WorldWideScience

Sample records for si substrates irradiated

  1. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  2. Porous nC-Si/SiOx nanostructured layer on Si substrate with tunable photoluminescent properties fabricated by direct, precursor-free microplasma irradiation in air

    Science.gov (United States)

    Wang, Tao; Hu, Mingshan; Yang, Bin; Wang, Xiaolin; Liu, Jingquan

    2018-03-01

    Porous nC-Si/SiOx photoluminescent nanostructured layer is fabricated by direct, precursor-free microplasma irradiation on Si substrate in air. It is confirmed that the deposited layer has porous and cluster-like structures by scanning electron microscopy (SEM) and profile scanning. Fourier transform infrared transmission (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS) results indicate the produced layer is actually composed of nanocrystalline silicon (nC-Si) embedded in SiOx matrix. Transmission electron microscopy (TEM) and Raman results show the mean particle size of nC-Si is mainly between 2 and 4 nm and the highest crystalline volume fraction reaches 86.9%. The photoluminescence (PL) measurement of nC-Si/SiOx layer exhibited a broad band centered at 1.7-1.9 eV, ranging from 1.2-2.4 eV, and could be tuned by varying the applied voltage. The synthetical mechanisms are discussed to explain the PL properties of the layers. We propose that the energetic ions bombing induced by high compressed electric field near the Si surface is the main reason for porous nC-Si/SiOx formation. Maskless deposition of the line pattern of nC-Si/SiOx layer was also successfully fabricated. This simple, maskless, vacuum-free and precursor-free technique could be used in various potential optoelectronics and biological applications in the future.

  3. Formation of hexagonal silicon carbide by high energy ion beam irradiation on Si (1 0 0) substrate

    International Nuclear Information System (INIS)

    Bhuyan, H; Favre, M; Valderrama, E; Avaria, G; Chuaqui, H; Mitchell, I; Wyndham, E; Saavedra, R; Paulraj, M

    2007-01-01

    We report the investigation of high energy ion beam irradiation on Si (1 0 0) substrates at room temperature using a low energy plasma focus (PF) device operating in methane gas. The unexposed and ion exposed substrates were characterized by x-ray diffraction, scanning electron microscopy (SEM), photothermal beam deflection, energy-dispersive x-ray analysis and atomic force microscopy (AFM) and the results are reported. The interaction of the pulsed PF ion beams, with characteristic energy in the 60-450 keV range, with the Si surface, results in the formation of a surface layer of hexagonal silicon carbide. The SEM and AFM analyses indicate clear step bunching on the silicon carbide surface with an average step height of 50 nm and a terrace width of 800 nm

  4. Effects of Ga ion irradiation on growth of GaN on SiN substrates by electron cyclotron resonance-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, J. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan) and Center for Quantum Science and Technology under Extreme Conditions, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan) and CREST-JST, Kawaguchi Center Building, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan)]. E-mail: yanagisawa@ee.es.osaka-u.ac.jp; Matsumoto, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Fukuyama, T. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Shiraishi, Y. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Yodo, T. [Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585 (Japan); Akasaka, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan)

    2007-04-15

    The possibility of forming GaN layers on Ga-implanted SiN surfaces was investigated using electron cyclotron resonance-assisted molecular beam epitaxy (MBE). It is found that the GaN layer initially formed on the SiN surface by Ga implantation at room temperature was amorphous-like, but become to polycrystalline after annealing at 650 deg. C for 3 min in vacuum. After the MBE growth of GaN, a grain structure of h-GaN was observed on the Ga-implanted SiN surface. The crystallinity of the GaN grown was, however, decreased upon increasing the Ga ion fluence on the SiN surface, which might be due, at least partly, to the formation of Ga clusters by the excess Ga implanted. The present results indicate the possibility of forming patterned GaN layers on SiN by selective Ga implantation on the SiN substrate, using a focused ion beam.

  5. Mechanics of patterned helical Si springs on Si substrate.

    Science.gov (United States)

    Liu, D L; Ye, D X; Khan, F; Tang, F; Lim, B K; Picu, R C; Wang, G C; Lu, T M

    2003-12-01

    The elastic response, including the spring constant, of individual Si helical-shape submicron springs, was measured using a tip-cantilever assembly attached to a conventional atomic force microscope. The isolated, four-turn Si springs were fabricated using oblique angle deposition with substrate rotation, also known as the glancing angle deposition, on a templated Si substrate. The response of the structures was modeled using finite elements, and it was shown that the conventional formulae for the spring constant required modifications before they could be used for the loading scheme used in the present experiment.

  6. SHI induced irradiation effect on Mo/Si interface

    International Nuclear Information System (INIS)

    Agarwal, Garima; Agarwal, Shivani; Jain, Rajkumar; Lal, Chhagan; Jain, I.P.; Kabiraj, D.; Pandey, Akhilesh

    2006-01-01

    Present parametric study investigates the characteristics of SHI induced mixed molybdenum silicide film with various ion fluences. The deposition of molybdenum thin films onto the Silicon substrate was performed using e-beam evaporation, while the heavy Au ion irradiation with energy 120 MeV was subsequently applied to form molybdenum silicide. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) for the identification of phase formation at the interface. Formation of t-Mo 5 Si 3 mixed molybdenum silicide was observed on increasing the ion irradiation fluences. (author)

  7. HgCdTe photovoltaic detectors on Si substrates

    International Nuclear Information System (INIS)

    Zanio, K.R.; Bean, R.C.

    1988-01-01

    HgCdTe photovoltaic detectors have been fabricated on Si substrates through intermediate CdTe/GaAs layers. Encapsulation of the GaAs between the CdTe and Si prevents unintentional doping of the HgCdTe by Ga and As. Uniform epitaxial GaAs is grown on three inch diameter Si substrates. Detectors on such large area Si substrates will offer hybrid focal plane arrays whose dimensions are not limited by the difference between the coefficients of thermal expansion of the Si signal processor and the substrate for the HgCdTe detector array. The growth of HgCdTe detectors on the Si signal processors for monolithic focal plane arrays is also considered. 40 references

  8. Low dose irradiation performance of SiC interphase SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Lowden, R.A.; Strizak, J.; More, K.L.; Eatherly, W.S.; Bailey, J.; Williams, A.M.; Osborne, M.C.; Shinavski, R.J.

    1998-01-01

    Reduced oxygen Hi-Nicalon fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either 'porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1 x 10 25 n m -2 (E>0.1 MeV) in the temperature range of 260 to 1060 C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber. (orig.)

  9. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    International Nuclear Information System (INIS)

    Kaur, Jaskiran; Kaur, Harmanmeet; Singh, Surinder; Kanjilal, Dinakar; Chakarvarti, Shiv Kumar

    2014-01-01

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot

  10. Mixing of Cr and Si atoms induced by noble gas ions irradiation of Cr/Si bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tobbeche, S., E-mail: said_tobbeche@yahoo.com [Faculte des Sciences, Universite El-Hadj Lakhdar, Batna 05000 (Algeria); Boukhari, A. [Faculte des Sciences, Universite El-Hadj Lakhdar, Batna 05000 (Algeria); Khalfaoui, R. [Faculte des Sciences, Universite M. Bougara, Boumerdes 35000 (Algeria); Amokrane, A. [Faculte de Physique, USTHB, B.P. 32 El-Alia, Bab-Ezzouar 16111 (Algeria); Ecole Nationale Preparatoire aux Etudes d' Ingeniorat, Route Nationale, Rouiba (Algeria); Benazzouz, C.; Guittoum, A. [Centre de Recherche Nucleaire d' Alger, 02, Boulevard Frantz Fanon, B.P. 399 Alger-Gare (Algeria)

    2011-12-15

    Cr/Si bilayers were irradiated at room temperature with 120 keV Ar, 140 keV Kr and 350 keV Xe ions to fluences ranging from 10{sup 15} to 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2}. The thickness of Cr layer evaporated on Si substrate was about 400 A. Rutherford backscattering spectrometry (RBS) was used to investigate the atomic mixing induced at the Cr-Si interface as function of the incident ion mass and fluence. We observed that for the samples irradiated with Ar ions, RBS yields from both Cr layer and Si substrate are the same as before the irradiation. There is no mixing of Cr and Si atoms, even at the fluence of 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2}. For the samples irradiated with Kr ions, a slight broadening of the Cr and Si interfacial edges was produced from the fluence of 5 Multiplication-Sign 10{sup 15} ions/cm{sup 2}. The broadening of the Cr and Si interfacial edges is more pronounced with Xe ions particularly to the fluence of 10{sup 16} ions/cm{sup 2}. The interface broadening was found to depend linearly on the ion fluence and suggests that the mixing is like a diffusion controlled process. The experimental mixing rates were determined and compared with values predicted by ballistic and thermal spike models. Our experimental data were well reproduced by the thermal spikes model.

  11. Visible light irradiation-induced conductivity change for CVD-grown graphene on different substrates

    Science.gov (United States)

    Li, Xiangdi; Zhang, Peng; Liu, Xianming; Cao, Xueying; Lei, Xiaohua; Chen, Weimin

    2017-08-01

    This research examines the influence of lighting on the electrical properties of graphene on different substrates, including PET, glass and SiO2, which are the most widely used substrate materials representing the flexible and rigid applications. The graphene sheets were prepared by CVD and subsequently transferred to three substrates. The resistances of graphene under periodic visible light irradiation were measured inside a vacuum chamber. Results show that the resistances for graphene samples on all substrates increased slowly under lighting, while decreased slowly as well after the light was switched off. The change degree and speed were different for graphene on different substrates, which were influenced as well by the illumination time, environment atmosphere and irradiation power. Graphene on flexible PET substrate is more stable than that on other substrates.

  12. Enhanced Au induced lateral crystallization in electron-irradiated amorphous Ge on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Shin; Kaneko, Takahiro; Ootsubo, Takanobu; Sakai, Takatsugu; Nakashima, Kazutoshi; Moto, Kenta; Yoneoka, Masashi; Takakura, Kenichiro; Tsunoda, Isao, E-mail: isao_tsunoda@kumamoto-nct.ac.jp

    2014-04-30

    We have investigated the low temperature of Au induced lateral crystallization of electron irradiated amorphous Ge on SiO{sub 2}/Si substrate. The reduction of the critical annealing time to cause the Au induced lateral crystallization is realized by high energy electron irradiation. In addition, the lateral crystallization region of the sample with electron irradiation has high crystalline quality as well as the sample without electron irradiation. We have speculated that the Au induced lateral crystallization of amorphous Ge on SiO{sub 2}/Si substrate was enhanced by electron irradiation, due to the introduction of point defects into amorphous Ge able to diffuse easily of Au atoms. - Highlights: • Au induced lateral crystallization of electron irradiated Ge is investigated. • Crystallization annealing time is significantly reduced. • High crystalline quality of lateral region was not changed by electron irradiation.

  13. Thermal Evaporation Synthesis and Optical Properties of ZnS Microbelts on Si and Si/SiO2 Substrates

    Science.gov (United States)

    Nguyen, V. N.; Khoi, N. T.; Nguyen, D. H.

    2017-06-01

    In this study, we report on the differences in optical properties of zinc sulfide (ZnS) microbelts grown on Si and Si/SiO2 substrates by a thermal evaporation method. Our investigation suggests that the composition and luminescence of the microbelts are dependent on the growth substrate. Field emission scanning electron microscopy images show the formation of nanoparticles with a diameter of 300-400 nm on ZnS microbelts grown on Si substrate. In addition, energy dispersive x-ray spectroscopy analysis combined with x-ray diffraction and Raman measurements reveal the existence of Si on these microbelts which may bond with O to form SiO2 or amorphous silica. In contrast, no Si presents on the microbelts grown on Si/SiO2 substrate. Moreover, photoluminescence measurement at 300 K shows a narrow emission peak in the near-ultraviolet region from microbelts grown on Si/SiO2 substrate but a broad emission band with multi-peaks from microbelts grown on Si substrate. The origin of the luminescence distinction between microbelts is discussed in terms of the differences in the growth substrates and compositions.

  14. Broadband antireflection nanodome structures on SiC substrate

    DEFF Research Database (Denmark)

    Ou, Yiyu; Zhu, Xiaolong; Møller, Uffe Visbech

    2013-01-01

    Nanodome structures are demonstrated on the SiC substrate by using nanosphere lithography and dry etching. Significant surface antireflection has been observed over a broad spectral range from 400 nm to 1600 nm.......Nanodome structures are demonstrated on the SiC substrate by using nanosphere lithography and dry etching. Significant surface antireflection has been observed over a broad spectral range from 400 nm to 1600 nm....

  15. Disorder accumulation and recovery in gold-ion irradiated 3C-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Weber, William J.; Lian, Jie; Kalkhoran, N. M.

    2009-01-12

    A single-crystal 3C-SiC film on the Si/SiO2/Si (SIMOX) substrate was irradiated in different areas at 156 K with Au2+ ions to low fluences. The disorder profiles as a function of dose on both the Si and C sublattices have been determined in situ using a combination of 0.94 MeV D+ Rutherford backscattering spectrometry and nuclear reaction analysis in channeling geometry along the <100>, <110> and <111> axes. The results indicate that for the same damage state, the level of disorder on the Si sublattice in 3C-SiC follows a decreasing order along the <111>, <100> and <110> axes, while that on the C sublattice shows comparable values. Similar levels of Si and C disorder are observed along the <111> axis over the applied dose range. However, the level of C disorder is higher than that of Si disorder along either <100> or <110>. The amount of disorder recovery during thermal annealing processes depends on the sublattice (Si or C) and crystallographic orientation. Room-temperature recovery occurs for both sublattices in 3C-SiC irradiated to a dose of 0.047 dpa or lower. Significant recovery is observed along all directions during thermal annealing at 600 K. The results will be discussed and compared to those for 6H- and 4H-SiC under similar irradiation conditions.

  16. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  17. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  18. Tunable graphene doping by modulating the nanopore geometry on a SiO2/Si substrate

    KAUST Repository

    Lim, Namsoo

    2018-02-28

    A tunable graphene doping method utilizing a SiO2/Si substrate with nanopores (NP) was introduced. Laser interference lithography (LIL) using a He–Cd laser (λ = 325 nm) was used to prepare pore size- and pitch-controllable NP SiO2/Si substrates. Then, bottom-contact graphene field effect transistors (G-FETs) were fabricated on the NP SiO2/Si substrate to measure the transfer curves. The graphene transferred onto the NP SiO2/Si substrate showed relatively n-doped behavior compared to the graphene transferred onto a flat SiO2/Si substrate, as evidenced by the blue-shift of the 2D peak position (∼2700 cm−1) in the Raman spectra due to contact doping. As the porosity increased within the substrate, the Dirac voltage shifted to a more positive or negative value, depending on the initial doping type (p- or n-type, respectively) of the contact doping. The Dirac voltage shifts with porosity were ascribed mainly to the compensation for the reduced capacitance owing to the SiO2–air hetero-structured dielectric layer within the periodically aligned nanopores capped by the suspended graphene (electrostatic doping). The hysteresis (Dirac voltage difference during the forward and backward scans) was reduced when utilizing an NP SiO2/Si substrate with smaller pores and/or a low porosity because fewer H2O or O2 molecules could be trapped inside the smaller pores.

  19. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  20. Irradiation project of SiC/SiC fuel pin 'INSPIRE': Status and future plan

    International Nuclear Information System (INIS)

    Kohyama, Akira; Kishimoto, Hirotatsu

    2015-01-01

    After the March 11 Disaster in East-Japan, Research and Development towards Ensuring Nuclear Safety Enhancement for LWR becomes a top priority R and D in nuclear energy policy of Japan. The role of high temperature non-metallic materials, such as SiC/SiC, is becoming important for the advanced nuclear reactor systems. SiC fibre reinforced SiC composite has been recognised to be the most attractive option for the future, now, METI fund based project, INSPIRE, has been launched as 5-year termed project at OASIS in Muroran Institute of Technology aiming at early realisation of this system. INSPIRE is the irradiation project of SiC/SiC fuel pins aiming to accumulate material, thermal, irradiation effect data of NITE-SiC/SiC in BWR environment. Nuclear fuel inserted SiC/SiC fuel pins are planned to be installed in the Halden reactor. The project includes preparing the NITE-SiC/SiC tubes, joining of end caps, preparation of rigs to control the irradiation environment to BWR condition and the instruments to measure the condition of rigs and pins in operation. Also, basic neutron irradiation data will be accumulated by SiC/SiC coupon samples currently under irradiation in BR2. The output from this project may present the potentiality of NITE-SiC/SiC fuel cladding with the first stage fuel-cladding interaction. (authors)

  1. MeV-Si ion irradiation effects on the electrical properties of HfO2 thin films on Si

    International Nuclear Information System (INIS)

    Yu Xiangkun; Shao Lin; Chen, Q.Y.; Trombetta, L.; Wang Chunyu; Dharmaiahgari, Bhanu; Wang Xuemei; Chen Hui; Ma, K.B.; Liu Jiarui; Chu, W.-K.

    2006-01-01

    We studied the irradiation effect of 2-MeV Si ions on HfO 2 films deposited on Si substrates. HfO 2 films ∼11 nm thick were deposited onto Si substrates by chemical vapor deposition. The samples were then irradiated by 2-MeV Si ions at a fluence of 1 x 10 14 cm -2 at room temperature, followed by rapid thermal annealing at 1000 deg. C for 10 s. After annealing, a layer of aluminum was deposited on the samples as the gate electrode to form metal-oxide-semiconductor (MOS) capacitor structures. Rutherford backscattering spectrometry and electrical measurement of both capacitance and current as a function of voltage were used to characterize the samples before and after annealing. Non-insulating properties of the HfO 2 films deteriorated immediately after the ion irradiation, but rapid thermal annealing effectively repaired the irradiation damages, as reflected in improved capacitance versus voltage characteristics and significant reduction of leakage current in the MOS capacitors

  2. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10 16 N + ions/cm 2 and 3.6 x 10 17 e/cm 2 and 1.08 x 10 18 e/cm 2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  3. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  4. Determination of irradiation temperature using SiC temperature monitors

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

  5. Strain-Engineered Nanomembrane Substrates for Si/SiGe Heterostructures

    Science.gov (United States)

    Sookchoo, Pornsatit

    For Group IV materials, including silicon, germanium, and their alloys, although they are most widely used in the electronics industry, the development of photonic devices is hindered by indirect band gaps and large lattice mismatches. Thus, any heterostructures involving Si and Ge (4.17% lattice mismatch) are subject to plastic relaxation by dislocation formation in the heterolayers. These defects make many devices impossible and at minimum degrade the performance of those that are possible. Fabrication using elastic strain engineering in Si/SiGe nanomembranes (NMs) is an approach that is showing promise to overcome this limitation. A key advantage of such NM substrates over conventional bulk substrates is that they are relaxed elastically and therefore free of dislocations that occur in the conventional fabrication of SiGe substrates, which are transferred to the epilayers and roughen film interfaces. In this thesis, I use the strain engineering of NMs or NM stacks to fabricate substrates for the epitaxial growth of many repeating units of Si/SiGe heterostructure, known as a 'superlattice', by the elastic strain sharing of a few periods of the repeating unit of Si/SiGe heterolayers or a Si/SiGe/Si tri-layer structure. In both cases, the process begins with the epitaxial growth of Si/SiGe heterolayers on silicon-on-insulator (SOI), where each layer thickness is designed to stay below its kinetic critical thickness for the formation of dislocations. The heterostructure NMs are then released by etching of the SiO2 sacrificial layer in hydrofluoric acid. The resulting freestanding NMs are elastically relaxed by the sharing of strain between the heterolayers. The NMs can be bonded in-place to their host substrate or transferred to another host substrate for the subsequent growth of many periods of superlattice film. The magnitude of strain sharing in these freestanding NMs is influenced by their layer thicknesses and layer compositions. As illustrated in this

  6. Effect of substrate temperature on the radiation damage from MeV Si implantation in Si

    International Nuclear Information System (INIS)

    Yu, X.K.; Shao Lin; Rusakova, Irene; Wang, X.M.; Ma, K.B.; Chen, H.; Liu, Jiarui; Chu, W.-K.

    2006-01-01

    We have investigated the radiation damage by MeV implantation of Si in Si and its evolution under thermal annealing. Si wafers were implanted with MeV Si at various substrate temperatures. Damages were characterized by Rutherford-backscattering (RBS) channeling and by transmission electron microscopy (TEM). Defect formation after post-implantation annealing is very sensitive to the substrate temperatures during implantation. When the substrate temperature was decreased to 200 K, TEM revealed two distinct bands of damage after annealing: one around the mean projected ion range and another at half the projected range. Our study indicates that the formation of defects at half range results from the solid phase epitaxy growth of initial buried amorphous layers

  7. Electrical properties of SiO2-based graphene under monochromatic visible light irradiation

    Science.gov (United States)

    Li, Xiangdi; Liu, Xianming; Cao, Xueying; Zhang, Peng; Lei, Xiaohua; Chen, Weimin

    2017-08-01

    The purpose of this study is to investigate the electrical properties of graphene transparent conductive film under visible light irradiation. Sample in the study is chemical vapor deposition (CVD) growth graphene on the surface of copper foils and then transferred to the SiO2 substrate. Three monochromatic visible lights with wavelength of 635nm, 520nm and 450nm representing red (R), green (G) and blue (B) lights are used as irradiation sources. Results show that the graphene resistances increase slowly under light irradiation with all the three different wavelengths, while decrease slowly after the light is switched off. Light irradiation with higher power density will induce larger relative resistance change. When graphene is irradiated at the same density, blue light irradiation may result in the largest resistance change.

  8. Effect of irradiation on thermal expansion of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Senor, D.J.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC f /SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) β-SiC at all temperatures

  9. GaAs/Ge/Si epitaxial substrates: Development and characteristics

    Directory of Open Access Journals (Sweden)

    Yury Buzynin

    2017-01-01

    Full Text Available We developed high quality 2-inch GaAs/Ge/Si (100 epitaxial substrates, which may be used instead of GaAs monolithic substrates for fabrication of solar cells, photodetectors, LEDs, lasers, etc. A 200–300 nm Ge buffer layer was grown on Si substrates using the HW-CVD technique at 300°C, a tantalum strip heated to 1400°C was used as the “hotwire”. The MOCVD method was used to grow a 1 μ GaAs layer on a Ge buffer. The TDD in the GaAs layers did not exceed (1–2∙105 cm-2 and the surface RMS roughness value was under 1 nm.

  10. Structural and photoluminescence properties of Si-based nanosheet bundles rooted on Si substrates

    Science.gov (United States)

    Yuan, Peiling; Tamaki, Ryo; Kusazaki, Shinya; Atsumi, Nanae; Saito, Yuya; Kumazawa, Yuki; Ahsan, Nazmul; Okada, Yoshitaka; Ishida, Akihiro; Tatsuoka, Hirokazu

    2018-04-01

    Si-based nanosheet bundles were synthesized by the extraction of Ca atoms from CaSi2 microwalls grown on Si substrates by inositol hexakisphosphate solution or thermal treatment in FeCl2 vapor. The structural and photoluminescence properties of the Si-based nanosheet bundles were examined. The photoluminescence emissions in the visible region were clearly observed, and the temperature and excitation intensity dependences of the emissions were characterized. The observed Si-based nanosheets consist of thin Si layers, and a superlattice-like layered structural model is proposed to describe the Si-based nanosheet bundle structures and their photoluminescence property. The photoluminescence property of the nanosheets significantly depends on their treatment process. The luminescence mechanism of the nanosheets was discussed.

  11. SiGe quantum dot molecules grown on patterned Si (001) substrates

    International Nuclear Information System (INIS)

    Yang Hongbin; Zhang Xiangjiu; Jiang Zuiming; Yang Xinju; Fan Yongliang

    2008-01-01

    SiGe quantum dot molecules (QDMs) grown on patterned Si (001) substrates by molecular beam epitaxy were studied. Experimental results showed that the density, the dimension, and the dimension distribution of the SiGe QDMs grown in the windows were dependent on the window size. When the thickness of the Si 0.8 Ge 0.2 film was 40 nm, QDMs only appeared in the unpatterned areas of the Si substrate and none could be found inside the windows of 6x6 μm 2 on the same substrate. However, when the thickness of Si 0.8 Ge 0.2 film was increased to 80 nm, QDMs appeared both inside the windows and in the unpatterned areas, and the density of QDMs was reduced with the decrease in the window size. We attribute these results to the different strain relaxations in different size windows, which are caused by the edge effect of the epitaxial film in the window. Based on these experimental results we discuss the formation and the size stability of the QDMs and conclude that the formation of the SiGe QDM originates from an intrinsic cause of the strain relief mechanism. This work also shows that by means of the edge induced strain relaxation of the epitaxial film in the window, it is possible to reveal the influence of the strain on some physical properties of the SiGe film without changing its Ge atomic fraction

  12. Effect of Si and SiO2 Substrates on the Geometries of As-Grown Carbon Coils

    Directory of Open Access Journals (Sweden)

    Semi Park

    2012-01-01

    Full Text Available Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under thermal chemical vapor deposition system. Si substrate, SiO2 thin film deposited Si substrate (SiO2 substrate, and quartz substrate were employed to elucidate the effect of substrate on the formation of carbon coils. The characteristics (formation densities, morphologies, and geometries of the deposited carbon coils on the substrate were investigated. In case of Si substrate, the microsized carbon coils were dominant on the substrate surface. While, in case of SiO2 substrate, the nanosized carbon coils were prevailing on the substrate surface. The surface morphologies of samples were investigated step by step during the reaction process. The cause for the different geometry formation of carbon coils according to the different substrates was discussed in association with the different thermal expansion coefficient values of Si and SiO2 substrates and the different etched characteristics of Si and SiO2 substrates by SF6 + H2 flow.

  13. Minimum bar size for flexure testing of irradiated SiC/SiC composite

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Jones, R.H.

    1998-01-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23-24, 1997. The minimum bar size for 4-point flexure testing of SiC/SiC composite recommended by PNNL for irradiation effects studies is 30 x 6 x 2 mm 3 with a span-to-depth ratio of 10/1

  14. Effect of neutron irradiation on Mo-Si amorphous alloys

    International Nuclear Information System (INIS)

    Ito, Fumitake; Hasegawa, Masayuki; Suzuki, Kenji; Honda, Toshihisa; Fukunaga, Toshiharu.

    1982-01-01

    The irradiation effects on Mo-Si amorphous alloys were investigated by means of X-ray diffraction and positron annihilation, and their electric resistance at low temperature was measured to examine the superconductivity of the alloys. The specimens of Mo 68 Si 32 and Mo 45 Si 55 were irradiated with the neutron fluence (E > 1 MeV) of about 9 x 10 18 n/cm 2 without temperature control in the Japanese Material Testing Reactor (JMTR). For these irradiated specimens, the X-ray diffraction experiment was performed to examine the irradiation effects on the radial distribution function, and the angular correlation curves for the positron annihilation were also measured. Both experiments showed that there was almost no irradiation effect. However, the width of the superconductive transition measured in Mo 68 Si 32 became extremely narrow due to neutron irradiation, and the transition temperature rose from 6.89 K to 7.03 K. On the other hand, in Mo 45 Si 55 , the width showed a tendency to become somewhat narrow, but the transition temperature shifted to the lower side. (Asami, T.)

  15. Specimen size effect considerations for irradiation studies of SiC/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H. Jr.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    For characterization of the irradiation performance of SiC/SiC, limited available irradiation volume generally dictates that tests be conducted on a small number of relatively small specimens. Flexure testing of two groups of bars with different sizes cut from the same SiC/SiC plate suggested the following lower limits for flexure specimen number and size: Six samples at a minimum for each condition and a minimum bar size of 30 x 6.0 x 2.0 mm{sup 3}.

  16. Irradiation stability and thermo-mechanical properties of NITE-SiC irradiated to 10 dpa

    Science.gov (United States)

    Terrani, Kurt A.; Ang, Caen; Snead, Lance L.; Katoh, Yutai

    2018-02-01

    Five variants of nano-infiltration transient eutectic (NITE) SiC were prepared using nanopowder feedstock and sintering additive contents of reactor at nominally 400 and 700 °C. The evolution in swelling, strength, and thermal conductivity of these materials were examined after irradiation, where in all cases properties saturated at chemical vapor deposition (CVD) SiC within measurement uncertainty. The strength roughly doubled after irradiation. Thermal resistivity increase as a result of irradiation was ∼20% higher when compared to CVD-SiC.

  17. Osteoblast interaction with DLC-coated Si substrates.

    Science.gov (United States)

    Chai, Feng; Mathis, Nicolas; Blanchemain, Nicolas; Meunier, Cathy; Hildebrand, Hartmut F

    2008-09-01

    Diamond-like carbon (DLC) coating is a convenient means of modifying material surfaces that are sensitive to wear, such as titanium and silica substrates. This work aims to evaluate the osteoblast-like cells' response to DLC-coated Si (Si-DLC), which was treated under different conditions. DLC and deuterated DLC films were deposited by plasma-enhanced chemical vapor deposition to obtain a 200-nm-thick layer on all the samples. Three types of precursor gas were applied for deposition: pure methane (CH(4)), pure deuterated methane (CD(4)) and their half/half mixture. All surface treatments were performed under two different self-bias voltages (V(sb)): -400 and -600V. The modified surfaces were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, Rutherford backscattering spectroscopy, elastic recoil detection analysis, X-ray reflectometry and the sessile-drop method. MC3T3-E1 osteoblasts were cultured on the Si-DLC wafers for 3 and 6 days. Biological tests to measure cell proliferation, cell vitality, cell morphology and cell adhesion were performed. All DLC coatings produced a slightly more hydrophobic state than non-treated Si. Certain types of amorphous DLC coating, such as the surface treated under the V(sb) of -600V in pure methane (600CH(4)) or in pure deuterated methane (600CD(4)), offered a significantly higher cell proliferation rate to Si substrate. Scanning electron microscopy observations confirmed that the optimal cell adhesion behavior, among all the treated surfaces, occurred on the surface of the 600CH(4) and 600CD(4) groups, which showed increased amounts of filopodia and microvilli to enhance cell-environment exchange. In conclusion, DLC coating on Si could produce better surface stability and improved cellular responses.

  18. Damage nucleation in Si during ion irradiation

    International Nuclear Information System (INIS)

    Holland, O.W.; Fathy, D.; Narayan, J.

    1984-01-01

    Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed

  19. Physical studies of strained Si/SiGe heterostructures. From virtual substrates to nanodevices

    Energy Technology Data Exchange (ETDEWEB)

    Minamisawa, Renato Amaral

    2011-10-21

    During the past two decades, the decrease in intrinsic delay of MOSFETs has been driven by the scaling of the device dimensions. The performance improvement has relied mostly in the increase of source velocity with gate scaling, while the transport properties of the channel have remained constant, i.e., those of conventional Si. Starting at the 90 nm node, uniaxial strain has been introduced in the transistor channel in order to further increase the source velocity. Beyond the 32 nm node, novel channel materials, with superior carrier velocities, and novel device architectures are required in order to continue the performance enhancement of MOSFETs while preserving the electrostatic control. In this Thesis, different physical aspects of strained Si and SiGe materials are investigated as a mean to increase carrier velocity in MOSFET channels. Novel approaches for the fabrication of strained Si based on ion implantation and anneal induced relaxation of virtual substrates are developed. The strain relaxation of SiGe layers is improved using a buried thin Si:C layer in the Si(100) substrate. Further, a Si{sup +} ion implantation and annealing method is investigated for relaxing virtual substrates using lower implantation dose. Finally, the uniaxial relaxation of {l_brace}110{r_brace} surface oriented substrates is demonstrated using a He ion implantation and anneal technique. Apart of channel material studies, the fundamental and technological challenges involved in the integration of strained Si and SiGe into MOSFETs are assessed. The impact of source and drain formation on the elastic strain and electrical properties of strained Si layers and nanowires is examined. Also, the formation of ultra-shallow junction in strained Si/strained Si{sub 0.5}Ge{sub 0.5}/SSOI heterostructures is investigated using different types of ion implanted specie and annealing. The results show that BF{sup +}{sub 2} implantation and low temperature annealing are suitable approaches for

  20. Effect of neutron irradiation on fracture resistance of advanced SiC/SiC composites

    Science.gov (United States)

    Ozawa, Kazumi; Katoh, Yutai; Nozawa, Takashi; Snead, Lance L.

    2011-10-01

    In order to identify the neutron irradiation effects on fracture resistance of advanced SiC/SiC composites, unloading-reloading single edge notched bend tests were conducted and an analytical model based on non-linear fracture mechanics was applied. As a result of the analysis, energy release rate contributed by macro-crack initiation of 3.1 kJ/m 2 for both unirradiated and irradiated advanced SiC/SiC composites (Hi-Nicalon Type-S (0°/90° plain woven)/multilayer/chemically vapor infiltration) is estimated. This result indicates no significant degradation in fracture resistance after neutron irradiation to 5.9 × 10 25 n/m 2 at 800 °C.

  1. Ordered GeSi nanorings grown on patterned Si (001 substrates

    Directory of Open Access Journals (Sweden)

    Ma Yingjie

    2011-01-01

    Full Text Available Abstract An easy approach to fabricate ordered pattern using nanosphere lithography and reactive iron etching technology was demonstrated. Long-range ordered GeSi nanorings with 430 nm period were grown on patterned Si (001 substrates by molecular beam epitaxy. The size and shape of rings were closely associated with the size of capped GeSi quantum dots and the Si capping processes. Statistical analysis on the lateral size distribution shows that the high growth temperature and the long-term annealing can improve the uniformity of nanorings. PACS code1·PACS code2·more Mathematics Subject Classification (2000 MSC code1·MSC code2·more

  2. Degradation of SiGe devices by proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohyama, Hidenori; Hayama, Kiyoteru [Kumamoto National Coll. of Technology, Nishigoshi (Japan); Vanhellemont, J.; Takami, Yasukiyo; Sunaga, Hiromi; Nashiyama, Isamu; Uwatoko, Yoshiya; Poortmans, J.; Caymax, M.

    1997-03-01

    The degradation and recovery behavior of strained Si{sub 1-x}Ge{sub x} diodes and heterojunction bipolar transistors (HBTs) by irradiated by protons are studied. The degradation of device performance and the generation of lattice defects are reported as a function of fluence and germanium content and also compared extensively with previous results obtained on electron and neutron irradiated devices. In order to study the recovery behavior of the irradiated devices, isochronal annealing is performed. The radiation source dependence of the degradation is discussed taking into account the number of knock-on atoms and the nonionizing energy loss (NIEL). (author)

  3. Photoabsorption properties of {beta}-FeSi{sub 2} nanoislands grown on Si(111) and Si(001): Dependence on substrate orientation studied by nano-spectroscopic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Nobuyasu, E-mail: naruse@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research (ISIR), Ibaraki, Osaka University, Osaka 567-0047 (Japan); Nakamura, Yoshiaki, E-mail: nakamura@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Toyonaka, Osaka University, Osaka 560-8531 (Japan); Mera, Yutaka; Ichikawa, Masakazu; Maeda, Koji [Department of Applied Physics, School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2011-10-03

    Photoabsorption properties of {beta}-FeSi{sub 2} nanoislands epitaxially grown on Si(111) and Si(001) have been discussed using photoabsorption nano-spectroscopy based on scanning tunneling microscope. The obtained spectra exhibit clear features around 0.86-0.91 eV and around 0.71-0.74 eV, which are explained as a direct and an indirect photoabsorption edge of {beta}-FeSi{sub 2}, respectively. We also observed a blue shift of spectrum obtained from {beta}-FeSi{sub 2} nanoislands on Si(111) substrates, compared to those on Si(001) substrates. We attributed the dependence on Si-substrate orientation not to a quantum confinement effect but to an effect of elastic strain in the {beta}-FeSi{sub 2} nanoislands epitaxially grown on the substrate.

  4. Strain and defect microstructure in ion-irradiated GeSi/Si strained layers as a function of annealing temperature

    International Nuclear Information System (INIS)

    Glasko, J.M.; Elliman, R.G.; Zou, J.; Cockayne, D.J.H.; Fitz Gerald, J.D.

    1998-01-01

    High energy (1 MeV), ion irradiation of GeSi/Si strained layers at elevated temperatures can cause strain relaxation. In this study, the effect of subsequent thermal annealing was investigated. Three distinct annealing stages were identified and correlated with the evolution of the defect microstructure. In the temperature range from 350 to 600 deg C, a gradual recovery of strain is observed. This is believed to result from the annealing of small defect clusters and the growth of voids. The voids are visible at annealing temperatures in excess of 600 deg C, consistent with an excess vacancy concentration in the irradiated alloy layer. The 600 to 750 deg C range is marked by pronounced maximal recovery of strain, and is correlated with the dissolution of faulted loops in the substrate. At temperatures in the range 750-1000 deg C, strain relaxation is observed and is correlated with the growth of intrinsic dislocations within the alloy layer. These dislocations nucleate at the alloy-substrate interface and grow within the alloy layer, towards the surface. (authors)

  5. Evaluation of Damage Tolerance of Advanced SiC/SiC Composites after Neutron Irradiation

    Science.gov (United States)

    Ozawa, Kazumi; Katoh, Yutai; Nozawa, Takashi; Hinoki, Tatsuya; Snead, Lance L.

    2011-10-01

    Silicon carbide composites (SiC/SiC) are attractive candidate materials for structural and functional components in fusion energy systems. The effect of neutron irradiation on damage tolerance of the nuclear grade SiC/SiC composites (plain woven Hi-Nicalon™ Type-S reinforced CVI matrix composites multilayer interphase and unidirectional Tyranno™-SA3 reinforced NITE matrix with carbon mono-layer interphase) was evaluated by means of miniaturized single-edged notched beam test. No significant changes in crack extension behavior and in the load-loadpoint displacement characteristics such as the peak load and hysteresis loop width were observed after irradiation to 5.9 × 1025 n/m2 (E > 0.1 MeV) at 800°C and to 5.8 × 1025 n/m2 at 1300°C. By applying a global energy balance analysis based on non-linear fracture mechanics, the energy release rate for these composite materials was found to be unchanged by irradiation with a value of 3±2 kJ/m2. This has led to the conclusion that, for these fairly aggressive irradiation conditions, the effect of neutron irradiation on the fracture resistance of these composites appears insignificant.

  6. Formation of thin DLC films on SiO2/Si substrate using FCVAD technique

    International Nuclear Information System (INIS)

    Bootkul, D.; Intarasiri, S.; Aramwit, C.; Tippawan, U.; Yu, L.D.

    2013-01-01

    Diamond-like carbon (DLC) films deposited on SiO 2 /Si substrate are attractive for novel sensitive and selective chemical sensors. According to the almost never ending of size reduction, a nm-thickness layer of the film is greatly required. However, formation of such a very thin DLC film on SiO 2 /Si substrate is challenging. In this experiment, DLC films were formed using our in-house Filtered Cathodic Vacuum Arc Deposition (FCVAD) facility by varying the bias voltage of 0 V, −250 V and −450 V with the arc voltage of 350 V, 450 V, 550 V, 650 V and 750 V for 10 min. Raman spectroscopy was applied for characterization of the film qualities and Transmission Electron Microscopy (TEM) was applied for cross sectional analysis. Results showed that films of thickness ranging from 10–50 nm were easily acquired depending on deposition conditions. Deconvolution of Raman spectra of these samples revealed that, when fixing the substrate bias but increasing the arc voltage from 350 to 750 V, the ratio between D-peak and G-peak intensity, namely I D /I G ratio, tended to reduce up to the arc voltage of 450 V, then increased up to the arc voltage of 650 V and finally decreased again. On the other hand, when fixing the arc voltage, the I D /I G ratio tended to decrease continuously as the increasing of bias voltage. It can be concluded that the bonding structure would evolve from a graphitic-like structure to a diamond-like structure as the substrate bias increases. Additionally, the sp 3 site should be maximized at the arc voltage ∼450 V for fixed bias voltage. It is expected that, at −450 V bias and 450 V arc, sp 3 fractions could be higher than 60%. However, in some cases, e.g. at low arc voltages, voids formed between the film and the amorphous SiO 2 substrate. Electron energy loss spectroscopy (EELS) of the C edge across the DLC indicated that the thicker DLC film had uniform chemistry and structure, whereas the thin DLC film showed changes in the edge shape

  7. Positron Annihilation Study of Ion-irradiated Si

    International Nuclear Information System (INIS)

    Shin, Jung Ki; Kwon, Jun Hyun; Lee, Jong Yong

    2009-01-01

    Structural parts like a spaceship, satellite and solar cell are composed of metal alloy or semiconductor materials. Especially, Si is used as a primary candidate alloy. But, manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles. These natural radiations impose hazards to manned exploration. Irradiation of cosmic particle induces various changes in the mechanical and physical properties of device steels. It is, therefore, important to investigate radiation damage to the component materials in semiconductor. The evolution of radiation-induced defects leads to degradation of the mechanical properties. One of them includes irradiation embrittlement, which can cause a loss of ductility and further increase the probability of a brittle fracture. It can be more dangerous in the space. Positron annihilation lifetime spectroscopy(PALS) have been applied to investigate the production of vacancy-type defects for Ion-irradiated Si wafer penetrated by H, He, O and Fe ions. Then, we carried out a comparison with an un-irradiated Si wafer

  8. Buffer free MOCVD growth of GaN on 4H-SiC: Effect of substrate treatments and UV-photoirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Kim, Tong-Ho; Choi, Soojeong; Brown, April [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709 (United States)

    2006-05-15

    GaN has been grown directly on the Si-face 4H-SiC(0001) substrates using remote plasma-assisted metalorganic chemical vapour deposition (RP-MOCVD) with UV-light irradiation. The effects of substrate pre-treatments and UV-photoirradiation of the growth surface on GaN nucleation and film morphology are investigated. Optical data from spectroscopic ellipsometry measurements and morphological data show an improvement in nucleation and material quality with UV-light irradiation. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Formation of Fe2SiO4 thin films on Si substrates and influence of substrate to its thermoelectric transport properties

    Science.gov (United States)

    Choi, Jeongyong; Nguyen, Van Quang; Duong, Van Thiet; Shin, Yooleemi; Duong, Anh Tuan; Cho, Sunglae

    2018-03-01

    Fe2SiO4 thin films have been grown on n-type, p-type and semi-insulating Si(100) substrates by molecular beam epitaxy. When Fe-O thin films were deposited on Si(100) substrate at 300 °C, the film reacted with Si, resulting in a Fe2SiO4 film because of the high reactivity between Fe and Si. The electrical resistance and Seebeck coefficient of Fe2SiO4 thin films grown were different in different doping states. On n-type and p-type Si(100), the electrical resistance decreased suddenly and increased again at 350 and 250 K, respectively, while on semi-insulating Si(100), it exhibited typical semiconducting resistance behavior. We observed similar crossovers at 350 and 250 K in temperature dependent Seebeck coefficients on n-type and p-type Si(100), respectively. These results suggest that the measured electrical and thermoelectric properties originate from Si substrate.

  10. Comparative study by IBIC of Si and SiC diodes irradiated with high energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Lopez, J., E-mail: fjgl@us.es [Dpto. Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); CNA (U. Sevilla, J. Andalucia, CSIC), Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Jimenez-Ramos, M.C.; Rodriguez-Ramos, M. [CNA (U. Sevilla, J. Andalucia, CSIC), Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Ceballos, J. [Institute of Microelectronics of Seville, IMSE-CNM (CSIC/University of Seville), Seville 41092 (Spain); Linez, F. [Department of Applied Physics, Aalto University, 02150 Espoo (Finland); Raisanen, J. [Department of Physics, University of Helsinki, Helsinki 00014 (Finland)

    2016-04-01

    The transport properties of a series of Si and SiC diodes have been studied using the Ion Beam Induced Charge (IBIC) technique. Structural defects were induced into the samples during the irradiation with 17 MeV protons. The experimental values of the charge collection efficiency (CCE) vs bias voltages have been analyzed using a modified drift-diffusion model, which takes into account the recombination of carriers in the neutral and depletion regions. From these simulations, we have obtained the values of the carrier’s lifetime for pristine and irradiated diodes, which are found to degrade faster in the case of the SiC samples. However, the decrease of the CCE at high bias voltages is more important for the Si detectors, indicative of the lower radiation hardness of this material compared to SiC. The nature of the proton-induced defects on Si wafers has been studied by Positron Annihilation Spectroscopy (PAS) and Doppler Broadening Spectroscopy (DBS). The results suggest that the main defect detected by the positrons in p-type samples is the divacancy while for n-type at least a fraction of the positron annihilate in another defect. The concentration of defects is much lower than the number of vacancies predicted by SRIM.

  11. Irradiation behaviour of U-Si-Al with peripheral voidage

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.; Feraday, M.A.; Cotnam, K.D.; Morel, P.A.

    1977-12-01

    Peripheral voidage in the form of longitudinal slots on the surface of the fuel is effective in accommodating the irradiation induced swelling of U-Si-Al rods clad in cold-worked Zr-2.5 wt% Nb. Diametral increases in elements operated at steady powers between 50 and 80 kW/m to a burnup of 240 MW.h/kg U were less than 1.25%. Similar to U 3 Si elements, lower sheath strength or higher temperatures resulted in greater diametral increases. An oxide or graphite interlayer between the fuel and sheath was shown to be effective in preventing the development of a fuel/sheath bond. The ability of U-Si-Al elements to successfully survive a power increase from 35 to 70 kW/m after appreciable burnup at the lower power has also been demonstrated. (author)

  12. Adsorption geometry of tetracene on SiO 2/Si (1 1 1) substrate with the balance of molecule-substrate and intermolecular interaction

    Science.gov (United States)

    Mao, Hongying; Guan, Dandan; Chen, Meiliang; Dou, Weidong; Song, Fei; Zhang, Hanjie; Li, Haiyang; He, Pimo; Bao, Shining

    2010-02-01

    The growth of tetracene on SiO 2/Si(1 1 1) substrate has been studied by ultraviolet photoemission spectroscopy measurements. Seven emission features of the organic material are located at 2.26, 3.56, 4.77, 5.88, 6.98, 8.18 and 9.90 eV, respectively, below the Fermi level. The changes in binding energy and work function during the deposition of tetracene molecules on SiO 2 substrate indicate an interaction between tetracene molecule and substrate. The interaction between tetracene molecule and substrate is weaker than that between the organic and silicon substrate. The reduction in work function is due to the formation of interface dipole. Based on the density functional theory (DFT) calculation, tetracene molecules are arranged in an upright standing manner with the optimal growth of a small cluster consisting four molecules.

  13. Prediction of thermal conductivity for irradiated SiC/SiC composites by informing continuum models with molecular dynamics data

    Science.gov (United States)

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it computes the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal β-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  14. Molecular dynamics simulation of irradiation damage of SiC/Gra/SiC composites

    Science.gov (United States)

    Zhang, Chao; Song, Huai-Zhi; Mao, Fei; Wang, Cheng-Jun; Wang, Dong-Qi; Zhang, Feng-Shou

    2017-09-01

    Silicon carbide fiber-reinforced silicon carbide matrix composites have been investigated for their use as structural materials for advanced nuclear reactor. Although quite a number of researches have been devoted to probe the effects of irradiation on various properties of the composites, there is little known about the atomistic mechanism for irradiation resistance. In this study, a two-temperature model has been used to investigate the irradiation damage of SiC/Gra/SiC composites, which includes three parts and two SiC/C interfaces, two single crystal cubic silicon carbide on two sides and a few graphene sheets in the middle part. By simulating 100 keV displacement cascades, we find that the number of defects in the reinforcement is larger than that in the matrix, which indicates the damage in the reinforcement is more serious than that in the matrix. Moreover, we explicitly investigate the damage behavior of the interphase graphene layers and find that some atoms in one graphene sheet form many new chemical bonds with atoms in another one, which leads to the transition from sp2 to sp3 hybridization. The newly formed chemical bonds link the different graphene layers and make graphene-like electronic structure more ;diamond-like;, enhancing the irradiation resistance of the matrix.

  15. Effects of thermal treatment on infrared optical properties of SiO{sub 2} films on Si Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yiqin, E-mail: jiyiqin@gmail.com [National Key Laboratory of Science and Technology on Tunable Laser, Institute of Optical-electronics, Harbin Institute of Technology, Harbin, 150080 (China); Tianjin Key Laboratory of Optical Thin Film, Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Jiang, Yugang [Tianjin Key Laboratory of Optical Thin Film, Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Key Laboratory of Advanced Micro-structure Materials, Ministry of Education, Department of Physics, Tongji University, Shanghai, 200092 (China); Liu, Huasong; Wang, Lishuan; Liu, Dandan; Jiang, Chenghui [Tianjin Key Laboratory of Optical Thin Film, Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Fan, Rongwei; Chen, Deying [National Key Laboratory of Science and Technology on Tunable Laser, Institute of Optical-electronics, Harbin Institute of Technology, Harbin, 150080 (China)

    2013-10-31

    The effects of thermal treatment on infrared optical properties of SiO{sub 2} films on Si substrates by ion beam sputtering technology were investigated. Complex refractive index of SiO{sub 2} films was calculated from Fourier transform infrared transmission spectrum from 400 to 4000 cm{sup −1}. Absorption band properties associated with Si-O-Si stretching, bending, rocking mode at about 1080 cm{sup −1}, 816 cm{sup −1}, 460 cm{sup −1} were analyzed. With the increase of thermal annealing temperature, the absorption peak with Si-O-Si stretching, rocking mode shift to long wave number, but the bending mode shifts to short. After thermal treatment, the infrared optical constants are close to the value of the more stabilized thermal grown SiO{sub 2}. So, it can be concluded that the structure of Si-O-Si network in SiO{sub 2} films deposited on Si was modified to the stable structure of thermal grown SiO{sub 2}. - Highlights: • Effects of annealing on IR optical properties of SiO{sub 2} films are achieved. • Complex dielectric functions of SiO{sub 2} films in the IR wave band are calculated. • Absorption bands properties with three modes are analyzed with thermal treatment.

  16. Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate

    International Nuclear Information System (INIS)

    Ye, Han; Yu, Zhongyuan

    2014-01-01

    Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facets for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications

  17. Electronic structures of GeSi nanoislands grown on pit-patterned Si(001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Han, E-mail: Dabombyh@aliyun.com; Yu, Zhongyuan [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R.China (China)

    2014-11-15

    Patterning pit on Si(001) substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in (105) pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP) in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facets for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications.

  18. Experimental Study of Fast Neutron Irradiation on Si Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Sun, Gwang Min; Baek, Ha ni; Jin, Seong Bok; Hoang, Sy Minh Tuan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Bipolar junction transistors (BJTs) are applied in many industrial fields. BJT is a three-terminal device with an important feature in that the current through two terminals can be controlled by small changes we make in the current or voltage at the third terminal. This control feature allows us to amplify small AC signals or to switch the device from an on state and off state and back. These two operations, amplification and switching, are the basis of a host of electronic functions. This study will investigate the electrical characteristics of a p-n-p BJT, such as the base current and collector current for fast neutron irradiation. Fast neutron irradiation can cause displacement damage in the Si bulk. In this paper, the electrical characteristics of a p-n-p BJT such as a base current and collector current are investigated for fast neutron irradiation. The experimental results show that the base current is increased and the collector current is decreased after fast neutron irradiation. These results indicate that the displacement damage caused by fast neutron irradiation increases the recombination rate of minority carriers and resistors.

  19. The characteristics of GaN-based blue LED on Si substrate

    International Nuclear Information System (INIS)

    Xiong Chuanbing; Jiang Fengyi; Fang Wenqing; Wang Li; Mo Chunnan; Liu Hechu

    2007-01-01

    InGaN multiple quantum well (MQW) light-emitting diodes (LEDs), grown by metalorganic chemical vapor deposition (MOCVD) on Si (1 1 1) substrates, were successfully bonded and transferred onto new Si substrate. After chemical etching Si substrate and inductively coupled plasma (ICP) etching buffer layer, vertical structure GaN blue LEDs were fabricated. The characteristics of the lateral structure LEDs (grown on Si substrate) and the vertical structure LEDs (bonded on new Si substrate) have been investigated, and the performance of the vertical structure LEDs have obviously been improved compared to the lateral structure LEDs. The improved performance is due to the smaller tensile stress and series resistance in the vertical LEDs than that in lateral LEDs. The electroluminescence difference between vertical LEDs chips and the vertical LEDs lamps can be explained by the difference in heat dissipation

  20. Modeling SiC swelling under irradiation: Influence of amorphization

    CERN Document Server

    Romano, A; Defranceschi, M; Yip, S

    2003-01-01

    Irradiation-induced swelling of SiC is investigated using a molecular dynamics simulation-based methodology. To mimic the effect of heavy ion irradiation extended amorphous areas of various sizes are introduced in a crystalline SiC sample, and the resulting configurations are relaxed using molecular dynamics at constant pressure. Simulation results compare very well with data from existing ion implantation experiments. Analysis of the relaxed configurations shows very clearly that SiC swelling does not scale linearly with the amorphous fraction introduced. Two swelling regimes are observed depending on the size of the initial amorphous area: for small amorphous zones swelling scales like the amorphous fraction to the power 2/3, while for larger areas it scales like the amorphous fraction to the powers 2/3 and 4/3. Similar dependences on the amorphous fraction are obtained for the number of homonuclear bonds present in the initial amorphous volume and for the number of short bonds created at the interface betw...

  1. Investigation of structural and electronic properties of epitaxial graphene on 3C–SiC(100)/Si(100) substrates

    Science.gov (United States)

    Gogneau, Noelle; Ben Gouider Trabelsi, Amira; Silly, Mathieu G; Ridene, Mohamed; Portail, Marc; Michon, Adrien; Oueslati, Mehrezi; Belkhou, Rachid; Sirotti, Fausto; Ouerghi, Abdelkarim

    2014-01-01

    Graphene has been intensively studied in recent years in order to take advantage of its unique properties. Its synthesis on SiC substrates by solid-state graphitization appears a suitable option for graphene-based electronics. However, before developing devices based on epitaxial graphene, it is desirable to understand and finely control the synthesis of material with the most promising properties. To achieve these prerequisites, many studies are being conducted on various SiC substrates. Here, we review 3C–SiC(100) epilayers grown by chemical vapor deposition on Si(100) substrates for producing graphene by solid state graphitization under ultrahigh-vacuum conditions. Based on various characterization techniques, the structural and electrical properties of epitaxial graphene layer grown on 3C–SiC(100)/Si(100) are discussed. We establish that epitaxial graphene presents properties similar to those obtained using hexagonal SiC substrates, with the advantage of being compatible with current Si-processing technology. PMID:25339846

  2. XPS study of graphene oxide reduction induced by (100) and (111)-oriented Si substrates

    Science.gov (United States)

    Priante, F.; Salim, M.; Ottaviano, L.; Perrozzi, F.

    2018-02-01

    The reduction of graphene oxide (GO) has been extensively studied in literature in order to let GO partially recover the properties of graphene. Most of the techniques proposed to reduce GO are based on high temperature annealing or chemical reduction. A new procedure, based on the direct reduction of GO by etched Si substrate, was recently proposed in literature. In the present work, we accurately investigated the Si-GO interaction with x-ray photoelectron spectroscopy. In order to avoid external substrate oxidation factors we used EtOH as the GO solvent instead of water, and thermal annealing was carried out in UHV. We investigated the effect of Si(100), Si(111) and Au substrates on GO, to probe the role played by both the substrate composition and substrate orientation during the reduction process. A similar degree of GO reduction was observed for all samples but only after thermal annealing, ruling out the direct reduction effect of the substrate.

  3. The fabrication and application of patterned Si(001) substrates with ordered pits via nanosphere lithography

    International Nuclear Information System (INIS)

    Chen Peixuan; Fan Yongliang; Zhong Zhenyang

    2009-01-01

    A new scalable approach has been developed for fabricating large-scale pit patterns with controllable periodicity on Si(001) substrates. The fabrication processes start with self-assembling a monolayer of polystyrene (PS) spheres on hydrogenated Si(001) substrates. A novel net-like mask in combination of the Au pattern thermally evaporated in between the PS spheres and the Au-catalyzed SiO 2 around them is naturally formed. After selective etching of Si by KOH solution, two-dimensionally ordered pits with a periodicity equal to the diameter of the PS spheres in the range from micrometers to less than 100 nm can be obtained. The shape of the pits can be modulated by controlling the chemical etching time. Such pit-patterned Si substrates facilitate the formation of ordered Si-based nanostructures, such as ordered self-assembled GeSi quantum dots, by deposition of Ge using molecular beam epitaxy.

  4. Hole trapping in E-beam irradiated SiO2 films

    Science.gov (United States)

    Aitken, J. M.; Dekeersmaecker, R. F.

    1990-07-01

    Low energy (25 kV) electron beam irradiation of MOS capacitors is shown to produce neutral hole traps in thin ‘radiation hardened’ SiO2 films. These traps are found in an uncharged state after irradiation and are populated by passing a small hole current, generated by avalanche breakdown of the n-type silicon substrate, through the oxide. From the time dependence of the observed trapping, a capture cross-section between 1 × 10˜-13 and 1 × 10-14 cm2 is deduced. The trap density is found to depend on the annealing conditions and incident electron beam dosage. The density of traps increases with incident electron beam exposure. Once introduced into the oxide by the radiation the traps can be removed by thermal anneals at temperatures above 500° C. Parallels between electron and hole trapping on these neutral centers are strong evidence for an amphoteric uncharged trap generated by ionizing radiation.

  5. Ag Transport Through Non-Irradiated and Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Blanchard, James [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-11

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  6. Ag Transport Through Non-Irradiated and Irradiated SiC

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Blanchard, James

    2016-01-01

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differences in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.

  7. A study of SiC decomposition under laser irradiation

    Science.gov (United States)

    Adelmann, B.; Hellmann, R.

    2017-06-01

    In this experimental study we investigate the laser induced thermal decomposition of 4H-Sic under ambient conditions using fiber laser. Using a unique two-color pyrometer setup, we measure the temporal evolution of the temperature in the irradiated zone and determine the decomposition rate for various laser power levels. We find that the temporal evolution of the temperature in the irradiated area exhibits an initial heating phase up to about 1300 K, being characterized by an unaffected SiC surface. Upon an expeditious temperature increase, a decomposition phase follows with temperatures above 1700 K, being accompanied by carbonization of the SiC surface. The decomposed volume depends linearly on the duration of the decomposition phase and increases linearly with laser power. The temperature evaluation of the decomposition speed reveals an Arrhenius-type behavior allowing the calculation of the activation energy for the decomposition under ambient conditions to 613 kJ/mol in the temperature range between 2140 and 2420 K.

  8. Irradiation damages in Ti{sub 3}SiC{sub 2}; Dommages d'irradiation dans Ti{sub 3}SiC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nappe, J.C.; Grosseau, Ph. [Ecole Nationale Superieure des Mines, Centre SPIN, Lab. PMMC et LPMG UMR CNRS 5148, 42 - Saint-Etienne (France); Guilhot, B. [Ecole Nationale Superieure des Mines, Centre CIS, 42 - Saint-Etienne (France); Audubert, F.; Beauvy, M. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles; Iacconi, Ph.; Benabdesselam, M. [Nice Univ. - Sophia Antipolis, Lab. LPES-CRESA, 06 (France)

    2007-07-01

    Carbides, by their remarkable properties, are considered as possible materials (fuel cans) in reactor of generation IV. Among those studied, Ti{sub 3}SiC{sub 2} is particularly considered because it joins both the ceramics and metals properties. Nevertheless, its behaviour under irradiation is not known. Characterizations have been carried out on samples irradiated at 75 MeV krypton ions. They have revealed that TiO{sub 2} (formed at the surface of Ti{sub 3}SiC{sub 2}) is pulverized by the irradiation and that the crystal lattice of Ti{sub 3}SiC{sub 2} dilates with c. (O.M.)

  9. Effects of sintering additives on the microstructural and mechanical properties of the ion-irradiated SiCf/SiC

    Science.gov (United States)

    Fitriani, Pipit; Sharma, Amit Siddharth; Yoon, Dang-Hyok

    2018-05-01

    SiCf/SiC composites containing three different types of sintering additives viz. Sc-nitrate, Al2O3-Sc2O3, and Al2O3-Y2O3, were subjected to ion irradiation using 0.2 MeV H+ ions with a fluence of 3 × 1020 ions/m2 at room temperature. Although all composites showed volumetric swelling upon ion irradiation, SiCf/SiC with Sc-nitrate showed the smallest change followed by those with the Al2O3-Sc2O3 and Al2O3-Y2O3 additives. In particular, SiCf/SiC containing the conventional Al2O3-Y2O3 additive revealed significant microstructural changes, such as surface roughening and the formation of cracks and voids, resulting in reduced fiber pullout upon irradiation. On the other hand, the SiCf/SiC with Sc-nitrate showed the highest resistance against ion irradiation without showing any macroscopic changes in surface morphology and mechanical strength, indicating the importance of the sintering additive in NITE-based SiCf/SiC for nuclear structural applications.

  10. Germanium growth on electron beam lithography patterned Si3N4/Si(001) substrate using molecular beam epitaxy

    Science.gov (United States)

    Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar

    2018-04-01

    It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.

  11. PIE of nuclear grade SiC/SiC flexural coupons irradiated to 10 dpa at LWR temperature

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Silicon carbide fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230–340°C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials are chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC)-coated Hi-NicalonTM Type-S (HNS), TyrannoTM SA3 (SA3), and SCS-UltraTM (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexural behavior, dynamic Young’s modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young’s moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.

  12. Characterization of femtosecond-laser-induced periodic structures on SiC substrates

    Science.gov (United States)

    Miyagawa, Reina; Ohno, Yutaka; Deura, Momoko; Yonenaga, Ichiro; Eryu, Osamu

    2018-02-01

    We investigated the crystalline state of femtosecond-laser-induced periodic structures using a transmission electron microscope (TEM). The core of the 200-nm-pitch periodic nanostructures on SiC retained a high crystalline quality continued from the SiC substrate, where the crystal orientation was aligned with that of the SiC substrate. These results suggest that the periodic nanostructures were formed by periodic etching and not by rearrangement. At high laser power, microstructures with sizes larger than 2 µm were formed on the periodic nanostructures. The microstructures were amorphous and extended from the amorphous SiC layer that covered the periodic nanostructures.

  13. Fe{sub 3}Si nanodots epitaxially grown on Si(111) substrates using ultrathin SiO{sub 2} film technique

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yoshiaki, E-mail: nakamura@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Fukuda, Kenjiro; Amari, Shogo; Ichikawa, Masakazu [Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2011-10-03

    Ultrahigh density (> 10{sup 12} cm{sup -2}) Fe{sub 3}Si nanodots (NDs) are epitaxially grown on Si(111) substrates by codeposition of Fe and Si on the ultrathin SiO{sub 2} films with ultrahigh density nanovoids. We used two kinds of methods for epitaxial growth: molecular beam epitaxy (MBE) and solid phase epitaxy. For MBE, low temperature (< 300 deg. C) growth of the Fe{sub 3}Si NDs is needed to suppress the interdiffusion between Fe atoms deposited on the surfaces and Si atoms in the substrate. These epitaxial NDs exhibited the ferromagnetism at low temperatures, which were expected in terms of the application to the magnetic memory device materials.

  14. Irradiation Effect of Argon Ion on Interfacial Structure Fe(2nm/Si(tsi=0.5-2 nm Multilayer thin Film

    Directory of Open Access Journals (Sweden)

    S. Purwanto

    2010-04-01

    Full Text Available Investigation includes formation of interfacial structure of Fe(2nm/Si(tSi= 0.5-2 nm multilayer thin film and the behavior of antiferromagnetic coupling between Fe layers due to Argon ion irradiation was investigated. [Fe(2nm/Si]30 multilayers (MLs with a thickness of Si spacer 0.5 - 2 nanometer were prepared on n-type (100 Si substrate by the helicon plasma sputtering method. Irradiation were performed using 400keV Ar ion to investigate the behavior of magnetic properties of the Fe/Si MLs. The magnetization measurements of Fe/Si MLs after 400keV Ar ion irradiation show the degradation of antiferromagnetic behavior of Fe layers depend on the ion doses. The Magnetoresistance (MR measurements using by Four Point Probe (FPP method also confirm that MR ratio decrease after ion irradiation. X-ray diffraction (XRD patterns indicate that the intensity of a satellite peak induced by a superlattice structure does not change within the range of ion dose. These results imply that the surface of interface structures after ion irradiation become rough although the layer structures are maintained. Therefore, it is considered that the MR properties of Fe/Si MLs also are due to the metallic superlattice structures such as Fe/Cr and Co/Cu MLs.

  15. Spreading resistance and C-DLTS spectra of proton-irradiated mesa diodes made on thick epitaxial Si layers

    CERN Document Server

    Nossarzhevska, E; Brzozowski, A

    1999-01-01

    High-resistivity, thick silicon epitaxial layers, deposited on Czochralski silicon (CZ Si) substrate were used as a material for test diodes. Resistivity profile as a function of depth and deep-level spectra were measured by spreading resistance method and deep-level transient spectroscopy (C-DLTS) on non-irradiated and proton irradiated mesa diodes. A deep level with activation energy E sub c -0.52 eV, attributed to V sub 2 O defect, dominates in the non-irradiated diodes. After irradiation two levels, E sub c -0.38 and E sub c -0.45 eV, related to divacancies and the level E sub c -0.17 eV corresponding to VO complex are distinguished.

  16. Diffusion barrier and adhesion properties of SiO(x)N(y) and SiO(x) layers between Ag/polypyrrole composites and Si substrates.

    Science.gov (United States)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2014-06-25

    This paper describes the interface reactions and diffusion between silver/polypyrrole (Ag/PPy) composite and silicon substrate. This composite material can be used as a novel technique for 3D-LSI (large-scale integration) by the fast infilling of through-silicon vias (TSV). By immersion of the silicon wafer with via holes into the dispersed solution of Ag/PPy composite, the holes are filled with the composite. It is important to develop a layer between the composite and the Si substrate with good diffusion barrier and adhesion characteristics. In this paper, SiOx and two types of SiOxNy barrier layers with various thicknesses were investigated. The interface structure between the Si substrate, the barrier, and the Ag/PPy composite was characterized by transmission electron microscopy. The adhesion and diffusion properties of the layers were established for Ag/PPy composite. Increasing thickness of SiOx proved to permit less Ag to transport into the Si substrate. SiOxNy barrier layers showed very good diffusion barrier characteristics; however, their adhesion depended strongly on their composition. A barrier layer composition with good adhesion and Ag barrier properties has been identified in this paper. These results are useful for filling conductive metal/polymer composites into TSV.

  17. AlGaN/GaN-based HEMT on SiC substrate for microwave ...

    Indian Academy of Sciences (India)

    (HEMT) on SiC substrate is proposed and its DC as well as microwave characteristics are dis- cussed for Si3N4 and ... From DC characteristics, the saturation drain currents are measured to be 600 mA/mm and. 550 mA/mm for ..... figure 12 from a family of Mason's unilateral gain (MUG) curves for both passivated devices.

  18. Conductive stability of graphene on PET and glass substrates under blue light irradiation

    Science.gov (United States)

    Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin

    2018-01-01

    Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.

  19. Characterisation of NdFeB thin films prepared on (100)Si substrates with SiO2 barrier layers

    International Nuclear Information System (INIS)

    Sood, D.K.; Muralidhar, G.K.

    1998-01-01

    This work presents a systematic study of the deposition and characterization of NdFeB films on substrates of Si(100) and of SiO2 layer thermally grown on Si(100) held at RT, 360 deg C or 440 deg C. The post-deposition annealing is performed at 600 or 800 deg C in vacuum. The films are characterised using the analytical techniques of RBS, SIMS, XRD, OM and SEM. Results indicate that SiO2 is, in deed, an excellent diffusion barrier layer till 600 deg C but becomes relatively less effective at 800 deg C. Without this barrier layer, interdiffusion at the Si-NdFeB film interface leads to formation of iron silicides, α-Fe and B exclusion from the diffusion zone, in competition with the formation of the magnetic NdFeB phase. (authors)

  20. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deck, Christian P. [General Atomics, San Diego, CA (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-04

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300–350 °C under a representative high heat flux (~0.66 MW/m2) during one cycle of irradiation in an un-instrumented “rabbit” capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb the expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. Furthermore, the success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.

  1. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    Science.gov (United States)

    Petrie, Christian M.; Koyanagi, Takaaki; McDuffee, Joel L.; Deck, Christian P.; Katoh, Yutai; Terrani, Kurt A.

    2017-08-01

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300-350 °C under a representative high heat flux (∼0.66 MW/m2) during one cycle of irradiation in an un-instrumented ;rabbit; capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb the expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. The success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.

  2. Electroluminescence of a-Si/c-Si heterojunction solar cells after high energy irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Manuela

    2009-11-24

    The crystalline silicon as absorber material will certainly continue to dominate the market for space applications of solar cells. In the contribution under consideration the applicability of a-Si:H/c-Si heterojunction solar cells in space has been tested by the investigation of the cell modification by high energy protons and comparing the results to the degradation of homojunction crystalline silicon reference cells. The investigated solar cells have been irradiated with protons of different energies and doses. For all investigated solar cells the maximum damage happens for an energy of about 1.7 MeV and is mainly due to the decrease of the effective minority carrier diffusion length in the crystalline silicon absorber. Simulations carried out by AFORS-HET, a heterojunction simulation program, also confirmed this result. The main degradation mechanism for all types of devices is the monotonically decreasing charge carrier diffusion length in the p-type monocrystalline silicon absorber layer. For the heterojunction solar cell an enhancement of the photocurrent in the blue wavelength region has been observed but only in the case of heterojunction solar cell with intrinsic a-Si:H buffer layer. Additionally to the traditional characterization techniques the electroluminescence technique used for monitoring the modifications of the heteroluminescence technique used for monitoring the modifications of the heterointerface between amorphous silicon and crystalline silicon in solar cells after proton irradiation. A direct relation between minority carrier diffusion length and electroluminescence quantum efficiency has been observed but also details of the interface modification could be monitored by this technique.

  3. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    Science.gov (United States)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  4. Pendeo-epitaxy of stress-free AlN layer on a profiled SiC/Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Bessolov, V.N. [Ioffe Physical Technical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, St. Petersburg, 194021 (Russian Federation); Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, V.O., Bolshoj pr., 61, St. Petersburg, 199178 (Russian Federation); Karpov, D.V. [St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences (Academic University), Khlopina 8/3, St Petersburg, 194021 (Russian Federation); University of Eastern Finland, P.O. Box 111, Joensuu, 80101 (Finland); Konenkova, E.V. [Ioffe Physical Technical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, St. Petersburg, 194021 (Russian Federation); Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, V.O., Bolshoj pr., 61, St. Petersburg, 199178 (Russian Federation); Lipovskii, A.A. [St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences (Academic University), Khlopina 8/3, St Petersburg, 194021 (Russian Federation); Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg, 195251 (Russian Federation); Osipov, A.V. [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, V.O., Bolshoj pr., 61, St. Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverkskii pr. 49, St. Petersburg, 197101 (Russian Federation); Redkov, A.V. [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, V.O., Bolshoj pr., 61, St. Petersburg, 199178 (Russian Federation); St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences (Academic University), Khlopina 8/3, St Petersburg, 194021 (Russian Federation); Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya 29, St. Petersburg, 195251 (Russian Federation); and others

    2016-05-01

    A new approach to the pendeo-epitaxy of elastically-unstrained AlN films is developed. The AlN films are grown using chloride-hydride vapor phase epitaxy (HVPE) on a silicon substrate with specially synthesized and shaped buffer layer of nano-SiC (NSiC). This NSiC epitaxial layer is grown using a new technique based on the substitution of a part of silicon atoms by carbon ones in a 100–110 nm thick subsurface layer of the silicon substrate. The 2D array of ~ 200 nm in diameter wells with the depth of ~ 70 nm that is less than the NSiC layer thickness is formed on the NSiC surface using electron beam lithography followed by reactive ion etching, the period of the array is of 400 nm. In a single HVPE process we grew ~ 20 μm thick AlN film both on the shaped and smooth regions of the prepared substrate. The AlN films are examined with reflection high energy electron diffraction, X-ray diffractometry, Raman spectroscopy and scanning electron microscopy. We use the results of these measurements to compare residual elastic stresses in the AlN film grown on the shaped and smooth regions of the substrate. The film on the shaped part of the substrate is elastically-unstrained contrary to the smooth part where elastic stresses result in the formation of a textured AlN layer. The model of the AlN growth on shaped SiC/Si substrates prepared using the atomic substitution technique is proposed. - Highlights: • A new method for chloride-hydride vapor phase pendeo-epitaxy of AlN is proposed • Unstrained AlN layer is grown on a Si substrate with a nanoprofiled SiC buffer • SiC made by substitution of atoms is well suited for the growth of AlN • Dissolution of pores in silicon beneath the nano-SiC is revealed.

  5. Influence of IR-laser irradiation on α-SiC-chromium silicides ceramics

    International Nuclear Information System (INIS)

    Vlasova, M.; Marquez Aguilar, P.A.; Resendiz-Gonzalez, M.C.; Kakazey, M.; Bykov, A.; Gonzalez Morales, I.

    2005-01-01

    This project investigated the influence of IR-laser irradiation (λ = 1064 nm, P = 240 mW) on composite ceramics SiC-chromium silicides (CrSi 2 , CrSi, Cr 5 Si 3 ) by methods of X-ray diffraction, electron microscopy, atomic force microscopy, and X-ray microanalysis. Samples were irradiated in air. It was established that a surface temperature of 1990 K was required to melt chromium silicides, evaporate silicon from SiC, oxidize chromium silicides, and enrich superficial layer by carbon and chromium oxide

  6. Thin film pc-Si by aluminium induced crystallization on metallic substrate

    Directory of Open Access Journals (Sweden)

    Cayron C.

    2013-04-01

    Full Text Available Thin film polycrystalline silicon (pc-Si on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC of an amorphous silicon (a-Si thin film on metallic substrates (Ni/Fe alloy initially coated with a tantalum nitride (TaN conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film. Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD. At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001 oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

  7. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.; Ferraris, M.; Katoh, Yutai

    2017-03-31

    This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiation temperatures: 800oC, 500oC, and 400oC.

  8. Metalorganic chemical vapor deposition of {beta}-FeSi{sub 2} on {beta}-FeSi{sub 2} seed crystals formed on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suzuno, Mitsushi; Akutsu, Keiichi; Kawakami, Hideki [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573 (Japan); Akiyama, Kensuke [Kanagawa Industrial Technology Center 705-1 Shimoizumi, Ebina, Kanagawa 243-0435 (Japan); Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573 (Japan)

    2011-10-03

    We have fabricated a {beta}-FeSi{sub 2} film by metalorganic chemical vapor deposition on a Si(001) substrate with {beta}-FeSi{sub 2} seed crystals grown by molecular beam epitaxy, and investigated the crystallinity, surface morphology and temperature dependence of photoresponse properties of the {beta}-FeSi{sub 2} film. The surface of the grown {beta}-FeSi{sub 2} film was atomically flat, and step-and-terrace structure was clearly observed. Multi-domain structure of {beta}-FeSi{sub 2} whose average size was approximately 200 nm however was revealed. The photoresponse was obtained in an infrared light region ({approx} 0.95 eV) at temperatures below 200 K. The external quantum efficiency reached a maximum, being as large as 25% at 100 K when a bias voltage was 2.0 V.

  9. Pulsed laser deposition of SiC thin films at medium substrate temperatures

    International Nuclear Information System (INIS)

    Katharria, Y.S.; Kumar, Sandeep; Choudhary, R.J.; Prakash, Ram; Singh, F.; Lalla, N.P.; Phase, D.M.; Kanjilal, D.

    2008-01-01

    Systematic studies of thin silicon carbide (SiC) films deposited on Si (100) substrates using pulsed laser deposition technique at room temperature, 370 deg. C and 480 deg. C are carried out. X-ray photoelectron spectroscopy showed the formation of SiC bonds in the films at these temperatures along with some graphitic carbon clusters. Fourier transform infrared analysis also confirmed the formation of SiC nanocrystallites in the films. Transmission electron microscopy and electron diffraction were used to study the structural properties of nanocrystallites formed in the films. Surface morphological analysis using atomic force microscopy revealed the growth of smooth films

  10. Effect of ion species on apatite-forming ability of silicone elastomer substrates irradiated by cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan)], E-mail: m-kawa@ecei.tohoku.ac.jp; Araki, Rei; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University (Japan)

    2009-04-15

    Indwelling catheters made of silicone elastomers sometimes cause serious infections owing to their poor biocompatibility. It is believed that these infections can be prevented by coating the silicone surface with apatite, which has excellent biocompatibility. If the surface of the silicone elastomer is in advance modified to have an apatite-forming ability, apatite can be coated on the modified silicone surface by soaking it in an aqueous solution such as a simulated body fluid (SBF) supersaturated with respect to apatite. In this study, silicone substrates were irradiated by four types of ion beams (Ar cluster, Ar cluster and monomer (Ar CM), O{sub 2} cluster, and O{sub 2} cluster and monomer (O{sub 2} CM) ion beams) at an acceleration voltage of 7 kV and a dose of 1 x 10{sup 15} ions/cm{sup 2}, and subsequently soaked in CaCl{sub 2} solution. The apatite-forming abilities of the substrates were examined using a metastable calcium phosphate solution whose ion concentration was 1.5 times that of SBF (1.5 SBF). Silicon oxide (SiO{sub x}) clusters were formed on the silicone surface and the hydrophilicity of the substrates was improved by the irradiation, irrespective of the ion species used. The irradiation with O{sub 2} CM ion beams resulted in the highest apatite-forming ability among the analyzed ion beams.

  11. Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics

    International Nuclear Information System (INIS)

    Shiu, Shu-Chia; Hung, Shih-Che; Chao, Jiun-Jie; Lin, Ching-Fuh

    2009-01-01

    Si nanowires (NWs) are promising materials for future electronic, photovoltaic, and sensor applications. So far the Si NWs are mainly formed on particular substrates or at high temperatures, greatly limiting their application flexibility. Here we report a low temperature process for forming and massively transferring vertically aligned Si NWs on alien substrates with a large density of about (3-5) x 10 7 NWs/mm 2 . The X-ray diffraction spectrum reveals that the transferred NWs exhibit almost the same crystal property as the bulk Si. Our investigation further shows that the transferred NWs have exceptional optical characteristics. The transferred Si NWs of 12.14 μm exhibit the transmittance as low as 0.3% in the near infrared region and 0.07% in the visible region. The extracted absorption coefficient of Si NWs in the near infrared region is about 3 x 10 3 cm -1 , over 30 times larger than that of the bulk Si. Because of the low temperature process, it enables a large variety of alien substrates such as glass and plastics to be used. In addition, the exceptional properties of the transferred NWs offer potential applications for photovoltaic, photo-detectors, sensors, and flexible electronics.

  12. Simulation of Sark Current Increase in Si PIN Photodiode Induced by Neutron Irradiation

    International Nuclear Information System (INIS)

    Wang Zujun; Chen Wei; Zhang Yong; Tang Benqi; Xiao Zhigang; Huang Shaoyao; Liu Minbo; Liu Yinong

    2010-01-01

    The mechanism of dark current increase in Si PIN photodiode induced by neutron irradiation was analyzed. The device physics and neutron irradiation models were presented to simulate dark current in Si PIN photodiode by MEDICI software. The primary regularity of dark current increase in Si PIN photodiode was concluded by neutron irradiation with the energy of 1 MeV and at the fluence of 10 10 -10 14 cm -2 . The simulation results are in agreement with the experimental results from relevant literature. (authors)

  13. Infrared surface phonon polariton waveguides on SiC Substrate

    Science.gov (United States)

    Yang, Yuchen; Manene, Franklin M.; Lail, Brian A.

    2015-08-01

    Surface plasmon polariton (SPP) waveguides harbor many potential applications at visible and near-infrared (NIR) wavelengths. However, dispersive properties of the metal in the waveguide yields weakly coupled and lossy plasmonic modes in the mid and long wave infrared range. This is one of the major reasons for the rise in popularity of surface phonon polariton (SPhP) waveguides in recent research and micro-fabrication pursuit. Silicon carbide (SiC) is a good candidate in SPhP waveguides since it has negative dielectric permittivity in the long-wave infrared (LWIR) spectral region, indicative that coupling to surface phonon polaritons is realizable. Introducing surface phonon polaritons for waveguiding provides good modal confinement and enhanced propagation length. A hybrid waveguide structure at long-wave infrared (LWIR) is demonstrated in which an eigenmode solver approach in Ansys HFSS was applied. The effect of a three layer configuration i.e., silicon wire on a benzocyclobutene (BCB) dielectric slab on SiC, and the effects of varying their dimensions on the modal field distribution and on the propagation length, is presented.

  14. Influence of substrate treatment on the growth of advanced core–shell alloys and compounds of FeSi@SiO2 and SiO2 nanowires

    CSIR Research Space (South Africa)

    Thabethe, S

    2014-12-01

    Full Text Available stream_source_info Thabethe_2014_ABSTRACT ONLY.pdf.txt stream_content_type text/plain stream_size 1199 Content-Encoding UTF-8 stream_name Thabethe_2014_ABSTRACT ONLY.pdf.txt Content-Type text/plain; charset=UTF-8 Journal... of Alloys and Compounds 616 (2014) 221–226 Influence of substrate treatment on the growth of advanced core–shell alloys and compounds of FeSi@SiO2 and SiO2 nanowires Sibongiseni Thabethe a,b, Christopher J. Arendse b, Bonex W. Mwakikunga a,c, a...

  15. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  16. Structural and optical characterization of GaN heteroepitaxial films on SiC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Morse, M. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States) and Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States)]. E-mail: michael.morse@duke.edu; Wu, P. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States); Choi, S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States); Kim, T.H. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States); Brown, A.S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States) and Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States)]. E-mail: abrown@ee.duke.edu; Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona, 4-70126 Bari (Italy); Bruno, G. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona, 4-70126 Bari (Italy)

    2006-10-31

    We have estimated the threading dislocation density and type via X-ray diffraction and Williamson-Hall analysis to elicit qualitative information directly related to the electrical and optical quality of GaN epitaxial layers grown by PAMBE on 4H- and 6H-SiC substrates. The substrate surface preparation and buffer choice, specifically: Ga flashing for SiC oxide removal, controlled nitridation of SiC, and use of AlN buffer layers all impact the resultant screw dislocation density, but do not significantly influence the edge dislocation density. We show that modification of the substrate surface strongly affects the screw dislocation density, presumably due to impact on nucleation during the initial stages of heteroepitaxy.

  17. Size- and phase-dependent mechanical properties of ultrathin Si films on polyimide substrates

    International Nuclear Information System (INIS)

    Schlich, Franziska F.; Spolenak, Ralph

    2016-01-01

    Ultrathin Si films in the nanometer range are extensively used for electronic and optoelectronic devices. Their mechanical properties have a high impact on the durability of the devices during lifetime. Here, fragmentation and buckling of 8–103 nm thin amorphous and polycrystalline (poly-) Si films on polyimide substrates have been studied by in situ light microscopy, Raman spectroscopy and resistance measurements. Generally, a smaller film thickness and a compressive residual stress delays the fracture of the film. The fracture strength of poly-Si films is larger compared to that of amorphous Si films while the adhesion to the substrate is better for amorphous Si compared to poly-Si. The onset delamination as a function of film thickness differs for the two phases and is described by two different models. Thin-film models for fracture toughness (amorphous Si: K 1C  = 1.49 ± 0.22, poly-Si: K 1C  = 3.36 ± 1.37) are applied, discussed, and found to be consistent with literature values.

  18. Self-Assembled Local Artificial Substrates of GaAs on Si Substrate

    Directory of Open Access Journals (Sweden)

    Frigeri C

    2010-01-01

    Full Text Available Abstract We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 107 to 109 cm−2. The islands show a standard deviation of base size distribution below 10% and their shape evolves changing the aspect ratio from 0.3 to 0.5 as size increases. Due to their characteristics, these islands are suitable to be used as local artificial substrates for the integration of III–V quantum nanostructures directly on silicon substrate.

  19. Synthesis of Core-Shell Si O /Carbon Nanofibers on Silicon Substrates by Ultrasonic Spray Pyrolysis

    OpenAIRE

    Zhang, Jianhui; Kishi, Naoki; Soga, Tetsuo; Jimbo, Takashi; Tanji, Takayoshi

    2012-01-01

    We synthesized the core-shell Si O /carbon nanofibers with diameters of 200–300 nm using ultrasonic spray pyrolysis with a phosphorus/ethanol mixture. High-resolution transmission electron microscopy (HRTEM) and energy-dispersive spectroscopy (EDS) investigations confirmed the core-shell structure, which consisted of a core of Si O and a shell of amorphous carbon. The phosphorus atoms corroded the entire silicon substrate surface, and the Si-P liquid-catalyzed the solid-liquid-solid mecha...

  20. Generation of silicon nanocrystals by damage free continuous wave laser annealing of substrate-bound SiO{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Fricke-Begemann, T., E-mail: fricke-begemann@llg-ev.de; Ihlemann, J. [Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen (Germany); Wang, N.; Peretzki, P.; Seibt, M. [IV. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-09-28

    Silicon nanocrystals have been generated by laser induced phase separation in SiO{sub x} films. A continuous wave laser emitting at 405 nm is focused to a 6 μm diameter spot on 530 nm thick SiO{sub x} films deposited on fused silica substrates. Irradiation of lines is accomplished by focus scanning. The samples are investigated by atomic force microscopy, TEM, Raman spectroscopy, and photoluminescence measurements. At a laser power of 35 mW corresponding to an irradiance of about 1.2 × 10{sup 5 }W/cm{sup 2}, the formation of Si-nanocrystals in the film without any deterioration of the surface is observed. At higher laser power, the central irradiated region is oxidized to SiO{sub 2} and exhibits some porous character, while the surface remains optically smooth, and nanocrystals are observed beside and beneath this oxidized region. Amorphous Si-nanoclusters are formed at lower laser power and around the lines written at high power.

  1. Nanomechanical and Macrotribological Properties of CVD-Grown Graphene as a Middle Layer between Metal Pt Cylinders and SiO2/Si Substrate

    Directory of Open Access Journals (Sweden)

    Hongyan Wu

    2015-01-01

    Full Text Available The CVD-grown graphene as a middle layer was introduced between Pt cylinders and SiO2/Si to extend the application of graphene for improving the wear performance of microelectromechanical systems. Periodic arrays of Pt cylinders were prepared on the graphene/SiO2/Si (Pt/graphene and SiO2/Si substrate (Pt/SiO2 using the magnetron sputtering technique. To characterize Pt/graphene and Pt/SiO2, nanoindentation and macrotribological tests were performed. The results showed that the friction coefficient was lower and the wear lifetime of Pt/graphene was longer than those of Pt/SiO2. Graphene, as a middle layer, was not only observed to have significant influence on the mechanical properties (i.e., microhardness and elastic modulus, but also found to improve the adhesive strength between SiO2/Si and Pt cylinders.

  2. Direct growth of graphene on SiC(0001) by KrF-excimer-laser irradiation

    Science.gov (United States)

    Hattori, Masakazu; Ikenoue, Hiroshi; Nakamura, Daisuke; Furukawa, Kazuaki; Takamura, Makoto; Hibino, Hiroki; Okada, Tatsuo

    2016-02-01

    In this report, we propose a direct patterning method of graphene on the SiC(0001) surface by KrF-excimer-laser irradiation. In this method, Si atoms are locally sublimated from the SiC surface in the laser-irradiated area, and direct graphene growth is induced by the rearrangement of surplus carbon on the SiC surface. Using Raman microscopy, we demonstrated the formation of graphene by laser irradiation and observed the growth process by transmission electron microscopy and conductive atomic force microscopy. When SiC was irradiated by 5000 shots of the laser beam with a fluence of 1.2 J/cm2, two layers of graphene were synthesized on the SiC(0001) surface. The number of graphene layers increased from 2 to 5-7 with an increase in the number of laser shots. Based on the results of conductive-atomic force microscopy measurements, we conclude that graphene formation was initiated from the step area, after which the graphene grew towards the terrace area by further Si evaporation and C recombination with increasing laser irradiation.

  3. Direct growth of graphene on SiC(0001) by KrF-excimer-laser irradiation

    International Nuclear Information System (INIS)

    Hattori, Masakazu; Ikenoue, Hiroshi; Nakamura, Daisuke; Okada, Tatsuo; Furukawa, Kazuaki; Takamura, Makoto; Hibino, Hiroki

    2016-01-01

    In this report, we propose a direct patterning method of graphene on the SiC(0001) surface by KrF-excimer-laser irradiation. In this method, Si atoms are locally sublimated from the SiC surface in the laser-irradiated area, and direct graphene growth is induced by the rearrangement of surplus carbon on the SiC surface. Using Raman microscopy, we demonstrated the formation of graphene by laser irradiation and observed the growth process by transmission electron microscopy and conductive atomic force microscopy. When SiC was irradiated by 5000 shots of the laser beam with a fluence of 1.2 J/cm 2 , two layers of graphene were synthesized on the SiC(0001) surface. The number of graphene layers increased from 2 to 5–7 with an increase in the number of laser shots. Based on the results of conductive-atomic force microscopy measurements, we conclude that graphene formation was initiated from the step area, after which the graphene grew towards the terrace area by further Si evaporation and C recombination with increasing laser irradiation.

  4. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    Science.gov (United States)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

  5. Low temperature and rapid deposition of ZnO nanorods on Si(100) substrate with tunable optical emissions

    International Nuclear Information System (INIS)

    Brahma, Sanjaya; Huang, J.-L.; Liu, C.P.; Kukreja, L.M.; Shivashankar, S.A.

    2013-01-01

    This research article describes the large scale fabrication of ZnO nanorods of various shapes on Si(100) substrate, by using metalorganic precursor of Zn in solutions with microwave as the source of energy. This is a low temperature, environmental friendly and rapid thin film deposition process, where ZnO nanorods (1–3 μm length) were grown only in 1–5 min of microwave irradiation. All as-synthesized nanorods are of single crystalline grown along the crystallographic direction. The coated nanorods were found to be highly dense having a thickness of ∼1–3 μm over the entire area 20 mm × 20 mm of the substrate. The ZnO thin film comprising of nanorods exhibits good adhesion with the substrate. A possible mechanism for the initial nucleation and growth of ZnO is discussed. A cross over from a strong visible light emission to an enhanced UV emission is observed, when the nature of the surfactants are varied from polymeric to ionic and nonionic. The position of the chromaticity coordinates in yellow region of the color space gives an impression of white light generation from these coatings by exciting with a blue laser. - Graphical abstract: White light emission from ZnO nanorods deposited on Si(100) substrate excited by a blue laser. Display Omitted - Highlights: • ZnO coatings (1–3 μm) were achieved quickly (1–5 min) by a simple microwave process. • The coatings are uniform having high density of nucleation and excellent growth rate. • Luminescence could be tuned from strong visible light emission to an enhanced UV emission. • White light emission could be achieved from these ZnO coatings

  6. Low temperature and rapid deposition of ZnO nanorods on Si(100) substrate with tunable optical emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brahma, Sanjaya, E-mail: sanjayaphysics@gmail.com [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Huang, J.-L.; Liu, C.P. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Kukreja, L.M. [Raja Ramanna Center for Advanced Technology, Indore 452013 (India); Shivashankar, S.A. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2013-07-15

    This research article describes the large scale fabrication of ZnO nanorods of various shapes on Si(100) substrate, by using metalorganic precursor of Zn in solutions with microwave as the source of energy. This is a low temperature, environmental friendly and rapid thin film deposition process, where ZnO nanorods (1–3 μm length) were grown only in 1–5 min of microwave irradiation. All as-synthesized nanorods are of single crystalline grown along the <0001> crystallographic direction. The coated nanorods were found to be highly dense having a thickness of ∼1–3 μm over the entire area 20 mm × 20 mm of the substrate. The ZnO thin film comprising of nanorods exhibits good adhesion with the substrate. A possible mechanism for the initial nucleation and growth of ZnO is discussed. A cross over from a strong visible light emission to an enhanced UV emission is observed, when the nature of the surfactants are varied from polymeric to ionic and nonionic. The position of the chromaticity coordinates in yellow region of the color space gives an impression of white light generation from these coatings by exciting with a blue laser. - Graphical abstract: White light emission from ZnO nanorods deposited on Si(100) substrate excited by a blue laser. Display Omitted - Highlights: • ZnO coatings (1–3 μm) were achieved quickly (1–5 min) by a simple microwave process. • The coatings are uniform having high density of nucleation and excellent growth rate. • Luminescence could be tuned from strong visible light emission to an enhanced UV emission. • White light emission could be achieved from these ZnO coatings.

  7. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao [ORNL; Katoh, Yutai [ORNL; Snead, Lance Lewis [ORNL; Steinbeck, John [ORNL

    2013-01-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/ mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  8. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao, E-mail: shihc@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Katoh, Yutai, E-mail: katohy@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Snead, Lance L., E-mail: sneadll@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Steinbeck, John, E-mail: jws@psicorp.com [Physical Science Inc., Andover MA (United States)

    2013-08-15

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (−54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  9. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Science.gov (United States)

    Shih, Chunghao; Katoh, Yutai; Snead, Lance L.; Steinbeck, John

    2013-08-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (-54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  10. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    International Nuclear Information System (INIS)

    Shih, Chunghao; Katoh, Yutai; Snead, Lance L.; Steinbeck, John

    2013-01-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (−54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material

  11. The post-annealing environment effect on the photoluminescence recovery of ion-irradiated Si nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sias, U.S. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil) and Centro Federal de Educacao Tecnologica de Pelotas (CEFET-RS), 96015-370 Pelotas, RS (Brazil)]. E-mail: uilson@cefetrs.tche.br; Behar, M. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil); Boudinov, H. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil); Moreira, E.C. [UFPel - UNIPAMPA, Campus Bage, 96400-970 Bage, RS (Brazil)

    2007-04-15

    In the present work we have investigated the influence of the post-annealing environment on the photoluminescence (PL) recovery of Si nanocrystals after ion irradiation. Samples originally produced by Si implantation into SiO{sub 2} matrix at 600 deg. C post-annealed at 1100 deg. C were further bombarded with 2 MeV Si{sup +}, at a fluence of {phi} = 2 x 10{sup 13} Si/cm{sup 2}. After irradiation the original emission, composed by two PL bands, was completely quenched. We shown that the environment of a post-annealing performed at 900 deg. C has a strong effect on the PL emission recovery. The intensity and shape of the PL spectra have revealed to be dependent of the annealing gas (N{sub 2} or Ar), annealing time, as well as the original Si excess. The results are explained on the basis of current theories.

  12. Amorphous carbon film growth on Si: Correlation between stress and generation of defects into the substrate

    International Nuclear Information System (INIS)

    Brusa, R.S.; Macchi, C.; Mariazzi, S.; Karwasz, G.P.; Laidani, N.; Bartali, R.; Anderle, M.

    2005-01-01

    Amorphous carbon films of several thicknesses were prepared by graphite sputtering on crystalline silicon substrate. The samples were depth profiled with positron annihilation spectroscopy for open-volume measurements and characterized for their residual internal stress. It was found that after film growth the substrate presents vacancy-like defects decorated by oxygen in a layer extending in the substrate by several tens of nanometers beyond the film/Si interface. The width of the defected layer and the decoration of vacancy-like defects are directly and inversely proportional to the measured intensity of the residual stress, respectively. These findings indicate the existence of a relaxation mechanism of the stress in the films that involves deeply the substrate. The decorated vacancy-like defects are suggested to be bounded to dislocations induced in the substrate by the stress relaxation

  13. Direct evidence of strain transfer for InAs island growth on compliant Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Marçal, L. A. B.; Magalhães-Paniago, R.; Malachias, Angelo, E-mail: angeloms@fisica.ufmg.br [Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, CEP 31270-901, Belo Horizonte (Brazil); Richard, M.-I. [European Synchrotron (ESRF), ID01 beamline, CS 40220, 38043 Grenoble Cedex 9 (France); Aix-Marseille University, IM2NP-CNRS, Faculté des Sciences de St Jérôme, 13397 Marseille (France); Cavallo, F. [Center for High Technology Materials, University of New Mexico, 1313 Goddard St., Albuquerque, New Mexico 87106 (United States); University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Lagally, M. G. [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Schmidt, O. G. [Institute for Integrative Nanosciences, IFW-Dresden, D-01171 Dresden (Germany); Schülli, T. Ü. [European Synchrotron (ESRF), ID01 beamline, CS 40220, 38043 Grenoble Cedex 9 (France); Deneke, Ch. [Laboratório Nacional de Nanotecnologia (LNNano/CNPEM), C.P. 6192, CEP 13083-970, Campinas (Brazil)

    2015-04-13

    Semiconductor heteroepitaxy on top of thin compliant layers has been explored as a path to make inorganic electronics mechanically flexible as well as to integrate materials that cannot be grown directly on rigid substrates. Here, we show direct evidences of strain transfer for InAs islands on freestanding Si thin films (7 nm). Synchrotron X-ray diffraction measurements using a beam size of 300 × 700 nm{sup 2} can directly probe the strain status of the compliant substrate underneath deposited islands. Using a recently developed diffraction mapping technique, three-dimensional reciprocal space maps were reconstructed around the Si (004) peak for specific illuminated positions of the sample. The strain retrieved was analyzed using continuous elasticity theory via Finite-element simulations. The comparison of experiment and simulations yields the amount of strain from the InAs islands, which is transferred to the compliant Si thin film.

  14. Fabrication of Si3N4 thin films on phynox alloy substrates for electronic applications

    Science.gov (United States)

    Shankernath, V.; Naidu, K. Lakshun; Krishna, M. Ghanashyam; Padmanabhan, K. A.

    2018-04-01

    Thin films of Si3N4 are deposited on Phynox alloy substrates using radio frequency magnetron sputtering. The thickness of the films was varied between 80-150 nm by increasing the duration of deposition from 1 to 3 h at a fixed power density and working pressure. X-ray diffraction patterns reveal that the Si3N4 films had crystallized inspite of the substrates not being heated during deposition. This was confirmed using selected area electron diffraction and high resolution transmission electron microscopy also. It is postulated that a low lattice misfit between Si3N4 and Phynox provides energetically favourable conditions for ambient temperature crystallization. The hardness of the films is of the order of 6 to 9 GPa.

  15. Characterization of Thermal Oxides on 4H-SiC Epitaxial Substrates Using Fourier-Transform Infrared Spectroscopy.

    Science.gov (United States)

    Seki, Hirofumi; Yoshikawa, Masanobu; Kobayashi, Takuma; Kimoto, Tsunenobu; Ozaki, Yukihiro

    2017-05-01

    Fourier transform infrared (FT-IR) spectra were measured for thermal oxides with different electrical properties grown on 4H-SiC substrates. The peak frequency of the transverse optical (TO) phonon mode was blue-shifted by 5 cm -1 as the oxide-layer thickness decreased to 3 nm. The blue shift of the TO mode indicates interfacial compressive stress in the oxide. Comparison of data for the oxide on a SiC substrate with that for similar oxides on a Si substrate implies that the peak shift of the TO mode at the SiO 2 /SiC interface is larger than that of SiO 2 /Si, which suggests that the interfacial stress for the oxide on the SiC substrate is larger than that on the Si substrate. For the SiO 2 /SiC interfacial region (Fourier transform infrared spectroscopy measurements provide unique and useful information about stress and inhomogeneity at the oxide/SiC interface.

  16. Light trapping characteristics of glass substrate with hemisphere pit arrays in thin film Si solar cells

    International Nuclear Information System (INIS)

    Chen Le; Wang Qing-Kang; Wangyang Pei-Hua; Huang Kun; Shen Xiang-Qian

    2015-01-01

    In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass substrate has good antireflection properties. Its surface reflectance can be reduced by ∼ 50% compared with planar glass. The HP arrays can make the unabsorbed light return to the absorbing layer of solar cells, and the ratio of second absorption approximately equals 30%. Thus, the glass substrate with the hemisphere pit arrays (HP glass) can effectively reduce the total reflectivity of a solar cell from 20% to 13%. The HP glass can also prolong the optical path length. The numerical results show that the total optical path length of the thin film Si solar cell covered with the HP glass increases from 2ω to 4ω. These results are basically consistent with the experimental results. (paper)

  17. Growth and characterization of epitaxial layers of Ge on Si substrates

    International Nuclear Information System (INIS)

    Fathy, D.; White, C.W.; Holland, O.W.

    1987-03-01

    Thin single crystalline layers of Ge with atomically sharp boundaries have been formed epitaxially on (100) Si substrates. This was done by 74 Ge ion implantation into Si followed by steam oxidation. Using both Rutherford backscattering spectroscopy (RBS) and transmission electron microscopy (TEM), we have found that a Ge layer forms as a result of Ge segregated at the moving SiO 2 interface during steam oxidation. For a SiO 2 layer that has swept through the implanted region, essentially all of the Ge is snow-ploughed and no Ge is lost to the oxide layer. The Ge layers and its two bounding interfaces, i.e., Ge/SiO 2 and Ge/Si, have been characterized as a function of the implantation dose and energy. The thickness of the Ge layer formed is dependent on the implantation dose. Thicknesses from a fraction of a monolayer to greater than 50 monolayers of Ge can be formed on Si by this mechanism. Initially the Ge layer forms a coherent interface with the underlying Si with no misfit dislocations, and misfit dislocations only appear as the thickness of the film is increased

  18. Influence of neutron irradiation on etching of SiC in KOH

    Science.gov (United States)

    Mokhov, E. N.; Kazarova, O. P.; Soltamov, V. A.; Nagalyuk, S. S.

    2017-07-01

    The effect of reactor neutron irradiation on the etch rate of SiC in potassium hydroxide has been studied. In the case of high irradiation doses (1019-1021 cm-2), the etch rate of silicon carbide has been shown to drastically rise, especially in the [0001]Si direction. This considerably mitigates the orientation anisotropy of polar face etching. After high-temperature annealing (up to 1200-1400°C), a higher etch rate of irradiated crystals persists. The results have been explained by the high concentration of radiation-induced (partially clustered) defects they contain.

  19. Defects in electron irradiated vitreous SiO2 probed by positron annihiliation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao; Itoh, Hisayoshi

    1994-01-01

    Defects in 3 MeV electron irradiated vitreous SiO 2 (v-SiO 2 ) were probed by the positron annihilation technique. For unirradiated v-SiO 2 specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author)

  20. Defects in electron irradiated vitreous SiO[sub 2] probed by positron annihiliation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro (Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science); Kawano, Takao (Tsukuba Univ., Ibaraki (Japan). Radioisotope Centre); Itoh, Hisayoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1994-10-10

    Defects in 3 MeV electron irradiated vitreous SiO[sub 2] (v-SiO[sub 2]) were probed by the positron annihilation technique. For unirradiated v-SiO[sub 2] specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author).

  1. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  2. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1997-05-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  3. 125 MeV Si 9+ ion irradiation of calcium phosphate thin film coated by rf-magnetron sputtering technique

    Science.gov (United States)

    Elayaraja, K.; Joshy, M. I. Ahymah; Suganthi, R. V.; Kalkura, S. Narayana; Palanichamy, M.; Ashok, M.; Sivakumar, V. V.; Kulriya, P. K.; Sulania, I.; Kanjilal, D.; Asokan, K.

    2011-01-01

    Titanium substrate was coated with hydroxyapatite by radiofrequency magnetron sputtering (rf-magnetron sputtering) technique and subjected to swift heavy ion (SHI) irradiation of 125 MeV with Si 9+ at fluences of 1 × 10 10, 1 × 10 11 and 1 × 10 12 ions/cm 2. The glancing incidence X-ray diffraction (GIXRD) analysis confirmed the HAp phase of the irradiated film. There was a considerable decrease in crystallinity and particle size after irradiation. In addition, DRS-UV reflectance spectra revealed a decrease in optical band gap ( Eg) from 5.2 to 4.6 eV. Wettability of biocompatible materials plays an important role in biological cells proliferation for tissue engineering, drug delivery, gene transfer and bone growth. HAp thin films irradiated with 1 × 10 11 ions/cm 2 fluence showed significant increase in wettability. While the SHI irradiated samples exhibited enhanced bioactivity, there was no significant variation in cell viability. Surface roughness, pores and average particle size were analyzed by atomic force microscopy (AFM).

  4. Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics

    International Nuclear Information System (INIS)

    Tanimura, Y.; Iida, T.

    1998-01-01

    In order to examine the difference in the irradiation effects on Si devices between DT and DD neutrons, CCD image sensors, memory ICs and a Si detector were irradiated with neutrons from a deuteron accelerator. The transient effects (i.e. neutron-induced background noises) and permanent effects (i.e. neutron damage) on them were in situ measured during irradiation. Regarding the transient effects, brightening spot noises, soft-error upsets and induced-charge noises were measured for the CCDs, memory ICs and Si detector, respectively. As for the permanent effect, the number of damaged cells of the CCDs and the leakage current of the Si detector increased with neutron fluence. Also we developed a Monte-Carlo code with the TRIM code to evaluate the correlation of DT and DD neutron effects on Si devices. The calculated correlation factor of DT and DD neutron damage for Si devices agreed approximately with the correlation factor obtained from the irradiation experiments on the CCDs and Si detector. (orig.)

  5. Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics

    Science.gov (United States)

    Tanimura, Yoshihiko; Iida, Toshiyuki

    1998-10-01

    In order to examine the difference in the irradiation effects on Si devices between DT and DD neutrons, CCD image sensors, memory ICs and a Si detector were irradiated with neutrons from a deuteron accelerator. The transient effects (i.e. neutron-induced background noises) and permanent effects (i.e. neutron damage) on them were in situ measured during irradiation. Regarding the transient effects, brightening spot noises, soft-error upsets and induced-charge noises were measured for the CCDs, memory ICs and Si detector, respectively. As for the permanent effect, the number of damaged cells of the CCDs and the leakage current of the Si detector increased with neutron fluence. Also we developed a Monte-Carlo code with the TRIM code to evaluate the correlation of DT and DD neutron effects on Si devices. The calculated correlation factor of DT and DD neutron damage for Si devices agreed approximately with the correlation factor obtained from the irradiation experiments on the CCDs and Si detector.

  6. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis

    Science.gov (United States)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-05-01

    Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6 J mice were exposed to 0.3, 0.6 and 0.9 Gy 28Si (600 MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.

  7. 2D device-level simulation study of strained-Si pnp heterojunction bipolar transistors on virtual substrates

    Science.gov (United States)

    Jankovic, N. D.; O'Neill, A.

    2004-02-01

    A novel strained-Si pnp heterojunction bipolar transistor (HBT) design, suitable for virtual substrate technology, is proposed that is inherently free from the detrimental valence band barrier effects usually encountered in conventional SiGe pnp HBTs on silicon. It takes advantage of the heterojunction formed between a strained-Si layer and a relaxed SiGe buffer (virtual substrate), whose associated valence band offset appears favorable for minority hole transport at the base/collector junction. From two-dimensional (2D) numerical simulation, it is found that the newly proposed strained-Si pnp HBT substantially outperforms the equivalent BJT on a silicon substrate in terms of DC and high-frequency characteristics. A threefold increase in maximum current gain β, a fourfold improvement in peak ft and a 2.5 times increase in peak fmax are predicted for strained-Si pnp HBTs on a 50% Ge virtual substrate in comparison with identical conventional silicon pnp BJTs.

  8. Enhanced lateral heat dissipation packaging structure for GaN HEMTs on Si substrate

    International Nuclear Information System (INIS)

    Cheng, Stone; Chou, Po-Chien; Chieng, Wei-Hua; Chang, E.Y.

    2013-01-01

    This work presents a technology for packaging AlGaN/GaN high electron mobility transistors (HEMTs) on a Si substrate. The GaN HEMTs are attached to a V-groove copper base and mounted on a TO-3P leadframe. The various thermal paths from the GaN gate junction to the case are carried out for heat dissipation by spreading to protective coating; transferring through the bond wires; spreading in the lateral device structure through the adhesive layer, and vertical heat spreading of silicon chip bottom. Thermal characterization showed a thermal resistance of 13.72 °C/W from the device to the TO-3P package. Experimental tests of a 30 mm gate-periphery single chip packaged in a 5 × 3 mm V-groove Cu base with a 100 V drain bias showed power dissipation of 22 W. -- Highlights: ► An enhanced packaging structure designed for AlGaN/GaN HEMTs on an Si substrate. ► The V-groove copper base is designed on the device periphery surface heat conduction for enhancing Si substrate thermal dissipation. ► The proposed device shows a lower thermal resistance and upgrade in thermal conductivity capability. ► This work provides useful thermal IR imagery information to aid in designing high efficiency package for GaN HEMTs on Si

  9. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  10. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab

  11. Wear-corrosion performance of Si-DLC coatings on Ti-6Al-4V substrate.

    Science.gov (United States)

    Kim, Jung-Gu; Lee, Kwang-Ryeol; Yang, Seok-Jo

    2008-07-01

    Si-incorporated diamond-like carbon (Si-DLC) coatings ranging from 0 to 2 at % Si were deposited on Ti-alloy substrate by means of radio frequency plasma-assisted chemical vapor deposition (r.f. PACVD) technique, using a mixture of benzene (C(6)H(6)) and silane (SiH(4)) as the reaction gas. The synergy in wear and corrosion of Si-DLC coatings was investigated by tribological and electrochemical techniques. The electrolyte used in this test to simulate the corrosive environment of body fluid was a 0.89 wt % NaCl solution of pH 7.4 at 37 degrees C. This study provides quantitative data for the assessment of the effect of Si incorporation on the synergistic effect between wear and corrosion in the simulated body fluid environment. In conclusion, tribological and electrochemical measurements showed that the Si-DLC films could improve wear-corrosion resistance in the simulated body fluid environment owing to the lower friction coefficient, corrosion rate, delamination area, and water uptake. (c) 2007 Wiley Periodicals, Inc.

  12. Stress-directed compositional patterning of SiGe substrates for lateral quantum barrier manipulation

    International Nuclear Information System (INIS)

    Ghosh, Swapnadip; Kaiser, Daniel; Sinno, Talid; Bonilla, Jose; Han, Sang M.

    2015-01-01

    While vertical stacking of quantum well and dot structures is well established in heteroepitaxial semiconductor materials, manipulation of quantum barriers in the lateral directions poses a significant engineering challenge. Here, we demonstrate lateral quantum barrier manipulation in a crystalline SiGe alloy using structured mechanical fields to drive compositional redistribution. To apply stress, we make use of a nano-indenter array that is pressed against a Si 0.8 Ge 0.2 wafer in a custom-made mechanical press. The entire assembly is then annealed at high temperatures, during which the larger Ge atoms are selectively driven away from areas of compressive stress. Compositional analysis of the SiGe substrates reveals that this approach leads to a transfer of the indenter array pattern to the near-surface elemental composition, resulting in near 100% Si regions underneath each indenter that are separated from each other by the surrounding Si 0.8 Ge 0.2 bulk. The “stress transfer” process is studied in detail using multiscale computer simulations that demonstrate its robustness across a wide range of applied stresses and annealing temperatures. While the “Si nanodot” structures formed here are not intrinsically useful as quantum structures, it is anticipated that the stress transfer process may be modified by judicious control of the SiGe film thickness and indenter array pattern to form more technologically useful structures

  13. Tribology of silicon-thin-film-coated SiC ceramics and the effects of high energy ion irradiation

    International Nuclear Information System (INIS)

    Kohzaki, Masao; Noda, Shoji; Doi, Harua

    1990-01-01

    The sliding friction coefficients and specific wear of SiC ceramics coated with a silicon thin film (Si/SiC) with and without subsequent Ar + irradiation against a diamond pin were measured with a pin-on-disk tester at room temperature in laboratory air of approximately 50% relative humidity without oil lubrication for 40 h. The friction coefficient of Ar + -irradiated Si/SiC was about 0.05 with a normal load of 9.8 N and remained almost unchanged during the 40 h test, while that of SiC increased from 0.04 to 0.12 during the test. The silicon deposition also reduced the specific wear of SiC to less than one tenth of that of the uncoated SiC. Effectively no wear was detected in Si/SiC irradiated to doses of over 2x10 16 ions cm -2 . (orig.)

  14. Post-irradiation mechanical properties of an AlMgSi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Z.H. [Atomic Energy Commission, Cairo (Egypt). Dept. of Metall.; Birt, B. [Atomic Energy Commission, Cairo (Egypt). Dept. of Metall.

    1995-03-01

    The effect of fast-neutron irradiation on the tensile properties and hardness of the age-hardenable alloy AlMgSi is investigated. Post-irradiation tensile tests are carried out in the temperature range 298 to 628 K. The results show that the degree of irradiation-produced hardening is dependent upon the initial condition of the alloy. The alloy in its soft condition exhibits a higher degree of irradiation hardening compared with that in the hard condition. The implication of the results is discussed in terms of the variation in the microstructures involved and compared with previosly published data. ((orig.))

  15. Immobilization of cellulose producing cells (sporotrichum cellulophilum) using irradiated rice husk as a substrate

    International Nuclear Information System (INIS)

    Lina, M.R.; Tamada, M.; Kumakura, M.

    1991-01-01

    An experiment to study the effect of irradiated rice husk as a substrate on cellulase production of free and immobilized cells of S. cellulophium was carried out. Radiation pretreatment of rice husk was done using electron beam accelerator (Dynamitron IEA 3000-25,2), with doses of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 MGy. The substrate used in cellulase production of free and immobilized cells were cellulose powder as a standard, and 1.0 MGy irradiated rice husk. Concentrations of cellulose powder for free and immobilized cells were 1, 2, 3, 5, and 8% (w/v). Irradiated rice husk concentrations for free cells were 3, 6, 9, 15, and 24% (w/v), whereas for immobilized cells were 3, 6, and 9% (w/v). Results showed that glucose concentration in 1.0 MGy irradiated rice husk was the highest of all irradiated and unirradiated rice husks. The GPA (glucose production activity) values used of free immobilized cells of S. cellulophium in medium containing 1.0 MGy irradiated rice husk were about 50% lower than in cellulose powder medium. Cellulase solution resulted by immobilized cells, either in cellulose powder or in irradiated rice husk media, were clear and did not contain mycelium. (authors). 7 refs, 7 figs

  16. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    Science.gov (United States)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-08-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.

  17. The Co-60 gamma-ray irradiation effects on the Al/HfSiO4/p-Si/Al MOS capacitors

    Science.gov (United States)

    Lok, R.; Kaya, S.; Karacali, H.; Yilmaz, E.

    2017-12-01

    In this work, the initial interface trap density (Nit) to examine device compability for microelectronics and then the Co-60 gamma irradiation responses of Al/HfSiO4/p-Si/Al (MOS) capacitors were investigated in various dose ranges up to 70 Gy. Pre-irradiation response of the devices was evaluated from high frequency (HF) and low frequency (LF) capacitance method and the Nit was calculated as 9.91 × 1011 cm-2 which shows that the HfSiO4/p-Si interface quality is convenient for microelectronics applications. The irradiation responses of the devices were carried out from flat-band and mid-gap voltage shifts obtained from stretch of capacitance characteristics prior to and after irradiation. The results show that the flat band voltages very slightly shifted to positive voltage values demonstrating the enhancement of negative charge trapping in device structure. The sensitivity of the Al/HfSiO4/p-Si/Al MOS capacitors was found to be 4.41 mV/Gy for 300 nm-thick HfSiO4 gate dielectrics. This value approximately 6.5 times smaller compared to the same thickness conventional SiO2 based MOS devices. Therefore, HfSiO4 exhibits crucial irradiation tolerance in gamma irradiation environment. Consequently, HfSiO4 dielectrics may have significant usage for microelectronic technology as a radiation hard material where radiation field exists such as in space applications.

  18. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes

    Science.gov (United States)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.

    2018-04-01

    Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.

  19. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    International Nuclear Information System (INIS)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-01-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth. - Highlights: ► Electron beam irradiation is effective against soil-borne pathogens. ► Application of irradiation at dose 1.5 kGy completely inhibited in vitro development of Phytophthora cinnamomi. ► Irradiation of horticultural substrata did not influence the growth of plants.

  20. Moisture barrier evaluation of SiO{sub x}/SiN{sub x} stacks on polyimide substrates using electrical calcium test

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiyu; Xue, Wei; Yu, Zhinong, E-mail: znyu@bit.edu.cn

    2015-04-01

    Electrical calcium (Ca) test was used to measure water vapor transmission rate (WVTR) through polyimide (PI) substrate with barrier films. The WVTR was obtained by measuring the resistance of the Ca as a function of time. Barrier films consisted of silicon oxide (SiO{sub x})/silicon nitride (SiN{sub x}) stacks were consecutively deposited onto the PI substrate at 350 °C by plasma-enhanced chemical vapor deposition. SiN{sub x} and SiO{sub x} films show great moisture impermeability while the SiN{sub x} film presented higher moisture resistance than the SiO{sub x} film. The sample of PI coated with SiO{sub x}/SiN{sub x} stacks was kept flat by stress compensation of SiN{sub x} film and SiO{sub x} film. The WVTR value of the optimum barrier structure (5 pairs of SiO{sub x}/SiN{sub x}) is 5.58 × 10{sup −6} g/(m{sup 2} day) under an electrical Ca test (25 °C, 40% relative humidity). After 500 times cyclic bending in a compressive mode, WVTR value keeps below 4.32 × 10{sup −5} g/(m{sup 2} day). The SiO{sub x}/SiN{sub x} barrier stacks presented on PI have a great potential for flexible electronics applications. - Highlights: • The electrical Ca test was used to measure water vapor transmission rate. • SiO{sub x}/SiN{sub x} stacks as diffusion barrier of water vapor are effective. • The optimum barrier structure is 5 pairs of SiO{sub x}/SiN{sub x}.

  1. Crystallographically tilted and partially strain relaxed GaN grown on inclined (111) facets etched on Si(100) substrate

    International Nuclear Information System (INIS)

    Ansah Antwi, K. K.; Soh, C. B.; Wee, Q.; Tan, Rayson J. N.; Tan, H. R.; Yang, P.; Sun, L. F.; Shen, Z. X.; Chua, S. J.

    2013-01-01

    High resolution X-ray diffractometry (HR-XRD), Photoluminescence, Raman spectroscopy, and Transmission electron microscope measurements are reported for GaN deposited on a conventional Si(111) substrate and on the (111) facets etched on a Si(100) substrate. HR-XRD reciprocal space mappings showed that the GaN(0002) plane is tilted by about 0.63° ± 0.02° away from the exposed Si(111) growth surface for GaN deposited on the patterned Si(100) substrate, while no observable tilt existed between the GaN(0002) and Si(111) planes for GaN deposited on the conventional Si(111) substrate. The ratio of integrated intensities of the yellow to near band edge (NBE) luminescence (I YL /I NBE ) was determined to be about one order of magnitude lower in the case of GaN deposited on the patterned Si(100) substrate compared with GaN deposited on the conventional Si(111) substrate. The Raman E 2 (high) optical phonon mode at 565.224 ± 0.001 cm −1 with a narrow full width at half maximum of 1.526 ± 0.002 cm −1 was measured, for GaN deposited on the patterned Si(100) indicating high material quality. GaN deposition within the trench etched on the Si(100) substrate occurred via diffusion and mass-transport limited mechanism. This resulted in a differential GaN layer thickness from the top (i.e., 1.8 μm) of the trench to the bottom (i.e., 0.3 μm) of the trench. Mixed-type dislocation constituted about 80% of the total dislocations in the GaN grown on the inclined Si(111) surface etched on Si(100)

  2. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres

    Science.gov (United States)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.

    2018-05-01

    The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.

  3. Determination of He and D permeability of neutron-irradiated SiC tubes to examine the potential for release due to micro-cracking

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    is manifested by the un-detectable deuterium permeation flux at various feeding gas pressures. A large helium leakage rate was detected for the uncoated SiC/SiC composite tube exposed to atmosphere, indicating it is inherently not hermetic. The hermeticity of coated SiC/SiC composite tubes is strongly dependent on the coating materials and the preparation of the substrate SiC/SiC composite samples. To simulate the practical application environment, monolithic CVD SiC tubes were exposed to neutron irradiation at the High Flux Isotope Reactor under high heat flux from the internal surface to the external surface. Although finite element analysis and resonant ultrasound spectroscopy measurement indicated that the combined neutron irradiation and high heat flux gave rise to a high probability of cracking within the sample, the hermeticity evaluation of the tested sample still exhibited gas tightness, emphasizing that SiC cracking is inherently a statistical phenomenon. The developed permeation testing station is capable of measuring the gas permeation flux in the range of interest with full confidence based on the presented results. It is considered a critical pre- /post-irradiation examination technique to characterize SiC-based cladding materials in asreceived and irradiated states to aid the research and development of ATF.

  4. Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates

    Directory of Open Access Journals (Sweden)

    D.H. Minh

    2016-03-01

    Full Text Available In a ferroelectric-gate thin film transistor memory (FGT type structure, the gate-insulator layer is extremely important for inducing the charge when accumulating or depleting. We concentrated on the application of low-temperature PZT films crystallized at 450, 500 and 550 °C, instead of at conventional high temperatures (≥600 °C. Investigation of the crystalline structure and electrical properties indicated that the PZT film, crystallized at 500 °C, was suitable for FGT fabrication because of a high (111 orientation, large remnant polarization of 38 μC/cm2 on SiO2/Si substrate and 17.8 μC/cm2 on glass, and low leakage current of 10−6 A/cm2. In sequence, we successfully fabricated FGT with all processes below 500 °C on a glass substrate, whose operation exhibits a memory window of 4 V, ON/OFF current ratio of 105, field-effect mobility of 0.092 cm2 V−1 s−1, and retention time of 1 h.

  5. Si-nanoparticle synthesis using ion implantation and MeV ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chulapakorn, T.; Wolff, M.; Primetzhofer, D.; Possnert, G. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Sychugov, I.; Suvanam, S.S.; Linnros, J. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden); Hallen, A. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Royal Institute of Technology, School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden)

    2015-12-15

    A dielectric matrix with embedded Si-nanoparticles may show strong luminescence depending on nanoparticles size, surface properties, Si-excess concentration and matrix type. Ion implantation of Si ions with energies of a few tens to hundreds of keV in a SiO{sub 2} matrix followed by thermal annealing was identified as a powerful method to form such nanoparticles. The aim of the present work is to optimize the synthesis of Si-nanoparticles produced by ion implantation in SiO{sub 2} by employing MeV ion irradiation as an additional annealing process. The luminescence properties are measured by spectrally resolved photoluminescence including PL lifetime measurement, while X-ray reflectometry, atomic force microscopy and ion beam analysis are used to characterize the nanoparticle formation process. The results show that the samples implanted at 20%-Si excess atomic concentration display the highest luminescence and that irradiation of 36 MeV {sup 127}I ions affects the luminosity in terms of wavelength and intensity. It is also demonstrated that the nanoparticle luminescence lifetime decreases as a function of irradiation fluence. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    Science.gov (United States)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.

    2017-02-01

    The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  7. XRD analysis of strained Ge-SiGe heterostructures on relaxed SiGe graded buffers grown by hybrid epitaxy on Si(0 0 1) substrates

    International Nuclear Information System (INIS)

    Franco, N.; Barradas, N.P.; Alves, E.; Vallera, A.M.; Morris, R.J.H.; Mironov, O.A.; Parker, E.H.C.

    2005-01-01

    Ge/Si 1-x Ge x inverted modulation doped heterostructures with Ge channel thickness of 16 and 20 nm were grown by a method of hybrid epitaxy followed by ex situ annealing at 650 deg. C for p-HMOS application. The thicker layers of the virtual substrate (6000 nm graded SiGe up to x = 0.6 and 1000 nm uniform composition with x = 0.6) were produced by ultrahigh vacuum chemical vapor deposition (UHV-CVD) while the thinner, Si(2 nm)-SiGe(20 nm)-Ge-SiGe(15 nm + 5 nm B-doped + 20 nm) active layers were grown by low temperature solid-source (LT-SS) MBE at T = 350 deg. C. As-grown and annealed samples were measured by X-ray diffraction (XRD). Reciprocal space maps (RSMs) allowed us to determine non-destructively the precise composition (∼1%) and strain of the Ge channel, along with similar information regarding the other layers that made up the whole structure. Layer thickness was determined with complementary high-resolution Rutherford backscattering (RBS) experiments

  8. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates.

    Science.gov (United States)

    López, Gema; Ortega, Pablo R; Voz, Cristóbal; Martín, Isidro; Colina, Mónica; Morales, Anna B; Orpella, Albert; Alcubilla, Ramón

    2013-01-01

    The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300-1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450-1000 nm.

  9. Residual carrier density in GaSb grown on Si substrates

    International Nuclear Information System (INIS)

    Akahane, Kouichi; Yamamoto, Naokatsu; Gozu, Shin-ichiro; Ueta, Akio; Ohtani, Naoki

    2006-01-01

    The relationships between the densities of residual carriers and those of dislocation in GaSb films grown on Si substrates were investigated. Dislocation density was evaluated by cross-sectional transmission electron microscopy (TEM). The TEM images indicated that the dislocation density after a 5-μm-thick GaSb film was grown was below 1 x 10 8 /cm 2 although the density near the interface between the Si substrate and the GaSb film was about 3 x 10 9 /cm 2 . Forming a dislocation loop by growing a thick GaSb layer may decrease the dislocation density. The density and mobility of the residual carrier were investigated by Hall measurement using the van der Pauw method. The residual carriers in GaSb grown on Si substrates were holes, and their densities decreased significantly from 4.2 x 10 18 to 1.4 x 10 17 /cm 3 as GaSb thickness was increased from 500 to 5500 nm

  10. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.; Känel, H. von [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Isa, F.; Isella, G. [L-NESS, Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Salvalaglio, M.; Miglio, L. [L-NESS, Department of Materials Science, Università di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Wewior, L.; Fuster, D.; Alén, B. [IMM, Instituto de Microelectrónica de Madrid (CNM, CSIC), C/Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Richter, M.; Uccelli, E. [Functional Materials Group, IBM Research-Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Niedermann, P.; Neels, A.; Dommann, A. [Centre Suisse d' Electronique et Microtechnique, Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Mancarella, F. [CNR-IMM of Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-01-13

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.

  11. BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

    Directory of Open Access Journals (Sweden)

    Hamsakutty Vettikalladi

    2013-01-01

    Full Text Available A benzocyclobutene (BCB silicon (Si based wideband antenna for millimeter wave applications is presented. The antenna consists of multilayer with one layer of BCB and the remaining three layers of Si. A patch is etched on the Si substrate above the air gap, which is excited through a slot. This architecture of slot, air gap, and patch will produce wide bandwidth by merging each one of resonances. The simulated results show that the antenna provides an S11<-10 dB bandwidth of 9.7 GHz (17% starting from 51.5 GHz to 61.2 GHz around 57 GHz central frequency. The antenna provides a maximum gain of 8.9 dBi with an efficiency of 70%.

  12. FEM for modelling 193 nm excimer laser treatment of SiO{sub 2}/Si/Si{sub (1-x)}Ge{sub x} heterostructures on SOI substrates

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C.; Chiussi, S.; Gontad, F.; Gonzalez, P. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, 36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas, Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, 36310 Vigo (Spain)

    2011-03-15

    Research on epitaxial crystalline silicon (c-Si) and silicon-germanium (Si{sub 1-x}Ge{sub x}) alloys growth and annealing for microelectronic purposes, such as Micro- or Nano-Electro-Mechanical Systems (MEMS or NEMS) and Silicon-On-Nothing (SON) devices is continuously in progress. Laser assisted annealing techniques using commercial ArF Excimer Laser sources are based on ultra-rapid heating and cooling cycles induced by the 193 nm pulses of 20 ns, which are absorbed in the near surface region of the heterostructures. During and after the absorption of these laser pulses, complex physical processes appear that strongly depend on sample structure and applied laser pulse energy densities. The control of the experimental parameters is therefore a key task for obtaining high quality alloys. The Finite ElementsMethod (FEM) is a powerful tool for the optimization of such treatments, because it provides the spatial and temporal temperature fields that are produced by the laser pulses. In this work, we have used a FEM commercial software, to predict the temperatures gradients induced by ArF excimer laser over a wide energy densities range, 0.1<{phi}<0.4 J/cm{sup 2}, on different SiO{sub 2}/Si/Si{sub (1-x)}Ge{sub (x)} thin films deposited on SOI substrate. These numerical results allow us to predict the threshold energies needed to reach the melting point (MP) of the Si and SiGe alloy without oxidation of the thin films system. Therefore, it is possible to optimize the conditions to achieve high quality epitaxy films. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Effect of interfacial interactions on the initial growth of Cu on clean SiO sub 2 and 3-mercaptopropyltrimethoxysilane-modified SiO sub 2 substrates

    CERN Document Server

    Hu Ming Hui; Tsuji, Y; Okubo, T; Yamaguchi, Y; Komiyama, H

    2002-01-01

    The effect of interfacial interactions on the initial growth of Cu on clean SiO sub 2 and 3-mercaptopropyltrimethoxysilane (MPTMS)-modified SiO sub 2 substrates by sputter deposition was studied using transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. Plasma damage during sputter deposition makes surfaces of MPTMS-modified SiO sub 2 substrates consist of small MPTMS islands several tens of nanometers in diameter and bare SiO sub 2 areas. These MPTMS islands are composed of disordered multilayer MPTMS aggregates. The initial growth behavior of Cu on MPTMS-modified SiO sub 2 substrates differs from that on clean SiO sub 2 substrates, although Cu grows in three-dimensional-island mode on both of them. After a 2.5-monolayer Cu deposition on clean SiO sub 2 substrates, spherical Cu particles were formed at a low number density of 1.3x10 sup 1 sup 6 /m sup 2 and at a long interparticle distance of 5 nm. In contrast, after the same amount of deposition on MP...

  14. SiO2 on silicon: behavior under heavy ion irradiation

    International Nuclear Information System (INIS)

    Rotaru, C.

    2004-03-01

    Heavy ion irradiation was performed on a-SiO 2 layers deposited on Si. Damage of the surface was studied by means of Atomic Force Microscopy. Hillocks appear for an electronic stopping power higher than 16 keV/nm. The height of the hillocks decreases with the thickness of the oxide layer. Infrared Spectroscopy studies show that the damage threshold for a-SiO 2 is at an electronic stopping power of 2 keV/nm. Therefore it is probable that the origin of the hillocks comes from the silicon layer. This could be explain within the frame of thermal spike model. The theoretical thresholds are 8 keV/nm and 1.8 keV/nm for silicon and a-SiO 2 respectively. Chemical etching after irradiation gives a technical possibility to create nano-pits, whose size and shape can be controlled. Additionally, these structures allowed to determine the AFM tip radius. (author)

  15. Fourier transform infrared spectroscopic study of gamma irradiated SiO2 nanoparticles

    Science.gov (United States)

    Huseynov, Elchin; Garibov, Adil; Mehdiyeva, Ravan; Huseynova, Efsane

    2018-03-01

    In the present work, nano SiO2 particles are investigated before and after gamma irradiation (25, 50, 75, 100 and 200 kGy) using Fourier transform infrared (FTIR) spectroscopy method for the wavenumber between 400-4000 cm-1. It is found that as a result of spectroscopic analysis, five new peaks have appeared after gamma radiation. Two of new obtained peaks (which are located at 687 cm-1 and 2357 cm-1 of wavenumber) were formed as a result of gamma radiation interaction with Si-O bonds. Another three new peaks (peaks appropriate to 941, 2052 and 2357 cm-1 values of wavenumber) appear as a result of interaction of water with nano SiO2 particles after gamma irradiation. It has been defined as asymmetrical bending vibration, symmetrical bending vibration, symmetrical stretching vibration and asymmetrical stretching vibration of Si-O bonds appropriate to peaks.

  16. Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Banerjee, G.; Niu, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Ahlgren, D.C.

    1999-01-01

    Low dose rate (LDR) cobalt-60 (0.1 rad(Si)/s) gamma irradiated Silicon Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) were studied. Comparisons were made with devices irradiated with 300 rad(Si)/s gamma radiation to verify if LDR radiation is a serious radiation hardness assurance (RHA) issue. Almost no LDR degradation was observed in this technology up to 50 krad(Si). The assumption of the presence of two competing mechanisms is justified by experimental results. At low total dose (le20 krad), an anomalous base current decrease was observed which is attributed to self-annealing of deep-level traps to shallower levels. An increase in base current at larger total doses is attributed to radiation induced generation-recombination (G/R) center generation. Experiments on gate-assisted lateral PNP transistors and 2D numerical simulations using MEDICI were used to confirm these assertions

  17. Fission product Pd-SiC interaction in irradiated coated particle fuels

    International Nuclear Information System (INIS)

    Tiegs, T.N.

    1980-04-01

    Silicon carbide is the main barrier to fission product release from coated particle fuels. Consequently, degradation of the SiC must be minimized. Electron microprobe analysis has identified that palladium causes corrosion of the SiC in irradiated coated particles. Further ceramographic and electron microprobe examinations on irradiated particles with kernels ranging in composition from UO 2 to UC 2 , including PuO/sub 2 -x/ and mixed (Th, Pu) oxides, and in enrichment from 0.7 to 93.0% 235 U revealed that temperature is the major factor affecting the penetration rate of SiC by Pd. The effects of kernel composition, Pd concentration, other fission products, and SiC properties are secondary

  18. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  19. Small-angle scattering from neutron-irradiated amorphous Pd80Si20

    International Nuclear Information System (INIS)

    Doi, K.; Kayano, H.; Masumoto, T.

    1978-01-01

    Small-angle scattering intensities were observed for amorphous Pd 80 Si 20 which was irradiated by fast neutrons to a fluence of 5 X 10 20 neutrons cm -2 . A broad hump was observed at 2 sin theta/lambda = 0.05 A -1 . The structure inhomogeneities produced by the neutron irradiation are discussed with the aid of the results of wide-angle scattering measurements. (Auth.)

  20. Microstructure of nitrides grown on inclined c-plane sapphire and SiC substrate

    International Nuclear Information System (INIS)

    Imura, M.; Honshio, A.; Miyake, Y.; Nakano, K.; Tsuchiya, N.; Tsuda, M.; Okadome, Y.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.

    2006-01-01

    High-quality (112-bar 0) GaN layers with atomically flat surface have been grown on a precisely offset-angle-controlled (11-bar 02) sapphire substrate by metal-organic vapor phase epitaxy (MOVPE). Insertion of AlGaN layer between underlying AlN layer and GaN was found to improve crystalline quality of upper GaN layer. In addition, a combination of high growth condition followed and epitaxial lateral overgrowth has been employed for the growth of GaN and this helped in reducing the dislocation density in the resultant layers. GaN and AlN were grown on (303-bar 8) SiC substrates by MOVPE and sublimation methods, respectively. The crystal orientation of GaN and AlN could be just aligned to that of the substrate. Microstructure analysis of the layers was also carried out by transmission electron microscopy

  1. SiO{sub 2} on silicon: behavior under heavy ion irradiation; SiO{sub 2} sur silicium: comportement sous irradiation avec des ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, C

    2004-03-15

    Heavy ion irradiation was performed on a-SiO{sub 2} layers deposited on Si. Damage of the surface was studied by means of Atomic Force Microscopy. Hillocks appear for an electronic stopping power higher than 16 keV/nm. The height of the hillocks decreases with the thickness of the oxide layer. Infrared Spectroscopy studies show that the damage threshold for a-SiO{sub 2} is at an electronic stopping power of 2 keV/nm. Therefore it is probable that the origin of the hillocks comes from the silicon layer. This could be explain within the frame of thermal spike model. The theoretical thresholds are 8 keV/nm and 1.8 keV/nm for silicon and a-SiO{sub 2} respectively. Chemical etching after irradiation gives a technical possibility to create nano-pits, whose size and shape can be controlled. Additionally, these structures allowed to determine the AFM tip radius. (author)

  2. Conduction properties of micro-crystals of 2,5-dimethyl- N, N'-dicyanoquinonediimine metal (metal = Ag, Cu) complexes on SiO 2/Si substrates

    Science.gov (United States)

    Yamamoto, Hiroshi M.; Kawasugi, Yoshitaka; Ito, Hiromi; Fukunaga, Takeo; Suzuki, Toshiaki; Tsukagoshi, Kazuhito; Kato, Reizo

    2008-12-01

    Conduction properties of two kinds of DMe-DCNQI complexes deposited on SiO 2/Si substrate are presented. Direct chemical growth of (DMe-DCNQI) 2Ag on the substrate afforded single crystals attached to a gold electrode deposited on the substrate. The system showed bistable switching behavior associated with rectifying property, which seems suitable for resistive random access memory. Speculative mechanism for this behavior is discussed. On the other hand, single crystal of (DMe-DCNQI- d7) 2Cu grown elsewhere was attached to four gold electrodes by carbon paste and fixed on the substrate with epoxy resin. Four-probe measurement of this sample revealed an absence of metal-insulator (M-I) transition which is expected at 80 K for crystal without substrate. This phenomenon can be explained by pseudo-negative pressure effect due to the hard silicon substrate (DMe-DCNQI = 2,5-dimethyl- N, N'-dicyanoquinonediimine).

  3. Surface morphology of amorphous germanium thin films following thermal outgassing of SiO{sub 2}/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE (United Kingdom); Dominguez, A. Bustamante [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Apartado Postal 14-0149, Lima (Peru); Llandro, J.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE (United Kingdom); Quispe, O. Avalos [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Apartado Postal 14-0149, Lima (Peru); Langford, R. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE (United Kingdom); Aguiar, J. Albino [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., Cambridge CB3 0HE (United Kingdom)

    2014-10-15

    Highlights: • Annealing promotes outgassing of SiO{sub 2}/Si wafers. • Outgassing species embed in the a-Ge film forming bubbles. • The density of bubbles obtained by slow annealing is smaller than by rapid annealing. • The bubbles explode after annealing the samples at 800 °C. • Surface migration at higher temperatures forms polycrystalline GeO{sub 2} islands. - Abstract: In this work we report the surface morphology of amorphous germanium (a-Ge) thin films (140 nm thickness) following thermal outgassing of SiO{sub 2}/Si substrates. The thermal outgassing was performed by annealing the samples in air at different temperatures from 400 to 900 °C. Annealing at 400 °C in slow (2 °C/min) and fast (10 °C/min) modes promotes the formation of bubbles on the surface. A cross sectional view by transmission electron microscope taken of the sample slow annealed at 400 °C reveals traces of gas species embedded in the a-Ge film, allowing us to propose a possible mechanism for the formation of the bubbles. The calculated internal pressure and number of gas molecules for this sample are 30 MPa and 38 × 10{sup 8}, respectively. Over an area of 22 × 10{sup −3} cm{sup 2} the density of bubbles obtained at slow annealing (9 × 10{sup 3} cm{sup −2}) is smaller than that at rapid annealing (6.4 × 10{sup 4} cm{sup −2}), indicating that the amount of liberated gas in both cases is only a fraction of the total gas contained in the substrate. After increasing the annealing temperature in the slow mode, bubbles of different diameters (from tens of nanometers up to tens of micrometers) randomly distribute over the Ge film and they grow with temperature. Vertical diffusion of the outgas species through the film dominates the annealing temperature interval 400–600 °C, whereas coalescence of bubbles caused by lateral diffusion is detected after annealing at 700 °C. The bubbles explode after annealing the samples at 800 °C. Annealing at higher temperatures, such as

  4. Surface morphology of amorphous germanium thin films following thermal outgassing of SiO2/Si substrates

    International Nuclear Information System (INIS)

    Valladares, L. de los Santos; Dominguez, A. Bustamante; Llandro, J.; Holmes, S.; Quispe, O. Avalos; Langford, R.; Aguiar, J. Albino; Barnes, C.H.W.

    2014-01-01

    Highlights: • Annealing promotes outgassing of SiO 2 /Si wafers. • Outgassing species embed in the a-Ge film forming bubbles. • The density of bubbles obtained by slow annealing is smaller than by rapid annealing. • The bubbles explode after annealing the samples at 800 °C. • Surface migration at higher temperatures forms polycrystalline GeO 2 islands. - Abstract: In this work we report the surface morphology of amorphous germanium (a-Ge) thin films (140 nm thickness) following thermal outgassing of SiO 2 /Si substrates. The thermal outgassing was performed by annealing the samples in air at different temperatures from 400 to 900 °C. Annealing at 400 °C in slow (2 °C/min) and fast (10 °C/min) modes promotes the formation of bubbles on the surface. A cross sectional view by transmission electron microscope taken of the sample slow annealed at 400 °C reveals traces of gas species embedded in the a-Ge film, allowing us to propose a possible mechanism for the formation of the bubbles. The calculated internal pressure and number of gas molecules for this sample are 30 MPa and 38 × 10 8 , respectively. Over an area of 22 × 10 −3 cm 2 the density of bubbles obtained at slow annealing (9 × 10 3 cm −2 ) is smaller than that at rapid annealing (6.4 × 10 4 cm −2 ), indicating that the amount of liberated gas in both cases is only a fraction of the total gas contained in the substrate. After increasing the annealing temperature in the slow mode, bubbles of different diameters (from tens of nanometers up to tens of micrometers) randomly distribute over the Ge film and they grow with temperature. Vertical diffusion of the outgas species through the film dominates the annealing temperature interval 400–600 °C, whereas coalescence of bubbles caused by lateral diffusion is detected after annealing at 700 °C. The bubbles explode after annealing the samples at 800 °C. Annealing at higher temperatures, such as 900 °C, leads to surface migration of the

  5. Radicals and ions controlling by adjusting the antenna-substrate distance in a-Si:H deposition using a planar ICP for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.P., E-mail: haipzhou@uestc.edu.cn [School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731 (China); Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xu, S., E-mail: shuyan.xu@nie.edu.sg [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xu, M. [Key Laboratory of Information Materials of Sichuan Province & School of Electrical and Information Engineering, Southwest University for Nationalities, Chengdu, 610041 (China); Xu, L.X.; Wei, D.Y. [Plasma Sources and Application Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 (Singapore); Xiang, Y. [School of Energy Science and Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731 (China); Xiao, S.Q. [Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122 (China)

    2017-02-28

    Highlights: • A planar ICP was used to grow a-Si:H films for c-Si surface passivation. • The direct- and remote-plasma was compared for high-quality c-Si surface passivation. • The remote ICP with controlled plasma species and ion bombardments is preferable for the surface passivation of c-Si. - Abstract: Being a key issue in the research and fabrication of silicon heterojunction (SHJ) solar cells, crystalline silicon (c-Si) surface passivation is theoretically and technologically intricate due to its complicate dependence on plasma characteristics, material properties, and plasma-material interactions. Here amorphous silicon (a-Si:H) grown by a planar inductively coupled plasma (ICP) reactor working under different antenna-substrate distances of d was used for the surface passivation of low-resistivity p-type c-Si. It is found that the microstructures (i.e., the crystallinity, Si-H bonding configuration etc.) and passivation function on c-Si of the deposited a-Si:H were profoundly influenced by the parameter of d, which primarily determines the types of growing precursors of SiH{sub n}/H contributing to the film growth and the interaction between the plasma and growing surface. c-Si surface passivation is analyzed in terms of the d-dependent a-Si:H properties and plasma characteristics. The controlling of radical types and ion bombardment on the growing surface through adjusting parameter d is emphasized.

  6. The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation

    International Nuclear Information System (INIS)

    Şahin, Yılmaz; Aydoğan, Şakir; Ekinci, Duygu; Turut, Abdulmecit

    2016-01-01

    Some X-ray irradiation-induced electrical characteristics of the Au/anthraquinone/p-Si and the Au/pyridine/p-Si junction devices have been investigated. The experimental ideality factors increased for both devices with increasing irradiation dose from 25 Gy to 150 Gy. These values ranged from 1.10 to 1.52 for Au/anthraquinone/p-Si and from 1.46 to 1.77 for Au/pyridine/p-Si, respectively. Furthermore, the barrier height of Au/anthraquinone/p-Si increased with increasing irradiation dose from 0.75 to 0.91 eV, whereas it displayed about a constant value for Au/pyridine/p-Si. In addition, the series resistance of both devices increased with x-ray dose too. The increase in the series resistance with x-ray irradiation has been attributed to the decrease in the active dopant densities. It was seen that the ionization damage is effective on most of the junction characteristics. The leakage current of the Au/anthraquinone/p-Si device decreased with x-ray irradiation since the irradiation induced the formation of electron-hole pairs and hydroquinone structure, and thus some of them are trapped by the interface states. The degradation of the I-V curves of Au/pyridine/p-Si/Al device is attributed to the variation of the surface or interface states distribution for the devices. The reverse and forward bias currents relatively increased after x-ray irradiation because of the decrease in bulk lifetime. In addition, ATR-FTIR spectra of anthraquinone and pyridine films showed that pyridine is more stable than anthraquinone under x-ray irradiation. - Highlights: • Two junction devices based on organic materials were fabricated. • The effect of the x-ray irradiation on devices were examined. • Both devices showed x-irradiation-dependence.

  7. The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Yılmaz [Department of Physics, Faculty of Sciences, University of Atatürk, 25240 Erzurum (Turkey); Aydoğan, Şakir, E-mail: saydogan@atauni.edu.tr [Department of Physics, Faculty of Sciences, University of Atatürk, 25240 Erzurum (Turkey); Ekinci, Duygu [Department of Chemistry, Faculty of Sciences, University of Atatürk, 25240 Erzurum (Turkey); Turut, Abdulmecit [Department of Engineering Physics, Faculty of Sciences, Istanbul Medeniyet University (Turkey)

    2016-11-01

    Some X-ray irradiation-induced electrical characteristics of the Au/anthraquinone/p-Si and the Au/pyridine/p-Si junction devices have been investigated. The experimental ideality factors increased for both devices with increasing irradiation dose from 25 Gy to 150 Gy. These values ranged from 1.10 to 1.52 for Au/anthraquinone/p-Si and from 1.46 to 1.77 for Au/pyridine/p-Si, respectively. Furthermore, the barrier height of Au/anthraquinone/p-Si increased with increasing irradiation dose from 0.75 to 0.91 eV, whereas it displayed about a constant value for Au/pyridine/p-Si. In addition, the series resistance of both devices increased with x-ray dose too. The increase in the series resistance with x-ray irradiation has been attributed to the decrease in the active dopant densities. It was seen that the ionization damage is effective on most of the junction characteristics. The leakage current of the Au/anthraquinone/p-Si device decreased with x-ray irradiation since the irradiation induced the formation of electron-hole pairs and hydroquinone structure, and thus some of them are trapped by the interface states. The degradation of the I-V curves of Au/pyridine/p-Si/Al device is attributed to the variation of the surface or interface states distribution for the devices. The reverse and forward bias currents relatively increased after x-ray irradiation because of the decrease in bulk lifetime. In addition, ATR-FTIR spectra of anthraquinone and pyridine films showed that pyridine is more stable than anthraquinone under x-ray irradiation. - Highlights: • Two junction devices based on organic materials were fabricated. • The effect of the x-ray irradiation on devices were examined. • Both devices showed x-irradiation-dependence.

  8. γ-ray irradiation effect on magnetic properties of electromagnetic Fe-Si sheets

    International Nuclear Information System (INIS)

    Harara, W.

    1994-11-01

    The present work investigates the effect of γ-ray irradiation on the relative and differential magnetic permeabilities of electromagnetic steel sheets. The experimental work was carried out using transformer Fe-Si (97-3%) sheets. The sheets have two different forms E and I> The magnetic field dependence on the relative permeability as well as on the differential permeability before and after irradiation were measured. The measurements show that the relative permeability values of the sheets after irradiation in the region of rotation of magnetization domains were decreased whereas the value of their differential permeability around each working point remains unchangeable. (author). 7 refs., 14 figs., 6 tabs

  9. Gamma and electron beam irradiation effects on SiR-EPDM blends

    Directory of Open Access Journals (Sweden)

    R. Deepalaxmi

    2014-07-01

    Full Text Available Ethylene Propylene Diene Monomer (EPDM is widely used as Cable Insulation Material (CIM due to its good mechanical strength. Silicone Rubber (SiR is used in high temperature environments due to its good di-electric properties/hydrophobicity. The blending of SiR-EPDM may result in the improvement in their specific properties. The SiR-EPDM blend of equal composition (50:50 was prepared. When such blends are used as Cable Insulation Materials (CIM, they should perform their safety functions throughout their installed life in Nuclear Power Plants (NPP. The CIM will be exposed to Gamma irradiation at the installed locations. The short time accelerated testing was carried out, in order to forecast long-term performance of CIM. Electron beam irradiation is widely used in cable manufacturing industries to improve the performance of the polymeric materials. In the current study, on the purpose to investigate the effect of gamma/electron beam irradiation on the 50–50 composition of SiR-EPDM blend, blend was exposed to 25 Mrad dose of gamma/electron beam irradiation. The electrical and mechanical parameters like Volume Resistivity (VRY, Surface Resistivity (SRY, Tensile Strength (TS, Elongation at Break (EB, Hardness (H of the virgin, gamma/electron beam irradiated blends were determined as per ASTM/IEC standards. The nature of degradation was investigated using Fourier Transform Infrared Spectroscopy (FTIR. To determine the elemental composition of the materials at the surface, Energy Dispersive X-ray Analysis (EDAX has been done. Scanning Electron Microscopy (SEM analysis has been done to study the morphological changes. The occurrence of cross-linking is found to be the mechanism for ageing in gamma/electron beam irradiated SiR-EPDM blends.

  10. Technique for measuring irradiation creep in polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Hamilton, M.L.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    A bend stress relaxation (BSR) test has been designed to examine irradiation enhanced creep in polycrystalline SiC fibers being considered for fiber reinforcement in SiC/SiC composite. Thermal creep results on Nicalon-CG and Hi-Nicalon were shown to be consistent with previously published data with Hi-Nicalon showing about a 100{degrees}C improvement in creep resistance. Preliminary data was also obtained on Nicalon-S that demonstrated that its creep resistance is greater than that of Hi-Nicalon.

  11. Implantation of plasmonic nanoparticles in SiO{sub 2} by pulsed laser irradiation of gold films on SiO{sub x}-coated fused silica and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Stolzenburg, H. [Laser-Laboratorium Göttingen, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen (Germany); Peretzki, P.; Wang, N.; Seibt, M. [IV. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Ihlemann, J., E-mail: juergen.ihlemann@llg-ev.de [Laser-Laboratorium Göttingen, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen (Germany)

    2016-06-30

    Highlights: • Gold nanoparticles are implanted in glass by pulsed UV-laser irradiation. • Implantation of gold into SiO{sub x} and annealing leads to Au-particles in quartz glass. • TEM investigations reveal particles with 10–60 nm diameter in a depth of 40 nm. • Implanted particles show plasmon resonance at 540 nm. - Abstract: The pulsed UV-laser irradiation of thin noble metal films deposited on glass substrates leads to the incorporation of metal particles in the glass, if a sufficiently high laser fluence is applied. This process is called laser implantation. For the implantation of gold into pure fused silica, high laser fluences (∼1 J/cm{sup 2} at 193 nm laser wavelength) are required. Using a SiO{sub x} (x ≈ 1) coated SiO{sub 2}-substrate, the implantation of gold into this coating can be accomplished at significantly lower fluences starting from 0.2 J/cm{sup 2} (comparable to those used for standard glass). Particles with diameters in the range of 10–60 nm are implanted to a depth of about 40 nm as identified by transmission electron microscopy. An additional high temperature annealing step in air leads to the oxidation of SiO{sub x} to SiO{sub 2}, without influencing the depth distribution of particles significantly. Only superficial, weakly bound particles are released and can be wiped away. Absorption spectra show a characteristic plasmon resonance peak at 540 nm. Thus, pure silica glass (SiO{sub 2}) with near surface incorporated plasmonic particles can be fabricated with this method. Such material systems may be useful for example as robust substrates for surface enhanced Raman spectroscopy (SERS).

  12. Amphoteric Behavior of Impurities in GaN Film Grown on Si Substrate

    Science.gov (United States)

    Cho, Hyun-Ick; Lee, Dong-Sik; Lee, Heon-Bok; Hahm, Sung-Ho; Lee, Jung-Hee

    2007-05-01

    Hall measurement presented that an unintentionally doped uniform and crack-free GaN film grown on n-type (111)-oriented Si substrate with high temperature-grown relatively thin AlN single and multiple buffer layer shows p-type conductivity. The position of valence band maximum at the surface of the film measured by the synchrotron radiation photoemission spectroscopy is below Fermi level at 1.09 eV due to band bending at the surface, which is indicative for the p-type nature of the grown film. The n-channel metal-oxide-semiconductor field effect transistor (MOSFET) fabricated on the GaN layer exhibited normally-off mode operation. This cannot be achieved if the GaN layer is not p-type. It is believed that the spatial coordination of auto-doped Si atoms, out-diffused from the substrate, or carbon complexes from metal-organic (MO) precursor favorably occupy the substitutional nitrogen site of the GaN film when the film is under tensile strain during the growth, which clearly explains that the p-type conduction is originated from the stress dependent amphoteric nature of Si atom and/or carbon complex in GaN.

  13. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates.

    Science.gov (United States)

    da Cunha Rodrigues, Gonçalo; Zelenovskiy, Pavel; Romanyuk, Konstantin; Luchkin, Sergey; Kopelevich, Yakov; Kholkin, Andrei

    2015-06-25

    Electromechanical response of materials is a key property for various applications ranging from actuators to sophisticated nanoelectromechanical systems. Here electromechanical properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is studied via piezoresponse force microscopy and confocal Raman spectroscopy. The correlation of mechanical strains in graphene layer with the substrate morphology is established via Raman mapping. Apparent vertical piezoresponse from the single-layer graphene supported by underlying SiO2 structure is observed by piezoresponse force microscopy. The calculated vertical piezocoefficient is about 1.4 nm V(-1), that is, much higher than that of the conventional piezoelectric materials such as lead zirconate titanate and comparable to that of relaxor single crystals. The observed piezoresponse and achieved strain in graphene are associated with the chemical interaction of graphene's carbon atoms with the oxygen from underlying SiO2. The results provide a basis for future applications of graphene layers for sensing, actuating and energy harvesting.

  14. Influences of the interfacial state between Co and a Si substrate on the magnetic properties of Co/Si(1 1 1) films

    International Nuclear Information System (INIS)

    Fu, T.Y.; Tsay, J.S.; Lin, M.H.; Yao, Y.D.

    2006-01-01

    Morphology and magnetic properties of Co/Si(1 1 1) interfaces have been investigated using scanning tunneling microscope and surface magneto-optic Kerr effect techniques. As deposited at room temperature for Co/Si(1 1 1), defects have been observed with shapes of dark patches and bright islands on the surface with different Co coverage. The defect formation causes a rough interface. For subsequently deposited Co layers, the interfacial state between Co and the Si substrate results in the appearance of both the longitudinal and polar Kerr loops. After annealing treatments, interdiffusion of Co atoms and Si(1 1 1) substrate occurs as revealed by Auger electron spectroscopy. Scanning tunneling microscope images show the formation of Si clusters with average diameter of 10 nm at high temperatures. The disappearance of ferromagnetism of the films occurs due to the structural and compositional changes

  15. Electrical Characterization of High Energy Electron Irradiated Ni/4 H-SiC Schottky Barrier Diodes

    Science.gov (United States)

    Paradzah, A. T.; Omotoso, E.; Legodi, M. J.; Auret, F. D.; Meyer, W. E.; Diale, M.

    2016-08-01

    The effect of high energy electron irradiation on Ni/4 H-SiC Schottky barrier diodes was evaluated by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements at room temperature. Electron irradiation was achieved by using a radioactive strontium source with peak emission energy of 2.3 MeV. Irradiation was performed in fluence steps of 4.9 × 1013 cm-2 until a total fluence of 5.4 × 1014 cm-2 was reached. The Schottky barrier height determined from I- V measurements was not significantly changed by irradiation while that obtained from C- V measurements increased with irradiation. The ideality factor was obtained before irradiation as 1.05 and this value did not significantly change as a result of irradiation. The series resistance increased from 47 Ω before irradiation to 74 Ω after a total electron fluence of 5.4 × 1014 cm-2. The net donor concentration decreased with increasing irradiation fluence from 4.6 × 1014 cm-3 to 3.0 × 1014 cm-3 from which the carrier removal rate was calculated to be 0.37 cm-1.

  16. Positron annihilation in disordered regions in neutron-irradiated Ge and Si

    International Nuclear Information System (INIS)

    Pustovoit, A.K.; Konopleva, R.F.; Kupchishin, A.I.; Mukashev, K.M.

    1989-01-01

    The method of angular distribution of annihilation photons was used to investigate the formation and annealing of radiation defects in Ge and Si irradiated with reactor neutrons. These effects were studied as a function of the type of conduction of the dopant concentration. The nature of annealing demonstrated positron annihilation at multivacancy complexes located within disordered regions

  17. Chlorobenzene, chloroform, and carbon tetrachloride adsorption on undoped and metal-doped sol-gel substrates (SiO2, Ag/SiO2, Cu/SiO2 and Fe/SiO2)

    International Nuclear Information System (INIS)

    Hernandez, M.A.; Gonzalez, A.I.; Corona, L.; Hernandez, F.; Rojas, F.; Asomoza, M.; Solis, S.; Portillo, R.; Salgado, M.A.

    2009-01-01

    Adsorption isotherms of chlorobenzene, chloroform and carbon tetrachloride vapors on undoped SiO 2 , and metal-doped Ag/SiO 2 , Cu/SiO 2 and Fe/SiO 2 substrates were measured in the temperature range of 398-593 K. These substrates were prepared from a typical sol-gel technique in the presence of metal dopants that rendered an assortment of microporous-mesoporous solids. The relevant characteristic of these materials was the different porosities and micropore to mesopore volume ratios that were displayed; this was due to the effect that the cationic metal valence exerts on the size of the sol-gel globules that compose the porous solid. The texture of these SiO 2 materials was analyzed by X-ray diffraction (XRD), FTIR, and diverse adsorption methods. The pore-size distributions of the adsorbents confirmed the existence of mesopores and supermicropores, while ultramicropores were absent. The Freundlich adsorption model approximately fitted the chlorinated compounds adsorption data on the silica substrates by reason of a heterogeneous energy distribution of adsorption sites. The intensity of the interaction between these organic vapors and the surface of the SiO 2 samples was analyzed through evaluation of the isosteric heat of adsorption and standard adsorption energy; from these last results it was evident that the presence of metal species within the silica structure greatly affected the values of both the amounts adsorbed as well as of the isosteric heats of adsorption

  18. Nano-SiC region formation in (100) Si-on-insulator substrate: Optimization of hot-C+-ion implantation process to improve photoluminescence intensity

    Science.gov (United States)

    Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu

    2018-04-01

    We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.

  19. Self-irradiation damage in 4H-SiC by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Han Miaomiao; Wang Qingyu; Li Taosheng; Li Zhongyu

    2014-01-01

    The development of nuclear technology is closely and inseparably related to the improvements of materials irradiation performance. The irradiation damage of nuclear materials is an important issue of characteristics and difficulties. Because of the excellent features, SiC becomes one of the candidate materials for the cladding material and structure material in fast neutron reactor and fusion reactor. As one of the polytypes, 4H-SiC has prospective important applications in a strong irradiation environment. In this work, molecular dynamics (MD) simulation was performed to study the irradiation-induced cascade damage in single-crystalline 4H-SiC to get the microscopic evolution during the irradiation, in the aim of getting access to the detail that we cannot get from experiments. The software LAMMPS was used to simulate the damage formation process and the recovery process. The results showed that the initial project direction, the temperature and PKA energy exerted significant effects on the number and morphology of defects. (authors)

  20. Long-Wavelength InAs/GaAs Quantum-Dot Light Emitting Sources Monolithically Grown on Si Substrate

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2015-06-01

    Full Text Available Direct integration of III–V light emitting sources on Si substrates has attracted significant interest for addressing the growing limitations for Si-based electronics and allowing the realization of complex optoelectronics circuits. However, the high density of threading dislocations introduced by large lattice mismatch and incompatible thermal expansion coefficient between III–V materials and Si substrates have fundamentally limited monolithic epitaxy of III–V devices on Si substrates. Here, by using the InAlAs/GaAs strained layer superlattices (SLSs as dislocation filter layers (DFLs to reduce the density of threading dislocations. We firstly demonstrate a Si-based 1.3 µm InAs/GaAs quantum dot (QD laser that lases up to 111 °C, with a low threshold current density of 200 A/cm2 and high output power over 100 mW at room temperature. We then demonstrate the operation of InAs/GaAs QD superluminescent light emitting diodes (SLDs monolithically grown on Si substrates. The fabricated two-section SLD exhibits a 3 dB linewidth of 114 nm, centered at ~1255 nm with a corresponding output power of 2.6 mW at room temperature. Our work complements hybrid integration using wafer bonding and represents a significant milestone for direct monolithic integration of III–V light emitters on Si substrates.

  1. Damage accumulation and annealing in 6H-SiC irradiated with Si+

    International Nuclear Information System (INIS)

    Jiang, W.; Weber, W.J.; Thevuthasan, S.; McCready, D.E.

    1998-01-01

    Damage accumulation and annealing in 6H-silicon carbide (α-SiC) single crystals have been studied in situ using 2.0 MeV He + RBS in a left angle 0001 right angle -axial channeling geometry (RBS/C). The damage was induced by 550 keV Si + ion implantation (30 off normal) at a temperature of -110 C, and the damage recovery was investigated by subsequent isochronal annealing (20 min) over the temperature range from -110 C to 900 C. At ion fluences below 7.5 x 10 13 Si + /cm 2 (0.04 dpa in the damage peak), only point defects appear to be created. Furthermore, the defects on the Si sublattice can be completely recovered by thermal annealing at room temperature (RT), and recovery of defects on the C sublattice is suggested. At higher fluences, amorphization occurs; however, partial damage recovery at RT is still observed, even at a fluence of 6.6 x 10 14 Si + /cm 2 (0.35 dpa in the damage peak) where a buried amorphous layer is produced. At an ion fluence of 6.0 x 10 15 Si + /cm 2 (-90 C), an amorphous layer is created from the surface to a depth of 0.6 μm. Because of recovery processes at the buried crystalline-amorphous interface, the apparent thickness of this amorphous layer decreases slightly (<10%) with increasing temperature over the range from -90 C to 600 C. (orig.)

  2. Donor centers in irradiated Si doped with rare-earth elements

    International Nuclear Information System (INIS)

    Petrov, V.V.; Prosolovich, V.S.; Tkachev, V.D.; Karpov, Yu.A.; Millvidskii, M.G.

    1985-01-01

    In order to study the participation of rare-earth elements REE in the production of electrically active centers in doped and gamma irradiated silicon the range of REE was expanded to Er, Yb, Gd, Dy, and Ho and a high-temperature treatment was applied to irradiated material. Parallel investigations with Si:B single crystals were carried out. Isochronal annealing was performed in the 50 to 650 0 C range and the annealing curves of charge carrier concentration were obtained and discussed. The kinetics of donor center production in irradiated Si:Er, B upon isothermal annealing was measured for detecting the nature of produced donors. Results give evidence that RE atoms can produce electrically active impurity-defect complexes in silicon

  3. Infrared reflectance of GaN films grown on Si(001) substrates

    International Nuclear Information System (INIS)

    Zhang, Xiong; Hou, Yong-Tian; Feng, Zhe-Chuan; Chen, Jin-Li

    2001-01-01

    GaN thin films on Si(001) substrates are studied by infrared reflectance (IRR) spectroscopy at room temperature (RT). Variations in the IRR spectral line shape with the microstructure of GaN/Si(011) film are quantitatively explained in terms of a three-component effective medium model. In this model, the nominally undoped GaN film is considered to consist of three elementary components, i.e., single crystalline GaN grains, pores (voids), and inter-granulated materials (amorphous GaN clusters). Such a polycrystalline nature of the GaN/Si(001) films was confirmed by scanning electron microscopy measurements. It was demonstrated that based on the proposed three-component effective medium model, excellent overall simulation of the RT-IRR spectra can be achieved, and the fine structures of the GaN reststrahlen band in the measured RT-IRR spectra can also be interpreted very well. Furthermore, the volume fraction for each component in the GaN/Si(001) film was accurately determined by fitting the experimental RT-IRR spectra with the theoretical simulation. These results indicate that IRR spectroscopy can offer a sensitive and convenient tool to probe the microstructure of GaN films grown on silicon. [copyright] 2001 American Institute of Physics

  4. Deposition of defected graphene on (001) Si substrates by thermal decomposition of acetone

    Science.gov (United States)

    Milenov, T. I.; Avramova, I.; Valcheva, E.; Avdeev, G. V.; Rusev, S.; Kolev, S.; Balchev, I.; Petrov, I.; Pishinkov, D.; Popov, V. N.

    2017-11-01

    We present results on the deposition and characterization of defected graphene by the chemical vapor deposition (CVD) method. The source of carbon/carbon-containing radicals is thermally decomposed acetone (C2H6CO) in Ar main gas flow. The deposition takes place on (001) Si substrates at about 1150-1160 °C. We established by Raman spectroscopy the presence of single- to few- layered defected graphene deposited on two types of interlayers that possess different surface morphology and consisted of mixed sp2 and sp3 hybridized carbon. The study of interlayers by XPS, XRD, GIXRD and SEM identifies different phase composition: i) a diamond-like carbon dominated film consisting some residual SiC, SiO2 etc.; ii) a sp2- dominated film consisting small quantities of C60/C70 fullerenes and residual Si-O-, Cdbnd O etc. species. The polarized Raman studies confirm the presence of many single-layered defected graphene areas that are larger than few microns in size on the predominantly amorphous carbon interlayers.

  5. Role of SiC substrate surface on local tarnishing of deposited silver mirror stacks

    Science.gov (United States)

    Limam, Emna; Maurice, Vincent; Seyeux, Antoine; Zanna, Sandrine; Klein, Lorena H.; Chauveau, Grégory; Grèzes-Besset, Catherine; Savin De Larclause, Isabelle; Marcus, Philippe

    2018-04-01

    The role of the SiC substrate surface on the resistance to the local initiation of tarnishing of thin-layered silver stacks for demanding space mirror applications was studied by combined surface and interface analysis on model stack samples deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. It is shown that suppressing the surface pores resulting from the bulk SiC material production process by surface pretreatment eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 overcoat after the deposition of silver. The formation of channels connecting the silver layer to its environment through the failing protection layer at the surface pores and locally enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is suppressed, which markedly delays tarnishing initiation and thereby preserves the optical performance. The results revealed that residual tarnishing initiation proceeds by a mechanism essentially identical in nature but involving different pathways short circuiting the protection layer and enabling H2S ingress until the silver layer. These permeation pathways are suggested to be of microstructural origin and could correspond to the incompletely coalesced intergranular boundaries of the SiO2 layer.

  6. Self-catalysed growth of InAs nanowires on bare Si substrates by droplet epitaxy

    International Nuclear Information System (INIS)

    Anyebe, E.A.; Zhuang, Q.; Lawson, S.; Robson, A.J.; Kolosov, O.; Sanchez, A.M.; Ponomarenko, L.; Zhukov, A.

    2014-01-01

    We demonstrate the self-catalyst growth of vertically aligned InAs nanowires on bare Si(111) by droplet epitaxy. The growth conditions of indium droplets suitable for nucleation and growth of nanowires have been identified. We have then realized vertically aligned and non-tapered InAs nanowires on bare Si(111) substrates through optimal indium droplets. It was found that the lateral dimensions and density of nano-wires are defined by the indium droplets. This technique unravels a controllable, cost-effective and time-efficient route to fabricating functional monolithic hybrid structures of InAs nanowires on silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. (In)GaSb/AlGaSb quantum wells grown on Si substrates

    International Nuclear Information System (INIS)

    Akahane, Kouichi; Yamamoto, Naokatsu; Gozu, Shin-ichiro; Ueta, Akio; Ohtani, Naoki

    2007-01-01

    We have successfully grown GaSb and InGaSb quantum wells (QW) on a Si(001) substrate, and evaluated their optical properties using photoluminescence (PL). The PL emissions from the QWs at room temperature were observed at around 1.55 μm, which is suitable for fiber optic communications systems. The measured ground state energy of each QW matched well with the theoretical value calculated by solving the Schroedinger equation for a finite potential QW. The temperature dependence of the PL intensity showed large activation energy (∼ 77.6 meV) from QW. The results indicated that the fabricated QW structure had a high crystalline quality, and the GaSb QW on Si for optical devices operating at temperatures higher than room temperature will be expected

  8. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing.

    Science.gov (United States)

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-10-25

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson-Mehl-Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.

  9. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing

    Directory of Open Access Journals (Sweden)

    Chao Ye

    2017-10-01

    Full Text Available Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson–Mehl–Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.

  10. The structural and electrical characterisation of SiGe heterostructures deposited on strain relaxed virtual substrates

    International Nuclear Information System (INIS)

    Hammond, R.

    1998-09-01

    The influence of lateral dimensions on the relaxation mechanism and the resulting effect on the surface topography of limited-area, linearly graded Si 1-x Ge x virtual substrates has been investigated for the first time. A dramatic change in the relaxation mechanism of such buffer layers has been observed for depositions on Si mesa pillars of lateral dimensions of 10μm and below. For such depositions, misfit dislocations are able to extend, unhindered, and terminate at the edges of the growth zone. In this manner, orthogonal misfit dislocation interactions are avoided, yielding a surface free of the problematic surface cross-hatch roughening. However, as the lateral dimension of the growth zone is increased to 20μm, orthogonal misfit interactions occur and relaxation is dominated by the Modified Frank-Read (MFR) multiplication mechanism. The resulting surface morphology shows a pronounced surface cross-hatch roughening. It is proposed that such cross-hatch roughening is a direct consequence of the cooperative stress fields associated with the MFR mechanism. It is postulated that the method of limited-area, linearly graded buffer layers provides a unique opportunity, by which 'ideal' virtual substrates, free of surface cross-hatch and threading dislocations, may be produced to any Ge content. In addition, a unique method by which the electrical performance of low temperature, strained layer depositions may be optimised is discussed. The method relies on the elimination of as-grown lattice imperfections via a post growth thermal anneal treatment. A 25-fold increase in low temperature hole mobility of a Si 0.5 Ge 0.5 /Si 0.7 Ge 0.3 heterostructure has been demonstrated using a 30minute, 750 deg C in-situ, post growth anneal. (author)

  11. Characterization of a Ga-assisted GaAs nanowire array solar cell on si substrate

    DEFF Research Database (Denmark)

    Boulanger, J. P.; Chia, A. C. E.; Wood, B.

    2016-01-01

    A single-junction core-shell GaAs nanowire (NW) solar cell on Si (1 1 1) substrates is presented. A Ga-assisted vapor–liquid–solid growth mechanism was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. Novel device fabrication utilizing facet......-dependent properties to minimize passivation layer removal for electrical contacting is demonstrated. Thorough electrical characterization and analysis of the cell is reported. The electrostatic potential distribution across the radial p-i-n junction GaAs NW is investigated by off-axis electron holography....

  12. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate

    Science.gov (United States)

    Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng

    2018-03-01

    High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.

  13. Effect of surface irradiation during the photo-CVD deposition of a-Si:H thin films. Hikari CVD ho ni yoru amorphous silicon sakuseiji no kiban hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Doering, H.; Hashimoto, K.; Fujishima, A. (The University of Tokyo, Tokyo (Japan))

    1990-12-06

    This paper shows the impact of the irradiation from an additional light source during the deposition of hydrogenated amorphous silicon by photo-CVD deposition. Using a mercury sensitized photo-CVD process from Disilan (Si {sub 2} H {sub 6}) and hydrogen, silicon was deposited. A 40W low pressure mercury lamp was applied as the light source. A portion of the substrate was in addition irradiated using an Xg-He lamp through a thermal filter. Irradiation of the substrate using only Xg-He lamp produced no deposition, since this light has a wavelength which is too long to produce the SiH {sub 3}-radicals needed for Si deposition. The additional Xg-He light source was discovered to cause an increased thickness of deposited a-Si:H film and a transmission of the band structure. The reasons of these are considered that the influence of irradiation is not limited to film thickness, but that irradiation also impacts the composition of the a-Si:H film so as to cause a reduction in the hydrogen content. 10 figs., 1 tab.

  14. Biaxially stressed excitons in GaAs/AlGaAs quantum wells grown on Si substrates

    Science.gov (United States)

    Jagannath, C.; Zemon, S.; Norris, P.; Elman, B. S.

    1987-10-01

    Photoluminescence and photoluminescence excitation spectroscopies are utilized to study excitons in GaAs/AlGaAs quantum wells (QW's) fabricated by molecular beam epitaxy on a GaAs buffer layer grown on a Si substrate. The buffer layer was grown by metalorganic vapor phase epitaxy. The experimental results are understood in terms of a uniform biaxial tension of approximately 3 kbar present in the plane of growth for both the QW's and the GaAs buffer. An important consequence of the biaxial tension is that for QW's with well widths larger than about 15 nm the light-hole and heavy-hole subbands cross each other in energy, resulting in a light-hole exciton energy lower than that of the heavy-hole exciton, opposite to the case of QW's grown on GaAs substrates.

  15. Nucleation and growth of vacancy clusters in β-SiC during irradiation

    International Nuclear Information System (INIS)

    Morishita, K.; Kohyama, A.; Watanabe, Y.; Heinisch, H.; Gao, F.

    2007-01-01

    Full text of publication follows: SiC/SiC composites are one of candidates for the blanket structural material of future fusion reactors. The effect of irradiation on microstructure changes in the material has been recently reported in literatures, where voids are experimentally observed by TEM when irradiation temperature is greater than 1000 deg. C. This temperature is much greater than the corresponding temperature of void formation in metals during irradiation. Nucleation and growth of defect clusters in materials during irradiation is determined by the net flux of mobile defects to the cluster. The out-flux of mobile defects from the cluster is determined by the binding energy of mobile defects to the cluster. Unfortunately, however, such binding energy for silicon-carbide (β-SiC) is not clarified enough. In the present study, the binding energy of point defects to a vacancy cluster in,(β-SiC is investigated using a molecular dynamics (MD) technique. Interatomic potentials employed here for describing atomic interactions in β-SiC are the Gao-Weber potential. A crystal containing a vacancy cluster in β-SiC is first relaxed at finite temperature with an MD technique, followed by a quench to 0 K to obtain the total energy of the relaxed system. Subsequently, the formation energy of vacancy clusters and the binding energy of mobile defects to the cluster are obtained as a function of cluster size. The calculated formation energy of isolated silicon and carbon vacancies in β-SiC is 3.49 eV and 2.56 eV, respectively. The formation energy of vacancy clusters shows an increasing function of cluster size, which is roughly in proportion to n 2/3 , where n is the total number of vacancies in the cluster. This size dependence is very similar to the case of voids in metals, although the formation energy of vacancy clusters in β-SiC is approximately 50 % greater than that of voids in bcc Fe. The binding energy of vacancies to a vacancy cluster in β-SiC is greater

  16. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates

    International Nuclear Information System (INIS)

    Jia, Yanrong; Zhang, Yun; Zhou, Qiubao; Fan, Qinguo; Shao, Jianzhong

    2014-01-01

    The SiO 2 /polyethyleneimine (PEI) films with structural colors on poly(ethylene terephthalate) (PET) substrates were fabricated by an electrostatic self-assembly method. The morphology of the films was characterized by Scanning Electron Microscopy. The results showed that there was no distinguishable multilayered structure found of SiO 2 /PEI films. The optical behaviors of the films were investigated through the color photos captured by a digital camera and the color measurement by a multi-angle spectrophotometer. Different hue and brightness were observed at various viewing angles. The structural colors were dependent on the SiO 2 particle size and the number of assembly cycles. The mechanism of the structural colors generated from the assembled films was elucidated. The morphological structures and the optical properties proved that the SiO 2 /PEI film fabricated on PET substrate formed a homogeneous inorganic/organic SiO 2 /PEI composite layer, and the structural colors were originated from single thin film interference. - Highlights: • SiO 2 /PEI thin films were electrostatic self-assembled on PET substrates. • The surface morphology and optical behavior of the film were investigated. • The structural colors varied with various SiO 2 particle sizes and assembly cycles. • Different hue and lightness of SiO 2 /PEI film were observed at various viewing angles. • Structural color of the SiO 2 /PEI film originated from single thin film interference

  17. Hybrid solar cell based on a-Si/polymer flat heterojunction on flexible substrates

    Science.gov (United States)

    Olivares Vargas, A. J.; Mansurova, S.; Cosme, I.; Kosarev, A.; Ospina Ocampo, C. A.; Martinez Mateo, H. E.

    2017-08-01

    In this work, we present the results of investigation of thin film hybrid organic-inorganic photovoltaic structures based on flat heterojunction hydrogenated silicon (a-Si:H) and poly(3,4 ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) fabricated on polyethylene naphthalate (PEN). Different thicknesses of transparent AL doped Zn:O (AZO) electrodes have been tested on PEN substrate and studied by atomic force microscopy (AFM). The AZO films on PEN substrate were statistically processed to obtain surface morphological characteristics, such as root mean square roughness RQ, skewness SK and kurtosis KU. Performance characteristics of fabricated photovoltaic structures have been measured and analyzed for different thicknesses of the transparent electrodes under standard illumination (AM 1.5 I0= 100mW/cm2). Structures on flexible substrates show reproducible performance characteristic as their glass substrate counterpart with values of JSC= 6 mA/cm2, VOC= 0.535 V, FF= 43 % and PCE= 1.41%.

  18. Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique

    International Nuclear Information System (INIS)

    Hazra, Purnima; Singh, Satyendra Kumar; Jit, Satyabrata

    2015-01-01

    In this paper, the authors have investigated the structural, optical, and electrical characteristics of silicon nanowire (SiNW)/zinc oxide (ZnO) core–shell nanostructure heterojunctions and compared their characteristics with Si/ZnO planar heterojunctions to investigate the effect of surface morphology of Si substrate in the characteristics of Si/ZnO heterojunction devices. In this work, ZnO thin film was conformally deposited on both p-type 〈100〉 planar Si substrate and substrate with vertically aligned SiNW arrays by atomic layer deposition (ALD) method. The x-ray diffraction spectra show that the crystalline structures of Si/ZnO heterojunctions are having (101) preferred orientation, whereas vertically oriented SiNW/ZnO core–shell heterojunctions are having (002)-oriented wurtzite crystalline structures. The photoluminescence (PL) spectra of Si/ZnO heterojunctions show a very sharp single peak at 377 nm, corresponding to the bandgap of ZnO material with no other defect peaks in visible region; hence, these devices can have applications only in UV region. On the other hand, SiNW/ZnO heterojunctions are having band-edge peak at 378 nm along with a broad emission band, spreading almost throughout the entire visible region with a peak around 550 nm. Therefore, ALD-grown SiNW/ZnO heterojunctions can emit green and red light simultaneously. Reflectivity measurement of the heterojunctions further confirms the enhancement of visible region peak in the PL spectra of SiNW/ZnO heterojunctions, as the surface of the SiNW/ZnO heterojunctions exhibits extremely low reflectance ( 20%). The current–voltage characteristics of both Si/ZnO and SiNW/ZnO heterojunctions are measured with large area ohmic contacts on top and bottom of the structure to compare the electrical characteristics of the devices. Due to large surface to-volume ratio of SiNW/ZnO core–shell heterojunction devices, the output current rating is about 130 times larger compared to their planar

  19. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  20. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3 SiC 2 /SiC joints

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2017-11-01

    Previously, results for CVD-SiC joints created using solid state displacement reactions to form a dual-phase SiC/MAX phase irradiated at 800°C and 5 dpa indicated some extent of cracking in the joint and along the CVD-SiC/joint interface. This paper elucidates the origin of cracking by thermomechanical modeling combined with irradiation-induced swelling effects using a continuum damage approach with support of micromechanical modeling. Three irradiation temperatures (400°C, 500°C and 800°C) are considered assuming experimental irradiation doses in a range leading to saturation swelling in SiC. The analyses indicate that a SiC/MAX joint heated to 400°C fails during irradiation-induced swelling at this temperature while it experiences some damage after being heated to 500°C and irradiated at the same temperature. However, it fails during cooling from 500°C to room temperature. The joint experiences minor damage when heated to and irradiated at 800°C but does not fail after cooling. The prediction agrees with the experimental findings available for this case.

  1. Influence of irradiation on mechanical properties of Si-Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sichinava, Avtandil; Bokuchava, Guram; Chubinidze, Giorgi; Archuadze, Giorgi [Ilia Vekua Sukhumi Institute of Physics and Technology, Tbilisi (Georgia); Gapishvili, Nodar [Ilia Vekua Sukhumi Institute of Physics and Technology, Tbilisi (Georgia); Georgian Technical University, Tbilisi (Georgia)

    2017-07-15

    Impact of various irradiation (Ar and He ions, high energy electrons) on microhardness and indentation of monocrystalline Si{sub 0,98}Ge{sub 0,02} alloy is studied. Samples of Si and SiGe alloy are obtained by Czochralski (CZ) method in the [111] direction in the atmosphere of high purity Ar. High energy electron irradiation with fluence of ∝10{sup 12} cm{sup -2} is conducted at the Clinac 2100iX. Ar and He ion implantation is performed on modernized ''VEZUVI-3M'' plant. It is shown that for all types of irradiation the microhardness and indentation modulus versus load are characterized by reverse indentation size effect (ISE). With the increase of fluences of Ar and He ions, the maximum value of the effect increases. At high values of loading force impact on the indenter the mechanical characteristics slowly decrease. Impact of isochronous thermal annealing on mechanical properties of high energy electron irradiated samples is studied. Non-monotonic changes of microhardness and indentation modulus are revealed in the temperature range of 200-260 C. It is proposed that such changes are caused by radiation defects transformation. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Selective growth of Ge1‑ x Sn x epitaxial layer on patterned SiO2/Si substrate by metal–organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1‑ x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal–organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1‑ x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1‑ x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1‑ x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1‑ x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1‑ x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  3. The investigation of stress in freestanding GaN crystals grown from Si substrates by HVPE.

    Science.gov (United States)

    Lee, Moonsang; Mikulik, Dmitry; Yang, Mino; Park, Sungsoo

    2017-08-17

    We investigate the stress evolution of 400 µm-thick freestanding GaN crystals grown from Si substrates by hydride vapour phase epitaxy (HVPE) and the in situ removal of Si substrates. The stress generated in growing GaN can be tuned by varying the thickness of the MOCVD AlGaN/AlN buffer layers. Micro Raman analysis shows the presence of slight tensile stress in the freestanding GaN crystals and no stress accumulation in HVPE GaN layers during the growth. Additionally, it is demonstrated that the residual tensile stress in HVPE GaN is caused only by elastic stress arising from the crystal quality difference between Ga- and N-face GaN. TEM analysis revealed that the dislocations in freestanding GaN crystals have high inclination angles that are attributed to the stress relaxation of the crystals. We believe that the understanding and characterization on the structural properties of the freestanding GaN crystals will help us to use these crystals for high-performance opto-electronic devices.

  4. Study of graded Ni-Ti shape memory alloy film growth on Si(100) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Martins, R.M.S.; Muecklich, A.; Reuther, H.; Beckers, M. [Forschungszentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, Dresden (Germany); Schell, N. [Institute for Materials Research, GKSS Research Center, Geesthacht (Germany); Silva, R.J.C.; Pereira, L.; Braz Fernandes, F.M. [CENIMAT, Monte de Caparica (Portugal)

    2008-05-15

    In-situ X-ray diffraction (XRD) was employed to study the effect of the deliberate change of the Ti/Ni ratio during the deposition of Ni-Ti films. Thus, graded films were deposited exhibiting distinctive composition and crystalline structure along the growth direction. The as-sputtered films were ex-situ characterized by Auger electron spectroscopy (AES), cross-sectional transmission electron microscopy (XTEM), and electrical resistivity (ER) measurements (during thermal cycling). In this paper results are presented concerning a film (thickness of {approx} 420 nm) with a Ti-rich composition in the central part (ranging from 50 to {approx}60 at. %) and near-equiatomic composition in the extremities, following four distinct deposition periods (different Ti target powers). During the initial deposition step (near-equiatomic composition) the Ni-Ti B2 phase starts by stacking onto (h00) planes on the naturally oxidized Si(100) substrate due to the presence of the native Si oxide (2-3 nm). The increase of the power of the Ti target in the second and third steps induced the precipitation of Ti{sub 2}Ni. When stopping the Ti co-sputtering, Ti{sub 2}Ni dissolves and, thus, plays the role of a Ti reservoir for the formation of B2 phase now preferentially stacking onto (110) with the system approaching again the equiatomic composition. The ex-situ study of the morphology of the interface has shown the presence of NiSi{sub 2} silicides (A-NiSi{sub 2} and B-NiSi{sub 2}), Ti{sub 4}Ni{sub 4}Si{sub 7}, Ti{sub 2}Ni and a non-identified phase constituted by Ni, Ti and Si, most likely amorphous. During thermal cycling, ER measurements revealed phase transitions associated with the B2, R-phase and B19' phases. These type of studies allow the identification of intermediate states during deposition and annealing, and the correlation with the final structure of the film, being useful for the optimisation of the deposition parameters in order to fabricate films with a two

  5. A nanomechanical Raman spectroscopy based assessment of stress distribution in irradiated and corroded SiC

    Science.gov (United States)

    Mohanty, Debapriya Pinaki; Wang, Hao; Okuniewski, Maria; Tomar, Vikas

    2017-12-01

    Silicon carbide (SiC) composites are under consideration for cladding and structural materials in various types of reactors. The effects of ion irradiation and corrosion on stress distribution due to mechanical loading on chemical vapor deposited (CVD) SiC were investigated in this paper by using nanomechanical Raman spectroscopy (NMRS). The stress distribution was analyzed as a function of the oxide formation on a corroded specimen and as a function of ion-induced irradiation damage in an irradiated specimen. A finite element method (FEM) based model was developed based on local mechanical properties measured using nanoindentation to predict the NMRS measured stress distribution. The stress distribution was also predicted theoretically by using a stress concentration factor, which is a function of sample geometry and boundary conditions. The maximum stress obtained theoretically was in good agreement with the FEM model and NMRS based measurements. FEM results captured the stress variation trends and maximum stress value in the analyzed samples. NMRS measurements predicted that corrosion had a greater influence on increasing the maximum value of stress in comparison to ion irradiation. The increase in stress attributed to corrosion in comparison to ion irradiated samples was approximately 10%-20%.

  6. Defect analyses of selective epitaxial grown GaAs on STI patterned (0 0 1) Si substrates

    Science.gov (United States)

    Kim, S. W.; Cho, Y. D.; Shin, C. S.; Park, W. K.; Kim, D. H.; Ko, D. H.

    2014-09-01

    The defects of GaAs layers grown on Si (001) substrate with patterned SiO2 structures were investigated using transmission electron microscopy. The compressive strain along the direction was induced in selectively grown GaAs epilayers.The defects such as stacking faults or microtwins were trapped near the GaAs/Si interface, over which defect free GaAs regions were formed from the middle of trench walls. It is suggested that the residual compressive strain in defect free GaAs layers is due to the patterned SiO2 structures.

  7. Synthesis of Core-Shell SiO/Carbon Nanofibers on Silicon Substrates by Ultrasonic Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Jianhui Zhang

    2012-01-01

    Full Text Available We synthesized the core-shell SiO/carbon nanofibers with diameters of 200–300 nm using ultrasonic spray pyrolysis with a phosphorus/ethanol mixture. High-resolution transmission electron microscopy (HRTEM and energy-dispersive spectroscopy (EDS investigations confirmed the core-shell structure, which consisted of a core of SiO and a shell of amorphous carbon. The phosphorus atoms corroded the entire silicon substrate surface, and the Si-P liquid-catalyzed the solid-liquid-solid mechanism is proposed to explain the growth of the core-shell SiO/carbon nanofibers.

  8. Photoluminescence investigation of strictly ordered Ge dots grown on pit-patterned Si substrates

    International Nuclear Information System (INIS)

    Brehm, Moritz; Grydlik, Martyna; Tayagaki, Takeshi; Schmidt, Oliver G; Langer, Gregor; Schäffler, Friedrich

    2015-01-01

    We investigate the optical properties of ordered Ge quantum dots (QDs) by means of micro-photoluminescence spectroscopy (PL). These were grown on pit-patterned Si(001) substrates with a wide range of pit-periods and thus inter QD-distances (425–3400 nm). By exploiting almost arbitrary inter-QD distances achievable in this way we are able to choose the number of QDs that contribute to the PL emission in a range between 70 and less than three QDs. This well-defined system allows us to clarify, by PL-investigation, several points which are important for the understanding of the formation and optical properties of ordered QDs. We directly trace and quantify the amount of Ge transferred from the surrounding wetting layer (WL) to the QDs in the pits. Moreover, by exploiting different pit-shapes, we reveal the role of strain-induced activation energy barriers that have to be overcome for charge carriers generated outside the dots. These need to diffuse between the energy minimum of the WL in and between the pits, and the one in the QDs. In addition, we demonstrate that the WL in the pits is already severely intermixed with Si before upright QDs nucleate, which further enhances intermixing of ordered QDs as compared to QDs grown on planar substrates. Furthermore, we quantitatively determine the amount of Ge transferred by surface diffusion through the border region between planar and patterned substrate. This is important for the growth of ordered islands on patterned fields of finite size. We highlight that the Ge WL-facets in the pits act as PL emission centres, similar to upright QDs. (paper)

  9. Effect of surface passivation by SiN/SiO{sub 2} of AlGaN/GaN high-electron mobility transistors on Si substrate by deep level transient spectroscopy method

    Energy Technology Data Exchange (ETDEWEB)

    Gassoumi, Malek, E-mail: malek.gassoumi@fsm.rnu.tn; Mosbahi, Hana; Zaidi, Mohamed Ali [Universite deMonastir, Laboratoire de Micro-Optoelectroniques et Nanostructures, Faculte des Sciences de Monastir (Tunisia); Gaquiere, Christophe [Universite des Sciences et Technologies de Lille, Institut d' Electronique de Microelectronique et de Nanotechnologie IEMN, Departement hyperfrequences et Semiconducteurs (France); Maaref, Hassen [Universite deMonastir, Laboratoire de Micro-Optoelectroniques et Nanostructures, Faculte des Sciences de Monastir (Tunisia)

    2013-07-15

    Device performance and defects in AlGaN/GaN high-electron mobility transistors have been correlated. The effect of SiN/SiO{sub 2} passivation of the surface of AlGaN/GaN high-electron mobility transistors on Si substrates is reported on DC characteristics. Deep level transient spectroscopy (DLTS) measurements were performed on the device after the passivation by a (50/100 nm) SiN/SiO{sub 2} film. The DLTS spectra from these measurements showed the existence of the same electron trap on the surface of the device.

  10. MeV ion irradiation effects on the luminescence properties of Si-implanted SiO{sub 2}-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chulapakorn, T.; Primetzhofer, D. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Sychugov, I.; Suvanam, S.S.; Linnros, J.; Hallen, A. [Royal Institute of Technology (KTH), School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden)

    2016-12-15

    The effects of MeV heavy ion irradiation at varying fluence and flux on excess Si, introduced in SiO{sub 2} by keV ion implantation, are investigated by photoluminescence (PL). From the PL peak wavelength (λ) and decay lifetime (τ), two PL sources are distinguished: (i) quasi-direct recombination of excitons of Si-nanoparticles (SiNPs), appearing after thermal annealing (λ > 720 nm, τ ∝ μs), and (ii) fast-decay PL, possibly due to oxide-related defects (λ ∝ 575-690 nm, τ ∝ ns). The fast-decay PL (ii) observed before and after ion irradiation is induced by ion implantation. It is found that this fast-decay luminescence decreases for higher irradiation fluence of MeV heavy ions. After thermal annealing (forming SiNPs), the SiNP PL is reduced for samples irradiated by MeV heavy ions but found to stabilize at higher level for higher irradiation flux; the (ii) band vanishes as a result of annealing. The results are discussed in terms of the influence of electronic and nuclear stopping powers. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Analysis of the damage effect of femtosecond-laser irradiation on extreme ultraviolet Mo/Si multilayer coating

    International Nuclear Information System (INIS)

    Suman, M.; Monaco, G.; Zuppella, P.; Nicolosi, P.; Pelizzo, M.G.; Ferrari, F.; Lucchini, M.; Nisoli, M.

    2012-01-01

    Damage analysis of Mo/Si multilayer coatings exposed to fs infrared laser irradiation has been performed. The Mo/Si a-periodic multilayer samples were specifically designed with wide reflectivity bandwidth and suitable phase chirp in order to reflect attosecond pulses. After irradiation, the mirror surface was analyzed by using an optical microscope and a profilometer. The stoichiometry of the compounds formed at the sample surface after the irradiation was investigated using X-Ray photoemission spectroscopy. The performances of the irradiated samples with the reflected pulse characteristics have been derived via reflectivity and phase measurements.

  12. Morphological and electrical properties of self-assembled iron silicide nanoparticles on Si(0 0 1) and Si(1 1 1) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Molnár, G., E-mail: molnargy@mfa.kfki.hu; Dózsa, L.; Erdélyi, R.; Vértesy, Z.; Osváth, Z.

    2015-12-01

    Highlights: • Epitaxial iron silicide nanostructures were grown on Si(1 1 1) and Si(0 0 1) substrates. • The size and shape of the particles are the function of the thickness and annealing. • The local current–voltage characteristics were measured by conductive AFM. • The different size and shape nanoparticles show similar I–V characteristics. • The tip current is dominated in few nm size sites, visible in the AFM phase image. - Abstract: Epitaxial iron silicide nanostructures are grown by solid phase epitaxy on Si(0 0 1) and Si(1 1 1), and by reactive deposition epitaxy on Si(0 0 1) substrates. The formation process is monitored by reflection high-energy electron diffraction. The morphology, size, and electrical properties of the nanoparticles are investigated by scanning electron microscopy, by electrically active scanning probe microscopy, and by confocal Raman spectroscopy. The results show that the shape, size, orientation, and density of the nanoobjects can be tuned by self-assembly, controlled by the lattice misfit between the substrates and iron silicides. The size distribution and shape of the grown nanoparticles depend on the substrate orientation, on the initial thickness of the evaporated iron, on the temperature and time of the annealing, and on the preparation method. The so-called Ostwald ripening phenomena, which state that the bigger objects develop at the expense of smaller ones, controls the density of the nanoparticles. Raman spectra show the bigger objects do not contain β-FeSi{sub 2} phase. The different shape nanoparticles exhibit small, about 100 mV barrier compared to the surrounding silicon. The local leakage current of the samples measured by conductive AFM using a Pt coated Si tip is localized in a few nanometers size sites, and the sites which we assume are very small silicide nanoparticles or point defects.

  13. Morphological and electrical properties of self-assembled iron silicide nanoparticles on Si(0 0 1) and Si(1 1 1) substrates

    International Nuclear Information System (INIS)

    Molnár, G.; Dózsa, L.; Erdélyi, R.; Vértesy, Z.; Osváth, Z.

    2015-01-01

    Highlights: • Epitaxial iron silicide nanostructures were grown on Si(1 1 1) and Si(0 0 1) substrates. • The size and shape of the particles are the function of the thickness and annealing. • The local current–voltage characteristics were measured by conductive AFM. • The different size and shape nanoparticles show similar I–V characteristics. • The tip current is dominated in few nm size sites, visible in the AFM phase image. - Abstract: Epitaxial iron silicide nanostructures are grown by solid phase epitaxy on Si(0 0 1) and Si(1 1 1), and by reactive deposition epitaxy on Si(0 0 1) substrates. The formation process is monitored by reflection high-energy electron diffraction. The morphology, size, and electrical properties of the nanoparticles are investigated by scanning electron microscopy, by electrically active scanning probe microscopy, and by confocal Raman spectroscopy. The results show that the shape, size, orientation, and density of the nanoobjects can be tuned by self-assembly, controlled by the lattice misfit between the substrates and iron silicides. The size distribution and shape of the grown nanoparticles depend on the substrate orientation, on the initial thickness of the evaporated iron, on the temperature and time of the annealing, and on the preparation method. The so-called Ostwald ripening phenomena, which state that the bigger objects develop at the expense of smaller ones, controls the density of the nanoparticles. Raman spectra show the bigger objects do not contain β-FeSi 2 phase. The different shape nanoparticles exhibit small, about 100 mV barrier compared to the surrounding silicon. The local leakage current of the samples measured by conductive AFM using a Pt coated Si tip is localized in a few nanometers size sites, and the sites which we assume are very small silicide nanoparticles or point defects.

  14. Microstructure of buried CoSi2 layers formed by high-dose Co implantation into (100) and (111) Si substrates

    International Nuclear Information System (INIS)

    Bulle-Lieuwma, C.W.T.; Van Ommen, A.H.; Vandenhoudt, D.E.W.; Ottenheim, J.J.M.; de Jong, A.F.

    1991-01-01

    Heteroepitaxial Si/CoSi 2 /Si structures have been synthesized by implanting 170-keV Co + with doses in the range 1--3x10 17 Co + ions/cm 2 into (100) and (111) Si substrates and subsequent annealing. The microstructure of both the as-implanted and annealed structures is investigated in great detail by transmission electron microscopy, high-resolution electron microscopy, and x-ray diffraction. In the as-implanted samples, the Co is present as CoSi 2 precipitates, occurring both in aligned (A-type) and twinned (B-type) orientation. For the highest dose, a continuous layer of stoichiometric CoSi 2 is already formed during implantation. It is found that the formation of a connected layer, already during implantation, is crucial for the formation of a buried CoSi 2 layer upon subsequent annealing. Particular attention is given to the coordination of the interfacial Co atoms at the Si/CoSi 2 (111) interfaces of both types of precipitates. We find that the interfacial Co atoms at the A-type interfaces are fully sevenfold coordinated, whereas at the B-type interfaces they appear to be eightfold coordinated

  15. Competition between siRNA duplexes: impact of RNA-induced silencing complex loading efficiency and comparison between conventional-21 bp and Dicer-substrate siRNAs.

    Science.gov (United States)

    Tanudji, Marcel; Machalek, Dorothy; Arndt, Greg M; Rivory, Laurent

    2010-02-01

    Cotransfection of a mixture of siRNAs species is typically used when simultaneous targeting of more than one mRNA is required. However, competition between siRNAs could occur and reduce the activity of some siRNAs within the mixture. To further study the factors affecting the degree of competition between siRNAs, we cotransfected luciferase targeting siRNAs with various irrelevant (ie, nonluciferase targeting) siRNAs into cells and examined differences in their competition profiles by assessing the effect on luciferase expression. We show that the degree of competition varies between irrelevant siRNAs and occurs at the point of RISC loading. Although the competition profile appears to be related to the calculated RNA-induced silencing complex (RISC) loading potential, empirical testing is required to confirm the competitive effects. We also observed reduced competition with siRNAs in the Dicer-substrate format, presumably due to more efficient RISC loading as a consequence of the physical transfer of the processed siRNA from Dicer.

  16. Mixing induced by swift heavy ion irradiation at Fe/Si interface

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The present work deals with the mixing of metal and silicon by swift heavy ions in high-energy range. Threshold value for the defect creation in metal Fe calculated was found to be ~ 40 keV/nm. A thin film of Fe (10 nm) was deposited on Si (100) at a pressure of 4 × 10–8 Torr and was irradiated with 95 MeV Au ions ...

  17. Recent progress in integration of III-V nanowire transistors on Si substrate by selective-area growth

    Science.gov (United States)

    Tomioka, Katsuhiro; Fukui, Takashi

    2014-10-01

    We report on the recent progress in electronic applications using III-V nanowires (NWs) on Si substrates using the selective-area growth method. This method could align vertical III-V NWs on Si under specific growth conditions. Detailed studies of the III-V NW/Si heterointerface showed the possibility of achieving coherent growth regardless of misfit dislocations in the III-V/Si heterojunction. The vertical III-V NWs grown using selective-area growth were utilized for high performance vertical field-effect transistors (FETs). Furthermore, III-V NW/Si heterointerfaces with fewer misfit dislocations provided us with a unique band discontinuity with a new functionality that can be used for the application of tunnel diodes and tunnel FETs. These demonstrations could open the door to a new approach for creating low power switches using III-V NWs as building-blocks of future nanometre-scaled electronic circuits on Si platforms.

  18. Magnetoimpedance studies on ion irradiated Co33Fe33Ni7Si7B20 ribbons

    Science.gov (United States)

    Kotagiri, Ganesh; Markandeyulu, G.; Thulasiram, K. V.; Fernandes, W. A.; Misra, D.; Tribedi, L. C.

    2016-04-01

    Magnetoimpedance (MI) effect was studied on amorphous Co33Fe33Ni7Si7B20 ribbons that were irradiated with N+1, Ar+2 and Xe+5 ions, at energy of 75 keV. The (MI)m [maximum MI in each case] values are 9.4% and 11%, 9.9% and 6.5%, the largest, for the as-quenched and N+1, Ar+2 and Xe+5 ion irradiated ribbons respectively, at 2 MHz. The (MI)m value of the N+1 ion irradiated ribbon was observed to be the highest, due to an induced in-plane transverse magnetic anisotropy. The saturation magnetizations of the ion-irradiated ribbons are not seen to change with respect to that of the as-quenched ribbon; a small increase in the Ms was observed only upon irradiation with Xe5+ ions. The interaction between the large number of domains, with large uniaxial anisotropy led to large (MI)m values, at frequencies above 8 MHz in the Ar+2 ion irradiated ribbon.

  19. Structural Analysis and Infrared Emission from Ti+3 Doped AlN Deposited on Si(100) and Si(111) Substrates and Optical Fibers

    Science.gov (United States)

    Maqbool, Muhammad; Main, Kyle; Ahmad, Iftikhar

    2015-06-01

    Thin films of AlN doped with Titanium are deposited on Si(100) and Si(111) substrates and optical fibers at liquid nitrogen temperature by rf-magnetron sputtering. Thickness of the films is 400 nm on both silicon substrates and optical fibers. X-ray diffraction studies show that films deposited on both Si(100) and Si(111) substrate are amorphous, and those deposited on optical fibers are crystalline under the same conditions. The results indicate that low temperature is not the only requirement to grow amorphous films but the size and shape of substrate also affect the structure and morphology of a thin film material. X-Ray Fluorescence and Photoluminescence of the as-deposited AlN:Ti films report an emission peak at 781 nm as a result of 4T2 4A2 transition. A relatively less intense emission is also observed at 785 nm. The fluorescence emission from Ti+3 is proved to be isotropic.

  20. Bulk AlN crystal growth: self-seeding and seeding on 6H-SiC substrates

    Science.gov (United States)

    Edgar, J. H.; Liu, L.; Liu, B.; Zhuang, D.; Chaudhuri, J.; Kuball, M.; Rajasingam, S.

    2002-12-01

    The properties of bulk AlN crystals grown by sublimation recondensation and either randomly nucleated (i.e. self-seeded) or seeded on 6H-SiC substrates or compared. Self-seeding produces crystals of the highest perfection, lowest stress, and low Si and C impurity content, but the crystals grow in random crystallographic orientations. Crystals grown in boron nitride crucibles typically form thin platelets with the fastest growth occurring in the c-axis direction. Growth striations run the length of the crystals in the c-axis direction. Anisotropic etching in aqueous 45 wt% KOH solutions shows that the growth (0 0 0 1) planes exposed to the AlN source predominately have an aluminum polarity. AlN crystals seeded on 6H-SiC(0 0 0 1) have a single crystallographic orientation and the largest dimensions are perpendicular to the c-axis, determined by the size of the substrate. Cracking and voids in the AlN layer produced by differences in thermal expansion coefficients of AlN and SiC and decomposition of the SiC were ameliorated by depositing an AlN-SiC alloy layer on the SiC before growing the AlN layer. Raman spectroscopy measurements suggest the AlN and AlN-SiC alloy layer are both under tensile stress. The defect density in AlN crystals grown on composite AlN-SiC/6H-SiC substrates was 3.7×10 5 cm -2, as determined by synchrotron white beam X-ray topography.

  1. Charge accumulation in the buried oxide of SOI structures with the bonded Si/SiO2 interface under γ-irradiation: effect of preliminary ion implantation

    International Nuclear Information System (INIS)

    Naumova, O V; Fomin, B I; Ilnitsky, M A; Popov, V P

    2012-01-01

    In this study, we examined the effect of preliminary boron or phosphorous implantation on charge accumulation in the buried oxide of SOI-MOSFETs irradiated with γ-rays in the total dose range (D) of 10 5 –5 × 10 7 rad. The buried oxide was obtained by high-temperature thermal oxidation of Si, and it was not subjected to any implantation during the fabrication process of SOI structures. It was found that implantation with boron or phosphorous ions, used in fabrication technologies of SOI-MOSFETs, increases the concentration of precursor traps in the buried oxide of SOI structures. Unlike in the case of boron implantation, phosphorous implantation leads to an increased density of states at the Si/buried SiO 2 interface during subsequent γ-irradiation. In the γ-irradiated SOI-MOSFETs, the accumulated charge density and the density of surface states in the Si/buried oxide layer systems both vary in proportion to k i ln D. The coefficients k i for as-fabricated and ion-implanted Si/buried SiO 2 systems were evaluated. From the data obtained, it was concluded that a low density of precursor hole traps was a factor limiting the positive charge accumulation in the buried oxide of as-fabricated (non-implanted) SOI structures with the bonded Si/buried SiO 2 interface. (paper)

  2. Role of Defects in Swelling and Creep of Irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States); Voyles, Paul [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-16

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is critical to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and

  3. Cluster dynamics modeling of Mn-Ni-Si precipitates in ferritic-martensitic steel under irradiation

    Science.gov (United States)

    Ke, Jia-Hong; Ke, Huibin; Odette, G. Robert; Morgan, Dane

    2018-01-01

    Mn-Ni-Si precipitates (MNSPs) are known to be responsible for irradiation-induced hardening and embrittlement in structural alloys used in nuclear reactors. Studies have shown that precipitation of the MNSPs in 9-Cr ferritic-martensitic (F-M) alloys, such as T91, is strongly associated with heterogeneous nucleation on dislocations, coupled with radiation-induced solute segregation to these sinks. Therefore it is important to develop advanced predictive models for Mn-Ni-Si precipitation in F-M alloys under irradiation based on an understanding of the underlying mechanisms. Here we use a cluster dynamics model, which includes multiple effects of dislocations, to study the evolution of MNSPs in a commercial F-M alloy T91. The model predictions are calibrated by data from proton irradiation experiments at 400 °C. Radiation induced solute segregation at dislocations is evaluated by a continuum model that is integrated into the cluster dynamics simulations, including the effects of dislocations as heterogeneous nucleation sites. The result shows that MNSPs in T91 are primarily irradiation-induced and, in particular, both heterogeneous nucleation and radiation-induced segregation at dislocations are necessary to rationalize the experimental observations.

  4. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    CERN Document Server

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  5. Epitaxy of boron phosphide on AlN, 4H-SiC, 3C-SiC and ZrB2 substrates

    Science.gov (United States)

    Padavala, Balabalaji

    The semiconductor boron phosphide (BP) has many outstanding features making it attractive for developing various electronic devices, including neutron detectors. In order to improve the efficiency of these devices, BP must have high crystal quality along with the best possible electrical properties. This research is focused on growing high quality crystalline BP films on a variety of superior substrates like AlN, 4H-SiC, 3C-SiC and ZrB2 by chemical vapor deposition. In particular, the influence of various parameters such as temperature, reactant flow rates, and substrate type and its crystalline orientation on the properties of BP films were studied in detail. Twin-free BP films were produced by depositing on off-axis 4H-SiC(0001) substrate tilted 4° toward [11¯00] and crystal symmetry matched zincblende 3C-SiC. BP crystalline quality improved at higher deposition temperature (1200°C) when deposited on AlN, 4H-SiC, whereas increased strain in 3C-SiC and increased boron segregation in ZrB2 at higher temperatures limited the best deposition temperature to below 1200°C. In addition, higher flow ratios of PH 3 to B2H6 resulted in smoother films and improved quality of BP on all substrates. The FWHM of the Raman peak (6.1 cm -1), XRD BP(111) peak FWHM (0.18°) and peak ratios of BP(111)/(200) = 5157 and BP(111)/(220) = 7226 measured on AlN/sapphire were the best values reported in the literature for BP epitaxial films. The undoped films on AlN/sapphire were n-type with a highest electron mobility of 37.8 cm2/V˙s and a lowest carrier concentration of 3.15x1018 cm -3. Raman imaging had lower values of FWHM (4.8 cm-1 ) and a standard deviation (0.56 cm-1) for BP films on AlN/sapphire compared to 4H-SiC, 3C-SiC substrates. X-ray diffraction and Raman spectroscopy revealed residual tensile strain in BP on 4H-SiC, 3C-SiC, ZrB2/4H-SiC, bulk AlN substrates while compressive strain was evident on AlN/sapphire and bulk ZrB2 substrates. Among the substrates studied, Al

  6. Activation behavior of boron implanted poly-Si on glass substrate

    International Nuclear Information System (INIS)

    Furuta, M.; Shimamura, K.; Tsubokawa, H.; Tokushige, K.; Furuta, H.; Hirao, T.

    2010-01-01

    The activation behavior of boron (B) implanted poly-Si films on glass substrates has been investigated. The effect of B dose and annealing temperature on crystal defects and electrical properties of the films were evaluated by Raman spectroscopy and Hall measurement. It was found that the maximum activation ratio of the film with B dose of 1 x 10 15 cm -2 was obtained when Raman peak associated with disordered amorphous silicon disappeared. However, reverse anneal was observed in the film when the annealing temperature further increased. The results from secondary ion mass spectrometry and Hall measurement revealed that B segregation at the top and bottom interface and deactivation of B substitutional occurred simultaneously in the high-dose specimens when the annealing temperature increased from 600 to 750 o C.

  7. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pezzoli, Fabio, E-mail: fabio.pezzoli@unimib.it; Giorgioni, Anna; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Miglio, Leo [LNESS and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Gallacher, Kevin; Millar, Ross W.; Paul, Douglas J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Isa, Fabio [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy); Laboratory for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Biagioni, Paolo [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Isella, Giovanni [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy)

    2016-06-27

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO{sub 2} in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  8. Barium titanate thin films deposited by electrophoresis on p-Doped Si (001) substrates.

    Science.gov (United States)

    Barbosa, J G; Pereira, M R; Moura, C; Mendes, J A; Almeida, B G

    2011-10-01

    Barium titanate (BaTiO3) thin films have been prepared by electrophoretic deposition on p-doped and platinum covered silicon (Si) substrates. Their structure, nanostructure and dielectric properties were characterized. The as-deposited films were polycrystalline and composed by barium titanate nanograins with an average grain size approximately 9 nm. Annealing at high temperatures promoted grain growth, so that the samples annealed at 600 degrees C presented average grain sizes approximately 24 nm. From Raman spectroscopy measurements it was found that the tetragonal (ferroelectric) BaTiO3 phase was stabilized on the films. Also, at higher annealing temperatures, cation disorder was reduced on the films. From measurements of the temperature dependence of the dielectric permittivity the corresponding paraelectric-ferroelectric phase transition was determined. The observed transition temperature (approximately 100 degrees C) was found to be below the BaTiO3 bulk or thick film values, due to the small nanosized grains composing the films.

  9. A TEM study of in-grown stacking faults in 3C-SiC layers grown by CF-PVT on 4H-SiC substrates

    International Nuclear Information System (INIS)

    Marinova, Maya; Mercier, Frederic; Mantzari, Alkioni; Galben, Irina; Chaussende, Didier; Polychroniadis, Efstathios K.

    2009-01-01

    A transmission electron microscopy (TEM) study on the generation of stacking faults (SFs) and stacking fault (SF) induced inclusion during 3C-SiC growth by Continuous Feed Physical Vapour Transport (CF-PVT) method on 4H-SiC substrates is presented. A transition region of about 100 nm between the 4H-SiC substrate and 3C-SiC layer, where cubic and 4H-SiC sequences follow after each other is observed. A tendency for formation of multiple stacking faults (SFs) as opposed to the more common for fcc materials intrinsic (single) or extrinsic (double) SFs was observed. They rarely originate directly at the interface, but they are found to start on twin boundaries in some cases. Later during the CF-PVT growth process the density of SFs in the (1 1 1) and (1-bar11) gradually increases. The (1-bar11) SF density is the higher which leads to the formation of large 6H-SiC inclusions, extending to large lengths.

  10. A study on the change in the phase transition temperature of TiSi sub 2 by adding the Zr element on different Si substrates

    CERN Document Server

    Yoon, S H

    1999-01-01

    The stabilization of C49 TiSi sub 2 at high temperature was investigated by adding Zr element to Ti-silicide both on single crystalline Si(100) and amorphous Si substrates. This stabilization of the C49 TiSi sub 2 phase, which exhibits lower surface and interface energies than those of the C54 TiSi sub 2 phase, was expected to suppress the problems of Ti-silicide, such as the phase transition and the agglomeration. Ti and Zr films of 40 nm were co-deposited on Si substrates in a dual e-beam evaporation system equipped with an ion pump and at a base pressure of approx 5x10 sup - sup 9 Torr. The amounts of Zr contents added to the Ti-silicide were 5, 10 and 20 atomic %, and the thicknesses were monitored by in-situ quartz-crystal thickness monitors. After the deposition, films were annealed by using an ex-situ vacuum furnace at temperatures between 600 .deg. C and 900 .deg. C in 100 .deg. C increments. The phase identification and the chemical compositions were investigated by X-ray diffraction (XRD) and Auger ...

  11. Influence of Substrate on Crystal Orientation of Large-Grained Si Thin Films Formed by Metal-Induced Crystallization

    Directory of Open Access Journals (Sweden)

    Kaoru Toko

    2015-01-01

    Full Text Available Producing large-grained polycrystalline Si (poly-Si film on glass substrates coated with conducting layers is essential for fabricating Si thin-film solar cells with high efficiency and low cost. We investigated how the choice of conducting underlayer affected the poly-Si layer formed on it by low-temperature (500°C Al-induced crystallization (AIC. The crystal orientation of the resulting poly-Si layer strongly depended on the underlayer material: (100 was preferred for Al-doped-ZnO (AZO and indium-tin-oxide (ITO; (111 was preferred for TiN. This result suggests Si heterogeneously nucleated on the underlayer. The average grain size of the poly-Si layer reached nearly 20 µm for the AZO and ITO samples and no less than 60 µm for the TiN sample. Thus, properly electing the underlayer material is essential in AIC and allows large-grained Si films to be formed at low temperatures with a set crystal orientation. These highly oriented Si layers with large grains appear promising for use as seed layers for Si light-absorption layers as well as for advanced functional materials.

  12. MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate

    Science.gov (United States)

    Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei

    2018-04-01

    How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.

  13. The controlled growth of GaN microrods on Si(111) substrates by MOCVD

    Science.gov (United States)

    Foltynski, Bartosz; Garro, Nuria; Vallo, Martin; Finken, Matthias; Giesen, Christoph; Kalisch, Holger; Vescan, Andrei; Cantarero, Andrés; Heuken, Michael

    2015-03-01

    In this paper, a selective area growth (SAG) approach for growing GaN microrods on patterned SiNx/Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) is studied. The surface morphology, optical and structural properties of vertical GaN microrods terminated by pyramidal shaped facets (six { 10 1 bar 1} planes) were characterized using scanning electron microscopy (SEM), room temperature photoluminescence (PL) and Raman spectroscopy, respectively. Measurements revealed high-quality GaN microcolumns grown with silane support. Characterized structures were grown nearly strain-free (central frequency of Raman peak of 567±1 cm-1) with crystal quality comparable to bulk crystals (FWHM=4.2±1 cm-1). Such GaN microrods might be used as a next-generation device concept for solid-state lighting (SSL) applications by realizing core-shell InGaN/GaN multi-quantum wells (MQWs) on the n-GaN rod base.

  14. Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, W., E-mail: wkozl@std2.phys.uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Balcerski, J.; Szmaja, W. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Piwoński, I. [Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163, 90-236 Łódź (Poland); Batory, D. [Institute of Materials Science and Engineering, Łódź University of Technology, Stefanowskiego 1/15, 90-924 Łódź (Poland); Miękoś, E. [Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź (Poland); and others

    2017-03-15

    We have made a quantitative study of the morphological and magnetic domain structures of 100 nm thick nanocrystalline cobalt films thermally evaporated on naturally oxidized Si(100) substrates. The morphological structure is composed of densely packed grains with the average grain size (35.6±0.8) nm. The grains exhibit no geometric alignment and no preferred elongation on the film surface. In the direction perpendicular to the film surface, the grains are aligned in columns. The films crystallize mainly in the hexagonal close-packed phase of cobalt and possess a crystallographic texture with the hexagonal axis perpendicular to the film surface. The magnetic domain structure consists of domains forming a maze stripe pattern with the average domain size (102±6) nm. The domains have their magnetizations oriented almost perpendicularly to the film surface. The domain wall energy, the domain wall thickness and the critical diameter for single-domain particle were determined. - Highlights: • 100 nm thick nanocrystalline cobalt films on Si(100) were studied quantitatively. • The grains are densely packed and possess the average size (35.6±0.8) nm. • The films have a texture with the hexagonal axis perpendicular to the film surface. • The magnetic domains form a maze stripe pattern with the average size (102±6) nm. • The domains are magnetized almost perpendicularly to the film surface.

  15. Properties of amorphous SiC coatings deposited on WC-Co substrates

    Directory of Open Access Journals (Sweden)

    A.K. Costa

    2003-01-01

    Full Text Available In this work, silicon carbide films were deposited onto tungsten carbide from a sintered SiC target on a r.f. magnetron sputtering system. Based on previous results about the influence of r.f. power and argon pressure upon the properties of films deposited on silicon substrates, suitable conditions were chosen to produce high quality films on WC-Co pieces. Deposition parameters were chosen in order to obtain high deposition rates (about 30 nm/min at 400 W rf power and acceptable residual stresses (1.5 GPa. Argon pressure affects the energy of particles so that films with higher hardness (30 GPa were obtained at low pressures (0.05 Pa. Wear rates of the coated pieces against a chromium steel ball in a diamond suspension medium were found to be about half of the uncoated ones. Hardness and wear resistance measurements were done also in thermally annealed (200-800 °C samples revealing the effectiveness of SiC coatings to protect tool material against severe mechanical degradation resulting of high temperature (above 500 °C oxidation.

  16. Hydrogenated amorphous carbon films on steel balls and Si substrates: Nanostructural evolutions and their trigging tribological behaviors

    Science.gov (United States)

    Wang, Yongfu; Wang, Yan; Zhang, Xingkai; Shi, Jing; Gao, Kaixiong; Zhang, Bin; Zhang, Junyan

    2017-10-01

    In this study, we prepared hydrogenated amorphous carbon films on steel balls and Si substrates (steel ball- and Si substrate-films) with different deposition time, and discussed their carbon nanostructural evolutions and tribological behaviors. The steel ball-film structure started to be graphite-like structure and then gradually transformed into fullerene-like (FL) structure. The Si substrate-film structure began in FL structure and kept it through the thickness. The difference may be result from the competition between high starting substrate temperature after additional nitriding applied on the steel balls (its supply power is higher than that in the film deposition), and relaxation of compressive stress from energized ion bombardment in film deposition process. The FL structural film friction couples could achieve ultra-low friction in open air. In particular, the Si substrate-film with 3 h, against the steel ball-film with 2 h and 3 h, exhibited super-low friction (∼0.009) and superlong wear life (∼5.5 × 105 cycles). Our result could widen the superlubricity scope from previously high load and velocity, to middle load and velocity.

  17. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    López, G., E-mail: gema.lopez@upc.edu; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    Highlights: • We use laser doping technique to create highly-doped regions. • Dielectric layers are used as both passivating layer and dopant source. • The high quality of the junctions makes laser doping technique using dielectric layers as dopant source suitable for solar cells applications. - Abstract: In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiC{sub x}/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al{sub 2}O{sub 3}) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J–V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  18. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Science.gov (United States)

    López, G.; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiCx/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al2O3) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J-V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  19. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.

    Science.gov (United States)

    Bru-Chevallier, C; El Akra, A; Pelloux-Gervais, D; Dumont, H; Canut, B; Chauvin, N; Regreny, P; Gendry, M; Patriarche, G; Jancu, J M; Even, J; Noe, P; Calvo, V; Salem, B

    2011-10-01

    The aim of this study is to achieve homogeneous, high density and dislocation free InGaAs quantum dots grown by molecular beam epitaxy for light emission on silicon substrates. This work is part of a project which aims at overcoming the severe limitation suffered by silicon regarding its optoelectronic applications, especially efficient light emission device. For this study, one of the key points is to overcome the expected type II InGaAs/Si interface by inserting the InGaAs quantum dots inside a thin silicon quantum well in SiO2 fabricated on a SOI substrate. Confinement effects of the Si/SiO2 quantum well are expected to heighten the indirect silicon bandgap and then give rise to a type I interface with the InGaAs quantum dots. Band structure and optical properties are modeled within the tight binding approximation: direct energy bandgap is demonstrated in SiO2/Si/InAs/Si/SiO2 heterostructures for very thin Si layers and absorption coefficient is calculated. Thinned SOI substrates are successfully prepared using successive etching process resulting in a 2 nm-thick Si layer on top of silica. Another key point to get light emission from InGaAs quantum dots is to avoid any dislocations or defects in the quantum dots. We investigate the quantum dot size distribution, density and structural quality at different V/III beam equivalent pressure ratios, different growth temperatures and as a function of the amount of deposited material. This study was performed for InGaAs quantum dots grown on Si(001) substrates. The capping of InGaAs quantum dots by a silicon epilayer is performed in order to get efficient photoluminescence emission from quantum dots. Scanning transmission electronic microscopy images are used to study the structural quality of the quantum dots. Dislocation free In50Ga50As QDs are successfully obtained on a (001) silicon substrate. The analysis of QDs capped with silicon by Rutherford Backscattering Spectrometry in a channeling geometry is also presented.

  20. Effect of substrate morphology slope distributions on light scattering, nc-Si:H film growth, and solar cell performance.

    Science.gov (United States)

    Kim, Do Yun; Santbergen, Rudi; Jäger, Klaus; Sever, Martin; Krč, Janez; Topič, Marko; Hänni, Simon; Zhang, Chao; Heidt, Anna; Meier, Matthias; van Swaaij, René A C M M; Zeman, Miro

    2014-12-24

    Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.

  1. Contribution of NIEL for Gain Degradation (β in Si8+ Ion Irradiated Silicon Power Transistor

    Directory of Open Access Journals (Sweden)

    C. M. Dinesh

    2008-12-01

    Full Text Available The concept of non-ionizing energy loss (NIEL has been found useful for characterizing displacement damage defects in materials and devices. When NPN power transistors (2N6688 manufactured by BEL, India are exposed for 110 MeV Si8+ ion irradiation in the fluence range 5 x 109 to 1 x 1013 ions cm-2 at room temperature (300 K and at liquid nitrogen temperature (77 K cause functional failure due to surface and bulk defects. The output collector characteristics are studied as a function of total ionizing dose (TID and total displacement damage dose (Dd obtained using TRIM Monte Carlo code. It is observed that the shift in the output saturation voltage is considerably less for heavy ion irradiation compared to lighter ions like lithium ion irradiation. The gain of the transistor degrades with ion irradiation. Base reverse biased leakage current (BRBLC increases with increase in ion fluence. The observed results are almost independent of the irradiation temperature. These studies help to improve the device fabrication technology to make Radiation Hard Devices for advanced applications.

  2. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO 2 and NH 3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10 13 ions/cm 2 ). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  3. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  4. Ion beam synthesis and characterization of large area 3C-SiC pseudo substrates for homo- and heteroepitaxy

    International Nuclear Information System (INIS)

    Haeberlen, Maik

    2006-12-01

    In this work, large area epitaxial 3C-SiC films on Si(100) and Si(111) were formed by ion beam synthesis and subsequently characterized for their structural and crystalline properties. These SiC/Si structures are meant to be used as SiC pseudosubstrates for the homo- and heteroepitaxial growth of other compound semiconductors. The suitability of these pseudosubstrates for this purpose was tested using various epitaxial systems and thin film growth methods. For this the homoepitaxial growth of 3C-SiC employing C 60 -MBE and the heteroepitaxial growth of hexagonal GaN films grown by MOCVD and IBAMBA was studied in detail. The comparison of the structural and crystalline properties with data from literature enabled a qualified judgement of the potential of the 3C-SiC pseudosubstrates as an alternative substrate for the epitaxial growth of such films. These new 3C-SiC pseudosubstrates also enabled studies of other little known epitaxial systems: For the first time hexagonal ZnO films on (111) oriented pseudosubstrates were grown using PLD. The method if IBAMBE enabled the growth of cubic GaN layers on (100)-oriented pseudosubstrates. (orig.)

  5. The impact of SiC substrate treatment on the heteroepitaxial growth of GaN by plasma assisted MBE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.S.; Kim, T.H.; Choi, S.; Morse, M.; Wu, P. [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709 (United States); Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, and INSTM via Orabona 4 -70126, Bari (Italy)

    2005-11-01

    We report on the impact of the preparation of the Si-face 4H-SiC(0001){sub Si} substrate using a Ga flash-off process on the epitaxial growth of GaN by plasma-assisted molecular beam epitaxy. The nucleation, as well as the resultant structural and morphological properties of GaN grown directly on 4H-SiC(0001){sub Si} are strongly influenced by the chemical and morphological modifications of the SiC surface induced by the Ga flash-off process. Herein we describe the impact of the specific concentration of Ga incident on the surface (quantified in terms of monolayer (ML) coverage): of 0.5 ML, 1ML and 2ML. The residual oxygen at the SiC surface, unintentional SiC nitridation and the formation of cubic GaN grains during the initial nucleation stage, are all reduced when a 2 ML Ga flash is used. All of the above factors result in structural improvement of the GaN epitaxial layers. The correlation between the SiC surface modification, the initial nucleation stage, and the GaN epitaxial layer structural quality has been articulated using x-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and spectroscopic ellipsometry data. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Kirkendall void formation in reverse step graded Si1‑xGex/Ge/Si(001) virtual substrates

    Science.gov (United States)

    Sivadasan, Vineet; Rhead, Stephen; Leadley, David; Myronov, Maksym

    2018-02-01

    Formation of Kirkendall voids is demonstrated in the Ge underlayer of reverse step graded Si1‑xGex/Ge buffer layers grown on Si(001) using reduced pressure chemical vapour deposition (RP-CVD). This phenomenon is seen when the constant composition Si1‑xGex layer is grown at high temperatures and for x ≤ 0.7. The density and size of the spherical voids can be tuned by changing Ge content in the Si1‑xGex and other growth parameters.

  7. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Sin, Young-Gwan [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113 (Korea, Republic of); Kim, Jae-Hyun [Department of Nano-Mechanics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Kim, Jaegu, E-mail: gugu99@kimm.re.kr [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of)

    2016-10-30

    Highlights: • Fundamental relationship between laser irradiation and adhesion strength, between gallium-nitride light emitted diode and sapphire substrate, is proposed during selective laser lift-off. • Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate. • Ga precipitation caused by thermal decomposition and roughened interface caused by thermal damage lead to the considerable difference of adhesion strength at the interface. - Abstract: Selective laser lift-off (SLLO) is an innovative technology used to manufacture and repair micro-light-emitting diode (LED) displays. In SLLO, laser is irradiated to selectively separate micro-LED devices from a transparent sapphire substrate. The light source used is an ultraviolet (UV) laser with a wavelength of 266 nm, pulse duration of 20 ns, and repetition rate of 30 kHz. Controlled adhesion between a LED and the substrate is key for a SLLO process with high yield and reliability. This study examined the fundamental relationship between adhesion and laser irradiation. Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate: Ga precipitation caused by the thermal decomposition of GaN and roughened interface caused by thermal damage on the sapphire. The competition between these two mechanisms leads to a non-trivial SLLO condition that needs optimization. This study helps understand the SLLO process, and accelerate the development of a process for manufacturing micro-LED displays via SLLO for future applications.

  8. Time resolved photoluminescence of [alpha] centers in neutron irradiated SiO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Anedda, A. (Dipartimento di Scienze Fisiche dell' Universita, via Ospedale 72, 09123 Cagliari (Italy)); Congiu, F. (Dipartimento di Scienze Fisiche dell' Universita, via Ospedale 72, 09123 Cagliari (Italy)); Raga, F. (Dipartimento di Scienze Fisiche dell' Universita, via Ospedale 72, 09123 Cagliari (Italy)); Corazza, A. (Dipartimento di Fisica dell' Universita, via Celoria 16, 20133 Milano (Italy)); Martini, M. (Dipartimento di Fisica dell' Universita, via Celoria 16, 20133 Milano (Italy)); Spinolo, G. (Dipartimento di Fisica dell' Universita, via Celoria 16, 20133 Milano (Italy)); Vedda, A. (Dipartimento di Fisica dell' Universita, via Celoria 16, 20133 Milano (Italy))

    1994-06-01

    Photoluminescence in various types of silica (a-SiO[sub 2]) both unirradiated and neutron irradiated has been studied in the range 10-300 K. The already reported [alpha] emissions at 4.25 eV and at 4.35 eV, whose respective excitation bands peak at 5.10 eV and 4.96 eV, have been found to be excited also in a band peaking at similar 7.6 eV; the temperature dependence of their intensities has also been investigated for both excitations. Time resolved emission spectroscopy excited by KrF excimer laser (5 eV) allowed the detection of the different lifetimes of the two [alpha] emissions. Similar studies on neutron irradiated quartz (c-SiO[sub 2]) have evidenced the presence of the center emitting at 4.35 eV up to now observed only in a-SiO[sub 2]. ((orig.))

  9. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming; Uen, Wu-Yih; Liao, Sen-Mao; Yang, Tsun-Neng; Ma, Wei-Yang; Chang, Kuo-Jen

    2013-01-01

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H 2 Se) with the flow ratio of [H 2 Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH 3 ) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported

  10. Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates

    International Nuclear Information System (INIS)

    Zhang Yang; Zheng Haiwu; Su Jianfeng; Lin Bixi; Fu Zhuxi

    2007-01-01

    ZnO films have been grown by a sol-gel process on Si (1 1 1) substrates with and without SiC buffer layers. The influence of SiC buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates was investigated. The intensity of the E 2 (high) phonon peak in the micro-Raman spectrum of ZnO film with the SiC buffer layer is stronger than that of the sample without the SiC buffer layer, and the breadth of E 2 (high) phonon peak of ZnO film with the SiC buffer layer is narrower than that of the sample without the SiC buffer layer. These results indicated that the crystalline quality of the sample with the SiC buffer layer is better than that of the sample without the SiC buffer layer. In photoluminescence spectra, the intensity of free exciton emission from ZnO films with the SiC buffer was much stronger than that from ZnO film without the SiC buffer layer, while the intensity of deep level emission from sample with the SiC buffer layer was about half of that of sample without the SiC buffer layer. The results indicate the SiC buffer layer improves optical qualities of ZnO films on Si (1 1 1) substrates

  11. Step-flow growth of fluorescent 4H-SiC layers on 4 degree off-axis substrates

    DEFF Research Database (Denmark)

    Schimmel, S.; Kaiser, M.; Hens, P.

    2013-01-01

    Homoepitaxial layers of fluorescent 4H-SiC were grown on 4 degree off-axis substrates by sublimation epitaxy. Luminescence in the green spectral range was obtained by co-doping with nitrogen and boron utilizing donor-acceptor pair luminescence. This concept opens possibilities to explore green...... light emitting diodes using a new materials platform....

  12. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    Directory of Open Access Journals (Sweden)

    Mohd Idzat Idris

    2016-12-01

    Full Text Available Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV and the irradiation is performed at temperatures lower than 973K. However, the recovery behavior of SiC fabricated by the nanoinfiltrated and transient eutectic phase (NITE process is not well understood. In this study, the effects of secondary phases on the irradiation-related swelling and recovery behavior of monolithic NITE-SiC after post-irradiation annealing were studied. The NITE-SiC specimens were irradiated in the BR2 reactor at fluences of up to 2.0–2.5×1024 n/m2 (E>0.1MeV at 333–363K. This resulted in the specimens swelling up ∼1.3%, which is 0.1% higher than the increase seen in concurrently irradiated high-purity SiC. The recovery behaviors of the specimens after post-irradiation thermal annealing were examined using a precision dilatometer; the specimens were heated at temperatures of up to 1673K using a step-heating method. The recovery curves were analyzed using a first-order model, and the rate constants for each annealing step were obtained to determine the activation energy for volume recovery. The NITE-A specimen (containing 12 wt% sintering additives recovered completely after annealing at ∼1573K; however, it shrank because of the volatilization of the oxide phases at 1673K. The NITE-B specimen (containing 18wt% sintering additives did not recover fully, since the secondary phase (YAG was crystallized during the annealing process. The recovery mechanism of NITE-A SiC was based on the recombination of the C and Si Frenkel pairs, which were very closely sited or only slightly separated at temperatures lower than 1223K, as well as the recombination of the slightly separated C Frenkel pairs and the migration of C and Si interstitials at temperatures of 1223–1573K. That is to say, the

  13. Magnetic properties of Pr-Fe-B thick-film magnets deposited on Si substrates with glass buffer layer

    Science.gov (United States)

    Nakano, M.; Kurosaki, A.; Kondo, H.; Shimizu, D.; Yamaguchi, Y.; Yamashita, A.; Yanai, T.; Fukunaga, H.

    2018-05-01

    In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.

  14. Morphological and optical comparison of the Si doped GaN thin film deposited onto the transparent substrates

    Science.gov (United States)

    Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2016-04-01

    The aim of this paper is to expand the body of knowledge about the silicon doped gallium nitride thin films deposited on different substrates. The physical properties of the Si doped GaN thin films deposited on the glass and polyethylene terephthalate substrates by thermionic vacuum arc which is plasma production technique were investigated. Thermionic vacuum arc method is a method of producing pure material plasma. The Si doped GaN thin films were analyzed using the following methods and the devices: atomic force microscopy, x-ray diffraction device, spectroscopic ellipsometer and energy dispersive x-ray spectroscopy detector. The produced Si doped GaN thin films are in the (113) orientation. The thicknesses and refractive index were determined by using Cauchy dispersion model. Surface morphologies of produced thin films are homogenous and low roughness. Our analysis showed that the thermionic vacuum arc method present important advantages for optical and industrial applications.

  15. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    Science.gov (United States)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  16. Transfer of Graphene Layers Grown on SiC Wafers to Other Substrates and Their Integration into Field Effect Transistors

    Science.gov (United States)

    Unarunotai, Sakulsuk; Murata, Yuya; Chialvo, Cesar; Kim, Hoon-Sik; MacLaren, Scott; Mason, Nadya; Petrov, Ivan; Rogers, John

    2010-03-01

    An approach to produce graphene films by epitaxial growth on silicon carbide substrate is promising, but its current implementation requires the use of SiC as the device substrate. We present a simple method for transferring epitaxial sheets of graphene on SiC to other substrates. The graphene was grown on the (0001) face of 6H-SiC by thermal annealing in a hydrogen atmosphere. Transfer was accomplished using a peeling process with a bilayer film of Gold/polyimide, to yield graphene with square millimeters of coverage on the target substrate. Back gated field-effect transistors fabricated on oxidized silicon substrates with Cr/Au as source-drain electrodes exhibited ambipolar characteristics with hole mobilities of ˜100 cm^2/V-s, and negligible influence of resistance at the contacts. This work was supported by the U.S. DOE, under Award No. DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

  17. Effect of 100 MeV Ag{sup +7} ion irradiation on the bulk and surface magnetic properties of Co–Fe–Si thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Department of Physics, Christian College, Chengannur, Kerala 689 122 (India); Geetha, P. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, College of Science, Sultan Qaboos University, Al Khod 123 (Oman); Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639 798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe (Japan); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India)

    2014-12-15

    Thin films of Co–Fe–Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag{sup +7} ions at fluences of 1×10{sup 11}, 1×10{sup 12} and 1×10{sup 13} ions/cm{sup 2}. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag{sup 7+} ions modifies the surface morphology. Irradiating with ions at fluences of 1×10{sup 11} ions/cm{sup 2} smoothens the mesoscopic hill-like structures, and then, at 1×10{sup 12} ions/cm{sup 2} new surface structures are created. When the fluence is further increased to 1×10{sup 13} ions/cm{sup 2} an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×10{sup 11} ions/cm{sup 2}, 1×10{sup 12} ions/cm{sup 2} and 1×10{sup 13} ions/cm{sup 2} the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation. - Highlights: • We have irradiated thermally evaporated Co–Fe–Si thin films on glass substrate with 100 MeV Ag{sup +7} ions using the 15 UD Pelletron Accelerator at IUAC, New Delhi, India. • Surface morphology and magnetic characteristics of the films can be altered with ion irradiation. • It was observed that the variation in surface magnetic properties correlates well with the changes in surface morphology, further reiterating the

  18. Structure Characterization of Modified Polyimide Films Irradiated by 2 MeV Si Ions

    International Nuclear Information System (INIS)

    Tian-Xiang, Chen; Shu-De, Yao; Kun, Wang; Huan, Wang; Zhi-Bo, Ding; Di, Chen

    2009-01-01

    Structures of polyimide (6051) films modified by irradiation of 2.0 MeV Si ions with different fluences are studied in detail. Variations of the functional groups in polyimide are investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. The results indicate that the functional groups can be destroyed gradually with the increasing ion fluence. The variations of structure and element contents are characterized by x-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and x-ray photoelectron spectroscopy (XPS). The results indicate that the contents of N and O decrease significantly compared with the original samples, some graphite-like and carbon-rich phases are formed in the process of irradiation

  19. FTIR and Raman spectra of ion irradiated and annealed 4H-SiC

    International Nuclear Information System (INIS)

    Zhou Lihong; Yang Titao; Yao Cunfeng; Chinese Academy of Sciences, Beijing

    2007-01-01

    The 4H-SiC specimens were implanted with 110keV C-ions and then irradiated with 230MeV Pb-ions and subsequently annealed at different temperatures in vacuum. The samples were investigated after each annealing stage by using FTIR and Raman spectroscopy. The obtained FTIR spectra showed several interference fringes in the range from 960 cm -1 to 1450 cm -1 . The intensity of fringes decreases with the increase of annealing temperature, and an abrupt decrease of the fringe intensity was found for annealing above 900 degree C, indicating that there was a significant recovery of the irradiation-induced damage in the crystal for annealing at high temperatures. The Raman spectroscopy showed that after annealing at 1200 degree C for 30 min the amorphous layer was recovered and the precipitation of carbon atoms in graphite occurred. (authors)

  20. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    Science.gov (United States)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  1. Si and Ge nanostructures epitaxy on a crystalline insulating LaAlO{sub 3}(001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, Jean-Luc; Mortada, Hussein; Dentel, Didier; Derivaz, Mickael [Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228 CNRS-UHA, Universite de Haute Alsace, Mulhouse (France); Ben Azzouz, Chiraz; Akremi, Abdelwahab; Chefi, Chaabanne [Equipe Surface et Interface (ESI) - Faculte des Sciences, Bizerte (Tunisia); Morales, Francisco Miguel; Herrera, Miriam; Manuel, Jose Manuel; Garcia, Rafael [Department of Materials Science, Metallurgical Engineering and Inorganic Chemistry, Cadiz University (Spain); Diani, Mustapha [Equipe de Recherche en Mecanique, Materiaux et Metallurgie, FST, Tanger (Morocco)

    2012-04-15

    We present a comparative structural study of the growth of Si and Ge deposited by molecular beam epitaxy (MBE) on a c(2 x 2) reconstructed LaAlO{sub 3}(001) substrate. Our findings are based on complementary experimental techniques such as in situ X-ray photoelectron spectroscopy (XPS), reflection high-energy electron diffraction (RHEED), low energy electron diffraction (LEED) and ex situ atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). While the layers are amorphous and wet uniformly the substrate in a low deposition temperature range, above 500 C both Si and Ge growths proceed in a Volmer-Weber (VW) mode leading to the formation of nanocrystals (NCs). The islands are found to be composed of pure Si and Ge and to have abrupt interfaces with the substrate. Both semiconductors (SCs) crystallize in their own diamond structure leading to relaxed NCs. No facets could be observed on the crystalline islands. An epitaxial relationship is established for which the (001) planes of Si and Ge are parallel to the LaAlO{sub 3}(001) surface but are rotated by 45 around the [001] growth axis. The Ge lattice undergoes a second rotation of 6 with respect to the (001) growth axis. This 6 tilt is an original mechanism to partially compensate the strain in the Ge islands induced by the large misfit. Whereas a unique epitaxial relationship is pointed out for Si NCs, many Ge NCs are randomly orientated on the surface. This is interpreted by the fact that the Ge islands are less anchored to the substrate due to a large misfit and to the fact that the Ge-O bonds are weaker than the Si-O ones. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Determining interfacial properties of submicron low-k films on Si substrate by using wedge indentation technique

    Science.gov (United States)

    Yeap, Kong Boon; Zeng, Kaiyang; Jiang, Haiyan; Shen, Lu; Chi, Dongzhi

    2007-06-01

    This article presents studies on using a wedge indentation technique to determine interfacial adhesion properties of low-k dielectric films, namely, methyl-silsesquioxane (MSQ) and black diamond (BD™)films, both on a Si substrate. Interfacial crack initiation and propagation processes in the MSQ/Si system are studied by using focused-ion-beam sectioning of the indentation impressions created by wedge tips with 90° and 120° of inclusion angles, respectively. Furthermore, the indentation induced stress is found to be proportional to the ratio of the indentation volume and the interface delamination crack volume for both plane strain and nonplane strain cases. With this analysis, the interface toughness of the MSQ/Si and BD/Si system, in terms of the strain energy release rate, is determined. The interface toughness for the MSQ/Si system is found to be a value of 1.89±0.28J/m2 for the 90° wedge tip indentation and 1.92±0.08J/m2 for the 120° wedge tip indentation. In addition, using the 120° wedge tip, the interface toughnesses of the BD films on the Si substrate with 200 and 500nm thicknesses are found to be the values of 6.62±1.52 and 6.35±2.27J/m2, respectively.

  3. Electron irradiation response on Ge and Al-doped SiO{sub 2} optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yaakob, N.H.; Wagiran, H. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Hossain, I., E-mail: imamhossain@utm.m [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Ramli, A.T. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Bradley, D.A [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Hashim, S. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Ali, H. [Department of Radiotherapy and Oncology, Hospital Sultan Ismail, Johor Darul Takzim (Malaysia)

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO{sub 2} optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO{sub 2} optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  4. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres

    Science.gov (United States)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  5. Electron irradiation response on Ge and Al-doped SiO2 optical fibres

    International Nuclear Information System (INIS)

    Yaakob, N.H.; Wagiran, H.; Hossain, I.; Ramli, A.T.; Bradley, D.A; Hashim, S.; Ali, H.

    2011-01-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  6. Electrical characterization of electron irradiated and annealed lowly-doped 4H-SiC

    Science.gov (United States)

    Omotoso, E.; Paradzah, A. T.; Legodi, M. J.; Diale, M.; Meyer, W. E.; Auret, F. D.

    2017-10-01

    The effect of high energy electron (HEE) irradiation on nickel Schottky contacts fabricated on lowly-doped n-type 4H-SiC was investigated by deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS. The Schottky contacts were deposited by resistive evaporation of nickel and were observed to be of good rectification quality from current-voltage measurements. DLTS was performed up to 350K to investigate the presence of defects before and after HEE irradiation. HEE irradiation was observed to induce three deep level defects below 350 K at 0.42 eV, 0.62 eV and 0.76 eV below the conduction band minimum. These deep level defects are labelled E0.42, E0.62 and E0.76. Defects E0.42 and E0.76 were observed after the same electron fluence and were annealed out at the same temperature, suggesting that the defects could be strongly related. The effect of HEE irradiation and annealing on as-grown defects was also investigated and is reported.

  7. Characteristics of accumulation of recombination centers due to irradiation of p-type Si

    International Nuclear Information System (INIS)

    Kazakevich, L.A.; Lugakov, P.F.; Filippov, I.M.

    1989-01-01

    Irradiation of Czochralski-grown p-type Si single crystals results primarily in creation of recombination-active radiation defects which give rise to a donor energy level at E v + 0.30-0.38 eV in the band gap. The ideas on the structure and mechanisms of formation of these radiation defects are continuously evolving and at present the most widely held view is that which assumes that the K centers can be carbon-oxygen-divacancy complexes or interstitial carbon-interstitial oxygen pairs. The authors investigated the recombination properties of such centers

  8. High-resolution, high-linearity temperature sensor using surface acoustic wave device based on LiNbO3/SiO2/Si substrate

    Directory of Open Access Journals (Sweden)

    Xiang-Guang Tian

    2016-09-01

    Full Text Available A high-resolution and high-linearity surface acoustic wave (SAW temperature sensor, consisting of a SAW resonator device fabricated on novel X-cut LiNbO3/SiO2/Si piezoelectric substrate and a resonance frequency readout chip using standard 180 nm CMOS technology, is presented for the first time. High temperature performance substrate LiNbO3/SiO2/Si is prepared mainly by ion implantation and wafer bonding at first. RF SAW device with resonance frequency near 900 MHz is designed and fabricated on the substrate. Traditional probe method using network analyzer and the readout chip method are both implemented to characterize the fabricated SAW device. Further measurement of temperature using resonance frequency shift of SAW device demonstrates the feasibility of the combined system as a portable SAW temperature sensor. The obtained frequency-temperature relation of the fabricated device is almost linear. The frequency resolution of the readout chip is 733 Hz and the corresponding temperature accuracy is 0.016 ° C. Resolution of the sensor in this work is superior to most of the commercial temperature measurement sensors. Theory analysis and finite element simulation are also presented to prove the mechanism and validity of using SAW device for temperature detection applications. We conclude that the high-linearity frequency-temperature relation is achieved by the offset between high-order coefficients of LiNbO3 and SiO2 with opposite signs. This work offers the possibility of temperature measuring in ultra-high precision sensing and control applications.

  9. Inverted vertical algan deep ultraviolet leds grown on p-SiC substrates by molecular beam epitaxy

    Science.gov (United States)

    Nothern, Denis Maurice

    Deep ultraviolet light emitting diodes (UV LEDs) are an important emerging technology for a number of applications such as water/air/surface disinfection, communications, and epoxy curing. However, as of yet, deep UV LEDs grown on sapphire substrates are neither efficient enough nor powerful enough to fully serve these and other potential applications. The majority of UV LEDs reported so far in the literature are grown on sapphire substrates and their design consists of AlGaN quantum wells (QWs) embedded in an AlGaN p-i-n junction with the n-type layer on the sapphire. These devices suffer from a high concentration of threading defects originating from the large lattice mismatch between the sapphire substrate and AlGaN alloys. Other issues include the poor doping efficiency of the n- and particularly the p-AlGaN alloys, the extraction of light through the sapphire substrate, and the heat dissipation through the thermally insulating sapphire substrate. These problems have historically limited the internal quantum efficiency (IQE), injection efficiency (IE), and light extraction efficiency (EE) of devices. As a means of addressing these efficiency and power challenges, I have contributed to the development of a novel inverted vertical deep UV LED design based on AlGaN grown on p-SiC substrates. Starting with a p-SiC substrate that serves as the p-type side of the p-i-n junction largely eliminates the necessity for the notoriously difficult p-type doping of AlGaN alloys, and allows for efficient heat dissipation through the highly thermally conductive SiC substrate. UV light absorption in the SiC substrate can be addressed by first growing p-type doped distributed Bragg reflectors (DBRs) on top of the substrate prior to the deposition of the active region of the device. A number of n-AlGaN films, AlGaN/AlGaN multiple quantum wells, and p-type doped AlGaN DBRs were grown by molecular beam epitaxy (MBE). These were characterized in situ by reflected high energy electron

  10. Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    2015-08-01

    Full Text Available The Si(0001 face and C(000-1 face dependences on growth pressure of epitaxial graphene (EG grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD was studied using atomic force microscopy (AFM and micro-Raman spectroscopy (μ-Raman. AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur on C-faced substrates. It was shown by μ-Raman that the properties of EG on both polar faces were different. EGs on Si-faced substrates were relatively thinner and more uniform than on C-faced substrates at low growth pressure. On the other hand, D band related defects always appeared in EGs on Si-faced substrates, but they did not appear in EG on C-faced substrate at an appropriate growth pressure. This was due to the μ-Raman covering the step edges when measurements were performed on Si-faced substrates. The results of this study are useful for optimized growth of EG on polar surfaces of SiC substrates.

  11. In situ and ex situ characterization of the ion-irradiation effects in third generation SiC fibers

    International Nuclear Information System (INIS)

    Huguet-Garcia, Juan

    2015-01-01

    The use of third generation SiC fibers, Tyranno SA3 (TSA3) and Hi Nicalon S (HNS), as reinforcement for ceramic composites for nuclear applications requires the characterization of its structural stability and mechanical behavior under irradiation. Regarding the radiation stability, ion-amorphization kinetics of these fibers have been studied and compared to the model material, i.e. 6H-SiC single crystals, with no significant differences. For all samples, full amorphization threshold dose yields ∼0.4 dpa at room temperature and complete amorphization was not achieved for irradiation temperatures over 200 C. Successively, ion-amorphized samples have been thermally annealed. It is reported that thermal annealing at high temperatures not only induces the recrystallization of the ion-amorphized samples but also causes unrecoverable mechanical failure, i.e. cracking and delamination. Cracking is reported to be a thermally driven phenomenon characterized by activation energy of 1.05 eV. Regarding the mechanical irradiation behavior, irradiation creep of TSA3 fibers has been investigated using a tensile device dedicated to in situ tests coupled to two different ion-irradiation lines. It is reported that ion irradiation (12 MeV C 4+ and 92 MeV Xe 23+ ) induces a time-dependent strain under loads where thermal creep is negligible. In addition, irradiation strain is reported to be higher at low irradiation temperatures due to a coupling between irradiation swelling and irradiation creep. At high temperatures, near 1000 C, irradiation swelling is minimized hence allowing the characterization of the irradiation creep. Irradiation creep rate is characterized by a linear correlation between the ion flux and the strain rate and a square root dependence with the applied load. Finally, it has been reported that the higher the electronic energy loss contribution to the stopping regime the higher the irradiation creep of the fiber. (author) [fr

  12. Selective Growth of PZT Nanowires on Si Substrates Using Glancing Angle Pulsed Laser Deposition

    Science.gov (United States)

    Gonzalez-Acevedo, D.; Mateo, D.; Hordagoda, M.; Witanachchi, S.

    Thin films and nanostructures of the ferroelectric material Lead Zirconium Titanium Oxide (PZT) offer a multitude of applications in Piezotronics, and ferroelectric capacitor memories. While the growth of PZT thin films is well established, methodologies for the fabrication of vertically-aligned and spatially ordered PZT columns in nanoscale are not common. In this work an approach that uses a self-assembled nanoparticle template in a glancing angle pulsed laser deposition (GAPLD) process is presented. Lanthanum strontium manganite oxide (LSMO) was grown by laser ablation on a Si substrate masked by a monolayer of commercially available silica nanospheres (SNS) with diameter of 250nm self-assembled in a closed-pack hexagonal configuration (HCP) using Langmuir-Blodgett method. The HCP configuration of the mask will allows for the formation of LSMO islands on the crevices in between spheres, which will serve as seed layers for PZT growth. Scanning Electron Microscopy (SEM) was used to observe the grown PZT's morphology. Due to the ballistic shadowing effect introduced by the GAPLD, PZT columns in the form of hexagonal nanopillars evolved over the spatially ordered nanotemplate. Tunability of growth was achieved for certain PZT growth conditions. Morphological and structural properties of these structures were studied and showed a preferred orientation of growth of the (200) tetragonal/rhombohedral phase.

  13. Development of UV-photocathodes using GaN film on Si substrate

    Science.gov (United States)

    Fuke, S.; Sumiya, M.; Nihashi, T.; Hagino, M.; Matsumoto, M.; Kamo, Y.; Sato, M.; Ohtsuka, K.

    2008-02-01

    We developed GaN photocathodes for detecting ultraviolet radiation by using Mg-doped GaN. Crack-free, 200 nm thick GaN:Mg layers were grown by metal organic chemical vapor phase epitaxy (MOVPE) on a GaN template having a structure of undoped GaN/(AlN/GaN) multilayers on Si (111) substrate. The Mg concentration was varied in the range from 7×10 18 to 7×10 19 cm -3. The grown film was mounted in a phototube to operate in reflection mode; i.e. the light was incident from the photoemission side. The photoemission surface was activated by sequential adsorption of cesium and oxygen to reduce electron affinity, ensuring efficient electron emission. Photoemission spectrum was measured in the range of 200-600 nm. We found that the quantum efficiency of photoemission was affected by the crystallinity of GaN:Mg, depending on the concentration of Mg dopant and the growth pressure of GaN:Mg top photoemissive layer. The lower Mg concentration and higher growth pressure resulted in higher quantum efficiency. The obtained maximum quantum efficiency was 45% at 200 nm (6.2 eV) and 25% at 350 nm (3.54 eV). The elimination ratio between visible and UV light was 4 decades and the slope of cutoff was 10 nm per decade.

  14. Fabrication of Ohmic contact on semi-insulating 4H-SiC substrate by laser thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yue; Lu, Wu-yue; Wang, Tao; Chen, Zhi-zhan, E-mail: zzchen@shnu.edu.cn [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)

    2016-06-14

    The Ni contact layer was deposited on semi-insulating 4H-SiC substrate by magnetron sputtering. The as-deposited samples were treated by rapid thermal annealing (RTA) and KrF excimer laser thermal annealing (LTA), respectively. The RTA annealed sample is rectifying while the LTA sample is Ohmic. The specific contact resistance (ρ{sub c}) is 1.97 × 10{sup −3} Ω·cm{sup 2}, which was determined by the circular transmission line model. High resolution transmission electron microscopy morphologies and selected area electron diffraction patterns demonstrate that the 3C-SiC transition zone is formed in the near-interface region of the SiC after the as-deposited sample is treated by LTA, which is responsible for the Ohmic contact formation in the semi-insulating 4H-SiC.

  15. The Development of Ultraviolet Light Emitting Diodes on p-SiC Substrates

    Science.gov (United States)

    Brummer, Gordon

    Ultraviolet (UV) light emitting diodes (LEDs) are promising light sources for purification, phototherapy, and resin curing applications. Currently, commercial UV LEDs are composed of AlGaN-based n-i-p junctions grown on sapphire substrates. These devices suffer from defects in the active region, inefficient p-type doping, and poor light extraction efficiency. This dissertation addresses the development of a novel UV LED device structure, grown on p-SiC substrates. In this device structure, the AlGaN-based intrinsic (i) and n-layers are grown directly on the p-type substrate, forming a p-i-n junction. The intrinsic layer (active region) is composed of an AlN buffer layer followed by three AlN/Al0.30Ga0.70N quantum wells. After the intrinsic layer, the n-layer is formed from n-type AlGaN. This device architecture addresses the deficiencies of UV LEDs on sapphire substrates while providing a vertical device geometry, reduced fabrication complexity, and improved thermal management. The device layers were grown by molecular beam epitaxy (MBE). The material properties were optimized by considering varying growth conditions and by considering the role of the layer within the device. AlN grown at 825 C and with a Ga surfactant yielded material with screw dislocation density of 1x10 7 cm-2 based on X-ray diffraction (XRD) analysis. AlGaN alloys grown in this work contained compositional inhomogeneity, as verified by high-resolution XRD, photoluminescence, and absorption measurements. Based on Stokes shift measurements, the degree of compositional inhomogeneity was correlated with the amount of excess Ga employed during growth. Compositional inhomogeneity yields carrier localizing potential fluctuations, which are advantages in light emitting device layers. Therefore, excess Ga growth conditions were used to grow AlN/Al0.30Ga0.70N quantum wells (designed using a wurtzite k.p model) with 35% internal quantum efficiency. Potential fluctuations limit the mobility of carriers

  16. Voltage contrast X-ray photoelectron spectroscopy reveals graphene-substrate interaction in graphene devices fabricated on the C- and Si- faces of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Aydogan, Pinar; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr [Department of Chemistry, Bilkent University, 06800 Ankara (Turkey); Arslan, Engin; Cakmakyapan, Semih; Ozbay, Ekmel [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Strupinski, Wlodek [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-09-21

    We report on an X-ray photoelectron spectroscopy (XPS) study of two graphene based devices that were analyzed by imposing a significant current under +3 V bias. The devices were fabricated as graphene layers(s) on hexagonal SiC substrates, either on the C- or Si-terminated faces. Position dependent potential distributions (IR-drop), as measured by variations in the binding energy of a C1s peak are observed to be sporadic for the C-face graphene sample, but very smooth for the Si-face one, although the latter is less conductive. We attribute these sporadic variations in the C-face device to the incomplete electrical decoupling between the graphene layer(s) with the underlying buffer and/or substrate layers. Variations in the Si2p and O1s peaks of the underlayer(s) shed further light into the electrical interaction between graphene and other layers. Since the potential variations are amplified only under applied bias (voltage-contrast), our methodology gives unique, chemically specific electrical information that is difficult to obtain by other techniques.

  17. GaN full-vertical p-i-n rectifiers employing AlGaN:Si conducting buffer layers on n-SiC substrates

    International Nuclear Information System (INIS)

    Yoo, D.; Limb, J.; Ryou, J.-H.; Lee, W.; Dupuis, R.D.

    2006-01-01

    The development of a full-vertical GaN p-i-n rectifier on a 6H n-type SiC substrate by employing a conducting Al x Ga 1-x N:Si (x=∼0.1) buffer layer scheme is reported. In this vertical configuration, the n contact is made on the backside of the SiC substrate using a Ni/Au metallization scheme. Epitaxial layers are grown by low-pressure metal organic chemical vapor deposition. The Al x Ga 1-x N:Si nucleation layer is proven to provide excellent electrical properties while also acting as a good buffer layer for subsequent GaN growth. The reverse breakdown voltage for a relatively thin 2.5 μm thick i region was found to be over -330 V. The devices also show a low on resistance of R on of 7.5x10 -3 Ω cm 2 . This full-vertical configuration provides the advantage of the reduction of sidewall damage from plasma etching and lower forward resistance due to the reduction of current crowding in the bottom n-type layer

  18. Effect of C/Si Ratio on the Electrochemical Behavior of a-SiCx:H Coatings on SS301 Substrate Deposited by PECVD

    Directory of Open Access Journals (Sweden)

    D. Li

    2014-01-01

    Full Text Available Amorphous hydrogenated silicon carbide (a-SiCx:H coatings were deposited on stainless steel 301 (SS301 using plasma enhanced chemical vapor deposition with the methane gas flow ranging from 30 to 90 sccm. XRD spectra confirmed the amorphous structure of these coatings. The as-deposited coatings all exhibited homogenous dense feature, and no porosities were observed in SEM and AFM analysis. The a-SiCx:H coatings remarkably increased the corrosion resistance of the SS301 substrate. With the increase of the C concentration, the a-SiCx:H coatings exhibited significantly enhanced electrochemical behavior. The a-SiCx:H coating with the highest carbon concentration acted as an excellent barrier to charge transfer, with a corrosion current of 3.5×10-12 A/cm2 and a breakdown voltage of 1.36 V, compared to 2.5×10-8 A/cm2 and 0.34 V for the SS301 substrate.

  19. Preliminary calculations of stress change of fuel pin using SiC/SiC composites for GFR with changing of thermal conductivity degradation by irradiation

    International Nuclear Information System (INIS)

    Lee, J. K.; Naganuma, M.

    2006-01-01

    Gas cooled Fast Reactor (GFR) is being researched as a candidate concept of Generation IV international Forum. As a main feature of GFR, it should be maintained high temperature and pressure of coolant gas for heat transfer efficiency. Such a demanding environment requires high-temperature-resistant structural materials distinguished from traditional steel material. Consequently, ceramics are promising candidate material of core components. Especially, Silicon Carbide fiber reinforced Silicon Carbide composites (SiC/SiC) have encouraging characteristics such as refractoriness, low activation and toughness. Application of new material to core components must be explained by the viewpoint of engineering validity. Therefore, present study surveyed that current report for mechanical strength and thermal conductivity of SiC/SiC composites. According to the reports, neutron irradiation environment degraded mechanical properties of SiC/SiC composites. To confirm applicability to core components, model of fuel pin using SiC/SiC composites was assumed with feasible mechanical properties. Furthermore, it was calculated and estimated that the stress caused by temperature variation of inner and outer side of assumed model of cladding tube. Stress was calculated by changing of input date such as thickness of cladding tube, temperature variation, thermal conductivity and linear power. In the range of this study, the most important factor was identified as degradation of thermal conductivity by irradiation. It caused a significant stress and limited a geometrical design of fuel pin. It was discussed that the differences of heat transfer between isotropic and anisotropic materials like a metal and composites. These results should be helpful not only to determine a design factor of core component but also to indicate an improvement direction of SiC/SiC composites. Through these work, reliability and safety of GFR will be increased

  20. Post-irradiation examination of prototype Al-64 wt% U3Si2 fuel rods from NRU

    International Nuclear Information System (INIS)

    Sears, D.F.; Primeau, M.F.; Buchanan, C.; Rose, D.

    1997-01-01

    Three prototype fuel rods containing Al-64 wt% U 3 Si 2 (3.15 gU/cm 3 ) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U 3 Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U 3 Si 2 powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37 degrees C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinations showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U 3 Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL's research reactors

  1. Enhancement in (BHmax of PLD-made isotropic Nd-Fe-B thick film magnets deposited on Si substrates

    Directory of Open Access Journals (Sweden)

    M. Nakano

    2017-05-01

    Full Text Available Increase in Nd contents of a PLD-made isotropic Nd-Fe-B thick-film magnet enabled us to enhance the thickness of the film magnet deposited on a Si substrate because the linear expansion coefficient of Nd is an intermediate value between Nd2Fe14B and Si. The large amount of Nd, however, degraded the residual magnetic polarization and (BHmax. In the study, we reduced the Nd contents of each Nd-Fe-B film by inserting a Nd or a Nd-rich Nd-Fe-B buffer layer between a Nd-Fe-B film and a Si substrate in order to suppress the mechanical destruction together with the improvement in magnetic properties. It was found that the mechanical property of a Nd-Fe-B film comprising the Nd-Fe-B buffer layer in the thickness range from 10 to 60 μm was superior than that of a sample with the Nd buffer layer. Resultantly, an average (BHmax value of Nd-Fe-B films with each Nd-Fe-B buffer layer deposited on Si substrates could be enhanced by approximately 15 kJ/m3 compared to that of non-buffer-layered films.

  2. Generation of substrate-free III–V nanodisks from user-defined multilayer nanopillar arrays for integration on Si

    International Nuclear Information System (INIS)

    Naureen, S; Shahid, N; Dev, A; Anand, S

    2013-01-01

    High material quality InP-based multilayer nanopillar (NP) arrays are fabricated using a combination of self-assembly of silica particles for mask generation and dry etching. In particular, the NP arrays are made from user-defined epitaxial multilayer stacks with specific materials and layer thicknesses. An additional degree of flexibility in the structures is obtained by changing the lateral diameters of the NP multilayer stacks. Pre-defined NP arrays made from InGaAsP/InP and InGaAs/InP NPs are then used to generate substrate-free nanodisks of a chosen material from the stack by selective etching. A soft-stamping method is demonstrated to transfer the generated nanodisks with arbitrary densities onto Si. The transferred nanodisks retain their smooth surface morphologies and their designed geometrical dimensions. Both InP and InGaAsP nanodisks display excellent photoluminescence properties, with line-widths comparable to unprocessed reference epitaxial layers of similar composition. The multilayer NP arrays are potentially attractive for broad-band absorption in third-generation solar cells. The high optical quality, substrate-free InP and InGaAsP nanodisks on Si offer a new path to explore alternative ways to integrate III–V on Si by bonding nanodisks to Si. The method also has the advantage of re-usable III–V substrates for subsequent layer growth. (paper)

  3. Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.

    Science.gov (United States)

    Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L

    2015-12-01

    The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Electrical and noise properties of proton irradiated 4H-SiC Schottky diodes

    Science.gov (United States)

    Kozlovski, V. V.; Lebedev, A. A.; Levinshtein, M. E.; Rumyantsev, S. L.; Palmour, J. W.

    2018-01-01

    The current voltage characteristics and the low-frequency noise in high voltage 4H-SiC junction barrier Schottky diodes irradiated with high energy (15 MeV) protons were studied at different temperatures and irradiation doses Φ from 3 × 1012 cm-2 to 1 × 1014 cm-2. Irradiation led to the increase of the base resistance and the appearance of slow relaxation processes at small, V ≤ 0.2 V, and at rather high, V ≥ 2 V, forward voltages. The characteristic times of these relaxation processes ranged from ˜1 μs to 103 s. The exponential part of the current-voltage characteristic was only weakly affected by irradiation. The temperature dependence of the base resistance changed exponentially with temperature with activation energy Ea ˜ 0.6 eV, indicating that the Z1/2 level plays a dominant role in this process. The temperature increase also led to the increase of the ideality factor from 1.05 at 25 °C to 1.1 at 172 °C. At elevated temperatures and high forward voltages V > 2-4 V, the current voltage characteristics tend to be super-linear. It is concluded that at high voltages, the space charge limited current of majority carriers (electrons) and hole injection from the p-n regions play an important role in the formation of the current voltage characteristic. The frequency dependences of noise spectral density S of proton irradiated Schottky diodes have the unusual form of S ˜ 1/f 0.5.

  5. Study of electronic states for V thin films deposited on 6H-SiC substrates by soft X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M., E-mail: hirai@science.okayama-u.ac.jp [Division of Frontier and Fundamental Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700-8530 (Japan); Okazaki, H.; Yoshida, R.; Tajima, M.; Saeki, K. [Mathematics and Physics, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Muraoka, Y.; Yokoya, T. [Division of Frontier and Fundamental Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700-8530 (Japan)

    2009-11-30

    Silicon carbide (SiC) is a candidate material for electronic devices to operate upon crucial environment. Electronic states of silicides and/or carbide/graphite formed in metal/SiC contact system is fundamentally important from the view point of device performance. We study interface electronic structure of vanadium (V) thin-film deposited on 6H-SiC(0 0 0 1) Si-face by using a soft X-ray emission spectroscopy (SXES). For specimens of V(38 nm)/6H-SiC (substrate) contact systems annealed at 850 deg. C, the Si L{sub 2,3} emission spectra indicate different shapes and peak energies from the substrate. The product of materials such as silicides and/or ternary materials is suggested. Similarly, the C K{alpha} emission spectra show the shape and peak energy characteristic of vanadium carbide including substrate 6H-SiC signal.

  6. Electrodeposition of tungsten coatings on molybdenum substrates and deuterium irradiation effect

    International Nuclear Information System (INIS)

    Lian, Ziwei; Fang, Xianqin; Han, Wenjia; Yu, Jiangang; Wang, Zhanlei; Zhang, Ying; Zhu, Kaigui

    2016-01-01

    Highlights: • Tungsten coatings were successfully electroplated on molybdenum substrates. • The current density affected the performance of tungsten coatings. • Deuterium irradiation property of tungsten coatings was investigated. • Deuterium retention in the tungsten coating was less than that in the bulk tungsten. - Abstract: Tungsten coatings were prepared using pulse electrodeposition on the molybdenum substrates. Effects of variations in current density on surface morphology, thickness distribution and crystal orientation of the coatings were investigated. The results indicate that with the current density increasing, the grain size of tungsten coatings first decreases, then increases; while the deposited thickness increases all the time. And all of tungsten coatings exhibit the preferred orientation of (200) plane. Moreover, the polished tungsten coating and bulk tungsten were exposed to low energy (80 eV) and high flux (7.2 × 10 20 D/m 2 /s) deuterium plasma in a linear plasma device (Simulator of Tokamak Edge Plasma, STEP). Deuterium (D) retention was measured by thermal desorption spectroscopy (TDS). It is found that blisters on the tungsten coating are much fewer than that on the bulk tungsten. TDS spectroscopy of the tungsten coating reveals one D 2 release peak at 740 K, while the bulk tungsten has two D 2 release peaks at 500 K and 660 K. The amount of deuterium retention in the tungsten coating is lower.

  7. Fabrication of isolated platinum nanowire gratings and nanoparticles on silica substrate by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasutaka [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Nedyalkov, Nikolay [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shouse 72, Sofia 1784 (Bulgaria); Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Takami, Akihiro [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Terakawa, Mitsuhiro, E-mail: terakawa@elec.keio.ac.jp [School of Integrated Design Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223- 8522 (Japan); Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)

    2017-02-01

    Highlights: • Formation of HSFL with periodicities shorter than 100 nm. • Structural evolution from platinum nanowire gratings to platinum nanoparticles only by increasing the number of pulses. • Melting and fragmentation of the nanowire gratings would play a key role in structural evolution. - Abstract: We demonstrate the fabrication of isolated platinum nanostructures on a silica substrate by using femtosecond laser. Nanowire gratings which have short periodicities of approximately 50 nm were formed by irradiating a platinum thin film deposited on a fused silica substrate with 800-nm wavelength femtosecond laser pulses. The structural evolution from the nanowire gratings to nanoparticles was observed only by increasing the number of pulses. The periodicities or diameters of the structures showed good uniformity. Scanning electron microscopy of the surfaces and theoretical calculation of temperature profile using a two-temperature model revealed that the structural evolution can be attributed to the fragmentation of the formed nanowires. The presented method provides a simple and high-throughput technique for fabricating both metal nanowire gratings and nanoparticles, which have the potential to be used for the fabrication of optical, electrical and biomedical devices.

  8. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    Science.gov (United States)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  9. Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate

    Science.gov (United States)

    Aftab, Sikandar; Farooq Khan, M.; Min, Kyung-Ah; Nazir, Ghazanfar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Akhtar, Imtisal; Seo, Yongho; Hong, Suklyun; Eom, Jonghwa

    2018-01-01

    P–N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p–n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p–n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p–n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.

  10. Electron beam irradiation of dimethyl-(acetylacetonate) gold(III) adsorbed onto solid substrates

    International Nuclear Information System (INIS)

    Wnuk, Joshua D.; Gorham, Justin M.; Rosenberg, Samantha G.; Fairbrother, D. Howard; Dorp, Willem F. van; Madey, Theodore E.; Hagen, Cornelis W.

    2010-01-01

    Electron beam induced deposition of organometallic precursors has emerged as an effective and versatile method for creating two-dimensional and three-dimensional metal-containing nanostructures. However, to improve the properties and optimize the chemical composition of nanostructures deposited in this way, the electron stimulated decomposition of the organometallic precursors must be better understood. To address this issue, we have employed an ultrahigh vacuum-surface science approach to study the electron induced reactions of dimethyl-(acetylacetonate) gold(III) [Au III (acac)Me 2 ] adsorbed onto solid substrates. Using thin molecular films adsorbed onto cooled substrates, surface reactions, reaction kinetics, and gas phase products were studied in the incident energy regime between 40 and 1500 eV using a combination of x-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS), and mass spectrometry (MS). XPS and RAIRS data indicate that electron irradiation of Au III (acac)Me 2 is accompanied by the reduction in Au III to a metallic Au 0 species embedded in a dehydrogenated carbon matrix, while MS reveals the concomitant evolution of methane, ethane, carbon monoxide, and hydrogen. The electron stimulated decomposition of Au III (acac)Me 2 is first-order with respect to the surface coverage of the organometallic precursor, and exhibits a rate constant that is proportional to the electron flux. At an incident electron energy of 520 eV, the total reaction cross section was ≅3.6x10 -16 cm 2 . As a function of the incident electron energy, the maximum deposition yield was observed at ≅175 eV. The structure of discrete Au-containing deposits formed at room temperature by rastering an electron beam across a highly ordered pyrolytic graphite substrate in the presence of a constant partial pressure of Au III (acac)Me 2 was also investigated by atomic force microscopy.

  11. Gallium arsenide (GaAs) island growth under SiO(2) nanodisks patterned on GaAs substrates.

    Science.gov (United States)

    Tjahjana, Liliana; Wang, Benzhong; Tanoto, Hendrix; Chua, Soo-Jin; Yoon, Soon Fatt

    2010-05-14

    We report a growth phenomenon where uniform gallium arsenide (GaAs) islands were found to grow underneath an ordered array of SiO(2) nanodisks on a GaAs(100) substrate. Each island eventually grows into a pyramidal shape resulting in the toppling of the supported SiO(2) nanodisk. This phenomenon occurred consistently for each nanodisk across a large patterned area of approximately 50 x 50 microm(2) (with nanodisks of 210 nm diameter and 280 nm spacing). The growth mechanism is attributed to a combination of 'catalytic' growth and facet formation.

  12. Room temperature photoluminescence (lambda = 1.3 mu m) of InGaAs quantum dots in Si(001) substrate

    CERN Document Server

    Burbaev, T M; Kurbatov, V A; Rzaev, M M; Tsvetkov, V A; Tsekhosh, V I

    2002-01-01

    A heterostructure with GaAs/In sub x Ga sub 1 sub - sub x As quantum dots has exhibit intense photoluminescence in the range of 1.3 mu m at room temperature. It was grown on Si(001) substrate with Si sub 1 sub - sub x Ge sub x buffer layer. The growth process was performed consecutively in two molecular beam epitaxy systems with over loading through out the atmosphere. Results of growth process study by the fast electron diffraction method are presented

  13. Structural and magnetic properties of evaporated Fe thin films on Si(1 1 1), Si(1 0 0) and glass substrates

    International Nuclear Information System (INIS)

    Ghebouli, B.; Cherif, S.-M.; Layadi, A.; Helifa, B.; Boudissa, M.

    2007-01-01

    We present experimental results on the structural and magnetic properties of series of Fe thin films evaporated onto Si(1 1 1), Si(1 0 0) and glass substrates. The Fe thickness, t, ranges from 6 to110 nm. X-ray diffraction (XRD) and atomic force microscopy (AFM) have been used to study the structure and surface morphology of these films. The magnetic properties were investigated by means of the Brillouin light scattering (BLS) and magnetic force microscopy (MFM) techniques. The Fe films grow with (1 1 0) texture; as t increases, this (1 1 0) texture becomes weaker for Fe/Si, while for Fe/glass, the texture changes from (1 1 0) to (2 1 1). Grains are larger in Fe/Si than in Fe/glass. The effective magnetization, 4πM eff , inferred from BLS was found to be lower than the 4πM S bulk value. Stress induced anisotropy might be in part responsible for this difference. MFM images reveal stripe domain structure for the 110 nm thick Fe/Si(1 0 0) only

  14. Nanostructures based in boro nitride thin films deposited by PLD onto Si/Si{sub 3}N{sub 4}/DLC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Roman, W S; Riascos, H [Grupo Plasma, Laser y Aplicaciones, Universidad Tecnologica de Pereira (Colombia); Caicedo, J C [Grupo de PelIculas Delgadas, Universidad del Valle, Cali (Colombia); Ospina, R [Laboratorio de Plasma, Universidad Nacional de Colombia, sede Manizales (Colombia); Tirado-MejIa, L, E-mail: hriascos@utp.edu.c [Laboratorio de Optoelectronica, Universidad del Quindio (Colombia)

    2009-05-01

    Diamond-like carbon and boron nitride were deposited like nanostructered bilayer on Si/Si{sub 3}N{sub 4} substrate, both with (100) crystallographic orientation, these films were deposited through pulsed laser technique (Nd: YAG: 8 Jcm{sup -2}, 9ns). Graphite (99.99%) and boron nitride (99.99%) targets used to growth the films in argon atmosphere. The thicknesses of bilayer were determined with a perfilometer, active vibration modes were analyzed using infrared spectroscopy (FTIR), finding bands associated around 1400 cm{sup -1} for B - N bonding and bands around 1700 cm{sup -1} associated with C=C stretching vibrations of non-conjugated alkenes and azometinic groups, respectively. The crystallites of thin films were analyzed using X-ray diffraction (XRD) and determinated the h-BN (0002), alpha-Si{sub 3}N{sub 4} (101) phases. The aim of this study is to relate the dependence on physical and chemical characteristics of the system Si/Si{sub 3}N{sub 4}/DLC/BN with gas pressure adjusted at the 1.33, 2.67 and 5.33 Pa values.

  15. Electron paramagnetic resonance study on n-type electron-irradiated 3C-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, P; Rabia, K; Son, N T; Janzen, E [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Ohshima, T; Morishita, N; Itoh, H [Japan Atomic Energy Research Institute, Takasaki 370-1292 (Japan); Isoya, J [University of Tsukuba, Tsukuba 305-8550 (Japan)], E-mail: paca@ifm.liu.se

    2008-03-15

    Electron Paramagnetic Resonance (EPR) was used to study defects in n-type 3C-SiC films irradiated by 3-MeV electrons at room temperature with a dose of 2x10{sup 18} cm{sup -2}. After electron irradiation, two new EPR spectra with an effective spin S = 1, labeled L5 and L6, were observed. The L5 center has C{sub 3v} symmetry with g = 2.004 and a fine-structure parameter D = 436.5x10{sup -4} cm{sup -1}. The L5 spectrum was only detected under light illumination and it could not be detected after annealing at {approx}550{sup 0}C. The principal z-axis of the D tensor is parallel to the <111>-directions, indicating the location of spins along the Si-C bonds. Judging from the symmetry and the fact that the signal was detected under illumination in n-type material, the L5 center may be related to the divacancy in the neutral charge state. The L6 center has a C{sub 2v}-symmetry with an isotropic g-value of g = 2.003 and the fine structure parameters D = 547.7x10{sup -4} cm{sup -1} and E = 56.2x10{sup -4} cm{sup -1}. The L6 center disappeared after annealing at a rather low temperature ({approx}200 deg. C), which is substantially lower than the known annealing temperatures for vacancy-related defects in 3C-SiC. This highly mobile defect may be related to carbon interstitials.

  16. Neutron irradiation effects in amorphous SiO2: optical absorption and electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Guzzi, M.; Martini, M.; Paleari, A.; Pio, F.; Vedda, A.; Azzoni, C.B.

    1993-01-01

    Optical absorption spectra of as-grown and neutron-irradiated amorphous SiO 2 , both fused natural quartz and synthetic silica, have been analysed in the ultraviolet region below the fundamental edge. The description of the optical spectrum has been further clarified by a detailed study of the spectral components as a function of the neutron irradiation in different types of silica; we have verified known correlations between optical bands and between bands and paramagnetic centres. In 'as-grown' fused quartz samples, a previously unreported band at 6.2 eV has been detected. 'As-grown' synthetic silicas do not show any band, up to the intrinsic absorption edge. In the irradiated samples, the experimental results suggest a correlation between two bands at 5.8 and 7.1 eV, while previous attribution of the bands at 5.0 eV (B 2 band) and 7.6 eV (E band) to the same defect is discussed. The role of impurities in the optical absorption and in the radiation hardness is also considered. (author)

  17. Ion-implanted Si-nanostructures buried in a SiO{sub 2} substrate studied with soft-x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.; Rubensson, J.E.; Eisebitt, S. [Forschungszentrum Juelich (Germany)] [and others

    1997-04-01

    In recent years silicon nanostructures have gained great interest because of their optical luminescence, which immediately suggests several applications, e.g., in optoelectronic devices. Nanostructures are also investigated because of the fundamental physics involved in the underlying luminescence mechanism, especially attention has been drawn to the influence of the reduced dimensions on the electronic structure. The forming of stable and well-defined nanostructured materials is one goal of cluster physics. For silicon nanostructures this goal has so far not been reached, but various indirect methods have been established, all having the problem of producing less well defined and/or unstable nanostructures. Ion implantation and subsequent annealing is a promising new technique to overcome some of these difficulties. In this experiment the authors investigate the electronic structure of ion-implanted silicon nanoparticles buried in a stabilizing SiO{sub 2} substrate. Soft X-ray emission (SXE) spectroscopy features the appropriate information depth to investigate such buried structures. SXE spectra to a good approximation map the local partial density of occupied states (LPDOS) in broad band materials like Si. The use of monochromatized synchrotron radiation (MSR) allows for selective excitation of silicon atoms in different chemical environments. Thus, the emission from Si atom sites in the buried structure can be separated from contributions from the SiO{sub 2} substrate. In this preliminary study strong size dependent effects are found, and the electronic structure of the ion-implanted nanoparticles is shown to be qualitatively different from porous silicon. The results can be interpreted in terms of quantum confinement and chemical shifts due to neighboring oxygen atoms at the interface to SiO{sub 2}.

  18. Thermal stability of iron silicide nanowires epitaxially grown on Si(110) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhi-Qiang, E-mail: zouzhq@shanghaitech.edu.cn [School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Pudong, Shanghai, 201210 (China); Li, Xu; Liu, Xiao-Yong; Shi, Kai-Juan; Guo, Xin-Qiu [Analytical and Testing Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2017-03-31

    Highlights: • The α-FeSi{sub 2} nanowires epitaxially grown on Si(110) can be stable up to 750 °C. • The stable temperature of the nanowires is much lower than that of the bulk α-FeSi{sub 2} due to their small size and high relative surface area. • With increasing annealing temperature, the α-FeSi{sub 2} nanowires undergo an Ostwald ripening process and transform into large β-FeSi{sub 2} nanorods or three-dimensional nanocrystals. • The reduction in surface energy drives the transformation from metallic α-FeSi{sub 2} phase to semiconducting β-FeSi{sub 2} phase. - Abstract: Metallic α-FeSi{sub 2} nanowires (NWs) are epitaxially grown on Si(110) at 650 °C. Their evolution as a function of annealing temperature has been studied in situ by scanning tunneling microscopy. The NWs are stable up to 750 °C, which is much lower than that of the bulk α-FeSi{sub 2}. With further increasing the annealing temperature, some NWs begin to shrink in length and transform into wider and higher semiconducting β-FeSi{sub 2} nanorods or three-dimensional (3D) islands at 925 °C. The phase transformation is driven by the reduction in surface energy. On the other hand, some α-FeSi{sub 2} NWs begin to dissolve and become thinner until disappearing. The growth of the β-FeSi{sub 2} nanorods or 3D nanocrystals follows the Ostwald ripening mechanism, i.e., the large islands grow in size at the expense of the small ones. X-ray photoelectron spectroscopy study shows that the Fe 2p peaks of β-FeSi{sub 2} nanocrystals exhibit a negative shift of 0.2 eV with respect to the α-FeSi{sub 2} NWs.

  19. Ion-channeling analysis of As relocation in heavily doped Si:As irradiated with high-energy ions

    International Nuclear Information System (INIS)

    Lulli, G.; Albertazzi, E.; Bianconi, M.; Ferri, M.

    2003-01-01

    Silicon on insulator layers doped with 8x10 20 As cm -3 and thermally equilibrated at 1100 deg. C, have been irradiated with 2 MeV Si + ions. Rutherford backscattering-channeling analysis shows an increase in As disorder upon irradiation significantly larger than the increase in Si disorder, while electrical measurements show a large decrease in electrical activation. Monte Carlo simulation of channeling angular scans suggests that the enhanced As disorder effect is due to the preferential relocation of dopant atoms slightly displaced from lattice sites, which appear the main reason responsible for the electrical deactivation in the unirradiated sample and are believed to be in the form of As-vacancy clusters. Upon 600 deg. C 15 s annealing, the As atoms randomly relocated by ion irradiation almost completely recover their original configuration, probably capturing vacancies and forming, again, the complexes dissociated by ion irradiation

  20. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    Science.gov (United States)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  1. Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas M. Lillo; Isabella J. van Rooyen

    2014-08-01

    The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle from the AGR-1 program are reported.

  2. Hierarchical 3C-SiC nanowires as stable photocatalyst for organic dye degradation under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Judong; Chen, Jianjun; Xin, Lipeng; Wang, Mingming

    2014-01-01

    Graphical abstract: The photocatalytic performance was enhanced by hierarchical nanostructural SiC nanowires due to the increased specific surface areas and efficient incident light scattering. The positive effect of SiO 2 layer growth on the surface of nanowires during the catalytic process on the high decolorization efficiency of SiC nanowires was attributed to SiO 2 surface oxygen vacancies. -- Highlights: • High decolorization rate of methylene blue using hierarchical 3C-SiC nanowires was obtained. • The effect of methylene blue with different concentration to catalytic result was investigated. • The photocatalytic reaction mechanism of degrading methylene blue was explained. • The SiO 2 layer generating on nanowire surface in the catalytic process was analyzed. -- Abstract: 3C-SiC nanowires with hierarchical structure were synthesized by sol–gel carbothermal reduction method. The photocatalytic property of SiC nanowires was investigated. 3C-SiC hierarchical nanowires exhibited an enhanced photocatalytic activity by accelerating the photocatalytic degradation of methylene blue solution under visible light irradiation. Methylene blue was degraded efficiently after 5 h irradiation over the photocatalyst. The photocatalytic activity was affected by the initial concentration of the methylene blue solution. Silicon dioxide layer was observed on the surface of nanowires after the catalytic process. The positive effect of SiO 2 surface oxygen vacancies and 3C-SiC hierarchical nanostructures on the high decolorization efficiency of SiC nanowires was discussed. The detailed photocatalytic redox processes were also explained

  3. Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cui; Liu, Qingbin; Li, Jia; Lu, Weili; He, Zezhao; Cai, Shujun; Feng, Zhihong, E-mail: ga917vv@163.com [National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang 050051 (China)

    2014-11-03

    We investigate the temperature dependent electrical transport properties of quasi-free standing bilayer graphene on 4H-SiC (0001) substrate. Three groups of monolayer epitaxial graphene and corresponding quasi-free standing bilayer graphene with different crystal quality and layer number homogeneity are prepared. Raman spectroscopy and atomic-force microscopy are used to obtain their morphologies and layer number, and verify the complete translation of buffer layer into graphene. The highest room temperature mobility reaches 3700 cm{sup 2}/V·s for the quasi-free standing graphene. The scattering mechanism analysis shows that poor crystal quality and layer number inhomogeneity introduce stronger interacting of SiC substrate to the graphene layer and more impurities, which limit the carrier mobility of the quasi-free standing bilayer graphene samples.

  4. PbSe quantum well mid-infrared vertical external cavity surface emitting laser on Si-substrates

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-05-01

    Mid-infrared vertical external cavity surface emitting lasers based on PbSe/PbSrSe multi-quantum-well structures on Si-substrates are realized. A modular design allows growing the active region and the bottom Bragg mirror on two different Si-substrates, thus facilitating comparison between different structures. Lasing is observed from 3.3 to 5.1 μm wavelength and up to 52 °C heat sink temperature with 1.55 μm optical pumping. Simulations show that threshold powers are limited by Shockley-Read recombination with lifetimes as short as 0.1 ns. At higher temperatures, an additional threshold power increase occurs probably due to limited carrier diffusion length and carrier leakage, caused by an unfavorable band alignment.

  5. Accumulation and Recovery of Disorder on Silicon and Carbon Sublattices in Ion-Irradiated 6H-SiC

    International Nuclear Information System (INIS)

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; Shutthanandan, V.

    2001-01-01

    Irradiation experiments have been performed at 100, 170 and 300 K for 6H-SiC single crystals using Au and He+ ions over a range of fluences. The evolution of disorder on the both Si and C sublattices has been simultaneously investigated using 0.94 MeV D Rutherford backscattering spectrometry in combination with 12C(d,p) nuclear reaction analysis in a axial channeling geometry. The results show that the dependence of disorder on dose is consistent with a combined direct-impact / defect-stimulated model. At low doses, a slightly higher rate of C disordering is observed, which is consistent with molecular dynamics simulations that suggest a smaller threshold displacement energy on the C sublattice. At higher doses, the rate of C disordering decreases more rapidly than the rate of Si disordering, which suggests a higher rate of dynamical recovery on the C sublattice under the irradiation conditions. Three distinct recovery stages are observed on both the Si and C sublattices in the Au-irradiated 6H-SiC. However, complete recovery of irradiation-induced disorder does not occur during isochronal annealing at temperatures up to 970 K

  6. Structure of AlAs/GaAs distributed Bragg reflector grown on Si substrate by metalorganic chemical vapor deposition

    OpenAIRE

    Takashi, Egawa; Takashi, Jimbo; Masayoshi, Umeno

    1995-01-01

    A vertical‐cavity surface‐emitting laser diode with 20 pairs of AlAs/GaAs distributed Bragg reflectors (DBRs) has been grown on a Si substrate using metalorganic chemical vapor deposition. Interfacial roughness and compositional profile of the AlAs/GaAs DBR structure were studied by cross‐sectional scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Auger electron spectroscopy. Cross‐sectional SEM and TEM observations reveal quasi‐periodic zigzag roughness and nonu...

  7. Study of sputtered ZnO thin films on SiO2 and GaP substrates

    International Nuclear Information System (INIS)

    Brath, T.; Buc, D.; Kovac, J.; Hrnciar, V.; Caplovic, L.

    2011-01-01

    We have investigated n-ZnO polycrystalline thin films prepared on SiO 2 and p-GaP substrate using magnetron sputtering technique. The structural and electrical properties of these structures were studied. The measured parameters give promising results with a possibility to utilize n-ZnO/p-GaP heterostructure for application in the solar cells development especially in the field of nanostructures. The prepared structures will be a subject of further research. (authors)

  8. Ion irradiation effects on a magnetic Si/Ni/Si trilayer and lateral magnetic-nonmagnetic multistrip patterning by focused ion beam

    Science.gov (United States)

    Dev, B. N.; Banu, Nasrin; Fassbender, J.; Grenzer, J.; Schell, N.; Bischoff, L.; Groetzschel, R.; McCord, J.

    2017-10-01

    Fabrication of a multistrip magnetic/nonmagnetic structure in a thin sandwiched Ni layer [Si(5 nm)/Ni(15 nm)/Si] by a focused ion beam (FIB) irradiation has been attempted. A control experiment was initially performed by irradiation with a standard 30 keV Ga ion beam at various fluences. Analyses were carried out by Rutherford backscattering spectrometry, X-ray reflectivity, magnetooptical Kerr effect (MOKE) measurements and MOKE microscopy. With increasing ion fluence, the coercivity as well as Kerr rotation decreases. A threshold ion fluence has been identified, where ferromagnetism of the Ni layer is lost at room temperature and due to Si incorporation into the Ni layer, a Ni0.68Si0.32 alloy layer is formed. This fluence was used in FIB irradiation of parallel 50 nm wide stripes, leaving 1 µm wide unirradiated stripes in between. MOKE microscopy on this FIB-patterned sample has revealed interacting magnetic domains across several stripes. Considering shape anisotropy effects, which would favour an alignment of magnetization parallel to the stripe axis, the opposite behaviour is observed. Magneto-elastic effects introducing a stress-induced anisotropy component oriented perpendicular to the stripe axis are the most plausible explanation for the observed behaviour.

  9. On Development and Wear Behavior of Microwave-Processed Functionally Graded Ni-SiC Clads on SS-304 Substrate

    Science.gov (United States)

    Kaushal, Sarbjeet; Gupta, Dheeraj; Bhowmick, Hiralal

    2018-02-01

    In this study, the functionally graded Ni-SiC claddings with gradual change in SiC contents were deposited on SS-304 substrate using microwave hybrid heating technique. Experimental trials were carried out inside a multimode domestic microwave device at 2.45 GHz and 900 W. The optimal exposure time of 900 W microwave power was varied with compositional gradient, and it was from 300 to 360 s. The developed functionally graded clad (FGC) was characterized by SEM/EDS, XRD and Vicker's micro-hardness. Microstructural analysis results revealed that the FGC of approximately 2 mm thickness was developed and was free from any type of interfacial cracks and visible porosity. The maximum micro-hardness was at the top FGC layer, and its value was 1025 ± 30 HV. Three types of single-layer claddings were also developed to compare the tribological behavior of FGC. FGC exhibited 32 and 1.2 times more wear resistance than SS-304 substrate and Ni + 30% SiC layer, respectively. In the case of FGC, wear mainly occurs due to debonding of carbide particles from the matrix, while plastic deformation and strong abrasion are responsible for material loss in the case of the SS-304 substrate.

  10. Electrical isolation of dislocations in Ge layers on Si(001 substrates through CMOS-compatible suspended structures

    Directory of Open Access Journals (Sweden)

    Vishal Ajit Shah, Maksym Myronov, Chalermwat Wongwanitwatana, Lewis Bawden, Martin J Prest, James S Richardson-Bullock, Stephen Rhead, Evan H C Parker, Terrance E Whall and David R Leadley

    2012-01-01

    Full Text Available Suspended crystalline Ge semiconductor structures are created on a Si(001 substrate by a combination of epitaxial growth and simple patterning from the front surface using anisotropic underetching. Geometric definition of the surface Ge layer gives access to a range of crystalline planes that have different etch resistance. The structures are aligned to avoid etch-resistive planes in making the suspended regions and to take advantage of these planes to retain the underlying Si to support the structures. The technique is demonstrated by forming suspended microwires, spiderwebs and van der Pauw cross structures. We finally report on the low-temperature electrical isolation of the undoped Ge layers. This novel isolation method increases the Ge resistivity to 280 Ω cm at 10 K, over two orders of magnitude above that of a bulk Ge on Si(001 layer, by removing material containing the underlying misfit dislocation network that otherwise provides the main source of electrical conduction.

  11. Towards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate

    Directory of Open Access Journals (Sweden)

    Bilel Azeza

    2015-07-01

    Full Text Available This paper reports on an initial assessment of the direct growth of In(GaAs/GaAs quantum dots (QDs solar cells on nanostructured surface Si substrate by molecular beam epitaxy (MBE. The effect of inserting 40 InAs/InGaAs/GaAs QDs layers in the intrinsic region of the heterojunction pin-GaAs/n+-Si was evaluated using photocurrent spectroscopy in comparison with pin-GaAs/n+-Si and pin-GaAs/GaAs without QDs. The results reveal the clear contribution of the QDs layers to the improvement of the spectral response up to 1200 nm. The novel structure has been studied by X ray diffraction (XRD, photoluminescence spectroscopy (PL and transmission electron microscopy (TEM. These results provide considerable insights into low cost III-V material-based solar cells.

  12. Crystal orientations of InSb films grown on a Si(111) substrate by inserting AlSb buffer layer

    International Nuclear Information System (INIS)

    Murata, K.; Ahmad, N.B.; Mori, M.; Tambo, T.; Maezawa, K.

    2008-01-01

    The heteroepitaxial growth of InSb film via AlSb buffer layer on a Si(111) substrate was performed in an ultra high vacuum. The grown InSb films were characterized by X-ray diffraction and atomic force microscopy. XRD patterns (Φ-scan) of the samples showed different epitaxial relationship between InSb/Si and InSb/AlSb/Si. It is found that surface condition has a significant influence on the growth of InSb films and the surface of InSb films became rough due to the high mixture ratio of domains. The two-step growth procedure was also tried to further improve the crystal quality of the InSb films. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Mohd Idzat, E-mail: idzat.i.aa@m.titech.ac.jp [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan); The National University of Malaysia, School of Applied Physics, Faculty of Science and Technology, 43600 Bangi Selangor (Malaysia); Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan)

    2015-10-15

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0–2.5 × 10{sup 24} (E > 0.1 MeV) at 333–363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373–573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17–0.24 eV and 0.12–0.14 eV; 0.002–0.04 eV and 0.006–0.04 eV at 723–923 K; 0.20–0.27 eV and 0.26–0.31 eV at 923–1223 K; and 1.37–1.38 eV and 1.26–1.29 eV at 1323–1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323–1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K. - Highlights: • Two kinds of high purity cubic (β) SiC polycrystals were irradiated. • Macroscopic lengths were examined by post-irradiation thermal annealing. • The recovery curves were analyzed with first order model.

  14. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO{sub 2} inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Ankudze, Bright; Philip, Anish [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Pakkanen, Tuula T., E-mail: Tuula.Pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Matikainen, Antti; Vahimaa, Pasi [Institute of Photonics, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland)

    2016-11-30

    Highlights: • SERS substrates prepared by infiltration of nanoparticles into SiO{sub 2} inverse opal. • The SERS substrate gives an enhancement factor of 10{sup 7} for 4-aminothiophenol. • The sensitivity of the substrate is mainly attributed to gold nanoparticle clusters. - Abstract: SiO{sub 2} inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO{sub 2} IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO{sub 2} IOs. The optical property and the morphology of the Au-SiO{sub 2} IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO{sub 2} IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO{sub 2} IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 10{sup 7} and 10{sup 6} for 4-ATP and MB, respectively. A low detection limit of 10{sup −10} M for 4-ATP was also obtained with the Au-SiO{sub 2} IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm{sup −1} for 4-ATP shows that the Au-SiO{sub 2} IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO{sub 2} IO substrates can be used in sensing and SERS applications.

  15. Effect of 3C-SiC intermediate layer in GaN—based light emitting diodes grown on Si(111) substrate

    Science.gov (United States)

    Zhu, Youhua; Wang, Meiyu; Li, Yi; Tan, Shuxin; Deng, Honghai; Guo, Xinglong; Yin, Haihong; Egawa, Takashi

    2017-03-01

    GaN-based light emitting diodes (LEDs) have been grown by metalorganic chemical vapor deposition on Si(111) substrate with and without 3C-SiC intermediate layer (IL). Structural property has been characterized by means of atomic force microscope, X-ray diffraction, and transmission electron microscope measurements. It has been revealed that a significant improvement in crystalline quality of GaN and superlattice epitaxial layers can be achieved by using 3C-SiC as IL. Regarding of electrical and optical characteristics, it is clearly observed that the LEDs with its IL have a smaller leakage current and higher light output power comparing with the LEDs without IL. The better performance of LEDs using 3C-SiC IL can be contributed to both of the improvements in epitaxial layers quality and light extraction efficiency. As a consequence, in terms of optical property, a double enhancement of the light output power and external quantum efficiency has been realized.

  16. Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro.

    Science.gov (United States)

    Peltola, T; Jokinen, M; Rahiala, H; Levänen, E; Rosenholm, J B; Kangasniemi, I; Yli-Urpo, A

    1999-01-01

    Sol-gel-derived SiO2 and CaO-P2O5-SiO2 have been shown to be bioactive and bone bonding. In this study bioactive sol-gel-derived SiO2 and CaO-P2O5-SiO2 systems were tested for in in vitro bioactivity. The calcined ceramic monoliths were immersed in a simulated body fluid and analyzed to follow the hydroxyapatite formation on the ceramic surface. Apatite-forming ability was investigated in terms of structural changes by changing the composition and the preparation method. The role of Ca and P dopants in the substrate structure is complicated, and careful characterization is needed. The composition and structure together determine the in vitro bioactivity. The pore structure was analyzed using N2-adsorption/desorption isotherms. The results indicate that a great mesopore volume and a wide mesopore size distribution favor hydroxycarbonate apatite nucleation and a great surface area is not needed. The performed preparation process for silica in a basic environment provides a convenient way to prepare a mesoporous material. Copyright 1999 John Wiley & Sons, Inc.

  17. Enhanced ferroelectric properties of predominantly (100)-oriented CaBi4Ti4O15 thin films on Pt /Ti/SiO2/Si substrates

    Science.gov (United States)

    Yan, Jing; Hu, Guangda; Liu, Zongming; Fan, Suhua; Zhou, Ying; Yang, Changhong; Wu, Weibing

    2008-03-01

    Predominantly (100)-oriented CaBi4Ti4O15 (CBTi) films were fabricated on Pt (111)/Ti /SiO2/Si substrates using a metal organic decomposition method at annealing temperatures ranging from 600to800°C. The growth mode of the predominantly (100)-oriented CBTi films fabricated by the sequential layer annealing method was discussed based on the structure evolution with the annealing temperature. The remanent polarization and coercive field of the CBTi film annealed at 750°C are 38.1μC/cm2 and 216kV/cm, respectively. No fatigue can be observed after 109 switching cycles. The remanent polarization of the purely a-axis-oriented CBTi film should be higher than 50μC/cm2.

  18. The influence of neutron-irradiation at low temperatures on the dielectric parameters of 3C-SiC

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Deyzel, G.; Minnaar, E.G.; Goosen, W.E.; Rooyen, I.J. van

    2014-01-01

    3C-SiC wafers were irradiated with neutrons of various fluences and at low (200–400 °C) irradiation temperatures. Fourier transform infrared (FTIR) reflectance spectra were obtained for the samples, and the spectra used to extract the dielectric parameters for each specimen, using statistical curve-fitting procedures. Analysis of all data revealed trends in reflectance peak heights as well as in the dielectric parameters. The surface roughness of the irradiated samples was measured by atomic force spectroscopy (AFM) and certain trends could be ascribed to surface roughness.

  19. Low temperature annealing of electron irradiation induced defects in 4H-SiC

    International Nuclear Information System (INIS)

    Castaldini, Antonio; Cavallini, Anna; Rigutti, Lorenzo; Nava, Filippo

    2004-01-01

    Low temperature annealing of electron irradiation-induced deep levels in 4H-SiC is reported. The major deep level transient spectroscopy peak S2 associated with the energy level at E c -0.39 eV disappears in the temperature range 360-400 K, and some rearrangement of the peak S3, associated with the defect Z 1 /Z 2 with energy level at E c -0.5/E c -0.65 eV occurs in the temperature interval 400-470 K. A net free charge carrier concentration increase goes along with the disappearance of peak S2 at E c -0.39 eV, whereas the charge collection efficiency of the diode does not experience any significant change. An interpretation of the annealing of peak S2 on a microscopic scale is given

  20. Effects of pulsed and/or dual ion irradiation on microstructural evolution in a Ti and Si modified austenitic alloy

    International Nuclear Information System (INIS)

    Hishinuma, A.; Packan, N.H.; Lee, E.H.; Mansur, L.K.

    1983-01-01

    The influence of pulsed 4 MeV Ni-ion bombardment, with and without simultaneous helium injection, at 958 K and damage levels from 1 to 50 dpa has been studied in a low swelling, Ti- and Si- modified austenitic stainless steel. Compared to continuous irradiation, pulsing caused an increase in the number density of interstitial loops formed during irradiation. Helium also increased the nucleation of interstitial loops. The main precipitates formed were a large number of small TiC particles uniformly distributed in the matrix, and a small number of relatively large eta and G precipitates. These course precipitates were somewhat larger in the pulsed specimens. Pulsing appeared to produce no significant change in swelling compared to continuous irradiation. However, for one specimen irradiated to 54 dpa, pulsing concurrent with substantial temperature fluctuations caused by beam heating may have been responsible for a larger swelling compared to continuous irradiation

  1. Mixed logic style adder circuit designed and fabricated using SOI substrate for irradiation-hardened experiment

    Science.gov (United States)

    Yuan, Shoucai; Liu, Yamei

    2016-08-01

    This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit's delay, power and power-delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.

  2. Substrate temperature effect on F+ etching of SiC: Molecular dynamics simulation

    NARCIS (Netherlands)

    Lu, X.; Ning, J.; Qin, Y.; Qian, Q.; Chuanwu, Z.; Ying, Y.; Ming, J.; Gou, F.

    2009-01-01

    In this study, we performed molecular dynamics simulations to investigate F+ continuously bombarding SiC surfaces at temperatures of 100, 400, 600 and 800 K with the energy of 150 eV. The simulation results show that the etch rate of Si atoms is more than that of C atoms. With increasing

  3. AlGaN/GaN-based HEMT on SiC substrate for microwave ...

    Indian Academy of Sciences (India)

    THe two-dimensional electron gas (2DEG) transport properties are discussed by solving Schödinger and Poison equations self-consistently resulting in various subbands having electron eigenvalues. From DC characteristics, the saturation drain currents are measured to be 600 mA/mm and 550 mA/mm for Si3N4 and SiO2 ...

  4. Fabrication of Si surface pattern by Ar beam irradiation and annealing method

    International Nuclear Information System (INIS)

    Zhang, J.; Momota, S.; Maeda, K.; Terauchi, H.; Furuta, M.; Kawaharamura, T.; Nitta, N.; Wang, D.

    2012-01-01

    The fabrication process of crater structures on Si crystal has been studied by an irradiation of Ar beam and a thermal annealing at 600 °C. The fabricated surface was measured by field emission scanning electron microscope and atomic force microscope. The results have shown the controllability of specifications of crater formation such as density, diameter and depth by changing two irradiation parameters, fluence and energy of Ar ions. By changing the fluence over a range of 1 ∼ 10 × 10 16 /cm 2 , we could control a density of crater 0 ∼ 39 counts/100μm 2 . By changing the energy over a range of 90 ∼ 270 keV, we could control a diameter and a depth of crater in 0.8 ∼ 4.1μm and 99 ∼ 229nm, respectively. The present result is consistent with the previously proposed model that the crater structure would be arising from an exfoliated surface layer of silicon. The present result has indicated the possibility of the crater production phenomena as a hopeful method to fabricate the surface pattern on a micro-nano meter scale.

  5. TSC measurements on proton-irradiated p-type Si-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Donegani, Elena; Fretwurst, Eckhart; Garutti, Erika; Junkes, Alexandra [University of Hamburg (Germany)

    2016-07-01

    Thin n{sup +}p Si sensors are potential candidates for coping with neutron equivalent fluences up to 2.10{sup 16} n{sub eq}/cm{sup 2} and an ionizing dose in the order of a few MGy, which are expected e.g. for the HL-LHC upgrade. The aim of the present work is to provide experimental data on radiation-induced defects in order to: firstly, get a deeper understanding of the properties of hadron induced defects, and secondly develop a radiation damage model based on microscopic measurements. Therefore, the outcomes of Thermally Stimulated Current measurements on 200 μm thick Float-Zone (FZ) and Magnetic Czochralski (MCz) diodes will be shown, as a results of irradiation with 23 MeV protons and isothermal annealing. The samples were irradiated in the fluence range (0.3-1).10{sup 14} n{sub eq}/cm{sup 2}, so that the maximal temperature at which the TSC signal is still sharply distinguishable from the dark current is 200 K. In particular, special focus will be given to the defect introduction rate and to the issue of boron removal in p-type silicon. Annealing studies allow to distinguish which defects mainly contribute to the leakage current and which to the space charge, and thus correlate microscopic defects properties with macroscopic sensor properties.

  6. Evaluation of possible equivalent circuits for the description of the CV characteristics of heavily irradiated Si diodes

    Science.gov (United States)

    Campbell, D.; Chilingarov, A.; Sloan, T.

    2005-10-01

    Different equivalent circuit diagrams are evaluated for the representation of the CV characteristics, measured with standard equipment, for a typical Si diode after heavy irradiation. A general approach is developed and several minimal models are analysed. A possible mechanism is proposed for the frequency dependence of the depletion voltage extracted from the CV measurements.

  7. Properties of GaN-based nanopillar-shaped crystals grown on a multicrystalline Si substrate

    Science.gov (United States)

    Fujiwara, Atomu; Sato, Yuichi

    2018-01-01

    The growth of gallium nitride-based nanopillar-shaped crystals on the multicrystalline silicon substrate that is widely employed in solar cells is presented here for the first time. The nanopillar-shaped crystals are successfully grown on the multicrystalline substrate in a manner similar to the structures grown on other substrates. Structural variations and a highly enhanced band edge emission in the photoluminescence spectrum have been observed using germanium doping.

  8. Structural and magnetic properties of cobalt nanostructures on SiO2/Si(1 1 1) substrates

    International Nuclear Information System (INIS)

    Bounour-Bouzamouche, W.; Chérif, S.M.; Farhat, S.; Roussigné, Y.; Tallaire, A.; Gicquel, A.; Lungu, C.P.; Guerioune, M.

    2014-01-01

    Highlights: • Heat and plasma treatments of ultrathin cobalt films deposited on SiO 2 /Si(1 1 1) create highly auto-organized structures. • Direct correlation between the film thickness and the size of the nanoparticles formed after thermal annealing. • Modification of the surface morphology strongly influences the magnetic response of the investigated films. • Formation of Co islands in triangular shapes is found to play a key role in the enhancement of the coercive field. - Abstract: 2D architectures of cobalt onto silicon (1 1 1) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800 °C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750 °C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve

  9. 60Co gamma irradiation effects on the the capacitance and conductance characteristics of Au/PMI/n-Si Schottky diodes

    Science.gov (United States)

    Tuğluoğlu, N.; Karadeniz, S.; Yüksel, Ö. F.; Şafak, H.; Kuş, M.

    2015-08-01

    In this work, the perylene-monoimide/n-Si (100) Schottky structures have been fabricated by spin coating process. We have studied the capacitance-voltage ( C- V) and conductance-voltage ( G- V) characteristics of the Au/perylene-monoimide/n-Si diodes at 500 kHz before and after 60Co γ-ray irradiation. The effects of 60Co γ -ray irradiation on the electrical characteristics of a perylene-monoimide/n-Si Schottky diode have been investigated. A decrease both in the capacitance and conductance has been observed after 60Co γ -ray irradiation. This has been attributed to a decrease in the net ionized dopant concentration that occurred as a result of 60Co γ-ray irradiation. Some contact parameters such as barrier height (Φ B ) interface state density ( N ss ) and series resistance ( R s ) have been calculated from the C- V and G- V characteristics of the diode before and after irradiation. It has been observed that the Φ B and N ss values are decreased after the applied radiation, while the R s value is increased.

  10. Comparative study of the structural damage of nano-structured and micro-structured ceramics SiC under irradiation

    International Nuclear Information System (INIS)

    Leconte, Y.; Herlin-Boime, N.; Reynaud, C.; Monnet, I.; Levalois, M.; Morales, M.; Portier, X.; Thome, L.

    2006-01-01

    In order to know if the nano-structured ceramics SiC are possible materials for the future nuclear applications, SiC pellets have been submitted to low and mean energy irradiation experiments. These samples have been characterized by grazing X-ray diffraction and confocal Raman spectroscopy as well as conventional SiC ceramic pellets as reference. The low energy irradiations have allowed to exceed the amorphization threshold and to obtain a total disorder in the two types of samples. At the mean energies, this amorphization has not been obtained in spite of the doses generating a number of dpa superior to those of the low energies. The hypothesis of a synergy between the effects of the electronic and nuclear energy losses is advanced. (O.M.)

  11. Influence of a silicon (Si14)-based coating substrate for biomaterials on fibroblast growth and human C5a.

    Science.gov (United States)

    Hiebl, B; Hopperdietzel, C; Hünigen, H; Jung, F; Scharnagl, N

    2013-01-01

    Despite considerable efforts in biomaterial development there is still a lack on substrates for cardiovascular tissue engineering approaches which allow the establishment of a tight a functional endothelial layer on their surface to provide hemocompatibility. The study aimed to test the biocompatibility of a silicon (Si14)-based coating substrate (Supershine Medicare, Permanon) which was designed to resist temperatures from -40°C up to 300°C and which allows the use of established heat-inducing sterilization techniques respectively. By X-ray photoelectron spectroscopy it could be validated that this substrate is able to establish a 40-50 nm thick layer of silica, oxygen and carbon without including any further elements from the substrate on an exemplary selection of materials (silicone, soda-lime-silica glass, stainless steel). Analysis of the LDH-release, the cell activity/proliferation (MTS assay) and the cell phenotype after growing 3T3 cells with extracts of the coated materials did not indicate any signs of cytotoxicity. Additionally by measuring the C5a release after exposure of the coated materials with human serum it could be demonstrated, that the coating had no impact on the activation of the complement system. These results generally suggest the tested substrate as a promising candidate for the coating of materials which are aimed to be used in cardiovascular tissue engineering approaches.

  12. In-situ growth mode control of AlN on SiC substrate by sublimation closed space technique

    Science.gov (United States)

    Dojima, Daichi; Ashida, Koji; Kaneko, Tadaaki

    2018-02-01

    For the growth of AlN single crystal with large diameter and low dislocation density on SiC substrate by physical vapor transport (PVT), a dislocation blocking buffer layer (DBBL) has been simply developed by optimizing the AlN growth parameters such as temperature gradient (ΔT), substrate temperature (Tsub), and N2 partial pressure (PN2) at the initial growth stage. Increase in ΔT resulted in the formation of an abrupt AlN/SiC interface due to the suppression of inhomogeneous thermal decomposition at the interface and the subsequent AlN unstable island growth. The well-defined AlN/SiC interface played an important role in controlling the two kinds of different AlN growth mode in-situ as functions of Tsub and PN2. One is a continuous step-flow growth mode, and the other is a discontinuous platelet-like growth. The discontinuous AlN layer, consisting of thin AlN platelets and air-gaps inserted between the two adjacent platelets, acted as the DBBL. By introducing the DBBL at the initial growth stage, followed by the step-flow growth, continuous AlN layer with dislocation density of 1.7 × 106 cm-2 was achieved at a total growth thickness of 60 μm, which is two orders of magnitude lower than the previously reported value.

  13. Structural and interfacial characteristics of thin (2 films grown by electron cyclotron resonance plasma oxidation on [100] Si substrates

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Carl, D.A.; Hess, D.W.; Lieberman, M.A.; Gronsky, R.

    1991-04-01

    The feasibility of fabricating ultra-thin SiO 2 films on the order of a few nanometer thickness has been demonstrated. SiO 2 thin films of approximately 7 nm thickness have been produced by ion flux-controlled Electron Cyclotron Resonance plasma oxidation at low temperature on [100] Si substrates, in reproducible fashion. Electrical measurements of these films indicate that they have characteristics comparable to those of thermally grown oxides. The thickness of the films was determined by ellipsometry, and further confirmed by cross-sectional High-Resolution Transmission Electron Microscopy. Comparison between the ECR and the thermal oxide films shows that the ECR films are uniform and continuous over at least a few microns in lateral direction, similar to the thermal oxide films grown at comparable thickness. In addition, HRTEM images reveal a thin (1--1.5 nm) crystalline interfacial layer between the ECR film and the [100] substrate. Thinner oxide films of approximately 5 nm thickness have also been attempted, but so far have resulted in nonuniform coverage. Reproducibility at this thickness is difficult to achieve

  14. Heteroepitaxial growth of InSb films on a Si(0 0 1) substrate via AlSb buffer layer

    International Nuclear Information System (INIS)

    Mori, M.; Akae, N.; Uotani, K.; Fujimoto, N.; Tambo, T.; Tatsuyama, C.

    2003-01-01

    AlSb is a more suitable material as buffer layers for the heteroepitaxial growth of InSb films on a Si(0 0 1) substrate than Ge. It reduces the large lattice mismatch of about 19.3% between Si and InSb to about 5.6%. The resistance of AlSb with stoichiometric composition is large enough for the measurement of electrical properties. InSb films grown on the AlSb/Si(0 0 1) substrates by the co-evaporation of elemental indium (In) and antimony (Sb) sources were characterized by Auger electron spectroscopy (AES), X-ray diffraction (XRD) and atomic force microscopy (AFM), as a function of growth temperature. The thickness of grown InSb films was about 0.8-1.0 μm. The surface morphology and the crystal quality of the grown films strongly depend on growth temperature. It is found that the optimized growth temperature is about 300 deg. C to obtain the InSb films with smooth surface and good crystal quality

  15. Impacts of gate bias and its variation on gamma-ray irradiation resistance of SiC MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Koichi; Mitomo, Satoshi; Matsuda, Takuma; Yokoseki, Takashi [Saitama University, Sakuraku (Japan); National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki (Japan); Makino, Takahiro; Onoda, Shinobu; Takeyama, Akinori; Ohshima, Takeshi [National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki (Japan); Okubo, Shuichi; Tanaka, Yuki; Kandori, Mikio; Yoshie, Toru [Sanken Electric Co., Ltd., Niiza, Saitama (Japan); Hijikata, Yasuto [Saitama University, Sakuraku (Japan)

    2017-04-15

    Gamma-ray irradiation into vertical type n-channel hexagonal (4H)-silicon carbide (SiC) metal-oxide-semiconductor field effect transistors (MOSFETs) was performed under various gate biases. The threshold voltage for the MOSFETs irradiated with a constant positive gate bias showed a large negative shift, and the shift slightly recovered above 100 kGy. For MOSFETs with non- and a negative constant biases, no significant change in threshold voltage, V{sub th}, was observed up to 400 kGy. By changing the gate bias from positive bias to either negative or non-bias, the V{sub th} significantly recovered from the large negative voltage shift induced by 50 kGy irradiation with positive gate bias after only 10 kGy irradiation with either negative or zero bias. It indicates that the positive charges generated in the gate oxide near the oxide-SiC interface due to irradiation were removed or recombined instantly by the irradiation under zero or negative biases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Surface adhesion study of La2O3 thin film on Si and glass substrate for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2017-01-01

    Adhesive property can be described as an interchangeably with some ink and substance which was applied to one surface of two separate items that bonded together. Lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent or printing ink. This metal deposit was embedded on Silica (Si) wafer and glass substrate using Magnetron Sputtering technique. The choose of Lanthanum oxide as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer and glass substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). This research will focus on 3 narrow scan regions which are C 1s, O 1s and La 3d. Further discussion of the spectrum evaluation will be discussed in detail. Here, it is proposed that from the adhesive and surface chemical properties of La is the best on glass substrate which suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal in a practice of micro-flexography printing.

  17. Reliability implications of defects in high temperature annealed Si/SiO2/Si structures

    International Nuclear Information System (INIS)

    Warren, W.L.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.; Mathiot, D.; Wilson, I.H.; Xu, J.B.

    1994-01-01

    High-temperature post-oxidation annealing of poly-Si/SiO 2 /Si structures such as metal-oxide-semiconductor capacitors and metal-oxide-semiconductor field effect transistors is known to result in enhanced radiation sensitivity, increased 1/f noise, and low field breakdown. The authors have studied the origins of these effects from a spectroscopic standpoint using electron paramagnetic resonance (EPR) and atomic force microscopy. One result of high temperature annealing is the generation of three types of paramagnetic defect centers, two of which are associated with the oxide close to the Si/SiO 2 interface (oxygen-vacancy centers) and the third with the bulk Si substrate (oxygen-related donors). In all three cases, the origin of the defects may be attributed to out-diffusion of O from the SiO 2 network into the Si substrate with associated reduction of the oxide. The authors present a straightforward model for the interfacial region which assumes the driving force for O out-diffusion is the chemical potential difference of the O in the two phases (SiO 2 and the Si substrate). Experimental evidence is provided to show that enhanced hole trapping and interface-trap and border-trap generation in irradiated high-temperature annealed Si/SiO 2 /Si systems are all related either directly, or indirectly, to the presence of oxygen vacancies

  18. Oxygen vacancy induced structure change and interface reaction in HfO{sub 2} films on native SiO{sub 2}/Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kai [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Department of Chemistry, Tsinghua University, Beijing 100084 (China); Yao, Wenqing, E-mail: yaowq@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Zhao, Yuanyuan [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Liping [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Cao, Jiangli, E-mail: jlcao@mater.ustb.edu.cn [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Yongfa [Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2016-12-30

    Graphical abstract: The diffusion of interfacial oxygen atoms was induced by the oxygen vacancies and the grain boundaries in the HfO{sub 2} films, which caused structural changes in the film-substrate interface layer. - Highlights: • The relationship between the defects formation and the change of the interface structure in HfO{sub 2} films was investigated. • The existence of oxygen vacancies in the surface layer of the HfO{sub 2} film was confirmed by Auger line shapes. • The mechanisms of interfacial oxygen diffusion and interface reactions were demonstrated. - Abstract: The HfO{sub 2} films were deposited on SiO{sub 2} (native)/n-Si (100) substrates by electron beam evaporation (EBE) technology. The structural evolution of the films during thermal annealing were studied by using grazing incidence X-ray diffraction (GIXRD), Raman spectra and Auger electron spectroscopy (AES), while the change of bonding structure and interface products were obtained by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The existence of oxygen vacancies in the surface layer of the as-deposited HfO{sub 2} film was confirmed by Auger line shapes, which could facilitate the adsorption of ambient oxygen on the free surface and induce the diffusion of oxygen atoms to the surface layer during thermal annealing. Meanwhile, the newly formed defects in the films could provide more passageways for the diffusion of oxygen atoms to the film-substrate interface layer. The oxygen that diffused to the interface layer was the key factor of the change in the interface structure, which participated in the interface reaction. In addition, the formation amount and bonding structure of the interface products such as suboxide of silicon and hafnium silicate were influenced by the oxygen concentration of the external environment.

  19. Synthesis of graphene on SiC substrate via Ni-silicidation reactions

    International Nuclear Information System (INIS)

    Macháč, P.; Fidler, T.; Cichoň, S.; Mišková, L.

    2012-01-01

    In this work, the features of graphene layers are studied with the aim of preparing the thinnest layers possible. The graphene layers were prepared by the annealing of Ni/SiC structures. The main advantage of this process is a relatively low temperature compared with the method of graphene epitaxial growth on SiC and short annealing times compared with the chemical vapor deposition method. We prepared graphene layers from several Ni/SiC structures in which the Ni layer thickness ranged from 1 to 200 nm. The parameters of the annealing process (temperature, rate of temperature increase, annealing time) were modified during the experiments. The formed graphene layers were analyzed by means of Raman spectroscopy. From the spectra, the basic parameters of graphene, such as the number of carbon layers and crystallinity, were determined. The annealing of the Ni(200 nm)/SiC structure at 1080 °C for 10 s, produced graphene in the form of 3–4 carbon monolayers. The value was verified by X-ray Photoelectron Spectroscopy (XPS). Good agreement was achieved in the results obtained using Raman spectroscopy and XPS. - Highlights: ► Low temperature preparation of graphene by the annealing of Ni/SiC structures. ► Raman spectroscopy used for the analyzing of graphene layers. ► Optimal structure Ni(200)/SiC annealed at 1080 °C for 10 s. ► Graphene prepared in the form of 3–4 carbon monolayers.

  20. Growth and Device Performance of AlGaN/GaN Heterostructure with AlSiC Precoverage on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Lee

    2014-01-01

    Full Text Available A crack-free AlGaN/GaN heterostructure was grown on 4-inch Si (111 substrate with initial dot-like AlSiC precoverage layer. It is believed that introducing the AlSiC layer between AlN wetting layer and Si substrate is more effective in obtaining a compressively stressed film growth than conventional Al precoverage on Si surface. The metal semiconductor field effect transistor (MESFET, fabricated on the AlGaN/GaN heterostructure grown with the AlSiC layer, exhibited normally on characteristics, such as threshold voltage of −2.3 V, maximum drain current of 370 mA/mm, and transconductance of 124 mS/mm.

  1. High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate

    Science.gov (United States)

    Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik

    2018-03-01

    High-efficiency optical modulation of a terahertz pulse transmitted through aligned silver nanowires on a silicon substrate is demonstrated. Without optical excitation, the terahertz pulses mostly pass through the silver nanowires. However, an optically excited sample significantly modulates the transmittance compared with an excited silicon substrate. The enhanced modulation efficiency is explained by the redistribution effect of photo-carriers due to the nanowires. The simple structure of metal nanowires on a semiconductor substrate could be useful in implementing optically tunable terahertz wave modulators.

  2. Electrical performance of multilayer MoS2 transistors on high-κ Al2O3 coated Si substrates

    Directory of Open Access Journals (Sweden)

    Tao Li

    2015-05-01

    Full Text Available The electrical performance of MoS2 can be engineered by introducing high-κ dielectrics, while the interactions between high-κ dielectrics and MoS2 need to be studied. In this study, multilayer MoS2 field-effect transistors (FETs with a back-gated configuration were fabricated on high-κ Al2O3 coated Si substrates. Compared with MoS2 FETs on SiO2, the field-effect mobility (μFE and subthreshold swing (SS were remarkably improved in MoS2/Al2O3/Si. The improved μFE was thought to result from the dielectric screening effect from high-κ Al2O3. When a HfO2 passivation layer was introduced on the top of MoS2/Al2O3/Si, the field-effect mobility was further enhanced, which was thought to be concerned with the decreased contact resistance between the metal and MoS2. Meanwhile, the interface trap density increased from 2.4×1012 eV−1cm−2 to 6.3×1012 eV−1cm−2. The increase of the off-state current and the negative shift of the threshold voltage may be related to the increase of interface traps.

  3. Research of high-hardness and wear-resistant SiO2 film coating on acrylic substrates

    Science.gov (United States)

    Yao, Yu-ting; Cheng, Yan; Deng, Xiu-mei; Jiang, Jin-hu; Zhu, Xiao-bo; Gu, Wen-hua

    2017-10-01

    Acrylic (PMMA) possesses excellent optical transparency, good chemical stability as well as many other merits such as the feasibilities in dyeing and manufacturing. But its poor hardness and wear resistance restrict its industrialized applications. In order to improve the hardness and wear resistance, SiO2 films were coated on PMMA substrates by both dip coating method and aerosol spraying method in this work. Heating curing method was carried out after the coating of SiO2 film, and consequently, the mechanical properties, optical properties and surface morphology were characterized and compared. The experimental results showed that the SiO2 films prepared by aerosol spraying method has a better performance in both hardness and wear resistance, compared with the films prepared by dip coating method. In the optimized conditions, the hardness of the PMMA was improved from 3H to 8H, and the non-abrasion rubbing times increased from less than 100 times to 5000 times with a loading of 500g weight after the coating of SiO2 film, indicating the improvement of the wear resistance.

  4. Influence of AlGaN Buffer Growth Temperature on GaN Epilayer based on Si(lll) Substrate

    International Nuclear Information System (INIS)

    Wei Meng; Wang Xiaoliang; Pan Xu; Xiao Hongling; Wang Cuimei; Zhang Minglan; Wang Zhanguo

    2011-01-01

    This paper investigated the influence of AlGaN buffer growth temperature on strain status and crystal quality of the GaN film on Si(111) sbustrates by metal organic chemical vapor deposition. It was demonstrated by the optical microscopy that AlGaN buffer gorwth temperature had a remarkable effect on compensating tensil stress in top GaN layer and preventing the formation of cracks. X-ray diffraction and atomic force microscopy analysis showed crystal quality and surface morphology of the GaN epilayer could be improved through increasing AlGaN buffer growth temperature. 1μm crack-free GaN epilayer on Si (111) substrates was obtained with graded AlGaN buffer layer at optimized temperature of 1050 deg. C. Transmission electron microscopy analysis revealed that a significant reduction in threading dislocations was achieved in GaN epilayer.

  5. Hydrofluoric acid-assisted bonding of diatoms with SiO2-based substrates for microsystem application

    International Nuclear Information System (INIS)

    Zhang, Deyuan; Pan, Junfeng; Cai, Jun; Wang, Yu; Jiang, Yonggang; Jiang, Xinggang

    2012-01-01

    Diatom, with delicate three-dimensional porous structures and texture, has a promising application in micro-nanotechnology especially biosensing. In order to achieve a diatom-based compound substrate, a fabrication technique is developed for hydrofluoric acid (HF) bonding of diatom with SiO 2 -based substrate at a temperature as low as 80 °C. The bonding conditions are optimized with various HF concentrations and applied pressure. The optimized HF concentration is found to be in the range of 0.8% to 1.2% and applied pressure is from 0.4.0 MPa to 0.6.0 MPa. The morphological integrity and nano-microscale substructures of the diatoms after bonding are characterized. The bonding strength is approximately 0.435 MPa. (paper)

  6. Influence of implantation energy on the electrical properties of ultrathin gate oxides grown on nitrogen implanted Si substrates

    International Nuclear Information System (INIS)

    Kapetanakis, E.; Skarlatos, D.; Tsamis, C.; Normand, P.; Tsoukalas, D.

    2003-01-01

    Metal-oxide-semiconductor tunnel diodes with gate oxides, in the range of 2.5-3.5 nm, grown either on 25 or 3 keV nitrogen-implanted Si substrates at (0.3 or 1) x10 15 cm -2 dose, respectively, are investigated. The dependence of N 2 + ion implant energy on the electrical quality of the growing oxide layers is studied through capacitance, equivalent parallel conductance, and gate current measurements. Superior electrical characteristics in terms of interface state trap density, leakage current, and breakdown fields are found for oxides obtained through 3 keV nitrogen implants. These findings together with the full absence of any extended defect in the silicon substrate make the low-energy nitrogen implantation technique an attractive option for reproducible low-cost growth of nanometer-thick gate oxides

  7. Mechanical properties of 6H-SiC irradiated by neutron and MeV heavy ions: A nanoindentation and finite element method study

    Science.gov (United States)

    Chen, Xiaofei; Zhou, Wei; Zhang, Xuxin; Feng, Qijie; Zheng, Jian; Liu, Xiankun; Tang, Bin; Li, Jiangbo; Xue, Jianming; Peng, Shuming

    2018-01-01

    Understanding the mechanical properties of structural materials under an irradiation environment stands as a major challenge for developing advanced nuclear systems. In this paper, the mechanical properties, including the Young's modulus, yield stress, and hardness, of SiC samples irradiated by neutron and heavy ions (3 MeV C and Si ions) have been investigated by nanoindentation measurement. When the load-depth curves were analyzed by the widely used Oliver-Pharr method, for the samples irradiated at the same displacement damage level (0.1 and 0.2 dpa), both the elastic modulus and hardness of the ion irradiated SiC are significantly higher compared with those of neutron irradiated samples. The discrepancy is mainly attributed to the irradiation induced surface lateral stress in ion irradiated samples, which cannot be taken into account for the Oliver-Pharr method. After carefully considering this effect by the finite element method in simulating the load-depth curves, both the Young's modulus and yield stress of ion irradiated samples agree well with those of neutron irradiated samples. This study reveals that by the combined method of nanoindentation and finite element, the mechanical properties, including the Young's modulus, yield stress and hardness, for neutron irradiated SiC can be reasonably evaluated by MeV heavy ion irradiation.

  8. Pulsed EPR study of low-dose irradiation effects in L-alanine crystals irradiated with γ-rays, Ne and Si ion beams

    International Nuclear Information System (INIS)

    Rakvin, B.; Maltar-Strmecki, N.; Nakagawa, K.

    2007-01-01

    Low-dose irradiation effects in L-alanine single crystals irradiated with γ-rays, Ne and Si ion beams have been investigated by means of a two-pulse electron spin echo (ESE) technique. An effective phase memory time, T M , was measured from the first stable L-alanine radical, SAR1, and its complex relaxation mechanism is discussed. Both spectral and instantaneous diffusion contributions to the total effective relaxation rate have been extrapolated through the detection of the two-pulse ESE signal as a function of turning angle. The local microscopic concentration of paramagnetic centers C(ions)/C(γ-ray) for low-dose heavy-ion irradiation has been deduced from the corresponding spin-spin interaction

  9. Evaluating structural and microstructural changes of PDMS –SiO{sub 2} hybrid materials after sterilization by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Lancastre, Joana [Campus Tecnologico e Nuclear, IST, University of Lisbon, E.N 10, 2686-953 Sacavém (Portugal); Vaz Fernandes, M. Helena [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Margaça, Fernanda M.A.; Ferreira, Luís [Campus Tecnologico e Nuclear, IST, University of Lisbon, E.N 10, 2686-953 Sacavém (Portugal); Miranda Salvado, Isabel M., E-mail: isabelmsalvado@ua.pt [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-03-01

    PDMS–SiO{sub 2} hybrid materials obtained by sol–gel process have been extensively studied over the past years due to its promising biomedical applications namely as bone substitutes, catheters, and drug delivery devices. Regardless of the intended biomedical application, all these materials should go through a sterilization process before interfacing with a living structure. However, it is unclear whether they undergo structural and microstructural changes when subjected to sterilization by gamma irradiation. This paper addresses this issue by showing that a sol–gel processed biomaterial based on the PDMS–CaO–SiO{sub 2} hybrid system suffers only small structural changes when submitted to a radiation dose of 25 kGy, the dose usually recommended to achieve a Sterility Assurance Level of 10{sup −6} when the natural contamination level and microorganism types cannot be calculated. The characterization was assessed by FT-IR, {sup 29}Si–{"1H} CP-MAS, thermal analysis (DTG), and SEM. - Highlights: • Hybrid PDMS–SiO{sub 2} materials were subjected to sterilization by γ-irradiation. • Materials suffer only small structural changes when irradiated. • Characterization was assessed by FT-IR, {sup 29}Si-{"1H} CP-MAS, DTG and SEM.

  10. Prospects of a {beta}-SiC based IMPATT oscillator for application in THz communication and growth of a {beta}-SiC p-n junction on a Ge modified Si (100) substrate to realize THz IMPATTs

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Moumita [Centre of Millimeter-Wave Semiconductor Devices and Systems, Centre of Advanced Study in Radiophysics and Electronics, University of Calcutta, Girish Vidyaratna Lane, Kolkata 700009, West Bengal (India); Mazumder, Nilratan, E-mail: mm_drdo@yahoo.com [IERCEM Institute of Information Technology, West Bengal University of Technology, Kolkata 700017 (India)

    2010-12-15

    The prospects of a p{sup +}nn{sup +} cubic silicon carbide (3C-SiC/{beta}-SiC) based IMPATT diode as a potential solid-state terahertz source is studied for the first time through a modified generalized simulation scheme. The simulation predicts that the device is capable of generating an RF power output of 63.0 W at 0.33 THz with an efficiency of 13%. The effects of parasitic series resistance on the device performance and exploitable RF power level are further simulated. The studies clearly establish the potential of 3C-SiC as a base semiconductor material for a high-power THz IMPATT device. Based on the simulation results, an attempt has been made to fabricate {beta}-SiC based IMPATT devices in the THz region. Single crystalline, epitaxial 3C-SiC films are deposited on silicon (Si) (100) substrates by rapid thermal chemical vapour deposition (RTPCVD) at a temperature as low as 800 {sup 0}C using a single precursor methylsilane, which contains Si and C atoms in the same molecule. No initial surface carbonization step is required in this method. A p-n junction with an n-type doping concentration of 4 x 10{sup 24} m{sup -3} (which is similar to the simulated design data) has been grown successfully and the characterization of the grown 3C-SiC film is reported in this paper. It is found that the inclusion of Ge improves the crystal quality and reduces the surface roughness. (semiconductor devices)

  11. Epitaxial growth and properties of AlGaN-based UV-LEDs on Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Saengkaew, Phannee

    2010-07-08

    An increasing demand for bright and efficient ultraviolet light emitting diodes (UVLEDs) is generated by numerous applications such as biochemical sensors, purification and sterilization, and solid-state white lighting. Al{sub x}Ga{sub 1-x}N is a promising material to develop UVLEDs due to the direct wide-bandgap material for emission wavelengths in the UV range and the capability of n- and p-type doping. To develop UV-LEDs on Si substrates is very interesting for low-cost UV-light sources since the Si substrate is available at low cost, in large-diameter size enabling the integration with well-known Si electronics. This work presents the first crack-free AlGaN-based UV-LEDs on Si(111) substrates by MOVPE growth. This AlGaN-based UV-LED on Si(111) substrate consists of Al{sub 0.1}Ga{sub 0.9}N:Si layers on LT-AlN/HT-AlN SL buffer layers and an active layer of GaN/Al{sub 0.1}Ga{sub 0.9}N MQWs followed by Mg-doped (GaN/Al{sub 0.1}Ga{sub 0.9}N) superlattices and GaN:Mg cap layers. It yields a {proportional_to}350 nm UV electroluminescence at room temperature and a turn-on voltage in a range of 2.6-3.1 V by current-voltage (I-V) measurements. The novel LT-AlN/HT-AlN superlattice buffer layers efficiently improve the crystalline quality of Al{sub x}Ga{sub 1-x}N layers and compensate a thermal tensile strain in Al{sub x}Ga{sub 1-x}N layers after cooling as observed by in-situ curvature measurements. The dislocation density could be reduced from 8.4 x 10{sup 10} cm{sup -2} in the AlN-based SLs to 1.8 x 10{sup 10} cm{sup -2} in the Al{sub 0.1}Ga{sub 0.9}N layers as determined by cross-sectional transmission electron microscopy (TEM) measurements. Crack-free Al{sub x}Ga{sub 1-x}N layers grown on these LT-AlN/HT-AlN superlattices with 0.05{<=}x{<=} 0.65 are achieved on Si substrates with good crystalline, optical, and electrical properties. The best crystalline quality of Al{sub 0.1}Ga{sub 0.9}N is obtained with {omega}-FWHMs of the (0002) and (10-10) reflections of

  12. In situ study of the effects of heavy-ion irradiation on co-evaporated CoSi2 films

    International Nuclear Information System (INIS)

    Allen, C.W.; Smith, D.A.

    1990-11-01

    The in situ ion irradiation capability of Argonne's HVEM-Tandem User Facility has been employed to determine the effects of 1.5 MeV Kr + irradiation and 300 kV electron irradiation on the crystallization of as-deposited and of partially crystallized 40 nm thick films of CoSi 2 . Ion fluxes ranged from 8.5 x 10 14 to 6.8 x 10 15 m -2 s -1 for which beam heating effects may be neglected. The maximum electron flux at 300 kV was 0.8 x 10 23 m -2 s -1 . The maximum temperature at which crystalline CoSi 2 is amorphized by the ion irradiation of flux = 6.8 x 10 15 m -2 s -1 is between 250 and 280 K. At higher temperatures amorphous material crystallizes by growth of any preexisting crystals and by classical nucleation and growth, with radial growth rates which are proportional to ion flux. The average degree of transformation per ion is 4 x 10 -26 m 3 per ion. Thermally induced crystallization of as-deposited films occurs above approximately 420 K. For ion doses at least as low as 3.4 x 10 16 m -2 ion irradiation at 300 K promotes thermal crystallization at 450 K, by virtue of enhanced apparant nucleation and at large doses, by enhanced growth rate. 8 refs., 2 figs

  13. Irradiation effects on the C-V and G/{omega}-V characteristics of Sn/p-Si (MS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, S. [Department of Physics, Faculty of Sciences and Arts, University of Kahramanmaras Suetcue Imam, 46100 Kahramanmaras (Turkey)], E-mail: skaratas@ksu.edu.tr; Tueruet, A. [Department of Physics, Faculty of Sciences and Arts, Atatuerk University, 25240 Erzurum (Turkey); Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2009-02-15

    In this paper, we have investigated the effects of {sup 60}Co gamma ({gamma})-ray source on the electrical properties of Sn/p-Si metal-semiconductor (MS) structures using the capacitance-voltage (C-V) and conductance-voltage (G/{omega}-V) measurements before and after irradiation at room temperature. The MS structures were investigated in the frequency range 20-700 kHz irradiation effects on the electrical properties of Sn/p-Si MS structures before irradiation, and after irradiation, these structures were exposed to {sup 60}Co {gamma}-ray source irradiation with the dose rate of 2.12 kGy/h and the total dose range was 0-500 kGy at room temperature. It was found that the C-V and G/{omega}-V curves were strongly influenced with both frequency and the presence of the dominant radiation-induced defects, and the series resistance was increased with increase in dose. On the other hand, the interface state density (N{sub ss}) as depended on radiation dose and frequency was determined from C-V and G/{omega}-V measurements, and the interface states densities decreased with increase in frequency and radiation dose.

  14. Effect of Ge nanocluster assembly self-organization at pulsed irradiation by low-energy ions during heteroepitaxy on Si

    CERN Document Server

    Dvurechenskij, A V; Smagina, Z V

    2001-01-01

    Using the method of scanning microscopy one studied experimentally size distribution of Ge clusters formed in course of experiments of two types at Ge heteroepitaxy on Si(111): regular process of molecular-beam epitaxy (MBE); pulse irradiation by approx = 200 eV energy Ge ions. The experiments were conducted at 350 deg C temperature. Pulse irradiation by an ion beam during heteroepitaxy was detected to result in reduction of the average size of Ge clusters, in compacting of their density and in reduction of mean square deviation from the average value in contrast to similar values in experiments devoted to regular MBE

  15. The effects of displacement threshold irradiation energy on deep levels in p-type 6H-SiC.

    Science.gov (United States)

    Alfieri, G; Kimoto, T

    2011-02-16

    We report on the electrical characterization, by means of deep level transient spectroscopy, of electron-irradiated Al-doped 6H-SiC epilayers. Samples were irradiated with either 116 keV, in order to displace only carbon atoms, or 400 keV. Seven deep traps, in the 0.1-1.6 eV range above the valence band, were found. The thermal stability of the detected levels was analyzed by performing an isochronal annealing series in the 100-1800 °C temperature range and the atomic structure of most of the detected traps was found to be related to C-displacement.

  16. Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lillo, T.M., E-mail: thomas.lillo@inl.gov [Materials Science & Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415-2211 (United States); Rooyen, I.J. van [Fuel Performance and Design Department, Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States)

    2015-05-15

    Highlights: • Fission products in the SiC layer of a neutron-irradiated TRISO particle were analyzed. • Pd, Ag and U found in grain boundary, matrix and triple junction precipitates. • U never found alone or with Ag, only associated with Pd. • Not all boundaries and triple junctions had fission products. • Grain boundary crystallographic parameters likely a factor in migration behavior. - Abstract: Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number of nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were

  17. Behaviour of total surface charge in SiO2-Si system under short-pulsed ultraviolet irradiation cycles characterised by surface photo voltage technique

    International Nuclear Information System (INIS)

    Kang, Ban-Hong; Lee, Wah-Pheng; Yow, Ho-Kwang; Tou, Teck-Yong

    2009-01-01

    Effects of time-accumulated ultraviolet (UV) irradiation and surface treatment on thermally oxidized p-type silicon wafers were investigated by using the surface photo voltage (SPV) technique via the direct measurement of the total surface charge, Q SC . The rise and fall times of Q sc curves, as a function of accumulated UV irradiation, depended on the thermal oxide thickness. A simple model was proposed to explain the time-varying characteristics of Q sc based on the UV-induced bond breaking of SiOH and SiH, and photoemission of bulk electrons to wafer surface where O 2 - charges were formed. While these mechanisms resulted in charge variations and hence in Q sc , these could be removed by rinsing the silicon wafers in de-ionized water followed by spin-dry or blow-dry by an ionizer fan. Empirical parameters were used in the model simulations and curve-fitting of Q SC . The simulated results suggested that initial changes in the characteristic behaviour of Q sc were mainly due to the net changes in the positive and negative charges, but subsequently were dominated by the accumulation of O 2 - during the UV irradiation.

  18. Influence of He-ion irradiation on the characteristics of Pd/n-Si{sub 0.90}Ge{sub 0.10}/Si Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mamor, M; Sellai, A; Bouziane, K; Harthi, S H Al; Busaidi, M Al; Gard, F S [Physics Department, Sultan Qaboos University, PO Box 36 Muscat 123, Sultanate of (Oman)

    2007-03-07

    Current-voltage (I-V) and capacitance-voltage (C-V) characteristics of He-ion irradiated Pd/n-Si{sub 09}Ge{sub 0.10} Schottky contacts have been measured in the temperature range from 100 to 300 K. Schottky barrier properties such as the Schottky barrier height ({phi}{sub bn}) and ideality factor (n) have been studied as a function of temperature. The degree to which their characteristics deviated from the ideal case increased as the temperature decreased. A decrease in {phi}{sub bn} and an increase in n with decreasing temperature are observed. Additionally, linear dependence between the so-called temperature factor T{sub 0} and temperature as well as between {phi}{sub bn} and n are shown. This type of strong temperature dependence indicates the presence of a large degree of lateral inhomogeneities of the barrier height, resulting from the He-ion irradiation induced defects and traps which produce a variation in the number of free carriers. The presence of electrically active defects introduced by He-ion irradiation at and below the Si{sub 0.90}Ge{sub 0.10} surface support this interpretation.

  19. CaO-Al2O3 glass-ceramic as a joining material for SiC based components: A microstructural study of the effect of Si-ion irradiation

    Science.gov (United States)

    Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica

    2018-04-01

    The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.

  20. LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates

    Science.gov (United States)

    Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping

    2018-01-01

    This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.

  1. Nanodiamond resonators fabricated on 8″ Si substrates using adhesive wafer bonding

    Science.gov (United States)

    Lebedev, V.; Lisec, T.; Yoshikawa, T.; Reusch, M.; Iankov, D.; Giese, C.; Žukauskaitė, A.; Cimalla, V.; Ambacher, O.

    2017-06-01

    In this work, the adhesive wafer bonding of diamond thin films onto 8″ silicon substrates is reported. In order to characterize bonded nano-crystalline diamond layers, vibrometry and interferometry studies of micro-fabricated flexural beam and disk resonators were carried out. In particular, surface topology along with resonant frequencies, eigenmodes and mechanical quality factors were recorded and analyzed in order to obtain physical parameters of the transferred films. The vibration properties of the bonded resonators were compared to those fabricated directly on 3″ silicon substrates.

  2. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    Science.gov (United States)

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  3. Hydrophilicity/porous structure-tuned, SiO2/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes.

    Science.gov (United States)

    Lee, Jung-Ran; Won, Ji-Hye; Kim, Na-Young; Lee, Moo-Seok; Lee, Sang-Young

    2011-10-15

    Porous substrate-reinforced composite proton exchange membranes have drawn considerable attention due to their promising application to polymer electrolyte membrane fuel cells (PEMFCs). In the present study, we develop silica (SiO(2)) nanoparticles/polyetherimide (PEI) binders-coated polyimide (PI) nonwoven porous substrates (referred to as "S-PI substrates") for reinforced composite membranes. The properties of S-PI substrates, which crucially affect the performance of resulting reinforced composite membranes, are significantly improved by controlling the hygroscopic SiO(2) particle size. The 40 nm S-PI substrate (herein, 40 nm SiO(2) particles are employed) shows the stronger hydrophilicity and highly porous structure than the 530 nm S-PI substrate due to the larger specific surface area of 40 nm SiO(2) particles. Based on the comprehensive understanding of the S-PI substrates, the structures and performances of the S-PI substrates-reinforced composite membranes are elucidated. In comparison with the 530 nm S-PI substrate, the hydrophilicity/porous structure-tuned 40 nm S-PI substrate enables the impregnation of a large amount of a perfluorosulfonic acid ionomer (Nafion), which thus contributes to the improved proton conductivity of the reinforced Nafion composite membrane. Meanwhile, the reinforced Nafion composite membranes effectively mitigate the steep decline of proton conductivity with time at low humidity conditions, as compared to the pristine Nafion membrane. This intriguing finding is further discussed by considering the unusual features of the S-PI substrates and the state of water in the reinforced Nafion composite membranes. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Si and Mg pair-doped interlayers for improving performance of AlGaN/GaN heterostructure field effect transistors grown on Si substrate

    Science.gov (United States)

    Ni, Yi-Qiang; He, Zhi-Yuan; Yao, Yao; Yang, Fan; Zhou, De-Qiu; Zhou, Gui-Lin; Shen, Zhen; Zhong, Jian; Zheng, Yue; Zhang, Bai-Jun; Liu, Yang

    2015-05-01

    We report a novel structure of AlGaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair-doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio (˜ 109). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 51177175 and 61274039), the National Basic Research Project of China (Grant Nos. 2010CB923200 and 2011CB301903), the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the National High-tech R&D Program of China (Grant No. 2014AA032606), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).

  5. Memory characteristics and tunneling mechanism of Ag nanocrystal embedded HfAlOx films on Si83Ge17/Si substrate

    International Nuclear Information System (INIS)

    Qiu, X.Y.; Zhou, G.D.; Li, J.; Chen, Y.; Wang, X.H.; Dai, J.Y.

    2014-01-01

    A nano-floating gate memory capacitor consisting of a stack of 3 nm-thick HfAlO x tunneling layer, self-organized Ag nanocrystals (NCs), and a 6 nm-thick HfAlO x control layer, has been fabricated on compressively strained p-type Si 83 Ge 17 /Si(100) substrates by radio-frequency magnetron sputtering. The Ag-NCs with a size of 5–8 nm and a density of 5.7 × 10 12 /cm 2 are well dispersed in the amorphous HfAlO x matrix. Counterclockwise hysteresis capacitance–voltage curve with a memory window of ∼ 2 V, corresponding to a charge storage density of about 1.3 × 10 13 electrons/cm 2 , is observed in this memory capacitor. The accumulation capacitance of this memory capacitor has no obvious decrease during electrical stressing process within a period of 10 4 s, but the memory window gradually becomes narrower, and only 54% stored charges are retained in the Ag-NCs after 10 5 s stressing. Defect-enhanced Poole–Frenkel tunneling is found to be responsible for the degradation of memory properties. - Highlights: • Dispersed Ag nanocrystals act as memory nodes. • Realize a 2 V memory window • Illustrate the memory degradation process • Identify a defect-enhanced tunneling mechanism

  6. Liquid-Si Technology for High-Speed Circuits on Flexible Substrates

    NARCIS (Netherlands)

    Zhang, J.

    2015-01-01

    Recently, flexible, wearable and disposable electronics have attracted a lot of attention. Printing enables low-cost fabrication of circuits on flexible substrates. Printed organic and metal oxide thin-film transistors (TFTs) have been researched intensively due to the ease of solution-processing.

  7. Effect of Au/SiO2 substrate on the structural and optical properties of ...

    Indian Academy of Sciences (India)

    In order to compare the surface properties, crystalline quality, micromilling performance and luminescence, the characterization of a GaN film grown on a silicon wafer is presented as well. The different morphologies of the surface observed on the GaN films are compared on each substrate and the resulting microstructures ...

  8. Effect of the substrate orientation on the formation of He-plates in Si

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, M.; Barbot, J. F.; Declémy, A.; Beaufort, M. F. [Institut Pprime (UPR 3346), Department of Material Sciences, CNRS, Université de Poitiers, ENSMA, BP30179, 86962 Futuroscope Chasseneuil (France); Reboh, S. [CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble (France)

    2013-11-21

    The effect of the crystalline orientation on the implantation-induced strain/stress and on the formation of He-plates was studied by combining high-resolution X-ray scattering and transmission electron microscopy. The highest strains are obtained in (001)-oriented implanted substrates regardless of the fluence and of the channeling effects. The anisotropic properties of the silicon that generate an anisotropic elastic response of the substrate were taken into account to explain these different values of strain. Upon specific thermal annealing, it is shown that the formation of He-plates occurs only in the (001) habit planes regardless of the orientation of the substrates, non-tilted and tilted (001)-, (110)-, and (111)-substrates. Moreover, the distribution of He-plates in the (001) variants was found to be strongly dependent on the angle of the habit plane with the surface and on the intensity of the implantation-induced strain/stress. The implantation-induced stress thus favors the formation of He-plates in specific planes (of low angle with the surface) forming different defect configurations. The nucleation and growth of He-plates are thus discussed with regard to the implantation-induced stress.

  9. Current Status of the Quality of 4H-SiC Substrates and Epilayers for Power Device Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, M.; Wang, H.; Guo, Jianqiu; Yang, Yu; Raghothamachar, Balaji; Zhang, J.; Thomas, B.; Chung, G.; Sanchez, E. K.; Hansen, D.; Mueller, S. G.

    2016-01-01

    ABSTRACT

    Interfacial dislocations (IDs) and half-loop arrays (HLAs) present in the epilayers of 4H-SiC crystal are known to have a deleterious effect on device performance. Synchrotron X-ray Topography studies carried out on n-type 4H-SiC offcut wafers before and after epitaxial growth show that in many cases BPD segments in the substrate are responsible for creating IDs and HLAs during CVD growth. This paper reviews the behaviors of BPDs in the substrate during the epitaxial growth in different cases: (1) screw-oriented BPD segments intersecting the surface replicate directly through the interface during the epitaxial growth and take part in stress relaxation process by creating IDs and HLAs (Matthews-Blakeslee model [1] ); (2) non-screw oriented BPD half loop intersecting the surface glides towards and replicates through the interface, while the intersection points convert to threading edge dislocations (TEDs) and pin the half loop, leaving straight screw segments in the epilayer and then create IDs and HLAs; (3) edge oriented short BPD segments well below the surface get dragged towards the interface during epitaxial growth, leaving two long screw segments in their wake, some of which replicate through the interface and create IDs and HLAs. The driving force for the BPDs to glide toward the interface is thermal stress and driving force for the relaxation process to occur is the lattice parameter difference at growth temperature which results from the doping concentration difference between the substrate and epilayer.

  10. Defect formation and recrystallization in the silicon on sapphire films under Si{sup +} irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shemukhin, A.A., E-mail: shemuhin@gmail.com [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Nazarov, A.V.; Balakshin, Yu. V. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Chernysh, V.S. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-07-01

    Silicon-on-sapphire (SOS) is one of the most promising silicon-on-insulator (SOI) technologies. SOS structures are widely used in microelectronics, but to meet modern requirements the silicon layer should be 100 nm thick or less. The problem is in amount of damage in the interface layer, which decreases the quality of the produced devices. In order to improve the crystalline structure quality SOS samples with 300 nm silicon layers were implanted with Si{sup +} ions with energies in the range from 180 up to 230 keV with fluences in the range from 10{sup 14} up to 5 × 10{sup 15} cm{sup −2} at 0 °C. The crystalline structure of the samples was studied with RBS and the interface layer was studied with SIMS after subsequent annealing. It has been found out that to obtain silicon films with high lattice quality it is necessary to damage the sapphire lattice near the silicon–sapphire interface. Complete destruction of the strongly defected area and subsequent recrystallization depends on the energy of implanted ions and the substrate temperature. No significant mixing in the interface layer was observed with the SIMS.

  11. Direct microwave annealing of SiC substrate for rapid synthesis of quality epitaxial graphene

    Czech Academy of Sciences Publication Activity Database

    Cichoň, Stanislav; Macháč, P.; Fekete, Ladislav; Lapčák, L.

    2016-01-01

    Roč. 98, Mar (2016), s. 441-448 ISSN 0008-6223 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : graphene * SiC * microwave Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.337, year: 2016

  12. Raman and morphology visualization in epitaxial graphene on 4H-SiC by Nitrogen or Argon ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jin-Hua, E-mail: zhaojinhuazjh@gmail.com [School of Science, Shandong Jianzhu University, Jinan 250101 (China); Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang [School of Science, Shandong Jianzhu University, Jinan 250101 (China); Wang, Xue-Lin [School of Physics, Key Laboratory of Particle Physics and Particle Irradiation, Ministry of Education, and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2015-12-15

    Graphene is a one-atom-thick planar sheet of carbon atoms that are densely packed into a honeycomb crystal lattice and is attracting tremendous interest since being discovered in 2004. Epitaxial growth of graphene on silicon carbide (SiC) is an effective method to obtain high quality layers. In this work, the effects of irradiation on epitaxial SiC/graphene were studied. The samples were irradiated with Nitrogen and Argon ions at an energy of 200 keV and different fluence with 4 × 10{sup 12} ions/cm{sup 2} to 1 × 10{sup 13} ions/cm{sup 2}. The results of Raman measurements indicate that ion beam irradiation causes defects and disorder in the graphene crystal structure, and the level of defects increases with increasing ion fluence. Surface morphology images are obtained by atomic force microscope (AFM). This work is valuable for the potential application of epitaxial graphene on SiC in the field of optoelectronics devices.

  13. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    International Nuclear Information System (INIS)

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ion fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 times 10 14 cm -2 ) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs

  14. Temperature Dependence of Disorder Accumulation and Amorphization in Au-Ion Irradiated 6H-SiC

    International Nuclear Information System (INIS)

    Jiang, Weilin; Zhang, Yanwen; Weber, William J.

    2004-01-01

    Disorder accumulation and amorphization in 6H-SiC single crystals irradiated with 2.0 MeV Au 2+ ions at temperatures ranging from 150 to 550 K have been investigated systematically based on 0.94 MeV D + channeling analyses along the axis. Physical models have been applied to fit the experimental data and to interpret the temperature dependence of the disordering processes. Results show that defect-stimulated amorphization in Au 2+ -irradiated 6H-SiC dominates the disordering processes at temperatures below 500 K, while formation of clusters becomes predominant above 500 K. Two distinctive dynamic recovery stages are observed over the temperature range from 150 to 550 K, resulting from the coupled processes of close-pair recombination and interstitial migration and annihilation on both sublattices. These two stages overlap very well with the previously observed thermal recovery stages. Based on the model fits, the critical temperature for amorphization in 6H-SiC under the Au 2+ ion irradiation conditions corresponds to 501 ± 10 K

  15. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE

    Science.gov (United States)

    Jantawongrit, P.; Sanorpim, S.; Yaguchi, H.; Orihara, M.; Limsuwan, P.

    2015-08-01

    InN film was grown on 4H-SiC (0001) substrate by RF plasma-assisted molecular beam epitaxy (RF-MBE). Prior to the growth of InN film, an InN buffer layer with a thickness of ∼5.5 nm was grown on the substrate. Surface morphology, microstructure and structural quality of InN film were investigated. Micro-structural defects, such as stacking faults and anti-phase domain in InN film were carefully investigated using transmission electron microscopy (TEM). The results show that a high density of line contrasts, parallel to the growth direction (c-axis), was clearly observed in the grown InN film. Dark field TEM images recorded with diffraction vectors g=11\\bar{2}0 and g = 0002 revealed that such line contrasts evolved from a coalescence of the adjacent misoriented islands during the initial stage of the InN nucleation on the substrate surface. This InN nucleation also led to a generation of anti-phase domains. Project supported by the Thailand Center of Excellence in Physics (ThEP) and the King Mongkut's University of Technology Thonburi under The National Research University Project. One of the authors (S. Sanorpim) was supported by the National Research Council of Thailand (NRCT) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture.

  16. Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate

    Science.gov (United States)

    Jarzembski, Amun; Park, Keunhan

    2017-04-01

    Recent experimental studies have measured the infrared (IR) spectrum of tip-scattered near-field thermal radiation for a SiC substrate and observed up to a 50cm-1 redshift of the surface phonon polariton (SPhP) resonance peak [1,2]. However, the observed spectral redshift cannot be explained by the conventional near-field thermal radiation model based on the point dipole approximation. In the present work, a heated tip is modeled as randomly fluctuating point charges (or fluctuating finite dipoles) aligned along the primary axis of a prolate spheroid, and quasistatic tip-substrate charge interactions are considered to formulate the effective polarizability and self-interaction Green's function. The finite dipole model (FDM), combined with fluctuational electrodynamics, allows the computation of tip-plane thermal radiation in the extreme near-field (i.e., H / R ≲ 1 , where H is the tip-substrate gap distance and R is the tip radius), which cannot be calculated with the point dipole approximation. The FDM provides the underlying physics on the spectral redshift of tip-scattered near-field thermal radiation as observed in experiments. In addition, the SPhP peak in the near-field thermal radiation spectrum may split into two peaks as the gap distance decreases into the extreme near-field regime. This observation suggests that scattering-type spectroscopic measurements may not convey the full spectral features of tip-plane extreme near-field thermal radiation.

  17. Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure

    Science.gov (United States)

    Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector

    2015-06-01

    Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up

  18. Irradiation defects in the A-15 compounds V3Si and Nb3Ge: effects on superconducting and transport properties

    International Nuclear Information System (INIS)

    Rullier-Albenque, F.

    1984-11-01

    In the first part the mechanisms of atomic displacements under electron irradiation in these diatomic ordered solids are studied. In the case of superconducting alloys, simultaneous measurements of electrical resistivity at 20 K and critical temperature allow to distinguish the influence of point defects created in each sub-lattice and antisite defects. The threshold energies have been determined. In the case of V 3 Si, Frenkel pairs have been characterized by their specific resistivities and the decrease of Tsub(c) by vanadium vacancies. The Tsub(c) results obtained on V 3 Si also reveal the existence of a threshold electron energy to produce antisite defects. The second part is a comparative study of irradiation effects in Nb 3 Ge with very different kinds of projectiles: 2.5 MeV electrons, fast neutrons or 100 MeV heavy ions (uranium fission fragments). For these three types of irradiation, resistivity and critical temperature damage can be described in terms of point defects: Frenkel pairs and antisite defects. In the third part we have studied the influence of 2.5 MeV electron or fission fragment-irradiation on the resistivity versus temperature curves of Nb 3 Ge. For both projectiles, negative temperature coefficients of resistivity drho)/dT, were measured and correlated with resistivity at 280 K and 25 K. These anomalous transport properties are related to an electron localization process assisted by electron-phonon and electron-electron interaction [fr

  19. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Pastuović, Željko, E-mail: zkp@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Capan, Ivana [Material Physics Division, Institute Rudjer Boskovic, PO Box 180, 10000 Zagreb (Croatia); Cohen, David D. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Forneris, Jacopo [Physics Department and NIS Excellence Centre, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Iwamoto, Naoya; Ohshima, Takeshi [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Siegele, Rainer [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Hoshino, Norihiro; Tsuchida, Hidekazu [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan)

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 10{sup 14} cm{sup −3}) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He{sup 2+} ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z{sub 1/2} center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1–6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 10{sup 11} cm{sup −2}.

  20. Effects of 600 MeV proton irradiation on nucleation and growth of precipitates and helium bubbles in a high-purity Al-Mg-Si alloy

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Victoria, M.

    1986-01-01

    Solution treated specimens of a high-purity Al-0.75%Mg-0.42%Si alloy were irradiated with 600 MeV protons at 150 and 240°C to a dose level of 0.47 and 0.55 dpa, respectively. Mg2Si-type precipitates formed during irradiation at 150 and 240°C; at 240°C, however, a large number of precipitates seem...

  1. Increase in the fraction of necrotic, not apoptotic, cells in SiHa xenograft tumours shortly after irradiation

    International Nuclear Information System (INIS)

    Olive, P.L.; Vikse, C.M.; Vanderbyl, S.

    1999-01-01

    Background and purpose: Approximately 18% of the cells recovered by rapid mechanical dissociation of SiHa xenograft tumours contain large numbers of DNA strand breaks. The number of damaged cells increases to 30-40% 4-6 h after exposure to 5 or 15 Gy, returning to normal levels by 12 h. This observation is reminiscent of the rate of production of apoptotic cells in other murine and human xenograft tumours. The nature of this damage, rate of development and relation to cell proliferation rate were therefore examined in detail.Materials and methods: SiHa human cervical carcinoma cells were grown as xenograft tumours in SCID mice. Single-cell suspensions were prepared as a function of time after irradiation of the mouse and examined for DNA damage using the alkaline comet assay. Cell cycle progression was measured by flow cytometry evaluation of anti-bromodeoxyuridine-labelled tumour cells.Results: Significant numbers of apoptotic cells could not be detected in irradiated SiHa tumours using an end-labelling assay, electron microscopy, or histological examination of thin sections. Instead, xenograft cells exhibiting extensive DNA damage in the comet assay were predominantly necrotic cells. The increase in the proportion of heavily damaged cells 4-6 h after irradiation could be the result of an interplay between several factors including loss of viable cells and change in production or loss of necrotic cells. Analysis of the progression of BrdUrd-labelled cells confirmed that while 35% of cells from untreated SiHa tumours had divided and entered G 1 phase by 6 h after BrdUrd injection, none of the labelled cells from tumours exposed to 5 or 15 Gy had progressed to G 1 .Conclusions: The increase in the percentage of SiHa tumour cells with extensive DNA damage 4-6 h after irradiation is attributable to necrosis, not apoptosis. Cell cycle progression and cell loss are likely to influence the kinetics of appearance of both apoptotic and necrotic cells in irradiated tumours

  2. Si Substrate-Based Metamaterials for Ultrabroadband Perfect Absorption in Visible Regime

    Directory of Open Access Journals (Sweden)

    Qi Han

    2014-01-01

    Full Text Available We report the broadband efficient light absorbing property of a structure of quadrangular frustum pyramid array in visible regime. The structure can absorb light efficiently with an average absorptivity of 0.98 over the whole visible waveband. In addition, it is found that this kind of super light absorbing can maintain an average of 0.9 for a wide incident angle range. The perfect absorbing property of the metamaterial-based nanoring array is attributed to the effect of the Fabry-Perot resonance. The structure is possible to be used as a type of Si photonics devices in future photonic circuits.

  3. Three-fold diffraction symmetry in epitaxial graphene and the SiC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, D A; Zhou, S Y; El Gabaly, F; Schmid, A K; McCarty, K F; Lanzara, A

    2009-12-10

    The crystallographic symmetries and spatial distribution of stacking domains in graphene films on 6H-SiC(0001) have been studied by low energy electron diffraction (LEED) and dark field imaging in a low energy electron microscope (LEEM). We find that the graphene diffraction spots from 2 and 3 atomic layers of graphene have 3-fold symmetry consistent with AB (Bernal or rhombohedral) stacking of the layers. On the contrary, graphene diffraction spots from the buffer layer and monolayer graphene have apparent 6-fold symmetry, although the 3-fold nature of the satellite spots indicates a more complex periodicity in the graphene sheets.

  4. Freezing a water droplet on an aligned Si nanorod array substrate

    Science.gov (United States)

    Fan, J.-G.; Zhao, Y.-P.

    2008-04-01

    When a water droplet is dried on a vertically aligned Si nanorod array surface, the nanorods are bundled together. To understand how bundles are formed, a water droplet is frozen rapidly on a Si nanorod array surface observed under a cryo-SEM (scanning electron microscope). The nanorods in the precursor film form similar bundles as those dried in air. But the nanorods under the apparent frozen water droplet are only slightly deformed. We propose that the bundling of nanorods is caused by non-uniform water-nanorod interaction, which could happen either during the water spreading or drying process. Therefore, controlling the liquid-nanostructure interaction could minimize the bundling. In addition, the rapid freezing process does not preserve the water inside the nanochannels, and almost all the water forms ice on top of the nanorod surface, either as a planar interface or as particles, depending on the locations. The separated ice-nanorod interface will have potential applications in chemical separation and crystal growth.

  5. Substrate Temperature Effect on the Microstructure and Properties of (Si, Al/a-C:H Films Prepared through Magnetron Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Liu

    2015-01-01

    Full Text Available Hydrogenated amorphous carbon films codoped with Si and Al ((Si, Al/a-C:H were deposited through radio frequency (RF, 13.56 MHz magnetron sputtering on Si (100 substrate at different temperatures. The composition and structure of the films were investigated by means of X-ray photoelectron spectroscopy (XPS, TEM, and Raman spectra, respectively. The substrate temperature effect on microstructure and mechanical and tribological properties of the films was studied. A structural transition of the films from nanoparticle containing to fullerene-like was observed. Correspondingly, the mechanical properties of the films also had obvious transition. The tribological results in ambient air showed that high substrate temperature (>573 K was disadvantage of wear resistance of the films albeit in favor of formation of ordering carbon clusters. Particularly, the film deposited at temperature of 423 K had an ultralow friction coefficient of about 0.01 and high wear resistance.

  6. Synthesis of silicon oxide microropes on the copper substrate with SiO2 interlayer

    Science.gov (United States)

    Baranov, E.; Khmel, S.; Zamchiy, A.; Shatskiy, E.

    2017-11-01

    Nanostructuring of the surface is a promising technology for the processes of boiling. In this paper, we synthesized array of “microropes” from silicon oxide nanowires on the copper substrate with a silicon oxide intermediate layer by gas-jet electron beam plasma CVD method. The morphology for the synthesis time of 2 minutes 30 seconds and 5 minutes was obtained. The water droplet on the silicon oxide nanowires shows the measured contact angles 14° and 10° for deposition times of 5 min and 2 min 30 sec, respectively.

  7. Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lillo, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rooyen, Isabella Van [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number of nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ~23 μm along a radial direction through the 35 μm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ~24 μm in the SiC layer. Also, Pd-rich, nano-precipitates (~10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all

  8. Irradiation effects on SiAlO(N) rare earth aluminosilicate glasses in the framework of actinides transmutation

    International Nuclear Information System (INIS)

    Dauce, R.

    2003-11-01

    Actinides transmutation would permit to decrease the amount of waste to be dispose in deep geological site. However, a surrounding matrix is generally necessary after the separation of the radionuclides. Reference ceramics irradiations in the context of transmutation have been widely investigated, but no study have been performed on amorphous materials in the same conditions. The extensive study of glass evolution under heavy-ions bombardment can however permit to get insight damaging mechanisms during irradiation. The glassy compositions, which are SiAlO(N) type, were chosen for their refractoriness, their high chemical durability and excellent mechanical properties. Five compositions, in the Y-Mg-Si-Al-O(-N), Nd-Mg-Si-Al-O(-N) and La-Y-Al-O-N systems, were synthesized and characterized. A link is find between the structure of glasses and their deformation mechanism. The glasses were irradiated at GANIL (Caen), with several MeV energy heavy-ions. Their hardness decrease after bombardment, in close link with the electronic stopping power, but seems to be independent of the amount and nature of the network modifiers. This hardness decrease is more pronounced in the case of nitrogen containing glasses, and is due to a change in the glass deformation mechanism under indentation. The pristine glasses exhibit a 'normal' behavior, but the irradiated glasses are strained mainly by a densification mechanism. This change in the indentation behavior is probably due to several structural modifications. Indeed, UV-visible absorption spectroscopy shows the presence of a large amount of point defects after bombardment. Furthermore, particularly in the case of nitrogen containing glasses, the local environment of aluminum and silicon are largely disturbed, as shown by NMR and Raman spectroscopies. (author)

  9. Template preparation of Pt nanowire array electrode on Ti/Si substrate for methanol electro-oxidation

    Science.gov (United States)

    Zhao, Guang-Yu; Xu, Cai-Ling; Guo, Dao-Jun; Li, Hua; Li, Hu-Lin

    2007-01-01

    Platinum (Pt) nanowire array electrode is obtained by dc electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate. Transmission electron microscope (TEM) examination shows all the nanowires have uniform diameter of about 30 nm. The brush shapes Pt nanowire array electrode can be seen clearly by field emission scanning electron microscope (FESEM). Pt nanowire array electrode gives the X-ray diffraction (XRD) pattern of face-centered cubic (fcc) crystal structure. The electro-oxidation of methanol on this electrode is investigated at room temperature by cyclic voltammetry. The results demonstrated that the Pt nanowire array electrode will have good potential applications in portable power sources.

  10. InAs/GaSb core-shell nanowires grown on Si substrates by metal-organic chemical vapor deposition

    Science.gov (United States)

    Ji, Xianghai; Yang, Xiaoguang; Du, Wenna; Pan, Huayong; Luo, Shuai; Ji, Haiming; Xu, Hongqi; Yang, Tao

    2017-06-01

    We report the growth of InAs/GaSb core-shell heterostructure nanowires with smooth sidewalls on Si substrates using metal-organic chemical vapor deposition (MOCVD) with no assistance from foreign catalysts. Sb adatoms were observed to strongly influence the morphology of the GaSb shell. In particular, Ga droplets form on the nanowire tips when a relatively low TMSb flow rate is used, whereas the droplets are missing and the radial growth of the GaSb is enhanced due to a reduction in the diffusion length of the Ga adatoms when the TMSb flow rate is increased. Moreover, transmission electron microscopy measurements revealed that the GaSb shell coherently grew on the InAs core without any misfit dislocations.

  11. Operational improvement of AlGaN/GaN HEMT on SiC substrate with the amended depletion region

    Science.gov (United States)

    Ghaffari, Majid; Orouji, Ali A.

    2015-11-01

    In this paper, a high performance AlGaN/GaN High Electron Mobility Transistor (HEMT) on SiC substrates is presented to improve the electrical operation with the amended depletion region using a multiple recessed gate (MRG-HEMT). The basic idea is to change the gate depletion region and a better distribution of the electric field in the channel and improve the device breakdown voltage. The proposed gate consists of lower and upper gate to control the channel thickness. Also, the charge of the depletion region will change due to the optimized gate. In addition, a metal between the gate and drain including the horizontal and vertical parts is used to better control the thickness of the channel. The breakdown voltage, maximum output power density, cut-off frequency, maximum oscillation frequency, minimum noise figure, maximum available gain (MAG), and maximum stable gain (MSG) are some parameters for designers which are considered and are improved in this paper.

  12. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  13. Resistive switching characteristics of isolated core-shell iron oxide/germanium nanocrystals epitaxially grown on Si substrates

    Science.gov (United States)

    Matsui, Hideki; Ishibe, Takafumi; Terada, Tsukasa; Sakane, Shunya; Watanabe, Kentaro; Takeuchi, Shotaro; Sakai, Akira; Kimura, Shigeru; Nakamura, Yoshiaki

    2018-01-01

    The core-shell nanostructure of epitaxial Fe3O4 nanocrystals over Ge nuclei showed a large Off/On resistance ratio (˜100), which was the largest value in Fe3O4 materials. The nanocrystals with an average diameter of ˜20 nm were grown epitaxially on Si substrates, whose areal density was high (˜1011 cm-2), and each nanocrystal was isolated from each other. The electrical measurement of the individual isolated nanocrystals by conductive-atomic force microscopy showed the bipolar-type resistive switching in local voltage-current curves, depending on the Fe-O composition. It was also revealed that activation sites for resistive switching were the Fe3O4/Ge interfaces, where electric-field-induced compositional variation caused large resistive changes. This demonstrated the possibility of developing resistance random access memory devices based on ubiquitous materials.

  14. Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, Elchin M., E-mail: elchin.h@yahoo.com [Department of Nanotechnology and Radiation Material Science, National Nuclear Research Center, Inshaatchilar pr. 4, AZ 1073 Baku (Azerbaijan); Institute of Radiation Problems of Azerbaijan National Academy of Sciences, B.Vahabzade 9, AZ 1143 Baku (Azerbaijan)

    2017-04-01

    Nanocrystalline 3C-SiC particles irradiated by neutron flux during 20 h in TRIGA Mark II light water pool type research reactor. Silicon carbide nanoparticles were analyzed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) devices before and after neutron irradiation. The agglomeration of nanoparticles was studied comparatively before and after neutron irradiation. After neutron irradiation the amorphous layer surrounding the nanoparticles was analyzed in TEM device. Neutron irradiation defects in the 3C-SiC nanoparticles and other effects investigated by TEM device. The effect of irradiation on the crystal structure of the nanomaterial was studied by selected area electron diffraction (SAED) and electron diffraction patterns (EDP) analysis.

  15. Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye

    Directory of Open Access Journals (Sweden)

    R. M. Mohamed

    2012-01-01

    Full Text Available CeO2-SiO2 nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2 adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface areas, relatively small pore size diameters, and large pore volume. The X-ray diffraction results indicated that the as-synthesized nanoparticles exhibited cubic CeO2 without impurities and amorphous silica. The transmission electron microscopy (TEM images revealed that the particle size of CeO2-SiO2 nanoparticles, which were prepared by microwave method for 30 min irradiation times, was around 8 nm. The photocatalytic activities were evaluated by the decomposition of methylene blue dye under UV light irradiations. The results showed that the irradiation under the microwave produced CeO2-SiO2 nanoparticles, which have the best crystallinity under a shorter irradiation time. This indicates that the introduction of the microwave really can save energy and time with faster kinetics of crystallization. The sample prepared by 30 min microwave irradiation time exhibited the highest photocatalytic activity. The photocatalytic activity of CeO2-SiO2 nanoparticles, which were prepared by 30 min irradiation times was found to have better performance than commercial reference P25.

  16. Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD

    International Nuclear Information System (INIS)

    Arslan, Engin; Ozbay, Ekmel; Ozturk, Mustafa K; Ozcelik, Suleyman; Teke, Ali

    2008-01-01

    We report the growth of GaN films on the Si(1 1 1) substrate by metalorganic chemical vapour phase deposition (MOCVD). Different buffer layers were used to investigate their effects on the structural and optical properties of GaN layers. A series of GaN layers were grown on Si(1 1 1) with different buffer layers and buffer thicknesses and were characterized by Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction (XRD) and photoluminescence (PL) measurements. We first discuss the optimization of the LT-AlN/HT-AlN/Si(1 1 1) templates and then the optimization of the graded AlGaN intermediate layers. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.6 μm. The XRD and PL measurements results confirmed that a wurtzite GaN was successfully grown. The resulting GaN film surfaces were flat, mirror-like and crack-free. The mosaic structure in the GaN layers was investigated. With a combination of Williamson-Hall measurements and the fitting of twist angles, it was found that the buffer thickness determines the lateral coherence length, vertical coherence length, as well as the tilt and twist of the mosaic blocks in GaN films. The PL spectra at 8 K show that a strong band edge photoluminescence of GaN on Si (1 1 1) emits light at an energy of 3.449 eV with a full width at half maximum (FWHM) of approximately 16 meV. At room temperature, the peak position and FWHM of this emission become 3.390 eV and 58 meV, respectively. The origin of this peak was attributed to the neutral donor bound exciton. It was found that the optimized total thickness of the AlN and graded AlGaN layers played a very important role in the improvement of quality and in turn reduced the cracks during the growth of GaN/Si(1 1 1) epitaxial layers

  17. Fabrication and characterization of AlN metal-insulator-semiconductor grown Si substrate

    Science.gov (United States)

    Mahyuddin, A.; Azrina, A.; Mohd Yusoff, M. Z.; Hassan, Z.

    2017-11-01

    An experimental investigation was conducted to explore the effect of inserting a single AlGaN interlayer between AlN epilayer and GaN/AlN heterostructures on Si (111) grown by molecular beam epitaxy (MBE). It is confirmed from the scanning electron microscopy (SEM) that the AlGaN interlayer has a remarkable effect on reducing the tensile stress and dislocation density in AlN top layer. Capacitance-voltage (C-V) measurements were conducted to study the electrical properties of AlN/GaN heterostructures. While deriving the findings through the calculation it is suggested that the AlGaN interlayer can significantly reduce the value of effective oxide charge density and total effective number of charges per unit area which are 1.37 × 10-6C/cm2 and 8.55 × 1012cm-2, respectively.

  18. IV-VI mid-infrared VECSEL on Si-substrate

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Rodriguez, R.; Zogg, H.; Ishida, A.

    2012-03-01

    Optically pumped VECSEL (vertical external cavity surface emitting lasers) based on IV-VI semiconductors grown on Si cover the entire wavelength range between 3.0 and 10 μm. Thanks to their simple structure and large wavelength coverage they are an interesting alternative laser technology to access the mid-infrared wavelength region. The active layers consist either of homogeneous "bulk" layers, double heterostructures or quantum well structures of the PbSe, PbTe or PbS material system. Maximum operation temperatures of 325 K are achieved with output powers above 200 mWp. Further, continuously tunable VECSEL are presented, emitting between 3.2 and 5.4 μm. The single emission mode is continuously tunable over 50-100 nm around the center wavelength, yielding an output power > 10 mWp. The axial symmetric emission beam has a half divergence angle of < 3.3°.

  19. Effect of AlSb buffer layer thickness on heteroepitaxial growth of InSb films on a Si(001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Mori, M. [Nano and Functional Material Sciences, Graduate School of Science and Engineering, University of TOYAMA, Gofuku 3190, Toyama 930-8555 (Japan)], E-mail: morimasa@eng.u-toyama.ac.jp; Murata, K.; Fujimoto, N.; Tatsuyama, C.; Tambo, T. [Nano and Functional Material Sciences, Graduate School of Science and Engineering, University of TOYAMA, Gofuku 3190, Toyama 930-8555 (Japan)

    2007-07-31

    Aluminum antimonide (AlSb) layers with various thickness ranged from about 8 to 250 nm were grown at 520 deg. C as the buffer layer for the heteroepitaxial growth of InSb films on Si(001) substrates. InSb films were grown at 400 deg. C on the AlSb/Si(001), and were characterized by X-ray diffraction (XRD), atomic force microscope, as a function of the thickness of the AlSb layer. The XRD patterns of the InSb films grown on the AlSb layers show that even if the AlSb buffer layer, whose surface consists of many islands, is as thin as 8 nm, it is effective for the heteroepitaxial growth of InSb film on a Si(001) substrate, and the AlSb layer of about 40 nm is thick enough to grow heteroepitaxial InSb films on the Si(001) substrate. The results of the {phi} scan patterns of the films show that InSb films on a Si(001) substrate with AlSb buffer layer were heteroepitaxially grown without any rotation in the growth plane.

  20. Effect of AlSb buffer layer thickness on heteroepitaxial growth of InSb films on a Si(001) substrate

    International Nuclear Information System (INIS)

    Mori, M.; Murata, K.; Fujimoto, N.; Tatsuyama, C.; Tambo, T.

    2007-01-01

    Aluminum antimonide (AlSb) layers with various thickness ranged from about 8 to 250 nm were grown at 520 deg. C as the buffer layer for the heteroepitaxial growth of InSb films on Si(001) substrates. InSb films were grown at 400 deg. C on the AlSb/Si(001), and were characterized by X-ray diffraction (XRD), atomic force microscope, as a function of the thickness of the AlSb layer. The XRD patterns of the InSb films grown on the AlSb layers show that even if the AlSb buffer layer, whose surface consists of many islands, is as thin as 8 nm, it is effective for the heteroepitaxial growth of InSb film on a Si(001) substrate, and the AlSb layer of about 40 nm is thick enough to grow heteroepitaxial InSb films on the Si(001) substrate. The results of the φ scan patterns of the films show that InSb films on a Si(001) substrate with AlSb buffer layer were heteroepitaxially grown without any rotation in the growth plane

  1. Flat-Top and Stacking-Fault-Free GaAs-Related Nanopillars Grown on Si Substrates

    Directory of Open Access Journals (Sweden)

    Kouta Tateno

    2012-01-01

    Full Text Available The VLS (vapor-liquid-solid method is one of the promising techniques for growing vertical III-V compound semiconductor nanowires on Si for application to optoelectronic circuits. Heterostructures grown in the axial direction by the VLS method and in the radial direction by the general layer-by-layer growth method make it possible to fabricate complicated and functional three-dimensional structures in a bottom-up manner. We can grow some vertical heterostructure nanopillars with flat tops on Si(111 substrates, and we have obtained core-multishell Ga(InP/GaAs/GaP nanowires with flat tops and their air-gap structures by using selective wet etching. Simulations indicate that a high- factor of over 2000 can be achieved for this air-gap structure. From the GaAs growth experiments, we found that zincblende GaAs without any stacking faults can be grown after the GaP nanowire growth. Pillars containing a quantum dot and without stacking faults can be grown by using this method. We can also obtain flat-top pillars without removing the Au catalysts when using small Au particles.

  2. Band diagram determination of MOS structures with different gate materials on 3C-SiC substrate

    Science.gov (United States)

    Piskorski, K.; Przewlocki, H.; Esteve, R.; Bakowski, M.

    2012-03-01

    MOS capacitors were fabricated on 3C-SiC n-type substrate (001) with a 10-μm N-type epitaxial layer. An SiO2 layer of the thickness tOX ≈55 nm was deposited by PECVD. Circular Al, Ni, and Au gate contacts 0.7 mm in diameter were formed by ion beam sputtering and lift-off. Energy band diagrams of the MOS capacitors were determined using the photoelectric, electric, and optical measurement methods. Optical method (ellipsometry) was used to determine the gate and dielectric layer thicknesses and their optical indices: the refraction n and the extinction k coefficients. Electrical method of C = f(VG) characteristic measurements allowed to determine the doping density ND and the flat band voltage VFB in the semiconductor. Most of the parameters which were necessary for the construction of the band diagrams and for determination of the basic physical properties of the structures (e.g. the effective contact potential difference ϕMS) were measured by several photoelectric methods and calculated using the measurement data. As a result, complete energy band diagrams have been determined for MOS capacitors with three different gate materials and they are demonstrated for two different gate voltages VG: for the flat-band in the semiconductor (VG = VFB) and for the flat-band in the dielectric (VG = VG0).

  3. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  4. Tungsten/molybdenum thin films for application as interdigital transducers on high temperature stable piezoelectric substrates La3Ga5SiO14 and Ca3TaGa3Si2O14

    International Nuclear Information System (INIS)

    Rane, Gayatri K.; Menzel, Siegfried; Seifert, Marietta; Gemming, Thomas; Eckert, Jürgen

    2015-01-01

    Highlights: • Refractory metals as IDT material for surface acoustic wave based high temperature sensors. • Multilayer stacking in order to obtain low electrical resistivity and for tuning residual stress. • New piezoelectric substrate for high temperature applications. • High thermal stability with improved interfacial structure of multilayer films. - Abstract: Sputter-deposited single, bi- and multilayers of W and Mo on Si substrate and high temperature stable piezoelectric substrates La 3 Ga 5 SiO 14 (LGS) and Ca 3 TaGa 3 Si 2 O 14 (CTGS) have been studied as electrode material for high temperature applications of surface acoustic wave (SAW) devices up to 800 °C. We show for the first time that the film resistivity lowers with decreasing the individual layer thickness of W in the W/Mo multilayer stack. This has been attributed to the low electron mean free path of W of about ∼4 nm as well as low electron scattering of the electrons at the W–Mo interface as a result of the formation of coherent interfaces. The stability of the films on Si and CTGS has been demonstrated up to 800 °C while the films on the LGS substrate fail already at 600 °C due to the inherent instability of the LGS substrate under vacuum annealing.

  5. Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate

    International Nuclear Information System (INIS)

    Hong, L.; Rusli; Wang, X.C.; Zheng, H.Y.; Wang, H.; Yu, H.Y.

    2014-01-01

    In this paper, we report the fabrication of a large area uniformly distributed periodic nano-ripple structure on silicon substrate through the proper scanning of a line-shaped femtosecond laser beam. The fabricated nano-ripple structure has a periodicity of ∼600 nm and a ripple depth of ∼300 nm. The modulation depth is much deeper than the one previously reported. The developed structure is demonstrated to be able to substantially reduce light reflection due to the effective optical coupling between the incident sunlight with the nano-ripple structure and exhibit an absorption enhancement of ∼41% compared with planar silicon wafer. The physics underlying the formation of the nano-ripple structure is also discussed

  6. Luminescence properties of ZnO layers grown on Si-on-insulator substrates

    International Nuclear Information System (INIS)

    Kumar, Bhupendra; Gong, Hao; Vicknesh, S.; Chua, S. J.; Tripathy, S.

    2006-01-01

    The authors report on the photoluminescence properties of polycrystalline ZnO thin films grown on compliant silicon-on-insulator (SOI) substrates by radio frequency magnetron sputtering. The ZnO thin films on SOI were characterized by micro-Raman and photoluminescence (PL) spectroscopy. The observation of E 2 high optical phonon mode near 438 cm -1 in the Raman spectra of the ZnO samples represents the wurtzite crystal structure. Apart from the near-band-edge free exciton (FX) transition around 3.35 eV at 77 K, the PL spectra of such ZnO films also showed a strong defect-induced violet emission peak in the range of 3.05-3.09 eV. Realization of such ZnO layers on SOI would be useful for heterointegration with SOI-based microelectronics and microelectromechanical systems

  7. Characterization of nanostructure ferrite material on gallium nitride on SiC substrate for millimeter wave integrated circuit

    Science.gov (United States)

    O'Keefe, Brian; Liang, Tinghao; Afsar, Mohammad N.; Koomson, Valencia J.

    2017-05-01

    In this paper, for the first time, the characterization of spin-casted thick Barium nano-hexaferrite film on GaN-on-SiC substrate over a broad frequency range of 30-110 GHz is presented. Real and imaginary parts of both permittivity and permeability of the ferrite/polymer film are computed from transmittance data obtained by using a free space quasi-optical millimeter wave spectrometer. The spin-casted composite film shows strong resonance in the Q band, and mixing the powder with polymer slightly shifts the resonance frequency lower compared to pure powder. The high temperature compatibility of GaN substrate enables us to run burn-out tests at temperatures up to 900°C. Significant shortening phenomenon of resonance linewidth after heat treatment was found. Linewidth is reduced from 2.8 kOe to 1.7 kOe. Experiment results show that the aforementioned film is a good candidate in applications of non-reciprocal ferrite devices like isolators, phase shifters, and circulators.

  8. Growth and characterization of semi-polar (11-22) GaN on patterned (113) Si substrates

    International Nuclear Information System (INIS)

    Bai, J; Yu, X; Gong, Y; Hou, Y N; Zhang, Y; Wang, T

    2015-01-01

    Patterned (113) Si substrates have been fabricated for the growth of (11-22) semi-polar GaN, which completely eliminates one of the great issues in the growth of semi-polar GaN on silicon substrates, ‘Ga melting-back’. Furthermore, unlike any other mask patterning approaches which normally lead to parallel grooves along a particular orientation, our approach is to form periodic square window patterns. As a result, crack-free semi-polar (11-22) GaN with a significant improvement in crystal quality has been achieved, in particular, basal stacking faults (BSFs) have been significantly reduced. The mechanism for the defect suppression has been investigated based on detailed transmission electron microscopy measurements. It has been found that the BSFs can be impeded effectively at an early growth stage due to the priority growth along the 〈0001〉 direction. The additional 〈1-100〉 lateral growth above the masks results in a further reduction in dislocation density. The significant reduction in BSFs has been confirmed by low temperature photoluminescence measurements. (paper)

  9. Characterization of nanostructure ferrite material on gallium nitride on SiC substrate for millimeter wave integrated circuit

    Directory of Open Access Journals (Sweden)

    Brian O’Keefe

    2017-05-01

    Full Text Available In this paper, for the first time, the characterization of spin-casted thick Barium nano-hexaferrite film on GaN-on-SiC substrate over a broad frequency range of 30-110 GHz is presented. Real and imaginary parts of both permittivity and permeability of the ferrite/polymer film are computed from transmittance data obtained by using a free space quasi-optical millimeter wave spectrometer. The spin-casted composite film shows strong resonance in the Q band, and mixing the powder with polymer slightly shifts the resonance frequency lower compared to pure powder. The high temperature compatibility of GaN substrate enables us to run burn-out tests at temperatures up to 900°C. Significant shortening phenomenon of resonance linewidth after heat treatment was found. Linewidth is reduced from 2.8 kOe to 1.7 kOe. Experiment results show that the aforementioned film is a good candidate in applications of non-reciprocal ferrite devices like isolators, phase shifters, and circulators.

  10. Infrared studies of the evolution of the C{sub i}O{sub i}(Si{sub I}) defect in irradiated Si upon isothermal anneals

    Energy Technology Data Exchange (ETDEWEB)

    Angeletos, T.; Londos, C. A., E-mail: hlontos@phys.uoa.gr [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece); Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk [Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-03-28

    Carbon-oxygen-self-interstitial complexes were investigated in silicon by means of Fourier transform infrared spectroscopy. Upon irradiation, the C{sub i}O{sub i} defect (C{sub 3}) forms which for high doses attract self-interstitials (Si{sub I}s) leading to the formation of the C{sub i}O{sub i}(Si{sub I}) defect (C{sub 4}) with two well-known related bands at 939.6 and 1024 cm{sup −1}. The bands are detectable in the spectra both in room temperature (RT) and liquid helium (LH) temperature. Upon annealing at 150 °C, these bands were transformed to three bands at 725, 952, and 973 cm{sup −1}, detectable only at LH temperatures. Upon annealing at 220 °C, these bands were transformed to three bands at 951, 969.5, and 977 cm{sup −1}, detectable both at RT and LH temperatures. Annealing at 280 °C resulted in the transformation of these bands to two new bands at 973 and 1024 cm{sup −1}. The latter bands disappear from the spectra upon annealing at 315 °C without the emergence of other bands in the spectra. Considering reaction kinetics and defect metastability, we developed a model to describe the experimental results. Annealing at 150 °C triggers the capturing of Si{sub I}s by the C{sub 4} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 2} complex. The latter structure appears to be bistable: measuring at LH, the defect is in configuration C{sub i}O{sub i}(Si{sub I}){sub 2} giving rise to the bands at 725, 952, and 973 cm{sup −1}, whereas on measurements at RT, the defect converts to another configuration C{sub i}O{sub i}(Si{sub I}){sub 2}{sup *} without detectable bands in the spectra. Possible structures of the two C{sub i}O{sub i}(Si{sub I}){sub 2} configurations are considered and discussed. Upon annealing at 220 °C, additional Si{sub I}s are captured by the C{sub i}O{sub i}(Si{sub I}){sub 2} defect leading to the formation of the C{sub i}O{sub i}(Si{sub I}){sub 3} complex, which in turn on annealing at

  11. Stress map for ion irradiation: Depth-resolved dynamic competition between radiation-induced viscoelastic phenomena in SiO2

    International Nuclear Information System (INIS)

    Dillen, T. van; Siem, M.Y.S.; Polman, A.

    2004-01-01

    The dynamic competition between structural transformation, Newtonian viscous flow, and anisotropic strain generation during ion irradiation of SiO 2 , leads to strongly depth-dependent evolution of the mechanical stress, ranging between compressive and tensile. From independent in situ stress measurements during irradiation, generic expressions are derived of the nuclear stopping dependence of both the structural transformation rate and the radiation-induced viscosity. Using these data we introduce and demonstrate the concept of a 'stress map' that predicts the depth-resolved saturation stress in SiO 2 for any irradiation up to several MeV

  12. Chemical vapor deposition growth of carbon nanotubes on Si substrates using Fe catalyst: What happens at the nanotube/Fe/Si interface

    International Nuclear Information System (INIS)

    Chakraborty, Amit K.; Jacobs, J.; Anderson, C.; Roberts, C. J.; Hunt, Michael R. C.

    2006-01-01

    Direct growth of carbon nanotubes (CNTs) on silicon is of great importance for their potential exploitation in the semiconductor industry. In this article we investigate the chemical vapor deposition growth of CNTs on Si substrates from ethylene precursor using an iron catalyst. We observe that CNTs are produced only at temperatures between 830 and 980 deg. C, and within this narrow temperature window CNT yield initially increases with temperature to reach a maximum around 900 deg. C and then declines. While the requirement of a minimum temperature to initiate CNT growth can be understood by considering the minimum energy necessary to activate the catalyst particles, characterization of the as-grown CNTs by atomic force microscopy and x-ray photoelectron spectroscopy reveals that a loss of catalyst is responsible for the observed decline in CNT yield above 900 deg. C. However, unlike some previous reports suggesting surface silicide formation as the mechanism for catalyst loss, we find that either subsurface diffusion or evaporation is the mechanism for the loss of catalyst material in the current study

  13. Selective-area growth of GaN nanowires on SiO{sub 2}-masked Si (111) substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, J. E.; Doundoulakis, G. [Department of Physics, University of Crete, P. O. Box 2208, 71003 Heraklion (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion (Greece); Lymperakis, L. [Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Eftychis, S.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr [Department of Physics, University of Crete, P. O. Box 2208, 71003 Heraklion (Greece); Adikimenakis, A.; Tsagaraki, K.; Androulidaki, M.; Konstantinidis, G. [Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion (Greece); Olziersky, A.; Dimitrakis, P.; Ioannou-Sougleridis, V.; Normand, P. [Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patriarchou Grigoriou and Neapoleos 27, 15310 Aghia Paraskevi, Athens (Greece); Koukoula, T.; Kehagias, Th.; Komninou, Ph. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2016-06-14

    We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well as numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.

  14. Photoreflectance Spectroscopy Characterization of Ge/Si0.16Ge0.84 Multiple Quantum Wells on Ge Virtual Substrate

    OpenAIRE

    Hsu, Hung-Pin; Yang, Pong-Hong; Huang, Jeng-Kuang; Wu, Po-Hung; Huang, Ying-Sheng; Li, Cheng; Huang, Shi-Hao; Tiong, Kwong-Kau

    2013-01-01

    We report a detailed characterization of a Ge/Si0.16Ge0.84 multiple quantum well (MQW) structure on Ge-on-Si virtual substrate (VS) grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR) in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spec...

  15. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Science.gov (United States)

    Liu, Xingfang; Sun, Guosheng; Liu, Bin; Yan, Guoguo; Guan, Min; Zhang, Yang; Zhang, Feng; Chen, Yu; Dong, Lin; Zheng, Liu; Liu, Shengbei; Tian, Lixin; Wang, Lei; Zhao, Wanshun; Zeng, Yiping

    2013-01-01

    We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC) thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs) templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD). The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM). Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films. PMID:28809227

  16. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: Chbil.widad@live.fr [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse (Tunisia); Fargi, A. [Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia); Azeza, B.; Zaaboub, Z. [Laboratoire Micro-Optoélectroniques et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  17. Ferroelectric lanthanum-substituted Bi4Ti3O12 thin films fabricated on p-type Si(100) substrates by a sol-gel method

    International Nuclear Information System (INIS)

    Bae, Ji Cheul; Kim, Sang Su; Kim, Won-Jeong; Choi, Eun Kyung; Song, Tae Kwon

    2004-01-01

    Bi 3.25 La 0.75 Ti 3 O 12 (BLT) thin films have been successfully fabricated on p-type Si(100) substrates by a sol-gel spin-coating method. The microstructures and surface morphologies of the BLT thin films on p-type Si(100) substrates annealed at 700 deg. C for 30 min in oxygen atmosphere were examined by an X-ray diffractometer and a scanning electron microscope, respectively. The BLT/p-type Si(100) capacitors annealed at 700 deg. C for 30 min exhibit good capacitance-voltage (C-V) characteristics and large memory window of approximately 6 V with a sweep voltage of ±16 V. From the frequency dependency of C-V characteristics of the BLT/p-type Si(100) capacitors, the fixed charge density (N fc ) at the interface of BLT/p-type Si(100) was calculated as approximately 1.24x10 12 /cm 2 . The humps and valleys observed in C-V curves were interpreted by introducing the electron charge injection and barrier-lowering effect at the interface of BLT/p-type Si(100). Based on the voltage and the frequency dependent C-V measurements, the memory windows of BLT/p-type Si(100) capacitor are significantly influenced by the electron charge injection and polarization reverse

  18. In situ observation of electron beam irradiation effects in oxidized polycrystalline Si{sub 1-x}Ge{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han-Byul; Bae, Jee-Hwan; Kwak, Kyung-Hwan; Lee, Jae-Wook; Park, Min-Ho [School of Advanced Materials Sci. and Eng. and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Eng., Yonsei University, Seoul 120-749 (Korea, Republic of); Yang, Cheol-Woong [School of Advanced Materials Sci. and Eng. and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)], E-mail: cwyang@skku.edu

    2008-04-01

    This study examined the morphological and compositional changes that occur in oxidized poly-Si{sub 1-x}Ge{sub x} film during electron-beam irradiation in a transmission electron microscope. Before irradiation, the oxide layer was composed of a mixture of SiO{sub 2} and GeO{sub 2} phases. However, during electron-beam irradiation, there were significant changes in the microstructure and elemental distribution. For the oxidized poly-Si{sub 0.6}Ge{sub 0.4} films, the agglomeration of GeO{sub 2} was observed at the surface region. On the other hand, in the case of the oxidized poly-Si{sub 0.4}Ge{sub 0.6} films, the crystallization of GeO{sub 2} occurred in the oxide layer. Ge lattice fringes and twinning were also observed in the oxide layer.

  19. Growth of dilute nitride GaAsN/GaAs heterostructure nanowires on Si substrates.

    Science.gov (United States)

    Araki, Yoshiaki; Yamaguchi, Masahito; Ishikawa, Fumitaro

    2013-02-15

    The concept of band engineering dilute nitride semiconductors into nanowires is introduced. Using plasma-assisted molecular beam epitaxy, dilute nitride GaAsN/GaAs heterostructure nanowires are grown on silicon (111) substrates. Growth of the nanowires under high As overpressure results in a regular wire diameter of 350 nm with a length exceeding 3 μm. The GaAsN/GaAs nanowires show characteristics including favorable vertical alignment, hexagonal cross-sectional structure with {110} facets, regions of wurtzite and zinc-blende phases, and a core-shell-type heterostructure. The nanowires are composed of GaAsN shells containing up to 0.3% nitrogen surrounding GaAs cores. Panchromatic cathodoluminescence images show intensity modulation along the length of the nanowires that is possibly related to the interfaces of wurtzite/zinc-blende regions. Photoluminescence with peak wavelengths between 870 and 920 nm is clearly observed at room temperature. The spectral red shift depends on the amount of introduced nitrogen. These results reveal a method for precise lattice and band engineering of nanowires composed of dilute nitride semiconductors.

  20. Research on Si (100) crystal substrate CMP based on FA/O alkaline slurry

    Science.gov (United States)

    Hong, Jiao; Niu, Xinhuan; Wang, Juan; Wang, Chenwei; Zhang, Baoguo; Wang, Ru; Sun, Ming; Liu, Yuling

    2017-10-01

    For the advanced IC technology nodes, the surface quality of the polished silicon substrate surface becomes more and more critical. Haze is used to characterize extremely small pits scatter light disproportionately at the angle of measurement (90°), and Haze collected on full wafer scale with high throughput is the key CMP output parameter in an advanced CMP process. In this study, the influence of surface defects especially scratch, particle contamination, and surface roughness on Haze was investigated. The results indicate scratch and particle contamination take some influence on Haze, and Haze increases quickly with the increasing of surface roughness. So it can be concluded that surface roughness is the key affecting factor of Haze. In addition, the influence of FA/O surfactant in the alkaline slurry on Haze was studied. The results show FA/O surfactant can effectively decrease Haze. Finally, the advantages of the FA/O alkaline slurry were exhibited by the contrast experiments. A much lower level of metallic ions residual and a much better WIWNU were gotten for silicon wafers polished by FA/O alkaline slurry than that by the commercial one. Hence, the FA/O alkaline slurry provides a high quality silicon wafer surface. The results are helpful for researching the silicon CMP as well as the other materials.

  1. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  2. Fabrication of substrates with curvature for cell cultivation by alpha-particle irradiation and chemical etching of PADC films

    Science.gov (United States)

    Ng, C. K. M.; Tjhin, V. T.; Lin, A. C. C.; Cheng, J. P.; Cheng, S. H.; Yu, K. N.

    2012-05-01

    In the present paper, we developed a microfabrication technology to generate cell-culture substrates with identical chemistry and well-defined curvature. Micrometer-sized pits with curved surfaces were created on a two-dimensional surface of a polymer known as polyallyldiglycol carbonate (PADC). A PADC film was first irradiated by alpha particles and then chemically etched under specific conditions to generate pits with well-defined curvature at the incident positions of the alpha particles. The surface with these pits was employed as a model system for studying the effects of substrate curvature on cell behavior. As an application, the present work studied mechanosensing of substrate curvature by epithelial cells (HeLa cells) through regulation of microtubule (MT) dynamics. We used end-binding protein 3-green fluorescent protein (EB3-GFP) as a marker of MT growth to show that epithelial cells having migrated into the pits with curved surfaces had significantly smaller MT growth speeds than those having stayed on flat surfaces without the pits.

  3. Ion beam synthesis and characterization of large area 3C-SiC pseudo substrates for homo- and heteroepitaxy; Ionenstrahlsynthese und Charakterisierung grossflaechiger 3C-SiC-Pseudosubstrate fuer die Homo- und Heteroepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlen, Maik

    2006-12-15

    In this work, large area epitaxial 3C-SiC films on Si(100) and Si(111) were formed by ion beam synthesis and subsequently characterized for their structural and crystalline properties. These SiC/Si structures are meant to be used as SiC pseudosubstrates for the homo- and heteroepitaxial growth of other compound semiconductors. The suitability of these pseudosubstrates for this purpose was tested using various epitaxial systems and thin film growth methods. For this the homoepitaxial growth of 3C-SiC employing C{sub 60}-MBE and the heteroepitaxial growth of hexagonal GaN films grown by MOCVD and IBAMBA was studied in detail. The comparison of the structural and crystalline properties with data from literature enabled a qualified judgement of the potential of the 3C-SiC pseudosubstrates as an alternative substrate for the epitaxial growth of such films. These new 3C-SiC pseudosubstrates also enabled studies of other little known epitaxial systems: For the first time hexagonal ZnO films on (111) oriented pseudosubstrates were grown using PLD. The method if IBAMBE enabled the growth of cubic GaN layers on (100)-oriented pseudosubstrates. (orig.)

  4. Irradiation behavior of developed radiation resistance optical-fibers and observed optical radiation from their SiO2 cores under reactor irradiation

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Narui, Minoru; Kayano, Hideo; Kakuta, Tsunemi; Sagawa, Tsutomu; Sanada, Kazuo; Shamoto, Naoki; Uramoto, Toshimasa.

    1994-01-01

    Two kinds of optical fibers were irradiated in a fission reactor, JMTR(Japan Materials Testing Reactor), up to a 1.55x10 19 n/cm 2 fast neutron fluence and a 3.3x10 9 Gy ionizing dose at 370K. Optical transmission spectra were measured in the wavelength range of 450-1750nm, in-situ. Growth of strong optical absorption bands were observed in the range of wavelength shorter than 750nm. In the meantime, the fibers showed good radiation-resistance in the range of wavelength longer than 750nm. Optical radiations were observed from SiO 2 optical fibers under irradiation. A major part of the observed optical radiations is thought to be composed of broad optical radiation in the whole wavelength range studied in the present experiment. This broad optical radiation will be generated by the process of so-called Cerenkov radiation. Also, a sharp optical radiation peak was found at 1270nm on a F-doped fiber. This peak is thought to relate with doped Fluorine ions and ionizing gamma-ray irradiation. (author)

  5. Irradiation of optically activated SI-GaAs high-voltage switches with low and high energy protons

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Russo, P; Bisogni, M G; Bottigli, U; Fantacci, M E; Stefanini, A; Cola, A; Quaranta, F; Vasanelli, L; Stefanini, G

    1999-01-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) devices have been tested for radiation hardness with 3-4 MeV or 24 GeV proton beams. These devices can be operated in dc mode as optically activated electrical switches up to 1 kV. Both single switches (vertical Schottky diodes) and multiple (8) switches (planar devices) have been studied, by analyzing their current-voltage (I-V) reverse characteristics in the dark and under red light illumination, both before and after irradiation. We propose to use them in the system of high-voltage (-600 V) switches for the microstrip gas chambers for the CMS experiment at CERN. Low energy protons (3-4 MeV) were used in order to produce a surface damage below the Schottky contact: their fluence (up to 2.6*10/sup 15/ p/cm/sup 2/) gives a high-dose irradiation. The high energy proton irradiation (energy: 24 GeV, fluence: 1.1*10/sup 14/ p/cm/sup 2/) reproduced a ten years long proton exposure of the devices in CMS experiment conditions. For low energy irradiation, limited changes of ...

  6. The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts

    International Nuclear Information System (INIS)

    Cinar, Kuebra; Coskun, C.; Aydogan, S.; Asil, Hatice; Guer, Emre

    2010-01-01

    The effect of electron irradiation on Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts has been studied by current voltage (I-V) characterization at room temperature. The diodes have been subjected to the electron irradiation at various energies (6, 12 and 15 MeV) and influence of the electron irradiation on the diode parameters such as barrier height, ideality factor, and series resistance has been studied. Cheung functions, Norde model and conductance method have been used to determine the diode parameters. The ideality factor of the diodes is greater than unity indicating activation of some other current transport mechanism(s). The series resistances of the diodes increase by increasing electron energy. The reverse current increases for the Au/Ni/6H-SiC diode after each electron irradiation experiment, while decreasing trend is observed for Au/Ni/4H-SiC diode. Decrease in the barrier height of Au/Ni/4H-SiC diode is observed and mainly attributed to the increase of the reverse current, while the decrease of the forward current is caused by increase in series resistance, for high electron irradiation energies.

  7. The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Cinar, Kuebra [Department of Physics, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Coskun, C., E-mail: ccoskun@atauni.edu.t [Department of Physics, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Aydogan, S.; Asil, Hatice; Guer, Emre [Department of Physics, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-03-15

    The effect of electron irradiation on Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts has been studied by current voltage (I-V) characterization at room temperature. The diodes have been subjected to the electron irradiation at various energies (6, 12 and 15 MeV) and influence of the electron irradiation on the diode parameters such as barrier height, ideality factor, and series resistance has been studied. Cheung functions, Norde model and conductance method have been used to determine the diode parameters. The ideality factor of the diodes is greater than unity indicating activation of some other current transport mechanism(s). The series resistances of the diodes increase by increasing electron energy. The reverse current increases for the Au/Ni/6H-SiC diode after each electron irradiation experiment, while decreasing trend is observed for Au/Ni/4H-SiC diode. Decrease in the barrier height of Au/Ni/4H-SiC diode is observed and mainly attributed to the increase of the reverse current, while the decrease of the forward current is caused by increase in series resistance, for high electron irradiation energies.

  8. Enhanced electrical conductivity in Xe ion irradiated CNT based transparent conducting electrode on PET substrate

    Science.gov (United States)

    Surbhi; Sharma, Vikas; Singh, Satyavir; Garg, Priyanka; Asokan, K.; Sachdev, Kanupriya

    2018-02-01

    An investigation of MWCNT-based hybrid electrode films with improved electrical conductivity after Xe ion irradiation is reported. A multilayer hybrid structure of Ag-MWCNT layer embedded in between two ZnO layers was fabricated and evaluated, pre and post 100 keV Xe ion irradiation, for their performance as Transparent Conducting Electrode in terms of their optical and electrical properties. X-ray diffraction pattern exhibits highly c-axis oriented ZnO films with a small variation in lattice parameters with an increase in ion fluence. There is no significant change in the surface roughness of these films. Raman spectra were used to confirm the presence of CNT. The pristine multilayer films exhibit an average transmittance of ˜70% in the entire visible region and the transmittance increases with Xe ion fluence. A significant enhancement in electrical conductivity post-Xe ion irradiation viz from 1.14 × 10-7 Ω-1 cm-1 (pristine) to 7.04 × 103 Ω-1 cm-1 is seen which is due to the high connectivity in the top layer with Ag-CNT hybrid layer facilitating the smooth transfer of electrons.

  9. Impact of the substrate misorientation and its preliminary etching on the structural and optical properties of integrated GaAs/Si MOCVD heterostructures

    Science.gov (United States)

    Seredin, P. V.; Lenshin, A. S.; Zolotukhin, D. S.; Arsentyev, I. N.; Zhabotinskiy, A. V.; Nikolaev, D. N.

    2018-03-01

    This is the first attempt to make a report regarding the control of the structural and optical functional characteristics of integrated GaAs/Si heterostructures owing to the employment of preliminary etched misoriented Si substrates. The epitaxial GaAs layer on silicon substrates with no formation of the antiphase domains can be grown using substrates deviating less than 4°-6° from the singular (100) plane or without the use of a transition layer of GaAs nano-stakes. Preliminary etching of the Si substrate made it easier to acquire an epitaxial GaAs film in a single-crystalline state with a significantly less relaxation factor MOCVD, which positively influences on the structural performance of the film. These data agree with the results of Infrared reflection spectroscopy as well as Photoluminescence and UV-Vis spectroscopy. The optical properties of the integrated GaAs/Si (100) heterostructures in the IR and UV spectral regions were also identified by means of the relaxation coefficients.

  10. Effect of thermal annealing on the optical and electronic properties of ZnO thin films grown on p-Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.G. [Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kang, S.G. [Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, T.W. [Advanced Semiconductor Research Center, Division of Electrical and Computer Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)]. E-mail: twk@hanyang.ac.kr; Kim, D.W. [Semiconductor Materials Laboratory, Nano-Device Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Cho, W.J. [Semiconductor Materials Laboratory, Nano-Device Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)

    2005-05-30

    The effects of annealing on the optical and the electronics properties of ZnO thin films grown on p-Si(1 0 0) substrates by using radio frequency magnetron sputtering were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) measurements. The XRD patterns and pole figures showed that the crystallinity of the ZnO films grown on p-Si(1 0 0) substrates was improved by thermal treatment. XRD patterns, pole figures, and TEM images showed that the as-grown and the annealed ZnO films grown on Si(1 0 0) substrates had a c-axis preferential orientation in the [0 0 0 1] crystal direction. The PL spectra showed that luminescence peaks related to the free excitons and the deep levels appeared after annealing. The XPS spectra showed that the peak positions corresponding to the O 1s and the Zn 2p shifted slightly after thermal treatment. These results can help improve understanding of thermal effects on the optical and the electronic properties of ZnO thin films grown on p-Si(1 0 0) substrates.

  11. Origin of the n -type and p -type conductivity of MoS 2 monolayers on a SiO 2 substrate

    KAUST Repository

    Dolui, Kapildeb

    2013-04-02

    Ab initio density functional theory calculations are performed to study the electronic properties of a MoS2 monolayer deposited over a SiO 2 substrate in the presence of interface impurities and defects. When MoS2 is placed on a defect-free substrate, the oxide plays an insignificant role since the conduction band top and the valence band minimum of MoS2 are located approximately in the middle of the SiO2 band gap. However, if Na impurities and O dangling bonds are introduced at the SiO2 surface, these lead to localized states, which modulate the conductivity of the MoS2 monolayer from n- to p-type. Our results show that the conductive properties of MoS2 deposited on SiO 2 are mainly determined by the detailed structure of the MoS 2/SiO2 interface, and suggest that doping the substrate can represent a viable strategy for engineering MoS2-based devices. © 2013 American Physical Society.

  12. Evolvement of cell-substrate interaction over time for cells cultivated on a 3-aminopropyltriethoxysilane (γ-APTES) modified silicon dioxide (SiO2) surface

    Science.gov (United States)

    Hsu, Chung-Ping; Hsu, Po-Yen; Wu, You-Lin; Hsu, Wan-Yun; Lin, Jing-Jenn

    2012-09-01

    Since cell-substrate interaction is directly related to the traction force of the cell, the cell property can be judged from the imprint it leaves on the soft substrate surface onto which the cell is cultured. In this letter, the evolvement of the cell-substrate interaction over time was observed by cultivating cells on a 3-aminopropyltriethoxysilane (γ-APTES) modified silicon dioxide (SiO2) surface for different periods of time. The cell-substrate interaction property as a function of time can then be found from the post-cell-removal surface morphology profiles determined by atomic force microscopy (AFM). Different surface morphology profiles were found between normal cells and cancer cells. It was found that the cancer cells tend to form deeper trenches along the circumference of the imprints, while the normal cells do not. In addition, our results indicated that normal cells involve cell-substrate interaction mechanisms that are different from those for cancer cells.

  13. Electrical properties of MOCVD-grown GaN on Si (111) substrates with low-temperature AlN interlayers

    International Nuclear Information System (INIS)

    Ni Yi-Qiang; He Zhi-Yuan; Zhong Jian; Yao Yao; Yang Fan; Xiang Peng; Zhang Bai-Jun; Liu Yang

    2013-01-01

    The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) AlN interlayers by metal—organic chemical-vapour deposition are investigated. An abnormal P-type conduction is observed in our GaN-on-Si structure by Hall effect measurement, which is mainly due to the Al atom diffusing into the Si substrate and acting as an acceptor dopant. Meanwhile, a constant n-type conduction channel is observed in LT-AlN, which causes a conduction-type conversion at low temperature (50 K) and may further influence the electrical behavior of this structure. (interdisciplinary physics and related areas of science and technology)

  14. Studies of boron diffusivities on (001) and (110) substrate orientation in Si and Ge along vertical/out-of plane and lateral/in-plane directions study

    International Nuclear Information System (INIS)

    Liao, M.-H.

    2013-01-01

    Systematic investigation on boron diffusivities along different diffusion directions in Si and Ge substrates is presented in this work. Dopant diffusivities along vertical and lateral directions are extracted experimentally with nano-meter-resolution from secondary ion mass spectroscopy measurement and capacitance–voltage measurement on a test pattern, respectively. The results show that boron diffusivities in Ge are smaller than in Si along random diffusion directions and substrate orientations (∼ 0.84 × in (001)/<001>, ∼ 0.86 × in (110)/<110>, ∼ 0.78 × in (001)/<110>, and ∼ 0.875 × in (110)/<1-10>). Moreover, boron diffusivities on the (110)-oriented substrate are also found to be higher ∼ 1.33 × than in (001)-oriented substrate. An interesting finding in this work is that wafer orientation, (001) or (110), plays a more important role than the substrate material in boron diffusion along the vertical direction, while the substrate material is more important than wafer orientation for diffusion in lateral direction. Combination with this observation and the understanding of the lateral dopant diffusion playing the more important role for the device junction design than the vertical dopant diffusion, Ge channel device can provide not only the higher mobility than Si channel device but also the higher capability to further retard the boron diffusion with the better short channel control along the lateral dopant diffusion direction, especially in the advanced FinFET structure having two (110) substrate orientation surfaces with looser crystal lattice density and larger dopant diffusivity. - Highlights: • Proposed method to extract lateral doping diffusion information. • Demonstration of doping diffusion behavior along different directions and substrate orientations. • Useful information for FinFET junction design

  15. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Guo, Xiaowei; Momota, Sadao; Nitta, Noriko; Yamaguchi, Takaharu; Sato, Noriyuki; Tokaji, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  16. Selective-area growth and magnetic characterization of MnAs/AlGaAs nanoclusters on insulating Al2O3 layers crystallized on Si(111) substrates

    Science.gov (United States)

    Sakita, Shinya; Hara, Shinjiro; Elm, Matthias T.; Klar, Peter J.

    2016-01-01

    We report on selective-area metal-organic vapor phase epitaxy and magnetic characterization of coupled MnAs/AlGaAs nanoclusters formed on thin Al2O3 insulating layers crystallized on Si(111) substrates. Cross-sectional transmission electron microscopy reveals that poly-crystalline γ-Al2O3 grains are formed after an annealing treatment of the amorphous Al2O3 layers deposited by atomic layer deposition on Si(111) substrates. The ⟨111⟩ direction of the γ-Al2O3 grains tends to be oriented approximately parallel to the ⟨111⟩ direction of the Si substrate. We observe that hexagonal MnAs nanoclusters on AlGaAs buffer layers grown by selective-area metal-organic vapor phase epitaxy on partially SiO2-masked Al2O3 insulator crystallized on Si(111) substrates are oriented with the c-axis along the ⟨111⟩ direction of the substrates, but exhibit a random in-plane orientation. A likely reason is the random orientation of the poly-crystalline γ-Al2O3 grains in the Al2O3 layer plane. Magnetic force microscopy studies at room temperature reveal that arrangements of coupled MnAs nanoclusters exhibit a complex magnetic domain structure. Such arrangements of coupled MnAs nanoclusters may also show magnetic random telegraph noise, i.e., jumps between two discrete resistance levels, in a certain temperature range, which can be explained by thermally activated changes of the complex magnetic structure of the nanocluster arrangements.

  17. Effect of oxygen pressure of SiOx buffer layer on the electrical properties of GZO film deposited on PET substrate

    International Nuclear Information System (INIS)

    Ahn, Byung Du; Ko, Young Gun; Oh, Sang Hoon; Song, Jean-Ho; Kim, Hyun Jae

    2009-01-01

    The present work was made to investigate the effect of oxygen pressure of SiO x layer on the electrical properties of Ga-doped ZnO (GZO) films deposited on poly-ethylene telephthalate (PET) substrate by utilizing the pulsed-laser deposition at ambient temperature. For this purpose, the SiO x buffer layers were deposited at various oxygen pressures ranging from 13.3 to 46.7 Pa. With increasing oxygen pressure during the deposition of SiO x layer as a buffer, the electrical resistivity of GZO/SiO x /PET films gradually decreased from 7.6 x 10 -3 to 6.8 x 10 -4 Ω.cm, due to the enhanced mobility of GZO films. It was mainly due to the grain size of GZO films related to the roughened surface of the SiO x buffer layers. In addition, the average optical transmittance of GZO/SiO x /PET films in a visible regime was estimated to be ∼ 90% comparable to that of GZO deposited onto a glass substrate.

  18. Simultaneous quantification of light elements in thin films deposited on Si substrates using proton EBS (Elastic Backscattering Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, F.J., E-mail: fjferrer@us.es [Centro Nacional de Aceleradores (Univ. Sevilla – CSIC), Av. Thomas A. Edison, 7, E-41092 Sevilla (Spain); Alcaire, M.; Caballero-Hernández, J.; Garcia-Garcia, F.J.; Gil-Rostra, J.; Terriza, A.; Godinho, V. [Instituto de Ciencia de Materiales (CSIC – Univ. Sevilla), Américo Vespucio 49, E-41092 Sevilla (Spain); García-López, J. [Centro Nacional de Aceleradores (Univ. Sevilla – CSIC), Av. Thomas A. Edison, 7, E-41092 Sevilla (Spain); Dpto. Física Atómica, Molecular y Nuclear, Univ. Sevilla, E-41080 Sevilla (Spain); Barranco, A.; Fernández-Camacho, A. [Instituto de Ciencia de Materiales (CSIC – Univ. Sevilla), Américo Vespucio 49, E-41092 Sevilla (Spain)

    2014-08-01

    Quantification of light elements content in thin films is an important and difficult issue in many technological fields such as polymeric functional thin films, organic thin film devices, biomaterials, and doped semiconducting structures. Light elements are difficult to detect with techniques based on X-ray emission, such as energy dispersive analysis of X-rays (EDAX). Other techniques, like X-ray photoelectron spectroscopy (XPS), can easily quantify the content of light elements within a surface but often these surface measurements are not representative of the lights elements global composition of the thin film. Standard Rutherford backscattering spectroscopy (RBS), using alpha particles as probe projectiles, is not a good option to measure light elements deposited on heavier substrates composed of heavier elements like Si or glass. Nuclear Reaction Analysis (NRA) offers a good quantification method, but most of the nuclear reactions used are selective for the quantification of only one element, so several reactions and analysis are necessary to measure different elements. In this study, Elastic Backscattering Spectroscopy (EBS) using proton beams of 2.0 MeV simultaneously quantified different light elements (helium, carbon, nitrogen, oxygen, and fluorine) contained in thin films supported on silicon substrates. The capabilities of the proposed quantification method are illustrated with examples of the analysis for a series of thin film samples: amorphous silicon with helium bubbles, fluorinated silica, fluorinated diamond-like carbon and organic thin films. It is shown that this simple and versatile procedure allows the simultaneous quantification of light elements in thin films with thicknesses in the 200–500 nm range and contents lower than 10 at.%.

  19. Ion-irradiation-induced damage in nuclear materials: Case study of a-SiO2 and MgO

    International Nuclear Information System (INIS)

    Bachiller-Perea, Diana

    2016-01-01

    One of the most important challenges in Physics today is the development of a clean, sustainable, and efficient energy source that can satisfy the needs of the actual and future society producing the minimum impact on the environment. For this purpose, a huge international research effort is being devoted to the study of new systems of energy production; in particular, Generation IV fission reactors and nuclear fusion reactors are being developed. The materials used in these reactors will be subjected to high levels of radiation, making necessary the study of their behavior under irradiation to achieve a successful development of these new technologies. In this thesis two materials have been studied: amorphous silica (a-SiO 2 ) and magnesium oxide (MgO). Both materials are insulating oxides with applications in the nuclear energy industry. High-energy ion irradiations have been carried out at different accelerator facilities to induce the irradiation damage in these two materials; then, the mechanisms of damage have been characterized using principally Ion Beam Analysis (IBA) techniques. One of the challenges of this thesis was to develop the Ion Beam Induced Luminescence or iono-luminescence (which is not a widely known IBA technique) and to apply it to the study of the mechanisms of irradiation damage in materials, proving the power of this technique. For this purpose, the iono-luminescence of three different types of silica (containing different amounts of OH groups) has been studied in detail and used to describe the creation and evolution of point defects under irradiation. In the case of MgO, the damage produced under 1.2 MeV Au + irradiation has been characterized using Rutherford backscattering spectrometry in channeling configuration and X-ray diffraction. Finally, the iono-luminescence of MgO under different irradiation conditions has also been studied.The results obtained in this thesis help to understand the irradiation-damage processes in materials

  20. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  1. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  2. [Investigation on damage of bovine serum albumin (BSA) catalyzed by nano-sized silicon dioxide (SiO2) under ultrasonic irradiation using spectral methods].

    Science.gov (United States)

    Wang, Jun; Ding, Na; Zhang, Zhao-hong; Guo, Ying; Wang, Shi-xian; Xu, Rui; Zhang, Xiang-dong

    2009-04-01

    The damage of bovine serum albumin (BSA) molecules under ultrasonic irradiation in the presence of nano-sized silicon dioxide (SiO2) particles was studied by UV-Vis and fluorescence spectra. In addition, the influences of ultrasonic irradiation time, nano-sized SiO2 addition amount, solution acidity (pH) and ultrasonic irradiation power on the damage of BSA molecules in aqueous solution were also detected. For BSA solution of 1.0 x 10(-5) mol x L(-1) at (37.0+/-0.2) degrees C, the UV-Vis spectra of BSA solutions showed that the absorption peaks of BSA displayed obvious hyperchromic effect with the increase in some influence factors such as ultrasonic irradiation time, nano-sized SiO2 addition amount, pH value and ultrasonic irradiation power. However, the fluorescence spectra of BSA solutions showed the phenomenon of fluorescence quenching with the increase in ultrasonic irradiation time, nano-sized SiO2 addition amount, pH value and ultrasonic irradiation power. Moreover, the possible mechanism behind the damage of BSA molecule in the presence of nano-sized SiO2 powders under ultrasonic irradiation was discussed. It was considered that the damage of BSA molecules was attributed to the formation of *OH radicals resulting from the sonoluminescence and high-heat excitation of ultrasonic cavitation. The research results could be of great significance to using sonocatalytic method to treat tumour in clinic application and for developing nano-sized drug in the future.

  3. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  4. Multiaxial channeling study of disorder accumulation and recovery in gold-irradiated 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, W.; Weber, W. J.

    2001-09-15

    Single crystal 6H-SiC has been irradiated 60{sup o} off normal with 2 MeV Au{sup 2+} ions at 300 K to fluences of 0.029, 0.058, and 0.12 ions/nm2, which produced relatively low damage levels. The disorder profiles as a function of ion fluence on both the Si and C sublattices have been determined simultaneously in situ using Rutherford backscattering and nuclear reaction analysis with 0.94 MeV D{sup +} ions in channeling geometry along the <0001>, <1{bar 1}02>, and <10{bar 1}1> axes. Along the <0001> axis at these low doses, similar levels of Si and C disorder are observed, and the damage accumulation is linear with dose. However, along <1{bar 1}02> and <10{bar 1}1>, the disorder accumulation is larger and increases sublinearly with dose. Furthermore, a higher level of C disorder than Si disorder is observed along the <1{bar 1}02> and <10{bar 1}1> axes, which is consistent with a smaller threshold displacement energy on the C sublattice in SiC. The mean lattice displacement, perpendicular to each corresponding axis, ranges from 0.014 to 0.037 nm for this range of ion fluences. A steady accumulation of small displacements due to lattice stress is observed along the <10{bar 1}1> axis, and a detectable reduction of the lattice stress perpendicular to the <0001> axis occurs at 0.12 Au{sup 2+}/nm{sup 2}. There is only a moderate recovery of disorder, produced at and below 0.058 Au{sup 2+}/nm{sup 2}, during thermal annealing at 570 K; more significant recovery is observed for 0.12 Au{sup 2+}/nm{sup 2} along both the <0001> and <1{bar 1}02> axes.

  5. Multiaxial Channeling Study of Disorder Accumulation and Recovery in Gold-Irradiated 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Weber, William J.

    2001-09-14

    Single crystal 6H-SiC has been irradiated 60 degrees off normal with 2 MeV Au ions at 300 K to fluences of 0.029, 0.058 and 0.12 ions/nm, which produced relatively low damage levels. The disorder profiles as a function of ion fluence on both the Si and C sublattices have been determined simultaneously in situ using Rutherford backscattering and nuclear reaction analysis with 0.94 MeV D+ ions in channeling geometry along the <0001>, <102> and <101> axes. Along the <0001> axis at these low doses, similar levels of Si and C disorder are observed, and the damage accumulation is linear with dose. However, along <102> and <101>, the disorder accumulation is larger and increases sublinearly with dose. Furthermore, a higher level of C disorder than Si disorder is observed along the <102> and <101> axes, which is consistent with a smaller threshold displacement energy on the C sublattice in SiC. The mean lattice displacement, perpendicular to each corresponding axis, ranges from 0.014 to 0.037 nm for this range of ion fluences. A steady accumulation of small displacements due to lattice stress is observed along the <101> axis, and a detectable reduction of the lattice stress perpendicular to the <0001> axis occurs at 0.12 Au/nm. There is only a moderate recovery of disorder, produced at and below 0.058 Au/nm, during thermal annealing at 570 K; more significant recovery is observed for 0.12 Au/nm along both the <0001> and <102> axes.

  6. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  7. Electrical and physical characteristics for crystalline atomic layer deposited beryllium oxide thin film on Si and GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yum, J.H., E-mail: redeyes78@mail.utexas.edu [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas, 10100 Burnet Road, Austin, Texas 78758 (United States); SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741 (United States); Akyol, T. [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas, 10100 Burnet Road, Austin, Texas 78758 (United States); Lei, M. [Department of Physics, UT Austin, 1 University Station C1600, Austin, Texas 78712 (United States); Ferrer, D.A. [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas, 10100 Burnet Road, Austin, Texas 78758 (United States); Hudnall, Todd W. [Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas 78666 (United States); Downer, M. [Department of Physics, UT Austin, 1 University Station C1600, Austin, Texas 78712 (United States); Bielawski, C.W. [Department of Chemistry, UT Austin, 1 University Station, A5300, Austin, Texas 78712 (United States); Bersuker, G. [SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741 (United States); Lee, J.C.; Banerjee, S.K. [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas, 10100 Burnet Road, Austin, Texas 78758 (United States)

    2012-01-31

    In a previous study, atomic layer deposited (ALD) BeO exhibited less interface defect density and hysteresis, as well as less frequency dispersion and leakage current density, at the same equivalent oxide thickness than Al{sub 2}O{sub 3}. Furthermore, its self-cleaning effect was better. In this study, the physical and electrical characteristics of ALD BeO grown on Si and GaAs substrates are further evaluated as a gate dielectric layer in III-V metal-oxide-semiconductor devices using transmission electron microscopy, selective area electron diffraction, second harmonic generation, and electrical analysis. An as-grown ALD BeO thin film was revealed as a layered single crystal structure, unlike the well-known ALD dielectrics that exhibit either poly-crystalline or amorphous structures. Low defect density in highly ordered ALD BeO film, less variability in electrical characteristics, and great stability under electrical stress were demonstrated. - Highlights: Black-Right-Pointing-Pointer BeO is an excellent electrical insulator, but good thermal conductor. Black-Right-Pointing-Pointer Highly crystalline film of BeO has been grown using atomic layer deposition. Black-Right-Pointing-Pointer An ALD BeO precursor, which is not commercially available, has been synthesized. Black-Right-Pointing-Pointer Physical and electrical characteristics have been investigated.

  8. InGaN thin film deposition on Si(100) and glass substrates by termionic vacuum arc

    Science.gov (United States)

    Erdoğan, E.; Kundakçı, M.; Mantarcı, A.

    2016-04-01

    Group-III nitride semiconductors covering infrared, visible and ultraviolet spectral range has direct band gaps changing from 0,7 eV (InN) to 3,4 eV (GaN). LEDs emit red, blue, green light, ultraviolet (UV) laser diodes (LD), UV light detectors and high power electronic devices are obtained and commercialized based on group-III nitride materials. InGaN semiconductor can be deposited by different techniques such as molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD). In this study, InGaN thin films were prepared on Si and glass substrates as well as on GaN layer by termionic vacuum arc (TVA) which is a plasma asisted thin film deposition technique. The film was deposited at 10-6 torr working pressure, 18A filament current. Plasma was produced at 200 V with 0,6A plasma current. The purpose of this research is to investigate the properties of InGaN thin films. X-ray diffraction (XRD) spectrophotometer was used to analyze microstructure of the deposited films. Scanning electon microscopy (SEM) were used for surface morphology characterizations. Compositional analysis was done by energy dispersive X-ray spectroscopy (EDAX).

  9. Electrical and physical characteristics for crystalline atomic layer deposited beryllium oxide thin film on Si and GaAs substrates

    International Nuclear Information System (INIS)

    Yum, J.H.; Akyol, T.; Lei, M.; Ferrer, D.A.; Hudnall, Todd W.; Downer, M.; Bielawski, C.W.; Bersuker, G.; Lee, J.C.; Banerjee, S.K.

    2012-01-01

    In a previous study, atomic layer deposited (ALD) BeO exhibited less interface defect density and hysteresis, as well as less frequency dispersion and leakage current density, at the same equivalent oxide thickness than Al 2 O 3 . Furthermore, its self-cleaning effect was better. In this study, the physical and electrical characteristics of ALD BeO grown on Si and GaAs substrates are further evaluated as a gate dielectric layer in III–V metal-oxide-semiconductor devices using transmission electron microscopy, selective area electron diffraction, second harmonic generation, and electrical analysis. An as-grown ALD BeO thin film was revealed as a layered single crystal structure, unlike the well-known ALD dielectrics that exhibit either poly-crystalline or amorphous structures. Low defect density in highly ordered ALD BeO film, less variability in electrical characteristics, and great stability under electrical stress were demonstrated. - Highlights: ► BeO is an excellent electrical insulator, but good thermal conductor. ► Highly crystalline film of BeO has been grown using atomic layer deposition. ► An ALD BeO precursor, which is not commercially available, has been synthesized. ► Physical and electrical characteristics have been investigated.

  10. Extraction and dielectric properties of curcuminoid films grown on Si substrate for high-k dielectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Dakhel, A.A.; Jasim, Khalil E. [Department of Physics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, P.O. Box 15503 (Bahrain); Henari, F.Z., E-mail: fzhenari@rcsi-mub.com [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, P.O. Box 15503 (Bahrain)

    2013-09-20

    Highlights: • The unknown insulating properties of curcuminoid extract are systematically studied. • Optical study gives a bandgap of 3.15 eV and a refractive index of 1.92 at 505 nm. • Turmeric is a high-k environmental friendly material for use in microelectronics. • Curcuminoid extract can be used as insulator of MIS devices with ε{sup ′}{sub ∞}≈54.2. -- Abstract: Curcuminoids were extracted from turmeric powder and evaporated in vacuum to prepare thin films on p-Si and glass substrates for dielectric and optical investigations. The optical absorption spectrum of the prepared amorphous film was not identical to that of the molecular one, which was identified by a strong wide absorption band in between ∼220 and 540 nm. The onset energy of the optical absorption of the film was calculated by using Hamberg et al. method. The dielectric properties of this material were systematically studied for future eco friendly applications in metal–insulator–semiconductor MIS field of applications. The complex dielectric properties were studied in the frequency range of 1–1000 kHz and was analysed in-terms of dielectric impedance Z{sup *}(ω) and modulus M{sup *}(ω). Generally, the curcuminoid complex can be considered as a high-k material and can be used in the environmental friendly production of microelectronic devices.

  11. Extraction and dielectric properties of curcuminoid films grown on Si substrate for high-k dielectric applications

    International Nuclear Information System (INIS)

    Dakhel, A.A.; Jasim, Khalil E.; Cassidy, S.; Henari, F.Z.

    2013-01-01

    Highlights: • The unknown insulating properties of curcuminoid extract are systematically studied. • Optical study gives a bandgap of 3.15 eV and a refractive index of 1.92 at 505 nm. • Turmeric is a high-k environmental friendly material for use in microelectronics. • Curcuminoid extract can be used as insulator of MIS devices with ε ′ ∞ ≈54.2. -- Abstract: Curcuminoids were extracted from turmeric powder and evaporated in vacuum to prepare thin films on p-Si and glass substrates for dielectric and optical investigations. The optical absorption spectrum of the prepared amorphous film was not identical to that of the molecular one, which was identified by a strong wide absorption band in between ∼220 and 540 nm. The onset energy of the optical absorption of the film was calculated by using Hamberg et al. method. The dielectric properties of this material were systematically studied for future eco friendly applications in metal–insulator–semiconductor MIS field of applications. The complex dielectric properties were studied in the frequency range of 1–1000 kHz and was analysed in-terms of dielectric impedance Z * (ω) and modulus M * (ω). Generally, the curcuminoid complex can be considered as a high-k material and can be used in the environmental friendly production of microelectronic devices

  12. Fabrication of a strain-induced high performance NbN ultrathin film by a Nb5N6 buffer layer on Si substrate

    Science.gov (United States)

    Jia, X. Q.; Kang, L.; Gu, M.; Yang, X. Z.; Chen, C.; Tu, X. C.; Jin, B. B.; Xu, W. W.; Chen, J.; Wu, P. H.

    2014-03-01

    Lattice mismatch between NbN and silicon (Si) reduces the superconducting properties of NbN film on Si substrate, and this in turn affects the performance of devices such as the hot electron bolometer (HEB) and superconducting nanowire single photon detector (SNSPD). We have found that the superconducting properties of NbN film on Si will be significantly improved by a Nb5N6 buffer layer. The strain of the NbN film was optimized by varying the thickness of the buffer layer. With 30 nm thick Nb5N6, the zero resistance superconducting transition temperature (TC0) of a 6 nm thick NbN film on Si is up to 13.5 K and the critical current density (JC) of the film is more than 107 A cm-2. All the details of preparation, improvement and characteristics of this film are also presented.

  13. Photoreflectance Spectroscopy Characterization of Ge/Si0.16Ge0.84 Multiple Quantum Wells on Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Hung-Pin Hsu

    2013-01-01

    Full Text Available We report a detailed characterization of a Ge/Si0.16Ge0.84 multiple quantum well (MQW structure on Ge-on-Si virtual substrate (VS grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spectral line shape fits and theoretical calculation led to the identification of various quantum-confined interband transitions. The temperature-dependent PR spectra of Ge/Si0.16Ge0.84 MQW were analyzed using Varshni and Bose-Einstein expressions. The parameters that describe the temperature variations of various quantum-confined interband transition energies were evaluated and discussed.

  14. Thermal effects on zirconia substrate after Er,Cr:YSGG irradiation

    Directory of Open Access Journals (Sweden)

    Alessandra Cassoni

    Full Text Available OBJECTIVE: The objective of the present study was to investigate the thermal effects of Er,Cr:YSGG laser irradiation (1.5W/20Hz on yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP. MATERIAL AND METHOD: Fifteen disks of Y-TZP (AS Technology TitaniumFIX, São José dos Campos, Brazil with 5 mm diameter and 3 mm high standardized with CAD-CAM were used. The Y-TZP disks were randomized in three groups (n=5: Y-TZP-G1 = control (no laser treatment; Y-TZP-G2 = Y-TZP + Er,Cr:YSGG laser (air-water cooling proportion 80%/25%; Y-TZP-G3 = Y-TZP + Er,Cr:YSGG laser (air-water cooling proportion 80%/0%. A thermopar (SmartMether, Novus, Porto Alegre, RS, Brazil was attached to a digital thermometer (SmartMether, Novus, Porto Alegre, RS, Brazil fixed to the opposite irradiated surface. The temperature gradients (ΔT were calculated (ΔT = Final Temperature - Initial Temperature for each group. Values were statistically analyzed by one-way ANOVA at the 95% confidence level and compared by Tukey post-hoc test (α=0.05 for each material. One sample of each group was analyzed by confocal white light microscopy. RESULT: The ANOVA test showed significant differences for the factor "laser" (p<.001. The temperature gradients (ΔT value showed the following results: Y-TZP-G1 = 0 ºC; Y-TZP-G2 = -1.4 ºC and Y-TZP-G3 = 21.4 ºC. The ΔT values (ºC of the non-refrigerated group were higher than the refrigerated group. The roughness value (Ra ranged from 4.50 to -33.65 µm. CONCLUSION: The water refrigeration for Er,Cr:YSGG irradiation is essential to avoid thermal increase in the Y-TZP.

  15. Photoluminescence properties of {beta}-FeSi{sub 2} grains on Si with coating Au layer

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K; Kaneko, S; Hirabayashi, Y [Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Edina, Kanagawa, 243-0435 (Japan); Yokomizo, K; Itakura, M, E-mail: akiyama@kanagawa-iri.go.jp [Department of Applied Science for Electronics and Materials, Kyusyu University, 6- 1 Kasuga, Fukuoka 816-8580 (Japan)

    2011-10-29

    We have investigated the growth of {beta}-FeSi{sub 2} grains on Si(001) substrates with 90-nm-thick gold layer and its photoluminescence (PL) property. X-ray diffraction and scanning electron microscopy observations revealed that coarse island {beta}-FeSi{sub 2} grains with sizes from several to tens of micrometers were formed on the Si surface. A clear PL spectrum for the {beta}-FeSi{sub 2} grains was observed on as deposited sample by argon-ion laser irradiation to the Si substrate side. The values of the activation energy for a non-radiative recombination path were large, and indicated the formation of high-crystal-quality {beta}-FeSi{sub 2} with a low-level non-radiative center without post-annealing.

  16. Irradiation response of radio-frequency sputtered Al/Gd2O3/p-Si MOS capacitors

    Science.gov (United States)

    Kahraman, A.; Yilmaz, E.

    2017-10-01

    The usage of the Gadolinium oxide (Gd2O3) as sensitive region in the MOS (Metal-Oxide-Semiconductor)-based dosimeters was investigated in the presented study. The Gd2O3 films grown on p-type Si (100) by RF magnetron sputtering were annealed at 800 °C under N2 ambient. The back and front metal contacts were establishes to produce MOS capacitors. The fabricated Gd2O3 MOS capacitors were irradiated in the dose range 0.5-50 Gy by 60Co gamma source. The performed Capacitance-Voltage (C-V) curves of the Gd2O3 MOS capacitors shifted to right side relative to pre-irradiation one. While continuous increments in the oxide trapped charges with increasing in gamma dose were observed, interface trapped charges fluctuated in the studied dose range. However, the variation of the interface trapped charge densities was found in the order of 1011 cm-2 and no significant variation was observed with applied dose. These results confirm that a significant deterioration does not occur in the capacitance during the irradiation. The higher oxide trapped charges compared to interface trapped charges showed that these traps were more responsible for the shift of the C-V curves. The sensitivity and percentage fading after 105 min of the Gd2O3 MOS capacitor were found as 39.7±1.4 mV/Gy and 14.5%, respectively. The devices sensitivity was found to be higher than that of capacitors composed of Er2O3, Sm2O3, La2O3, Al2O3, and SiO2, but, the high fading values is seen as a major problem for these capacitors. Finally, the barrier height was investigated with gamma exposure and the results showed that its value increased with increasing in radiation dose due to possible presence of the acceptor-like interface states.

  17. Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation

    Science.gov (United States)

    Steeves Lloyd, Kayla; Bolotin, Igor L.; Schmeling, Martina; Hanley, Luke; Veryovkin, Igor V.

    2016-10-01

    Fabrication of nanocone arrays on Si surfaces was demonstrated using grazing incidence irradiation with 1 keV Ar+ ions concurrently sputtering the surface and depositing metal impurity atoms on it. Among three materials compared as co-sputtering targets Si, Cu and stainless steel, only steel was found to assist the growth of dense arrays of nanocones at ion fluences between 1018 and 1019 ions/cm2. The structural characterization of samples irradiated with these ion fluences using Scanning Electron Microscopy and Atomic Force Microscopy revealed that regions far away from co-sputtering targets are covered with nanoripples, and that nanocones popped-up out of the rippled surfaces when moving closer to co-sputtering targets, with their density gradually increasing and reaching saturation in the regions close to these targets. The characterization of the samples' chemical composition with Total Reflection X-ray Fluorescence Spectrometry and X-ray Photoelectron Spectroscopy revealed that the concentration of metal impurities originating from stainless steel (Fe, Cr and Ni) was relatively high in the regions with high density of nanocones (Fe reaching a few atomic percent) and much lower (factor of 10 or so) in the region of nanoripples. Total Reflection X-ray Fluorescence Spectrometry measurements showed that higher concentrations of these impurities are accumulated under the surface in both regions. X-ray Photoelectron Spectroscopy experiments showed no direct evidence of metal silicide formation occurring on one region only (nanocones or nanoripples) and thus showed that this process could not be the driver of nanocone array formation. Also, these measurements indicated enhancement in oxide formation on regions covered by nanocones. Overall, the results of this study suggest that the difference in concentration of metal impurities in the thin near-surface layer forming under ion irradiation might be responsible for the differences in surface structures.

  18. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Materials Engineering Department, College of Engineering, University of Kufa, Najaf (Iraq); Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  19. Radial InP/InAsP/InP heterostructure nanowires on patterned Si substrates using self-catalyzed growth for vertical-type optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Kenichi, E-mail: ken-kawa@iis.u-tokyo.ac.jp [Institute for Nano Quantum Information Electronics (NanoQuine), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Sudo, Hisao; Matsuda, Manabu; Takemoto, Kazuya; Yamamoto, Tsuyoshi [Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-0197 (Japan); Arakawa, Yasuhiko [Institute for Nano Quantum Information Electronics (NanoQuine), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-01-05

    Radial InP/InAsP/InP heterostructure nanowires (NWs) on SiO{sub 2}-mask-pattered Si substrates were reported using self-catalyzed InP NWs. Self-catalyzed growth was performed using low growth temperatures and high group-III flow rates, and vertical InP NWs were formed on the mask openings. The diameter and tapering of the self-catalyzed InP NWs were controlled by the introduction of HCl and H{sub 2}S gases during the NW growth, and InP NWs that have a straight region with decreased diameter were formed. Radial InP/InAsP/InP quantum wells (QWs) were grown on the sidewall of the vertical InP NWs on Si substrates. Room-temperature photoluminescence of single NWs from the QW was clearly observed, which exhibited the potential of building blocks for vertical-type optical devices on Si substrates.

  20. Effect of a SiO2 buffer layer on the characteristics of In2O3-ZnO-SnO2 films deposited on PET substrates

    International Nuclear Information System (INIS)

    Woo, B.-J.; Hong, J.-S.; Kim, S.-T.; Kim, H.-M.; Park, S.-H.; Kim, J.-J.; Ahn, J.-S.

    2006-01-01

    Transparent and conducting In 2 O 3 -ZnO-SnO 2 (IZTO) thin films were prepared on flexible PET substrates at room temperature by using an ion-gun-assisted sputtering technique. We mainly investigated the effect of a SiO 2 buffer layer, deposited in-between the film and the PET substrate, on the electrical stability of the film under various external stresses caused by moist-heat or violent temperature variations. The insertion of the SiO 2 layer improves structural, optical and electrical properties of the films: The IZTO/SiO 2 /PET film with a buffer shows a change (∼4 %) in the sheet resistance much smaller than that of the IZTO/PET film without a buffer (∼22 %), against a severe thermal stress of the repeated processes between quenching at -25 .deg. C and annealing at 100 .deg. C for 5 min at each process. Under a moist-heat stress at 90 % relative humidity at 80 .deg. C, the IZTO/SiO 2 /PET film responds with only a slight change (∼8.5 %) in the sheet resistance from 30.2 to 33.0 Ω/□ after being exposed for 240 h. The enhanced stability is understood to be the result of the buffer layers acting as a blocking barrier to water vapor or organic solvents diffusing from the PET substrate during deposition or annealing.

  1. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Science.gov (United States)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G. B. V. S.; Avasthi, D. K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-05-01

    In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 1013 ions/cm2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic applications.

  2. MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality

    Science.gov (United States)

    Lemettinen, J.; Okumura, H.; Kim, I.; Kauppinen, C.; Palacios, T.; Suihkonen, S.

    2018-04-01

    We present the effect of miscut angle of SiC substrates on N-polar AlN growth. The N-polar AlN layers were grown on C-face 4H-SiC substrates with a miscut towards 〈 1 bar 1 0 0 〉 by metal-organic vapor phase epitaxy (MOVPE). The optimal V/III ratios for high-quality AlN growth on 1 ° and 4 ° miscut substrates were found to be 20,000 and 1000, respectively. MOVPE grown N-polar AlN layer without hexagonal hillocks or step bunching was achieved using a 4H-SiC substrate with an intentional miscut of 1 ° towards 〈 1 bar 1 0 0 〉 . The 200-nm-thick AlN layer exhibited X-ray rocking curve full width half maximums of 203 arcsec and 389 arcsec for (0 0 2) and (1 0 2) reflections, respectively. The root mean square roughness was 0.4 nm for a 2 μm × 2 μm atomic force microscope scan.

  3. Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates

    Science.gov (United States)

    Mourya, Satyendra; Jaiswal, Jyoti; Malik, Gaurav; Kumar, Brijesh; Chandra, Ramesh

    2018-01-01

    In this work, we have reported the in-situ fabrication of nanocrystalline rhombohedral silicon carbide (15R-SiC) thin films by RF-magnetron sputtering at 800 °C substrate temperature. The structural and optical properties were investigated for the films grown on four different substrates (ZrO2, MgO, SiC, and Si). The contact angle measurement was performed on all the substrates to investigate the role of interfacial surface energy in nucleation and growth of the films. The XRD measurement revealed the growth of (1 0 10) orientation for all the samples and demonstrated better crystallinity on Si substrate, which was further corroborated by the TEM results. The Raman spectroscopy confirmed the growth of rhombohedral phase with 15R polytype. Surface characteristics of the films have been investigated by energy dispersive x-ray spectroscopy, FTIR, and atomic force microscope (AFM) to account for chemical composition, bonding, and root mean square surface roughness (δrms). The optical dispersion behavior of 15R-SiC thin films was examined by variable angle spectroscopic ellipsometry in the wide spectral range (246-1688 nm), including the surface characteristics in the optical model. The non-linear optical parameters (χ3 and n2) of the samples have been calculated by the Tichy and Ticha relation using a single effective oscillator model of Wemple and Didomenico. Additionally, our optical results provided an alternative way to measure the ratio of carrier concentration to the effective mass (N/m*). These investigated optical parameters allow one to design and fabricate optoelectronic, photonic, and telecommunication devices for deployment in extreme environment.

  4. Rectified photocurrent in a planar ITO/graphene/ITO photodetector on SiC by local irradiation of ultraviolet light

    Science.gov (United States)

    Yang, Junwei; Guo, Liwei; Huang, Jiao; Mao, Qi; Guo, Yunlong; Jia, Yuping; Peng, Tonghua; Chen, Xiaolong

    2017-10-01

    A rectified photocurrent behaviour is demonstrated in a simple planar structure of ITO-graphene-ITO formed on a SiC substrate when an ultraviolet (UV) light is locally incident on one of the edges between the graphene and ITO electrode. The photocurrent has similar characteristics as those of a vertical structure graphene/semiconductor junction photodiode, but is clearly different from those found in a planar structure metal-graphene-metal device. Furthermore, the device behaves multi-functionally as a photodiode with sensitive UV photodetection capability (responsivity of 11.7 mA W-1 at 0.3 V) and a self-powered UV photodetector (responsivity of 4.4 mA W-1 at zero bias). Both features are operative in a wide dynamic range and with a fast speed of response in about gigahertz. The linear I-V behaviour with laser power at forward bias and cutoff at reverse bias leads to a conceptual photodiode, which is compatible with modern semiconductor planar device architecture. This paves a potential way to realize ultrafast graphene planar photodiodes for monolithic integration of graphene-based devices on the same SiC substrate.

  5. Gamma-Ray Irradiation Effects on the Characteristics of New Material P Type 6H-SiC Ni-Schottky Diodes (Application For Nuclear Fuel Facilities)

    International Nuclear Information System (INIS)

    U-Sudjadi; T-Ohshima, N. Iwamoto; S-Hishiki; N-Iwamoto, K. Kawano

    2007-01-01

    Effects of gamma-ray irradiation on electrical characteristics of new material p type 6H-SiC Ni-Schottky diodes were investigated. Ni Schottky diodes fabricated on p type 6H-SiC epi-layer were irradiated with gamma-rays at RT. The electrical characteristics of the diodes were evaluated before and after irradiation. The value of the on-resistance does not change up to 1 MGy, and the value increases with increasing absorbed dose above 1 MGy. For n factor, no significant increase is observed below 500 kGy, however, the value increases above 500 kGy. Schottky Barrier Height (SBH) decreases with increasing absorbed dose. Leakage current tends to increase due to irradiation. (author)

  6. Large-grain polycrystalline silicon film by sequential lateral solidification on a plastic substrate

    International Nuclear Information System (INIS)

    Kim, Yong-Hae; Chung, Choong-Heui; Yun, Sun Jin; Moon, Jaehyun; Park, Dong-Jin; Kim, Dae-Won; Lim, Jung Wook; Song, Yoon-Ho; Lee, Jin Ho

    2005-01-01

    A large-grain polycrystalline silicon film was obtained on a plastic substrate by sequential lateral solidification. With various combinations of sputtering powers and Ar working gas pressures, the conditions for producing dense amorphous silicon (a-Si) and SiO 2 films were optimized. The successful crystallization of the a-Si film is attributed to the production of a dense a-Si film that has low argon content and can endure high-intensity laser irradiation

  7. Stability to irradiation of SiGe whisker crystals used for sensors of physical values

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2011-04-01

    Full Text Available An influence of g-irradiation (Co60 with doze up to 1—1018 сm–2 and magnetic field with induction up to 14 T on conduction of 1–xGex (х = 0,03 whisker crystals with resistivity of 0,08—0,025 Оhm·сm in temperature range 4,2—300 K have been studied. It is shown that whisker crystals resistance faintly varies under irradiation with doze 2·1017 сm–2, while their magnetoresistance substantially changes. The strain sensors stable to irradiation action operating in high magnetic fields on the base of the whiskers have been designed.

  8. Compatibility of the selective area growth of GaN nanowires on AlN-buffered Si substrates with the operation of light emitting diodes.

    Science.gov (United States)

    Musolino, M; Tahraoui, A; Fernández-Garrido, S; Brandt, O; Trampert, A; Geelhaar, L; Riechert, H

    2015-02-27

    AlN layers with thicknesses between 2 and 14 nm were grown on Si(111) substrates by molecular beam epitaxy. The effect of the AlN layer thickness on the morphology and nucleation time of spontaneously formed GaN nanowires (NWs) was investigated by scanning electron microscopy and line-of-sight quadrupole mass spectrometry, respectively. We observed that the alignment of the NWs grown on these layers improves with increasing layer thickness while their nucleation time decreases. Our results show that 4 nm is the smallest thickness of the AlN layer that allows the growth of well-aligned NWs with short nucleation time. Such an AlN buffer layer was successfully employed, together with a patterned SiOx mask, for the selective-area growth (SAG) of vertical GaN NWs. In addition, we fabricated light-emitting diodes (LEDs) from NW ensembles that were grown by means of self-organization phenomena on bare and on AlN-buffered Si substrates. A careful characterization of the optoelectronic properties of the two devices showed that the performance of NW-LEDs on bare and AlN-buffered Si is similar. Electrical conduction across the AlN buffer is facilitated by a high number of grain boundaries that were revealed by transmission electron microscopy. These results demonstrate that grainy AlN buffer layers on Si are compatible both with the SAG of GaN NWs and LED operation. Therefore, this study is a first step towards the fabrication of LEDs on Si substrates based on homogeneous NW ensembles.

  9. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    Science.gov (United States)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  10. Application of RF varactor using Ba(x)Sr(1-x)TiO3/TiO2/HR-Si substrate for reconfigurable radio.

    Science.gov (United States)

    Kim, Ki-Byoung; Park, Chul-Soon

    2007-11-01

    In this paper, the potential feasibility of integrating Ba(x)Sr(1-x)TiO3 (BST) films into Si wafer by adopting tunable interdigital capacitor (IDC) with TiO2 thin film buffer layer and a RF tunable active bandpass filter (BPF) using BST based capacitor are proposed. TiO2 as a buffer layer is grown onto Si substrate by atomic layer deposition (ALD) and the interdigital capacitor on BST(500 nm)/TiO2 (50 nm)/HR-Si is fabricated. BST interdigital tunable capacitor integrated on HR-Si substrate with high tunability and low loss tangent are characterized for their microwave performances. BST/TiO2/HR-Si IDC shows much enhanced tunability values of 40% and commutation quality factor (CQF) of 56.71. A resonator consists of an active capacitance circuit together with a BST varactor. The active capacitor is made of a field effect transistor (FET) that exhibits negative resistance as well as capacitance. The measured second order active BPF shows bandwidth of 110 MHz, insertion loss of about 1 dB at the 1.81 GHz center frequency and tuning frequency of 230 MHz (1.81-2.04 GHz).

  11. Effects of Si doping on the strain relaxation of metamorphic (Al)GaInP buffers grown on GaAs substrates

    International Nuclear Information System (INIS)

    Li, K.L.; Dong, J.R.; Sun, Y.R.; Zeng, X.L.; Zhao, Y.M.; Yu, S.Z.; Zhao, C.Y.; Yang, H.

    2014-01-01

    We investigate the effects of Si doping on the strain relaxation of the compositionally step-graded (Al)GaInP buffers grown by metal-organic chemical vapor deposition on (0 0 1) GaAs substrates with different miscuts toward (1 1 1)A. It is found that in the 2° samples, high Si doping can reduce both the α and β dislocation densities by delaying and suppressing the formation of phase separation in the buffer. In contrast, in the 7° samples, Si dopants deteriorate the buffer quality through increasing the dislocation density accompanying with the tilt reduction along the [1 1 0] direction, and a striking feature, bunches of β dislocations away from the interfaces, is observed in the [1 1 0] cross-sectional transmission electron microscopy images. A cross-slip mechanism closely associated with the pinning effect of Si on α dislocation motion is proposed to explain the multiplication of β dislocations. These results indicate that selecting a moderate Si doping density and substrate miscut are critical for the design and fabrication of metamorphic optoelectronic devices.

  12. Low energy electron irradiation induced deep level defects in 6H-SiC: The implication for the microstructure of the deep levels E1/E2

    International Nuclear Information System (INIS)

    Chen, X.D.; Fung, S.; Beling, C.D.; Lui, M.K.; Ling, C.C.; Yang, C.L.; Ge, W.K.; Wang, J.N.; Gong, M.

    2004-01-01

    N-type 6H-SiC samples irradiated with electrons having energies of E e =0.2, 0.3, 0.5, and 1.7 were studied by deep level transient technique. No deep level was detected at below 0.2 MeV irradiation energy while for E e ≥0.3 MeV, deep levels ED1, E 1 /E 2 , and E i appeared. By considering the minimum energy required to displace the C atom or the Si atom in the SiC lattice, it is concluded that generation of the deep levels E 1 /E 2 , as well as ED1 and E i , involves the displacement of the C atom in the SiC lattice

  13. Growth of Si0.75Ge0.25 alloy layers grown on Si(001) substrates using step-graded short-period (Sim/Gen)N superlattices

    International Nuclear Information System (INIS)

    Rahman, M. M.; Matada, H.; Tambo, T.; Tatsuyama, C.

    2001-01-01

    Short-period (Si m /Ge n ) N superlattices (SSLs) are grown step by step on a Si(001) substrates by solid source molecular beam epitaxy. Using the step-graded SSLs as buffer layers, 2000 Aa uniform Si 0.75 Ge 0.25 alloy layers are grown on the same substrates. The growth temperature of the SSLs and uniform layers is 500 degree C. In the SSLs layers, m and n are the number of monolayers of Si and Ge, respectively. N is the period of (Si m /Ge n ) bilayers. The samples grown are characterized by x-ray diffraction, atomic force microscopy (AFM), and transmission electron microscopy (TEM) as a function of the step number of SSL layers. The SSLs show very smooth surfaces [the root-mean-square (rms) surface roughness is between 7 and 12 Aa]. A dramatic decrease in roughness is observed in the uniform Si 0.75 Ge 0.25 alloy layers, when even a one-step SSL is used as a buffer layer. A noticeable increase in rms roughness is seen in both SSL and alloy layers when the number of Ge monolayers is changed from one to two. AFM observation shows that the rms surface roughness behavior of the SSLs is reflected to their corresponding top alloy layers. The residual strains in alloy layers are considerably lower, with a maximum relaxation rate of about 80% for the sample with a seven-step SSL buffer. Cross-sectional TEM images show that strained SSL buffer layers effectively deflect threading dislocations in the substrate or confine the dislocations in the SSL buffer layers. [copyright] 2001 American Institute of Physics

  14. Destroying the photoelectret in Bi12SiO20 by X-ray irradiation

    International Nuclear Information System (INIS)

    Vavrek, A. F.; Khristova, K. K.

    1987-01-01

    The destroying of the classical photoelectret state (PES) in bismuth silicon oxide (BSO) monocrystals during X-ray irradiation is investigated and the reciprocity law (RL) is examined. The sample is irradiated by nonfiltered X-rays with continuous spectrum and maximum energy of the photons 70 keV. The polaryzing voltage used is 85 V. The dependence of the destroyed PE charge on the time of X-ray irradiation of the sample with equal X-ray exposure in each point shows that the exposure rates higher than a certain 'critical' value cause a larger destroyed charge that is RL during X-ray irradiation. The 'critical' value is about 3x10 -5 A/kg. The dependence of the destroyed photoelectric (PE) charge on the irradiation time generally shows that the destroyed PE charge increases with the increase of the X-ray exposure. After some time the distruction of the charge is terminated and the sample seems to lose its X-ray sensitivity although a considerable PE charge (30-40% of the initial one) remains in it. At higher exposure rates (above the critical one for the RL) the maxmimum destroyed charge is smaller. According to the dependencies of the linear coefficients of X-ray attenuation in the investigated energy range the photoelectric absorption is dominating. The radiation is absorbed only in the near-surface region. Part of the sample remains nonexited and the PE charge which has been initially barrier distributed is destroyed as a result of the redistribution of the charges in the excitation region only. At sufficiently long irradiation time this redistribution is terminated, notwithstanding the fact that out of the excitation region the sample still remains polarized. The maximum destroyed PE charge during nonhomogeneous excitation under nonquasi-stationary conditions is smaller at higher exposure rates because of the lower values of the diffusion and drift length

  15. Investigation of microstructure and morphology for the Ge on porous silicon/Si substrate hetero-structure obtained by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Gouder, S. [IM2NP Aix-Marseille Universités, UMR CNRS n°7334, Faculté des Sciences St-Jérôme - Case 142, 13397 Marseille Cedex 20 France (France); Electronics Department, University Hadj Lakhdar, Batna 05000 (Algeria); Mahamdi, R. [Electronics Department, University Hadj Lakhdar, Batna 05000 (Algeria); Aouassa, M.; Escoubas, S.; Favre, L.; Ronda, A.; Berbezier, I. [IM2NP Aix-Marseille Universités, UMR CNRS n°7334, Faculté des Sciences St-Jérôme - Case 142, 13397 Marseille Cedex 20 France (France)

    2014-01-01

    Thick porous silicon (PS) buffer layers are used as sacrificial layers to epitaxially grow planar and fully relaxed Ge membranes. The single crystal Ge layers have been deposited by molecular beam epitaxy (MBE) on PS substrate. During deposition, the pore network of PS layers has been filled with Ge. We investigate the structure and morphology of PS as fabricated and after annealing at various temperatures. We show that the PS crystalline lattice is distorted and expanded in the direction perpendicular to the substrate plane due to the presence of chemisorbed –OH. An annealing at high temperature (> 500 °C), greatly changes the PS morphology and structure. This change is marked by an increase of the pore diameter while the lattice parameter becomes tensily strained in the plane (compressed in the direction perpendicular). The morphology and structure of Ge layers are investigated by transmission electron microscopy, high resolution X-ray diffraction and atomic force microscopy as a function of the deposition temperature and deposited thickness. The results show that the surface roughness, level of relaxation and Si-Ge intermixing (Ge content) depend on the growth temperature and deposited thickness. Two sub-layers are distinguished: the layer incorporated inside the PS pores (high level of intermixing) and the layer on top of the PS surface (low level of intermixing). When deposited at temperature > 500 °C, the Ge layers are fully relaxed with a top Si{sub 1−x}Ge{sub x} layer x = 0.74 and a very flat surface. Such layer can serve as fully relaxed ultra-thin SiGe pseudo-substrate with high Ge content. The epitaxy of Ge on sacrificial soft PS pseudo-substrate in the experimental conditions described here provides an easy way to fabricate fully relaxed SiGe pseudo-substrates. Moreover, Ge thin films epitaxially deposited by MBE on PS could be used as relaxed pseudo-substrate in conventional microelectronic technology. - Highlights: • We have developed a rapid

  16. Impact of field limiting ring technique on breakdown voltage of irradiated Si sensors

    CERN Document Server

    Bhardwaj, Ashutosh; Jha Manoj, Kr; Kumar, Ashish; Ranjan, Kirti; Shivpuri, RK; Srivastava-Ajay, K

    2003-01-01

    The very intense radiation environment of high luminosity future colliding beam experiments (like LHC) makes radiation hardness the most important issue for Si detectors. One of the central issues concerning all LHC experiments is the breakdown performance of these detectors. The major macroscopic effect of radiation damage in determining the viability of long-term operation of Si sensors is the change in effective charge carrier concentration (N //e//f//f), leading to type-inversion. Floating field limiting guard rings have been established as means of improving the breakdown performance of Si detectors. In this work the usefulness of the guard rings in improving the breakdown performance of detectors after type-inversion has been studied. Simulations are carried out to study the effect of change in N//e//f//f on the breakdown performance of optimized guard ring structure using two dimensional device simulation program, TMA- MEDICI. Detailed calculations using Hamburg Model have allowed the parameterization ...