation of the Electrical Characteristics of Al/p-Si/Al Schottky Diode

    Science.gov (United States)

    Şenarslan, Elvan; Güzeldir, Betül; Sağlam, Mustafa

    2016-04-01

    In this study, p-type Si semiconductor wafer with (100) orientation, 400 μm thickness and 1-10 Ω cm resistivity was used. The Si wafer before making contacts were chemically cleaned with the Si cleaning procedure which for remove organic contaminations were ultrasonically cleaned at acetone and methanol for 10 min respectively and then rinsed in deionized water of 18 MΩ and dried with high purity N2. Then respectively RCA1(i.e., boiling in NH3+H2O2+6H2O for 10 min at 60°C ), RCA2 (i.e., boiling in HCl+H2O2+6H2O for 10 min at 60°C ) cleaning procedures were applied and rinsed in deionized water followed by drying with a stream of N2. After the cleaning process, the wafer is immediately inserted in to the coating unit. Ohmic contact was made by evaporating of Al on the non-polished side of the p-Si wafer pieces under ~ 4,2 10-6 Torr pressure. After process evaporation, p-Si with omic contac thermally annealed 580°C for 3 min in a quartz tube furnace in N2. Then, the rectifier contact is made by evaporation Al metal diameter of about 1.0 mm on the polished surface of p-Si in turbo molecular pump at about ~ 1 10-6 Torr. Consequently, Al/p-Si/Al Schottky diode was obtained. The I-V measurements of this diode performed by the use of a KEITLEY 487 Picoammeter/Voltage Source and the C-V measurements were performed with HP 4192A (50-13 MHz) LF Impedance Analyzer at room temperature and in dark.

  4. Analysis of frequency-dependent series resistance and interface states of In/SiO{sub 2}/p-Si (MIS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Birkan Selcuk, A. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey); Tugluoglu, N. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey)], E-mail: ntuglu@taek.gov.tr; Karadeniz, S.; Bilge Ocak, S. [Department of Nuclear Electronics and Instrumentation, Saraykoey Nuclear Research and Training Center, 06983 Saray, Ankara (Turkey)

    2007-11-15

    In this work, the investigation of the interface state density and series resistance from capacitance-voltage (C-V) and conductance-voltage (G/{omega}-V) characteristics in In/SiO{sub 2}/p-Si metal-insulator-semiconductor (MIS) structures with thin interfacial insulator layer have been reported. The thickness of SiO{sub 2} film obtained from the measurement of the oxide capacitance corrected for series resistance in the strong accumulation region is 220 A. The forward and reverse bias C-V and G/{omega}-V characteristics of MIS structures have been studied at the frequency range 30 kHz-1 MHz at room temperature. The frequency dispersion in capacitance and conductance can be interpreted in terms of the series resistance (R{sub s}) and interface state density (D{sub it}) values. Both the series resistance R{sub s} and density of interface states D{sub it} are strongly frequency-dependent and decrease with increasing frequency. The distribution profile of R{sub s}-V gives a peak at low frequencies in the depletion region and disappears with increasing frequency. Experimental results show that the interfacial polarization contributes to the improvement of the dielectric properties of In/SiO{sub 2}/p-Si MIS structures. The interface state density value of In/SiO{sub 2}/p-Si MIS diode calculated at strong accumulation region is 1.11x10{sup 12} eV{sup -1} cm{sup -2} at 1 MHz. It is found that the calculated value of D{sub it} ({approx}10{sup 12} eV{sup -1} cm{sup -2}) is not high enough to pin the Fermi level of the Si substrate disrupting the device operation.

  5. Preparation of 177Lu-DOTA/DTPA-Bz-Cys-RGD dimer and biodistribution evaluation in normal mice

    International Nuclear Information System (INIS)

    Sheng Feng; Jia Bing; Wang Fan; He Weiwei; Liu Zhaofei; Zhao Huiyun

    2008-01-01

    177 Lu-DOTA-Bz-Cys-RGD dimer and 177 Lu-DTPA-Bz-Cys-RGD dimer were prepared, and the in vitro and in vivo properties were compared. TLC and HPLC show that the labeling yields of two radiolabeled compounds are more than 95% under optimal conditions (pH=5.0, reacting at 100 degree C for 15-20 min), and the two radiolabeled compounds show pretty good in vitro stability. HPLC analyses and lg P values reveal that lipophilicity of 177 Lu-DOTA-Bz-Cys- RGD dimer is higher than 177 Lu-DTPA-Bz-Cys-RGD dimer. The uptake of 177 Lu-DTPA-Bz-Cys- RGD dimer in other tissues is significantly higher than that of 177 Lu-DOTA-Bz-Cys-RGD dimer at 4 h postinjection, except for blood and spleen. The in vivo stability of 177 Lu-DOTA-Bz-Cys-RGD dimer is much better than 177 Lu-DTPA-Bz-Cys-RGD dimer. Bz-DOTA is an ideal bifunctional chelator for 177 Lu labeling of RGD dimer. (authors)

  6. Study of the excited states of 28Si using the 27Al(p,γ)28Si radiative capture

    International Nuclear Information System (INIS)

    Dalmas, Jean.

    1974-01-01

    The gamma decay of 28 Si levels excited in the 27 Al(p,γ) 28 Si reaction has been investigated in the energy range Esub(p) 3 classification. A part from the K=0 + rotational band based on the ground state, the SU 3 previsions are not substantiated, but can not definitely rejected, and a few experiment are suggested. On the other band, many results are consistent with the shell model calculations [fr

  7. In Situ Structural Characterization of Ferric Iron Dimers in Aqueous Solutions

    DEFF Research Database (Denmark)

    Zhu, Mengqiang; Puls, Brendan W.; Frandsen, Cathrine

    2013-01-01

    The structure of ferric iron (Fe3+) dimers in aqueous solutions has long been debated. In this work, we have determined the dimer structure in situ in aqueous solutions using extended X-ray absorption fine structure (EXAFS) spectroscopy. An Fe K-edge EXAFS analysis of 0.2 M ferric nitrate solutions...... at pH 1.28–1.81 identified a Fe–Fe distance at ∼3.6 Å, strongly indicating that the dimers take the μ-oxo form. The EXAFS analysis also indicates two short Fe–O bonds at ∼1.80 Å and ten long Fe–O bonds at ∼2.08 Å, consistent with the μ-oxo dimer structure. The scattering from the Fe–Fe paths interferes...... confirmed by Mössbauer analyses of analogous quick frozen solutions. This work also explores the electronic structure and the relative stability of the μ-oxo dimer in a comparison to the dihydroxo dimer using density function theory (DFT) calculations. The identification of such dimers in aqueous solutions...

  8. On the stability of large-area Al-p-Si junction

    International Nuclear Information System (INIS)

    Tsyganov, Yu.S.

    2006-01-01

    Design of silicon radiation detector made of 12 kΩ · cm p-silicon with both amine- and amine-free hardeners epoxy resin junction edge passivation is presented. Before producing large-area detectors for measurements of efficiency of evaporation residues collection at the focal plane of the Dubna Gas-Filled Recoil Separator (DGFRS), a set of small-area test detectors was produced. Stability of the Al-(p)Si junction has been studied for a long time. Estimate of a realistic lifetime for the mentioned type of Al-Si rectifying junction is done

  9. The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie.

    Science.gov (United States)

    Maavara, Taylor; Slowinski, Stephanie; Rezanezhad, Fereidoun; Van Meter, Kimberly; Van Cappellen, Philippe

    2018-05-01

    Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analysis of pyrimidine dimer content of isolated DNA by nuclease digestion

    International Nuclear Information System (INIS)

    Farland, W.H.; Sutherland, B.M.

    1980-01-01

    Isolated DNA is highly susceptible to degradation by exogenous nucleases. Complete digestion is possible with a number of well-characterized enzymes from a variety of sources. Treatment of DNA with a battery of enzymes including both phosphodiesterase and phosphatase activities yields a mixture of nucleosides and inorganic phosphate (P/sub i/) as a final product. Unlike native DNA, ultraviolet-irradiated DNA is resistant to complete digestion. Setlow et al. demonstrated that the structural changes in the DNA responsible for the nuclease resistance were the formation of cyclobutyl pyrimidine dimers, the major photoproduct in UV-irradiated DNA. Using venom phosphodiesterase, they demonstrated that UV irradiation of DNA affected both the rate and extent of enzymatic hydrolysis. In addition, it was demonstrated that the major nuclease-resistant product of this hydrolysis was an oligonucleotide containing dimerized pyrimidines. Treatment of the DNA to split the dimers, either photochemically or photoenzymatically, rendered the polymer more susceptible to hydrolysis by the phosphodiesterase. The specificity of photoreactivating enzyme for pyrimidine dimers lends support to the role of these structures in conferring nuclease resistance to UV-irradiated DNA. The nuclease resistance of DNA containing dimers has been the basis of several assays for the measurement of these photoproducts. Sutherland and Chamberlin reported the development of a rapid and sensitive assay for dimers in 32 P-labeled DNA

  11. The micellization and dissociation transitions of thermo-, pH- and sugar-sensitive block copolymer investigated by laser light scattering

    Directory of Open Access Journals (Sweden)

    Y. C. Tang

    2012-08-01

    Full Text Available A triple-stimuli responsive polymer, poly(3-acrylamidophenylboronic acid-b-poly(N-isopropylacrylamide (PAAPBA-b-PNIPAM, has been synthesized by reversible addition-fragmentation chain transfer polymerization. Temperature, pH, and fructose induced micellization and dissociation transition of block copolymer was investigated by a combination of static and dynamic laser light scattering. PAAPBA-b-PNIPAM copolymer self-assembles into micelles with PAAPBA block as core and PNIPAM as shell in lower pH aqueous solution at room temperature. Increasing the temperature causes the micelle to shrink due to the dehydration of PNIPAM segments at pH 6.2. After the elevation of solution pH from 6.2 to 10.0, the increase in the hydrophilicity of PAAPBA block leads to an expulsion of unimers from micelles. In addition, the fructose addition further enhances the dissociation of micelles. Our experiments demonstrate that the micelle to unimer transition process proceeds via the step-by-step sequential expulsion of individual chains.

  12. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna W.; Satyshur, Kenneth A.; Morales, Neydis Moreno; Forest, Katrina T. (UW)

    2016-02-01

    ABSTRACT <p>Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems.p> <p>IMPORTANCEBphP

  13. Determination of Al, Si and P in certified reference materials by Instrumental Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Noyori, Amanda; Saiki, Mitiko, E-mail: anoyori@gmail.com, E-mail: mitiko@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Neutron analysis activation is not commonly used for aluminum, phosphorus and silicon determination, due to the difficulty to obtain reliable results. In this study, Al was determined by measuring {sup 28}Al and the contribution of P and Si due to {sup 28}Al formed in {sup 31}P(n,α){sup 28}Al and {sup 28}Si(n,p){sup 28}Al reactions were corrected using correction factors determined experimentally. Phosphorus was determined by measuring {sup 32}P (pure beta emitter) formed in reaction {sup 31}P(n,γ){sup 32}P. Silicon was determined by epithermal neutron analysis activation (ENAA) and measuring {sup 29}Al radionuclide formed in {sup 29}Si(n,p){sup 29}Al reaction. Aliquots of certified reference materials (CRMs) and synthetic standards of the elements were irradiated together, using the pneumatic transfer station of IEA-R1 nuclear research reactor. Results obtained for biological and geological CRMs showed good precision and accuracy with |Z-score| < 2 for Al, P and Si determinations. The detection limits for Al, P and Si determinations CRMs were also evaluated. Results obtained in this study demonstrated the viability of applying INAA procedures in the determination of Al, P and Si. (author)

  14. Determination of Al, Si and P in certified reference materials by Instrumental Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Noyori, Amanda; Saiki, Mitiko

    2017-01-01

    Neutron analysis activation is not commonly used for aluminum, phosphorus and silicon determination, due to the difficulty to obtain reliable results. In this study, Al was determined by measuring "2"8Al and the contribution of P and Si due to "2"8Al formed in "3"1P(n,α)"2"8Al and "2"8Si(n,p)"2"8Al reactions were corrected using correction factors determined experimentally. Phosphorus was determined by measuring "3"2P (pure beta emitter) formed in reaction "3"1P(n,γ)"3"2P. Silicon was determined by epithermal neutron analysis activation (ENAA) and measuring "2"9Al radionuclide formed in "2"9Si(n,p)"2"9Al reaction. Aliquots of certified reference materials (CRMs) and synthetic standards of the elements were irradiated together, using the pneumatic transfer station of IEA-R1 nuclear research reactor. Results obtained for biological and geological CRMs showed good precision and accuracy with |Z-score| < 2 for Al, P and Si determinations. The detection limits for Al, P and Si determinations CRMs were also evaluated. Results obtained in this study demonstrated the viability of applying INAA procedures in the determination of Al, P and Si. (author)

  15. Ordering of vacancies on Si(001)

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    1997-01-01

    Missing dimer vacancies are always present on the clean Si(001) surface. The vacancy density can be increased by ion bombardment (Xe+, Ar+), etching (O2, Br2, I2, etc.) or Ni contamination. The equilibrium shape at low vacancy concentrations (<0.2¿0.3 monolayers) of these vacancy islands is

  16. Unphosphorylated rhabdoviridae phosphoproteins form elongated dimers in solution.

    Science.gov (United States)

    Gerard, Francine C A; Ribeiro, Euripedes de Almeida; Albertini, Aurélie A V; Gutsche, Irina; Zaccai, Guiseppe; Ruigrok, Rob W H; Jamin, Marc

    2007-09-11

    The phosphoprotein (P) is an essential component of the replication machinery of rabies virus (RV) and vesicular stomatitis virus (VSV), and the oligomerization of P, potentially controlled by phosphorylation, is required for its function. Up to now the stoichiometry of phosphoprotein oligomers has been controversial. Size exclusion chromatography combined with detection by multiangle laser light scattering shows that the recombinant unphosphorylated phosphoproteins from VSV and from RV exist as dimers in solution. Hydrodynamic analysis indicates that the dimers are highly asymmetric, with a Stokes radius of 4.8-5.3 nm and a frictional ratio larger than 1.7. Small-angle neutron scattering experiments confirm the dimeric state and the asymmetry of the structure and yield a radius of gyration of about 5.3 nm and a cross-sectional radius of gyration of about 1.6-1.8 nm. Similar hydrodynamic properties and molecular dimensions were obtained with a variant of VSV phosphoprotein in which Ser60 and Thr62 are substituted by Asp residues and which has been reported previously to mimic phosphorylation by inducing oligomerization and activating transcription. Here, we show that this mutant also forms a dimer with hydrodynamic properties and molecular dimensions similar to those of the wild type protein. However, incubation at 30 degrees C for several hours induced self-assembly of both wild type and mutant proteins, leading to the formation of irregular filamentous structures.

  17. Transduction of the Hedgehog signal through the dimerization of Fused and the nuclear translocation of Cubitus interruptus

    Institute of Scientific and Technical Information of China (English)

    Yanyan Zhang; Feifei Mao; Yi Lu; Wenqing Wu; Lei Zhang; Yun Zhao

    2011-01-01

    The Hedgehog (Hh) family of secreted proteins is essential for development in both vertebrates and invertebrates.As one of main morphogens during metazoan development,the graded Hh signal is transduced across the plasma membrane by Smoothened (Smo) through the differential phosphorylation of its cytoplasmic tail,leading to pathway activation and the differential expression of target genes.However,how Smo transduces the graded Hh signal via the Costal2 (Cos2)/Fused (Fu) complex remains poorly understood.Here we present a model of the cell response to a Hh gradient by translating Smo phosphorylation information to Fu dimerization and Cubitus interruptus (Ci)nuclear localization information.Our findings suggest that the phosphorylated C-terminus of Smo recruits the Cos2/Fu complex to the membrane through the interaction between Smo and Cos2,which further induces Fu dimerization.Dimerized Fu is phosphorylated and transduces the Hh signal by phosphorylating Cos2 and Suppressor of Fu (Su(fu)).We further show that this process promotes the dissociation of the full-length Ci (Ci155) and Cos2 or Su(fu),and results in the translocation of Ci155 into the nucleus,activating the expression of target genes.

  18. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Jaran Sritharathikhun

    2014-01-01

    Full Text Available This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ solar cells. A p-μc-SiO:H film with a wide optical band gap (E04, 2.1 eV, can be obtained by increasing the CO2/SiH4 ratio; however, the tradeoff between E04 and dark conductivity must be considered. The CO2/SiH4 ratio of the p-μc-SiO:H emitter layer also significantly affects the performance of the solar cells. Compared to the cell using p-μc-Si:H (CO2/SiH4 = 0, the cell with the p-μc-SiO:H emitter layer performs more efficiently. We have achieved the highest efficiency of 18.3% with an open-circuit voltage (Voc of 692 mV from the cell using the p-μc-SiO:H layer. The enhancement in the Voc and the efficiency of the solar cells verified the potential of the p-μc-SiO:H films for use as the emitter layer in c-Si-HJ solar cells.

  19. Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor

    International Nuclear Information System (INIS)

    Guellue, O.; Tueruet, A.

    2011-01-01

    Research highlights: → This work proposes that DNA molecules should be considered, among other candidates, as a potential organic thin film for metal-interface layer-semiconductor devices. → We successfully fabricated Al/DNA/p-Si device with interlayer by a simple cast method. → The temperature is found to significantly effect the electrical properties of the Al/DNA/p-Si device. → The facts: (i) that the technology of the fabrication of a Al/DNA/p-Si Schottky diode much simpler and economical than that for the Si p-n junction and (ii) the sensibility of the Al/DNA/p-Si Schottky diode as temperature sensor is 42% higher than that of a Si p-n junction, indicate that the Al/DNA/p-Si Schottky diode is a good alternative as temperature sensor. - Abstract: The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 ± 0.02 and 1.70 ± 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height Φ b determined from the I-V measurements was 0.75 ± 0.01 eV at 300 K and decreases to 0.61 ± 0.01 eV at 200 K. The forward voltage-temperature (V F -T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (I F ) in the range 20 nA-6 μA. The V F -T characteristics were linear for three activation currents in the diode. From the V F -T characteristics at 20 nA, 100 nA and 6 μA, the values of the temperature coefficients of the forward bias voltage (dV F /dT) for the diode were determined as -2.30 mV K -1 , -2.60 mV K -1 and -3.26 mV K -1 with a standard error of 0.05 mV K -1 , respectively.

  20. Electronic properties of Al/DNA/p-Si MIS diode: Application as temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guellue, O., E-mail: omergullu@gmail.com [Batman University, Science and Art Faculty, Department of Physics, 72060 Batman (Turkey); Osmaniye Korkut Ata University, Science and Art Faculty, Department of Physics, 80000 Osmaniye (Turkey); Tueruet, A. [Atatuerk University, Science Faculty, Department of Physics, 25240 Erzurum (Turkey)

    2011-01-21

    Research highlights: > This work proposes that DNA molecules should be considered, among other candidates, as a potential organic thin film for metal-interface layer-semiconductor devices. > We successfully fabricated Al/DNA/p-Si device with interlayer by a simple cast method. > The temperature is found to significantly effect the electrical properties of the Al/DNA/p-Si device. > The facts: (i) that the technology of the fabrication of a Al/DNA/p-Si Schottky diode much simpler and economical than that for the Si p-n junction and (ii) the sensibility of the Al/DNA/p-Si Schottky diode as temperature sensor is 42% higher than that of a Si p-n junction, indicate that the Al/DNA/p-Si Schottky diode is a good alternative as temperature sensor. - Abstract: The current-voltage (I-V) measurements were performed in the temperature range (200-300 K) on Al/DNA/p-Si Schottky barrier type diodes. The Schottky diode shows non-ideal I-V behaviour with ideality factors n equal to 1.34 {+-} 0.02 and 1.70 {+-} 0.02 at 300 K and 200 K, respectively, and is thought to have a metal-interface layer-semiconductor (MIS) configuration. The zero-bias barrier height {Phi}{sub b} determined from the I-V measurements was 0.75 {+-} 0.01 eV at 300 K and decreases to 0.61 {+-} 0.01 eV at 200 K. The forward voltage-temperature (V{sub F}-T) characteristics were obtained from the I-V measurements in the temperature range 200-300 K at different activation currents (I{sub F}) in the range 20 nA-6 {mu}A. The V{sub F}-T characteristics were linear for three activation currents in the diode. From the V{sub F}-T characteristics at 20 nA, 100 nA and 6 {mu}A, the values of the temperature coefficients of the forward bias voltage (dV{sub F}/dT) for the diode were determined as -2.30 mV K{sup -1}, -2.60 mV K{sup -1} and -3.26 mV K{sup -1} with a standard error of 0.05 mV K{sup -1}, respectively.

  1. Hydrogen-bond network and pH sensitivity in human transthyretin

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Takeshi, E-mail: tyokoya3@pha.u-toyama.ac.jp; Mizuguchi, Mineyuki; Nabeshima, Yuko [University of Toyama, 2630 Sugitani, Toyama 930-0914 (Japan); Kusaka, Katsuhiro; Yamada, Taro [Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Hosoya, Takaaki [Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Ibaraki University, 4-12-1 Naka-Narusawa, Hitachi, Ibaraki 316-8511 (Japan); Ohhara, Takashi [Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Kurihara, Kazuo [Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Tanaka, Ichiro [Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Ibaraki University, 4-12-1 Naka-Narusawa, Hitachi, Ibaraki 316-8511 (Japan); Niimura, Nobuo [Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan)

    2013-11-01

    The neutron crystal structure of human transthyretin is presented. Transthyretin (TTR) is a tetrameric protein. TTR misfolding and aggregation are associated with human amyloid diseases. Dissociation of the TTR tetramer is believed to be the rate-limiting step in the amyloid fibril formation cascade. Low pH is known to promote dissociation into monomer and the formation of amyloid fibrils. In order to reveal the molecular mechanisms underlying pH sensitivity and structural stabilities of TTR, neutron diffraction studies were conducted using the IBARAKI Biological Crystal Diffractometer with the time-of-flight method. Crystals for the neutron diffraction experiments were grown up to 2.5 mm{sup 3} for four months. The neutron crystal structure solved at 2.0 Å revealed the protonation states of His88 and the detailed hydrogen-bond network depending on the protonation states of His88. This hydrogen-bond network is involved in monomer–monomer and dimer–dimer interactions, suggesting that the double protonation of His88 by acidification breaks the hydrogen-bond network and causes the destabilization of the TTR tetramer. Structural comparison with the X-ray crystal structure at acidic pH identified the three amino acid residues responsible for the pH sensitivity of TTR. Our neutron model provides insights into the molecular stability related to amyloidosis.

  2. Effect of pH and dissociation on the fate and exposure of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2010-01-01

    Ionizable organic chemicals comprise an important fraction of pharmaceuticals, pesticides as well as industrial chemicals. It has been estimated that 33% of the preregistered REACH substances is mostly ionized at pH 7. To extend the appliccability of existing exposure models, a Multimedia Activity...... parameters. The sensitivity analysis showed that the parameters describing ionization, pH and the dissociation constant (pKa), are among the most sensitive model parameters. The uncertainty analysis, however, indicated that these parameters are not the major source of uncertainty, which statistically...... and sediments. In most cases, the uncertainty of PECs and of persistance is largely explained by the uncertainty of (bio)degradation rates, which may be caused by model assumptions, experimental or estimation errors or by the environmental variability, including the effect of pH....

  3. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si.

    Science.gov (United States)

    Wan, Yating; Jung, Daehwan; Norman, Justin; Shang, Chen; MacFarlane, Ian; Li, Qiang; Kennedy, M J; Gossard, Arthur C; Lau, Kei May; Bowers, John E

    2017-10-30

    We report statistical comparisons of lasing characteristics in InAs quantum dot (QD) micro-rings directly grown on on-axis (001) GaP/Si and V-groove (001) Si substrates. CW thresholds as low as 3 mA and high temperature operation exceeding 80 °C were simultaneously achieved on the GaP/Si template template with an outer-ring radius of 50 µm and a ring width of 4 μm, while a sub-milliamp threshold of 0.6 mA was demonstrated on the V-groove Si template with a smaller cavity size of 5-μm outer-ring radius and 3-μm ring width. Evaluations were also made with devices fabricated simultaneously on native GaAs substrates over a significant sampling analysis. The overall assessment spotlights compelling insights in exploring the optimum epitaxial scheme for low-threshold lasing on industry standard Si substrates.

  4. GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.

    Science.gov (United States)

    Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2011-01-31

    We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.

  5. Effects of ultraviolet irradiation treatment on low-k SiOC(-H) ultra-thin films deposited by using TMS/O2 PEALD

    International Nuclear Information System (INIS)

    Kim, Changyoung; Woo, Jongkwan; Choi, Chikyu; Navamathavan, R.

    2012-01-01

    We report on the electrical characteristics for the metal-insulator-semiconductor (MIS) structure of low-dielectric-constant SiOC(-H) films. The SiOC(-H) thin films were deposited on p-Si(100) substrates by using a plasma-enhanced atomic layer deposition (PEALD) system. To improve the structural and the electrical characteristics, we post-treated the SiOC(-H) films deposited using PEALD with ultraviolet (UV) irradiation for various time intervals. The radical intensities in the bulk plasma were observed to be influenced strongly by the radio-frequency (rf) power. A complete dissociation of the trimethylsilane (TMS) precursor took place for rf powers greater than 300 W. As the UV treatment time was increased, the bonding structure of the SiOC(-H) film clearly separated to Si-O-Si and Si-O-C bonds. Also, the fixed charge density and the interface state density on the SiOC(-H)/p-Si(100) interface decreased as the UV treatment time was increased to 6 min. Therefore, we were able to minimize the defects and to reduce the interface charge by adjusting the UV dose.

  6. Sigma- versus Pi-Dimerization Modes of Triangulene.

    Science.gov (United States)

    Mou, Zhongyu; Kertesz, Miklos

    2018-04-20

    We show that the diradicaloid triangulene, a graphene nano-flake molecule, can aggregate in a variety of dimerization modes. We found by density functional theory modeling a number of triangulene dimers including six doubly bonded σ-dimers in addition to the previously reported six pancake bonded π-dimer isomers. The σ-dimers display a wide range of stabilities: the interaction energy of the most stable σ-dimer is -25.17 kcal mol -1 . Besides the doubly bonded σ-dimers with closed shell ground states, we also found an open-shell singly σ-bonded diradicaloid dimer. We found an interesting isomerization route between a doubly bonded σ-dimer, a singly bonded σ-dimer with a low-lying triplet state and two π-bonded dimers with low-lying quintet states. Derivatives of triangulene, trioxo-triangulenes (TOTs) have been previously characterized experimentally. Here, we show the reasons why so far only the π-dimer but not the σ-dimer was experimentally observed for all TOTs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dissociation and psychosis in dissociative identity disorder and schizophrenia.

    Science.gov (United States)

    Laddis, Andreas; Dell, Paul F

    2012-01-01

    Dissociative symptoms, first-rank symptoms of schizophrenia, and delusions were assessed in 40 schizophrenia patients and 40 dissociative identity disorder (DID) patients with the Multidimensional Inventory of Dissociation (MID). Schizophrenia patients were diagnosed with the Structured Clinical Interview for the DSM-IV Axis I Disorders; DID patients were diagnosed with the Structured Clinical Interview for DSM-IV Dissociative Disorders-Revised. DID patients obtained significantly (a) higher dissociation scores; (b) higher passive-influence scores (first-rank symptoms); and (c) higher scores on scales that measure child voices, angry voices, persecutory voices, voices arguing, and voices commenting. Schizophrenia patients obtained significantly higher delusion scores than did DID patients. What is odd is that the dissociation scores of schizophrenia patients were unrelated to their reports of childhood maltreatment. Multiple regression analyses indicated that 81% of the variance in DID patients' dissociation scores was predicted by the MID's Ego-Alien Experiences Scale, whereas 92% of the variance in schizophrenia patients' dissociation scores was predicted by the MID's Voices Scale. We propose that schizophrenia patients' responses to the MID do not index the same pathology as do the responses of DID patients. We argue that neither phenomenological definitions of dissociation nor the current generation of dissociation instruments (which are uniformly phenomenological in nature) can distinguish between the dissociative phenomena of DID and what we suspect are just the dissociation-like phenomena of schizophrenia.

  8. Influence of air exposure duration and a-Si capping layer thickness on the performance of p-BaSi2/n-Si heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Ryota Takabe

    2016-08-01

    Full Text Available Fabrication of p-BaSi2(20nm/n-Si heterojunction solar cells was performed with different a-Si capping layer thicknesses (da-Si and varying air exposure durations (tair prior to the formation of a 70-nm-thick indium-tin-oxide electrode. The conversion efficiencies (η reached approximately 4.7% regardless of tair (varying from 12–150 h for solar cells with da-Si = 5 nm. In contrast, η increased from 5.3 to 6.6% with increasing tair for those with da-Si = 2 nm, in contrast to our prediction. For this sample, the reverse saturation current density (J0 and diode ideality factor decreased with tair, resulting in the enhancement of η. The effects of the variation of da-Si (0.7, 2, 3, and 5 nm upon the solar cell performance were examined while keeping tair = 150 h. The η reached a maximum of 9.0% when da-Si was 3 nm, wherein the open-circuit voltage and fill factor also reached a maximum. The series resistance, shunt resistance, and J0 exhibited a tendency to decrease as da-Si increased. These results demonstrate that a moderate oxidation of BaSi2 is a very effective means to enhance the η of BaSi2 solar cells.

  9. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  10. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    Science.gov (United States)

    Kundu, Anup K; Iyer, Swathi V; Chandra, Sruti; Adhikari, Amit S; Iwakuma, Tomoo; Mandal, Tarun K

    2017-01-01

    The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line. The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP) and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency. Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent. This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  11. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Anup K Kundu

    Full Text Available The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line.The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency.Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent.This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  12. Diffractive dissociation and eikonalization in high energy pp and p bar p collisions

    International Nuclear Information System (INIS)

    Gotsman, E.; Levin, E.M.; Maor, U.

    1994-01-01

    We show that eikonal corrections imposed on diffraction dissociation processes calculated in the triple Regge limit produce a radical change in the energy dependence of the predicted cross section. The induced correction is shown to be in general agreement with the recent Fermilab Tevatron experimental data

  13. Elevation in D-dimer concentrations is positively correlated with gestation in normal uncomplicated pregnancy

    Directory of Open Access Journals (Sweden)

    Jeremiah ZA

    2012-08-01

    Full Text Available Zaccheaus A Jeremiah,1 Teddy C Adias,2 Margaret Opiah,3 Siyeoforiye P George,4 Osaro Mgbere,5 Ekere J Essien61Department of Medical Laboratory Sciences, Niger Delta University, Wilberforce Island, Nigeria; 2Bayelsa State College of Health Technology, Ogbia-Town, Nigeria; 3Department of Maternal and Child Health, Faculty of Nursing, Niger Delta University, Wilberforce Island, Nigeria; 4Postgraduate Hematology Unit, Rivers State University of Science and Technology, Port Harcourt, Nigeria; 5Houston Department of Health and Human Services, Houston, TX, USA; 6Institute of Community Health, University of Houston, Houston, TX, USABackground: D-dimer levels have been reported to increase progressively during pregnancy, but how this affects Nigerian women is not well known.Objective: This study aims to determine the D-dimer concentration and its relationship to other coagulation parameters among pregnant women in Port Harcourt, Nigeria.Method: In a cross-sectional observational study conducted in Port Harcourt, Nigeria, 120 pregnant women and 60 nonpregnant controls, drawn from a tertiary health institution in the Niger Delta, Nigeria, were assessed, using the standard procedures, for the following parameters: D-dimer concentration, prothrombin time, activated partial thromboplastin time, platelet count, hemoglobin, and packed cell volume.Results: The median D-dimer concentration of 153.1 ng/mL in the pregnant group was found to be significantly elevated when compared with the control value of 118.5 ng/mL (t = 2.348, P = 0.021. Conversely, there was a marked depression in the platelet count among pregnant women (193.5 × 109/L when compared with 229.0 × 109/L in the control group (t = 3.424; P = 0.001. There was no statistically significant difference in the values for the prothrombin time and the activated partial thromboplastin time between pregnant and nonpregnant women. D-dimer values correlated positively and significantly with gestation (r = 0

  14. Dislocation core structures in Si-doped GaN

    International Nuclear Information System (INIS)

    Rhode, S. L.; Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J.; Horton, M. K.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2015-01-01

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10 8  and (10 ± 1) × 10 9  cm −2 . All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN

  15. Dislocation core structures in Si-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L., E-mail: srhode@imperial.ac.uk; Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Horton, M. K. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Pennycook, T. J. [SuperSTEM, STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-12-14

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10{sup 8} and (10 ± 1) × 10{sup 9} cm{sup −2}. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.

  16. Low energy Ar ion bombardment damage of Si, GaAs, and InP surfaces

    International Nuclear Information System (INIS)

    Williams, R.S.

    1982-01-01

    Argon bombardment damage to (100) surfaces of Si, GaAs, and InP for sputter ion-gun potentials of 1, 2, and 3 kilovolts was studied using Rutherford backscattering. Initial damage rates and saturation damage levels were determined. Bombardment damage sensitivity increased for the sequence Si, GaAs, and InP. Saturation damage levels for Si and GaAs correspond reasonably to LSS projected range plus standard deviation estimates; damage to InP exceeded this level significantly. For an ion-gun potential of 3 keV, the initial sputter yield of P from an InP surface exceeded the sputter yield of In by four atoms per incident Ar projectile. (author)

  17. "Equilibrium structure of monatomic steps on vicinal Si(001)

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Elswijk, H.B.; van Loenen, E.J.; Dijkkamp, D.

    1992-01-01

    The equilibrium structure of monatomic steps on vicinal Si(001) is described in terms of anisotropic nearest-neighbor and isotropic second-nearest-neighbor interactions between dimers. By comparing scanning-tunneling-microscopy data and this equilibrium structure, we obtained interaction energies of

  18. Influence of polycrystalline silicon layer on flow through «metal — p-Si» contact

    Directory of Open Access Journals (Sweden)

    Smyntyna V. A.

    2011-11-01

    Full Text Available Based on the results of investigations of charge transport in the "metal — p-Si" contacts with different thickness of polycrystalline p-Si layer the mechanisms of charge transport through such structures are shown. It is established that with increasing thickness of the layer of polycrystalline p-Si current transport mechanism changes from a double injection into the drift-diffusion. This change is due to an increase in the drift current component in the space charge zone of "metal — p-Si" contact, which arises as a result of increased surface density of scattering barriers, which are localized at the boundaries of neighboring silicon polycrystals.

  19. Changes in fibrin D-dimer, fibrinogen, and protein S during pregnancy

    DEFF Research Database (Denmark)

    Hansen, Anette Tarp; Andreasen, Birgitte Horst; Salvig, Jannie Dalby

    2010-01-01

    Background. Pregnancy is a hypercoagulable state with a 5- to 10- fold higher risk of venous thromboembolism. Existing reference intervals for fibrin D-dimer (D-dimer), functional fibrinogen (fibrinogen) and protein S, free antigen (protein S) are based on non-pregnant patients and reference...... intervals for pregnant patients are warranted. Objectives. The aim of the present study was to contribute to the establishment of reference intervals for D-dimer, fibrinogen and protein S during pregnancy and to discuss the use of the analyses during pregnancy. Methods. We included 55 healthy pregnant women...... in gestational week 11–17, with normal current pregnancy. Blood samples were collected in gestational weeks 11–17, 21–27 and 34–37. The three plasma parameters D-dimer, fibrinogen and protein S were analysed by STA-R Evolution®. Results. A significant rise in D-dimer was found from first to second trimester (p...

  20. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  1. Basic Evaluation of the Newly Developed "Lias Auto P-FDP" Assay and the Influence of Plasmin-α2 Plasmin Inhibitor Complex Values on Discrepancy in the Comparison with "Lias Auto D-Dimer Neo" Assay.

    Science.gov (United States)

    Kumano, Osamu; Ieko, Masahiro; Komiyama, Yutaka; Naito, Sumiyoshi; Yoshida, Mika; Takahashi, Nobuhiko; Ohmura, Kazumasa; Hayasaki, Junki; Hayakawa, Mineji

    2018-04-01

    Laboratory determination of fibrin/fibrinogen degradation products (FDP) levels, along with that of the D-dimer, is important for assessing the fibrinolytic situation. Recently, we developed a new FDP reagent "Lias Auto P-FDP", which can detect various FDP fragments. The purpose of this study was to evaluate the basic performance of the newly developed Lias Auto P-FDP and compare it with Lias Auto D-Dimer Neo assay. The within-run precision of Lias Auto P-FDP and Lias Auto D-Dimer was determined 20 times in low and high value controls. The between-day precision was evaluated five times a day for five days. The linearity study was performed by diluting high value samples for 2 - 10-fold and 2 - 8-fold. The comparative study was performed using 172 patient samples with elevated FDP values. For the discrepancy analysis, the samples were divided into three groups by the discrepancy percentage between the FDP and D-dimer values. The groups were defined as follows: lower discrepancy group, less than -20%; no discrepancy group, -20% to 20%; upper discrepancy group, more than 20%. The coefficient of variation % (CV%) in within-run and between-day precision were within 3.8% for both FDP and the D-dimer. The correlation coefficients were more than 0.999 and the linearity was high. In the comparative study, the values of FDP were higher than that of the D-dimer in all samples. The median FDP and D-dimer values of lower discrepancy, no discrepancy, and upper discrepancy groups were 11.8, 20.3, and 51.4, and 8.0, 11.3, and 13.1, respectively. FDP showed an increasing tendency but D-Dimer showed constant values. Thus, the possible cause of discrepancy between FDP and D-dimer values were the elevated FDP values. In addition, the values of plasmin-α2 plasmin inhibitor complex (PIC) in the upper discrepancy group were higher than that of the lower and no discrepancy groups, indicating progression of fibrinolysis. In this study, we evaluated the newly developed Lias Auto P

  2. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  3. Spin correlations in (Mn,Fe)2(P,Si) magnetocaloric compounds above Curie temperature

    NARCIS (Netherlands)

    Miao, X.F.; Caron, L.; Gubbens, P.C.M.; Yaouanc, A; Dalmas de Réotier, P; Luetkens, H.; Amato, A; van Dijk, N.H.; Brück, E.H.

    2016-01-01

    The longitudinal-field muon-spin relaxation (LF-μSR) technique was employed to study the spin correlations in (Mn,Fe)2(P,Si) compounds above the ferromagnetic transition temperature (TC). The (Mn,Fe)2(P,Si) compound under study is found to show itinerant magnetism. The standard deviation of the

  4. Generating functional analysis of complex formation and dissociation in large protein interaction networks

    International Nuclear Information System (INIS)

    Coolen, A C C; Rabello, S

    2009-01-01

    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.

  5. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum

    Science.gov (United States)

    Scribano, Yohann; Leforestier, Claude

    2007-06-01

    We present a rigorous calculation of the contribution of water dimers to the absorption coefficient α(ν¯,T ) in the millimeter and far infrared domains, over a wide range (276-310K) of temperatures. This calculation relies on the explicit consideration of all possible transitions within the entire rovibrational bound state manifold of the dimer. The water dimer is described by the flexible 12-dimensional potential energy surface previously fitted to far IR transitions [C. Leforestier et al., J. Chem. Phys. 117, 8710 (2002)], and which was recently further validated by the good agreement obtained for the calculated equilibrium constant Kp(T) with experimental data [Y. Scribano et al., J. Phys. Chem. A. 110, 5411 (2006)]. Transition dipole matrix elements were computed between all rovibrational states up to an excitation energy of 750cm-1, and J =K=5 rotational quantum numbers. It was shown by explicit calculations that these matrix elements could be extrapolated to much higher J values (J=30). Transitions to vibrational states located higher in energy were obtained from interpolation of computed matrix elements between a set of initial states spanning the 0-750cm-1 range and all vibrational states up to the dissociation limit (˜1200cm-1). We compare our calculations with available experimental measurements of the water continuum absorption in the considered range. It appears that water dimers account for an important fraction of the observed continuum absorption in the millimeter region (0-10cm-1). As frequency increases, their relative contribution decreases, becoming small (˜3%) at the highest frequency considered ν¯=944cm-1.

  6. Theoretical Research on the Mechanism of the Dimerization Reactions of Alkyl Ketene

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhang

    2013-01-01

    Full Text Available A quantum chemical method was employed to investigate the mechanism of dimerization reactions of alkyl ketene. All the geometric configurations of the stationary points on the reactions path were optimized with Gaussian03 employing density functional theory at the B3LYP/6-311G++(d, p level by energy gradient technique. The transition states were also investigated through synchronous transit method, and its reasonability was confirmed by using frequency analysis and intrinsic reaction coordinate analysis. The results can be summed up as follows: according to the frontier orbital theory, the dimerization reaction (3 to generate four-membered carbon cyclic product P3 is forbidden. Two different dimerization processes of alkyl ketene are all concerted but nonsynchronous, taking place through twisted four-membered cyclic transition states. The activation energies were calculated to be 34.54 and 61.73 kJ/mol, respectively for the two ketene dimerization processes. Calculation results satisfactorily explained the experimental facts.

  7. Fabrication and characterization of Au dimer antennas on glass pillars with enhanced plasmonic response

    Directory of Open Access Journals (Sweden)

    Sadeghi Pedram

    2017-06-01

    Full Text Available We report on the fabrication and dark-field spectroscopy characterization of Au dimer nanoantennas placed on top of SiO2 nanopillars. The reported process enables the fabrication of nanopillar dimers with gaps down to 15 nm and heights up to 1 μm. A clear dependence of the plasmonic resonance position on the dimer gap is observed for smaller pillar heights, showing the high uniformity and reproducibility of the process. It is shown how increasing the height of nanopillars significantly affects the recorded elastic scattering spectra from Au nanoantennas. The results are compared to finite-difference time-domain (FDTD and finite-element method (FEM simulations. Additionally, measured spectra are accompanied by dark-field microscopy images of the dimers, showing the pronounced change in color. Placing nanoantennas on nanopillars with a height comparable to the in-plane dimer dimensions results in an enhancement of the scattering response, which can be understood through reduced interaction of the near-fields with the substrate. When increasing the pillar height further, scattering by the pillars themselves manifests itself as a strong tail at lower wavelengths. Additionally, strong directional scattering is expected as a result of the interface between the nanoantennas and nanopillars, which is taken into account in simulations. For pillars of height close to the plasmonic resonance wavelength, the scattering spectra become more complex due to additional scattering peaks as a result of larger geometrical nonuniformities.

  8. Effect of pH on dissociation of casein micelles in yak skim milk.

    Science.gov (United States)

    Yang, M; Zhang, G D; Yang, J T; Sun, D; Wen, P C; Zhang, W B

    2018-04-01

    The dissociation of yak casein (CN) micelles was evaluated by scanning electron microscopy, particle size, fluorescence properties, and soluble mineral and CN molecule content at pH 4.6 to 8.2. The results showed that the size of CN micelles remained constant with decreasing pH from 8.2 to 5.8 but sharply increased at pH ≤5.4. Casein micelles began to aggregate at pH 5.4, and the serum magnesium, potassium, iron, zinc, copper, and manganese levels had their minimum values at this pH level. During acidification, colloidal calcium phosphate dramatically disassociated from yak CN micelles, but the soluble CN monomer content decreased slightly. During alkalization, the soluble calcium and phosphorus content decreased below pH 6.8 but increased with pH increases from 6.8 to 8.2. However, the soluble CN content increased markedly during alkalization. The emission wavelength of 8-anilino-1-naphthalenesulfonic acid sodium salt fluorescence decreased during both acidification and alkalization from pH 6.6, whereas the opposite was found for intrinsic fluorescence. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. C and Si delta doping in Ge by CH{sub 3}SiH{sub 3} using reduced pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yuji, E-mail: yamamoto@ihp-microelectronics.com [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Ueno, Naofumi; Sakuraba, Masao [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577 (Japan); Murota, Junichi [Micro System Integration Center, Tohoku University, 519-1176, Aramaki aza Aoba, Aoba-ku, Sendai 980-0845 (Japan); Mai, Andreas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Tillack, Bernd [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Technische Universität Berlin, HFT4, Einsteinufer 25, 10587 Berlin (Germany)

    2016-03-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH{sub 3}SiH{sub 3} is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H{sub 2} or N{sub 2} carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N{sub 2} as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH{sub 3}SiH{sub 3} is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H{sub 2} as carrier gas, lower incorporated C is observed in comparison to Si. CH{sub 3}SiH{sub 3} injected with H{sub 2} carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N{sub 2} at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH{sub 3}SiH{sub 3} exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH{sub 3}SiH{sub 3} adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  10. Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus. PMID:16707664

  11. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.

  12. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels.

    Science.gov (United States)

    Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.

  13. 2-Ethynylpyridine dimers

    DEFF Research Database (Denmark)

    Bakarić, Danijela; Spanget-Larsen, Jens

    2018-01-01

    are used to study possible 2-EP dimer structures as well as their distribution in an inert solvent such as tetrachloroethene. Experimentally, the ≡C–H stretching vibration of the 2-EPmonomer absorbs close to 3300 cm−1, whereas a broad band withmaximum around 3215 cm−1 emerges as the concentration rises...... model with counterpoise correction predict that the two most stable dimers are of the pi-stacked variety, closely followed by dimers with intermolecular ≡C–H···N hydrogen bonding; the predicted red shifts of the ≡C–H stretching wavenumbers due to hydrogen bonding are in the range 54 – 120 cm–1...

  14. Dissociative symptomatology in cancer patients

    Science.gov (United States)

    Civilotti, Cristina; Castelli, Lorys; Binaschi, Luca; Cussino, Martina; Tesio, Valentina; Di Fini, Giulia; Veglia, Fabio; Torta, Riccardo

    2015-01-01

    Introduction: The utilization of the post-traumatic stress disorder (PTSD) diagnostic spectrum is currently being debated to categorize psychological adjustment in cancer patients. The aims of this study were to: (1) evaluate the presence of cancer-related traumatic dissociative symptomatology in a sample of cancer patients; (2) examine the correlation of cancer-related dissociation and sociodemographic and medical variables, anxiety, depression, and post-traumatic stress symptomatology; (3) investigate the predictors of cancer-related dissociation. Methods: Ninety-two mixed cancer patients (mean age: 58.94, ds = 10.13) recruited from two hospitals in northern Italy were administered a questionnaire on sociodemographic and medical characteristics, the Karnofsky Scale to measure the level of patient activity and medical care requirements, the Hospital Anxiety and Depression Scale (HADS) to evaluate the presence of anxiety and depression, the Impact of Event Scale Revised (IES-R) to assess the severity of intrusion, avoidance, and hypervigilance, and the Peritraumatic Dissociative Experiences Questionnaire (PDEQ) to quantify the traumatic dissociative symptomatology. Results: 31.5% of participants report a PDEQ score above the cutoff. The results indicated that dissociative symptomatology was positively correlated with HADS scores (HADS-Anxiety: r = 0.476, p dissociative symptomatology. The results converged on a three predictor model revealing that IES-R-Intrusion, IES-R-Avoidance, and IES-R-Hyperarousal accounted for 53.9% of the explained variance. Conclusion: These findings allow us to hypothesize a specific psychological reaction which may be ascribed to the traumatic spectrum within the context of cancer, emphasizing the close relationship between the origin of dissociative constituents which, according to the scientific literature, compose the traumatic experience. Our results have implications for understanding dissociative symptomatology in a cancer

  15. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    Science.gov (United States)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  16. Electrical parameters of metal doped n-CdO/p-Si heterojunction diodes

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, P. [Department of Physics, Sri Vidya College of Engineering & Technology, Virudhunagar 626005, Tamilnadu (India); Prithivikumaran, N., E-mail: janavi_p@yahoo.com [Nanoscience Research Lab, Department of Physics, VHNSN College, Virudhunagar 626001, Tamilnadu (India)

    2016-11-15

    The CdO, Al doped CdO and Cu doped CdO thin films were coated on p-type silicon substrates by sol–gel spin coating method. The structural, surface morphological and electrical properties of undoped, Al and Cu doped CdO films on silicon substrate were studied. The Ag/CdO/p-Si, Ag/Al: CdO/p-Si and Ag/Cu: CdO/p-Si heterojunction diodes were fabricated and the diode parameters such as reverse saturation current, barrier height and ideality factor of the diodes were investigated by current–voltage (I–V)characteristics. The reverse current of the diode was found to increase strongly with the doping. The values of barrier height and ideality factor were decreased by doping with aluminium and copper. Photo response of the heterojunction diodes was studied and it was found that, the heterojunction diode constructed with the doped CdO has larger Photo response than the undoped heterojunction diode.

  17. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction.

    Science.gov (United States)

    Ling, Cuicui; Guo, Tianchao; Lu, Wenbo; Xiong, Ya; Zhu, Lei; Xue, Qingzhong

    2017-06-29

    The SnO 2 /Si heterojunction possesses a large band offset and it is easy to control the transportation of carriers in the SnO 2 /Si heterojunction to realize high-response broadband detection. Therefore, we investigated the potential of the SnO 2 nanoparticle thin film/SiO 2 /p-Si heterojunction for photodetectors. It is demonstrated that this heterojunction shows a stable, repeatable and broadband photoresponse from 365 nm to 980 nm. Meanwhile, the responsivity of the device approaches a high value in the range of 0.285-0.355 A W -1 with the outstanding detectivity of ∼2.66 × 10 12 cm H 1/2 W -1 and excellent sensitivity of ∼1.8 × 10 6 cm 2 W -1 , and its response and recovery times are extremely short (oxide or oxide/Si based photodetectors. In fact, the photosensitivity and detectivity of this heterojunction are an order of magnitude higher than that of 2D material based heterojunctions such as (Bi 2 Te 3 )/Si and MoS 2 /graphene (photosensitivity of 7.5 × 10 5 cm 2 W -1 and detectivity of ∼2.5 × 10 11 cm H 1/2 W -1 ). The excellent device performance is attributed to the large Fermi energy difference between the SnO 2 nanoparticle thin film and Si, SnO 2 nanostructure, oxygen vacancy defects and thin SiO 2 layer. Consequently, practical highly-responsive broadband PDs may be actualized in the future.

  18. Design and electrical characterization of Au/Anthracene/p-Si/Al organic/inorganic heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Attieh A., E-mail: aaaalghamdi4@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Department of Physics, North Jeddah (Saudi Arabia); Nawar, Ahmed M.; El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Yaghmour, S.J. [Department of Physics, King Abdulaziz University, North Jeddah (Saudi Arabia); Azam, Ameer [Center of Nanotechnology, King Abdulaziz University, Department of Physics, North Jeddah (Saudi Arabia)

    2015-02-15

    Highlights: • We have successfully fabricated a Au/Anthracene/p-Si/Al organic/inorganic heterojunction. • The calculated series resistance and the shunt resistance of the device were found to be 440 Ω and 1.47 MΩ, respectively. • The Cheung-Cheung and Norde’s models were used to investigate and determine the heterojunction parameters. • Essential junction parameters and performance of heterojunction established a photovoltaic behavior. • Open circuit voltage (V{sub oc}) 0.382 V, short circuit photocurrent (I{sub SC}) 0.72 mA and power conversion efficiency (η) of 4.65%. - Abstract: Hybrid organic/inorganic heterojunction of nanocrystalline Anthracene and p-Si was fabricated by using a conventional thermal evaporation technique. The crystal and molecular structure of the Anthracene thin films were analyzed by means of X-ray diffraction (XRD), and Fourier Transformation-Infra Red (FT-IR) spectroscopy. The morphologies of the Anthracene/p-Si were investigated by scanning electron microscopy (SEM). The dark current-voltage (I-V) characteristics of Au/Anthracene/p-Si/Al heterojunction were investigated at room temperature (293 K). The calculated series resistance and the shunt resistance of the device were found to be 440 Ω and 1.47 MΩ, respectively. The Cheung-Cheung and Norde’s models were used to investigate and determine the heterojunction parameters. The ideality factor and barrier height values of the Au/Anthracene/p-Si/Al diode were obtained to be 1.1 and 0.464 eV, respectively. The dependence of capacitance-voltage (C{sup -2}-V) for the device Anthracene/p-Si was found to be almost linear. Essential junction parameters and performance of heterojunction established a photovoltaic behavior with an open circuit voltage (V{sub oc}) 0.382 V, short circuit photocurrent (I{sub SC}) 0.72 mA and power conversion efficiency (η) of 4.65%.

  19. Fabrication and characterization of DBM/p-Si heterojunction solar cell

    International Nuclear Information System (INIS)

    El-Nahass, M.M.; Kamel, M.A.; Atta, A.A.; Huthaily, S.Y.

    2013-01-01

    Hybrid organic/inorganic solar cell was fabricated by depositing a thin film of p-N,N dimethylaminobenzylidenemalononitrile (DBM) onto p-Si substrate. DBM is a donor–acceptor disubstituted benzenes dye known as molecular rotors and highly polar molecular compounds. Its powder has a polycrystalline structure, while nano-crystallite rods are formed in the as-deposited film. The dark current density–voltage (J–V) characteristics of Au/DBM/p-Si/Al heterojunction device measured at different temperatures ranging from 291 to 353 K have been investigated. The operating conduction mechanisms, the series and shunt resistances, the rectification ratio, the ideality factor, the effective barrier height, and the total trap concentration were determined. The capacitance–voltage (C–V) characteristics indicated that the junction is of abrupt nature. The built-in voltage and the carrier concentration distributed through the depletion region were estimated. Under illumination, the DBM/p-Si cell showed photovoltaic properties and the photovoltaic parameters were evaluated. -- Highlights: ► The molecular rotors DBM dye can be used to manufacture D/A solar cells. ► Since D/A are situated in the DBM molecule, we ensure photoinduced D → A electron transfer. ► The DBM film is grown as nano-rods. ► The most of the DBM bulk of the cell contributes to the generation of external current.

  20. Fabrication and characterization of DBM/p-Si heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Nahass, M.M.; Kamel, M.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Atta, A.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Physics Department, Faculty of Science, Taif University, Taif, 888 Taif (Saudi Arabia); Huthaily, S.Y., E-mail: s_huthaily@yahoo.com [Physics Department, Faculty of Education, Hodeidah University, Alduraihimi, 3114 Hodeidah (Yemen)

    2013-01-15

    Hybrid organic/inorganic solar cell was fabricated by depositing a thin film of p-N,N dimethylaminobenzylidenemalononitrile (DBM) onto p-Si substrate. DBM is a donor-acceptor disubstituted benzenes dye known as molecular rotors and highly polar molecular compounds. Its powder has a polycrystalline structure, while nano-crystallite rods are formed in the as-deposited film. The dark current density-voltage (J-V) characteristics of Au/DBM/p-Si/Al heterojunction device measured at different temperatures ranging from 291 to 353 K have been investigated. The operating conduction mechanisms, the series and shunt resistances, the rectification ratio, the ideality factor, the effective barrier height, and the total trap concentration were determined. The capacitance-voltage (C-V) characteristics indicated that the junction is of abrupt nature. The built-in voltage and the carrier concentration distributed through the depletion region were estimated. Under illumination, the DBM/p-Si cell showed photovoltaic properties and the photovoltaic parameters were evaluated. -- Highlights: Black-Right-Pointing-Pointer The molecular rotors DBM dye can be used to manufacture D/A solar cells. Black-Right-Pointing-Pointer Since D/A are situated in the DBM molecule, we ensure photoinduced D {yields} A electron transfer. Black-Right-Pointing-Pointer The DBM film is grown as nano-rods. Black-Right-Pointing-Pointer The most of the DBM bulk of the cell contributes to the generation of external current.

  1. 1 / n Expansion for the Number of Matchings on Regular Graphs and Monomer-Dimer Entropy

    Science.gov (United States)

    Pernici, Mario

    2017-08-01

    Using a 1 / n expansion, that is an expansion in descending powers of n, for the number of matchings in regular graphs with 2 n vertices, we study the monomer-dimer entropy for two classes of graphs. We study the difference between the extensive monomer-dimer entropy of a random r-regular graph G (bipartite or not) with 2 n vertices and the average extensive entropy of r-regular graphs with 2 n vertices, in the limit n → ∞. We find a series expansion for it in the numbers of cycles; with probability 1 it converges for dimer density p diverges as |ln(1-p)| for p → 1. In the case of regular lattices, we similarly expand the difference between the specific monomer-dimer entropy on a lattice and the one on the Bethe lattice; we write down its Taylor expansion in powers of p through the order 10, expressed in terms of the number of totally reducible walks which are not tree-like. We prove through order 6 that its expansion coefficients in powers of p are non-negative.

  2. Precise control of Si(001) initial oxidation by translational kinetic energy of O2 molecules

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    The influence of translation kinetic energy of incident O 2 molecules on the passive oxidation of the clean Si(001) surface and the partially oxidized-Si(001) surface has been studied by high-resolution photoemission spectroscopy using synchrotron radiation. The incident energy of O 2 molecules was controlled up to 3 eV by a supersonic seeded molecular beam technique. Although two incident energy thresholds (1.0 eV and 2.6 eV) have been determined for the partially oxidized-surface oxidation in accordance with the first-principle calculation, the monotonic increase of oxygen saturation coverage was observed for the clean surface oxidation. The difference is caused by the initial dangling bond termination (Si-H and Si-OH) on the partially oxidized surface. Si-2p and O-1s photoemission spectra measured at representative incident energies showed the incident-energy-induced oxidation at the back bonds of Si dimers and the second-layer (subsurface) Si atoms. Moreover, the low-and high-binding-energy components in the O-1s photoemission spectra were assigned to bridge site oxygen and dangling bond site oxygen for the partially oxidized-surface oxidation. (author)

  3. Exploring the Nature of Silicon-Noble Gas Bonds in H3SiNgNSi and HSiNgNSi Compounds (Ng = Xe, Rn

    Directory of Open Access Journals (Sweden)

    Sudip Pan

    2015-03-01

    Full Text Available Ab initio and density functional theory-based computations are performed to investigate the structure and stability of H3SiNgNSi and HSiNgNSi compounds (Ng = Xe, Rn. They are thermochemically unstable with respect to the dissociation channel producing Ng and H3SiNSi or HSiNSi. However, they are kinetically stable with respect to this dissociation channel having activation free energy barriers of 19.3 and 23.3 kcal/mol for H3SiXeNSi and H3SiRnNSi, respectively, and 9.2 and 12.8 kcal/mol for HSiXeNSi and HSiRnNSi, respectively. The rest of the possible dissociation channels are endergonic in nature at room temperature for Rn analogues. However, one three-body dissociation channel for H3SiXeNSi and one two-body and one three-body dissociation channels for HSiXeNSi are slightly exergonic in nature at room temperature. They become endergonic at slightly lower temperature. The nature of bonding between Ng and Si/N is analyzed by natural bond order, electron density and energy decomposition analyses. Natural population analysis indicates that they could be best represented as (H3SiNg+(NSi− and (HSiNg+(NSi−. Energy decomposition analysis further reveals that the contribution from the orbital term (ΔEorb is dominant (ca. 67%–75% towards the total attraction energy associated with the Si-Ng bond, whereas the electrostatic term (ΔEelstat contributes the maximum (ca. 66%–68% for the same in the Ng–N bond, implying the covalent nature of the former bond and the ionic nature of the latter.

  4. Fabrication of p-{beta}-Fe{sub 1{minus}x}Mn{sub x}Si{sub 2}/nSi heterostructure diode and their electrical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Takada, T; Katsumata, H; Makita, Y; Kobayashi, N; Hasegawa, M; Uekusa, S

    1997-07-01

    The authors report on the fabrication of p-type {beta}-FeSi{sub 2} layers on n-type Si(100) substrates and the investigation of their p-n diode characteristics. Since the undoped {beta}-FeSi{sub 2} layers have typically shown n-type conductivity, the p-type layers were formed by the introduction of Mn impurity into {beta}-FeSi{sub 2} layers using two types of doping methods; one is an Electron-Beam-Deposition (EBD) procedure of Fe{sub 1{minus}x}Mn{sub x}Si{sub 2} (x < {approximately}0.1) at room temperature and subsequent annealing at 900 C for 1--120 min, where FeSi{sub 2} ingots added with Mn({approximately}10%) were used as starting materials. The other is a {sup 55}Mn{sup +}-implantation into {beta}-FeSi{sub 2} layers formed by EBD and subsequent annealing at 850 C for 1--120 min. From van der Pauw measurements, p-type {beta}-Fe{sub 1{minus}x}Mn{sub x}Si{sub 2} layers with the resistivity of 0.0036--0.031 {Omega}{center{underscore}dot}cm and hole mobility of 11.9--89.0 cm{sup 2}/V{center{underscore}dot}sec were found to be successfully formed on n-Si substrates by both doping methods. The p-n diode characteristics of these heterostructure diodes were investigated by I-V and C-V measurements. The results indicate that the carrier distribution does not agree with either ideal one-side step or one-side slop junctions, although optical transmittance and reflectance measurements indicate that the silicide/Si interface is of good quality.

  5. DFT Study of dimers of dimethyl sulfoxide in gas phase

    Directory of Open Access Journals (Sweden)

    Reza Fazaeli

    2014-10-01

    Full Text Available Density functional (DFT calculations at M05-2x/aug-cc-pVDZ level were used to analyze the interactions between dimethyl sulfoxide (DMSO dimers. The structures obtained have been ana-lyzed with the Atoms in Molecules (AIMs and Natural Bond Orbital (NBO methodologies. Four minima were located on the potential energy surface of the dimers. Three types of interac-tions are observed, CH•••O, CH•••S hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the sulfur atom. Stabilization energies of dimers including BSSE and ZPE are in the range 27–40 kJmol-1. The most stable conformers of dimers at DFT level is cyclic structure with antiparallel orientation of S=O groups pairing with three C–H∙∙∙O and a S∙∙∙O interactions.

  6. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    Science.gov (United States)

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  7. Serum Potassium Levels Inversely Correlate with D-Dimer In Patients with Acute-Onset Atrial Fibrillation.

    Science.gov (United States)

    Cervellin, Gianfranco; Bonfanti, Laura; Picanza, Alessandra; Lippi, Giuseppe

    2014-12-09

    Background: D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared to subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. Objective: D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared with subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. The aim of this study was to investigate correlations between D-dimer and serum potassium in acute-onset AF (AAF). Methods: To investigate the potential correlation between the values of serum potassium and D-dimer in patients with AAF, we retrospectively reviewed clinical and laboratory data of all emergency department visits for AAF in 2013. Results: Among 271 consecutive AAF patients with D-dimer assessments, those with hypokalemia (n = 98) had significantly higher D-dimer values than normokalemic patients (139 versus 114 ng/mL, p = 0.004). The rate of patients with D-dimer values exceeding the diagnostic cut-off was higher in the group of patients with hypokalemia than in those with normal serum potassium (26.5% versus 16.2%; p = 0.029). An inverse and highly significant correlation was found between serum potassium and D-dimer (r = -0.21; p enzima conversora de angiotensina e diuréticos. Conclusões: A correlação inversa existente entre os níveis séricos de potássio e D-dímero em pacientes com FAA fornece informações importantes sobre o risco de tromboembolismo nestes pacientes.

  8. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

    Science.gov (United States)

    Yamei, Wu; Ruixia, Yang; Hanmin, Tian; Shuai, Chen

    2016-05-01

    Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ±5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Isc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated. Project supported by the Hebei Province Natural Science Foundation of China (No. F2014202184) and the Tianjin Natural Science Foundation of China (No. 15JCZDJC37800).

  9. Corrosion resistance enhancement of Ni-P-nano SiO{sub 2} composite coatings on aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Sadreddini, Sina, E-mail: sina.sadreddini1986@gmail.com [Department of Materials Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Afshar, Abdollah [Department of Materials Science and Engineering, Sharif university of Technology, Tehran (Iran, Islamic Republic of)

    2014-06-01

    In this study, the influences of different concentrations of SiO{sub 2} nano sized particles in the bath on deposition rate, surface morphology and corrosion behavior of Ni-P-SiO{sub 2} Composite coatings were investigated. The deposition rate of coating was influenced by incorporation of SiO{sub 2} particles. The microstructure was investigated with field emission scanning electron microscopy (FESEM). The amount of SiO{sub 2} was examined by Energy Dispersive Analysis of X-Ray (EDX) and amount of SiO{sub 2} nanoparticles co-deposited reached a maximum value at 4.5 %wt. Corrosion behavior of coated aluminum was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results illustrated that the corrosion rate decreases (6.5–0.6 μA/cm{sup 2}) and the corrosion potential increases (−0.64 to −0.3) with increasing the quantity of the SiO{sub 2} nanoparticles in the bath. Moreover, Ni-p-SiO{sub 2} nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  10. Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, R.; Perovic, I; Martin-Diaconescu, V; O’Brien, K; Chivers, P; Sondej Pochapsky, S; Pochapsky, T; Maroney, M

    2010-01-01

    Helicobacter pylori, a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys){sub 4} site to a Zn(His){sub 2}(Cys){sub 2} site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the {beta}-CH{sub 2} protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys){sub 4}) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model

  11. Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

    International Nuclear Information System (INIS)

    Herbst, R.; Perovic, I.; Martin-Diaconescu, V.; O'Brien, K.; Chivers, P.; Sondej Pochapsky, S.; Pochapsky, T.; Maroney, M.

    2010-01-01

    Helicobacter pylori, a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys) 4 site to a Zn(His) 2 (Cys) 2 site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the β-CH 2 protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys) 4 ) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model wherein HypA controls the

  12. The structure of liquid Li-Si at the eutectic composition

    International Nuclear Information System (INIS)

    Jonc, P.H.K. de; Verkerk, P.

    1993-01-01

    Neutron diffraction data concerning liquid Li 57 Si 43 at 615 deg C and 800 deg C have been analyzed with the Reverse Monte Carlo method (RMC). The obtained Si-Si partial pair correlation functions at these two temperatures are well defined and the first maximum indicates that covalently bonded Si is present at both temperatures. The major part of the Si atoms are present in large clusters. These entities partially dissociate at increasing temperature. The results are compared with results from an ab-initio MD simulation of K Si and with RMC results for Li 65 Si 35 . (authors) 4 figs., 1 tab., 8 refs

  13. Photoconducting and photocapacitance properties of Al/p-CuNiO{sub 2}-on-p-Si isotype heterojunction photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, I.A. [Physics Department, College of Science and Humanitarian Studies, Salman bin Abdulaziz University (Saudi Arabia); Physics Department, Faculty of Science, Damietta University (Egypt); Çavaş, Mehmet [Department of Mechatronics, Faculty of Technology, Firat University, Elazig (Turkey); Gupta, R. [Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762 (United States); Fahmy, T. [Physics Department, College of Science and Humanitarian Studies, Salman bin Abdulaziz University (Saudi Arabia); Polymer Research Group, Physics Department, Faculty of Science, Mansoura University (Egypt); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Physics Department, Faculty of Science, Firat University, Elazig (Turkey)

    2015-07-25

    Highlights: • The CuNiO{sub 2} thin film was prepared by sol gel method. • The diode has a high photosensitivity value of 1.02 × 10{sup 3} under 100 mW/cm{sup 2}. • Al/p-Si/CuNiO{sub 2}/Al can used in optoelectronic device applications. - Abstract: Thin film of CuNiO{sub 2} was prepared by sol gel method to fabricate a photodiode. The surface morphology of the CuNiO{sub 2} thin film was investigated by atomic force microscopy (AFM). AFM results indicated that CuNiO{sub 2} film was formed from the nanoparticles and the average size of the nanoparticles was about 115 nm. The optical band gap of CuNiO{sub 2} film was calculated using optical data and was found to be about 2.4 eV. A photodiode having a structure of Al/p-Si/CuNiO{sub 2}/Al was prepared. The electronic parameters such as ideality factor and barrier height of the diode were determined and were obtained to be 8.23 and 0.82 eV, respectively. The interface states properties of the Al/p-Si/CuNiO{sub 2}/Al diode was performed using capacitance–voltage and conductance–voltage characteristics. The series resistance of the Al/p-Si/CuNiO{sub 2}/Al photo diode was observed to be decreasing with increasing frequency. The diode exhibited a photoconducting behavior with a high photosensitivity value of 1.02 × 10{sup 3} under 100 mW/cm{sup 2}. The obtained results indicate that Al/p-Si/CuNiO{sub 2}/Al can used in optoelectronic device applications.

  14. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    International Nuclear Information System (INIS)

    Hai-Qing, Xiao; Chun-Lan, Zhou; Xiao-Ning, Cao; Wen-Jing, Wang; Lei, Zhao; Hai-Ling, Li; Hong-Wei, Diao

    2009-01-01

    Al 2 O 3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10 12 cm −2 is detected in the Al 2 O 3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO 2 and plasma enhanced chemical vapor deposition SiN x :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al 2 O 3 . (cross-disciplinary physics and related areas of science and technology)

  15. The effect of Gd doping on the electrical and photoelectrical properties of Gd:ZnO/p-Si heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Baturay, Silan [Department of Physics, Faculty of Science, Dicle University, 21280 Diyarbakir (Turkey); Ocak, Yusuf Selim, E-mail: yusufselim@gmail.com [Department of Science, Faculty of Education, Dicle University, 21280 Diyarbakir (Turkey); Science and Technology Application and Research Center, Dicle University, 21280 Diyarbakir (Turkey); Kaya, Derya [Department of Physics, Institute of Natural Applied Sciences, Dicle University, 21280 Diyarbakir (Turkey)

    2015-10-05

    Highlights: • Undoped and Gd doped ZnO thin films were deposited onto p-Si semiconductor. • The Gd:ZnO/p-Si heterojunctions were compared with undoped ZnO/p-Si heterojunction. • A strong effect of Gd doping on the performance of the devices were reported. - Abstract: Undoped ZnO thin films, as well as 1%, 3% and 5% Gd-doped ZnO films, were deposited on p-type Si using spin coating. The structural properties of these thin films were analysed using X-ray diffraction, and the current–voltage (I–V) and capacitance–voltage (C–V) characteristics of the Gd:ZnO/p-Si heterojunctions were compared with those of the undoped ZnO/p-Si heterojunctions. We found that Gd doping had a strong effect on the performance of the devices, and that the Gd:ZnO/p-Si heterojunctions formed with 1% Gd-doped ZnO were the most strongly rectifying, and had the highest barrier height and the lowest series resistance. Furthermore, the I–V measurements of the 1% Gd-doped ZnO/p-Si heterojunction exhibited the strongest response to light.

  16. Gamma spectroscopy of 33Cl and 29P fed in 32S(p,γ)33Cl and 28Si(p,γ)29P reactions

    International Nuclear Information System (INIS)

    Aleonard, M.-M.

    1975-01-01

    The properties of the levels of the A=4N+1 33 Cl and 29 P nuclei were studied via the 32 S(p,γ) 33 Cl and 28 Si(p,γ) 29 P reactions. Absolute and relative resonance strength measurements were performed in chlorine and phosphorus isotopes with 80cm 3 Ge(Li) detector and natural targets of sulfur or silicon compounds. Three new resonances were observed in the 32 S(p,γ) 33 Cl reaction at E(p)=1588, 1748 and 1880keV and a doublet clearly shown at E(p) approximately equal to 1900keV. The Q-value of the reaction, as well as the energies, γ-branching, and mean lifetimes of the levels below E(x)=4.78MeV were measured. The spins of the E(x)=2.35, 3.82, 3.97 and 4.78MeV levels were determined. A comparison of the γ-ray transition strengths is made against mirror transitions and shell-model or weak coupling model predictions, for positive and negative parity states. Resonance strengths and decays of 29 P levels populated via the 28 Si(p,γ) 29 P reaction were measured for E(p)=0.4 to 2.28MeV. Pecular attention was paid to the E(x)=3447 and 4642keV levels. Resonance strengths as well as γ-branching, mean lifetimes and angular distributions lead to the following characteristics: E(x)=3447keV, J(π)=7/2 - , tau=13+-(9)7fs; E(x)=4642keV, J(π)=3/2 + , 5/2-9/2, tau=52+-20fs. Comparison of the mirror levels characteristics in 29 Si and 29 P favours a J(π)=9/2 + assignment for the E(x)=4642keV level [fr

  17. Energy Conversion Properties of ZnSiP2, a Lattice-Matched Material for Silicon-Based Tandem Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aaron D.; Warren, Emily L.; Gorai, Prashun; Borup, Kasper A.; Krishna, Lakshmi; Kuciauskas, Darius; Dippo, Patricia C.; Ortiz, Brenden R.; Stradins, Paul; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.

    2016-11-21

    ZnSiP2 demonstrates promising potential as an optically active material on silicon. There has been a longstanding need for wide band gap materials that can be integrated with Si for tandem photovoltaics and other optoelectronic applications. ZnSiP2 is an inexpensive, earth abundant, wide band gap material that is stable and lattice matched with silicon. This conference proceeding summarizes our PV-relevant work on bulk single crystal ZnSiP2, highlighting the key findings and laying the ground work for integration into Si-based tandem devices.

  18. Rubidium dimers in paraffin-coated cells

    International Nuclear Information System (INIS)

    Acosta, V M; Windes, D; Corsini, E; Ledbetter, M P; Karaulanov, T; Budker, D; Jarmola, A; Auzinsh, M; Rangwala, S A; Jackson Kimball, D F

    2010-01-01

    Measurements were made to determine the density of rubidium dimer vapor in paraffin-coated cells. The number density of dimers and atoms in similar paraffin-coated and uncoated cells was measured by optical spectroscopy. Due to the relatively low melting point of paraffin, a limited temperature range of 43-80 0 C was explored, with the lower end corresponding to a dimer density of less than 10 7 cm -3 . With 1 min integration time, a sensitivity to dimer number density of better than 10 6 cm -3 was achieved. No significant difference in dimer density between the cells was observed.

  19. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  20. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair.

    Science.gov (United States)

    Kosinski, Jan; Hinrichsen, Inga; Bujnicki, Janusz M; Friedhoff, Peter; Plotz, Guido

    2010-08-01

    Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome that predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased coexpression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.

  1. Native-language N400 and P600 predict dissociable language-learning abilities in adults

    Science.gov (United States)

    Qi, Zhenghan; Beach, Sara D.; Finn, Amy S.; Minas, Jennifer; Goetz, Calvin; Chan, Brian; Gabrieli, John D.E.

    2018-01-01

    Language learning aptitude during adulthood varies markedly across individuals. An individual’s native-language ability has been associated with success in learning a new language as an adult. However, little is known about how native-language processing affects learning success and what neural markers of native-language processing, if any, are related to success in learning. We therefore related variation in electrophysiology during native-language processing to success in learning a novel artificial language. Event-related potentials (ERPs) were recorded while native English speakers judged the acceptability of English sentences prior to learning an artificial language. There was a trend towards a double dissociation between native-language ERPs and their relationships to novel syntax and vocabulary learning. Individuals who exhibited a greater N400 effect when processing English semantics showed better future learning of the artificial language overall. The N400 effect was related to syntax learning via its specific relationship to vocabulary learning. In contrast, the P600 effect size when processing English syntax predicted future syntax learning but not vocabulary learning. These findings show that distinct neural signatures of native-language processing relate to dissociable abilities for learning novel semantic and syntactic information. PMID:27737775

  2. Ionization constants pKa of cardiolipin.

    Science.gov (United States)

    Olofsson, Gerd; Sparr, Emma

    2013-01-01

    Cardiolipin is a phospholipid found in the inner mitochondrial membrane and in bacteria, and it is associated with many physiological functions. Cardiolipin has a dimeric structure consisting of two phosphatidyl residues connected by a glycerol bridge and four acyl chains, and therefore it can carry two negative charges. The pKa values of the phosphate groups have previously been reported to differ widely with pKa1 = 2.8 and pKa2 = 7.5-9.5. Still, there are several examples of experimental observations from cardiolipin-containing systems that do not fit with this dissociation behavior. Therefore, we have carried out pH-titration and titration calorimetric experiments on two synthetic cardiolipins, 1,1',2,2'-tetradecanoyl cardiolipin, CL (C14:0), and 1,1',2,2'-tetraoctadecenoyl cardiolipin, CL (C18:1). Our results show that both behave as strong dibasic acids with pKa1 about the same as the first pKa of phosphoric acid, 2.15, and pKa2 about one unit larger. The characterization of the acidic properties of cardiolipin is crucial for the understanding of the molecular organization in self-assembled systems that contain cardiolipin, and for their biological function.

  3. GaInAsP-InP Double Heterostructure Lasers on Si Substrate Grown by LP-MOCVD

    National Research Council Canada - National Science Library

    Razeghi, M

    1993-01-01

    ... #N00014-93-1-0176 'GaInAsP-InP double heterostructure lasers on Si substrate grown by MOVCD'. In order to achieve this goal of the contract, the CQD research group split the divided research work into three phases (with specific tasks...

  4. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    Science.gov (United States)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  5. Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv].

    Science.gov (United States)

    Puranik, Swati; Bahadur, Ranjit Prasad; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The plant-specific NAC (NAM, ATAF, and CUC) transcription factors have diverse role in development and stress regulation. A transcript encoding NAC protein, termed SiNAC was identified from a salt stress subtractive cDNA library of S. italica seedling (Puranik et al., J Plant Physiol 168:280-287, 2011). This single/low copy gene containing four exons and four introns within the genomic-sequence encoded a protein of 462 amino acids. Structural analysis revealed that highly divergent C terminus contains a transmembrane domain. The NAC domain consisted of a twisted antiparallel beta-sheet packing against N terminal alpha helix on one side and a shorter helix on the other side. The domain was predicted to homodimerize and control DNA-binding specificity. The physicochemical features of the SiNAC homodimer interface justified the dimeric form of the predicted model. A 1539 bp fragment upstream to the start codon of SiNAC gene was cloned and in silico analysis revealed several putative cis-acting regulatory elements within the promoter sequence. Transactivation analysis indicated that SiNAC activated expression of reporter gene and the activation domain lied at the C terminal. The SiNAC:GFP was detected in the nucleus and cytoplasm while SiNAC ΔC(1-158):GFP was nuclear localized in onion epidermal cells. SiNAC transcripts mostly accumulated in young spikes and were strongly induced by dehydration, salinity, ethephon, and methyl jasmonate. These results suggest that SiNAC encodes a membrane associated NAC-domain protein that may function as a transcriptional activator in response to stress and developmental regulation in plants.

  6. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    OpenAIRE

    Sritharathikhun, Jaran; Krajangsang, Taweewat; Moollakorn, Apichan; Inthisang, Sorapong; Limmanee, Amornrat; Hongsingtong, Aswin; Boriraksantikul, Nattaphong; Taratiwat, Tianchai; Akarapanjavit, Nirod; Sriprapha, Kobsak

    2014-01-01

    This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H) films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ) solar cells. A p-μc-SiO:H film with a wide optical band gap (E04), 2.1 eV, can be obtain...

  7. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng

    2013-12-01

    In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.

  8. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect

    International Nuclear Information System (INIS)

    Liu, C; Dai, L; You, L P; Xu, W J; Qin, G G

    2008-01-01

    Single-crystalline n-type InP nanowires (NWs) with different electron concentrations were synthesized on Si substrates via the vapor phase transport method. The electrical properties of the InP nanowires were investigated by fabricating and measuring single NW field-effect transistors (FETs). Single InP NW/p + -Si heterojunctions were fabricated, and electroluminescence (EL) spectra from them were studied. It was found that both the photoluminescence (PL) spectra of the InP NWs and the EL spectra of the heterojunctions blueshift from 920 to 775 nm when the electron concentrations of the InP NWs increase from 2 x 10 17 to 1.4 x 10 19 cm -3 . The blueshifts can be attributed to the Burstein-Moss effect rather than the quantum confinement effect in the InP NWs. The large blueshifts observed in this study indicate a potential application of InP NWs in nano-multicolour displays.

  9. Current transport studies of ZnO/p-Si heterostructures grown by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Chen, X.D.; Ling, C.C.; Fung, S.; Beling, C.D.; Mei, Y.F.; Fu, Ricky K.Y.; Siu, G.G.; Chu, Paul K.

    2006-01-01

    Rectifying undoped and nitrogen-doped ZnO/p-Si heterojunctions were fabricated by plasma immersion ion implantation and deposition. The undoped and nitrogen-doped ZnO films were n type (n∼10 19 cm -3 ) and highly resistive (resistivity ∼10 5 Ω cm), respectively. While forward biasing the undoped-ZnO/p-Si, the current follows Ohmic behavior if the applied bias V forward is larger than ∼0.4 V. However, for the nitrogen-doped-ZnO/p-Si sample, the current is Ohmic for V forward 2 for V forward >2.5 V. The transport properties of the undoped-ZnO/p-Si and the N-doped-ZnO/p-Si diodes were explained in terms of the Anderson model and the space charge limited current model, respectively

  10. SiO mass spectrometry and Si-2p photoemission spectroscopy for the study of oxidation reaction dynamics of Si(001) surface by supersonic O sub 2 molecular beams under 1000K

    CERN Document Server

    Teraoka, Y; Moritani, K

    2003-01-01

    The Si sup 1 sup 8 O desorption yield was measured in the Si(001) surface temperature region from 900K to 1300K at the sup 1 sup 8 O sub 2 incident energies of 0.7eV, 2.2eV and 3.3eV. The Si sup 1 sup 8 O desorption yield in a surface temperature region higher than 1000K increased with increasing incident energy, indicating the incident-energy-induced oxidation and the variation of angular distribution of Si sup 1 sup 8 O desorption. Inversely, the Si sup 1 sup 8 O desorption yield decreased with increasing incident energy in the region from 900K to 1000K, indicating the coexistence of the passive and the active oxidation. In order to clarify the reaction mechanisms of the later phenomenon, real-time in-situ Si-2p photoemission spectroscopy has been performed. The obtained Si-2p spectra showed the variation of the oxide-nuclei quality from the sub-oxide-rich structure to the SiO sub 2 -rich structure. The formation of the SiO sub 2 structure suppresses the SiO desorption due to the enhanced O sub 2 sticking a...

  11. Influence of air exposure duration and a-Si capping layer thickness on the performance of p-BaSi{sub 2}/n-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Ryota; Yachi, Suguru; Tsukahara, Daichi; Takeuchi, Hiroki; Toko, Kaoru; Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Du, Weijie [Key Laboratory of Optoelectronic Material and Device, College of Mathematics and Science, Shanghai Normal University, Shanghai 200234 (China)

    2016-08-15

    Fabrication of p-BaSi{sub 2}(20 nm)/n-Si heterojunction solar cells was performed with different a-Si capping layer thicknesses (d{sub a-Si}) and varying air exposure durations (t{sub air}) prior to the formation of a 70-nm-thick indium-tin-oxide electrode. The conversion efficiencies (η) reached approximately 4.7% regardless of t{sub air} (varying from 12–150 h) for solar cells with d{sub a-Si} = 5 nm. In contrast, η increased from 5.3 to 6.6% with increasing t{sub air} for those with d{sub a-Si} = 2 nm, in contrast to our prediction. For this sample, the reverse saturation current density (J{sub 0}) and diode ideality factor decreased with t{sub air}, resulting in the enhancement of η. The effects of the variation of d{sub a-Si} (0.7, 2, 3, and 5 nm) upon the solar cell performance were examined while keeping t{sub air} = 150 h. The η reached a maximum of 9.0% when d{sub a-Si} was 3 nm, wherein the open-circuit voltage and fill factor also reached a maximum. The series resistance, shunt resistance, and J{sub 0} exhibited a tendency to decrease as d{sub a-Si} increased. These results demonstrate that a moderate oxidation of BaSi{sub 2} is a very effective means to enhance the η of BaSi{sub 2} solar cells.

  12. Collisional properties of weakly bound heteronuclear dimers

    NARCIS (Netherlands)

    Marcelis, B.; Kokkelmans, S.J.J.M.F.; Shlyapnikov, G.V.; Petrov, D.S.

    2008-01-01

    We consider collisional properties of weakly bound heteronuclear molecules (dimers) formed in a two-species mixture of atoms with a large mass difference. We focus on dimers containing light fermionic atoms as they manifest collisional stability due to an effective dimer-dimer repulsion originating

  13. On the determination of double diffraction dissociation cross section at HERA

    International Nuclear Information System (INIS)

    Holtmann, H.; Nikolaev, N.N.; Speth, J.; Zakharov, B.G.

    1996-01-01

    The excitation of the proton into undetected multiparticle states (double diffraction dissociation) is an important background to single diffractive deep-inelastic processes ep→e'p'ρ 0 , e'p'J/Ψ, e'p'X at HERA. We present estimates of the admixture of the double diffraction dissociation events in all diffractive events. We find that in the J/Ψ photoproduction, electroproduction of the ρ 0 at large Q 2 and diffraction dissociation of real and virtual photons into high mass states X the contamination of the double diffraction dissociation can be as large as ∼30%, thus affecting substantially the experimental tests of the pomeron exchange in deep inelastic scattering at HERA. We discuss a possibility of tagging the double diffraction dissociation by neutrons observed in the forward neutron calorimeter. We present evaluations of the spectra of neutrons and efficiency of neutron tagging based on the experimental data for diffractive processes in the proton-proton collisions. (orig.)

  14. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein L1 from the L2/DNA complex following virus entry.

    Science.gov (United States)

    Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L; Sapp, Martin

    2012-09-01

    Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles.

  15. Thermal stability of Cu/α-Ta/SiO2/Si structures

    International Nuclear Information System (INIS)

    Yuan, Z.L.; Zhang, D.H.; Li, C.Y.; Prasad, K.; Tan, C.M.

    2004-01-01

    The thermal stability of the Cu/α-Ta/SiO 2 /Si structures is investigated. Tantalum oxides are first observed at the interface between Cu and Ta due to residual oxygen in the annealing ambient at low annealing temperatures (about 600 deg. C). Ternary Cu-Ta oxides and/or Ta oxides rather than Cu oxides are found at the Cu top layer on account of the out diffusion of Ta. After high temperature annealing (up to 750 deg. C), polycrystalline Tantalum oxides (Ta 2 O 5 ) and Ta-rich silicides (Ta 5 Si 3 ) are found as dominant products due to the dissociation of SiO 2 . A severe intermixing of Cu, Ta and SiO 2 was observed after 800 deg. C annealing. First a drop and then an increase in sheet resistances were observed, the former possibly resulting from grain growth and impurities removal in Cu films, and the latter from the reduction of Cu thickness and formation of high resistivity products. The α-Ta films with a thickness of 25 nm have good barrier effectiveness up to 750 deg. C. The degradation of α-Ta film is mainly caused by self oxidation, silicidation and bidirectional diffusion

  16. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics.

    Science.gov (United States)

    Qiang, Zhimin; Adams, Craig

    2004-07-01

    This work determined the acid dissociation constants (pKa) of 26 common human and veterinary antibiotics by potentiometric titration. Selected antibiotics consisted of sulfonamides, macrolides, tetracyclines, fluoroquinolones, and other miscellaneous antibiotics. After validation of analysis methods using phosphoric acid as a model compound, a second-derivative (delta2pH/deltaV2) method was primarily applied to determining pKa's from titration curves for most antibiotics due to its convenience and accuracy. For tetracyclines, however, a least-square non-linear regression method was developed to determine their pKa's because the second-derivative method cannot well distinguish the pKa,2 and pKa,3 of tetracyclines. Results indicate that the pKa values are approximately 2 and 5-7.5 for sulfonamides; 7.5-9 for macrolides; 3-4, 7-8 and 9-10 for tetracyclines; 3-4, 6, 7.5-9 and 10-11 for fluoroquinolones; while compound-specific for other miscellaneous antibiotics. The moieties corresponding to specific pKa's were identified based on chemical structures of antibiotics. In addition, the pKa's available in literature determined by various techniques are compiled in comparison with the values of this work. These results are expected to essentially facilitate the research on occurrence, fate and effects, analysis methods development, and control of antibiotics in various treatment operations.

  17. Particle production in Si + A and p + A collisions at 14.6 A·GeV/c

    International Nuclear Information System (INIS)

    Miake, Y.

    1990-01-01

    Particle production (π ± , K ± , p) has been measured in both Si+A and p+A collisions at 14.6 A·GeV/c. Comparisons of m t and dn/dy distributions between p+Be, p+Au and central Si+Au collisions are discussed. 8 refs., 3 figs

  18. Spin valve-like magnetic tunnel diode exhibiting giant positive junction magnetoresistance at low temperature in Co2MnSi/SiO2/p-Si heterostructure

    Science.gov (United States)

    Maji, Nilay; Kar, Uddipta; Nath, T. K.

    2018-02-01

    The rectifying magnetic tunnel diode has been fabricated by growing Co2MnSi (CMS) Heusler alloy film carefully on a properly cleaned p-Si (100) substrate with the help of electron beam physical vapor deposition technique and its structural, electrical and magnetic properties have been experimentally investigated in details. The electronic- and magneto-transport properties at various isothermal conditions have been studied in the temperature regime of 78-300 K. The current-voltage ( I- V) characteristics of the junction show an excellent rectifying magnetic tunnel diode-like behavior throughout that temperature regime. The current ( I) across the junction has been found to decrease with the application of a magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. When forward dc bias is applied to the heterostructure, the I- V characteristics are highly influenced on turning on the field B = 0.5 T at 78 K, and the forward current reduces abruptly (99.2% current reduction at 3 V) which is nearly equal to the order of the magnitude of the current observed in the reverse bias. Hence, our Co2MnSi/SiO2/p-Si heterostructure can perform in off ( I off)/on ( I on) states with the application of non-zero/zero magnetic field like a spin valve at low temperature (78 K).

  19. Mixed dimers, ch. 7

    International Nuclear Information System (INIS)

    Deursen, A.P.J. van; Reuss, J.

    1976-01-01

    An attempt has been made to detect mixed dimers in nozzle beams of mixtures; NeAr and HeNe dimers were observed with sufficient intensity to determine the total collision cross section. A similar attempt for H 2 Ar was partially hampered by the circumstance that the corresponding HAr + ion must be detected on the wing of the thousand times larger Ar + peak. The search for H 2 He, H 2 Ne and HeAr dimers was not successful, due to masking ion peaks, H 5 + for HHe + , 21 Ne + for H 20 Ne + , and CO 2 + for HeAr + . (Auth.)

  20. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies

    Science.gov (United States)

    Wołoszyn, Łukasz; Ilczyszyn, Maria M.

    2018-03-01

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311 ++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P 1 bar space group of triclinic system (Z = 2), the β-2AlaOTf in the P21/m space group of monoclinic system (Z = 2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state.

  1. Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

    Directory of Open Access Journals (Sweden)

    Ragesh Kumar T P

    2017-11-01

    Full Text Available We present first experiments on electron beam induced deposition of silacyclohexane (SCH and dichlorosilacyclohexane (DCSCH under a focused high-energy electron beam (FEBID. We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.

  2. Communication: Towards the binding energy and vibrational red shift of the simplest organic hydrogen bond: Harmonic constraints for methanol dimer

    International Nuclear Information System (INIS)

    Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A.

    2014-01-01

    The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about −121 cm −1 upon dimerization, somewhat more than in the anharmonic experiment (−111 cm −1 )

  3. Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction.

    Science.gov (United States)

    Montoya, Joseph H; Shi, Chuan; Chan, Karen; Nørskov, Jens K

    2015-06-04

    In this work, we present DFT simulations that demonstrate the ability of Cu to catalyze CO dimerization in CO2 and CO electroreduction. We describe a previously unreported CO dimer configuration that is uniquely stabilized by a charged water layer on both Cu(111) and Cu(100). Without this charged water layer at the metal surface, the formation of the CO dimer is prohibitively endergonic. Our calculations also demonstrate that dimerization should have a lower activation barrier on Cu(100) than Cu(111), which, along with a more exergonic adsorption energy and a corresponding higher coverage of *CO, is consistent with experimental observations that Cu(100) has a high activity for C-C coupling at low overpotentials. We also demonstrate that this effect is present with cations other than H(+), a finding that is consistent with the experimentally observed pH independence of C2 formation on Cu.

  4. Electrical characterization of proton irradiated p+-n-n+ Si diode

    International Nuclear Information System (INIS)

    Kim, J.H.; Lee, D.U.; Kim, E.K.; Bae, Y.H.

    2006-01-01

    Electrical characterization of p + -n-n + Si power electric diodes was done with proton irradiation. The kinetic energies of irradiated protons were 2.32, 2.55 and 2.97MeV, and for each energy condition, doses of 1x10 11 , 1x10 12 and 1x10 13 cm -2 were given. By modulating the kinetic energy, the proton penetration depth into Si crystal could be adjusted to the range of 55-90μm, and then controlled to the special depth regions such as junction region, depletion region and neutral region over the depletion layer in the p + -n-n + diode structure. Defects produced by the proton irradiation affected to electrical property of the Si diode because of their carrier trapping, and then the reverse recovery time was improved from 240 to 50ns. It appeared that the defect states with activation energies of 0.47 and 0.54eV may be responsible for the decrease of the minority carrier lifetime in the proton-irradiated diode with 2.97MeV energy and 1x10 13 cm -2 doses

  5. Comparison of clinical probability-adjusted D-dimer and age-adjusted D-dimer interpretation to exclude venous thromboembolism.

    Science.gov (United States)

    Takach Lapner, Sarah; Julian, Jim A; Linkins, Lori-Ann; Bates, Shannon; Kearon, Clive

    2017-10-05

    Two new strategies for interpreting D-dimer results have been proposed: i) using a progressively higher D-dimer threshold with increasing age (age-adjusted strategy) and ii) using a D-dimer threshold in patients with low clinical probability that is twice the threshold used in patients with moderate clinical probability (clinical probability-adjusted strategy). Our objective was to compare the diagnostic accuracy of age-adjusted and clinical probability-adjusted D-dimer interpretation in patients with a low or moderate clinical probability of venous thromboembolism (VTE). We performed a retrospective analysis of clinical data and blood samples from two prospective studies. We compared the negative predictive value (NPV) for VTE, and the proportion of patients with a negative D-dimer result, using two D-dimer interpretation strategies: the age-adjusted strategy, which uses a progressively higher D-dimer threshold with increasing age over 50 years (age in years × 10 µg/L FEU); and the clinical probability-adjusted strategy which uses a D-dimer threshold of 1000 µg/L FEU in patients with low clinical probability and 500 µg/L FEU in patients with moderate clinical probability. A total of 1649 outpatients with low or moderate clinical probability for a first suspected deep vein thrombosis or pulmonary embolism were included. The NPV of both the clinical probability-adjusted strategy (99.7 %) and the age-adjusted strategy (99.6 %) were similar. However, the proportion of patients with a negative result was greater with the clinical probability-adjusted strategy (56.1 % vs, 50.9 %; difference 5.2 %; 95 % CI 3.5 % to 6.8 %). These findings suggest that clinical probability-adjusted D-dimer interpretation is a better way of interpreting D-dimer results compared to age-adjusted interpretation.

  6. Coupled cluster valence bond theory for open-shell systems with application to very long range strong correlation in a polycarbene dimer.

    Science.gov (United States)

    Small, David W; Head-Gordon, Martin

    2017-07-14

    The Coupled Cluster Valence Bond (CCVB) method, previously presented for closed-shell (CS) systems, is extended to open-shell (OS) systems. The theoretical development is based on embedding the basic OS CCVB wavefunction in a fictitious singlet super-system. This approach reveals that the OS CCVB amplitude equations are quite similar to those of CS CCVB, and thus that OS CCVB requires the same level of computational effort as CS CCVB, which is an inexpensive method. We present qualitatively correct CCVB potential energy curves for all low-lying spin states of P 2 and Mn 2 + . CCVB is successfully applied to the low-lying spin states of some model linear polycarbenes, systems that appear to be a hindrance to standard density functionals. We examine an octa-carbene dimer in a side-by-side orientation, which, in the monomer dissociation limit, exhibits maximal strong correlation over the length of the polycarbene.

  7. A buffer-layer/a-SiO{sub x}:H(p) window-layer optimization for thin film amorphous silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinjoo; Dao, Vinh Ai [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Minbum; Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Doyoung [School of Electricity and Electronics, Ulsan College West Campus, Ulsan 680-749 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-11-01

    Amorphous silicon based (a-Si:H-based) solar cells with a buffer-layer/boron doped hydrogenated amorphous silicon oxide (a-SiO{sub x}:H(p)) window-layer were fabricated and investigated. In the first part, in order to reduce the Schottky barrier height at the fluorine doped tin oxide (FTO)/a-SiO{sub x}:H(p) window-layer heterointerface, we have used buffer-layer/a-SiO{sub x}:H(p) for the window-layer, in which boron doped hydrogenated amorphous silicon (a-Si:H(p)) or boron doped microcrystalline silicon (μc-Si:H(p)) is introduced as a buffer layer between the a-SiO{sub x}:H(p) and FTO of the a-Si:H-based solar cells. The a-Si:H-based solar cell using a μc-Si:H(p) buffer-layer shows the highest efficiency compared to the optimized bufferless, and a-Si:H(p) buffer-layer in the a-Si:H-based solar cells. This highest performance was attributed not only to the lower absorption of the μc-Si:H(p) buffer-layer but also to the lower Schottky barrier height at the FTO/window-layer interface. Then, we present the dependence of the built-in potential (V{sub bi}) and blue response of the devices on the inversion of activation energy (ξ) of the a-SiO{sub x}:H(p), in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. The enhancement of both V{sub bi} and blue response is observed, by increasing the value of ξ. The improvement of V{sub bi} and blue response can be ascribed to the enlargement of the optical gap of a-SiO{sub x}:H(p) films in the μc-Si:H(p)/a-SiO{sub x}:H(p) window-layer. Finally, the conversion efficiency was increased by 22.0%, by employing μc-Si:H(p) as a buffer-layer and raising the ξ of the a-SiO{sub x}:H(p), compared to the optimized bufferless case, with a 10 nm-thick a-SiO{sub x}:H(p) window-layer. - Highlights: • Low Schottky barrier height benefits fill factor, and open-circuit voltage (V{sub oc}). • High band gap is beneficial for short-circuit current density (J{sub sc}). • Boron doped microcrystalline silicon is a suitable buffer-layer for

  8. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    Science.gov (United States)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  9. Heterologous Secretory Expression and Characterization of Dimerized Bone Morphogenetic Protein 2 in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Hanif

    2017-01-01

    Full Text Available Recombinant human Bone Morphogenetic Protein 2 (rhBMP2 has important applications in the spine fusion and ortho/maxillofacial surgeries. Here we first report the secretory expression of biological active dimerized rhBMP2 from Bacillus subtilis system. The mature domain of BMP2 gene was amplified from pTz57R/BMP2 plasmid. By using pHT43 expression vector two constructs, pHT43-BMP2-M (single BMP2 gene and pHT43-BMP2-D (two BMP2 genes coupled with a linker to produce a dimer, were designed. After primary cloning (DH5α strain and sequence analysis, constructs were transformed into Bacillus subtilis for secretory expression. Expression conditions like media (2xYT and temperature (30°C were optimized. Maximum 35% and 25% secretory expression of monomer (~13 kDa and dimer (~25 kDa, respectively, were observed on SDS-PAGE in SCK6 strain. The expression and dimeric nature of rhBMP2 were confirmed by western blot and native PAGE analysis. For rhBMP2 purification, 200 ml culture supernatant was freeze dried to 10 ml and dialyzed (Tris-Cl, pH 8.5 and Fast Protein Liquid Chromatography (6 ml, Resource Q column was performed. The rhBMP2 monomer and dimer were eluted at 0.9 M and 0.6 M NaCl, respectively. The alkaline phosphatase assay of rhBMP2 (0, 50, 100, 200, and 400 ng/ml was analyzed on C2C12 cells and maximum 200 ng/ml activity was observed in dose dependent manner.

  10. Dissociative absorption: An empirically unique, clinically relevant, dissociative factor.

    Science.gov (United States)

    Soffer-Dudek, Nirit; Lassri, Dana; Soffer-Dudek, Nir; Shahar, Golan

    2015-11-01

    Research of dissociative absorption has raised two questions: (a) Is absorption a unique dissociative factor within a three-factor structure, or a part of one general dissociative factor? Even when three factors are found, the specificity of the absorption factor is questionable. (b) Is absorption implicated in psychopathology? Although commonly viewed as "non-clinical" dissociation, absorption was recently hypothesized to be specifically associated with obsessive-compulsive symptoms. To address these questions, we conducted exploratory and confirmatory factor analyses on 679 undergraduates. Analyses supported the three-factor model, and a "purified" absorption scale was extracted from the original inclusive absorption factor. The purified scale predicted several psychopathology scales. As hypothesized, absorption was a stronger predictor of obsessive-compulsive symptoms than of general psychopathology. In addition, absorption was the only dissociative scale that longitudinally predicted obsessive-compulsive symptoms. We conclude that absorption is a unique and clinically relevant dissociative tendency that is particularly meaningful to obsessive-compulsive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Surface grafting density analysis of high anti-clotting PU-Si-g-P(MPC) films

    Energy Technology Data Exchange (ETDEWEB)

    Lu Chunyan [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210097 (China); Zhou Ninglin, E-mail: ninglinzhou@yahoo.com [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Technological Research Center for Interfacial Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xiao Yinghong; Tang Yida; Jin Suxing; Wu Yue [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210097 (China); Zhang Jun; Shen Jian [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210097 (China); Jiangsu Technological Research Center for Interfacial Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2012-02-01

    Well-defined zwitterionic polymer brushes with good blood compatibility were studied, grafted from polyurethane (PU) substrate (PU-Si-g-P(MPC)) by surface-initiated reverse atom transfer radical polymerization (SI-RATRP). We found that the structure of polymer brushes and hence their properties greatly depend on the grafting density. To solve the problems of the normal method for grafting density measurement, i.e., more requirements for qualified and proficient instrument operator, we established an effective and feasible way instead of the conventional method of spectroscopic ellipsometer combined with gel permeation chromatograph (ELM/GPC) to calculate the grafting density of PU-Si-g-P(MPC) films by using a software named ImageJ 1.44e in combination with scanning electronic microscope (SEM) or atomic microscope (AFM). X-ray photoelectron spectroscopy (XPS), SEM and AFM were employed to analyze the surface topography and changes of elements before and after graft modification of the synthetic PU-Si-g-P(MPC) biofilms.

  12. Careful stoichiometry monitoring and doping control during the tunneling interface growth of an n + InAs(Si)/p + GaSb(Si) Esaki diode

    Science.gov (United States)

    El Kazzi, S.; Alian, A.; Hsu, B.; Verhulst, A. S.; Walke, A.; Favia, P.; Douhard, B.; Lu, W.; del Alamo, J. A.; Collaert, N.; Merckling, C.

    2018-02-01

    In this work, we report on the growth of pseudomorphic and highly doped InAs(Si)/GaSb(Si) heterostructures on p-type (0 0 1)-oriented GaSb substrate and the fabrication and characterization of n+/p+ Esaki tunneling diodes. We particularly study the influence of the Molecular Beam Epitaxy shutter sequences on the structural and electrical characteristics of InAs(Si)/GaSb(Si) Esaki diodes structures. We use real time Reflection High Electron Diffraction analysis to monitor different interface stoichiometry at the tunneling interface. With Atomic Force Microscopy, X-ray diffraction and Transmission Electron Microscopy analyses, we demonstrate that an "InSb-like" interface leads to a sharp and defect-free interface exhibiting high quality InAs(Si) crystal growth contrary to the "GaAs-like" one. We then prove by means of Secondary Ion Mass Spectroscopy profiles that Si-diffusion at the interface allows the growth of highly Si-doped InAs/GaSb diodes without any III-V material deterioration. Finally, simulations are conducted to explain our electrical results where a high Band to Band Tunneling (BTBT) peak current density of Jp = 8 mA/μm2 is achieved.

  13. Transition probabilities for the 3s2 3p(2P0)-3s3p2(4P) intersystem lines of Si II

    Science.gov (United States)

    Calamai, Anthony G.; Smith, Peter L.; Bergeson, S. D.

    1993-01-01

    Intensity ratios of lines of the spin-changing 'intersystem' multiplet of S II (4P yields 2P0) at 234 nm have been used to determine electron densities and temperatures in a variety of astrophysical environments. However, the accuracy of these diagnostic calculations have been limited by uncertainties associated with the available atomic data. We report the first laboratory measurement, using an ion-trapping technique, of the radiative lifetimes of the three metastable levels of the 3s3p2 4P term of Si II. Our results are 104 +/- 16, 406 +/- 33, and 811 +/- 77 micro-s for lifetimes of the J = 1/2, 5/2, and 3/2 levels, respectively. A-values were derived from our lifetimes by use of measured branching fractions. Our A-values, which differ from calculated values by 30 percent or more, should give better agreement between modeled and observed Si II line ratios.

  14. Influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Tianbing, E-mail: tianbing_1988@sina.com [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China); Li, Huiqu; Tang, Pengjun; He, Xiaolei; Li, Peiyong [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China)

    2016-08-15

    15% vol. SiC{sub p}/2009 composites prepared by powder metallurgy were quenched in room temperature water and 20% polyethylene glycol (PEG) solution respectively, then aged naturally. The influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites were investigated by means of scanning/transmission electron microscope, hardness and tensile test. The results showed that the number of precipitated phase in water quenched composites increased, with much finer in size and more homogeneous in distribution compared with 20% PEG quenched one. Meanwhile, the density of dislocation in composites by water quenching was also much higher. Intergranular corrosion did not occur with the two quenching agents. The 20% PEG quenched composites exhibited slight lower hardness and higher electrical conductivity than that of water quenched one. The two quenched composites showed same level in tensile strength, but the yield strength of water-quenched composites was higher (8 MPa, 3%). The usage of 20% PEG reduced thermal stress and minimized warping deformation of the parts, it is a more suitable quenching agent for SiC{sub p}/2009 composites in engineering application fields. - Highlights: •SiC{sub p}/2009 composites quenched by water and 20% PEG solution were investigated. •Aging precipitation behavior of SiC{sub p}/2009 composites is sensitive to quenchant. •Influence of quenching agent on properties of SiC{sub p}/2009 composites are minimal. •Quenching with 20% PEG reduces thermal stress of SiC{sub p}/2009 composites remarkably. •20% PEG is a more suitable quenching agent for SiC{sub p}/2009 composites than water.

  15. Dissociative symptoms and dissociative disorder comorbidity in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Belli, Hasan; Ural, Cenk; Vardar, Melek Kanarya; Yesılyurt, Sema; Oncu, Fatıh

    2012-10-01

    The present study attempted to assess the dissociative symptoms and overall dissociative disorder comorbidity in patients with obsessive-compulsive disorder (OCD). In addition, we examined the relationship between the severity of obsessive-compulsive symptoms and dissociative symptoms. All patients admitted for the first time to the psychiatric outpatient unit were included in the study. Seventy-eight patients had been diagnosed as having OCD during the 2-year study period. Patients had to meet the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for OCD. Most (76.9%; n = 60) of the patients were female, and 23.1% (n = 18) of the patients were male. Dissociation Questionnaire was used to measure dissociative symptoms. The Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Dissociative Disorders interviews and Yale-Brown Obsessive Compulsive Checklist and Severity Scale were used. Eleven (14%) of the patients with OCD had comorbid dissociative disorder. The most prevalent disorder in our study was dissociative depersonalization disorder. Dissociative amnesia and dissociative identity disorder were common as well. The mean Yale-Brown score was 23.37 ± 7.27 points. Dissociation Questionnaire scores were between 0.40 and 3.87 points, and the mean was 2.23 ± 0.76 points. There was a statistically significant positive correlation between Yale-Brown points and Dissociation Questionnaire points. We conclude that dissociative symptoms among patients with OCD should alert clinicians for the presence of a chronic and complex dissociative disorder. Clinicians may overlook an underlying dissociative process in patients who have severe symptoms of OCD. However, a lack of adequate response to cognitive-behavioral and drug therapy may be a consequence of dissociative process. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Formic acid dimers in a nitrogen matrix

    Science.gov (United States)

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-01

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (˜11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  17. Fibrin d-dimer concentration, deep vein thrombosis symptom duration, and venous thrombus volume.

    Science.gov (United States)

    Kurklinsky, Andrew K; Kalsi, Henna; Wysokinski, Waldemar E; Mauck, Karen F; Bhagra, Anjali; Havyer, Rachel D; Thompson, Carrie A; Hayes, Sharonne N; McBane, Robert D

    2011-04-01

    To determine the relationship between fibrin D-dimer levels, symptom duration, and thrombus volume, consecutive patients with incident deep venous thrombosis (DVT) were evaluated. In a cross-sectional study design, patient symptom onset was determined by careful patient questioning. Venous thrombosis was confirmed by compression duplex ultrasonography. Thrombus volume was estimated based on patient's femur length using a forensic anthropology method. Fibrin D-dimer was measured by latex immunoassay. 72 consecutive patients with confirmed leg DVT agreed to participate. The median symptom duration at the time of diagnosis was 10 days. The median D-dimer concentration was 1050 ng/dL. The median thrombus volume was 12.92 cm(3). D-Dimer levels correlated with estimated thrombus volume (P venous thrombosis and correlates with thrombus volume.

  18. Collision-induced dissociation with Fourier transform mass spectrometry

    International Nuclear Information System (INIS)

    Cody, R.B.; Burnier, R.C.; Freiser, B.S.

    1982-01-01

    Collision-induced dissociations (CID) is demonstrated on a number of primary and secondary ions using a Nicolet prototype Fourier transform mass spectrometer (FT-MS). Like the triple quadrupole technique, CID using FT-MS is a relatively low energy and efficient process. The ability to study a wide range of ion-molecule reaction products is exemplified by results on proton-bound dimers and transition metal containing ionic species. Variation of collision energy by varying the RF irradiation level can provide information about product distributions as a function of energy as well as yield ion structural information. Like the triple quadrupole technique, no slits are employed and virtually all of the fragment ions formed by the CID process may be detected. Unlike all previous mass spectrometric techniques for studying CID, a tandem instrument is not required, and different experiments are performed by making software modifications rather than hardware modifications

  19. Investigating the effect of silicon surface chemical treatment on Al/Si contact properties in GaP/Si solar cells

    Science.gov (United States)

    Kudryashov, D.; Gudovskikh, A.

    2018-03-01

    In the present work, experimental studies have been carried out to reveal how chemical treatment of a silicon surface affects the properties of the Al/Si contact. It has been shown that for p-type monocrystalline silicon substrates with a resistivity of 10 ohm cm, it is possible to form an ohmic Al/Si contact by magnetron sputtering of an aluminum thin film and its further annealing at temperatures of 400 - 450 °C. In the range of annealing temperatures of 250 - 400 °C, the Si substrate treatment in the HF solution leads to a significant increase in currents on the current-voltage curves of the Al/Si contact, while in the range of 450 - 700 °C, the effect of chemical treatment of the silicon is not detected.

  20. Native-language N400 and P600 predict dissociable language-learning abilities in adults.

    Science.gov (United States)

    Qi, Zhenghan; Beach, Sara D; Finn, Amy S; Minas, Jennifer; Goetz, Calvin; Chan, Brian; Gabrieli, John D E

    2017-04-01

    Language learning aptitude during adulthood varies markedly across individuals. An individual's native-language ability has been associated with success in learning a new language as an adult. However, little is known about how native-language processing affects learning success and what neural markers of native-language processing, if any, are related to success in learning. We therefore related variation in electrophysiology during native-language processing to success in learning a novel artificial language. Event-related potentials (ERPs) were recorded while native English speakers judged the acceptability of English sentences prior to learning an artificial language. There was a trend towards a double dissociation between native-language ERPs and their relationships to novel syntax and vocabulary learning. Individuals who exhibited a greater N400 effect when processing English semantics showed better future learning of the artificial language overall. The N400 effect was related to syntax learning via its specific relationship to vocabulary learning. In contrast, the P600 effect size when processing English syntax predicted future syntax learning but not vocabulary learning. These findings show that distinct neural signatures of native-language processing relate to dissociable abilities for learning novel semantic and syntactic information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    International Nuclear Information System (INIS)

    Beaty, J.S.; Rolfe, J.L.; Vandersande, J.; Fleurial. J.P.

    1992-01-01

    This paper reports that a theoretical model has been developed that predicts that the addition of ultra-fine, inert, phonon-scattering centers to SiGe thermoelectric material will reduce its thermal conductivity and improve its figure-of-merit. To investigate this prediction, ultra-fine particulates (20 Angstrom to 200 Angstrom) of boron nitride have been added to boron doped, p-type, 80/20 SiGe. All previous SiGe samples produced from ultra-fine SiGe powder without additions had lower thermal conductivities than standard SiGe, but high temperature (1525 K) heat treatment increased their thermal conductivity back to the value for standard SiGe. Transmission Electron Microscopy has been used to confirm the presence of occluded particulates and X-ray diffraction has been used to determine the composition to be BN

  2. Correlated electron state in CeCu2Si2 controlled through Si to P substitution

    Science.gov (United States)

    Lai, Y.; Saunders, S. M.; Graf, D.; Gallagher, A.; Chen, K.-W.; Kametani, F.; Besara, T.; Siegrist, T.; Shekhter, A.; Baumbach, R. E.

    2017-08-01

    CeCu2Si2 is an exemplary correlated electron metal that features two domes of unconventional superconductivity in its temperature-pressure phase diagram. The first dome surrounds an antiferromagnetic quantum critical point, whereas the more exotic second dome may span the termination point of a line of f -electron valence transitions. This behavior has received intense interest, but what has been missing are ways to access the high pressure behavior under milder conditions. Here we study SiP chemical substitution, which compresses the unit cell volume but simultaneously weakens the hybridization between the f - and conduction electron states and encourages complex magnetism. At concentrations that show magnetism, applied pressure suppresses the magnetic ordering temperature and superconductivity is recovered for samples with low disorder. These results reveal that the electronic behavior in this system is controlled by a nontrivial combination of effects from unit cell volume and electronic shell filling. Guided by this topography, we discuss prospects for uncovering a valence fluctuation quantum phase transition in the broader family of Ce-based ThCr2Si2 -type materials through chemical substitution.

  3. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies.

    Science.gov (United States)

    Wołoszyn, Łukasz; Ilczyszyn, Maria M

    2018-03-15

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P1¯ space group of triclinic system (Z=2), the β-2AlaOTf in the P2 1 /m space group of monoclinic system (Z=2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The [sup 26]Al(p,[gamma])[sup 27]Si reaction at low stellar temperature

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Physics and Astronomy Duke Univ., Durham, NC (United States). Triangle Universities Nuclear Lab.; Brown, B A [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Sherr, R [Princeton Univ., NJ (United States). Dept. of Physics

    1993-05-03

    Shell-model calculations have been used to predict the locations of states in [sup 27]Si which are analogous to well-studied states in [sup 27]Al. From this, we have determined the resonance properties of the known states in [sup 27]Si near the [sup 26]Al+p threshold. The resulting thermonuclear reaction rate is uncertain by about a factor of ten at low temperatures, but it appears that the [sup 26]Al(p, [gamma])[sup 27]Si reaction is too slow to destroy a significant amount of [sup 26]Al at these temperatures. (orig.)

  5. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  6. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    International Nuclear Information System (INIS)

    Lopez, Jesus Adrian; Alvarez-Salas, Luis Marat

    2011-01-01

    Highlights: → In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. → We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. → We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. → miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. → In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  7. Fe gettering by p+ layer in bifacial Si solar cell fabrication

    International Nuclear Information System (INIS)

    Terakawa, T.; Wang, D.; Nakashima, H.

    2006-01-01

    Gettering behaviors of Fe into solar cell grade Si are investigated by deep level transient spectroscopy. The samples contaminated with Fe in the range of the concentration of 1.5x10 12 -2.0x10 14 cm -3 were annealed at 600 deg. C to induce gettering. It is shown that the surface layer gettering behaviors of Fe for the sample without p + layer strongly depend on the Fe contamination level, in which the surface layer gettering is not effective for the sample with low level contamination 13 cm -3 but effective for the sample with middle level contamination of 1-5x10 13 cm -3 . In contrast, the samples with p + layer show effective gettering for low and middle level contaminations. The gettering mechanisms in solar cell grade Si without and with p + layer are discussed in details

  8. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    OpenAIRE

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-01-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si h...

  9. J/ψ dissociation in parity-odd bubbles

    International Nuclear Information System (INIS)

    Tuchin, Kirill

    2011-01-01

    We calculate the quarkonium dissociation rate in the P and CP-odd domains (bubbles) that were possibly created in heavy-ion collisions. In the presence of the magnetic field produced by the valence quarks of colliding ions, parity-odd domains generate electric field. Quarkonium dissociation is the result of quantum tunneling of quark or antiquark through the potential barrier in this electric field. The strength of the electric field in the quarkonium comoving frame depends on the quarkonium velocity with respect to the background magnetic field. We investigate momentum, electric field strength and azimuthal dependence of the dissociation rate. Azimuthal distribution of quarkonia surviving in the electromagnetic field is strongly anisotropic; the form of anisotropy depends on the relation between the electric and magnetic fields and quarkonium momentum P ⊥ . These features can be used to explore the properties of the electromagnetic field created in heavy ion collisions.

  10. Studies of neutron dissociation at Fermilab energies

    International Nuclear Information System (INIS)

    Ferbel, T.

    1975-01-01

    The latest results obtained in a continuing investigation of neutron dissociation in (pπ - ) systems in neutron--nucleus collisions between 50 and 300 GeV/c are summarized. The nuclear coherent dissociation data are discussed first; then new measurements of total cross sections of neutrons on nuclei in the Fermilab momentum range are presented; finally, neutron dissociation using a hydrogen target is considered, and the hydrogen data are compared with expectations from simple Deck models. A substantial correlation was observed between the mass and the t of the system produced. The spin structure of the pπ - amplitudes at low mass was described surprisingly well by the simple Deck mechanism. The t-channel helicity amplitudes contained comparable contributions from flip and nonflip terms, and the states produced were not restricted to those expected on the basis of the Morrison rule. (19 figures, 2 tables) (U.S.)

  11. Electrically modulated lateral photovoltage in μc-SiOx:H/a-Si:H/c-Si p-i-n structure at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jihong; Qiao, Shuang, E-mail: sqiao@hbu.edu.cn; Wang, Jianglong; Wang, Shufang, E-mail: sfwang@hbu.edu.cn; Fu, Guangsheng

    2017-04-15

    Graphical abstract: In this paper, the temperature dependence of the LPE has been experimentally studied under illumination of different lasers ranging from visible to infrared for the μc-SiOx:H/a-Si:H/c-Si p-i-n structure. It was found that the position sensitivity increases nearly linearly with wavelength from 405 nm to 980 nm in the whole temperature range, and the saturated position sensitivity decreased quickly from 32.4 mV/mm to a very low value of 1.26 mV/mm and the nonlinearity improved from 7.01% to 3.54% with temperature decreasing from 296 K to 80 K for 532 nm laser illumination. By comparing the experiment results of μc-SiOx:H/a-Si:H/c-Si and ITO/c-Si, it is suggest that the position sensitivity was mainly determined by the temperature-dependent SB and the nonlinearity was directly related to the decreased resistivity of conductive layer. When an external bias voltage was applied, the LPE improved greatly and the position sensitivity of 361.35 mV/mm under illumination of 80 mW at 80 K is 286.7 times as large as that without biased voltage. More importantly, both the position sensitivity and the nonlinearity were independent of temperature again, which can be ascribed to the large constant transmission probability and diffusion length induced by the greatly increased SB. Our research provides an essential insight on the bias voltage-modulated LPE at different temperatures, and this temperature-independent greatly improved LPE is thought to be very useful for developing novel photoelectric devices. - Highlights: • The LPE is proportional to the laser wavelength in the whole temperature range. • The LPE decreases gradually with decreasing temperature from 296 K to 80 K. • Nonlinearity of the LPV curve improves a little with decreasing temperature. • The LPE improves dramatically and is independent of temperature with the aid of a bias voltage. - Abstract: The lateral photovoltaic effect (LPE) in μc-SiOx:H/a-Si:H/c-Si p-i-n structure is studied

  12. Epitaxial lateral overgrowth of Ga{sub x}In{sub 1-x}P toward direct Ga{sub x}In{sub 1-x}P/Si heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Giriprasanth; Stergiakis, Stamoulis; Sychugov, Ilya; Lourdudoss, Sebastian; Sun, Yan-Ting [Department of Materials and Nano Physics, School of Information and Communication Technology, Royal Institute of Technology-KTH, Kista (Sweden); Sahgal, Abhishek [Department of Materials and Nano Physics, School of Information and Communication Technology, Royal Institute of Technology-KTH, Kista (Sweden); Department of Physics, Indian Institute of Technology Delhi, New Delhi (India)

    2017-03-15

    The growth of GaInP by hydride vapor phase epitaxy (HVPE) was studied on planar GaAs, patterned GaAs for epitaxial lateral overgrowth (ELOG), and InP/Si seed templates for corrugated epitaxial lateral overgrowth (CELOG). First results on the growth of direct GaInP/Si heterojunction by CELOG is presented. The properties of Ga{sub x}In{sub (1-x)}P layer and their dependence on the process parameters were investigated by X-ray diffraction, including reciprocal lattice mapping (XRD-RLM), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS), photoluminescence (PL), and Raman spectroscopy. The fluctuation of Ga composition in the Ga{sub x}In{sub (1-x)}P layer was observed on planar substrate, and the strain caused by the composition variation is retained until relaxation occurs. Fully relaxed GaInP layers were obtained by ELOG and CELOG. Raman spectroscopy reveals that there is a certain amount of ordering in all of the layers except those grown at high temperatures. Orientation dependent Ga incorporation in the CELOG, but not in the ELOG Ga{sub x}In{sub (1-x)}P layer, and Si incorporation in the vicinity of direct Ga{sub x}In{sub (1-x)}P/Si heterojunction from CELOG are observed in the SEM-EDS analyses. The high optical quality of direct GaInP/Si heterojunction was observed by cross-sectional micro-PL mapping and the defect reduction effect of CELOG was revealed by high PL intensity in GaInP above Si. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics

    Science.gov (United States)

    Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin

    2018-02-01

    In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.

  14. pi-Dimers of end-capped oligopyrrole cation radicals

    NARCIS (Netherlands)

    Haare, van J.A.E.H.; Groenendaal, L.; Havinga, E.E.; Janssen, R.A.J.; Meijer, E.W.

    1996-01-01

    In two consecutive one-electron oxidations, oligopyrroles substituted with phenyl capping groups (PhPynPh, n = 2–4) can be oxidized reversibly to give stable cation radicals and dications. Spectroelectrochemical studies give direct evidence that diamagnetic p-dimers of cation radicals are formed in

  15. Effect of Carbon Doping on the Structure and Magnetic Phase Transition in (Mn,Fe2(P,Si))

    Science.gov (United States)

    Thang, N. V.; Yibole, H.; Miao, X. F.; Goubitz, K.; van Eijck, L.; van Dijk, N. H.; Brück, E.

    2017-08-01

    Given the potential applications of (Mn,Fe2(P,Si))-based materials for room-temperature magnetic refrigeration, several research groups have carried out fundamental studies aimed at understanding the role of the magneto-elastic coupling in the first-order magnetic transition and further optimizing this system. Inspired by the beneficial effect of the addition of boron on the magnetocaloric effect of (Mn,Fe2(P,Si))-based materials, we have investigated the effect of carbon (C) addition on the structural properties and the magnetic phase transition of Mn_{1.25}Fe_{0.70}P_{0.50}Si_{0.50}C_z and Mn_{1.25}Fe_{0.70}P_{0.55}Si_{0.45}C_z compounds by x-ray diffraction, neutron diffraction and magnetic measurements in order to find an additional control parameter to further optimize the performance of these materials. All samples crystallize in the hexagonal Fe_2P-type structure (space group P-62m), suggesting that C doping does not affect the phase formation. It is found that the Curie temperature increases, while the thermal hysteresis and the isothermal magnetic entropy change decrease by adding carbon. Room-temperature neutron diffraction experiments on Mn_{1.25}Fe_{0.70}P_{0.55}Si_{0.45}C_z compounds reveal that the added C substitutes P/Si on the 2 c site and/or occupies the 6 k interstitial site of the hexagonal Fe_2P-type structure.

  16. Palmitoylated APP Forms Dimers, Cleaved by BACE1.

    Directory of Open Access Journals (Sweden)

    Raja Bhattacharyya

    Full Text Available A major rate-limiting step for Aβ generation and deposition in Alzheimer's disease brains is BACE1-mediated cleavage (β-cleavage of the amyloid precursor protein (APP. We previously reported that APP undergoes palmitoylation at two cysteine residues (Cys186 and Cys187 in the E1-ectodomain. 8-10% of total APP is palmitoylated in vitro and in vivo. Palmitoylated APP (palAPP shows greater preference for β-cleavage than total APP in detergent resistant lipid rafts. Protein palmitoylation is known to promote protein dimerization. Since dimerization of APP at its E1-ectodomain results in elevated BACE1-mediated cleavage of APP, we have now investigated whether palmitoylation of APP affects its dimerization and whether this leads to elevated β-cleavage of the protein. Here we report that over 90% of palAPP is dimerized while only ~20% of total APP forms dimers. PalAPP-dimers are predominantly cis-oriented while total APP dimerizes in both cis- and trans-orientation. PalAPP forms dimers 4.5-times more efficiently than total APP. Overexpression of the palmitoylating enzymes DHHC7 and DHHC21 that increase palAPP levels and Aβ release, also increased APP dimerization in cells. Conversely, inhibition of APP palmitoylation by pharmacological inhibitors reduced APP-dimerization in coimmunoprecipitation and FLIM/FRET assays. Finally, in vitro BACE1-activity assays demonstrate that palmitoylation-dependent dimerization of APP promotes β-cleavage of APP in lipid-rich detergent resistant cell membranes (DRMs, when compared to total APP. Most importantly, generation of sAPPβ-sAPPβ dimers is dependent on APP-palmitoylation while total sAPPβ generation is not. Since BACE1 shows preference for palAPP dimers over total APP, palAPP dimers may serve as novel targets for effective β-cleavage inhibitors of APP as opposed to BACE1 inhibitors.

  17. Calix[4]arene supported clusters: a dimer of [Mn(III)Mn(II)] dimers

    DEFF Research Database (Denmark)

    Taylor, Stephanie M; McIntosh, Ruaraidh D; Beavers, Christine M

    2011-01-01

    Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates....

  18. Study of System Pressure Dependence on n-TiO2/p-Si Hetrostructure for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    S. Ramezani Sani

    2015-01-01

    Full Text Available This study reports the fabrication of n-TiO2/p-Si hetrojunction by deposition of TiO2nanowires on p-Si substrate. The effect of system pressure and the current-voltage (I-V characteristics of n-TiO2/p-si hetrojunction were studied. The morphology of the samples was investigated by Field Emission Scanning Electron Microscopy (FESEM which confirms formation of TiO2 nanowires that their diameters increase with increasing the pressure of system. The I-V characteristics were measured to investigate the hetrojunction effects of under forward and reverse biases at different system pressure by sweeping in the voltage from 0 to +6 V, then to -6 V, and finally reaching 0 V. TiO2/Si diodes   in the system pressure 60 mbar and 30 mbar indicated that a p-n junction formed in the n-TiO2/p-Si hetrojunction. But as the system pressure increased to 1000 mbar, the I-V characteristics became inversed. This treatment can be scribed by the change of the energy band structure of TiO2.

  19. Influence of n$^{+}$ and p$^{+}$ doping on the lattice sites of implanted Fe in Si

    CERN Document Server

    Silva, Daniel José; Correia, João Guilherme; Araújo, João Pedro

    2013-01-01

    We report on the lattice location of implanted $^{59}$Fe in n$^{+}$ and p$^{+}$ type Si by means of emission channeling. We found clear evidence that the preferred lattice location of Fe changes with the doping of the material. While in n$^{+}$ type Si Fe prefers displaced bond-centered (BC) sites for annealing temperatures up to 600°C, changing to ideal substitutional sites above 700°C, in p$^{+}$ type Si, Fe prefers to be in displaced tetrahedral interstitial positions after all annealing steps. The dominant lattice sites of Fe in n$^{+}$ type Si therefore seem to be well characterized for all annealing temperatures by the incorporation of Fe into vacancy-related complexes, either into single vacancies which leads to Fe on ideal substitutional sites, or multiple vacancies, which leads to its incorporation near BC sites. In contrast, in p$^{+}$ type Si, the major fraction of Fe is clearly interstitial (near-T or ideal T) for all annealing temperatures. The formation and possible lattice sites of Fe in FeB...

  20. Epitaxial grown InP quantum dots on a GaAs buffer realized on GaP/Si(001) templates

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Walter; Wiesner, Michael; Koroknay, Elisabeth; Paul, Matthias; Jetter, Michael; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen und Research Center SCoPE, Universitaet Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2013-07-01

    The increasing necessity of higher computational capacity and security in the information technology requires originally technical solutions, which today's standard microelectronics, as their technical limits are close, can't provide anymore. One way out offers the integration of III-V semiconductor photonics with low-dimensional structures in current CMOS technology, enabling on-chip quantum optical applications, like quantum cryptography or quantum computing. Challenges in the heteroepitaxy of III-V semiconductors and silicon are the mismatches in material properties of the both systems. Defects, like dislocations and anti-phase domains (APDs), inhibit the monolithic integration of III-V semiconductor on Si. We present the growth of a thin GaAs buffer on CMOS-compatible oriented Si(001) by metal-organic vapor-phase epitaxy. To circumvent the forming APDs in the GaAs buffer a GaP on Si template (provided by NAsP{sub III/V} GmbH) was used. The dislocation density was then reduced by integrating several layers of InAs quantum dots in the GaAs buffer to bend the threading misfit dislocations. On top of this structure we grew InP quantum dots embedded in a Al{sub x}Ga{sub 1-x}InP composition and investigated the photoluminescence properties.

  1. Extremely high magnetic-field sensitivity of charge transport in the Mn/SiO2/p-Si hybrid structure

    Directory of Open Access Journals (Sweden)

    N. V. Volkov

    2017-01-01

    Full Text Available We report on abrupt changes in dc resistance and impedance of a diode with the Schottky barrier based on the Mn/SiO2/p-Si structure in a magnetic field. It was observed that at low temperatures the dc and ac resistances of the device change by a factor of more than 106 with an increase in a magnetic field to 200 mT. The strong effect of the magnetic field is observed only above the threshold forward bias across the diode. The ratios between ac and dc magnetoresistances can be tuned from almost zero to 108% by varying the bias. To explain the diversity of magnetotransport phenomena observed in the Mn/SiO2/p-Si structure, it is necessary to attract several mechanisms, which possibly work in different regions of the structure. The anomalously strong magnetotransport effects are attributed to the magnetic-field-dependent impact ionization in the bulk of a Si substrate. At the same time, the conditions for this process are specified by structure composition, which, in turn, affects the current through each structure region. The effect of magnetic field attributed to suppression of impact ionization via two mechanisms leads to an increase in the carrier energy required for initiation of impact ionization. The first mechanism is related to displacement of acceptor levels toward higher energies relative to the top of the valence band and the other mechanism is associated with the Lorentz forces affecting carrier trajectories between scatterings events. The estimated contributions of these two mechanisms are similar. The proposed structure is a good candidate for application in CMOS technology-compatible magnetic- and electric-field sensors and switching devices.

  2. The nature of the [TTF]˙+···[TTF]˙+ interactions in the [TTF]2(2+) dimers embedded in charged [3]catenanes: room-temperature multicenter long bonds.

    Science.gov (United States)

    Capdevila-Cortada, Marçal; Novoa, Juan J

    2012-04-23

    The properties of tetrathiafulvalene dimers ([TTF](2)(2+)) and the functionalized ring-shaped bispropargyl (BPP)-functionalized TTF dimers, [BPP-TTF](2)(2+), found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are energetically unstable towards dissociation. When enclosed in the 4(+)-charged central cyclophane ring of charged [3]catenanes (CBPQT(4+)), [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are also energetically unstable with respect to leaving the CBPQT(4+) ring; since the barrier for the exiting process is only about 3 kcal mol(-1), that is, within the reach of thermal energies at room temperature (neutral [TTF](2)(0) dimers are stable within the CBPQT(4+) ring). However, the [BPP-TTF](2)(2+) dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP-TTF(+) macrocycle. Finally, it was shown that the [TTF](2)(2+), [BPP-TTF](2)(2+) dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation-anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP-TTF](2)(2+) dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room-temperature multicenter long bond is formed, similar to those previously found in other [TTF](2)(2+) salts and their solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Trap assisted charge multiplication enhanced photoresponse of Li-P codoped p-ZnO/n-Si heterojunction ultraviolet photodetectors

    Science.gov (United States)

    Sharma, Pankaj; Bhardwaj, Ritesh; Kumar, Amitesh; Mukherjee, Shaibal

    2018-01-01

    In this work, we report a high-performance p-ZnO/n-Si heterojunction-based ultraviolet (UV) photodetector fabricated by dual ion beam sputter deposition. The lithium-phosphorus (Li-P) codoping route was used to realize low resistive and stable p-type ZnO. The current-voltage characteristics of p-ZnO/n-Si heterojunction photodiode showed good rectifying behavior with a rectification ratio of 170 at  ±3 V. The spectral response measurements of the photodiode showed excellent responsivity with a peak observed around ~325 nm and cutoff wavelength around 370 nm. The maximum responsivity achieved was 2.6 A W-1 at an applied reverse bias of  -6 V. The external quantum efficiency determined was of the order of ~1000% which is attributed to the trap assisted multiplication of charge carriers.

  4. Effect of light illumination and temperature on P3HT films, n-type Si, and ITO

    Energy Technology Data Exchange (ETDEWEB)

    Scudiero, Louis, E-mail: scudiero@wsu.edu [Chemistry Department and Material Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States); Shen, Yang [Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, Virginia 22904 (United States); Gupta, Mool C., E-mail: mgupta@virginia.edu [Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, Virginia 22904 (United States)

    2014-02-15

    The secondary electron (SE) cutoff energy region spectra are recorded before (dark), during (light) and after laser exposure (dark) for P3HT, Si, and ITO. An SE cutoff energy shift is observed when the bare n-type doped Si substrate is exposed to 532 nm light. This is attributed to the presence of a thin native oxide layer (∼1.5 nm) on Si. No energy shift is detected on the Ar sputtered clean Si. Also, no shift was observed for ITO. When exposed to light, a net SE energy cutoff shift was measured for P3HT deposited on both Si and ITO substrates at room temperature. However, no significant valence band maximum (VBM) energy shifts were measured for P3HT that was spun cast on both substrates under dark and light illumination. Furthermore, light effect was investigated at three different temperatures; 25, 70, and 160{sup o}C and it is found that for P3HT, the magnitude of the SE cutoff energy change is not only substrate dependent but also depends on temperature.

  5. Dissociation in patients with dissociative seizures: relationships with trauma and seizure symptoms.

    Science.gov (United States)

    Pick, S; Mellers, J D C; Goldstein, L H

    2017-05-01

    This study aimed to extend the current understanding of dissociative symptoms experienced by patients with dissociative (psychogenic, non-epileptic) seizures (DS), including psychological and somatoform types of symptomatology. An additional aim was to assess possible relationships between dissociation, traumatic experiences, post-traumatic symptoms and seizure manifestations in this group. A total of 40 patients with DS were compared with a healthy control group (n = 43), matched on relevant demographic characteristics. Participants completed several self-report questionnaires, including the Multiscale Dissociation Inventory (MDI), Somatoform Dissociation Questionnaire-20, Traumatic Experiences Checklist and the Post-Traumatic Diagnostic Scale. Measures of seizure symptoms and current emotional distress (Hospital Anxiety and Depression Scale) were also administered. The clinical group reported significantly more psychological and somatoform dissociative symptoms, trauma, perceived impact of trauma, and post-traumatic symptoms than controls. Some dissociative symptoms (i.e. MDI disengagement, MDI depersonalization, MDI derealization, MDI memory disturbance, and somatoform dissociation scores) were elevated even after controlling for emotional distress; MDI depersonalization scores correlated positively with trauma scores while seizure symptoms correlated with MDI depersonalization, derealization and identity dissociation scores. Exploratory analyses indicated that somatoform dissociation specifically mediated the relationship between reported sexual abuse and DS diagnosis, along with depressive symptoms. A range of psychological and somatoform dissociative symptoms, traumatic experiences and post-traumatic symptoms are elevated in patients with DS relative to healthy controls, and seem related to seizure manifestations. Further studies are needed to explore peri-ictal dissociative experiences in more detail.

  6. Reactions of R(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)]. A general and efficient entry to phosphanylphosphinidene complexes of platinum. Syntheses and structures of [(eta(2)-P=(i)Pr(2))Pt(p-Tol(3)P)(2)], [(eta(2)-P=(t)Bu(2))Pt(p-Tol(3)P)(2)], [{eta(2)-P=(N(i)Pr(2))(2)}Pt(p-Tol(3)P)(2)] and [{(Et(2)PhP)(2)Pt}(2)P(2)].

    Science.gov (United States)

    Domańska-Babul, Wioleta; Chojnacki, Jaroslaw; Matern, Eberhard; Pikies, Jerzy

    2009-01-07

    The reactions of lithium derivatives of diphosphanes R(2)P-P(SiMe(3))Li (R = (t)Bu, (i)Pr, Et(2)N and (i)Pr(2)N) with [(R'(3)P)(2)PtCl(2)] (R'(3)P = Et(3)P, Et(2)PhP, EtPh(2)P and p-Tol(3)P) proceed in a facile manner to afford side-on bonded phosphanylphosphinidene complexes of platinum [(eta(2)-P=R(2))Pt(PR'(3))(2)]. The related reactions of Ph(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)] did not yield [(eta(2)-P=PPh(2))Pt(PR'(3))(2)] and resulted mainly in the formation of [{(R'(3)P)(2)Pt}(2)P(2)], Ph(2)P-PLi-PPh(2), (Me(3)Si)(2)PLi and (Me(3)Si)(3)P. Crystallographic data are reported for the compounds [(eta(2)-P=R(2))Pt(p-Tol(3)P)(2)] (R = (t)Bu, (i)Pr, ((i)Pr(2)N)(2)P) and for [{(Et(2)PhP)(2)Pt}(2)P(2)].

  7. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system.

    Science.gov (United States)

    Raimondo, Joseph V; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E; Srinivas, Shankar; Akerman, Colin J

    2013-01-01

    Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

  8. Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.

    Science.gov (United States)

    Whittingham, Jean L; Scott, David J; Chance, Karen; Wilson, Ashley; Finch, John; Brange, Jens; Guy Dodson, G

    2002-04-26

    When insulin solutions are subjected to acid, heat and agitation, the normal pattern of insulin assembly (dimers-->tetramers-->hexamers) is disrupted; the molecule undergoes conformational changes allowing it to follow an alternative aggregation pathway (via a monomeric species) leading to the formation of insoluble amyloid fibres. To investigate the effect of acid pH on the conformation and aggregation state of the protein, the crystal structure of human insulin at pH 2.1 has been determined to 1.6 A resolution. The structure reveals that the native fold is maintained at low pH, and that the molecule is still capable of forming dimers similar to those found in hexameric insulin structures at higher pH. Sulphate ions are incorporated into the molecule and the crystal lattice where they neutralise positive charges on the protein, stabilising its structure and facilitating crystallisation. The sulphate interactions are associated with local deformations in the protein, which may indicate that the structure is more plastic at low pH. Transmission electron microscopy analysis of insulin fibres reveals that the appearance of the fibres is greatly influenced by the type of acid employed. Sulphuric acid produces distinctive highly bunched, truncated fibres, suggesting that the sulphate ions have a sophisticated role to play in fibre formation, rather as they do in the crystal structure. Analytical ultracentrifugation studies show that in the absence of heating, insulin is predominantly dimeric in mineral acids, whereas in acetic acid the equilibrium is shifted towards the monomer. Hence, the effect of acid on the aggregation state of insulin is also complex. These results suggest that acid conditions increase the susceptibility of the molecule to conformational change and dissociation, and enhance the rate of fibrillation by providing a charged environment in which the attractive forces between the protein molecules is increased. (c) 2002 Elsevier Science Ltd.

  9. Electrical properties of Au/perylene-monoimide/p-Si Schottky diode

    International Nuclear Information System (INIS)

    Yüksel, Ö.F.; Tuğluoğlu, N.; Gülveren, B.; Şafak, H.; Kuş, M.

    2013-01-01

    Graphical abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. An emphasis is placed on how electrical and interface characteristics like current–voltage (I–V) variation, ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of Au/PMI/p-Si diode structure change with the temperatures between 100 and 300 K. The temperature dependence of barrier height shows that the Schottky barrier height is inhomogeneous in nature at the interface. Such inhomogeneous behavior was explained on the basis of thermionic emission mechanism by assuming the existence of a Gaussian distribution of barrier heights. -- Highlights: •An Au/perylene-monoimide (PMI)/p-Si Schottky diode having an organic interlayer has been fabricated. •I–V characteristics have been investigated over a wide temperature range 100–300 K. •C–V measurements have been analyzed at room temperature. -- Abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. We have investigated how electrical and interface characteristics like current–voltage characteristics (I–V), ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of diode change with temperature over a wide range of 100–300 K. Detailed analysis on the electrical properties of structure is performed by assuming the standard thermionic emission (TE) model. Possible mechanisms such as image force lowering, generation–recombination processes and interface states which cause deviations of n values from the unity have been discussed. Cheung–Cheung method is also employed to analysis the current–voltage characteristics and a good agreement is observed between the results. It is shown that the electronic properties of Schottky diode are very sensitive to the modification of perylene-monoimide (PMI) interlayer organic material and also to the temperature. The ideality factor was found to decrease and the barrier

  10. TEM studies of P+ implanted and subsequently laser annealed Si

    International Nuclear Information System (INIS)

    Sadana, D.K.; Wilson, M.C.; Booker, G.R.; Washburn, J.

    1979-05-01

    The present investigation is concerned with laser annealing of P + implanted Si. The aim of the work was to study the crystallization behavior of damage structure occurring due to high dose rate implantation using transmission electron microscopy (TEM) as the method of examination

  11. Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers

    International Nuclear Information System (INIS)

    Dai, H.L.

    1981-04-01

    Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 μm laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 μm excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 μm excitation than for 10 μm excitation, reflecting bottlenecking in the discrete region of 10 μm excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF 6 caused by vibrational self-quenching. Between 1000-3000 cm -1 of energy is removed from SF 6 excited to approx. > 60 kcal/mole by collision with a cold SF 6 molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF 4 as absorbing gas for the CO 2 laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail

  12. Cushing`s disease: Fibrinogen and D-dimer levels fail to normalize despite early postoperative remission - a prospective, controlled study.

    Science.gov (United States)

    Witek, Przemysław; Zieliński, Grzegorz; Szamotulska, Katarzyna; Witek, Joanna; Kamiński, Grzegorz

    2016-01-01

    Effective transsphenoidal surgery (TSS) for Cushing`s disease (CD) normalizes cortisol levels and reduces complications of hypercortisolism. However, there is evidence of increased cardiovascular morbidity even after successful surgery. A prospective, controlled study on the dynamics of fibrinogen and D-dimer levels with a six-month follow-up after an effective TSS for CD. Forty patients with CD and forty healthy age- and sex-matched subjects were included. We assessed ACTH, urinary and serum cortisol, and fibrinogen and D-dimer levels before TSS and during follow-up. Baseline BMI (P < 0.001), fibrinogen (P = 0.002), and D-dimer (P = 0.001) levels in CD patients were significantly higher than those in healthy controls. High fibrinogen levels in the CD group were independent of BMI, and were positively associated with hsCRP (rS = 0.61, P < 0.001) and arterial hypertension (P = 0.029). After the six-month follow-up we confirmed a sustained difference between the remission group and controls in fibrinogen and D-dimer levels (P = 0.001 and P = 0.017, respectively). Despite early biochemical remission of CD the levels of fibrinogen and D-dimer failed to decrease. This probably contributes to the high risk of thrombotic events and indicates the need for a close follow-up for signs of thromboembolic and cardiovascular complications in patients with early CD remission. (Endokrynol Pol 2016; 67 (3): 283-291).

  13. Spectroscopic constants and the potential energy curve of the iodine weakly bound 0+g state correlating with the I(2P1/2) + I(2P1/2) dissociation limit

    International Nuclear Information System (INIS)

    Akopyan, M E; Baturo, V V; Lukashov, S S; Poretsky, S A; Pravilov, A M

    2013-01-01

    The stepwise three-step three-colour aser excitation scheme and rotational as well as rovibrational energy transfer processes in the 0 + g state induced by collisions with He and Ar atoms are used for determination of rovibronic level energies of the weakly bound 0 + g state correlating with the I( 2 P 1/2 ) + I( 2 P 1/2 ) dissociation limit. Dunham coefficients of the state, Y i0 (i = 0–3), Y i1 (i = 0–3) and Y 02 for the v 0 g + = 0–16 and J 0 g + ≈ 14–135 ranges as well as the dissociation energy of the state, D e , and equilibrium I–I distance of the state, R e , are determined. The potential energy curve of the state constructed using these constants is also reported. (paper)

  14. Determining the nucleation rate from the dimer growth probability

    NARCIS (Netherlands)

    Ter Horst, J.H.; Kashchiev, D.

    2005-01-01

    A new method is proposed for the determination of the stationary one-component nucleation rate J with the help of data for the growth probability P2 of a dimer which is the smallest cluster of the nucleating phase. The method is based on an exact formula relating J and P2, and is readily applicable

  15. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001 Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Ludovico Megalini

    2018-02-01

    Full Text Available We report on the use of InGaAsP strain-compensated superlattices (SC-SLs as a technique to reduce the defect density of Indium Phosphide (InP grown on silicon (InP-on-Si by Metal Organic Chemical Vapor Deposition (MOCVD. Initially, a 2 μm thick gallium arsenide (GaAs layer was grown with very high uniformity on exact oriented (001 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2 stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD; atomic force microscopy (AFM; transmission electron microscopy (TEM; and electron channeling contrast imaging (ECCI; which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer.

  16. General concept of a gas engine for a hybrid vehicle, operating on methanol dissociation products

    International Nuclear Information System (INIS)

    Tartakovsky, L.; Aleinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Schindler, Y.; Zvirin, Y.

    1998-01-01

    The paper presents a general concept of a hybrid propulsion system, based on an SI internal combustion engine fueled by methanol dissociation products (MDP). The proposed hybrid propulsion scheme is a series hybrid, which allows the engine to be operated in an on-off mode at constant optimal regime. The engine is fed by gaseous products of methanol dissociation (mainly hydrogen and carbon monoxide) emerging from an on-board catalytic reformer. The general scheme and base operation features of the propulsion system are described. The benefits that may be achieved by combining the well-known idea of on-board methanol dissociation with the hybrid vehicle concept are discussed. The proposed scheme is compared with those of systems operating on gasoline, liquid methanol, hydrogen and also with the multi-regime (not hybrid) engine fed by MDP

  17. Dimerization-Induced Allosteric Changes of the Oxyanion-Hole Loop Activate the Pseudorabies Virus Assemblin pUL26N, a Herpesvirus Serine Protease.

    Directory of Open Access Journals (Sweden)

    Martin Zühlsdorf

    2015-07-01

    Full Text Available Herpesviruses encode a characteristic serine protease with a unique fold and an active site that comprises the unusual triad Ser-His-His. The protease is essential for viral replication and as such constitutes a promising drug target. In solution, a dynamic equilibrium exists between an inactive monomeric and an active dimeric form of the enzyme, which is believed to play a key regulatory role in the orchestration of proteolysis and capsid assembly. Currently available crystal structures of herpesvirus proteases correspond either to the dimeric state or to complexes with peptide mimetics that alter the dimerization interface. In contrast, the structure of the native monomeric state has remained elusive. Here, we present the three-dimensional structures of native monomeric, active dimeric, and diisopropyl fluorophosphate-inhibited dimeric protease derived from pseudorabies virus, an alphaherpesvirus of swine. These structures, solved by X-ray crystallography to respective resolutions of 2.05, 2.10 and 2.03 Å, allow a direct comparison of the main conformational states of the protease. In the dimeric form, a functional oxyanion hole is formed by a loop of 10 amino-acid residues encompassing two consecutive arginine residues (Arg136 and Arg137; both are strictly conserved throughout the herpesviruses. In the monomeric form, the top of the loop is shifted by approximately 11 Å, resulting in a complete disruption of the oxyanion hole and loss of activity. The dimerization-induced allosteric changes described here form the physical basis for the concentration-dependent activation of the protease, which is essential for proper virus replication. Small-angle X-ray scattering experiments confirmed a concentration-dependent equilibrium of monomeric and dimeric protease in solution.

  18. Electroless Ni-P/Nano-SiO2 Composite Plating on Dual Phase Magnesium-Lithium Alloy

    Science.gov (United States)

    Zou, Y.; Zhang, Z. W.; Zhang, M. L.

    The application of Mg-Li alloys is restricted in practice due to mainly poor corrosion resistance and wear resistance. Electroless nickel plating is one of the common and effective ways to protect alloys from corrosion. In this study, nano-SiO2 particles with Ni-P matrix have been successfully co-deposited onto dual phase Mg-8Li base alloy through electroless plating, generating homogeneously Ni-P/nano-SiO2 composite coating. The morphology, elemental composition and structures of coatings were investigated. Coating performances were evaluated using hardness tests and electrochemical analysis. The results indicate that the Ni-P/nano-SiO2 composite coating can significantly improve the wear and corrosion resistance.

  19. Ionization constants pKa of cardiolipin.

    Directory of Open Access Journals (Sweden)

    Gerd Olofsson

    Full Text Available Cardiolipin is a phospholipid found in the inner mitochondrial membrane and in bacteria, and it is associated with many physiological functions. Cardiolipin has a dimeric structure consisting of two phosphatidyl residues connected by a glycerol bridge and four acyl chains, and therefore it can carry two negative charges. The pKa values of the phosphate groups have previously been reported to differ widely with pKa1 = 2.8 and pKa2 = 7.5-9.5. Still, there are several examples of experimental observations from cardiolipin-containing systems that do not fit with this dissociation behavior. Therefore, we have carried out pH-titration and titration calorimetric experiments on two synthetic cardiolipins, 1,1',2,2'-tetradecanoyl cardiolipin, CL (C14:0, and 1,1',2,2'-tetraoctadecenoyl cardiolipin, CL (C18:1. Our results show that both behave as strong dibasic acids with pKa1 about the same as the first pKa of phosphoric acid, 2.15, and pKa2 about one unit larger. The characterization of the acidic properties of cardiolipin is crucial for the understanding of the molecular organization in self-assembled systems that contain cardiolipin, and for their biological function.

  20. Direct Current Sputter Epitaxy of Heavily Doped p+ Layer for Monocrystalline Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Wenchang Yeh

    2017-01-01

    Full Text Available Sputter epitaxy of p+ layer for fabrication of Si solar cells (SCs was demonstrated. Hall carrier concentration of p+ layer was 2.6 × 1020 cm−3 owing to cosputtering of B with Si at low temperature, which had enabled heavy and shallow p+ dope layer. p+nn+ SCs were fabricated and influence of p+ and n+ layers was investigated. Internal quantum efficiency (IQE of p+nn+ SCs was 95% at visible light and was larger than 60% at ultraviolet (UV light when the p+ layer was thinner than 30 nm. At near infrared (NIR, extra increment on IQE was achieved by rear n+ back surface field (BSF layer with a thickness thinner than 100 nm.

  1. Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction

    International Nuclear Information System (INIS)

    Mridha, S.; Basak, D.

    2007-01-01

    A n-ZnO/p-Si thin film heterojunction has been fabricated by a low cost sol-gel technique. The wavelength dependent photoresponse properties of the heterojunction is investigated in detail by studying the effect of light illumination on current-voltage (I-V) characteristics, photocurrent, and photocapacitance spectra at room temperature. It shows good diode characteristics with I F /I R =3.4x10 3 at 4 V and reverse leakage current density of 7.6x10 -5 A cm -2 at -5 V. From the photocurrent spectra, it is observed that the visible photons are absorbed in the depleted p-Si under reverse bias conditions, while ultraviolet (UV) photons are absorbed in the depleted n-ZnO under positive bias conditions. This indicates that such a sol-gel n-ZnO/p-Si thin film heterojunction can be used to sense both UV and visible photons though the photoresponse for UV is much slower than that of visible. The photocapacitance measurements suggest the presence of a shallow defect level in the sol-gel derived ZnO film which acts as an electron trap at ∼0.16 eV below the conduction band

  2. Optimizing Performance Parameters of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell.

    Science.gov (United States)

    Batra, Kamal; Nayak, Sasmita; Behura, Sanjay K; Jani, Omkar

    2015-07-01

    Chemically-derived graphene have been synthesized by modified Hummers method and reduced using sodium borohydride. To explore the potential for photovoltaic applications, graphene/p-silicon (Si) heterojunction devices were fabricated using a simple and cost effective technique called spin coating. The SEM analysis shows the formation of graphene oxide (GO) flakes which become smooth after reduction. The absence of oxygen containing functional groups, as observed in FT-IR spectra, reveals the reduction of GO, i.e., reduced graphene oxide (rGO). It was further confirmed by Raman analysis, which shows slight reduction in G-band intensity with respect to D-band. Hall effect measurement confirmed n-type nature of rGO. Therefore, an effort has been made to simu- late rGO/p-Si heterojunction device by using the one-dimensional solar cell capacitance software, considering the experimentally derived parameters. The detail analysis of the effects of Si thickness, graphene thickness and temperature on the performance of the device has been presented.

  3. Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)

    International Nuclear Information System (INIS)

    Tegus, O.; Bao Li-Hong; Song Lin

    2013-01-01

    Since the discovery of giant magnetocaloric effect in MnFeP 1−x As x compounds, much valuable work has been performed to develop and improve Fe 2 P-type transition-metal-based magnetic refrigerants. In this article, the recent progress of our studies on fundamental aspects of theoretical considerations and experimental techniques, effects of atomic substitution on the magnetism and magnetocalorics of Fe 2 P-type intermetallic compounds MnFeX (X=P, As, Ge, Si) is reviewed. Substituting Si (or Ge) for As leads to an As-free new magnetic material MnFeP 1−x Si(Ge) x . These new materials show large magnetocaloric effects resembling MnFe(P, As) near room temperature. Some new physical phenomena, such as huge thermal hysteresis and ‘virgin’ effect, were found in new materials. On the basis of Landau theory, a theoretical model was developed for studying the mechanism of phase transition in these materials. Our studies reveal that MnFe(P, Si) compound is a very promising material for room-temperature magnetic refrigeration and thermo-magnetic power generation. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  4. Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals

    International Nuclear Information System (INIS)

    Pi, Xiaodong; Ni, Zhenyi; Yang, Deren; Delerue, Christophe

    2014-01-01

    In contrast to the conventional doping of bulk silicon (Si), the doping of Si nanocrystals (NCs) that are often smaller than 5 nm in diameter may lead to serious structural changes. Since the electronic and optical properties of Si NCs are intimately associated with their structures, it is critical to understand how doping impacts the structures of Si NCs. By means of ab initio calculation we now compare 1.4 nm phosphorus (P)-doped Si NCs without structural relaxation and those with structural relaxation. Structural changes induced by structural relaxation are manifested by the stretching and compressing of bonds and apparent variations in bond angles. With the increase of the concentration of P structural changes induced by structural relaxation become more serious. It is found that structural relaxation makes differences in the energy-level schemes of P-doped Si NCs. Structural relaxation also causes the binding energy of an electron in a P-doped Si NC to more significantly increase as the concentration of P increases. With the increase of the concentration of P structural relaxation leads to more pronounced changes in the optical absorption of P-doped Si NCs

  5. Structural and magnetocaloric properties of (Mn,Fe){sub 2}(P,Si) materials with added nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thang, N.V., E-mail: v.t.nguyen-1@tudelft.nl; Miao, X.F., E-mail: X.F.Miao@tudelft.nl; Dijk, N.H. van, E-mail: N.H.vanDijk@tudelft.nl; Brück, E., E-mail: E.H.Bruck@tudelft.nl

    2016-06-15

    Amongst magnetic materials that exhibit a giant magnetocaloric effect near room temperature, the (Mn,Fe){sub 2}(P,Si) system is one of the most promising candidates for magnetic refrigeration. Although the (Mn,Fe){sub 2}(P,Si) materials hold many advantages, controlling the magnetic entropy change ΔS{sub m}, the adiabatic temperature change ΔT{sub ad}, the thermal hysteresis and the mechanical stability across the ferromagnetic transition requires a delicate tuning of the composition. This work investigates the addition of nitrogen, as an interstitial or substitutional element, as a new parameter to tune the properties of (Mn,Fe){sub 2}(P,Si) materials. We found that the nitrogen addition results in a decrease of the Curie temperature, consistent with the observed increase in the c/a ratio. The introduction of nitrogen in (Mn,Fe){sub 2}(P,Si) materials also results in a strong enhancement of the mechanical stability. - Highlights: • N-doped materials were synthesized by high-energy ball milling and solid-state reactions. • Nitrogen atoms enter the structure both as substitutional and as interstitial element in (Mn,Fe){sub 2}(P,Si) materials. • Nitrogen addition leads to a decrease in the Curie temperature, while improving the mechanical stability and preserving the magnetocaloric properties. • The origin of the increase in the thermal hysteresis by increasing the N content has been investigated by analyzing the XRD data.

  6. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    Science.gov (United States)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  7. Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Chand, Subhash; Kumar, Rajender

    2014-01-01

    Highlights: • The Ni/n-ZnO/p-Si/Al heterojunction diodes are fabricated by pulsed laser deposition. • The band gap of the deposit ZnO films was found to be 3.43 eV. • Forward I–V data of Ni/n-ZnO/p-Si/Al hetrojunction are interpreted in terms of thermionic emission–diffusion mechanism. • The C–V characteristics of the Ni/n-ZnO/p-Si/Al hetrojunction diode are measured in the temperature range 80–300 K. • The barrier height of Ni/n-ZnO/p-Si/Al hetrojunction diode is also calculated from C–V measurements. - Abstract: The ZnO thin films are grown on the p-Si for the heterojunction fabrication by pulsed laser deposition method. X-ray diffraction study showed that the texture of the film is hexagonal with a strong (0 0 2) plane as preferred direction. High purity vacuum evaporated nickel and aluminum metals were used to make contacts to the n-ZnO and p-Si, respectively. The current–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al hetero structure measured over the temperature range 80–300 K have been studied on the basis of thermionic emission diffusion mechanism. The equivalent Schottky barrier height and diode ideality factor are determined by fitting of measured current–voltage data in to thermionic diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. These characteristics are attributed to the Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ni/n-ZnO/p-Si(1 0 0)/Al heterojunction diode are also studied over wide temperature range. From the measured capacitance–voltage data the built in voltage and impurity concentration in n-type ZnO is estimated

  8. Predictive value of elevated D-dimer in patients undergoing primary angioplasty for ST elevation myocardial infarction.

    Science.gov (United States)

    Akgul, Ozgur; Uyarel, Huseyin; Pusuroglu, Hamdi; Gul, Mehmet; Isiksacan, Nilgun; Turen, Selahattin; Erturk, Mehmet; Surgit, Ozgur; Cetin, Mustafa; Bulut, Umit; Baycan, Omer F; Uslu, Nevzat

    2013-10-01

    The aim of this study was to evaluate the prognostic value of D-dimer in patients with STEMI undergoing primary percutaneous coronary intervention (PCI). The prognostic value of D-dimer has been documented in patients with acute coronary syndrome without ST-segment elevation. However, its value in acute ST-segment elevation myocardial infarction (STEMI) remains unclear. We prospectively enrolled 453 consecutive STEMI patients (mean age 55.6 ± 12.4 years, 364 male, 89 female) undergoing primary PCI. The study population was divided into tertiles based on admission D-dimer values. The high D-dimer group (n = 151) was defined as a value in the third tertile [>0.72 ug/ml fibrinogen equivalent units (FEU)], and the low D-dimer group (n = 302) included those patients with a value in the lower two tertiles (≤0.72 ug/ml FEU). Clinical characteristics, in-hospital and 6-month outcomes of primary PCI were analyzed. The patients of the high D-dimer group were older (mean age 60.1 ± 13.5 versus 52.4 ± 10.6, P 0.72 ug/ml FEU) was found to be a powerful independent predictor of 6-month all-cause mortality (odds ratio: 10.1, 95% confidence interval: 1.24-42.73, P = 0.03). These results suggest that a high admission D-dimer, level was associated with increased in-hospital cardiovascular mortality and 6-month all-cause mortality in patients with STEMI undergoing primary PCI.

  9. Development of n-ZnO/p-Si single heterojunction solar cell with and without interfacial layer

    Science.gov (United States)

    Hussain, Babar

    The conversion efficiency of conventional silicon (Si) photovoltaic cells has not been improved significantly during last two decades but their cost decreased dramatically during this time. However, the higher price-per-watt of solar cells is still the main bottleneck in their widespread use for power generation. Therefore, new materials need to be explored for the fabrication of solar cells potentially with lower cost and higher efficiency. The n-type zinc oxide (n-ZnO) and p-type Si (p-Si) based single heterojunction solar cell (SHJSC) is one of the several attempts to replace conventional Si single homojunction solar cell technology. There are three inadequacies in the literature related to n-ZnO/p-Si SHJSC: (1) a detailed theoretical analysis to evaluate potential of the solar cell structure, (2) inconsistencies in the reported value of open circuit voltage (VOC) of the solar cell, and (3) lower value of experimentally achieved VOC as compared to theoretical prediction based on band-bending between n-ZnO and p-Si. Furthermore, the scientific community lacks consensus on the optimum growth parameters of ZnO. In this dissertation, I present simulation and experimental results related to n-ZnO/p-Si SHJSC to fill the gaps mentioned above. Modeling and simulation of the solar cell structure are performed using PC1D and AFORS-HET software taking practical constraints into account to explore the potential of the structure. Also, unnoticed benefits of ZnO in solar cells such as an additional antireflection (AR) effect and low temperature deposition are highlighted. The growth parameters of ZnO using metal organic chemical vapor deposition and sputtering are optimized. The structural, optical, and electrical characterization of ZnO thin films grown on sapphire and Si substrates is performed. Several n-ZnO/p-Si SHJSC devices are fabricated to confirm the repeatability of the VOC. Moreover, the AR effect of ZnO while working as an n-type layer is experimentally verified

  10. Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction

    Science.gov (United States)

    Ji, Liang-Wen; Hsiao, Yu-Jen; Tang, I.-Tseng; Meen, Teen-Hang; Liu, Chien-Hung; Tsai, Jenn-Kai; Wu, Tien-Chuan; Wu, Yue-Sian

    2013-11-01

    The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.

  11. Stochastic optimization-based study of dimerization kinetics

    Indian Academy of Sciences (India)

    To this end, we study dimerization kinetics of protein as a model system. We follow the dimerization kinetics using a stochastic simulation algorithm and ... optimization; dimerization kinetics; sensitivity analysis; stochastic simulation ... tion in large molecules and clusters, or the design ..... An unbiased strategy of allocating.

  12. Theoretical investigation of the Omega(g,u)(+/-) states of K2 dissociating adiabatically up to K(4p 2P(3/2)) + K(4p 2P(3/2)).

    Science.gov (United States)

    Jraij, A; Allouche, A R; Magnier, S; Aubert-Frécon, M

    2009-06-28

    A theoretical investigation of the electronic structure of the K(2) molecule, including spin-orbit effects, has been performed. Potential energies have been calculated over a large range of R up to 75a(0) for the 88 Omega(g,u)(+/-) states dissociating adiabatically into the limits up to K(4p (2)P(3/2))+K(4p (2)P(3/2)). Equilibrium distances, transition energies, harmonic frequencies, as well as depths for wells and heights for barriers are reported for all of the bound Omega(g,u)(+/-) states. Present ab initio calculations are shown to be able to reproduce quite accurately the small structures (wells and barrier) displayed at very long-range (R>50a(0)) by the (2,3)1(u) and (2)0(g)(-) purely long-range states. As the present data could help experimentalists, we make available extensive tables of energy values versus internuclear distances in our database at the web address http://www-lasim.univ-lyon1.fr/spip.php?rubrique99.

  13. A basic peptide within the juxtamembrane region is required for EGF receptor dimerization.

    Science.gov (United States)

    Aifa, Sami; Aydin, Jan; Nordvall, Gunnar; Lundström, Ingemar; Svensson, Samuel P S; Hermanson, Ola

    2005-01-01

    The epidermal growth factor receptor (EGFR) is fundamental for normal cell growth and organ development, but has also been implicated in various pathologies, notably tumors of epithelial origin. We have previously shown that the initial 13 amino acids (P13) within the intracellular juxtamembrane region (R645-R657) are involved in the interaction with calmodulin, thus indicating an important role for this region in EGFR function. Here we show that P13 is required for proper dimerization of the receptor. We expressed either the intracellular domain of EGFR (TKJM) or the intracellular domain lacking P13 (DeltaTKJM) in COS-7 cells that express endogenous EGFR. Only TKJM was immunoprecipitated with an antibody directed against the extracellular part of EGFR, and only TKJM was tyrosine phosphorylated by endogenous EGFR. Using SK-N-MC cells, which do not express endogenous EGFR, that were stably transfected with either wild-type EGFR or recombinant full-length EGFR lacking P13 demonstrated that P13 is required for appropriate receptor dimerization. Furthermore, mutant EGFR lacking P13 failed to be autophosphorylated. P13 is rich in basic amino acids and in silico modeling of the EGFR in conjunction with our results suggests a novel role for the juxtamembrane domain (JM) of EGFR in mediating intracellular dimerization and thus receptor kinase activation and function.

  14. Spin-triplet excitons and anisotropy effects in the S=12 gapped antiferromagnet BaCuSi2O6

    International Nuclear Information System (INIS)

    Zvyagin, S.A.; Wosnitza, J.; Krzystek, J.; Stern, R.; Jaime, M.; Sasago, Y.; Uchinokura, K.

    2007-01-01

    BaCuSi 2 O 6 can be regarded as an almost ideal realization of an S=12 system of weakly interacting spin dimers with spin-singlet ground state and gapped excitation spectrum. We argue that the fine structure observed in low-temperature EPR spectra of BaCuSi 2 O 6 is a fingerprint of triplet excitations (excitons). Analyzing the angular dependence of the exciton modes allows us to precisely calculate the zero-field splitting within the triplet states and, correspondingly, the anisotropy parameter, D=0.07cm -1 . The proposed procedure can be applied for studying anisotropy effects in a large number of S=12 gapped quantum antiferromagnets with dimerized or alternating spin structure

  15. n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes

    Science.gov (United States)

    Tsai, Jenn Kai; Shih, Jun Hong; Wu, Tian Chiuan; Meen, Teen Hang

    2012-12-01

    In this study, we report the effects of thermal annealing in nitrogen ambient on the optical and electrical properties of zinc oxide (ZnO) nanorod (NR) arrays for the application in light emission diodes (LED). The single-crystalline ZnO NR array was synthesized on p+-Si (111) substrate without seed layer using simple, low-cost, and low-temperature hydrothermal method. The substrate surface was functionalized by hydrofluoric acid and self-assembled monolayer of octadecyltrimethoxysilane ((CH3 (CH2)17Si(OCH3)3). ZnO NRs were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and micro-photoluminescence (micro-PL). The results of FESEM and XRD indicate that single crystalline ZnO NRs with (002) preferred orientation along the substrate surface is successfully grown on functionalized p+-Si (111) substrate. The current-voltage and electroluminescence (EL) characteristics of the LED show that the most suitable annealing temperature ranges from 400°C to 600°C. Both PL and EL spectra show broadband emissions, ultraviolet and visible (green-yellow) light. The white-like light emission is able to be observed by naked eyes.

  16. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    Science.gov (United States)

    Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.

    2013-01-01

    Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons. PMID:24312004

  17. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2013-11-01

    Full Text Available Within the nervous system, intracellular Cl- and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission and network excitability. Cl- and pH are often co-regulated, and network activity results in the movement of both Cl- and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl- and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN - a new genetically-encoded ratiometric Cl- and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl- and H+ concentrations under a variety of conditions. In addition, we establish the sensor’s utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

  18. Increased tissue factor, MMP-8, and D-dimer expression in diabetic patients with unstable advanced carotid atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jerzy Krupinski

    2007-09-01

    Full Text Available Jerzy Krupinski1,2, Marta M Turu1,2, M Angels Font1, Nesser Ahmed3, Matthew Sullivan3, Ana Luque1,2, Francisco Rubio1, Lina Badimon2, Mark Slevin31Department of Neurology, Stroke Unit, University Hospital of Bellvitge (HUB, Fundacio IDIBELL, Barcelona, Spain; 2Cardiovascular Research Centre, IIBB/CSIC-HSCSP-UAB, Barcelona, Spain; 3School of Biology, Chemistry and Health Science, Manchester Metropolitan University, Manchester, United KingdomAbstract: Advanced atherogenesis is characterized by the presence of markers of enhanced prothrombotic capacity, attenuated fibrinolysis, and by clinical conditions associated with defective coagulation. Diabetes may be associated with enhanced lesion instability and atherosclerotic plaque rupture. Plaques obtained from 206 patients undergoing carotid endarterectomy were divided into diabetic (type 2 and nondiabetic and analyzed by Western blotting and immunohistochemistry to detect tissue factor (TF, metalloproteinases (MMP-2, -8, -9, and fibrin/fibrinogen related antigens, and in situ zymography to detect MMP activity. Plasma samples were quantified for TF procoagulant activity, C-reactive protein, fibrinogen and D-dimer. Diabetic and symptomatic patients with hypoechogenic plaques had increased plasma TF activity and D-dimer, compared with those with hyperechogenic plaques (p = 0.03, p = 0.007, respectively. Diabetic, symptomatic patients had higher plasma D-dimer levels than asymptomatic patients (p = 0.03. There was a significant correlation between intramural TF levels and D-dimer in diabetic patients with symptomatic disease (p = 0.001, r2 = 0.4. In diabetic patients, plasma fibrinogen levels were higher in patients with hypoechogenic plaques (p = 0.007. Diabetic patients with ulcerated plaques had higher plasma D-dimer and MMP-8 levels than those with fibrous plaques (p = 0.02, p = 0.01, respectively. This data suggests that currently available circulating markers may be clinically useful to select

  19. Impact of P and Sr on solidification sequence and morphology of hypoeutectic Al–Si alloys: Combined thermodynamic computation and phase-field simulation

    International Nuclear Information System (INIS)

    Eiken, Janin; Apel, Markus; Liang, Song-Mao; Schmid-Fetzer, Rainer

    2015-01-01

    Even small amounts of Phosphorus and Strontium strongly affect the microstructure of hypoeutectic Al–Si alloys. P is an unavoidable trace element in commercial Al-alloys which causes formation of AlP particles as potent nucleation sites for eutectic (Si). Sr, in contrast, is purposely added to modify the morphology of eutectic (Si) towards fine coral-like fibers. It is hypothesized that Sr does not only alter the growth kinetics of (Si), but additionally prevents detrimental (Si) nucleation due to neutralization of AlP particles by Al 2 Si 2 Sr formation. This presumes that both AlP and Al 2 Si 2 Sr precipitate prior to (Si). Using a newly assessed thermodynamic database for the Al–Si–Sr–P system, critical P and Sr thresholds for pre-silicon formation of AlP and Al 2 Si 2 Sr were evaluated and mapped under equilibrium and Scheil conditions. The competitive precipitation of AlP, Al 2 Si 2 Sr and (Si) and its impact on the evolution of the eutectic morphology was further studied by 3D phase-field simulations. Effective anisotropy functions for the (Si) interface mobility considered Sr-induced internal twinning. Depending on whether subcritical or supercritical P and Sr contents were selected, either a fine lamellar structure, a coarse flaky structure, or the targeted fine fibrous eutectic structure was reproduced

  20. Retroviral RNA Dimerization: From Structure to Functions

    Directory of Open Access Journals (Sweden)

    Noé Dubois

    2018-03-01

    Full Text Available The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…, the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.

  1. Dissociation in mediation

    Directory of Open Access Journals (Sweden)

    Daniela Muraru

    2008-01-01

    Full Text Available This paper approaches several texts that are part of the so-called discourse of mediation, adopting a pragma-dialectical perspective of the theory of dissociation. It is an attempt to identify the uses of dissociative patterns, with special emphasis on the indicators of dissociation. The paper investigates the various uses of the concept of dissociation as a discursive technique in the argumentation on the different aspects that are involved in international conflict, such as the discussion of the notion of peace. The purpose is to identify the role of dissociation, as a device strategically used by the mediator to help the parties minimize the disagreement space, and come to a conflict resolution.

  2. Statistical transmutation in doped quantum dimer models.

    Science.gov (United States)

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  3. Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol

    Science.gov (United States)

    Guan, Huijuan; Chao, Cong; Kong, Weixiao; Hu, Zonggao; Zhao, Yafei; Yuan, Siguo; Zhang, Bing

    2017-06-01

    In this work, the mesoporous SiO2 nanofibers from pyrolyzing precursor of electrospun nanofibers were employed as support to immobilize PtNi nanocatalyst (PtNi/SiO2 nanofibers). AFM, XRD, SEM, TEM, XPS, ICP-AES and N2 adsorption/desorption analysis were applied to systematically investigate the morphology and microstructure of as-prepared products. Results showed that PtNi alloy nanoparticles with average diameter of 18.7 nm were formed and could be homogeneously supported on the surface of porous SiO2 nanofiber, which further indicated that the SiO2 nanofibers with well-developed porous structure, large specific surface area, and roughened surface was a benefit for the support of PtNi alloy nanoparticles. The PtNi/SiO2 nanofibers catalyst exhibited an excellent catalytic activity towards the reduction of p-nitrophenol, and the catalyst's kinetic parameter ( k n = 434 × 10-3 mmol s-1 g-1) was much higher than those of Ni/SiO2 nanofibers (18 × 10-3 mmol s-1 g-1), Pt/SiO2 nanofibers (55 × 10-3 mmol s-1 g-1) and previous reported PtNi catalysts. The catalyst could be easily recycled from heterogeneous reaction system based on its good magnetic properties (the Ms value of 11.48 emu g-1). In addition, PtNi/SiO2 nanofibers also showed an excellent stability and the conversion rate of p-nitrophenol still could maintain 94.2% after the eighth using cycle.

  4. On the line intensity ratios of prominent Si II, Si III, and Si IV multiplets

    International Nuclear Information System (INIS)

    Djenize, S.; Sreckovic, A.; Bukvic, S.

    2010-01-01

    Line intensities of singly, doubly and triply ionized silicon (Si II, Si III, and Si IV, respectively) belonging to the prominent higher multiplets, are of interest in laboratory and astrophysical plasma diagnostics. We measured these line intensities in the emission spectra of pulsed helium discharge. The Si II line intensity ratios in the 3s3p 22 D-3s 2 4p 2 P o , 3s 2 3d 2 D-3s 2 4f 2 F o , and 3s 2 4p 2 P o -3s 2 4d 2 D transitions, the Si III line intensity ratios in the 3s3d 3 D-3s4p 3 P o , 3s4p 3 P o -3s4d 3 D, 3s4p 3 P o -3s5s 3 S, 3s4s 3 S-3s4p 3 P o , and 3s4f 3 F o -3s5g 3 G transitions, and the Si IV line intensity ratios in the 4p 2 P o -4d 2 D and 4p 2 P o -5s 2 S transitions were obtained in a helium plasma at an electron temperature of about 17,000 ± 2000 K. Line shapes were recorded using a spectrograph and an ICCD camera as a highly-sensitive detection system. The silicon atoms were evaporated from a Pyrex discharge tube designed for the purpose. They represent impurities in the optically thin helium plasma at the silicon ionic wavelengths investigated. The line intensity ratios obtained were compared with those available in the literature, and with values calculated on the basis of available transition probabilities. The experimental data corresponded well with line intensity ratios calculated using the transition probabilities obtained from a Multi Configuration Hartree-Fock approximation for Si III and Si IV spectra. We recommend corrections of some Si II transition probabilities.

  5. Strain mediated interaction of adatom dimers

    OpenAIRE

    Kappus, Wolfgang

    2013-01-01

    An earlier model for substrate strain mediated interactions between monomer adatoms is extended to the interaction of monomers with dimers and the interaction of dimers. While monomers (sitting on high symmetric sites) are supposed to create isotropic stress on the substrate, dimers would create anisotropic stress caused by stretching their bond. Resulting interactions are strongly angle dependent and also reflect the elastic anisotropy of the substrate. The applicability of a continuum elast...

  6. Fabrication and Mechanical Properties of SiCw(p/SiC-Si Composites by Liquid Si Infiltration using Pyrolysed Rice Husks and SiC Powders as Precursors

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2014-03-01

    Full Text Available Dense silicon carbide (SiC matrix composites with SiC whiskers and particles as reinforcement were prepared by infiltrating molten Si at 1550 °C into porous preforms composed of pyrolysed rice husks (RHs and extra added SiC powder in different ratios. The Vickers hardness of the composites showed an increase from 18.6 to 21.3 GPa when the amount of SiC added in the preforms was 20% (w/w, and then decreased to 17.3 GPa with the increase of SiC added in the preforms up to 80% (w/w. The values of flexural strength of the composites initially decreased when 20% (w/w SiC was added in the preform and then increased to 587 MPa when the SiC concentration reached 80% (w/w. The refinement of SiC particle sizes and the improvement of the microstructure in particle distribution of the composites due to the addition of external SiC played an effective role in improving the mechanical properties of the composites.

  7. Lifecourse social position and D-dimer; findings from the 1958 British birth cohort.

    Science.gov (United States)

    Tabassum, Faiza; Kumari, Meena; Rumley, Ann; Power, Chris; Strachan, David P; Lowe, Gordon

    2014-01-01

    The aim is to examine the association of lifecourse socioeconomic position (SEP) on circulating levels of D-dimer. Data from the 1958 British birth cohort were used, social class was determined at three stages of respondents' life: at birth, at 23 and at 42 years. A cumulative indicator score of SEP (CIS) was calculated ranging from 0 (always in the highest social class) to 9 (always in the lowest social class). In men and women, associations were observed between CIS and D-dimer (P<0.05). Thus, the respondents in more disadvantaged social classes had elevated levels of D-dimer compared to respondents in less disadvantaged social class. In multivariate analyses, the association of disadvantaged social position with D-dimer was largely explained by fibrinogen, C-reactive protein and von Willebrand Factor in women, and additionally by smoking, alcohol consumption and physical activity in men. Socioeconomic circumstances across the lifecourse at various stages also contribute independently to raised levels of D-dimer in middle age in women only. Risk exposure related to SEP accumulates across life and contributes to raised levels of D-dimer. The association of haemostatic markers and social differences in health may be mediated by inflammatory and other markers.

  8. Diffractive dissociation process π-p → π- (π-π+p) at 14 GeV/c

    International Nuclear Information System (INIS)

    Rosenfeld, C.

    1977-05-01

    An experiment in which a 14 GeV/c π - beam was incident on a hydrogen bubble chamber is described. Fast forward scattered pions traversed a wire spark chamber spectrometer downstream of the bubble chamber. Events identified as inelastic by the spectrometer induced a trigger of the bubble chamber camera. The film produced contained a heavy enrichment of events of proton diffractive dissociation. A sample from this exposure of 4400 events of the reaction π - p → π - N* → π - π - π + p was studied. In the two body mass spectra the only noteworthy feature is the Δ ++ (1230). In the N* mass spectrum one observes enhancements at 1.49 GeV, 1.72 GeV, and 2.0 GeV. For the prominent 1.72 GeV feature estimates are given of the width and cross section as well as evidence favoring a substantial branching fraction to πΔ(1230). We looked for production of N*(1470) followed by decay to πΔ(1230) with negative result. An examination of the Δ ++ (1230) decay distribution suggests that the Deck mechanism is the major contributor to the πΔ subchannel. The s-channel and t-channel helicity conservation rules were tested. One observed violent conflict with sCHC and mild conflict with tCHC. One also tested for simultaneous validity of tCHC and the Gribov--Morrison rule and found no significant contradiction with this dual hypothesis

  9. Investigation of high mobility pseudomorphic SiGe p-channels in Si MOSFETS at low and high electric fields

    International Nuclear Information System (INIS)

    Palmer, Martin John

    2001-01-01

    Silicon Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) for high speed, high current applications are rapidly approaching the physical and financial limits of the technology. This opens opportunities for the incorporation of materials with intrinsically better transport characteristics. An alloy of silicon and germanium is one such material that is gaining much recognition as the active component of MOSFETs and as the secondary structures (such as the gate electrode). This work examines a batch of buried channel Si 0.64 Ge 0.36 p-MOSFETs, with a minimum effective length of 0.35 μm, under different bias conditions and at different temperatures. High current and transconductance enhancements are apparent at long gate lengths. The carrier mobility is up to a factor of 2.5 times that of silicon at room temperature and 7.5 times at 4 K. A clear trend of decreasing peak mobility with decreasing silicon cap thickness is evident. Simulations show that scattering caused by the roughness of the SiO 2 /Si interface dominates, rather than alloy scattering or Si/SiGe roughness, even for a buried channel. This scattering increases with the proximity of the carriers to the interface. An increase of interface trap density with decreasing cap thickness, demonstrates that segregated germanium exists some distance into the cap and interferes with the oxidation process. This will increase scattering through increased SiO 2 /Si roughness and increased trapped charge. The short channel, high field results are comparable or slightly worse than those of silicon due to lower saturation drift velocity. However, fitting to a drift-diffusion model shows an apparent increase in saturation velocity for short channels, especially at low temperatures. This effect correlates with the low field mobility and is greater for devices containing SiGe. This is an indication of velocity overshoot, which may enhance the performance of SiGe MOSFETs at deep submicron gate lengths. (author)

  10. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    Science.gov (United States)

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  11. Ab Initio Quantum Mechanical Description of Noncovalent Interactions at Its Limits: Approaching the Experimental Dissociation Energy of the HF Dimer

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Hobza, Pavel

    2014-01-01

    Roč. 10, č. 8 (2014), s. 3066-3073 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : correlated molecular calculations * gaussian basis set * water dimer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.498, year: 2014

  12. STM investigation of epitaxial Si growth for the fabrication of a Si-based quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars; Hallam, Toby; Curson, Neil J.; Simmons, Michelle Y.; Clark, Robert G

    2003-05-15

    We investigate the morphology of epitaxial Si layers grown on clean and on hydrogen terminated Si(0 0 1) to explore the growth strategy for the fabrication of a Si-based quantum computer. We use molecular beam epitaxy to deposit 5 monolayers of silicon at a temperature of 250 deg. C and scanning tunnelling microscopy to image the surface at room temperature after growth and after various rapid annealing steps in the temperature range of 350-600 deg. C. The epitaxial layer grown on the hydrogenated surface shows a significantly higher surface roughness due to a lower mobility of silicon surface atoms in the presence of hydrogen. Annealing at temperatures {>=}550 deg. C reduces the roughness of both epitaxial layers to the value of a clean silicon surface. However, the missing dimer defect density of the epitaxial layer grown on the hydrogenated surface remains higher by a factor of two compared to the layer grown on clean Si(0 0 1). Our results suggest a quantum computer growth strategy in which the hydrogen resist layer is desorbed before the epitaxial silicon layer is grown at low temperature to encapsulate phosphorus quantum bits.

  13. Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Butvinová, B., E-mail: beata.butvinova@savba.sk [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Butvin, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Brzózka, K. [Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom (Poland); Kuzminski, M. [Institute of Physics PAS, Al. Lotnikow 36/42, 02-668 Warsaw (Poland); Maťko, I.; Švec Sr, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Chromčíková, M. [Institute of Inorg. Chem. SAS, Centrum VILA, Študentská 2, 911 50 Trenčín (Slovakia)

    2017-02-15

    Si-poor Fe{sub 74}Nb{sub 3}Cu{sub 1}Si{sub 8}B{sub 14−x}P{sub x}, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties. - Highlights: • Ar anneal of low-Si FeNbCuBSi ribbons produce surfaces that stress ribbon interior. • The stress comes mainly from preferred crystallization of surfaces. • Partial substitution of B by P changes annealing evolution of surface properties. • Without P, more crystalline surfaces significantly reduce ribbon's elasticity. • P suppresses surface crystallinity, promotes oxides and reduces mutual stress.

  14. Plasma D-dimer concentration in patients with systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Montagnana Martina

    2006-01-01

    Full Text Available Abstract Background Systemic sclerosis (SSc is an autoimmune disorder of the connective tissue characterized by widespread vascular lesions and fibrosis. Little is known so far on the activation of the hemostatic and fibrinolytic systems in SSc, and most preliminary evidences are discordant. Methods To verify whether SSc patients might display a prothrombotic condition, plasma D-dimer was assessed in 28 consecutive SSc patients and in 33 control subjects, matched for age, sex and environmental habit. Results and discussion When compared to healthy controls, geometric mean and 95% confidence interval (IC95% of plasma D-dimer were significantly increased in SSc patients (362 ng/mL, IC 95%: 361–363 ng/mL vs 229 ng/mL, IC95%: 228–231 ng/mL, p = 0.005. After stratifying SSc patients according to disease subset, no significant differences were observed between those with limited cutaneous pattern and controls, whereas patients with diffuse cutaneous pattern displayed substantially increased values. No correlation was found between plasma D-dimer concentration and age, sex, autoantibody pattern, serum creatinine, erythrosedimentation rate, nailfold videocapillaroscopic pattern and pulmonary involvement. Conclusion We demonstrated that SSc patients with diffuse subset are characterized by increased plasma D-dimer values, reflecting a potential activation of both the hemostatic and fibrinolytic cascades, which might finally predispose these patients to thrombotic complications.

  15. Ceramic matrix micro-composites prepared by P-Rcvd within the (Ti-Si-B-C) system

    International Nuclear Information System (INIS)

    Jacques, Sylvain

    2014-01-01

    Nano-scale carbide multilayered inter-phases were deposited within the (Ti-Si-B-C) system by pressure-Pulsed Reactive Chemical Vapor Deposition (P-RCVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The Reactive method, in which the titanium-containing layer growth involves the consumption of the pre-deposited Si-B-C sublayer, allowed TiC- and TiB 2 -based films to be obtained with a porous multilayer microstructure as a result of the Kirkendall effect. A first difficulty relied on the protection of the fiber surface which was very sensitive to chemical attack by P-RCVD. This difficulty could be circumvented through a first deposited SiC sub-layer thick enough to protect the surface of the fiber. But, because the porosity volume fraction was still not high enough, the role of mechanical fuse of these pyrocarbon-free inter-phases could not be evidenced from the micro-composite tensile curves, which remained fully linear up to the failure. Finally, the P-RCVD method was applied to the matrix processing itself. Micro-composites, this time with a pyrocarbon interphase but also with new matrix materials such as Ti 3 SiC 2 , were prepared and characterized. (author)

  16. Models for calculation of dissociation energies of homonuclear diatomic molecules

    International Nuclear Information System (INIS)

    Brewer, L.; Winn, J.S.

    1979-08-01

    The variation of known dissociation energies of the transition metal diatomics across the Periodic Table is rather irregular like the bulk sublimation enthalpy, suggesting that the valence-bond model for bulk metallic systems might be applicable to the gaseous diatomic molecules and the various intermediate clusters. Available dissociation energies were converted to valence-state bonding energies considering various degrees of promotion to optimize the bonding. The degree of promotion of electrons to increase the number of bonding electrons is smaller than for the bulk, but the trends in bonding energy parallel the behavior found for the bulk metals. Thus using the established trends in bonding energies for the bulk elements, it was possible to calculate all unknown dissociation energies to provide a complete table of dissociation energies for all M 2 molecules from H 2 to Lr 2 . For solids such as Mg, Al, Si and most of the transition metals, large promotion energies are offset by strong bonding between the valence state atoms. The main question is whether bonding in the diatomics is adequate to sustain extensive promotion. The most extreme example for which a considerable difference would be expected between the bulk and the diatomics would be that of the Group IIA and IIB metals. The first section of this paper which deals with the alkaline earths Mg and Ca demonstrates a significant influence of the excited valence state even for these elements. The next section then expands the treatment to transition metals

  17. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH

    Science.gov (United States)

    Zhang, Xiaoxian; Myers, John N.; Huang, Huai; Shobha, Hosadurga; Chen, Zhan; Grill, Alfred

    2016-02-01

    PECVD deposited porous SiCOH with ultralow dielectric constant has been successfully integrated as the insulator in advanced interconnects to decrease the RC delay. The effects of NH3 plasma treatment and the effectiveness of the dielectric repair on molecular structures at the surface and buried interface of a pSiCOH film deposited on top of a SiCNH film on a Si wafer were fully characterized using sum frequency generation vibrational spectroscopy (SFG), supplemented by X-ray photoelectron spectroscopy. After exposure to NH3 plasma for 18 s, about 40% of the methyl groups were removed from the pSiCOH surface, and the average orientation of surface methyl groups tilted more towards the surface. The repair method used here effectively repaired the molecular structures at the pSiCOH surface but did not totally recover the entire plasma-damaged layer. Additionally, simulated SFG spectra with various average orientations of methyl groups at the SiCNH/pSiCOH buried interface were compared with the experimental SFG spectra collected using three different laser input angles to determine the molecular structural information at the SiCNH/pSiCOH buried interface after NH3 plasma treatment and repair. The molecular structures including the coverage and the average orientation of methyl groups at the buried interface were found to be unchanged by NH3 plasma treatment and repair.

  18. Selective amine catalysed steroidal dimerization

    Indian Academy of Sciences (India)

    of cholesterol is the formation of a green colour in concentrated sulphuric acid, and this was shown to be due to a polyenyl steroidal dimer carbocation.7–9 Many dimeric and oligomeric steroids exhibit interesting micellular, detergent and liquid crystal behaviour.10,11. Most of the steroidal dimmers are also well-known.

  19. The co-occurrence of PTSD and dissociation: differentiating severe PTSD from dissociative-PTSD.

    Science.gov (United States)

    Armour, Cherie; Karstoft, Karen-Inge; Richardson, J Don

    2014-08-01

    A dissociative-posttraumatic stress disorder (PTSD) subtype has been included in the DSM-5. However, it is not yet clear whether certain socio-demographic characteristics or psychological/clinical constructs such as comorbid psychopathology differentiate between severe PTSD and dissociative-PTSD. The current study investigated the existence of a dissociative-PTSD subtype and explored whether a number of trauma and clinical covariates could differentiate between severe PTSD alone and dissociative-PTSD. The current study utilized a sample of 432 treatment seeking Canadian military veterans. Participants were assessed with the Clinician Administered PTSD Scale (CAPS) and self-report measures of traumatic life events, depression, and anxiety. CAPS severity scores were created reflecting the sum of the frequency and intensity items from each of the 17 PTSD and 3 dissociation items. The CAPS severity scores were used as indicators in a latent profile analysis (LPA) to investigate the existence of a dissociative-PTSD subtype. Subsequently, several covariates were added to the model to explore differences between severe PTSD alone and dissociative-PTSD. The LPA identified five classes: one of which constituted a severe PTSD group (30.5 %), and one of which constituted a dissociative-PTSD group (13.7 %). None of the included, demographic, trauma, or clinical covariates were significantly predictive of membership in the dissociative-PTSD group compared to the severe PTSD group. In conclusion, a significant proportion of individuals report high levels of dissociation alongside their PTSD, which constitutes a dissociative-PTSD subtype. Further investigation is needed to identify which factors may increase or decrease the likelihood of membership in a dissociative-PTSD subtype group compared to a severe PTSD only group.

  20. Effect of p-Layer and i-Layer Properties on the Electrical Behaviour of Advanced a-Si:H/a-SiGe:H Thin Film Solar Cell from Numerical Modeling Prospect

    Directory of Open Access Journals (Sweden)

    Peyman Jelodarian

    2012-01-01

    Full Text Available The effect of p-layer and i-layer characteristics such as thickness and doping concentration on the electrical behaviors of the a-Si:H/a-SiGe:H thin film heterostructure solar cells such as electric field, photogeneration rate, and recombination rate through the cell is investigated. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. In particular, current density of the cell can be enhanced without deteriorating its open-circuit voltage. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6% compared with the traditional a-Si:H solar cell. This work presents a novel numerical evaluation and optimization of amorphous silicon double-junction (a-Si:H/a-SiGe:H thin film solar cells and focuses on optimization of a-SiGe:H midgap single-junction solar cell based on the optimization of the doping concentration of the p-layer, thicknesses of the p-layer and i-layer, and Ge content in the film. Maximum efficiency of 23.5%, with short-circuit current density of 267 A/m2 and open-circuit voltage of 1.13 V for double-junction solar cell has been achieved.

  1. Effects of polyamines on the DNA-reactive properties of dimeric mithramycin complexed with cobalt(II): implications for anticancer therapy.

    Science.gov (United States)

    Hou, Ming-Hon; Lu, Wen-Je; Huang, Chun-Yu; Fan, Ruey-Jane; Yuann, Jeu-Ming P

    2009-06-09

    Few studies have examined the effects of polyamines on the action of DNA-binding anticancer drugs. Here, a Co(II)-mediated dimeric mithramycin (Mith) complex, (Mith)(2)-Co(II), was shown to be resistant to polyamine competition toward the divalent metal ion when compared to the Fe(II)-mediated drug complexes. Surface plasmon resonance experiments demonstrated that polyamines interfered with the binding capacity and association rates of (Mith)(2)-Co(II) binding to DNA duplexes, while the dissociation rates were not affected. Although (Mith)(2)-Co(II) exhibited the highest oxidative activity under physiological conditions (pH 7.3 and 37 degrees C), polyamines (spermine in particular) inhibited the DNA cleavage activity of the (Mith)(2)-Co(II) in a concentration-dependent manner. Depletion of intracellular polyamines by methylglyoxal bis(guanylhydrazone) (MGBG) enhanced the sensitivity of A549 lung cancer cells to (Mith)(2)-Co(II), most likely due to the decreased intracellular effect of polyamines on the action of (Mith)(2)-Co(II). Our study suggests a novel method for enhancing the anticancer activity of DNA-binding metalloantibiotics through polyamine depletion.

  2. MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections

    Science.gov (United States)

    Rzagalinski, Ignacy; Hainz, Nadine; Meier, Carola; Tschernig, Thomas; Volmer, Dietrich A.

    2018-02-01

    Bile acids (BAs) play two vital roles in living organisms, as they are involved in (1) the secretion of cholesterol from liver, and (2) the lipid digestion/absorption in the intestine. Abnormal bile acid synthesis or secretion can lead to severe liver disorders. Even though there is extensive literature on the mass spectrometric determination of BAs in biofluids and tissue homogenates, there are no reports on the spatial distribution in the biliary network of the liver. Here, we demonstrate the application of high mass resolution/mass accuracy matrix-assisted laser desorption/ionization (MALDI)-Fourier-transform ion cyclotron resonance (FTICR) to MS imaging (MSI) of BAs at high spatial resolutions (pixel size, 25 μm). The results show chemical heterogeneity of the mouse liver sections with a number of branching biliary and blood ducts. In addition to ion signals from deprotonation of the BA molecules, MALDI-MSI generated several further intense signals at larger m/z for the BAs. These signals were spatially co-localized with the deprotonated molecules and easily misinterpreted as additional products of BA biotransformations. In-depth analysis of accurate mass shifts and additional electrospray ionization and MALDI-FTICR experiments, however, confirmed them as proton-bound dimers. Interestingly, dimers of bile acids, but also unusual mixed dimers of different taurine-conjugated bile acids and free taurine, were identified. Since formation of these complexes will negatively influence signal intensities of the desired [M - H]- ions and significantly complicate mass spectral interpretations, two simple broadband techniques were proposed for non-selective dissociation of dimers that lead to increased signals for the deprotonated BAs. [Figure not available: see fulltext.

  3. InGaP solar cell on Ge-on-Si virtual substrate for novel solar power conversion

    Science.gov (United States)

    Kim, T. W.; Albert, B. R.; Kimerling, L. C.; Michel, J.

    2018-02-01

    InGaP single-junction solar cells are grown on lattice-matched Ge-on-Si virtual substrates using metal-organic chemical vapor deposition. Optoelectronic simulation results indicate that the optimal collection length for InGaP single-junction solar cells with a carrier lifetime range of 2-5 ns is wider than approximately 1 μm. Electron beam-induced current measurements reveal that the threading dislocation density (TDD) of InGaP solar cells fabricated on Ge and Ge-on-Si substrates is in the range of 104-3 × 107 cm-2. We demonstrate that the open circuit voltage (Voc) of InGaP solar cells is not significantly influenced by TDDs less than 2 × 106 cm-2. Fabricated InGaP solar cells grown on a Ge-on-Si virtual substrate and a Ge substrate exhibit Voc in the range of 0.96 to 1.43 V under an equivalent illumination in the range of ˜0.5 Sun. The estimated efficiency of the InGaP solar cell fabricated on the Ge-on-Si virtual substrate (Ge substrate) at room temperature for the limited incident spectrum spanning the photon energy range of 1.9-2.4 eV varies from 16.6% to 34.3%.

  4. Data on dimer formation between importin α subtypes

    Directory of Open Access Journals (Sweden)

    Yoichi Miyamoto

    2016-06-01

    Full Text Available This article describes data related to the research article titled “Functional characterization of importin α8 as a classical nuclear localization signal receptor” [1]. A GST pull-down assay showed that both importin α1 and α8, which are classical nuclear localization signal (cNLS receptors, can form a dimer with importin α6, α7, or α8. Importin α8 has higher dimer-forming ability than importin α1. In addition, our data show that either importin α1 or importin α8 can form a heterodimer with importin α3, which exists in a preformed complex with cNLS substrates such as the conventional SV40TNLS or the p53 protein, resulting in the release of the cNLS substrates from importin α3.

  5. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures.

    Science.gov (United States)

    Bishop, Kevin P; Roy, Pierre-Nicholas

    2018-03-14

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  6. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  7. Temperature dependence of dark current of pSi-n(Si2)1-x(CdS)x structures

    International Nuclear Information System (INIS)

    Usmonov, Sh.N.

    2007-01-01

    Full text: The research of influence of isovalent impurity on electric and photo-electric properties of semiconductors where formative with semiconductor continuous solid solutions (CSS) of substitution presents both the fundamental and the applied application interest at the area of material science and photoelectrical properties of semiconductors. In the given work results of experimental researches (Si 2 ) 1-x (CdS) x epitaxial layers grown on c-Si substrates by a method liquid phase epitaxy are presented. The grown layers had thickness and ∼ 10 micron, n-type of conductivity with specific resistance 0,016 Ohm sm. Dependences of the dark current of pSi-n(Si 2 ) 1-x (CdS) x structures have been investigated at various values of a bias voltage. In experiment it was observed anomaly dependence of current. The current with arising of temperature begun monotonously aroused and reached some minimal value at temperature 100 C and then again starts to arise up to temperature 200 C. Arising of dark current is caused of the band-to-band thermal generation of electron-hole pairs. The voltage drop at the temperature 100 C is caused by the recharging of impurity atoms CdS. It is known, that width of the forbidden band of CdS Eg,CdS=2,48 eV more than Eg,Si=1,1 eV. Covalent bond of atoms CdS is stronger than Si-Si bond. However, when the molecule of CdS replaces two atoms of silicon in tetrahedral lattice of silicon the bonds of Cd-S become weak under influence of surrounding atoms of silicon. It causes to occurrence impurity level CdS located on Ei=1,2 eV below a valence band top of silicon. The generation of electron-hole pairs with participation of CdS impurities at the 100 C temperature is occurred under action thermal phonons. However, holes formed on impurity levels are localized and they will be recombination centers. Therefore drop of the dark current caused by dispersion of carriers on impurity centers. (authors)

  8. A compilation of information on the {sup 31}P(p,{alpha}){sup 28}Si reaction and properties of excited levels in the compound nucleus {sup 32}S

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.E.; Smith, D.L. [Argonne National Lab., IL (United States). Technology Development Div.

    1997-11-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 31}P(p,{alpha}){sup 28}Si reaction. Attention is paid here to resonance states in the compound-nuclear system {sup 32}S formed by {sup 31}P + p, with emphasis on the alpha-particle decay channels, {sup 28}Si + {alpha} which populate specific levels in {sup 28}Si. The energy region near the proton separation energy for {sup 32}S is especially important in this context for applications in nuclear astrophysics. Properties of the excited states in {sup 28}Si are also considered. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  9. Human cystatin C forms an inactive dimer during intracellular trafficking in transfected CHO cells

    DEFF Research Database (Denmark)

    Merz, G S; Benedikz, Eirikur; Schwenk, V

    1997-01-01

    To define the cellular processing of human cystatin C as well as to lay the groundwork for investigating its contribution to lcelandic Hereditary Cerebral Hemorrhage with Amyloidosis (HCHWA-I), we have characterized the trafficking, secretion, and extracellular fate of human cystatin C...... that the cystatin C dimer, formed during intracellular trafficking, is converted to monomer at or before secretion. Cells in which exit from the endoplasmic reticulum (ER) was blocked with brefeldin A contained the 33 kDa species, indicating that cystatin C dimerization occurs in the ER. After removal of brefeldin......, presumably as a consequence of the low pH of late endosome/lysosomes. As a dimer, cystatin C would be prevented from inhibiting the lysosomal cysteine proteases. These results reveal a novel mechanism, transient dimerization, by which cystatin C is inactivated during the early part of its trafficking through...

  10. Dysregulation in cortical reactivity to emotional faces in PTSD patients with high dissociation symptoms

    Directory of Open Access Journals (Sweden)

    Aleksandra Klimova

    2013-09-01

    Full Text Available Background: Predominant dissociation in posttraumatic stress disorder (PTSD is characterized by restricted affective responses to positive stimuli. To date, no studies have examined neural responses to a range of emotional expressions in PTSD with high dissociative symptoms. Objective: This study tested the hypothesis that PTSD patients with high dissociative symptoms will display increased event-related potential (ERP amplitudes in early components (N1, P1 to threatening faces (angry, fearful, and reduced later ERP amplitudes (Vertex Positive Potential (VPP, P3 to happy faces compared to PTSD patients with low dissociative symptoms. Methods: Thirty-nine civilians with PTSD were classified as high dissociative (n=16 or low dissociative (n=23 according to their responses on the Clinician Administered Dissociative States Scale. ERPs were recorded, whilst participants viewed emotional (happy, angry, fear and neutral facial expressions in a passive viewing task. Results: High dissociative PTSD patients displayed significantly increased N120 amplitude to the majority of facial expressions (neutral, happy, and angry compared to low dissociative PTSD patients under conscious and preconscious conditions. The high dissociative PTSD group had significantly reduced VPP amplitude to happy faces in the conscious condition. Conclusion: High dissociative PTSD patients displayed increased early (preconscious cortical responses to emotional stimuli, and specific reductions to happy facial expressions in later (conscious, face-specific components compared to low dissociative PTSD patients. Dissociation in PTSD may act to increase initial pre-attentive processing of affective stimuli, and specifically reduce cortical reactivity to happy faces when consciously processing these stimuli.

  11. Critical superheats upon boiling of dissociating liquids

    International Nuclear Information System (INIS)

    Kolykhan, L.I.; Solov'ev, V.N.

    1985-01-01

    The experimental data on critical superheats of dissociating liquids, i.e. nitrogen tetroxide and nitrine are presented (nitrine is the solution of nitrogen oxide in nitrogen tetroxide). The experiments with boiling N 2 O 4 have been carried out in the pressure range 0.1-3.0 MPa and with boiling nitrine within the pressure range 0.2-9.0 MPa. The experiments have revealed an anomalous dependence of critical superheats on pressure P, thus at P>=2.5 MPa the critical superheat values exceed the limiting ones, and at P=4.5 MPa this excess amounts to more than 16 K, essentially exceeding the errors of the experiments. The results for N 2 O 4 critical superheats agree with experimental data of other authors. Complex phenomena observed upon boiling of dissociating liquids require further theoretical and experimental studies

  12. Fabrication of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) Heterostructures and Study of Current-Voltage, Capacitance-Voltage and Room-Temperature Photoluminescence

    Science.gov (United States)

    Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.

    2018-01-01

    Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO)