WorldWideScience

Sample records for si ni cu

  1. Microstructure and mechanical properties of Cu-Ni-Si alloys

    International Nuclear Information System (INIS)

    Monzen, Ryoichi; Watanabe, Chihiro

    2008-01-01

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni 2 Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 μm shows higher stress relaxation resistance than the alloy with a small grain size of 10 μm because of a lower density of mobile dislocations in the former alloy

  2. Microstructure and mechanical properties of Cu-Ni-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Monzen, Ryoichi [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)], E-mail: monzen@t.kanazawa-u.ac.jp; Watanabe, Chihiro [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2008-06-15

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni{sub 2}Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 {mu}m shows higher stress relaxation resistance than the alloy with a small grain size of 10 {mu}m because of a lower density of mobile dislocations in the former alloy.

  3. Promising Cu-Ni-Cr-Si alloy for first wall ITER applications

    International Nuclear Information System (INIS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-01-01

    Precipitation-hardened Cu-Ni-Cr-Si alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of Cu-Ni-Cr-Si alloy at 250-300 C is observed. Mechanical properties of Cu-Ni-Cr-Si alloy neutron irradiated to a dose of ∝0.2 dpa at 293 C are investigated. Embrittlement of Cu-Ni-Cr-Si alloy can be avoided by annealing. (orig.)

  4. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    Science.gov (United States)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  5. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  6. Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases

    International Nuclear Information System (INIS)

    Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.

    2010-01-01

    Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.

  7. Influence of the Si content on the microstructure and mechanical properties of Ti-Ni-Cu-Si-Sn nanocomposite alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fornell, J., E-mail: Jordinafornell@gmail.com [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Van Steenberge, N. [OCAS N.V., Pres. J.F. Kennedylaan 3, BE-9060 Zelzate (Belgium); Surinach, S.; Baro, M.D. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Sort, J. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institucio Catalana de Recerca i Estudis Avancats (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We study the effects of Si addition of Ti-Ni-Cu-Si-Sn alloy. Black-Right-Pointing-Pointer The microstructure evolution is correlated with the obtained mechanical and elastic properties. Black-Right-Pointing-Pointer Higher Young's modulus and larger hardness values are obtained in samples with higher Si contents. - Abstract: (Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4}){sub 100-x}Si{sub x} (x = 0, 2, 4 and 6) alloys were prepared by levitation melting mixtures of the high purity elements in an Ar atmosphere. Rods of 3 mm in diameter were obtained from the melt by copper mould casting. The effects of Si addition on the microstructure, elastic and mechanical properties of the Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} alloy were investigated by scanning electron microscopy, X-ray diffraction, acoustic measurements and nanoindentation. The main phases composing the Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} alloy are B2 NiTi, B19 Prime NiTi and tetragonal Ti{sub 2}Ni. Additional phases, like Ti{sub 5}Si{sub 3} or Ni{sub 2}Ti{sub 2}Si, become clearly visible in samples with higher Si contents. The microstructure evolution is correlated with the obtained mechanical and elastic properties. These alloys exhibit very high hardness values, which increase with the Si content, from 9 GPa (for x = 0) to around 10.5 GPa (for x = 6). The Young's modulus of Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} (around 115 GPa) also increases significantly with Si addition, up to 160 GPa for x = 6.

  8. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys

    Science.gov (United States)

    Kim, Hyung Giun; Lee, Taeg Woo; Kim, Sang Min; Han, Seung Zeon; Euh, Kwangjun; Kim, Won Yong; Lim, Sung Hwan

    2013-01-01

    The mechanical and electrical properties of Cu-5.98Ni-1.43Si and Cu-5.98Ni-1.29Si-0.24Ti alloys under heat treatment at 400 and 500 °C after hot- and cold-rolling were investigated, and a microstructural analysis using transmission electron microscopy was performed. Cu-5.98Ni-1.29Si-0.24Ti alloy displayed the combined Vickers hardness/electrical conductivity value of 315.9 Hv/57.1%IACS. This was attributed to a decrease of the solution solubility of Ni and Si in the Cu matrix by the formation of smaller and denser δ-Ni2Si precipitates. Meanwhile, the alloyed Ti was detected in the coarse Ni-Si-Ti phase particles, along with other large Ni-Si phase particles, in Cu-5.98Ni-1.29Si-0.24Ti.

  9. Microstructure and Mechanical Characterization of a Dissimilar Friction-Stir-Welded CuCrZr/CuNiCrSi Butt Joint

    Directory of Open Access Journals (Sweden)

    Youqing Sun

    2018-05-01

    Full Text Available Dissimilar CuNiCrSi and CuCrZr butt joints were successfully frictionstirwelded at constant welding speed of 150 mm/min and rotational speed of 1400 rpm with the CuCrZr alloy or the CuNiCrSi alloy located on the advancing side (AS. The microstructure and mechanical properties of joints were investigated. When the CuCrZr alloy was located on the AS, the area of retreating material in the nugget zone was a little bigger. The Cr solute-rich particles were found in the nugget zone on CuCrZr side (CuCrZr-NZ while a larger density of solute-rich particles identified as the concentration of Cr and Si element was found in the nugget zone on CuNiCrSi side (CuNiCrSi-NZ. The Cr precipitates and δ-Ni2Si precipitates were found in the base metal on CuNiCrSi side (CuNiCrSi-BM but only Cr precipitates can be observed in the base metal on CuCrZr side (CuCrZr-BM. Precipitates were totally dissolved into Cu matrix in both CuCrZr-NZ and CuNiCrSi-NZ, which led to a sharp decrease in both micro-hardness and tensile strength from BM to NZ. When the CuNiCrSi was located on the AS, the tensile testing results showed the fracture occurred at the CuCrZr-NZ, while the fracture was found at the mixed zone of CuNiCrSi-NZ and CuCrZr-NZ for the other case.

  10. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. The crystallization of (NiCu)ZrTiAlSi glass/crystalline composite

    International Nuclear Information System (INIS)

    Czeppe, T.; Sypien, A.; Ochin, P.; Anastassova, S.

    2007-01-01

    Alloys of composition (Ni 1-x Cu x ) 60 Zr 18 Ti 13 A1 5 Si 4 were investigated in the form of ribbons and massive samples. The microstructure of the massive samples consists of dendritic crystals in the amorphous or nanocrystalline matrix. The amount of the amorphous phase is the lowest in the sample with the highest Cu content. The segregation in the liquid phase, leading to the local differences in density and the composition of the crystallizing dendrites in the samples crystallized in the copper mould was shown. The typical compositions of the multi-component crystals could be distinguished; one with the increased content of aluminum, the second with the high content of silicon and third, with the high content of (NiCu) and (ZrTi). The cubic phase Ni(Cu)Ti(Zr) with Cu and Zr dissolved could be identified. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  13. Photoconducting and photocapacitance properties of Al/p-CuNiO{sub 2}-on-p-Si isotype heterojunction photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, I.A. [Physics Department, College of Science and Humanitarian Studies, Salman bin Abdulaziz University (Saudi Arabia); Physics Department, Faculty of Science, Damietta University (Egypt); Çavaş, Mehmet [Department of Mechatronics, Faculty of Technology, Firat University, Elazig (Turkey); Gupta, R. [Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762 (United States); Fahmy, T. [Physics Department, College of Science and Humanitarian Studies, Salman bin Abdulaziz University (Saudi Arabia); Polymer Research Group, Physics Department, Faculty of Science, Mansoura University (Egypt); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Physics Department, Faculty of Science, Firat University, Elazig (Turkey)

    2015-07-25

    Highlights: • The CuNiO{sub 2} thin film was prepared by sol gel method. • The diode has a high photosensitivity value of 1.02 × 10{sup 3} under 100 mW/cm{sup 2}. • Al/p-Si/CuNiO{sub 2}/Al can used in optoelectronic device applications. - Abstract: Thin film of CuNiO{sub 2} was prepared by sol gel method to fabricate a photodiode. The surface morphology of the CuNiO{sub 2} thin film was investigated by atomic force microscopy (AFM). AFM results indicated that CuNiO{sub 2} film was formed from the nanoparticles and the average size of the nanoparticles was about 115 nm. The optical band gap of CuNiO{sub 2} film was calculated using optical data and was found to be about 2.4 eV. A photodiode having a structure of Al/p-Si/CuNiO{sub 2}/Al was prepared. The electronic parameters such as ideality factor and barrier height of the diode were determined and were obtained to be 8.23 and 0.82 eV, respectively. The interface states properties of the Al/p-Si/CuNiO{sub 2}/Al diode was performed using capacitance–voltage and conductance–voltage characteristics. The series resistance of the Al/p-Si/CuNiO{sub 2}/Al photo diode was observed to be decreasing with increasing frequency. The diode exhibited a photoconducting behavior with a high photosensitivity value of 1.02 × 10{sup 3} under 100 mW/cm{sup 2}. The obtained results indicate that Al/p-Si/CuNiO{sub 2}/Al can used in optoelectronic device applications.

  14. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  15. Characterization of uniaxial fatigue behavior of precipitate strengthened Cu-Ni-Si alloy (SICLANIC(TM

    Directory of Open Access Journals (Sweden)

    B. Saadouki

    2018-01-01

    Full Text Available Fatigue tests were conducted on cylindrical bars specimens to understand the fatigue behavior of SICLANIC. Although it displays good resistance in monotonic tension, this material weakens and shows a softening in repeated solicitation. This has been verified through a SEM observation, the Cu-Ni-Si alloy presents transgranular failure by cleavage. The MansonCoffin diagram exhibited the plastic deformation accommodation. The plastic deformation becomes periodic and decreases progressively as the cycle number increases. The approximations of Manson Coffin give fatigue parameters values which are in good agreement with the experience

  16. On the annealing-induced enhancement of the interface properties of NiO:Cu/wet-SiOx/n-Si tunnelling junction solar cells

    Science.gov (United States)

    Yang, Xueliang; Liu, Wei; Chen, Jingwei; Sun, Yun

    2018-04-01

    Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.

  17. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  18. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  19. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Chakrabarti, P., E-mail: pchakrabarti.ece@iitbhu.ac.in [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-08-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  20. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    International Nuclear Information System (INIS)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta; Chakrabarti, P.

    2016-01-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  1. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    Directory of Open Access Journals (Sweden)

    He Kezhun

    2011-08-01

    Full Text Available Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si particle, eutectic Si, Al7Cu4Ni, Al5Cu2Mg8Si6, Al15(Cr, Fe, Ni, Cu4Si2 and Al2Cu. The Al2Cu phase dissolves completely after being solution treated for 2 h at 500℃, while the eutectic Si, Al5Cu2Mg8Si6 and Al15(Cr, Fe, Ni, Cu4Si2 phases are insoluble. In addition, the Al7Cu4Ni phase is substituted by the Al3CuNi phase. The α-aluminum dendrite network disappears when the solution temperature is increased to 530℃. Incipient melting of the Al2Cu-rich eutectic mixture occurrs at 520℃, and melting of the Al5Cu2Mg8Si6 and Al3CuNi phases is observed at a solution temperature of 530℃. The void formation of the structure and deterioration of the mechanical properties are found in samples solution treated at 530℃.

  2. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    International Nuclear Information System (INIS)

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al 7 Cu 4 Ni, Al 4 Cu 2 Mg 8 Si 7 , Al 2 Cu, Al 15 Si 2 (FeMn) 3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 deg. C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si.

  3. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries

    Science.gov (United States)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-11-01

    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  4. In-situ GISAXS study on the oxidation behavior of liquid Ga on Ni(Cu)/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weidong [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Liu, Mingling [Department of Mechanical and Electrical Engineering, Qinhuangdao Institute of Technology, Qinhuangdao 066100 (China); Wu, Zhaojun [Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006 (China); Xing, Xueqing; Mo, Guang; Wu, Zhonghua [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Hong, E-mail: lhong68@sina.com.cn [School of Biomedical Engineering, Capital Medical University, Beijing 100069 (China)

    2015-11-01

    Liquid Ga could be used as a flexible heat-transfer medium or contact medium in the synchrotron-radiation-based instruments. The chemical stability of liquid Ga on other metal surface determines the serviceability of liquid Ga. In this paper, the oxidation evolutions of liquid Ga on Ni and Cu substrates have been investigated by in-situ grazing incidence small angle X-ray scattering (GISAXS) as a function of substrate temperature. The liquid Ga on Ni and Cu substrates shows different oxidation behaviors. A successive and slower oxidation from oxide clusters to oxide layer takes place with temperature increasing from 25 to 190 °C on the surface of the Ga/Ni/Si specimen, but a quick oxidation occurs on the entire surface of the Ga/Cu/Si specimen at the initial 25 °C. The subsequent heating increases the surface roughness of both liquid Ga, but increases simultaneously the surface curvature of the Ga/Cu/Si specimen. The understanding of the substrate-dependent oxidation behavior of liquid Ga is beneficial to its application as a heat-transfer medium.

  5. Assessment of AlSi21CuNi Alloy’s Quality with Use of ATND Method

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2013-12-01

    Full Text Available Majority of combustion engines is produced (poured from Al-Si alloys with low thermal expansion coefficient, so called piston silumins. Hypereutectic alloys normally contain coarse, primary angular Si particles together with eutectic Si phase. The structure and mechanical properties of these alloys are highly dependent upon cooling rate, composition, modification and heat-treatment operations. In the paper one depicts use of the ATND method (thermal-voltage-derivative analysis and regression analysis to assessment of quality of the AlSi21CuNi alloy modified with Cu-P on stage of its preparation, in aspect of obtained mechanical properties (R0,02, Rm, A5, HB. Obtained dependencies enable prediction of mechanical properties of the investigated alloy in laboratory conditions, using values of characteristic points from curves of the ATND method.

  6. Printed Nano Cu and NiSi Contacts and Metallization for Solar Cell Modules

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, Michael John [Intrinsiq Materials Inc., Rochester, NY (United States)

    2017-10-11

    There has long been a desire to replace the front-side silver contacts in silicon solar cells. There are two driving forces to do this. First, silver is an expensive precious metal. Secondly, the process to use silver requires that it be formulated into screen print pastes that need a lead-containing glass frit, and the use of lead is forbidden in many parts of the world. Because of the difficulty in replacing these pastes and the attendant processes, lead exemptions have granted to solar cells. Copper has been the replacement metal of choice because it is significantly cheaper than silver and is very close to silver in electrical conductivity. Using processes which do not use lead, obviates it as an environmental contaminant. However, copper cannot be in contact with the silicon of the cell since it migrates through the silicon and causes defects which severely damage the efficiency of the cell. Hence, a conductive barrier must be placed between the copper and silicon and nickel, and especially nickel silicide, have been shown to be materials of choice. However, nickel must be sputtered and annealed to create the nickel silicide barrier, and copper has either been sputtered or plated. All of these processes require expensive, specialized equipment and plating uses environmentally unfriendly chemicals. Therefore, Intrinsiq proposed using printed nano nickel silicide ink (which we had previously invented) and printed nano copper ink to create these electrodes and barriers. We found that nano copper ink could be readily printed and sintered under a reducing atmosphere to give highly conductive grids. We further showed that nano nickel silicide ink could be readily jetted into grids on top of the silicon cell. It could then be annealed to create a barrier. However, it was found that the combination of printed NiSi and printed Cu did not give contact resistivity good enough to produce efficient cells. Only plated copper on top of the printed NiSi gave useful contact

  7. Electroless Ni-B plating on SiO2 with 3-aminopropyl-triethoxysilane as a barrier layer against Cu diffusion for through-Si via interconnections in a 3-dimensional multi-chip package

    International Nuclear Information System (INIS)

    Ikeda, Akihiro; Sakamoto, Atsushi; Hattori, Reiji; Kuroki, Yukinori

    2009-01-01

    Electroless Ni-B was plated on SiO 2 as a barrier layer against Cu diffusion for through-Si via (TSV) interconnections in a 3-dimensional multi-chip package. The electroless Ni-B was deposited on the entire area of the SiO 2 side wall of a deep via with vapor phase pre-deposition of 3-aminopropyl-triethoxysilane on the SiO 2 . The carrier lifetimes in the Si substrates plated with Ni-B/Cu did not decrease with an increase in annealing temperature up to 400 deg. C . The absence of degradation of carrier lifetimes indicates that Cu atoms did not diffuse into the Si through the Ni-B. The advantages of electroless Ni-B (good conformal deposition and forming an effective diffusion barrier against Cu) make it useful as a barrier layer for TSV interconnections in a 3-dimensional multi-chip package

  8. Nanoindentation studies on Cu-Ti-Zr-Ni-Si-Sn bulk metallic glasses

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Belger, A.; Paufler, P.; Kim, D.H.

    2007-01-01

    In the present investigation, Cu 47 Ti 33 Ni 6 Sn 2 Si 1 (numbers indicate at.%) bulk metallic glass (BMG), fabricated by injection casting has been used for indentation experiments. Microindentation and nanoindentation tests were conducted to study the indentation responses of this material. The nanohardness and the Young's modulus were calculated following the standard procedure in literature. Around the indent, shear bands can be clearly observed under scanning electron microscopy examination. Atomic-force microscopy shows the pile of the material in a step-wise manner. The thinned sample near the indent shows the evolution of nanocrystals (∼20-30 nm) by transmission electron microscopy. During nanoindentation (in single- and multi-indent mode) experiments, the load-displacement P-h curves show displacement bursts, which are also known as pop-ins or serrations. The total displacement during indentation can be accounted for by sum total effect of the individual displacement of all the displacement-bursts observed in the P-h curve. Thus the plastic deformation of this glassy material appears to proceed in a discrete manner unlike ductile metallic alloys

  9. Distribution of oxides in a Zr-Cu-Ni-Al-Nb-Si bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Jochen; Busch, Ralf [Chair of Metallic Materials, Saarland University, PO Box 151150, 66041 Saarbruecken (Germany); Mueller, Frank; Huefner, Stefan [Chair of Experimental Physics, Saarland University, PO Box 151150, 66041 Saarbruecken (Germany)

    2010-07-01

    The course of oxide presence with distance from the sample surface and bonding partner was studied for the bulk metallic glass with the nominal composition Zr{sub 57.9}Cu{sub 15.4}Ni{sub 12.7}Al{sub 10.2}Nb{sub 2.8}Si{sub 1} (at%) by X-ray photoelectron spectroscopy (XPS). Investigated specimens are taken from vacuum quench-cast rods subjected to oxidation at room temperature and atmosphere. Binding energies were determined in various depths using ion beam ablation of up to 100 nanometers. XPS spectra confirm oxidation primarily of the pure zirconium and aluminum constituents, all other peaks correspond to metallic bonds. While the surface area shows a passivating zirconia layer a few nanometers thick, oxygen is bonded predominantly with aluminum inside the bulk. Since the concentration of oxygen is a crucial factor in the crystallization behavior of bulk metallic glass forming liquids on basis of oxygen affine metals, so far only high purity materials were thought to be suitable. The findings in this study, however, are promising for alloys with industrial grade elements with sufficient glass forming ability. Comparisons of the alloy with differing oxygen content support the conclusion that aluminum acts as an appropriate scavenger for both adsorbed and large amounts of intrinsic oxygen in zirconium based amorphous metals.

  10. Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu-Ni-Si alloy

    Science.gov (United States)

    Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping

    2017-09-01

    Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.

  11. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  12. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  13. Sequential Condensation and Hydrodeoxygenation Reaction of Furfural-Acetone Adduct over Mix Catalysts Ni/SiO2 and Cu/SiO2 in Water

    Directory of Open Access Journals (Sweden)

    Siti Mariyah Ulfa

    2018-05-01

    Full Text Available Sequential condensation and hydrodeoxygenation reaction were perform using autoclave batch reactor in the presence of water as a solvent. The condensation of furfural and acetone was performed using MgO catalyst followed by hydrodeoxygenation using mix catalyst Ni/SiO2 and Cu/SiO2. The catalyst was prepared by wet-impregnation method and analyzed by XRD, SEM-EDX as well as BET surface. Condensation of furfural and acetone in 1:2 mol ratio was carried out by reflux gave 4-(2-furyl-3-buten-2-one and 1,5-bis-(2-furanyl-1,4-pentadien-3-one. The condensation product was then subjected for hydrodeoxygenation using batch reactor, catalyzed by mixed Ni/SiO2 and Cu/SiO2 at 150 and 180 °C for 2 h. The product identified as alkane derivatives with the conversion at 38.83 and 50.35%, respectively. The selectivity of hydrocarbon is 61.39% at 150 °C and 16.55% at 180 °C. Increasing the reaction temperature to 200 °C did not give any products except the recovery of the precursor. It showed that higher temperature enhanced the catalyst activity but the selectivity is controlled by low reaction temperature.

  14. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    Science.gov (United States)

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  15. Atomic kinetic Monte Carlo model based on ab initio data: Simulation of microstructural evolution under irradiation of dilute Fe-CuNiMnSi alloys

    International Nuclear Information System (INIS)

    Vincent, E.; Becquart, C.S.; Domain, C.

    2007-01-01

    The embrittlement of pressure vessel steels under radiation has been long ago correlated with the presence of Cu solutes. Other solutes such as Ni, Mn and Si are now suspected to contribute also to the embrittlement. The interactions of these solutes with radiation induced point defects thus need to be characterized properly in order to understand the elementary mechanisms behind the formation of the clusters formed upon radiation. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si) in order to build a database used to parameterise an atomic kinetic Monte Carlo model. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model are presented

  16. Atomic kinetic Monte Carlo model based on ab initio data: Simulation of microstructural evolution under irradiation of dilute Fe CuNiMnSi alloys

    Science.gov (United States)

    Vincent, E.; Becquart, C. S.; Domain, C.

    2007-02-01

    The embrittlement of pressure vessel steels under radiation has been long ago correlated with the presence of Cu solutes. Other solutes such as Ni, Mn and Si are now suspected to contribute also to the embrittlement. The interactions of these solutes with radiation induced point defects thus need to be characterized properly in order to understand the elementary mechanisms behind the formation of the clusters formed upon radiation. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si) in order to build a database used to parameterise an atomic kinetic Monte Carlo model. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model are presented.

  17. Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoxia; Zhou, Xuan; Yu, Shuaishuai; Wei, Congcong; Xu, Jing; Wang, Yan, E-mail: mse_wangy@ujn.edu.cn

    2017-05-15

    The effects of annealing treatment on the microstructure, thermal stability, and magnetic properties of the mechanical alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys (HEAs) have been investigated in this project. The simple crystallization products in FeSiBAlNi amorphous HEAs with Co and Ag addition reveal the high phase stability during heating process. At high annealing treatment, the crystallized HEAs possess the good semi-hard magnetic property. It can conclude that crystallization products containing proper FeSi-rich and FeB-rich phases are beneficial to improve the magnetic property. Annealing near the exothermic peak temperature presents the best enhancing effect on the semi-hard magnetic property of FeSiBAlNiCo. It performs both large saturated magnetization and remanence ratio of 13.0 emu/g and near 45%, which exhibit 465% and 105% enhancement compared with as-milled state, respectively. - Highlights: • Co, Cu, Ag additions affect crystallization behavior of FeSiBAlNi amorphous HEAs. • Crystallization products in FeSiBAlNi Co/Ag reveal high phase stability. • Proper FeSi-rich and FeB-rich phases are beneficial to improve magnetic property. • Annealing treatment improves semi-hard magnetic property compared to as-milled state. • Annealing near exothermic peak temperature shows best enhancing effect on magnetism.

  18. Internal friction in cold-rolled metallic glasses Cu50Ti50 and Ni78Si8B14

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Khonik, V.A.; Ryabtseva, T.N.; Belyavskii, V.I.

    1989-01-01

    The influence of cold rolling on the low temperature (30 to 300 K) internal friction of metallic glasses Cu 50 Ti 50 and Ni 78 Si 8 B 14 is investigated. It is shown that cold rolling of both metallic glasses up to 2 to 6% results in the appearance of a high relaxation damping peak around 260 to 280 K. The internal friction background below the peak shows a strong amplitude dependence. In highly predeformed specimens (∼ 16%) the internal friction peak is absent. Electron irradiation (2 MeV, 10 19 cm -2 ) leads to the suppression of the deformation-induced internal friction peak. The results are interpreted in the framework of the dislocation models of plastic flow of metallic glasses. (author)

  19. Determination of Ni and Cu content of steel and pig iron samples by Si/Li/X-ray spectrometer

    International Nuclear Information System (INIS)

    Kis-Varga, M.; Bacso, J.

    1976-01-01

    Results connected with concentration measurements of Ni and Cu in low alloy steel and pig iron samples are presented. The samples were analysed by a Si(Li) detector X-ray spectrometer developed by the authors. The characteristic X-rays of elements were excited by a 5 mCi activity ring-shaped 125 I radioisotope source which emits the K-X-rays of Te and a weak γ-line of 35 keV energy. The semiconductor detector X-ray spectrometer can be used even more advantageously for analysis of major components of metallurgical samples. The method for quantitative analysis needed only one or a small number of standards. The interelement disturbing effects were mathematically corrected with computer

  20. Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning

    International Nuclear Information System (INIS)

    Rajabi, M.; Simchi, A.; Davami, P.

    2008-01-01

    Al-20Si-5Fe-2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 deg. C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110-150 nm) and iron-containing intermetallic particles were noticed in the microstructure of the consolidated ribbons. An improved strength was achieved by alloying of Al-20Si-5Fe with Cu, Ni, and Cr. Nickel was found to be the most effective element in increasing the maximum stress, particularly at elevated temperatures

  1. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  2. Glass forming ability and mechanical properties of the NiZrTiSi amorphous alloys modified with Al, Cu and Nb additions

    International Nuclear Information System (INIS)

    Czeppe, Tomasz; Ochin, Patrick; Sypien, Anna

    2007-01-01

    The composition of the amorphous alloy Ni 59 Zr 20 Ti 16 Si 5 was modified with 2-9 at.% additions of Cu, Al and Nb. The ribbons and the bars 2.7 mm in diameter were prepared by melt spinning and injection casting from the alloys of the compositions: Ni 56 Zr 18 Ti 16 Si 5 Al 3 Cu 2 , Ni 56 Zr 18 Ti 13 Al 6 Si 5 Cu 2 , Ni 56 Zr 16 Ti 12 Nb 9 Al 3 Cu 2 Si 2 and Ni 56 Zr 16 Ti 12 Nb 6 Al 6 Cu 2 Si 2 . All ribbons were amorphous up to the resolution of the X-ray diffraction and conventional transmission electron microscopy, however rods were partially crystalline. Increase of Al content lowered and Nb content slightly increased crystallization start temperature T x and glass transition temperature T g . The influence of composition changes on the overcooled liquid range ΔT was more complicated. The increase of Nb and decrease of Ti and Zr content led to the remarkable increase of the liquidus temperature T l . As a result GFA calculated as T g /T l was lowered to the values about 0.63 for 6 and 9 at.% Nb addition. The activation energies for primary crystallization in alloy with 6 at.% Al and 6 at.% of Nb, were determined. The changes of tensile test strength and microhardness with Al and Nb additions showed hardening effect caused by Nb additions and increase in fracture strength with increasing Al content

  3. Low energy ion beam modification of Cu/Ni/Si(100) surface

    Indian Academy of Sciences (India)

    The deposited sample exhibits the formation of CuO nano-structures of size 40 nm on Cu surface and after sputtering ... in industries and also because of challenges they offer in .... uration occurs via charge transfer from metal 3d to ligand. 2p.

  4. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    OpenAIRE

    He Kezhun; Yu Fuxiao; Zhao Dazhi

    2011-01-01

    Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC) cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si p...

  5. Effects of the Buffer Layers on the Adhesion and Antimicrobial Properties of the Amorphous ZrAlNiCuSi Films

    Science.gov (United States)

    Chiang, Pai-Tsung; Chen, Guo-Ju; Jian, Sheng-Rui; Shih, Yung-Hui

    2011-06-01

    To extend the practical applications of the bulk metallic glasses (BMGs), the preparation of the metallic glass coatings on various substrates becomes an important research issue. Among the interfacial properties of the coatings, the adhesion between films and substrates is the most crucial. In this study, amorphous Zr61Al7.5Ni10Cu17.5Si4 (ZrAlNiCuSi) thin films were deposited on SUS304 stainless steel at various sputtering powers by DC sputtering. According to the scratch tests, the introduction of the Cr and Ti buffer layers effectively improves the adhesion between the amorphous thin films and substrate without changing the surface properties, such as roughness and morphology. The antimicrobial results show that the biological activities of these microbes, except Acinetobacter baumannii, are effectively suppressed during the test period.

  6. Effects of He implantation on radiation induced segregation in Cu-Au and Ni-Si alloys

    Science.gov (United States)

    Iwase, A.; Rehn, L. E.; Baldo, P. M.; Funk, L.

    Effects of He implantation on radiation induced segregation (RIS) in Cu-Au and Ni-Si alloys were investigated using in situ Rutherford backscattering spectrometry during simultaneous irradiation with 1.5-MeV He and low-energy (100 or 400-keV) He ions at elevated temperatures. RIS during single He ion irradiation, and the effects of pre-implantation with low-energy He ions, were also studied. RIS near the specimen surface, which was pronounced during 1.5-MeV He single-ion irradiation, was strongly reduced under low-energy He single-ion irradiation, and during simultaneous irradiation with 1.5-MeV He and low-energy He ions. A similar RIS reduction was also observed in the specimens pre-implanted with low-energy He ions. The experimental results indicate that the accumulated He atoms cause the formation of small bubbles, which provide additional recombination sites for freely migrating defects.

  7. Simulation of the microstructural evolution under irradiation of dilute Fe-CuNiMnSi alloys by atomic kinetic monte Carlo model based on ab initio data

    International Nuclear Information System (INIS)

    Vincent, E.; Domain, C.; Vincent, E.; Becquart, C.S.

    2008-01-01

    Full text of publication follows. The embrittlement and the hardening of pressure vessel steels under radiation has been correlated with the presence solutes such as Cu, Ni, Mn and Si. Indeed it has been observed that under irradiation, these solutes tend to gather to form more or less dilute clusters. The interactions of these solutes with radiation induced point defects thus need to be characterised properly in order to understand the elementary mechanisms behind the formation of these clusters. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects (vacancies as well as interstitials) with solute atoms in dilute FeX alloys (X Cu, Mn, Ni or Si) in order to build a database used to parameterize an atomic kinetic Monte Carlo model. The model has been applied to simulate thermal ageing as well as irradiation conditions in dilute Fe-CuNiMnSi alloys. Results obtained with this model will be presented. (authors)

  8. Gd-Ni-Si system

    International Nuclear Information System (INIS)

    Bodak, O.I.; Shvets, A.F.

    1983-01-01

    By X-ray phase analysis method isothermal cross section of phase diagram of the Gd-Ni-Si system at 870 K is studied. The existence of nine previously known compounds (GdNisub(6.72)Sisub(6.28), GdNi 10 Si 2 , GdNi 5 Si 3 , GdNi 4 Si, GdNi 2 Si 2 , GdNiSi 3 , GdNiSi 2 , Gd 3 Ni 6 Si 2 and GdNiSi) is confirmed and three new compounds (GdNisub(0.2)Sisub(1.8), Gdsub(2)Nisub(1-0.8)Sisub(1-1.2), Gd 5 NiSi 4 ) are found. On the base of Gd 2 Si 3 compound up to 0.15 at. Ni fractions, an interstitial solid solution is formed up to 0.25 at Ni fractions dissolution continues of substitution type. The Gd-Ni-Si system is similar to the Y-Ni-Si system

  9. Interdiffusion studies on high-Tc superconducting YBa2Cu3O7-δ thin films on Si(111) with a NiSi2/ZrO2 buffer layer

    DEFF Research Database (Denmark)

    Aarnink, W.A.M.; Blank, D.H.A.; Adelerhof, D.J.

    1991-01-01

    Interdiffusion studies on high-T(c) superconducting YBa2Cu3O7-delta thin films with thickness in the range of 2000-3000 angstrom, on a Si(111) substrate with a buffer layer have been performed. The buffer layer consists of a 400 angstrom thick epitaxial NiSi2 layer covered with 1200 angstrom...... of polycrystalline ZrO2. YBa2Cu3O7-delta films were prepared using laser ablation. The YBa2Cu3O7-delta films on the Si/NiSi2/ZrO2 substrates are of good quality; their critical temperatures T(c,zero) and T(c,onset) have typical values of 85 and 89 K, respectively. The critical current density j(c) at 77 K equaled 4...... x 10(4) A/cm2. With X-ray analysis (XRD), only c-axis orientation has been observed. The interdiffusion studies, using Rutherford backscattering spectrometry (RBS) and scanning Auger microscopy (SAM) show that the ZrO2 buffer layer prevents severe Si diffusion to the YBa2Cu3O7-delta layer, the Si...

  10. Thermoelectric properties of the intermediate valent cerium intermetallic Ce2Ni3Si5 doped with Pd, Co, and Cu

    International Nuclear Information System (INIS)

    Proctor, K.J.; Regan, K.A.; Littman, A.; DiSalvo, F.J.

    1999-01-01

    The nickel site of Ce 2 Ni 3 Si 5 , which has the orthorhombic U 2 Co 3 Si 5 structure type, can be fully substituted with palladium and cobalt and partially substituted with copper. The volume of the lattice expands from 635 A 3 to 704 A 3 upon substitution with palladium while the volume contraction with cobalt and copper substitutions are much smaller. The thermopower of Ce 2 Ni 3 Si 5 is 32 μV/K at room temperature and increases to 60 μV/K at 40 K. This relatively high thermopower is decreased by substitution of the three metals studied here. The relatively temperature independent thermal conductivity of between 50 and 60 mW/Kcm for Ce 2 Ni 3 Si 5 is decreased in magnitude by substitution of the heavier palladium, especially at temperatures below 150 K, and is changed to typical metallic behavior by cobalt substitution. Upon cooling from room temperature, the electrical resistivity of Ce 2 Ni 3 Si 5 displays a broad plateau of 300 μΩcm until a precipitous drop below 120 K, indicative of coherence effects in the Kondo interactions between the cerium moments and conduction electrons. Copper and palladium substitutions result in a gradual reduction in the effects of cerium intermediate valence, whereas cobalt substitution drives the resistivity to metallic behavior but with a relatively large room temperature resistivity of 400 μΩcm. (orig.)

  11. Die-cast heterophase composites with AlSi13Mg1CuNi matrix

    Directory of Open Access Journals (Sweden)

    M. Dyzia

    2010-01-01

    Full Text Available On the basis of the performed tests, an advantageous interaction of glassy carbon particles in a couple consisting of a heterophase composite and a spheroidal cast iron has been corroborated. It was found that, the presence of glassy carbon in the heterophase composite (SiC+C affects the stabilization of the friction coefficient value as a function of the friction distance and reduces the intensity of the wearing-in stage of the interacting surfaces. Both a decrease of the friction coefficient and the wear of the heterophase composites may be connected with the carbon particles' chipping effect and the deposition of its fragments on the surface of the interacting components of the friction couple, which forms a kind of a solid lubricating agent in the system. This should allow applying of this material to the composite piston - cylinder sleeve system in piston air-compressors. Further works will concern the selection of the matrix alloy composition with the purpose of reducing the phenomenon of particles chipping during machining. It seems that one of the possibilities is the application of a more plastic matrix and optimizing the fraction of reinforcing phases and their gradient distribution in the casting.

  12. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    Science.gov (United States)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  13. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy

    Science.gov (United States)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo

    2015-02-01

    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  14. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Eskin, D.G. [Netherlands Institute for Metals Research, Rotterdamseweg 137, 2628AL Delft (Netherlands)]. E-mail: deskin@nimr.nl; Avxentieva, N.N. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation)

    2005-10-15

    The evaluation of phase equilibria in quinary systems that constitute the commercially important Al-Cu-Fe-Mg-Ni-Si alloying system is performed in the compositional range of casting alloys by means of metallography, electron probe microanalysis, X-ray diffractometry, differential scanning calorimetry, and by the analysis of phase equilibria in the constituent systems of lesser dimensionality. Suggested phase equilibria are illustrated by bi-, mono- and invariant solidification reactions, polythermal diagrams of solidification, distributions of phase fields in the solid state, and isothermal and polythermal sections. Phase composition of as-cast alloys is analyzed in terms of non-equilibrium solidification. It is shown that the increase in copper concentration in piston Al-Si alloys results in the decrease in the equilibrium solidus from 540 to 505 deg C. Under non-equilibrium solidification conditions, piston alloys finish solidification at {approx}505 deg C. Iron is bound in the quaternary Al{sub 8}FeMg{sub 3}Si{sub 6} phase in low-iron alloys and in the ternary Al{sub 9}FeNi and Al{sub 5}FeSi phases in high-iron alloys.

  15. Statistical Assessment of the Effect of Chemical Composition on Mechanical Properties of Hypereutectic AlSi17CuNiMg Silumin

    Directory of Open Access Journals (Sweden)

    J. Szymszal

    2007-07-01

    Full Text Available The paper presents a statistical assessment of the effect of chemical composition on mechanical properties of hypereutectic AlSi17 silumin, which is expected to act as a counterpart of alloys used by automotive industry and aviation for casting of high-duty engine parts in West European countries and USA. The studies on the choice of chemical composition of silumins were preceded by analysis of the reference literature to state what effect some selected alloying elements and manufacturing technology may have on the mechanical properties (HB, Rm and A5 of these alloys. As alloying additives, Cu, Ni and Mg in proper combinations were used. The alloy after modification with phosphorus (CuF was cast into a metal mould. Basing on the results obtained, it has been reported that the developed silumin of hypereutectic composition is characterised by properties similar to its Western counterparts.

  16. Thermal stability and electrical characteristics of NiSi films with electroplated Ni(W) alloy

    International Nuclear Information System (INIS)

    Xin Yuhang; Hu Anmin; Li Ming; Mao Dali

    2011-01-01

    In this study, an electroplating method to deposited Ni, crystalline NiW(c-NiW), amorphous NiW (a-NiW) films on P-type Si(1 0 0) were used to form Ni-silicide (NiSi) films. After annealed at various temperatures, sheet resistance of Ni/Cu, c-NiW/Cu and a-NiW/Cu was measured to observe the performance of those diffusion barrier layers. With W added in the barrier layer, the barrier performance was improved. The results of XRD and resistance measurement of the stacked Si/Ni(W)/Cu films reveal that Cu atom could diffuse through Ni barrier layer at 450 deg. C, could diffuse through c-NiW at 550 deg. C, but could hardly diffuse through a-NiW barrier layer. c-NiW layer has a better barrier performance than Ni layer, meanwhile the resistance is lower than a-NiW layer.

  17. Nernst effect of Ni-doped NdBa2Cu3O7-δ and transport properties in UPt2Si2

    International Nuclear Information System (INIS)

    Johannsen, Niko

    2008-05-01

    In this thesis, the Nernst effect in high-temperature superconductors is investigated. Large Nernst voltages were found to survive up to temperatures that reach far out of the superconducting phase. This was extensively studied thereafter in wide doping range of the high-T c 's. We were able to significantly expand these studies by tuning T * and T ν independently. This was done by inducing Ni ions into the CuO planes of NdBa 2 {Cu 1-y Ni y } 3 O 7-δ which allowed to study the Nernst effect in a wide parameter range. This is done on one hand in dependence of the oxygen content which varies the charge carrier concentration. On the other hand, the Ni concentration is varied from 0% to 12%, thereby enhancing T * and simultaneously suppressing T c with increasing concentrations. The temperatures to which the anomalous Nernst signal is detectable is the onset temperature T ν . The goal of this work was to find out whether T ν follows T c or T * . The onset temperatures of the anomalous Nernst signals are determined as the slightest detectable deviation from the quasiparticle background above T c . In the second part of this work, the Nernst effect and other transport properties of UPt 2 Si 2 , including electrical ones such as the resistivity and the Hall effect and thermal ones, as the thermal conductivity, the thermopower and the Righi-Leduc effect were investigated. (orig.)

  18. Parameters of thermoelectric power and electronic structure of Yb-based compounds of YbM2X2(M=Fe,Co,Ni,Cu; X=Si,Ge) type

    International Nuclear Information System (INIS)

    Levin, E.M.; Kuzhel', B.S.

    1990-01-01

    Thermoelectric power of Yb-based intermetallic alloys YbM 2 Si 2 (M-Co,Ni,Cu) and YbM 2 Ge 2 (M=Fe,Co,Ni) have been investigated and found to have anomalous low-temperature peaks conditioned by intermediate Yb valency. Calculation of electronic structure parameters performed in frames of the localized Fermi-liquid model using experimental data on the thermoelectric power is in good agreement with results of YbCu 2 Si 2 band structure calculation based on the experimental value of the electronic heat capacity with regard for the (2J+1) - fold Yb 2+ degeneration

  19. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in

    2014-03-25

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E{sub d} = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices.

  20. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    International Nuclear Information System (INIS)

    Kaur, Navjot; Kaur, Davinder

    2014-01-01

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E d = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices

  1. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements

    International Nuclear Information System (INIS)

    Yeh, J.-W.; Chang, S.-Y.; Hong, Y.-D.; Chen, S.-K.; Lin, S.-J.

    2007-01-01

    With an aim to understand the great reduction in the X-ray diffraction (XRD) intensities of high-entropy alloys, a series of Cu-Ni-Al-Co-Cr-Fe-Si alloys with systematic addition of principal elements from pure element to seven elements was investigated for quantitative analysis of XRD intensities. The variation of XRD peak intensities of the alloy system is similar to that caused by thermal effect, but the intensities further drop beyond the thermal effect with increasing number of incorporated principal elements. An intrinsic lattice distortion effect caused by the addition of multi-principal elements with different atomic sizes is expected for the anomalous decrease in XRD intensities. The mathematical factor of this distortion effect for the modification of XRD structure factor is formulated analogue to that of thermal effect

  2. The effect of the T6 heat treatment on hardness and microstructure of the en AC-AlSi12CuNiMg alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2014-01-01

    Full Text Available Presented work discusses research results concerning the effect of the T6 heat treatment process, including soaking of the alloy near the solidus temperature, holding in this temperature and next cooling in cold water (20 oC, as well as exposing to the artificial ageing to check the change in HB hardness and microstructure of the EN AC-AlSi12Cu-NiMg (EN AC-48000 alloy modified with strontium and cast into metal moulds. The temperature range of solutioning and ageing treatments was selected on the basis of crystallization curves recorded with the use of thermal-derivative method. Performed investigations enabled to determine the optimal parameters (temperature and time of solutioning and ageing heat treatments and their effect on the change in alloy’s hardness.

  3. INFLUENCE OF THE HOMOGENIZATION TEMPERATURE ON THE MICROSTRUCTURE AND PROPERTIES OF AlSi10CuNiMgMn ALLOY

    Directory of Open Access Journals (Sweden)

    Jaromir Cais

    2017-03-01

    Full Text Available The article examines the impact of changes in homogenization temperature in the hardening process on the microstructure of aluminum alloys. Samples where the research was conducted were cast from AlSi10CuNiMn alloy produced by gravity casting technology in metal mold. Subsequently, the castings were subjected to a heat treatment. In an experiment with changing temperature and staying time in the process of homogenization. The microstructure of the alloy was investigated by methods of light and electron microscopy. Examination of the microstructure has focused on changing the morphology of separated particles of eutectic silicon and intermetallic phases. Analysis of intermetallic phases was supplemented by an analysis of the chemical composition - EDS analysis. Effect of heat treatment on the properties investigated alloy was further complemented by Vickers microhardness. Investigated alloy is the result of longtime research conducted at Faculty of Production Technology and Management.

  4. Effect of Annealing Time for Quenching CuAl7Fe5Ni5W2Si2 Bronze on the Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    B. P. Pisarek

    2012-04-01

    Full Text Available This paper presents the influence of annealing time 30, 60 and 120 min at 1000°C for quenching CuAl7Fe5Ni5W2Si2 bronze in 10% water solution of NaCl, on the microstructure and mechanical properties. The presented results concern the species newly developed aluminum-iron-nickel bronze, with additions W and Si.In order to determine changes in the microstructure of the hardened bronze metallographic studies were performed on cylindrical samples of diameter 10 mm, on the metallographic microscope with digital image analysis, X-ray phase analysis, EDX point with the digital recording on the computer. Specified percentage of the microstructure of martensite and bainite, participation of proeutectoid α phase in the microstructure, grain size of former β phase, the amount of dissolved κ phase.It was found that in the microstructure of bronze in the cast state, there are a number of intermetallic phases of κ type. At interphase boundaries of primary intermetallic faceted precipitates, especially rich in tungsten (IM_W, nucleate and grow dendritic primary intermetallic κI phases, with chemical composition similar to the type of Fe3Si iron silicide.Dissolved, during the heating, in the β phase are all the intermediate phase included in the microstructure, with the exception of primary intermetallic phases of tungsten and κI. Prolongation of the isothermal annealing causes coagulation and coalescence of primary phases. In microstructure of the bronze after quenching obtained the α phase precipitation on the grain boundary of secondary β phase, coarse bainite and martensite, for all annealing times. With the change of annealing time are changed the relative proportions of individual phases or their systems, in the microstructure. In the microstructure of bronze, hold at temperature of 1000°C for 60 min, after quenching martensitic microstructure was obtained with the primary phases, and the least amount of bainite.

  5. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  6. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  7. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  8. Effect of Different Variants of Heat Treatment on Mechanical Properties of the AlSi17CuNiMg Alloy

    Directory of Open Access Journals (Sweden)

    Jarco A.

    2016-06-01

    Full Text Available Dispersion hardening, as the main heat treatment of silumins having additions of copper and magnesium, results in considerable increase of tensile strength and hardness, with simultaneous decrease of ductility of the alloy. In the paper is presented an attempt of introduction of heat treatment operation consisting in homogenizing treatment prior operation of the dispersion hardening, to minimize negative effects of the T6 heat treatment on plastic properties of hypereutectoidal AlSi17CuNiMg alloy. Tests of the mechanical properties were performed on a test pieces poured in standardized metal moulds. Parameters of different variants of the heat treatment, i.e. temperature and time of soaking for individual operations were selected basing on the ATD (Thermal Derivation Analysis diagram and analysis of literature. The homogenizing treatment significantly improves ductility of the alloy, resulting in a threefold increase of the elongation and more than fourfold increase of the impact strength in comparison with initial state of the alloy. Moreover, the hardness and the tensile strength (Rm of the alloy decrease considerably. On the other hand, combination of the homogenizing and dispersion hardening enables increase of elongation with about 40%, and increase of the impact strength with about 25%, comparing with these values after the T6 treatment, maintaining high hardness and slight increase of the tensile strength, comparing with the alloy after the dispersion hardening.

  9. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, Fatma, E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria); Département de Physique, Faculté des Sciences, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria)

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe–Al–X systems, in order to improve mainly Fe–Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems. - Highlights: • A review of state of the art on binary Fe–Al alloys was presented. • Structural and microstructural properties of MA ternary Fe–Al–X alloys were summerized. • MA process is a powerful tool for producing metallic alloys at the nanometer scale.

  10. Microstructural evolution under high flux irradiation of dilute Fe-CuNiMnSi alloys studied by an atomic kinetic Monte Carlo model accounting for both vacancies and self interstitials

    International Nuclear Information System (INIS)

    Vincent, E.; Becquart, C.S.; Domain, C.

    2008-01-01

    Under neutron irradiation, a large amount of point defects (vacancies and interstitials) are created. In the irradiated pressure vessel steels, weakly alloyed, these point defects are responsible for the diffusion of the solute atoms, leading to the formation of solute rich precipitates within the matrix. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si). For Mn, the results of these calculations lead to think that solute transport in α-Fe can very likely take place through an interstitial mechanism as well as via vacancies while the other solutes (Cu, Ni and Si) which establish strong bonds with vacancies diffuse more likely via vacancies only. The database thus created has been used to parameterize an atomic kinetic Monte Carlo model taking into account both vacancies and interstitials. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model will be presented

  11. Microstructural evolution under high flux irradiation of dilute Fe CuNiMnSi alloys studied by an atomic kinetic Monte Carlo model accounting for both vacancies and self interstitials

    Science.gov (United States)

    Vincent, E.; Becquart, C. S.; Domain, C.

    2008-12-01

    Under neutron irradiation, a large amount of point defects (vacancies and interstitials) are created. In the irradiated pressure vessel steels, weakly alloyed, these point defects are responsible for the diffusion of the solute atoms, leading to the formation of solute rich precipitates within the matrix. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si). For Mn, the results of these calculations lead to think that solute transport in α-Fe can very likely take place through an interstitial mechanism as well as via vacancies while the other solutes (Cu, Ni and Si) which establish strong bonds with vacancies diffuse more likely via vacancies only. The database thus created has been used to parameterize an atomic kinetic Monte Carlo model taking into account both vacancies and interstitials. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model will be presented.

  12. Estudio DRX en Materiales Catalizadores Cu-Ni-SiO2 para Hidrogenación de aceite de soya. Desarrollo de estructura cristalina y actividad catalítica

    Directory of Open Access Journals (Sweden)

    Gloria I. Cubillos

    2009-01-01

    Full Text Available Para buscar elementos experimentales que soporten la hipótesis según la cual se forman estructuras cristalinas Cu-Ni o eventualmente Cu-Ni-SiO2 en la síntesis de catalizadores para la hidrogenación de aceite de soya, se prepararon mezclas de estos tres materiales a partir de sales de los metales con sílice (aerosil. Se calcinaron a 270oC y se redujeron a 330oC en atmósfera de hidrógeno. En  los materiales reducidos se  estudió el difractógrama de RX en el rango 37 a 53 grados, y se comparó con el difractógrama de aleaciones Cu-Ni, en las cuales se conoce la formación  de cristales mixtos, y  con los difractógramas de los elementos puros Cu y Ni.  Los resultados muestran que se presentan señales de difracción diferentes a las señales de los componentes puros. La actividad catalítica se muestra diferente en los materiales que presentan distorsión en su estructura cristalina.  

  13. The Ce-Ni-Si system as a representative of the rare earth-Ni-Si family: Isothermal section and new rare-earth nickel silicides

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-1, 119991 (Russian Federation); Knotko, A.V.; Garshev, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-1, 119991 (Russian Federation); Faculty of Materials Science, Moscow State University, Leninskie Gory, House 1, Building 73, Moscow, GSP-1, 119991 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, 59082-970 (Brazil)

    2016-11-15

    The Ce-Ni-Si system has been investigated at 870/1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: Ce{sub 2}Ni{sub 15.8}Si{sub 1.2} (Th{sub 2}Ni{sub 17}-type), Ce{sub 2}Ni{sub 15-14}Si{sub 2-3} (Th{sub 2}Zn{sub 17}-type), CeNi{sub 8.6}Si{sub 2.4} (BaCd{sub 11}-type), CeNi{sub 8.8}Si{sub 4.2} (LaCo{sub 9}Si{sub 4}-type), CeNi{sub 6}Si{sub 6} (CeNi{sub 6}Si{sub 6}-type), CeNi{sub 5}Si{sub 1-0.3} (TbCu{sub 7}-type), CeNi{sub 4}Si (YNi{sub 4}Si-type), CeNi{sub 2}Si{sub 2} (CeGa{sub 2}Al{sub 2}-type), Ce{sub 2}Ni{sub 3}Si{sub 5} (U{sub 2}Co{sub 3}Si{sub 5}-type), Ce{sub 3}Ni{sub 6}Si{sub 2} (Ce{sub 3}Ni{sub 6}Si{sub 2}-type), Ce{sub 3}Ni{sub 4}Si{sub 4} (U{sub 3}Ni{sub 4}Si{sub 4}-type), CeNiSi{sub 2} (CeNiSi{sub 2}-type), ~CeNi{sub 1.3}Si{sub 0.7} (unknown type structure), Ce{sub 6}Ni{sub 7}Si{sub 4} (Pr{sub 6}Ni{sub 7}Si{sub 4}-type), CeNiSi (LaPtSi-type), CeNi{sub 0.8-0.3}Si{sub 1.2-1.7} (AlB{sub 2}-type), ~Ce{sub 2}Ni{sub 2}Si (unknown type structure), ~Ce{sub 4.5}Ni{sub 3.5}Si{sub 2} (unknown type structure), Ce{sub 15}Ni{sub 7}Si{sub 10} (Pr{sub 15}Ni{sub 7}Si{sub 10}-type), Ce{sub 5}Ni{sub 1.85}Si{sub 3} (Ce{sub 5}Ni{sub 1.85}Si{sub 3}-type), Ce{sub 6}Ni{sub 1.4}Si{sub 3.4} (Ce{sub 6}Ni{sub 1.67}Si{sub 3}-type), Ce{sub 7}Ni{sub 2}Si{sub 5} (Ce{sub 7}Ni{sub 2}Si{sub 5}-type) and Ce{sub 3}NiSi{sub 3} (Y{sub 3}NiSi{sub 3}-type) has been confirmed in this section. Moreover, the type structure has been determined for ~Ce{sub 2}Ni{sub 2}Si (Mo{sub 2}NiB{sub 2}-type Ce{sub 2}Ni{sub 2.5}Si{sub 0.5}) and ~Ce{sub 4.5}Ni{sub 3.5}Si{sub 2} (W{sub 3}CoB{sub 3}-type Ce{sub 3}Ni{sub 3-2.7}Si{sub 1-1.3}) and new ternary phases Ce{sub 2}Ni{sub 6.25}Si{sub 0.75} (Gd{sub 2}Co{sub 7}-type), CeNi{sub 7-7.6}Si{sub 6-5.4} (GdNi{sub 7}Si{sub 6}-type) and ~Ce{sub 27}Ni{sub 42}Si{sub 31} (unknown type structure) have been identified in this system. Quasi-binary phases, solid solutions, were detected at 870/1070 K for CeNi{sub 5}, CeNi{sub 3} and CeSi

  14. Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Khromova, S. A.; Venderbosch, R. H.; Yakovlev, V. A.; Melian-Cabrera, I. V.; Heeres, H. J.

    2012-01-01

    Bimetallic Ni-Cu catalysts on various Supports (CeO2-ZrO2, ZrO2, SiO2, TiO2, rice husk carbon, and Sibunite) with metal contents ranging from 7.5 to 9.0 (Ni) and 3.1-3.6 wt.% (Cu) for the inorganic supports and 17.1-17.8 (Ni) and 7.1-7.8 (Cu) for the carbon supports were synthesised and screened for

  15. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

    Science.gov (United States)

    Meng Yam, Kah; Guo, Na; Zhang, Chun

    2018-06-01

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.

  16. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    OpenAIRE

    Seung Zeon Han; Joonhee Kang; Sung-Dae Kim; Si-Young Choi; Hyung Giun Kim; Jehyun Lee; Kwangho Kim; Sung Hwan Lim; Byungchan Han

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanica...

  17. The contribution of valence unstable ytterbium states into kinetic properties of YbNi{sub 2-x}Ge{sub 2+x} and YbCu{sub 2-x}Si{sub 2+x}

    Energy Technology Data Exchange (ETDEWEB)

    Kuzhel, B.C. [Department of Physics, Ivan Franko National University of Lviv, 50 Dragomanow Str., 79005, Lviv (Ukraine)]. E-mail: kuzhelb@org.lviv.net; Shcherba, I.D. [Department of Physics, Ivan Franko National University of Lviv, 50 Dragomanow Str., 79005, Lviv (Ukraine); Institute of Techniques, Academy of Pedagogy, Podchorozych 2, 30-084, Krakow (Poland); Kravchenko, I.I. [Department of Physics, University of Florida, P.O. Box 118440, Gainesville, FL 32611 (United States)]. E-mail: kravch@phys.ufl.edu

    2006-11-30

    The intermetalic YbNi{sub 2-x}Ge{sub 2+x} (-0.25>=x>=0.25) and YbCu{sub 2-x}Si{sub 2+x} (-0.20>=x>=0.20) alloy systems (CeGa{sub 2}Al{sub 2} -type crystal structure) were studied by measuring X-ray absorption and diffraction at room temperatures as well as electrical resistivity and thermopower in the 4.2-300K temperature range. The temperature dependence of the contribution of valence unstable Yb ions to the total electrical resistance has been analyzed. The qualitative estimation of this contribution has been performed by utilizing the following equation:{delta}{rho}{sub Yb}(T)={rho}{sub exp}(T)-{rho}{sub YbCu{sub 2}Ge{sub 2}}(T)-{delta}{rho}{sub 4.2K},where {delta}{rho}{sub YbCu{sub 2}Ge{sub 2}}(T) is the temperature dependence of YbCu{sub 2}Ge{sub 2} electrical resistance, {delta}{rho}{sub 4.2}={rho}{sub 4.2}(exp)-{rho}{sub 4.2}(YbCu{sub 2}Ge{sub 2})

  18. The contribution of valence unstable ytterbium states into kinetic properties of YbNi2-xGe2+x and YbCu2-xSi2+x

    International Nuclear Information System (INIS)

    Kuzhel, B.C.; Shcherba, I.D.; Kravchenko, I.I.

    2006-01-01

    The intermetalic YbNi 2-x Ge 2+x (-0.25>=x>=0.25) and YbCu 2-x Si 2+x (-0.20>=x>=0.20) alloy systems (CeGa 2 Al 2 -type crystal structure) were studied by measuring X-ray absorption and diffraction at room temperatures as well as electrical resistivity and thermopower in the 4.2-300K temperature range. The temperature dependence of the contribution of valence unstable Yb ions to the total electrical resistance has been analyzed. The qualitative estimation of this contribution has been performed by utilizing the following equation:Δρ Yb (T)=ρ exp (T)-ρ YbCu 2 Ge 2 (T)-Δρ 4.2K ,where Δρ YbCu 2 Ge 2 (T) is the temperature dependence of YbCu 2 Ge 2 electrical resistance, Δρ 4.2 =ρ 4.2 (exp)-ρ 4.2 (YbCu 2 Ge 2 )

  19. Experimental wear behavioral studies of as-cast and 5 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load based on taguchi method

    Science.gov (United States)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the present study, an experimental study of the volumetric wear behaviour of Aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 5Hr homogenized with T6 heat treatment is carried out at constant load. The Pin on disc apparatus was used to carry out the sliding wear test. Taguchi method based on L-16 orthogonal array was employed to evaluate the data on the wear behavior. Signal-to-noise ratio among the objective of smaller the better and mean of means results were used. General regression model is obtained by correlation. Lastly confirmation test was completed to compose a comparison between the experimental results foreseen from the mention correlation. The mathematical model reveals the load has maximum contribution on the wear rate compared to speed. Scanning Electron Microscope was used to analyze the worn-out wear surfaces. Wear results show that 5Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance as compared to as cast samples.

  20. Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yizhu He

    2017-01-01

    Full Text Available High-entropy alloys (HEAs are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6 HEA coatings. The results show that laser rapid solidification effectively prevents brittle boride precipitation in the designed coatings. The main phase is a simple face-centered cubic (FCC matrix when the Al content is equal to 0.3. On the other hand, the matrix transforms to single bcc solid solution when x increases to 2.3. Increasing boron content improves the microhardness of the coatings, but leads to a high degree of segregation of Cr and Fe in the interdendritic microstructure. Furthermore, it is worth noting that CoCrFeNiAl0.3Cu0.7Si0.1B0.6 coatings with an FCC matrix and a modulated structure on the nanometer scale exhibit an ultrahigh hardness of 502 HV0.5.

  1. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuechun [School of Materials Science and Engineering, Yunnan University, Kunming (China); Chen, Xiuhua, E-mail: chenxh@ynu.edu.cn [School of Materials Science and Engineering, Yunnan University, Kunming (China); Ma, Wenhui [National Engineering Laboratory of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming (China); Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei [School of Materials Science and Engineering, Yunnan University, Kunming (China)

    2017-02-28

    Highlights: • In this paper, the electroless deposited NiCrB thin film was mainly in the form of NiB, CrB{sub 2} compounds and elementary Ni. • The sheet resistance of NiCrB thin film was 3.043 Ω/□, it is smaller than that of the widely used Ta, TaN and TiN diffusion barrier layers. • Annealing experiments showed that the failure temperature of NiCrB thin film regarding Cu diffusion was 900 °C. • NiCrB barrier layer crystallized after 900 °C annealing, Cu grains arrived at Si-substrate through grain boundaries, resulting in the formation of Cu{sub 3}Si. • Eelectroless deposited NiCrB film also had good oxidation resistance, it is expected to become an anti-oxidant layer of copper interconnection. - Abstract: NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO{sub 2}/Si and NiCrB/Cu/NiCrB/SiO{sub 2}/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu{sub 3}Si.

  2. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu ...

    Indian Academy of Sciences (India)

    The diameter of wires can be easily varied by pore size of alumina, ranging ... saturated HgCl2 solution to remove the remaining Al, and then dipped in 5 wt% ... for NiFe alloy it is 1.3 V, that is higher than for Ni/Cu nanowires to diminish Cu.

  3. Influence of Ultrasonic Melt Treatment and Cooling Rates on the Microstructural Development and Elevated Temperature Mechanical Properties of a Hypereutectic Al-18Si-4Cu-3Ni Piston Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jea-Hee; Cho, Young-Hee; Jung, Jae-Gil; Lee, Jung-Moo [Korea Institute of Materials Science (KIMS), Changwon (Korea, Republic of); Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The influence of ultrasonic melt treatment (UST) combined with a change in cooling rates on the microstructure and elevated temperature mechanical properties of a hypereutectic Al-18Si-4Cu-3Ni piston alloy was investigated. Microstructural observation confirmed that UST effectively refined the sizes of primary Si and intermetallic compounds (e.g. ε-Al{sub 3}Ni) while promoting their homogeneous distribution. Besides the refinement of the constituent phases, the size of the dendrite arm spacing (DAS), which was hardly affected by UST, significantly deceased with increasing cooling rates. The refinement of the solidification structure in the alloy achieved through both UST and increased cooling rates resulted in an improvement in tensile properties, ultimate tensile strength and elongation in particular, after T5 heat treatment followed by overaging at 350 ℃. However, the elevated temperature yield strength of the alloy was not associated with the refinement, but was rather correlated with the 3-D interconnectivity, morphology and volume fraction of the primary Si.

  4. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  5. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  6. Nernst effect of Ni-doped NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and transport properties in UPt{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Johannsen, Niko

    2008-05-15

    In this thesis, the Nernst effect in high-temperature superconductors is investigated. Large Nernst voltages were found to survive up to temperatures that reach far out of the superconducting phase. This was extensively studied thereafter in wide doping range of the high-T{sub c}'s. We were able to significantly expand these studies by tuning T{sup *} and T{sup {nu}} independently. This was done by inducing Ni ions into the CuO planes of NdBa{sub 2}{l_brace}Cu{sub 1-y}Ni{sub y}{r_brace}{sub 3}O{sub 7-{delta}} which allowed to study the Nernst effect in a wide parameter range. This is done on one hand in dependence of the oxygen content which varies the charge carrier concentration. On the other hand, the Ni concentration is varied from 0% to 12%, thereby enhancing T{sup *} and simultaneously suppressing T{sub c} with increasing concentrations. The temperatures to which the anomalous Nernst signal is detectable is the onset temperature T{sup {nu}}. The goal of this work was to find out whether T{sup {nu}} follows T{sub c} or T{sup *}. The onset temperatures of the anomalous Nernst signals are determined as the slightest detectable deviation from the quasiparticle background above T{sub c}. In the second part of this work, the Nernst effect and other transport properties of UPt{sub 2}Si{sub 2}, including electrical ones such as the resistivity and the Hall effect and thermal ones, as the thermal conductivity, the thermopower and the Righi-Leduc effect were investigated. (orig.)

  7. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  8. Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding

    International Nuclear Information System (INIS)

    Wang, H.S.; Chen, H.G.; Jang, J.S.C.; Chiou, M.S.

    2010-01-01

    Research highlights: → A liquid cooling device (LCD) helps to produce a lower initial welding temperature. → A lower initial welding temperature leads to a faster welding thermal cycle (WTC). → A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. - Abstract: Using pre-selected welding parameters, a crystallization-free weld for (Zr 53 Cu 30 Ni 9 Al 8 )Si 0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr 2 Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.

  9. Magnetic order and crystal structure study of YNi{sub 4}Si-type NdNi{sub 4}Si

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jinlei [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Isnard, O. [Université Grenoble Alpes, Inst NEEL, BP166, Grenoble F-38042 (France); CNRS, Institut NEEL, 25 rue des martyrs, Grenoble F-38042 (France); Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Ivanova, T.I. [Physics Department, Moscow State University, Moscow 119992 (Russian Federation); Koshkid' ko, Yu.S. [International Laboratory of High Magnetic Fields and Low Temperatures, Wrocław (Poland); VSB-Technical University of Ostrava, Ostrava-Poruba 70833 (Czech Republic); Bogdanov, A.E.; Nikitin, S.A. [Physics Department, Moscow State University, Moscow 119992 (Russian Federation); Suski, W. [International Laboratory of High Magnetic Fields and Low Temperatures, Wrocław (Poland); Polish Academy of Sciences, Trzebiatowski Institute of Low Temperatures and Structure Research, P.O. Box 1410, 50-950 Wrocław 2 (Poland)

    2015-02-15

    Magnetic measurements and neutron powder diffraction investigation of the magnetic structure of the orthorhombic YNi{sub 4}Si-type (space group Cmmm) NdNi{sub 4}Si compound are presented. The magnetocaloric effect of NdNi{sub 4}Si is calculated in terms of the isothermal magnetic entropy change and it reaches the maximum value of –3.3 J/kg K for a field change of 50 kOe near T{sub C}=12 K. Below ∼12 K, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group in a zero magnetic field. At 1.5 K, the neodymium atoms have the magnetic moment of 2.37(5) μ{sub B}. The orthorhombic crystal structure and its thermal evolution are discussed in comparison with the CaCu{sub 5}-type compound. - Graphical abstract: The NdNi{sub 4}Si supplement the series of the orthorhombic derivative of the CaCu{sub 5}-type, namely the YNi{sub 4}Si-type, RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho). Below ∼12 K in a zero applied magnetic field, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group. Compared to the CaCu{sub 5}-type NdNi{sub 4}Si compound, the YNi{sub 4}Si-type counterpart has the relatively high ferromagnetic ordering temperature (9.2 K vs. 12 K), the small magnetocaloric effect (–7.3 J/kg K vs. –3.3 J/kg K for ∆H=50 kOe), and the large magnetic anisotropy at low temperatures. In contrast with CaCu{sub 5}-type NdNi{sub 4}Si, YNi{sub 4}Si-type NdNi{sub 4}Si shows distinct hysteresis loop at 2 K.We suggest that orthorhombic distortion may be used as a prospective route for optimization of permanent magnetic properties in the family of CaCu{sub 5}-type rare earth materials. - Highlights: • Below ∼12 K the YNi{sub 4}Si-type NdNi{sub 4}Si shows a ferromagnetic ordering. • MCE of NdNi{sub 4}Si reaches value of –3.3 J/kg K in 0–50 kOe near Curie point. • NdNi{sub 4}Si exhibits b-axis ferromagnetic order with the Cmm′m magnetic space

  10. Nanostructure analysis of friction welded Pd-Ni-P/Pd-Cu-Ni-P metallic glass interface

    International Nuclear Information System (INIS)

    Ohkubo, T.; Shoji, S.; Kawamura, Y.; Hono, K.

    2005-01-01

    Friction welded Pd 40 Ni 40 P 20 /Pd 40 Cu 30 Ni 10 P 20 metallic glass interface has been characterized by energy filtering transmission electron microscopy. The interface is fully amorphous with a gradual compositional change of Cu and Ni in the range of 30 nm. By annealing above T g , the interdiffusion of Cu and Ni progressed in the supercooled liquid region, and the crystallization occurred from the Pd 40 Ni 40 P 20 glass

  11. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  12. Near-surface segregation in irradiated Ni3Si

    International Nuclear Information System (INIS)

    Wagner, W.; Rehn, L.E.; Wiedersich, H.

    1982-01-01

    The radiation-induced growth of Ni 3 Si films on the surfaces of Ni(Si) alloys containing = 3 Si phase has been observed. Post-irradiation depth profiling by Auger electron spectroscopy, as well as in situ analysis by high-resolution Rutherford backscattering spectrometry, reveals Si-enrichment at the surfaces of Ni(Si) alloys in excess of stoichiometric Ni 3 Si during irradiation. Thin, near-surface layers with silicon concentrations of 28 to 30 at.% are observed, and even higher Si enrichment is found in the first few atom layers. Transmission electron microscopy and selected area-electron diffraction were employed to characterize these Si-enriched layers. A complex, multiple-spot diffraction pattern is observed superposed on the diffraction pattern of ordered Ni 3 Si. The d-spacings obtained from the extra spots are consistent with those of the orthohexagonal intermetallic compound Ni 5 Si 2 . (author)

  13. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    International Nuclear Information System (INIS)

    Wu Yuying; Liu Xiangfa; Jiang Binggang; Huang Chuanzhen

    2009-01-01

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  14. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China)], E-mail: wyy532001@163.com; Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou 256602, Shandong (China); Jiang Binggang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Huang Chuanzhen [School of Mechanical Engineering, Shandong University, Jinan 250061 (China)

    2009-05-27

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  15. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gagorowska, B; Dus-Sitek, M [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2007-08-15

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d{sub Cu} = 2 nm) and the thickness of Ni layer - variable (1 nm {<=} d{sub Ni} {<=} 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent.

  16. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Gagorowska, B; Dus-Sitek, M

    2007-01-01

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d Cu = 2 nm) and the thickness of Ni layer - variable (1 nm ≤ d Ni ≤ 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent

  17. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Zhong Lin; Lu, Xianmao

    2018-04-24

    Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO 2 , Si 3 N 4 , Ag, Ti, Ta, SnIn 2 O 5 , Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al 2 O 3 , HfO 2 , and TiO 2 ) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H 2 -reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm 2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO 4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

  18. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  19. Magnetic properties of two new compounds: Pr2Ni3Si5 and Ho2Ni3Si5

    International Nuclear Information System (INIS)

    Mazumdar, C.; Padalia, B.D.; Godart, C.

    1994-01-01

    Formation of two more new materials, Pr 2 Ni 3 Si 5 and Ho 2 Ni 3 Si 5 , of the series, R 2 Ni 3 Si 5 (R = rare earth and Y) and their magnetic properties are reported here. These materials crystallize in the orthorhombic U 2 Co 3 Si 5 -type structure (space group Ibam). Magnetic susceptibility measurement in the temperature range 5 K--300 K show that the compound Pr 2 Ni 3 Si 5 order antiferromagnetically at T N ∼ 8.5 K and Ho 2 Ni 3 Si 5 at ∼ 6 K. Considering T N (Gd 2 Ni 3 Si 5 ) ∼ 15 K, T N (Pr 2 Ni 3 Si 5 ) ∼ 8.5 K is rather high. The magnetic susceptibility of both of the materials, in the paramagnetic state, follows a Curie-Weiss law with effective moment close to that of the corresponding free trivalent rare earth ion

  20. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating

    International Nuclear Information System (INIS)

    Lu, X.D.; Wang, H.M.

    2005-01-01

    Many ternary metal silicides such as W 2 Ni 3 Si, Ti 2 Ni 3 Si and Mo 2 Ni 3 Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2 Ni 3 Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2 Ni 3 Si/NiSi composite coating have a fine microstructure of Mo 2 Ni 3 Si primary dendrites and the interdendritic Mo 2 Ni 3 Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments

  1. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    International Nuclear Information System (INIS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-01-01

    In order to clarify the heterogeneous nucleation potential of α-Ni grains on Ni 3 Si particles in Ni-Ni 3 Si eutectic alloy, the work of adhesion (W ad ), fracture toughness (G), interfacial energy (γ i ), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni 3 Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni 3 Si. Since OM stacking interfaces have larger W ad , G and γ i than that of the top site stacking (OT) interfaces. The Ni/Ni 3 Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni 3 Si eutectic alloy. The calculated interfacial energy of Ni/Ni 3 Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni 3 Si particles for α-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  2. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: A study on the inhibition of Al-Cu-Ni alloy in simulated ... which the percentage of Copper, and Nickel were kept .... proceed based on equation of reaction in eqn (4). Al .... Sodium-Modified A356.0-Type Al-Si-Mg Alloy in Simulated.

  3. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  4. Effect of overheating degree of molten alloy on material reliability and performance stability of AlSi17CuNiMg silumin castings

    OpenAIRE

    J. Szymszal; J. Piątkowski

    2010-01-01

    The article discusses the effect of overheating degree (above the casting temperature) on material reliability of AlSi17 silumin. Theexamined alloys was poured at temperatures, 760; 870 and 980oC, holding the melt for 40 minutes and casting from the temperature of760oC. The assessment of the impact of the degree of overheating was to analysis the tensile strength. From the results of the static tensile test, the main estimators of the descriptive statistics, and coefficients of variation. Hav...

  5. The activation energy for loop growth in Cu and Cu-Ni alloys

    International Nuclear Information System (INIS)

    Barlow, P.; Leffers, T.; Singh, B.N.

    1978-08-01

    The apparent activation energy for the growth of interstitial dislocation loops in copper, Cu-1%Ni, Cu-2%Ni, and Cu-5%Ni during high voltage electron microscope irradiation was determined. The apparent activation energy for loop growth in all these materials can be taken to be 0.34eV+-0.02eV. This value together with the corresponding value of 0.44eV+-0.02eV determined earlier for Cu-10%Ni is discussed with reference to the void growth rates observed in these materials. The apparent activation energy for loop growth in copper (and in Cu-1%Ni that has a void growth rate similar to that in pure copper) is interpreted as twice the vacancy migration energy (indicating that divacancies do not play any significant role). For the materials with higher Ni content (in which the void growth rate is much lower than that in Cu and Cu-1%Ni) the measured apparent activation energy is interpreted to be characteristic of loops positioned fairly close to the foil surface and not of loops in ''bulk material''. From the present results in combination with the earlier results for Cu-10%Ni it is concluded that interstitial trapping is the most likely explanation of the reduced void growth rate in Cu-Ni alloys. (author)

  6. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer

    International Nuclear Information System (INIS)

    Hemmous, M.; Layadi, A.; Guittoum, A.; Souami, N.; Mebarki, M.; Menni, N.

    2014-01-01

    Series of Ni thin films have been deposited by thermal evaporation onto glass, Si(111), Cu, mica and Al 2 O 3 substrates with and without a Cu underlayer. The Ni thicknesses, t, are in the 4 to 163 nm range. The Cu underlayer has also been evaporated with a Cu thickness equal to 27, 52 and 90 nm. The effects of substrate, the Ni thickness and the Cu underlayer on the structural and electrical properties of Ni are investigated. Rutherford Backscattering Spectroscopy was used to probe the Ni/Substrate and Ni–Cu underlayer interfaces and to measure both Ni and Cu thicknesses. The texture, the strain and the grain size values were derived from X-ray diffraction experiments. The surface morphology is studied by means of a Scanning Electron Microscope. The electrical resistivity is measured by the four point probe. The Ni films grow with the <111> texture on all substrates. The Ni grain sizes D increase with increasing thickness for the glass, Si and mica substrates and decrease for the Cu one. The strain ε is positive for low thickness, decreases in magnitude and becomes negative as t increases. With the Cu underlayer, the growth mode goes through two phases: first, the stress (grain size) increases (decreases) up to a critical thickness t Cr , then stress is relieved and grain size increases. All these results will be discussed and correlated. - Highlights: • The structural and electrical properties of evaporated Ni thin films are studied. • The effect of thickness, substrates and Cu underlayer is investigated. • Texture, grain size, strain and surface morphology are discussed. • Growth modes are described as a function of Ni thickness

  7. Cu-Si bilayers as storage medium in optical recording

    International Nuclear Information System (INIS)

    Kuiper, A.E. T.; Vullers, R.J.M.; Pasquariello, D.; Naburgh, E.P.

    2005-01-01

    Instead of a phase change or a dye layer, a Cu/Si bilayer can be applied as the recording medium in a write-once Blu-ray Disc. The write process basically comprises the formation of a CuSi alloy containing 25-30 at. % Si, while any excess of Si is left behind as unreacted film. Auger analyses of the laser-written layers indicate that recording consists primarily of the diffusion of Si into Cu. The data allow for discrimination between the various models presented in literature for Cu/Si-based recording and to optimize the stack. Very low jitter levels of typically 4% proved to be achievable with equally thick films of Cu and Si as recording medium

  8. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  9. Crystal growth velocity in deeply undercooled Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.

    2012-02-01

    The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L ≈ 1505 and 1387 K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni-Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10 at.% Si, resulting in the remarkable decrease of growth velocity.

  10. Synthesis and densification of Cu-coated Ni-based amorphous composite powders

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Byoung-Kee; Kim, Jin-Chun

    2007-01-01

    Spherical Ni 57 Zr 20 Ti 16 Si 2 Sn 3 (numbers indicate at.%) amorphous powders were produced by the gas atomization process, and ductile Cu phase was coated on the Ni-based amorphous powders by the spray drying process in order to increase the ductility of the consolidated amorphous alloy. The characteristics of the as-prepared powders and the consolidation behaviors of Cu-coated Ni-based amorphous composite powders were investigated. The atomization was conducted at 1450 deg. C under the vacuum of 10 -2 mbar. The Ni-based amorphous powders and Cu nitrate solution were mixed and sprayed at temperature of 130 deg. C. After spray drying and reduction treatment, the sub-micron size Cu powders were coated successfully on the surface of the atomized Ni amorphous powders. The spark plasma sintering process was applied to study the densification behavior of the Cu-coated composite powders. Thickness of the Cu layer was less than 1 μm. The compacts obtained by SPS showed high relative density of over 98% and its hardness was over 800 Hv

  11. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  12. Irradiation-induced precipitation in Ni--Si alloys

    International Nuclear Information System (INIS)

    Barbu, A.; Ardell, A.J.

    1975-07-01

    The microstructures of Ni + ion-irradiated Ni--Si solid-solution alloys, containing 2, 4, 6 and 8 at. percent Si were investigated as a function of dose, dose-rate, and temperature. Results of transmission electron microscopy and other data show the precipitation of γ' (Ni 3 Si) in all samples irradiated at 500 0 C. Characteristics of the precipitates are described and a mechanism for their formation is suggested. (U.S.)

  13. Microstructural development in NiAl/Ni-Si-B/Ni transient liquid phase bonds

    International Nuclear Information System (INIS)

    Gale, W.F.; Orel, S.V.

    1996-01-01

    A transmission electron microscopy (TEM) based investigation of microstructural development during transient liquid phase bonding of near-stoichiometric NiAl to commercial purity nickel is presented in this article. The work described employed Ni-4.5 wt pct Si-3.2 wt pct B (BNi-3) melt-spun interlayers. The precipitation of both Ni-Al based phases and borides within the joint and adjacent substrate regions is discussed. The article considers martensite formation (within the NiAl substrate) and the precipitation of L1 2 type phases (both within the joint and at the interface with the NiAl substrate). The relative roles of the two substrate materials (NiAl and Ni) in the isothermal resolidification process are identified. The preferential formation of Ni 3 B boride phases in the Ni substrate near the original location of the Ni substrate-joint interface is discussed and contrasted with the absence of similar events in the NiAl substrate

  14. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-10-01

    Full Text Available Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  15. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    Science.gov (United States)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  16. Effect of electric pulse modification on mircostructure and properties of Ni-rich Al-Si piston alloy

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2016-03-01

    Full Text Available In order to improve the properties of Ni-rich (2.5wt.% Al-Si piston alloy, electric pulse modification was applied in fabricating the Ni-rich Al-Si piston alloy in this study. The effect of electric pulse modification on the mechanical properties of the Ni-rich Al-Si piston alloy was studied using optical microscope (OM, scanning electron microscope (SEM, X-ray diffraction (XRD, microhardness measurement and tensile strength testing. The results showed that the microstructures of Ni-rich Al-Si piston alloy treated by electric pulse modification were refined, the solid solubility of Cu, Ni, Si, etc. in α-Al matrix was improved, and furthermore, the microhardness and high-temperature tensile strength were increased by 9.41% and 17.5%, respectively. The distribution of second phases was also more uniform compared with that of a non-modified sample.

  17. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    Science.gov (United States)

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  18. Effects of C+ ion implantation on electrical properties of NiSiGe/SiGe contacts

    International Nuclear Information System (INIS)

    Zhang, B.; Yu, W.; Zhao, Q.T.; Buca, D.; Breuer, U.; Hartmann, J.-M.; Holländer, B.; Mantl, S.; Zhang, M.; Wang, X.

    2013-01-01

    We have investigated the morphology and electrical properties of NiSiGe/SiGe contact by C + ions pre-implanted into relaxed Si 0.8 Ge 0.2 layers. Cross-section transmission electron microscopy revealed that both the surface and interface of NiSiGe were improved by C + ions implantation. In addition, the effective hole Schottky barrier heights (Φ Bp ) of NiSiGe/SiGe were extracted. Φ Bp was observed to decrease substantially with an increase in C + ion implantation dose

  19. Corrosion Resistance Of Electroless Ni-P/Cu/Ni-P Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhao G.L.

    2015-06-01

    Full Text Available Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.

  20. Sputtering yields of Si and Ni from the Ni sub(1-x)Si sub(x) system studied by Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S C; Yamaguchi, S; Kataoka, Y; Iwami, M; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering; Satou, M; Fujimoto, F

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni sub(1-x)Si sub(x)), including the pure materials (Ni and Si), caused by 5keV Ar/sup +/ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni sub(1-x)Si sub(x) increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi/sub 2/ to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni sub(1-x)Si sub(x) which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  1. Microstructures Evolution and Micromechanics Features of Ni-Cr-Si Coatings Deposited on Copper by Laser Cladding.

    Science.gov (United States)

    Zhang, Peilei; Li, Mingchuan; Yu, Zhishui

    2018-05-23

    Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr₃Si+γ-Ni+Cu ss (Coating 1, Ni-26Cr-29Si), Cr₆Ni 16 Si₇+Ni₂Si+Cu ss (Coating 2, Ni-10Cr-30Si) and Cr₃Ni₅Si₂+Cr₂Ni₃+Cu ss (Coating 3, Ni-29Cr-16Si). The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT) and Lipton-Kurz-Trivedi (LKT) models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.

  2. Cd, Zn, Ni and Cu in the Indian Ocean

    NARCIS (Netherlands)

    Saager, Paul M.; Baar, Hein J.W. de; Howland, Robin J.

    1992-01-01

    Vertical profiles of dissolved Cd, Zn, Ni and Cu in the Northwest Indian Ocean (Arabian Sea) exhibit a nutrient type distribution also observed in other oceans. The area is characterized by strong seasonal upwelling and a broad oxygen minimum zone in intermediate waters. However, neither Cd, Zn, Ni

  3. Interfacial microstructure of NiSi x/HfO2/SiO x/Si gate stacks

    International Nuclear Information System (INIS)

    Gribelyuk, M.A.; Cabral, C.; Gusev, E.P.; Narayanan, V.

    2007-01-01

    Integration of NiSi x based fully silicided metal gates with HfO 2 high-k gate dielectrics offers promise for further scaling of complementary metal-oxide- semiconductor devices. A combination of high resolution transmission electron microscopy and small probe electron energy loss spectroscopy (EELS) and energy dispersive X-ray analysis has been applied to study interfacial reactions in the undoped gate stack. NiSi was found to be polycrystalline with the grain size decreasing from top to bottom of NiSi x film. Ni content varies near the NiSi/HfO x interface whereby both Ni-rich and monosilicide phases were observed. Spatially non-uniform distribution of oxygen along NiSi x /HfO 2 interface was observed by dark field Scanning Transmission Electron Microscopy and EELS. Interfacial roughness of NiSi x /HfO x was found higher than that of poly-Si/HfO 2 , likely due to compositional non-uniformity of NiSi x . No intermixing between Hf, Ni and Si beyond interfacial roughness was observed

  4. Highly stable carbon-doped Cu films on barrierless Si

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Li, X.N.; Nie, L.F.; Chu, J.P.; Wang, Q.; Lin, C.H.; Dong, C.

    2011-01-01

    Electrical resistivities and thermal stabilities of carbon-doped Cu films on silicon have been investigated. The films were prepared by magnetron sputtering using a Cu-C alloy target. After annealing at 400 deg. C for 1 h, the resistivity maintains a low level at 2.7 μΩ-cm and no Cu-Si reaction is detected in the film by X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations. According to the secondary ion mass spectroscopy (SIMS) results, carbon is enriched near the interfacial region of Cu(C)/Si, and is considered responsible for the growth of an amorphous Cu(C)/Si interlayer that inhibits the Cu-Si inter-diffusion. Fine Cu grains, less than 100 nm, were present in the Cu(C) films after long-term and high-temperature annealings. The effect of C shows a combination of forming a self-passivated interface barrier layer and maintaining a fine-grained structure of Cu. A low current leakage measured on this Cu(C) film also provides further evidence for the carbon-induced diffusion barrier interlayer performance.

  5. Ni-Si oxide as an inducing crystallization source for making poly-Si

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhiguo; Liu, Zhaojun; Li, Juan; Wu, Chunya; Xiong, Shaozhen [Institute of Photo-electronics, Nankai University, Tianjin (China); Zhao, Shuyun; Wong, Man; Kwok, Hoi Sing [Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong (China)

    2010-04-15

    Nickel silicon oxide mixture was sputtered on a-Si with Ni-Si alloy target with Ni:Si weight ratio of 1:9 and used as a new inducing source for metal induced lateral crystallization (MILC). The characteristics of the resulted poly-Si materials induced by Ni-Si oxide with different thickness were nearly the same. This means the metal induced crystallization with this new inducing source has wide processing tolerance to make MILC poly-Si. Besides, it reduced the residual Ni content in the resulted poly-Si film. The transfer characteristic curve of poly-Si TFT and a TFT-OLED display demo made with this kind of new inducing source were also presented in this paper. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  7. Mechanical properties of highly textured Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Liu, Y.; Bufford, D.; Wang, H.; Sun, C.; Zhang, X.

    2011-01-01

    We report on the synthesis of highly (1 1 1) and (1 0 0) textured Cu/Ni multilayers with individual layer thicknesses, h, varying from 1 to 200 nm. When, h, decreases to 5 nm or less, X-ray diffraction spectra show epitaxial growth of Cu/Ni multilayers. High resolution transmission electron microscopy studies show the coexistence of nanotwins and coherent layer interfaces in highly (1 1 1) textured Cu/Ni multilayers with smaller h. Hardnesses of multilayer films increase with decreasing h, approach a maximum at h of a few nanometers, and show softening thereafter at smaller h. The influence of layer interfaces as well as twin interfaces on strengthening mechanisms of multilayers and the formation of twins in Ni in multilayers are discussed.

  8. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  9. Chemical vapor deposition of NiSi using Ni(PF3)4 and Si3H8

    International Nuclear Information System (INIS)

    Ishikawa, M.; Muramoto, I.; Machida, H.; Imai, S.; Ogura, A.; Ohshita, Y.

    2007-01-01

    NiSi x films were deposited using chemical vapor deposition (CVD) with a Ni(PF 3 ) 4 and Si 3 H 8 /H 2 gas system. The step coverage quality of deposited NiSi x was investigated using a horizontal type of hot-wall low pressure CVD reactor, which maintained a constant temperature throughout the deposition area. The step coverage quality improved as a function of the position of the gas flow direction, where PF 3 gas from decomposition of Ni(PF 3 ) 4 increased. By injecting PF 3 gas into the Ni(PF 3 ) 4 and Si 3 H 8 /H 2 gas system, the step coverage quality markedly improved. This improvement in step coverage quality naturally occurred when PF 3 gas was present, indicating a strong relationship. The Si/Ni deposit ratio at 250 deg. C is larger than at 180 deg. C. It caused a decreasing relative deposition rate of Ni to Si. PF 3 molecules appear to be adsorbed on the surface of the deposited film and interfere with faster deposition of active Ni deposition species

  10. Effect of interface intermixing on giant magnetoresistance in NiFe/Cu and Co/NiFe/Co/Cu multilayers

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.; Biondo, A.; Pereira, L.G.; Mello, A.; Schmidt, J.E.; Chimendes, T.W.; Cunha, J.B.M.; Saitovitch, E.B.

    2003-01-01

    This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance (MR) amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 A/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 A of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased

  11. Structure of Ni-rich Ni--Cr--B--Si coating alloys

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Reimann, H.

    1975-01-01

    The structures of quaternary, nickel-rich Ni--Cr--B--Si alloys were analyzed at a constant boron content of 10 at. percent and a temperature of 850 0 C. The composition range for silicide formation was determined. In these quaternary alloys, known binary nickel silicides, nickel and chromium borides, and the ternary silico-boride Ni 6 Si 2 B were confirmed. A new composition for the W 5 Si 3 -type phase in the Ni--B--Si system was proposed. (U.S.)

  12. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  13. Sputtering Yields of Si and Ni from the Ni1-xSix System Studied by Rutherford Backscattering Spectrometry

    Science.gov (United States)

    Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  14. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties.

    Science.gov (United States)

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-10-12

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.

  15. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol.

    Science.gov (United States)

    Korányi, Tamás I; Huang, Xiaoming; Coumans, Alessandro E; Hensen, Emiel J M

    2017-04-03

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu-Mg-Al oxide (CuMgAlO x ) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO 2 , Ni 2 P/SiO 2 , and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlO x . A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlO x with Ni/SiO 2 and especially Ni 2 P/SiO 2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni 2 P/SiO 2 , the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products.

  16. Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon

    International Nuclear Information System (INIS)

    Jang, Jason S.C.; Jian, S.R.; Chang, C.F.; Chang, L.J.; Huang, Y.C.; Li, T.H.; Huang, J.C.; Liu, C.T.

    2009-01-01

    The amorphous alloy rods of (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x (x = 0.25, 0.5, 0.75, 1) with a diameter of 2-6 mm were prepared by drop casting method in an Ar atmosphere. The thermal properties, including glass forming ability (GFA) and thermal stability during isothermal annealing of these amorphous alloys, and the mechanical properties have been systematic investigated by the combination of DSC, XRD, SEM, TEM, and compression test. The result of X-ray diffraction reveals that these entire (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloy rods exhibit a typical amorphous diffraction pattern with only a broad maximum around 2θ around 40 degree. Both T g (glass transition temperature) and T x (crystallization temperature) of these (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloys increase with the silicon addition. In addition, both the activation energy of crystallization and the incubation time of isothermal annealing these (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x amorphous alloys indicate that the (Zr 53 Cu 30 Ni 9 Al 8 ) 99.25 Si 0.75 alloy possesses the best thermal stability in the (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloy system. In parallel, the result of compression test shows that the yield strength increases with the addition of Si content and reaches to a maximum value about 1750 MPa with 3% plastic strain for the (Zr 53 Cu 30 Ni 9 Al 8 ) 99.25 Si 0.75 amorphous alloy.

  17. Influence of Ni Solute segregation on the intrinsic growth stresses in Cu(Ni) thin films

    International Nuclear Information System (INIS)

    Kaub, T.M.; Felfer, P.; Cairney, J.M.; Thompson, G.B.

    2016-01-01

    Using intrinsic solute segregation in alloys, the compressive stress in a series of Cu(Ni) thin films has been studied. The highest compressive stress was noted in the 5 at.% Ni alloy, with increasing Ni concentration resulting in a subsequent reduction of stress. Atom probe tomography quantified Ni's Gibbsian interfacial excess in the grain boundaries and confirmed that once grain boundary saturation is achieved, the compressive stress was reduced. This letter provides experimental support in elucidating how interfacial segregation of excess adatoms contributes to the post-coalescence compressive stress generation mechanism in thin films. - Graphical abstract: Cu(Ni) film stress relationship with Ni additions. Atom probe characterization confirms solute enrichment in the boundaries, which was linked to stress response.

  18. Cooperative effects in CeCu2Si2

    International Nuclear Information System (INIS)

    Lang, M.; Modler, R.; Ahlheim, U.; Helfrich, R.; Reinders, P.H.P.; Steglich, F.; Assmus, W.; Sun, W.; Bruls, G.; Weber, D.; Luethi, B.

    1991-01-01

    Heavy-fermion superconductivity and other cooperative effects have been explored by thermal expansion, specific heat and ultrasound measurements on CeCu 2 Si 2 single crystals. Crystals annealed under Cu atmosphere show sharp superconducting transitions at Tc max =0.63 K. At the same temperature the ''as grown'', i.e., non-bulk-superconducting, crystals reveal a pronounced phase-transition anomaly, presumably of structural origin. This new transition is associated with an expansion of the volume upon cooling and gives rise to magnetic correlations. Our results indicate a complex interplay between lattice instability, magnetic phenomena and superconductivity in CeCu 2 Si 2 . (orig.)

  19. Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.

    Science.gov (United States)

    Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo

    2013-09-01

    We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.

  20. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  1. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Novák, V.; Lukáš, Petr

    2008-01-01

    Roč. 481, Sp.Iss.SI (2008), s. 513-517 ISSN 0921-5093 R&D Projects: GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z10480505 Keywords : Cu-Al-Ni * single crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.806, year: 2008

  2. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  3. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  4. RF and microwave noise suppression in a transmission line using Fe-Si-Al/Ni-Zn magnetic composite films

    International Nuclear Information System (INIS)

    Lee, J. W.; Hong, Y. K.; Kim, K.; Joo, J.; Yoon, Y. W.; Kim, S. W.; Kim, Y. B.; Kim, K. Y.

    2006-01-01

    Radio-frequency (RF) and microwave noise suppression by using magnetic composite films on a microstrip line (MSL) was studied in the frequency range from 50 MHz to 13.5 GHz. The MSL was composed of a Cu transmission line, dielectric materials, and a Cu substrate. The Fe-Si-Al/Ni-Zn magnetic composite films were placed on the MSL, and the reflection and the transmission characteristics were investigated. We observed that RF and microwave noise suppression caused by the Fe-Si-Al/Ni-Zn magnetic composite films varied with the concentration ratio of the sendust (Fe-Si-Al) and the Ni-Zn ferrite. The frequency dependence of the power loss due to the composite films on the MSL was measured and the power loss increased at higher frequencies with increasing concentration of the sendust in the composites. The electromagnetic interference shielding efficiencies of the magnetic composite films in the far-field region are also discussed.

  5. FABRICATION OF Cu-Al-Ni SHAPE MEMORY THIN FILM BY THERMAL EVOPRATION

    OpenAIRE

    Özkul, İskender; Canbay, Canan Aksu; Tekataş, Ayşe

    2017-01-01

    Among the functional, materials shape memory alloysare important because of their unique properties. So, these materials haveattracted more attention to be used in micro/nano electronic andelectromechanic systems. In this work, thermal evaporation method has been usedto produce CuAlNi shape memory alloy thin film. The produced CuAlNi thin filmhas been characterized and the presence of the martensite phase wasinvestigated and compared with the CuAlNi alloy sample. CuAlNi shape memoryalloy thin...

  6. Thermal stability of Cu/α-Ta/SiO2/Si structures

    International Nuclear Information System (INIS)

    Yuan, Z.L.; Zhang, D.H.; Li, C.Y.; Prasad, K.; Tan, C.M.

    2004-01-01

    The thermal stability of the Cu/α-Ta/SiO 2 /Si structures is investigated. Tantalum oxides are first observed at the interface between Cu and Ta due to residual oxygen in the annealing ambient at low annealing temperatures (about 600 deg. C). Ternary Cu-Ta oxides and/or Ta oxides rather than Cu oxides are found at the Cu top layer on account of the out diffusion of Ta. After high temperature annealing (up to 750 deg. C), polycrystalline Tantalum oxides (Ta 2 O 5 ) and Ta-rich silicides (Ta 5 Si 3 ) are found as dominant products due to the dissociation of SiO 2 . A severe intermixing of Cu, Ta and SiO 2 was observed after 800 deg. C annealing. First a drop and then an increase in sheet resistances were observed, the former possibly resulting from grain growth and impurities removal in Cu films, and the latter from the reduction of Cu thickness and formation of high resistivity products. The α-Ta films with a thickness of 25 nm have good barrier effectiveness up to 750 deg. C. The degradation of α-Ta film is mainly caused by self oxidation, silicidation and bidirectional diffusion

  7. Conventional and inverse magnetocaloric effect in Pr2CuSi3 and Gd2CuSi3 compounds

    International Nuclear Information System (INIS)

    Wang, Fang; Yuan, Feng-ying; Wang, Jin-zhi; Feng, Tang-fu; Hu, Guo-qi

    2014-01-01

    Highlights: • Two phase transitions in a narrow temperature range were observed and studied. • Both typical and inverse magnetocaloric effect were observed and discussed. • The inverse magnetocaloric effect was attributed to the spin-glass behavior. - Abstract: Magnetic properties and magnetocaloric effect (MCE) in Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds were investigated systematically. Both Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds experienced two phase transitions in a relatively narrow temperature range: first a paramagnet (PM)–ferromagnet (FM) second-order phase transition at 12 and 26 K and then a FM–spin glass (SG) transition at 6 K and 7.5 K, respectively. The magnetic entropy change (ΔS M ) was calculated based on Maxwell relation using the collected magnetization data. The maximum of ΔS M for Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds was 7.6 and 5 J kg −1 K −1 , respectively, at the applied filed change of 0–5 T. The shape of the temperature dependence of ΔS M (ΔS M –T) curve was obviously different from that of the conventional magnetic materials undergoing only one typical phase transition. In the left half part of ΔS M –T curve, ΔS M is not very sensitive to the applied field and they tend to intersect with the decrease of temperature. Both typical conventional and inverse MCE behavior were observed in Gd 2 CuSi 3 , which would be originated from the two transition features at the low temperatures

  8. Quality analysis of the Al-Si-Cu alloy castings

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2007-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. Method was developed for analysis of the casting defects images obtained with the X-ray detector analysis of the elements made from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type as well as the method for classification of casting defects using the artificial intelligence tools, including the neural networks; the developed method was implemented as software programs for quality control. Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. The computer system, in which the artificial neural networks as well as the automatic image analysis methods were used makes automatic classification possible of defects occurring in castings from the Al-Si-Cu alloys, assisting and automating in this way the decisions about rejection of castings which do not meet the defined quality requirements, and therefore ensuring simultaneously the repeatability and objectivity of assessment of the metallurgical quality of these alloys.

  9. Magnetic ordering of YPd{sub 2}Si-type HoNi{sub 2}Si and ErNi{sub 2}Si compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow, 119992 (Russian Federation); Isnard, O. [CNRS, Insitut. Néel, 25 Rue Des Martyrs BP166 x, F-38042 Grenoble (France); Université Grenoble Alpes, Inst. Néel, F-38042 Grenoble (France); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600 036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2016-12-01

    Magnetic properties of YPd{sub 2}Si-type HoNi{sub 2}Si and ErNi{sub 2}Si were investigated via neutron diffraction and magnetisation measurements. HoNi{sub 2}Si and ErNi{sub 2}Si show ferromagnetic-like ordering at T{sub C} of 9 K and 7 K, respectively. The paramagnetic Weiss temperatures are 9 K and 11 K and the effective magnetic moments are 10.76 μ{sub B}/fu and 9.79 μ{sub B}/fu for HoNi{sub 2}Si and ErNi{sub 2}Si compounds, respectively. The HoNi{sub 2}Si and ErNi{sub 2}Si are soft ferromagnets with saturation magnetization of 8.1 μ{sub B}/fu and 7.5 μ{sub B}/fu, respectively at 2 K and in field of 140 kOe. The isothermal magnetic entropy change, ΔS{sub m}, has a maximum value of −15.6 J/kg·K at 10 K for HoNi{sub 2}Si and −13.9 J/kg·K at 6 K for ErNi{sub 2}Si for a field change of 50 kOe. Neutron diffraction study in zero applied field shows mixed ferromagnetic-antiferromagnetic ordering of HoNi{sub 2}Si at ~9 K and its magnetic structure is a sum of a-axis ferromagnetic F{sub a}, b-axis antiferromagnetic AF{sub b} and c-axis antiferrromagnetic AF{sub c} components of Pn′a2{sub 1}′={1, m_x′/[1/2, 1/2, 1/2], 2_y′/[0, 1/2, 0], m_z/[1/2, 0, 1/2]} magnetic space group and propagation vector K{sub 0}=[0, 0, 0]. The holmium magnetic moment reaches a value of 9.23(9) μ{sub B} at 1.5 K and the unit cell of HoNi{sub 2}Si undergoes isotropic contraction around the temperature of magnetic transition. - Graphical abstract: HoNi{sub 2}Si: mixed ferro-antiferromagnet (F{sub a}+AF{sub b}+AF{sub c}){sup K0} with Pn′a2{sub 1}′ magnetic space group and K{sub 0}=[0, 0, 0] propagation vector below 10 K. - Highlights: • Ferro-antiferromagnetic ordering is observed in HoNi{sub 2}Si at 9 K and in ErNi{sub 2}Si at 7 K. • HoNi{sub 2}Si is soft ferromagnet with ΔS{sub m} of −15.6 J/kg·K at 10 K in field of 0–50 kOe. • ErNi{sub 2}Si is soft ferromagnet with ΔS{sub m} of −13.9 J/kg·K at 6 K in field of 0–50 kOe. • HoNi{sub 2}Si shows mixed F

  10. Effect of Nickel Equivalent on Austenite Transition Ratio in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Janus A.

    2013-06-01

    Full Text Available Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-Mn- Cu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS, microscopic observations (optical and scanning microscopy, image analyser, as well as Brinell hardness and HV microhardness measurements of structural components.

  11. Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy

    International Nuclear Information System (INIS)

    Chen, S.Y.; Chen, L.J.

    2006-01-01

    Self-assembled epitaxial NiSi 2 nanowires have been fabricated on Si(001) by reactive deposition epitaxy (RDE). The RDE method promoted nanowire growth since it provides deposited atoms sufficient kinetic energy for movement on the Si surface during the growth of silicide islands. The twin-related interface between NiSi 2 and Si is directly related to the nanowire formation since it breaks the symmetry of the surface and leads to the asymmetric growth. The temperature of RDE was found to greatly influence the formation of nanowires. By RDE at 750 deg. C, a high density of NiSi 2 nanowires was formed with an average aspect ratio of 30

  12. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  14. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Salinas, D. Hurtado; Dominguez, A. Bustamante; Najarro, D. Acosta; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J. Albino; Majima, Y.

    2012-01-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO 2 /Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 °C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution CuCu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO was detected. Pure Cu 2 O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300–550 °C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current–voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: ► The crystallization and electrical resistivity of oxides in a Cu films are studied. ► In annealing Cu films, the phase evolution Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO occurs. ► A resistivity phase diagram, obtained from the current–voltage response, is presented. ► Some decreases in the resistivity may be related to the crystallization.

  15. Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors

    Science.gov (United States)

    Jiang, Yizhe; Li, Zhihui; Li, Beibei; Zhang, Jinying; Niu, Chunming

    2016-07-01

    Ni3Si2 nanowires and nanoawls have grown in situ on the surface of Ni foams by a controlled low pressure chemical vapor deposition process. Structural characterization shows that the individual Ni3Si2 nanowire is single crystal covered with a thin layer (1-2 nm) of SiO2 with a diameter of ∼20-30 nm and length of ten's micrometers. Individual nanoawl with a circular cone shape is polycrystalline. Both Ni3Si2 nanowire and nanoawl samples are evaluated as potential electrode materials for supercapacitors. The nanowire electrode delivers a very high specific capacitance and excellent rate capability. A specific capacitance of 760 F g-1 is measured at current density of 0.5 A g-1, which decreases to 518 F g-1 when the current density increases to 10 A g-1. The capacitance is dominated by pseudocapacitance with a mechanism similar to that of NiO or Ni(OH)2 widely studied in the literature. An asymmetric supercapacitor fabricated by pairing Ni3Si2 nanowire electrode with an activated carbon electrode exhibits energy densities of 17.5 Wh kg-1 and 8.8 Wh kg-1 at power densites of 301 W kg-1 and 3000 W kg-1.

  16. New orthorhombic derivative of CaCu{sub 5}-type structure: RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho), crystal structure and some magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-12-15

    The crystal structure of new YNi{sub 4}Si-type RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds has been established using powder X-ray diffraction. The YNi{sub 4}Si structure is a new structure type, which is orthorhombic derivative of CaCu{sub 5}-type structure (space group Cmmm N 65, oC12). GdNi{sub 4}Si and DyNi{sub 4}Si compounds order ferromagnetically at 25 and 19 K, respectively whereas YNi{sub 4}Si shows antiferromagnetic nature. At 15 K, DyNi{sub 4}Si shows second antiferromagnetic-like transition. The magnetic moment of GdNi{sub 4}Si at 5 K in 50 kOe field is ∼7.2 μ{sub B}/f.u. suggesting a completely ordered ferromagnetic state. The magnetocaloric effect of GdNi{sub 4}Si is calculated in terms of isothermal magnetic entropy change and it reaches the maximum value of −12.8 J/kg K for a field change of 50 kOe near T{sub C} ∼25 K. - Graphical abstract: The RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds crystallize in new YNi{sub 4}Si-type structure which is orthorhombic derivative of the basic CaCu{sub 5}-type structure. GdNi{sub 4}Si and DyNi{sub 4}Si compounds show the ferromagnetic-like ordering, whereas.YNi{sub 4}Si has the antiferromagnetic nature. The GdNi{sub 4}Si demonstrates the big magnetocaloric effect near temperature of ferromagnetic ordering. The relationship between initial CaCu{sub 5}-type DyNi{sub 5} and YNi{sub 4}Si-type DyNi{sub 4}Si lattices.

  17. Precipitation and strengthening phenomena in Al-Si-Ge and Al-Cu-Si-Ge alloys

    International Nuclear Information System (INIS)

    Mitlin, D.; Morris, J.W.; Dahmen, U.; Radmilovic, V.

    2000-01-01

    The objective of this work was to determine whether Al rich Al-Si-Ge and 2000 type Al-Cu-Si-Ge alloys have sufficient hardness to be useful for structural applications. It is shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. However, Al-Cu-Si-Ge displayed a uniquely fast aging response, a high peak hardness and a good stability during prolonged aging. The high hardness of the Cu containing alloy is due to the dense and uniform distribution of fine θ' precipitates (metastable Al 2 Cu) which are heterogeneously nucleated on the Si-Ge particles. High resolution TEM demonstrated that in both alloys all the Si-Ge precipitates start out, and remain multiply twinned throughout the aging treatment. Since the twinned section of the precipitate does not maintain a low index interface with the matrix, the Si-Ge precipitates are equiaxed in morphology. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  18. Effect of W addition on the electroless deposited NiP(W) barrier layer

    International Nuclear Information System (INIS)

    Tao, Yishi; Hu, Anmin; Hang, Tao; Peng, Li; Li, Ming

    2013-01-01

    Electroless deposition of NiP, NiWP thin film on p-type Si as the barrier layer to prevent the diffusion of Cu into Si was investigated. The thermal stability of the Si/Ni(W)P/Cu layers were evaluated by measuring the changes of resistance of the samples after annealed at various temperatures. XRD was applied to detect the formation of Cu 3 Si and evaluate the barrier performance of the layers. The results of XRD of the stacked Si/NiP/Cu, Si/NiWP-1/Cu, Si/NiWP–2/Cu films reveal that Cu atom could diffuse through NiP barrier layer at 450 °C, Cu could hardly diffuse through NiWP layer at 550 °C. This means that with W added in the layer, the barrier performance is improved. Although the resistance of Si/NiWP-1 and Si/NiWP-2 are higher than that of Si/NiP, the resistance of stacked layers of Si/NiWP-1/Cu and Si/NiWP–2/Cu are close to that of Si/NiP/Cu. This means that using NiWP as barrier layer is acceptable.

  19. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    Science.gov (United States)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  20. Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zarghami, V. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Ghorbani, M., E-mail: Ghorbani@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Highlights: • Preparing Ni/SiC coatings on the Cu substrate by using of rotating disk electrode. • Optimizing of pulse current density parameters. • Optimizing of SiC content in the bath. • Investigation the effect of codeposited SiC amount on the properties of coatings. - Abstract: Nickel/silicon carbide composite electrodeposits were prepared on a rotating disk electrode (RDE), under pulse current condition. The effect of pulse parameters, current density, SiC content in the electrolyte on the codeposition of SiC were studied. Afterwards, the effect of codeposited SiC amount was investigated on electrochemical behavior and nanomechanical properties of coatings. The coatings were analyzed with Scanning Electron Microscopy (SEM), linear polarization, nanoindentation and Atomic Force Microscopy (AFM). The Ni–SiC electrocomposites, prepared at optimum conditions, exhibited improved nanomechanical properties in comparison to pure nickel electrodeposits. With increasing current density the morphology changed from flat surface to cauliflower structure. The Ni–SiC electrocomposites exhibited improved nanomechanical properties and corrosion resistances in comparison to pure nickel electrodeposits and these properties were improving with increasing codeposited SiC particles in electrocomposites.

  1. Peculiarities of the intermediate valence state of Ce in CeM2Si2 (M = Fe, Co, Ni) compounds

    International Nuclear Information System (INIS)

    Koterlyn, M.; Shcherba, I.; Yasnitskii, R.; Koterlyn, G.

    2007-01-01

    The results of thermoelectric power and the electrical resistivity measurements connected with the intermediate valence (IV) of Ce are presented for the compounds CeM 2 Si 2 (M = Fe, Co, Ni) in the temperature range of 4-800 K. It is shown that CeM 2 Si 2 are Kondo-lattices with the coherence scale T coh ∼ 60-80 K and the so-called single-site Kondo temperature T K ∼ 10 3 K. On the example of CeNi 2 Si 2 we have studied the changes in the structure of density of f states (f-DOS) near the Fermi energy caused by atomic substitutions. The results of structural, transport, magnetic, and Ce L III X-ray absorption spectra measurements in the series Ce 1-x La x Ni 2 Si 2 (0 ≤ x ≤ 0.6), Ce(Ni 1-y Cu y ) 2 Si 2 (0 ≤ y ≤ 0.6) and CeNi 2 (Si 1-z Ge z ) 2 (0 ≤ z ≤ 0.5) are presented. We found that the IV state of Ce in the CeM 2 Si 2 is an evidence of possible opening a wide pseudogap Δ ∼ kT K within the f-DOS structure slightly above the Fermi energy

  2. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: a_layadi@yahoo.fr; Ben Youssef, J. [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Roussigne, Y. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France)

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K {sub 1} and K {sub 2}, have been included; for the Ni/Cu series, K {sub 1} was found to decrease from 1.0x10{sup 6} to 0.18x10{sup 6} erg/cm{sup 3} as t increases from 31 to 165 nm, while K {sub 2} increased from 0.24x10{sup 6} to 0.8x10{sup 6} erg/cm{sup 3}. Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t{>=}165 nm in Ni/glass and t{>=}90 nm in Ni/Cu.

  3. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    International Nuclear Information System (INIS)

    Cherif, S.-M.; Layadi, A.; Ben Youssef, J.; Nacereddine, C.; Roussigne, Y.

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K 1 and K 2 , have been included; for the Ni/Cu series, K 1 was found to decrease from 1.0x10 6 to 0.18x10 6 erg/cm 3 as t increases from 31 to 165 nm, while K 2 increased from 0.24x10 6 to 0.8x10 6 erg/cm 3 . Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t≥165 nm in Ni/glass and t≥90 nm in Ni/Cu

  4. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  5. Cu-segregation at the Q'/α-Al interface in Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Teguri, Daisuke; Uetani, Yasuhiro; Sato, Tatsuo; Ikeno, Susumu

    2002-01-01

    Cu segregation was detected at the Q ' /α-Al interface in an Al-Mg-Si-Cu alloy by energy-filtered transmission electron microscopy. By contrast, in a Cu-free Al-Mg-Si alloy no segregation was observed at the interface between the matrix and Type-C precipitate

  6. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    Science.gov (United States)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  7. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  8. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  9. Low temperature interdiffusion in Cu/Ni thin films

    International Nuclear Information System (INIS)

    Lefakis, H.; Cain, J.F.; Ho, P.S.

    1983-01-01

    Interdiffusion in Cu/Ni thin films was studied by means of Auger electron spectroscopy in conjunction with Ar + ion sputter profiling. The experimental conditions used aimed at simulating those of typical chip-packaging fabrication processes. The Cu/Ni couple (from 10 μm to 60 nm thick) was produced by sequential vapor deposition on fused-silica substrates at 360, 280 and 25 0 C in 10 - 6 Torr vacuum. Diffusion anneals were performed between 280 and 405 0 C for times up to 20 min. Such conditions define grain boundary diffusion in the regimes of B- and C-type kinetics. The data were analyzed according to the Whipple-Suzuoka model. Some deviations from the assumptions of this model, as occurred in the present study, are discussed but cannot fully account for the typical data scatter. The grain boundary diffusion coefficients were determined allowing calculation of respective permeation distances. (Auth.)

  10. Selected characteristic of silumins with additives of Ni, Cu, Cr, Mo, W and V

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-04-01

    Full Text Available The study, presents an investigation results of new grades of silumins containing of: 7,0÷17,0% Si, 4,0% Ni, 4,0% Cu and 0,5% Cr, Mo, W each as well as V. The influence tests were carried out of - antimony addition, strontium and phosphorus modification, supersaturation and ageing processes - on microstructure and silumins hardness. Revealed that investigated silumins, depending on the state, are characte-rized by hardness in the range of 80÷180 HB.

  11. Anomalous fast diffusion in Cu-NiFe nanolaminates.

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Alan F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Energy Nanomaterials Dept.

    2017-09-01

    For this work, the decomposition of the one-dimensional composition wave in Cu-NiFe nanolaminate structures is examined using x-ray diffraction to assess the kinetics of phase decomposition. The anomalously high diffusivity value found for long-term aging at room temperature is attributed to the inherent nanostructure that features paths for short-circuit diffusion in nanolaminates as attributed to interlayer grain boundaries.

  12. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    Science.gov (United States)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  13. Calorimetric Investigation of Thermal Stability of 304H Cu (Fe-17.7Cr-9.3Ni-2.95Cu-0.91Mn-0.58Nb-0.24Si-0.1C-0.12N-Wt Pct) Austenitic Stainless Steel

    Science.gov (United States)

    Tripathy, Haraprasanna; Subramanian, Raju; Hajra, Raj Narayan; Rai, Arun Kumar; Rengachari, Mythili; Saibaba, Saroja; Jayakumar, Tammana

    2016-12-01

    The sequence of phase instabilities that take place in a Fe-17.7Cr-9.3Ni-0.58Nb-2.95Cu-0.12N (wt pct) austenitic stainless steel (304H Cu grade) as a function of temperature has been investigated using dynamic calorimetry. The results obtained from this investigation are supplemented by Thermocalc-based equilibrium and Scheil-Gulliver nonequilibrium solidification simulation. The following phase transformation sequence is found upon slow cooling from liquid: L → L + γ → L + γ + MX → γ + MX + δ → γ +MX + M23C6 → γ + MX + M23C6 + Cu. Under slow cooling, the solidification follows austenite + ferrite (AF) mode, which is in accordance with Thermocalc prediction and Scheil-Gulliver simulation. However, higher cooling rates result in skeletal δ-ferrite formation, due to increased segregation tendency of Nb and Cr to segregate to interdendritic liquid. The solidification mode is found to depend on combined Nb + Cu content. Experimental estimates of enthalpy change associated with melting and secondary phase precipitation are also obtained. In addition a semi-quantitative study on the dissolution kinetics of M23C6 type carbides has also been investigated. The standard solution treatment at 1413 K (1140 °C) is found to be adequate to dissolve both Cu and M23C6 into γ-austenite; but the complete dissolution of MX type carbonitrides occurs near the melting region.

  14. Characterisation of the early stages of solute clustering in 1Ni-1.3Mn welds containing Cu

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J.M., E-mail: jonathan.hyde@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); National Nuclear Laboratory Ltd, B168 Harwell, Didcot, Oxon OX11 0QJ (United Kingdom); Burke, M.G. [Bechtel Bettis Inc., 814 Pittsburgh-McKeesport Blvd, West Mifflin, Pittsburgh 15122-0079 (United States); Boothby, R.M.; English, C.A. [National Nuclear Laboratory Ltd, B168 Harwell, Didcot, Oxon OX11 0QJ (United Kingdom)

    2009-04-15

    Microstructural characterisation of neutron irradiated low alloy steels is important for developing mechanistic understanding of irradiation embrittlement. This work is focused on the early stages of irradiation-induced clustering in a low Cu (0.03 wt%), high Ni ({approx}1 wt%) weld. The weld was irradiated at a very high dose rate and then examined by atom probe (energy-compensated position-sensitive atom probe (ECOPoSAP) and local electrode atom probe (LEAP)) with supporting microstructural information obtained by small angle neutron scattering (SANS) and positron annihilation (PALA). It was demonstrated that extreme care must be taken optimising parameters used to characterise the extent of clustering. This is particularly important during the early stages of irradiation-damage when the clusters are poorly defined and significant compositional variations are present in what is traditionally described as matrix. Analysis of the irradiated materials showed increasing clustering of Cu, Mn, Ni and Si with dose. In the low Cu steel the results showed that initially the irradiation damage results in clustering of Mn, Ni and Si, but at very high doses, at very high dose rates, redistribution of Si is significantly more advanced than that for Mn and Ni.

  15. Monitoring Cu nodule formation using Ni marker layers

    Energy Technology Data Exchange (ETDEWEB)

    Lafouresse, M.C., E-mail: mlafouresse@gmail.co [Department of Civil and Earth Resources Engineering, Kyoto University, Katsura, Kyoto 615-8540 (Japan); Fukunaka, Y. [Institute for Nanoscience and Nanotechnology, Waseda University, Shinjuku Ku, Tokyo 169-8555 (Japan); ISS Science Project Office, JAXA, Tsukuba-shi, Ibaraki 305-8505 (Japan); Matsuoka, T. [Department of Civil and Earth Resources Engineering, Kyoto University, Katsura, Kyoto 615-8540 (Japan); Schwarzacher, W. [H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2011-04-30

    Highlights: {yields} Ni marker layers to monitor electrodeposited Cu nodule morphological evolution. {yields} The edges of the nodules trace out a straight line. {yields} Difference in growth between spheres and hemispheres. {yields} Nodule on nodule growth at high overpotential. {yields} No dramatic effect of the diffusion layer thickness on the film morphology. - Abstract: We have used Ni marker layers to study the evolution of the characteristic spheroidal nodule morphology in electrodeposited Cu films. Ultrathin Ni layers were electrodeposited in-between Cu layers, and cross sections prepared by electrochemical polishing. During growth of a typical spheroidal feature, the edge (i.e. where there is a discontinuity in the surface slope) traces out a straight line in the cross-sectional image. At high overpotential, the cross-sections show nodule-on-nodule growth, giving rise to the well known cauliflower morphology. Rotating disk electrode studies reveal that, surprisingly, the absolute diffusion layer thickness does not appear to play a major role in the development of spheres.

  16. Monitoring Cu nodule formation using Ni marker layers

    International Nuclear Information System (INIS)

    Lafouresse, M.C.; Fukunaka, Y.; Matsuoka, T.; Schwarzacher, W.

    2011-01-01

    Highlights: → Ni marker layers to monitor electrodeposited Cu nodule morphological evolution. → The edges of the nodules trace out a straight line. → Difference in growth between spheres and hemispheres. → Nodule on nodule growth at high overpotential. → No dramatic effect of the diffusion layer thickness on the film morphology. - Abstract: We have used Ni marker layers to study the evolution of the characteristic spheroidal nodule morphology in electrodeposited Cu films. Ultrathin Ni layers were electrodeposited in-between Cu layers, and cross sections prepared by electrochemical polishing. During growth of a typical spheroidal feature, the edge (i.e. where there is a discontinuity in the surface slope) traces out a straight line in the cross-sectional image. At high overpotential, the cross-sections show nodule-on-nodule growth, giving rise to the well known cauliflower morphology. Rotating disk electrode studies reveal that, surprisingly, the absolute diffusion layer thickness does not appear to play a major role in the development of spheres.

  17. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  18. Magnetic relaxation behaviour in Pr_2NiSi_3

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2016-01-01

    Time dependent isothemal remanent magnetizatin (IRM) behaviour for polycrystalline compound Pr_2NiSi_3 have been studied below its characteristic temperature. The compound undergoes slow magnetic relaxation with time. Along with competing interaction, non-magnetic atom disorder plays an important role in formation of non-equilibrium glassy like ground state for this compound.

  19. Precipitation in Ni-Si during electron and ion irradiation

    Science.gov (United States)

    Lucas, G. E.; Zama, T.; Ishino, S.

    1986-11-01

    This study was undertaken to further investigate how the nature of the irradiation condition affects precipitation in a dilute Ni-Si system. Transmission electron microscopy (TEM) discs of a solution annealed Ni alloy containing 5 at% Si were irradiated with 400 keV Ar + ions, 200 keV He + ions and 1 MeV electrons at average displacement rates in the range 2 × 10 -5dpa/s to 2 × 10 -3dpa/s at temperatures in the range 25°C to 450°C. Samples irradiated with electrons were observed in situ in an HVEM, while ion irradiated specimens were examined in a TEM after irradiation. Precipitation of Ni 3Si was detected by the appearance of superlattice spots in the electron diffraction patterns. It was found that as the mass of the irradiating species increased, the lower bound temperature at which Ni 3Si precipitation was first observed increased. For electron irradiation, the lower bound temperature at 2 × 10 -3dpa/s was ˜125°C, whereas for 400 keV Ar + irradiation at a similar average displacement rate the lower boundary was approximately 325°C. This suggests that cascade disordering competes with radiation induced solute segregation.

  20. Precipitation in Ni-Si during electron and ion irradiation

    International Nuclear Information System (INIS)

    Lucas, G.E.; Zama, T.; Ishino, S.

    1986-01-01

    This study was undertaken to further investigate how the nature of the irradiation condition affects precipitation in a dilute Ni-Si system. Transmission electron microscopy (TEM) discs of a solution annealed Ni alloy containing 5 at% Si were irradiated with 400 keV Ar + ions, 200 keV He + ions and 1 MeV electrons at average displacement rates in the range 2x10 -5 dpa/s to 2x10 -3 dpa/s at temperatures in the range 25 0 C to 450 0 C. Samples irradiated with electrons were observed in situ in an HVEM, while ion irradiated specimens were examined in a TEM after irradiation. Precipitation of Ni 3 Si was detected by the appearance of superlattice spots in the electron diffraction patterns. It was found that as the mass of the irradiating species increased, the lower bound temperature at which Ni 3 Si precipitation was first observed increased. For electron irradiation, the lower bound temperature at 2x10 -3 dpa/s was ∝125 0 C, whereas for 400 keV Ar + irradiation at a similar average displacement rate the lower boundary was approximately 325 0 C. This suggests that cascade disordering competes with radiation induced solute segregation. (orig.)

  1. Structural relaxation of Ni-Si-B amorphous ribbon

    NARCIS (Netherlands)

    Jurikova, A.; Csach, K.; Miskuf, J.; Ocelik, V.

    The structural relaxation of the Ni-Si-B amorphous ribbon was studied by means of differential scanning calorimetry and thermomechanical analysis. It was shown that considerable length changes associated with reversible structural relaxation were revealed after a previous creep applied at higher

  2. Structural Investigation of Fe-Ni-S and Fe-Ni-Si Melts by High-temperature Fluorescence XAFS Measurements

    International Nuclear Information System (INIS)

    Manghnani, Murli H.; Balogh, John; Hong Xinguo; Newville, Matthew; Amulele, G.

    2007-01-01

    Iron-nickel (Fe-Ni) alloy is regarded as the most abundant constituent of Earth's core, with an amount of 5.5 wt% Ni in the core based on geochemical and cosmochemical models. The structural role of nickel in liquid Fe-Ni alloys with light elements such as S or Si is poorly understood, largely because of the experimental difficulties of high-temperature melts. Recently, we have succeeded in acquiring Ni K-edge fluorescence x-ray absorption fine structure (XAFS) spectra of Fe-Ni-S and Fe-Ni-Si melts and alloys. Different structural environment of Ni atoms in Fe-Ni-S and Fe-Ni-Si melts is observed, supporting the effect of light elements in Fe-Ni melts

  3. Crystallization and Martensitic Transformation Behavior of Ti-Ni-Si Alloy Ribbons Prepared via Melt Spinning.

    Science.gov (United States)

    Park, Ju-Wan; Kim, Yeon-Wook; Nam, Tae-Hyun

    2018-09-01

    Ti-(50-x)Ni-xSi (at%) (x = 0.5, 1.0, 3.0, 5.0) alloy ribbons were prepared via melt spinning and their crystallization procedure and transformation behavior were investigated using differential scanning calorimtry, X-ray diffraction, and transmission electron microscopy. Ti-Ni-Si alloy ribbons with Si content less than 1.0 at% were crystalline, whereas those with Si content more than 3.0 at% were amorphous. Crystallization occurred in the sequence of amorphous →B2 → B2 → Ti5Si4 + TiNi3 → B2 + Ti5Si4 + TiNi3 + TiSi in the Ti-47.0Ni-3.0Si alloy and amorphous →R → R + Ti5Si4 + TiNi3 → R + Ti5Si4 + TiNi3 + TiSi in the Ti-45.0Ni-5.0Si alloy. The activation energy for crystallization was 189 ±8.6 kJ/mol for the Ti-47Ni-3Si alloy and 212±8.6 kJ/mol for the Ti-45Ni-5Si alloy. One-stage B2-R transformation behavior was observed in Ti-49.5Ni-0.5Si, Ti-49.0Ni-1.0Si, and Ti-47.0Ni- 3.0Si alloy ribbons after heating to various temperatures in the range of 873 K to 1073 K. In the Ti-45.0Ni-5.0Si alloy, one-stage B2-R transformation occurred after heating to 893 K, two-stage B2-R-B19' occurred after heating to 973 K, and two-stage B2-R-B19' occurred on cooling and one-stage B19'-B2 occurred on heating, after heating to 1073 K.

  4. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses

    International Nuclear Information System (INIS)

    Silva, Luis Carlos Elias da

    2006-01-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  5. Pitting Corrosion of Ni3(Si,Ti+2Cr Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-05-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 2 at% Cr containing two regions of a Ni3(Si,Ti single-phase of L12 structure and a mixture phase of of (L12 +Niss was investigated as function of chloride concentrations by using a polarization method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  The pitting corrosion of Ni3(Si,Ti with and without the addition of aluminium and type C276 alloy were also studied under the same experimental condition for the comparison.  The pitting potential obtained for the Ni3(Si,Ti with 2 at% Cr decreased with increasing chloride concentration.  The specific pitting potentials and the pitting potentials were decreased in the order of C276 alloy > Ni3(Si,Ti > Ni3(Si,Ti + 2Cr > Ni3(Si,Ti + 4Al, which means that the pitting corrosion resistance of Ni3(Si,Ti with 2 at% Cr was higher than Ni3(Si,Ti with 4 at% Al, but lower than that of Ni3(Si,Ti.  A critical chloride concentration of Ni3(Si,Ti with 2 at% Cr was found to be higher than that of Ni3(Si,Ti with at% Al. In addition, the presence of high concentration for oxygen indicates the occurrence of pit formation.

  6. KLL resonant Auger transitions in metallic Cu and Ni

    International Nuclear Information System (INIS)

    Koever, L.; Berenyi, Z.; Cserny, I.

    2004-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metals contain important information on the effects of the solid environment on deep core Auger transitions. Following the changes in the spectra when fine tuning the exciting photon energy across the K-shell ionization threshold with high energy resolution is informative concerning the possible resonant processes, expected to indicate the single-step nature of threshold Auger emission. The satellite structures in these spectra are strongly related to the unoccupied local electronic states above the Fermi level, as well as to the excitation, relaxation and screening processes associated with core hole ionization. In spite of the fundamental significance of the phenomena mentioned above, even non resonant high energy resolution studies of KLL Auger spectra of 3d transition metals (using laboratory X-ray sources) are very scarce due to the demanding experimental conditions requested. A very efficient tool for studying these phenomena is the Tunable High Energy XPS developed at HASYLAB which provides unique conditions, photon x and energy resolution for deep core Auger spectroscopy. Using the THE-XPS instrument at the BW2 beamline the high energy resolution (ΔE = 0.2 eV) KL 2,3 L 2,3 Auger spectra of polycrystalline Cu and Ni foils were measured with the Scienta SES-200 hemispherical analyzer. In the high energy range Cu 2p photo-electron peaks appearing in the Cu KLL Auger spectra due to the excitation by internal Cu K X-rays and trusted value for the Cu 2p3/2 binding energy were used for energy calibration. The exciting photon energy range was tuned up to about 50 eV above the K absorption edge and for the resonant energy region to 5 eV (Cu KLL) and 4 eV (Ni KLL) below threshold ensuring a photon beam with an energy width of about 1.1 eV. The evolution of the satellite structure as a function of excitation energy above threshold indicates di rent behaviour for particular satellites, making

  7. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    Science.gov (United States)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  8. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    Science.gov (United States)

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  9. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La–Al–Cu(Ni metallic glasses

    Directory of Open Access Journals (Sweden)

    Peiyou Li

    2016-02-01

    Full Text Available The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La–Al–Cu(Ni metallic glasses (MGs was studied by differential scanning calorimetry (DSC. The experimental results have shown that the DSC curves obtained for the La–Al–Cu and La–Al–Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La–Al–Cu and La–Al–Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al–Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La–Al–Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La–Al–Cu(Ni MGs.

  10. Fabrication of a Cu/Ni stack in supercritical carbon dioxide at low-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rasadujjaman, Md, E-mail: rasadphy@duet.ac.bd [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Department of Physics, Dhaka University of Engineering & Technology, Gazipur 1700 (Bangladesh); Watanabe, Mitsuhiro [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Sudoh, Hiroshi; Machida, Hideaki [Gas-Phase Growth Ltd., 2-24-16 Naka, Koganei, Tokyo 184-0012 (Japan); Kondoh, Eiichi [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2015-09-30

    We report the low-temperature deposition of Cu on a Ni-lined substrate in supercritical carbon dioxide. A novel Cu(I) amidinate precursor was used to reduce the deposition temperature. From the temperature dependence of the growth rate, the activation energy for Cu growth on the Ni film was determined to be 0.19 eV. The films and interfaces were characterized by Auger electron spectroscopy. At low temperature (140 °C), we successfully deposited a Cu/Ni stack with a sharp Cu/Ni interface. The stack had a high adhesion strength (> 1000 mN) according to microscratch testing. The high adhesion strength originated from strong interfacial bonding between the Cu and the Ni. However, at a higher temperature (240 °C), significant interdiffusion was observed and the adhesion became weak. - Highlights: • Cu/Ni stack fabricated in supercritical CO{sub 2} at low temperature. • A novel Cu(I) amidinate precursor was used to reduce the deposition temperature. • Adhesion strength of Cu/Ni stack improved dramatically. • Fabricated Cu/Ni stack is suitable for Cu interconnections in microelectronics.

  11. Coarsening of Ni(3)Si precipitates in binary Ni-Si alloys

    Science.gov (United States)

    Cho, Jin-Hoon

    The coarsening behavior of coherent gammasp'\\ (Nisb3Si) precipitates with volume fractions, f, ranging from 0.017 to 0.32 in binary Ni-Si alloys was investigated. All of the alloys were aged at 650sp° C for times as long as 2760 h and measurements were made of the kinetics of coarsening, particle size distributions and the evolution of particle morphologies using transmission electron microscopy. The kinetics of solute depletion were investigated using measurements of the ferromagnetic Curie temperature. We successfully overcame the difficulties in obtaining uniform spatial distributions of precipitates at small f by employing an up-quenching treatment; alloys with f less than 0.1 were pre-aged at 530sp° C prior to re-aging at the normal aging temperature of 650sp° C. Almost identical coarsening behavior exhibited by an alloy subjected to both isothermal and up-quenching treatments confirm that the up-quenching treatments do not affect any aspect of the coarsening behavior. Consistent with previous studies, the particles are spherical in shape when small and evolve to a cuboidal shape, with flat faces parallel to {}, as they grow. This shape transition was characterized quantitatively by analyzing the intensity distributions of Fast Fourier Transform spectra generated from the digitized images of TEM micrographs. The precipitates display no tendency towards becoming plate-shaped and they resist coalescence even at the largest sizes, which approach 400 nm in diameter at 2760 h of aging for higher volume fraction alloys. For f < 0.1, the kinetics of coarsening and solute depletion as well as the standard deviation of the particle size distributions decrease as f increases. This anomalous behavior has been documented previously by other investigators, but is contrary to the predictions of theories that incorporate the volume fraction effect in coarsening kinetics. We find no convincing evidence to suggest that f influences any aspect of the coarsening behavior at

  12. Granulation of Cu-Al-Fe-Ni Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2014-08-01

    Full Text Available With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness. Undertaken research to develop technology of thick-walled products (g> 6 mm of complex aluminium bronzes. Particular attention was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by infiltration of liquid alloy of granules (composites. Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5 bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process control parameters taken a casting temperature t (°C and the path h (mm of free-fall of the metal droplets in the surrounding atmosphere before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was assume maximize of the product of Um*n, the percentage weight “Um” and the quantity of granules ‘n’ in the mesh fraction. The maximum value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was identified microstructure composed of phases: β and fine bainite

  13. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    Science.gov (United States)

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-10-01

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  14. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  15. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.

    Science.gov (United States)

    Kim, Tae Gon; Park, Hye Jin; Woo, Kyoohee; Jeong, Sunho; Choi, Youngmin; Lee, Su Yeon

    2018-01-10

    In this work, the fabrication and application of highly conductive, robust, flexible, and oxidation-resistant Cu-Ni core-shell nanoparticle (NP)-based electrodes have been reported. Cu@Ni core-shell NPs with a tunable Ni shell thickness were synthesized by varying the Cu/Ni molar ratios in the precursor solution. Through continuous spray coating and flash photonic sintering without an inert atmosphere, large-area Cu@Ni NP-based conductors were fabricated on various polymer substrates. These NP-based electrodes demonstrate a low sheet resistance of 1.3 Ω sq -1 under an optical energy dose of 1.5 J cm -2 . In addition, they exhibit highly stable sheet resistances (ΔR/R 0 flexible heater fabricated from the Cu@Ni film is demonstrated, which shows uniform heat distribution and stable temperature compared to those of a pure Cu film.

  16. Effect of solute Cu on ductile-to-brittle behavior of martensitic Fe-8% Ni alloy

    International Nuclear Information System (INIS)

    Junaidi Syarif; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2007-01-01

    Effect of solute Cu on the ductile-to-brittle (DBT) behaviour of martensitic Fe-8mass%Ni alloy is investigated to understand the effect of solute Cu on mechanical properties of martensitic steel. The DBT behaviours of the Fe-8mass%Ni and the Fe-8mass%Ni-1mass%Cu alloys are almost the same. It is thought to be due to disappearance of the solid solution softening in the martensitic Fe-8mass%Ni-Cu alloys. The solute Cu gives small influence on temperature and strain rate dependences of yield stress and suppressing the twin deformation at lower temperature in the martensitic Fe-8mass%Ni alloy. Therefore, the DBT temperature of the martensitic Fe-8mass%Ni-Cu alloy was not shifted to lower side. (author)

  17. Secondary precipitation in an Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Buha, J.; Lumley, R.N.; Crosky, A.G.; Hono, K.

    2007-01-01

    Interruption of a conventional T6 heat treatment at 177 deg. C for the Al-Mg-Si-Cu alloy 6061 after a short period of time (20 min), by inserting a dwell period at a lower temperature (e.g. 65 deg. C), promotes secondary precipitation of Guinier-Preston (GP) zones. As a consequence, a much greater number of precursors to the β'' precipitates are produced so that a finer and denser dispersion of this phase is formed when T6 ageing is resumed. This change in microstructure causes significant and simultaneous improvements in tensile properties and fracture toughness. Secondary precipitation of GP zones occurs through a gradual evolution of a large number of Mg-Si(-Cu)-vacancy co-clusters formed during the initial ageing at 177 deg. C. The precise mechanism of secondary precipitation has been revealed by three-dimensional atom probe microscopy supplemented by transmission electron microscopy and differential scanning calorimetry

  18. Magnetic domain structure and domain-wall energy in UFe8Ni2Si2 and UFe6Ni4Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Suski, W.; Wochowski, K.

    1994-01-01

    Magnetic domain structures in the UFe 8 Ni 2 Si 2 and UFe 6 Ni 4 Si 2 compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density γ was determined from the average surface domain width D s observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm 2 for UFe 8 Ni 2 Si 2 and 10 erg/cm 2 for UFe 6 Ni 4 Si 2 . Moreover, the critical diameter for single domain particle D c was calculated for the studied compounds

  19. Structural, electrical and magnetic properties of evaporated Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: A_Layadi@yahoo.fr; Guittoum, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger 16000 (Algeria); Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Chauveau, T. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Billet, D. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Youssef, J. Ben [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Bourzami, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Bourahli, M.-H. [Departement d' O. M. P., Universite Ferhat Abbas, Setif 19000 (Algeria)

    2007-01-25

    The structural, electrical and magnetic properties of Ni thin films evaporated onto glass and polycrystalline Cu substrates have been investigated. The Ni thickness ranges from 31 to 165 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to study the structure and morphology of these systems. The Ni/Cu and Ni/glass thin films are found to be polycrystalline with a (1 1 1) texture. There is an overall increase of the grain size with increasing thickness. A negative strain was noted indicating that all the samples are under a compressive stress. Diffusion at the grain boundaries seems to be a major contribution to the electrical resistivity in this thickness range. Study of the hysteresis curves, obtained by vibrating sample magnetometer (VSM), indicates that all samples are characterized by an in-plane magnetization easy axis. Higher in-plane coercive fields seem to be associated with higher grain size, indicating that coercivity may be due to nucleation of reverse domains rather than pinning of domain walls. The saturation field and the squareness have been studied as a function of the Ni thickness.

  20. Microstructure analysis of the automotive Al-Si-Cu castings

    Directory of Open Access Journals (Sweden)

    M. Krupiński

    2008-04-01

    Full Text Available The developed design methodologies both the material and technological ones will make it possible to improve shortly the quality of materials from the light alloys in the technological process, and the automatic process flow correction will make the production cost reduction possible, and - first of all - to reduce the amount of the waste products. In the metal casting industry, an improvement of component quality depends mainly on better control over the production parameters.Castings were analysed in the paper of car engine blocks and heads from the Al-Si-Cu alloys of the AC-AlSi7Cu3Mg type fabricated with the “Cosworth” technological process. In this work the AC-AlSi7Cu3Mg alloy structure was investigated, of this alloy samples were cut of for structure analysis of the cylinder part as well of crankshaft of a fuel engine. The investigation shows a difference in the (phase structure morphology as a result of cast cooling rate.

  1. Sputtering yields of Si and Ni from the I sub(1-x)Si sub(x) system studied by Rutherford backscattering spectrometry

    International Nuclear Information System (INIS)

    Kim, Su-Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori.

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni sub(1-x)Si sub(x)), including the pure materials (Ni and Si), caused by 5keV Ar + ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni sub(1-x)Si sub(x) increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi 2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni sub(1-x)Si sub(x) which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy. (author)

  2. Microstructural characterization of alloys of the quasibinary Cu-NiBe system

    Energy Technology Data Exchange (ETDEWEB)

    Spaic, S.; Markoli, B. [Univ. of Ljubljana, Faculty of Natural Science and Engineering, Ljubljana (Slovenia)

    2003-08-01

    Alloys of the quasibinary section Cu-NiBe were experimentally investigated with differential thermal analysis, optical microscopy, electron microanalysis, transmission electron microscopy and X-ray diffraction. The construction of the quasibinary Cu-NiBe phase diagram was made based on the experimental results. The constitution of alloys of the whole section was studied along with the investigation of the microstructure and crystallographic relationship of the NiBe phase in aged alloys from the Cu-rich corner of the Cu-NiBe system. (orig.)

  3. Si effects on radiation induced segregation in high purity Fe-18Cr-14Ni alloys irradiated by Ni ions

    International Nuclear Information System (INIS)

    Ohta, Joji; Kako, Kenji; Mayuzumi, Masami; Kusanagi, Hideo; Suzuki, Takayoshi

    1999-01-01

    To illustrate the effects of the element Si on radiation induced segregation, which causes irradiation assisted stress corrosion cracking (IASCC), we investigated grain boundary chemistry of high purity Fe-18Cr-14Ni-Si alloys irradiated by Ni ions using FE-TEM. The addition of Si up to 1% does not affect the Cr depletion at grain boundaries, while it slightly enhances the depletion of Fe and the segregation of Ni and Si. The addition of 2% Si causes the depletion of Cr and Fe and the segregation of Ni and Si at grain boundaries. Thus, the Si content should be as low as possible. In order to reduce the depletion of Cr at grain boundaries, which is one of the major causes of IASCC, Si content should be less than 1%. (author)

  4. Comparison between thermal annealing and ion mixing of multilayered Ni-W films on Si. II

    International Nuclear Information System (INIS)

    Pai, C.S.; Lau, S.S.; Poker, D.B.; Hung, L.S.

    1985-01-01

    The reactions between bilayered Ni/W films and Si substrates induced by thermal annealing and ion mixing were investigated and compared. Samples were prepared by electron-beam sequential deposition of Ni and W onto the Si substrates and following by either furnace annealing (approx. 200--900 0 C) or ion mixing (approx. 2 x 10 15 -- 4 x 10 16 86 Kr + ions/cm 2 ). The reactions were analyzed by Rutherford backscattering and x-ray diffraction (Read camera). Thermal annealing of both W/Ni/Si and Ni/W/Si samples led to the formation of Ni silicide next to the Si substrate and W silicide on the sample surface (layer reversal between Ni and W in the Ni/W/Si case). Ion mixing of W/Ni/Si samples led to the formation of Ni silicide with a thin layer of Ni-W-Si mixture located at the sample surface. For Ni/W/Si samples a ternary amorphous mixture of Ni-W-Si was obtained with ion mixing. These reactions were rationalized in terms of the mobilities of various atoms and the intermixings between layers

  5. Crystallization behavior of Zr62Al8Ni13Cu17 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Jo Mi Sun

    2017-06-01

    Full Text Available The crystallization behavior has been studied in Zr62Al8Ni13Cu17 metallic glass alloy. The Zr62Al8Ni13Cu17 metallic glass crystallized through two steps. The fcc Zr2Ni phase transformed from the amorphous matrix during first crystallization and then the Zr2Ni and residual amorphous matrix transformed into a mixture of tetragonal Zr2Cu and hexagonal Zr6Al2Ni phases. Johnson-Mehl-Avrami analysis of isothermal transformation data suggested that the formation of crystalline phase is primary crystallization by diffusion-controlled growth.

  6. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Donoso, E.

    2014-01-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi 3 phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi 3 phase. (Author)

  7. Pitting Corrosion of Ni3(Si,Ti+4Al Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-04-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 4 at% Al consisting of two regions of a Ni3(Si,Ti single-phase of L12 structure and two phases of L12 and fcc Niss was investigated as function of chloride concentrations by using electrochemical method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  In addition, the pitting corrosion of Ni3(Si,Ti and  type C276 alloy were also studied under the same experimental condition for comparison.  The pitting potential obtained for the Ni3(Si,Ti with 4 at%Al decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti with 4at%, Ni3(Si,Ti and C276 were the lowest, the moderate and the highest, respectively, which means that the pitting corrosion resistance of Ni3(Si,Ti was higher than Ni3(Si,Ti with 4at% Al, but lower than that of C276.  A critical chloride concentration of Ni3(Si,Ti with 4at% Al was found to be lower than that of Ni3(Si,Ti.  The Pitting corrosion of Ni3(Si,Ti with 4at% Al occurred in the two phase mixture (L12 + Niss.

  8. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  9. Precipitate resolution in an electron irradiated ni-si alloy

    Science.gov (United States)

    Watanabe, H.; Muroga, T.; Yoshida, N.; Kitajima, K.

    1988-09-01

    Precipitate resolution processes in a Ni-12.6 at% Si alloy under electron irradiation have been observed by means of HVEM. Above 400°C, growth and resolution of Ni 3Si precipitates were observed simultaneously. The detail stereoscopic observation showed that the precipitates close to free surfaces grew, while those in the middle of a specimen dissolved. The critical dose when the precipitates start to shrink increases with increasing the depth. This depth dependence of the precipitate behavior under irradiation has a close relation with the formation of surface precipitates and the growth of solute depleted zone beneath them. The temperature and dose dependence of the resolution rate showed that the precipitates in the solute depleted zone dissolved by the interface controlled process of radiation-enhanced diffusion.

  10. Antiferromagnetic ordering of Er2NiSi3 compound

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2014-01-01

    Ternary intermetallics of the stoichiometric composition R 2 TX 3 , where, R = rare earth element, T = d-electron transition metal and X= p-electron element, crystallizes in hexagonal A1B 2 type crystal structure with space group P6/mmm. We report here the synthesis and basic magnetic properties of the compound Er 2 NiSi 3 . Paramagnetic to antiferromagnetic phase change occurs below 5.4 K for this compound. (author)

  11. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    International Nuclear Information System (INIS)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun

    2017-01-01

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr 7 Ni 10 , ZrNi, ZrNi 5 , Zr 14 Cu 51 , and Zr 2 Cu 9 , show a remarkable ternary solubility. A new ternary compound named τ 3 (Zr 31.1-30.7 . Cu 28.5-40.3 Ni 40.4-29.0 ) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  12. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  13. Investigations on Cu-Ni and Cu-Al systems with secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Rodriguez-Murcia, H.; Beske, H.E.

    1976-04-01

    The ratio of the ionization coefficients of secondary atomic ions emitted from the two component systems Cu-Ni and Cu-Al was investigated as a function of the concentration of the two components. In the low concentration range the ratio of the ionization coefficients is a constant. An influence of the phase composition on the ratio of the ionization coefficients was found in the Cu-Al system. In addition, the cluster ion emission was investigated as a function of the concentration and the phase composition of the samples. The secondary atomic ion intensity was influenced by the presence of cluster ions. The importance of the cluster ions in quantitative analysis and phase determination by means of secondary ion mass spectrometry are discussed. (orig.) [de

  14. Effects of Eutectic Si and Secondary Dendrite Arm Spacing on the Mechanical Properties of Al-Si-Cu Cast Alloys

    International Nuclear Information System (INIS)

    Lee, Kyungmin; Kim, Yumi; Kim, Youngman; Hong, Sungkil; Choi, Seweon; Kim, Youngchan; Kang, Changseok

    2014-01-01

    The present study aims at investigating the effects of eutectic Si and Secondary dendrite arm spacing (SDAS) on mechanical properties of Al-Si-Cu alloy. Heat treatment and controlling of solidification rate affect to microstructure of Al-Si-Cu alloy. Al-Si-Cu alloy was dissolved in an electric furnace. The alloy cast in STD61 mold which had been pre-heated to 95 ℃ and 200 ℃. Eutectic Si and SDAS were finer as cooling rate increased. Image analysis technique has been utilized to examine the microstructure. Microstructure observation results showed that T6 heat treatment has a strong influence eutectic Si particle morphology. The mechanical properties, such as tensile strength, yield strength, elongation, were improved by ASTM E8 standard. Tensile properties of the Al-Si-Cu alloys prepared by different cooling rates were the same as each other by T6 heat treatment.

  15. Biperiodic oscillatory coupling with the thickness of an embedded Ni layer in Co/Cu/Co/Ni/Co (100) and selection rules for the periods

    NARCIS (Netherlands)

    de Vries, J.J.; Vorst, van de M.T.H.; Johnson, M.T.; Jungblut, R.; Reinders, A.; Bloemen, P.J.H.; Coehoorn, R.; Jonge, de W.J.M.

    1996-01-01

    A biperiodic oscillation of the strength of the antiferromagnetic interlayer coupling as a function of the thickness of an embedded Ni layer has been observed in an epitaxial Cu(100)/Co/Cu/Co/Ni/Co sample with the Cu interlayer and the Ni layer in the form of wedges. As the effect originates from

  16. Grain boundary diffusion and segregation of Ni in Cu

    International Nuclear Information System (INIS)

    Divinski, Sergiy; Ribbe, Jens; Schmitz, Guido; Herzig, Christian

    2007-01-01

    Grain boundary (GB) diffusion of 63 Ni in polycrystalline Cu was investigated by the radiotracer technique in an extended temperature interval from 476 to 1156K. The independent measurements in Harrison's C and B kinetic regimes resulted in direct data of the GB diffusivity D gb and of the so-called triple product P=s.δ.D gb (s and δ are the segregation factor and the diffusional GB width, respectively). Arrhenius-type temperature dependencies for both the D gb and P values were measured, resulting in the pre-exponential factors D gb 0 =6.93x10 -7 m 2 s -1 and P 0 =1.89x10 -16 m 3 s -1 and the activation enthalpies of 90.4 and 73.8kJmol -1 , respectively. Although Ni is completely soluble in Cu, it reveals a distinct but still moderate ability to segregate copper GBs with a segregation enthalpy of about -17kJmol -1

  17. On the evolution of Cu-Ni-rich bridges of Alnico alloys with tempering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, M. [Department of Materials Science and Engineering, North Carolina State University, Campus Box 7907, Raleigh, NC 27695-7907 (United States); Liu, Y. [Department of Materials Science and Engineering, North Carolina State University, Campus Box 7907, Raleigh, NC 27695-7907 (United States); Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC 27695 (United States); Jha, Rajesh; Dulikravich, George S. [Departments of Mechanical and Materials Engineering, MAIDROC, Florida International University, EC3462, 10555 West Flagler Street, Miami, FL 33174 (United States); Schwartz, J.; Koch, C.C. [Department of Materials Science and Engineering, North Carolina State University, Campus Box 7907, Raleigh, NC 27695-7907 (United States)

    2016-12-15

    Tempering is a critical step in Alnico alloy processing, yet the effects of tempering on microstructure have not been well studied. Here we report these effects, and in particular the effects on the Cu-Ni bridges. Energy-dispersive X-ray spectroscopy (EDS) maps and line scans show that tempering changes the elemental distribution in the Cu-Ni bridges, but not the morphology and distribution of Cu-bridges. The Cu concentration in the Cu-Ni bridges increases after tempering while other element concentrations decrease, especially Ni and Al. Furthermore, tempering sharpens the Cu bridge boundaries. These effects are primarily related to the large 2C{sub 44}/(C{sub 11}−C{sub 12}) ratio for Cu, largest of all elements in Alnico. In addition, the Ni-Cu loops around the α{sub 1} phases become inconspicuous with tempering. The diffusion of Fe and Co to the α{sub 1} phase during tempering, which increases the difference of saturation magnetization between the α{sub 1} and α{sub 2} phases, is observed by EDS. In summary, α{sub 1}, α{sub 2} and Cu-bridges are concentrated with their major elements during tempering which improves the magnetic properties. The formation of these features formed through elemental diffusion is discussed via energy theories. - Highlights: • Tempering changes the elemental distribution in the Cu-Ni bridges, but not morphology. • Cu concentration in the Cu-Ni bridges increases after tempering while others decrease. • These effects are related to the large 2C{sub 44}/(C{sub 11}−C{sub 12}) ratio for Cu. • The Ni-Cu loops around the α{sub 1} phases become inconspicuous with tempering. • The diffusion of Fe and Co to the α{sub 1} phase during tempering is observed by EDS.

  18. Thermoelasticity and interdiffusion in CuNi multilayers

    International Nuclear Information System (INIS)

    Benoudia, M.C.; Gao, F.; Roussel, J.M.; Labat, S.; Gailhanou, M.; Thomas, O.; Beke, D.L.; Erdelyi, Z.; Langer, G.A.; Csik, A.; Kis-Varga, M.

    2012-01-01

    Complete text of publication follows. The idea of observing artificial metallic multilayers with x-ray diffraction techniques to study interdiffusion phenomena dates back to the work of DuMond and Youtz. Interestingly, these pioneering contributions even suggested that the approach could be used to measure the concentration dependence of the diffusion coefficient. This remark is precisely the subject of the present work: we aim to revisit this issue in light of recent atomistic simulation results obtained for coherent CuNi multilayers. More generally, CuNi multilayers have been extensively studied for their magnetic, mechanical, and optical properties. These physical properties depend critically on interfaces and require a good control on the evolution of composition and strain fields under heat treatment. Understanding of how interdiffusion proceeds in these nanosystems should therefore improve these practical aspects. From a theoretical viewpoint these synthetic modulated structures have been also used as valuable model systems to test the various diffusion theories accounting in particular for the influence of the alloying energy, the coherency strain, and the local concentration. Nowadays, this field remains active and has been extended with the development of atomic simulations and many microscopy techniques like atom probe tomography which give details on the intermixing mechanisms. We have performed x-ray diffraction experiments on coherent CuNi multilayers to probe thermoelasticity and interdiffusion in these samples. Kinetic mean-field simulations combined with the modeling of the x-ray spectra were also achieved to rationalize the experimental results. We have shown that classical thermoelastic arguments combined with bulk data can be used to model the x-ray scattered intensity of annealed coherent CuNi multilayers. This result provides a valuable framework to analyze the evolution of the concentration profiles at higher temperature. The typical coherent

  19. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  20. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    International Nuclear Information System (INIS)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B.; Dodony, E.; Vouroutzis, N.; Stoemenos, J.; Frangis, N.; Kovács, A.

    2015-01-01

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi 2 phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi 2 grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni 3 Si 2 . Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization

  1. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys; Estudio cinetico de las reacciones de recocido en aleaciones de Cu-Ni-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2014-07-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi{sub 3} phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi{sub 3} phase. (Author)

  2. Magnetic order of Y{sub 3}NiSi{sub 3}-type R{sub 3}NiSi{sub 3} (R=Gd–DY) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Faculty of Geology, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Malik, S.K.; Quezado, S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil); Yao, Jinlei; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Nigam, A.K. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Isnard, O. [Université Grenoble Alpes, Inst NEEL, BP166, F-38042 Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, F-38042 Grenoble (France)

    2016-01-15

    Magnetic measurements and neutron powder diffraction investigations on the Y{sub 3}NiSi{sub 3}-type R{sub 3}NiSi{sub 3} compounds (R=Gd, Tb, Dy) reveal their complex antiferromagnetic ordering. Magnetic measurements on Gd{sub 3}NiSi{sub 3}, Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3} indicate antiferromagnetic-like transition at temperatures 260 K, 202 K and 140 K, respectively. Also, the Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3} compounds show spin-reorientation transition at 132 K and 99 K, respectively. Below the spin-reorientation transition, the isothermal magnetization curves indicate the metamagnetic-like behavior of Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3}. The magnetocaloric effect of Dy{sub 3}NiSi{sub 3} is calculated in terms of isothermal magnetic entropy change and it reaches a maximum value of −1.2 J/kg K and −1.1 J/kg K for a field change of 50 kOe near 146 K and 92 K, respectively. The neutron diffraction studies of Tb{sub 3}NiSi{sub 3} suggest the magnetic ordering of the Tb2 4j sublattice and no magnetic ordering of the Tb1 2a sublattice. Tb{sub 3}NiSi{sub 3} transforms from the high temperature paramagnetic state to the commensurate high-temperature a- and c-axis antiferromagnet of I′2/m magnetic space group below 250 K. Below 150 K, the high-temperature antiferromagnet transforms into the low-temperature a-, b- and c-axis antiferromagnet of I′i magnetic space group. At 1.5 K, the terbium magnetic moment in Tb2 sublattice and its a-, b- and c-axis components reach the values of M{sub Tb2}=8.2(1) μ{sub B}, M{sub aTb2}=5.9(1) μ{sub B}, M{sub bTb2}=4.3(2) μ{sub B} and M{sub cTb2}=3.7(2) μ{sub B}, respectively. - Highlights: • Gd{sub 3}NiSi{sub 3}, Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3} have Neel points of 260. 202 and 140 K. • Tb{sub 3}NiSi{sub 3} and Dy{sub 3}NiSi{sub 3} show spin-reorientation transition at 132 and 99 K. • Tb{sub 3}NiSi{sub 3} exhibits the commensurate magnetic ordering of Tb2 4j sublattice

  3. On the atomic structure of liquid Ni-Si alloys: a neutron diffraction study

    Science.gov (United States)

    Gruner, S.; Marczinke, J.; Hennet, L.; Hoyer, W.; Cuello, G. J.

    2009-09-01

    The atomic structure of the liquid NiSi and NiSi2 alloys is investigated by means of neutron diffraction experiments with isotopic substitution. From experimental data-sets obtained using four Ni isotopes, partial structure factors and pair correlation functions are obtained by applying a reverse Monte Carlo modelling approach. Both alloys were found to exhibit a strong tendency to hetero-coordination within the first coordination shell. In particular, covalent Si-Si bonds with somewhat greater distances seem to influence the structure of the liquid NiSi alloy.

  4. On the atomic structure of liquid Ni-Si alloys: a neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, S; Marczinke, J; Hoyer, W [Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany); Hennet, L [CNRS-CEMHTI, University of Orleans, F-45071 Orleans (France); Cuello, G J, E-mail: sascha.gruner@physik.tu-chemnitz.d [Institute Laue-Langevin, PO Box 156, F-38042 Grenoble (France)

    2009-09-23

    The atomic structure of the liquid NiSi and NiSi{sub 2} alloys is investigated by means of neutron diffraction experiments with isotopic substitution. From experimental data-sets obtained using four Ni isotopes, partial structure factors and pair correlation functions are obtained by applying a reverse Monte Carlo modelling approach. Both alloys were found to exhibit a strong tendency to hetero-coordination within the first coordination shell. In particular, covalent Si-Si bonds with somewhat greater distances seem to influence the structure of the liquid NiSi alloy.

  5. Study on the preparation of the SiCp/Al-20Si-3Cu functionally graded material using spray deposition

    International Nuclear Information System (INIS)

    Su, B.; Yan, H.G.; Chen, G.; Shi, J.L.; Chen, J.H.; Zeng, P.L.

    2010-01-01

    Research highlights: → The SiCp/Al-20Si-3Cu functionally gradient material (FGM) was successfully prepared via the spray deposition technique. → The SiCp/Al-20Si-3Cu functionally gradient material (FGM) was successfully prepared via the spray deposition technique. → In the experimental setup, the novel devices play an important role in adjusting the output of SiCp to prepare the FGM. → The experiment results reveal that the SiCp weight fraction of the as-deposited preform from the top to the bottom ranges almost continuously from 0% to 30%. → The fraction of SiC particles has no obvious influence on the phase constitutions of the SiCp/Al-20Si-3Cu FGM. - Abstract: The SiCp/Al-20Si-3Cu functionally gradient material (FGMs) was successfully prepared via the spray deposition technique accompanied with an automatic control system. The results reveal that the SiCp weight fraction of the as-deposited preform from the top to the bottom ranges almost continuously from 0% to 30%. The part with the higher SiCp weight fraction exhibits a relatively smaller density than that with the lower SiCp weight fraction. However, the microhardness and the porosity increase with the increasing SiCp weight fraction in the as-deposited preform. The X-ray diffraction results exhibit that the secondary phases in the regions with the different amount of SiC particles are the same such as Al 2 Cu and AlCuMg. The spray deposition technology is promising to produce a wide range of other FGMs.

  6. Deposition of Mn-Cu-Ni-enriched sediments during glacial period in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Borole, D.V.

    Two siliceous sediment cores collected from the Central Indian Basin have been analysed for organic carbon, biogenic silica, Al, Mn, Ni and Cu content. The concentrations of Mn, Cu and Ni showed one order of magnitude variation (an enrichment by a...

  7. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Basu, Saibal; Singh, Surendra [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Roy, Sumalay; Dev, Bhupendra Nath [Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. Black-Right-Pointing-Pointer Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. Black-Right-Pointing-Pointer Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  8. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  9. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    International Nuclear Information System (INIS)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  10. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  11. Effect of adding Si on shape memory effect in Co-Ni alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weimin [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Liu Yan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Bohong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: bhjiang@sjtu.edu.cn; Zhou Pingnan [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-11-25

    In this paper, the effect of adding Si to Co-31.5 mass% Ni alloys on fcc-hcp martensitic transformation is investigated. The Co-Ni-Si ternary alloys with different amount of Si from 1 to 5 mass% were prepared. The stacking fault probability of Co-Ni-Si polycrystalline alloys were determined by X-ray diffraction profile analysis and compared with the binary Co-Ni alloy. The results show that the stacking fault probability of the fcc phase of alloys increases with increasing Si content. The effect of Si on phase transformation and shape memory behavior is evaluated. The experimental results show that both the critical strength and the shape memory effect of the ternary alloys will increase by the addition of Si. The improvement mechanism of the shape memory effect by adding Si to binary Co-Ni alloys is discussed.

  12. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  13. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  14. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  15. PRECIPITATION BEHAVIOR IN A Cu-Sn-Ni-Zn-P LEAD FRAME MATERIAL

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; C.K. Yan; M.Nemoto

    2003-01-01

    Transmission electron microscopy (TEM) observations were carried out for examining the precipitation behavior in a Cu-Sn-Ni-Zn-P lead frame material. TEM observations revealed that the precipitate is hexagonal Ni5P2 and the orientation relationship between the Cu matrix and Ni5P2 precipitate is (111)fcc//(0001)hcp,[101]fcc//[11-20]hcp, where the suffix fcc denotes the Cu matrix and hcp denotes the hexagonal Ni5P2 precipitate. The NisP2 precipitate is ovoidal in shape at the beginning of aging at lower temperature. By prolonging the aging time or increasing the aging temperature, Ni5P2 precipitate grows and shows a rod-like shape. The Ni added Cu based lead frame material has a comparative mechanical properties with that of TAMAC15 which has been developed and used in electrical industry.

  16. A diffuse neutron scattering study of clustering kinetics in Cu-Ni alloys

    International Nuclear Information System (INIS)

    Vrijen, J.; Radelaar, S.; Schwahn, D.

    1977-01-01

    Diffuse scattering of thermal neutrons was used to investigate the kinetics of clustering in Cu-Ni alloys. In order to optimize the experimental conditions the isotopes 65 Cu and 62 Ni were alloyed. The time evolution of the diffuse scattered intensity at 400 0 C has been measured for eight Cu-Ni alloys, varying in composition between 30 and 80 at. pour cent Ni. The relaxation of the so called null matrix, containing 56.5 at. pour cent Ni has also been investigated at 320, 340, 425 and 450 0 C. Using Cook's model from all these measurements information has been deduced about diffusion at low temperatures and about thermodynamic properties of the Cu-Ni system. It turns out that Cook's model is not sufficiently detailed for an accurate description of the initial stages of these relaxations

  17. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  18. Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys

    Science.gov (United States)

    Takahashi, H.; Garner, F. A.

    1992-10-01

    Additions of silicon and aluminum suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminum on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminum segregates away from these boundaries. Whereas the formation of the Ni 3Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation.

  19. Growth kinetics of the intermetallic phase in diffusion-soldered (Cu-5 at.%Ni)/Sn/(Cu-5 at.%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Miernik, K.; Wojewoda-Budka, J.; Szyszkiewicz, K.; Filipek, R.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2013-01-01

    A stereological analysis was carried out in order to obtain the kinetics parameters of the (Cu1-xNix)6Sn5 growth in the diffusion soldered (Cu–5 at.%Ni)/Sn/(Cu–5 at.%Ni) interconnections where previously anomalous fast growth of this phase was described. The n-parameter in the equation x = ktn was

  20. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses; Estudos do desenvolvimento e caracterizacao das ligas Cu-Ni-Pt e Cu-Ni-Sn para fins eletro-eletronicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis Carlos Elias da

    2006-07-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  1. Study of Ni/Si(1 0 0) solid-state reaction with Al addition

    International Nuclear Information System (INIS)

    Huang Yifei; Jiang Yulong; Ru Guoping; Li Bingzong

    2008-01-01

    The characteristics of Ni/Si(1 0 0) solid-state reaction with Al addition (Ni/Al/Si(1 0 0), Ni/Al/Ni/Si(1 0 0) and Al/Ni/Si(1 0 0)) is studied. Ni and Al films were deposited on Si(1 0 0) substrate by ion beam sputtering. The solid-state reaction between metal films and Si was performed by rapid thermal annealing. The sheet resistance of the formed silicide film was measured by four-point probe method. The X-ray diffraction (XRD) was employed to detect the phases in the silicide film. The Auger electron spectroscopy was applied to reveal the element profiles in depth. The influence of Al addition on the Schottky barrier heights of the formed silicide/Si diodes was investigated by current-voltage measurements. The experimental results show that NiSi forms even with the addition of Al, although the formation temperature correspondingly changes. It is revealed that Ni silicidation is accompanied with Al diffusion in Ni film toward the film top surface and Al is the dominant diffusion species in Ni/Al system. However, no Ni x Al y phase is detected in the films and no significant Schottky barrier height modulation by the addition of Al is observed

  2. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity

    International Nuclear Information System (INIS)

    Ma, Bo; Huang, Yang; Zhu, Chunlin; Chen, Chuntao; Chen, Xiao; Fan, Mengmeng; Sun, Dongping

    2016-01-01

    The antibacterial composite based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of SiO 2 coated Cu nanoparticles (Cu@SiO 2 /BC) and its properties were characterized. Its chemical structures and morphologies were evaluated by Fourier transformation infrared spectrum (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the SiO 2 coated Cu particles were well homogeneously precipitated on the surface of BC. The Cu@SiO 2 /BC was more resistant to oxidation than the Cu nanoparticles impregnated into BC (Cu/BC) and then Cu@SiO 2 /BC could prolong the antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). - Graphical abstract: Schematic illustration of the preparation of Cu@SiO 2 /BC. Due to its unique structure, the Cu@SiO 2 /BC membrane shows excellent antibacterial effects and can be used for a long time. - Highlights: • This work paves the novel way to fabricate antibacterial nanomaterial with good efficiency. • We prepare the antibacterial membrane based on bacterial cellulose by in-situ synthesis of SiO 2 -coated Cu nanoparticles. • The antibacterial membrane is more resistant to oxidation and can prolong the antimicrobial activity.

  3. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Hernandez-Santiago, Felipe; Lopez-Hirata, Victor; Dorantes-Rosales, Hector J.; Saucedo-Munoz, Maribel L.; Gonzalez-Velazquez, Jorge L.; Paniagua-Mercado, Ana Ma.

    2008-01-01

    A study of the coarsening process of the decomposed phases was carried out in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys using transmission electron microscopy. As aging progressed, the morphology of the coherent decomposed Ni-rich phase changed from cuboids to platelets aligned in the Cu-rich matrix directions. Prolonged aging caused the loss of coherency between the decomposed phases and the morphology of the Ni-rich phase changed to ellipsoidal. The variation of mean radius of the coherent decomposed phases with aging time followed the modified LSW theory for thermally activated growth in ternary alloy systems. The linear variation of the density number of precipitates and matrix supersaturation with aging time, also confirmed that the coarsening process followed the modified LSW theory in both alloys. The coarsening rate was faster in the symmetrical Cu-45 wt.% Ni-10 wt.% Cr alloy due to its higher volume fraction of precipitates. The activation energy for thermally activated growth was determined to be about 182 and 102 kJ mol -1 in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys, respectively. The lower energy for the former alloy seems to be related to an increase in the atomic diffusion process as the chromium content increases. The size distributions of precipitates in the Cu-Ni-Cr alloys were broader and more symmetric than that predicted by the modified LSW theory for ternary alloys

  4. Ostwald ripening of faceted Si particles in an Al-Si-Cu melt

    International Nuclear Information System (INIS)

    Shahani, A. J.; Xiao, X.; Skinner, K.; Peters, M.; Voorhees, P. W.

    2016-01-01

    The microstructural evolution of an Al-Si-Cu alloy during Ostwald ripening is imaged via synchrotron-based, four-dimensional (i.e., space and time resolved) X-ray tomography. Samples of composition Al-32 wt%Si-15 wt%Cu were annealed isothermally at 650 °C, in the two-phase solid-liquid regime, while tomographic projections were collected in situ over the course of five hours. Advances in experimental methods and computational approaches enable us to characterize the local interfacial curvatures and velocities during ripening. The sequence of three-dimensional reconstructions and interfacial shape distributions shows highly faceted Si particles in a copper-enriched liquid, that become increasingly isotropic or rounded over time. In addition, we find that the coarsening rate constant is approximately the same in the binary and ternary systems. By coupling these experimental measurements with CALPHAD modeling and ab initio molecular dynamics simulation, we assess the influence of Cu on the coarsening process. Lastly, we find the unusual “pinning” of microstructure at the junction between rough and smooth interfaces and suggest a mechanism for this behavior.

  5. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-01-01

    Highlights: ► Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. ► Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. ► Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni–Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  6. Marker experiments in growth studies of Ni2Si, Pd2Si, and CrSi2 formed both by thermal annealing and by ion mixing

    International Nuclear Information System (INIS)

    Hung, L.S.; Mayer, J.W.; Pai, C.S.; Lau, S.S.

    1985-01-01

    Inert markers (evaporated tungsten and silver) were used in growth studies of silicides formed both by thermal annealing and by ion mixing in the Ni/Si, Pd/Si, and Cr/Si systems. The markers were initially imbedded inside silicides and backscattering spectrometry was used to determine the marker displacement after different processing conditions. The results obtained in thermal annealing are quite consistent with that found in previous investigations. Ni is the dominant diffusing species in Ni 2 Si, while Si is the diffusing species in CrSi 2 . In Pd 2 Si, both Pd and Si are moving species with Pd the faster of the two. In contrast, in growth of silicides by ion irradiation Si is the faster diffusing species in all three systems

  7. Ni3Si surface-film formation caused by radiation-induced segregation

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Several advanced alloys being considered for reactor applications contain the ordered γ' phase Ni 3 X in which the X component is frequently Al, Si and/or Ti. These alloys are precipitation hardened, and their strength depends upon the volume fraction, size, and spatial distribution of the coherent γ' precipitate. The investigation shows that a substantial Ni 3 Si precipitate film forms on the surface of irradiated specimens of solid-solution as well as two-phase Ni-Si alloys

  8. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  9. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  10. Composition pathway in Fe-Cu-Ni alloy during coarsening

    Science.gov (United States)

    Mukherjee, Rajdip; Choudhury, Abhik; Nestler, Britta

    2013-10-01

    In this work the microstructure evolution for a two phase Fe-Cu-Ni ternary alloy is studied in order to understand the kinetic composition paths during coarsening of precipitates. We have employed a quantitative phase-field model utilizing the CALPHAD database to simulate the temporal evolution of a multi-particle system in a two-dimensional domain. The paths for the far-field matrix and for precipitate average compositions obtained from simulation are found to be rectilinear. The trends are compared with the corresponding sharp interface theory, in the context of an additional degree of freedom for determining the interface compositions due to the Gibbs-Thomson effect in a ternary alloy.

  11. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    Science.gov (United States)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  12. Structural and magnetic stability of Fe2NiSi

    International Nuclear Information System (INIS)

    Gupta, Dinesh C.; Bhat, Idris Hamid; Chauhan, Mamta

    2014-01-01

    Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe 2 NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy

  13. Magnetic excitations in modulated PrNi2Si2

    International Nuclear Information System (INIS)

    Blanco, J.A.; Nicklow, R.M.; Schmitt, D.

    1994-01-01

    The magnetic excitations in a single crystal of PrNi 2 Si 2 have been studied by inelastic neutron scattering. Dispersion curves have been followed through the centered tetragonal Brillouin zone. In the paramagnetic phase, at 39 K, the lowest energy magnetic branch exhibits an important dispersion ranging from 1.9 to 3.5 meV, the minimum energy occuring at the wave vector of the ordered phase; from the observed dispersion the inter-ionic isotropic bilinear exchange parameters are deduced. At 4.2 K, in the modulated phase, the same branch presents a dispersion slightly larger, but not significantly different

  14. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  15. Magnetization switching of NiFeSiB free layers for magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Oh, B.S.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Saito, S.; Yoshimura, S.; Tsunoda, M.; Takahashi, M.; Kim, Y.K.

    2006-01-01

    Ferromagnetic amorphous Ni 16 Fe 62 Si 8 B 14 layer have been studied as free layers for magnetic tunnel junctions (MTJs) to enhance cell switching performance. Traditional MTJ free layer materials such as NiFe and CoFe were also prepared for switching comparison purposes. Both NiFeSiB and NiFe resulted in an order of magnitude smaller switching fields compared to the CoFe. The switching field was further reduced for the synthetic antiferromagnetic NiFeSiB free layered structure

  16. Study of Stress Migration Failure in SiLKTM/SiO2 Hybrid Cu Interconnects

    International Nuclear Information System (INIS)

    Tsuchikawa, Haruo; Nakamura, Tomoji; Suzuki, Takashi; Mori, Hiroko; Shono, Ken

    2004-01-01

    Stress migration (SM) behavior is studied for a 130nm-node SiLK TM /SiO2 hybrid structure in which the interlevel dielectrics (ILD) consist of SiLK TM for trench levels and SiO2 for via levels. The failure rate dependence on the temperature, line width and circuit is examined in detail. Furthermore, an effect of dielectric deposition process on the reliability of the hybrid interconnects is investigated. It has been found that SM behavior is essentially similar to that reported in Cu/SiO2 systems. It has also been clarified that SiO2 PVD conditions at via level had a large impact on the failure rate. Therefore, the control of ILD deposition conditions is found to be one of the key factors in suppressing the SM failure. In order to examine the effect of the PVD conditions, the residual stress in vias were measured by using X-ray diffraction method. The results show that σx (the stress component parallel to the surface) in vias greatly depends on the PVD conditions. Then, the relationship between the PVD conditions and the SM failure rate is clarified

  17. Excellent corrosion resistance of 18Cr-20Ni-5Si steel in liquid Pb-Bi

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.

    2004-01-01

    The corrosion properties of three austenitic steels with different Si contents were studied under oxygen-saturated liquid Pb-Bi condition for 3000 h. The three austenitic steels did not exhibit appreciable dissolution of Ni and Cr at 450 deg. C. At 550 deg. C, the thick ferrite layer produced by dissolution of Ni and Cr was found in JPCA and 316SS with low Si contents while the protective oxide film composed of Si and O was formed on 18Cr-20Ni-5Si steel and prevented dissolution of Ni and Cr

  18. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  19. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lipeng [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Zhang, Zhiqing; Sanders, Robert E.; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 China (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Centre for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-03-11

    The natural aging and artificial aging behaviours of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions were investigated using Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterisation. Excess Si and Cu additions enhanced the alloy hardening ability during natural (NA) and artificial aging (AA). Alloys with low Cu and high Si contents exhibited higher precipitation hardening than alloys rich in Mg during artificial aging. In contrast, the alloys with high amounts of Cu were less dependent on the Mg/Si ratio during precipitation hardening due to their similar aging kinetics. The main precipitate phases that contributed to the peak-aging hardness were the L, Q′ and β″ phases. In the over-aging conditions, the alloys rich in Mg and Cu had finer and more numerous precipitates than their Si-rich equivalents due to the preferential precipitation of the L phase. The combination of excess Mg and high Cu resulted in an alloy with a relatively low hardness in T4 temper and a relatively higher hardness after the paint baking cycle. Thus, this alloy has good potential for use in auto body panel applications.

  20. Stress impedance effect of FeCoSiB/Cu/FeCoSiB sandwich layers on flexible substrate

    International Nuclear Information System (INIS)

    Peng, B.; Zhang, W.L.; Liu, J.D.; Zhang, W.X.

    2011-01-01

    FeCoSiB/Cu/FeCoSiB sandwich layers were deposited on flexible substrate to develop flexible stress/strain sensors. The influence of stress on the impedance of the multilayers is reported. The results show that the variation of the impedance increases with the increase in deflection of the free end of the cantilever. A relative change in impedance of 6.4% is obtained in the FeCoSiB(1.5 μm)/Cu(0.25 μm)/FeCoSiB(1.5 μm) sandwich layers at 1 MHz with deflection of 2 mm. The stress impedance effects are sensitive to the frequency of the current and the thickness of both FeCoSiB and Cu layers. The stress impedance effect increases with the increase in the thickness of FeCoSiB or Cu layers. The stress impedance effect increases slightly with the increase in frequency and decreases with the further increase in frequency, which can be understood by the stress and frequency-dependent permeability of magnetic films. - Research highlights: → We deposited FeCoSiB/Cu/FeCoSiB multilayer on flexible substrate. → We studied the stress impedance effect of FeCoSiB/Cu/FeCoSiB multilayer. → Stress impedance effect increases with thickness of both FeCoSiB and Cu layer.→ Stress impedance effect is dependent on current frequency. → Results are understood using stress and frequency-dependent permeability.

  1. Structure determination of the ordered (2 × 1) phase of NiSi surface alloy on Ni(111) using low-energy electron diffraction

    Science.gov (United States)

    Sazzadur Rahman, Md.; Amirul Islam, Md.; Saha, Bidyut Baran; Nakagawa, Takeshi; Mizuno, Seigi

    2015-12-01

    The (2 × 1) structure of the two-dimensional nickel silicide surface alloy on Ni(111) was investigated using quantitative low-energy electron diffraction analysis. The unit cell of the determined silicide structure contains one Si and one Ni atom, corresponding to a chemical formula of NiSi. The Si atoms adopt substitutional face-centered cubic hollow sites on the Ni(111) substrate. The Ni-Si bond lengths were determined to be 2.37 and 2.34 Å. Both the alloy surface and the underlying first layers of Ni atoms exhibit slight corrugation. The Ni-Si interlayer distance is smaller than the Ni-Ni interlayer distance, which indicates that Si atoms and underlying Ni atoms strongly interact.

  2. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Science.gov (United States)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-12-01

    Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  3. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  4. Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices

    International Nuclear Information System (INIS)

    Thermadam, S. Puthen; Bhagat, S.K.; Alford, T.L.; Sakaguchi, Y.; Kozicki, M.N.; Mitkova, M.

    2010-01-01

    This paper presents a study of Cu diffusion at various temperatures in thin SiO 2 films and the influence of diffusion conditions on the switching of Programmable Metallization Cell (PMC) devices formed from such Cu-doped films. Film composition and diffusion products were analyzed using secondary ion mass spectroscopy, Rutherford backscattering spectrometry, X-ray diffraction and Raman spectroscopy methods. We found a strong dependence of the diffused Cu concentration, which varied between 0.8 at.% and 10 -3 at.%, on the annealing temperature. X-ray diffraction and Raman studies revealed that Cu does not react with the SiO 2 network and remains in elemental form after diffusion for the annealing conditions used. PMC resistive memory cells were fabricated with such Cu-diffused SiO 2 films and device performance, including the stability of the switching voltage, is discussed in the context of the material characteristics.

  5. Influence of Material Coating on the Heat Transfer in a Layered Cu-SiC-Cu Systems

    Directory of Open Access Journals (Sweden)

    Strojny-Nędza A.

    2017-06-01

    Full Text Available This paper describes the process of obtaining Cu-SiC-Cu systems by way of spark plasma sintering. A monocrystalline form of silicon carbide (6H-SiC type was applied in the experiment. Additionally, silicon carbide samples were covered with a layer of tungsten and molybdenum using chemical vapour deposition (CVD technique. Microstructural examinations and thermal properties measurements were performed. A special attention was put to the metal-ceramic interface. During annealing at a high temperature, copper reacts with silicon carbide. To prevent the decomposition of silicon carbide two types of coating (tungsten and molybdenum were applied. The effect of covering SiC with the aforementioned elements on the composite’s thermal conductivity was analyzed. Results were compared with the numerical modelling of heat transfer in Cu-SiC-Cu systems. Certain possible reasons behind differences in measurements and modelling results were discussed.

  6. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    Science.gov (United States)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  7. Role of atomic bonding for compound and glass formation in Ni-Si, Pd-Si, and Ni-B systems

    Science.gov (United States)

    Tanaka, K.; Saito, T.; Suzuki, K.; Hasegawa, R.

    1985-11-01

    Valence electronic structures of crystalline compounds and glassy alloys of Ni silicides, Pd silicides, and Ni borides are studied by soft-x-ray spectroscopy over wide ranges of Si and B concentrations. The samples prepared include bulk compounds, glassy ribbons, and amorphous sputtered films. Silicon Kβ emissions of Ni and Pd silicides generally consist of a prominent peak fixed at ~=4.5 and ~=5.8 eV below the Fermi level EF, respectively, with a shoulder near EF which grows and shifts toward lower energy with increasing Si concentration. The former is identified as due to Si p-like states forming Si 3p-Ni 3d or Si 3p-Pd 4d bonding states while the latter as due to the corresponding antibonding states. Ni L3 and Pd L3 emissions of these silicides indicate that Ni 3d and Pd 4d states lie between the above two states. These local electronic configurations are consistent with partial-density-of-states (PDOS) calculations performed by Bisi and Calandra. Similar electronic configurations are suggested for Ni borides from B Kα and Ni L3 emissions. Differences of emission spectra between compounds and glasses of similar compositions are rather small, but some enhancement of the contribution of antibonding states to the PDOS near EF is suggested for certain glasses over that of the corresponding compounds. These features are discussed in connection with the compound stability and glass formability.

  8. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds

    International Nuclear Information System (INIS)

    Yu, Chao

    2017-01-01

    Here we report a solution phase synthesis of 16 nm CuNi nanoparticles (NPs) with the Cu/Ni composition control. These NPs are assembled on graphene (G) and show Cu/Ni composition-dependent catalysis for methanolysis of ammonia borane (AB) and hydrogenation of aromatic nitro (nitrile) compounds to primary amines in methanol at room temperature. Among five different CuNi NPs studied, the G-Cu 36 Ni 64 NPs are the best catalyst for both AB methanolysis (TOF = 49.1 mol H2 mol CuNi -1 min -1 and E a = 24.4 kJ/mol) and hydrogenation reactions (conversion yield >97%). In conclusion, the G-CuNi represents a unique noble-metal-free catalyst for hydrogenation reactions in a green environment without using pure hydrogen.

  9. Experimental Liquidus Studies of the Pb-Cu-Si-O System in Equilibrium with Metallic Pb-Cu Alloys

    Science.gov (United States)

    Shevchenko, M.; Nicol, S.; Hayes, P. C.; Jak, E.

    2018-03-01

    Phase equilibria of the Pb-Cu-Si-O system have been investigated in the temperature range from 1073 K to 1673 K (800 °C to 1400 °C) for oxide liquid (slag) in equilibrium with solid Cu metal and/or liquid Pb-Cu alloy, and solid oxide phases: (a) quartz or tridymite (SiO2) and (b) cuprite (Cu2O). High-temperature equilibration on silica or copper substrates was performed, followed by quenching, and direct measurement of Pb, Cu, and Si concentrations in the liquid and solid phases using the electron probe X-ray microanalysis has been employed to accurately characterize the system in equilibrium with Cu or Pb-Cu metal. All results are projected onto the PbO-"CuO0.5"-SiO2 plane for presentation purposes. The present study is the first-ever systematic investigation of this system to describe the slag liquidus temperatures in the silica and cuprite primary phase fields.

  10. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  11. Characteristics of centrifugally cast GX25CrNiSi18-9 steel

    Directory of Open Access Journals (Sweden)

    R. Zapała

    2011-07-01

    Full Text Available The paper presents the results of microstructural examinations of the industrial heat-resistant centrifugally cast GX25CrNiSi18-9 steel characterised by increased content of Cu. The study included changes in the microstructure of base cast steel respective of the steel held at a temperature of 900 and 950°C for 48 hours. Based on the results obtained, an increase in microhardness of the examined cast steel matrix with increasing temperature was stated, which was probably caused by fine precipitates enriched in Cr, Mo, and C forming inside the matrix grains.The layer of scale formed on the tested cast steel oxidised in the atmosphere of air at 900 and 950°C was characterised by an increased tendency to degradation with increasing temperature of the conducted tests.

  12. Influence of Ni and Cu contamination on the superconducting properties of MgB2 filaments

    International Nuclear Information System (INIS)

    Jung, A; Schlachter, S I; Runtsch, B; Ringsdorf, B; Fillinger, H; Orschulko, H; Drechsler, A; Goldacker, W

    2010-01-01

    Technical MgB 2 wires usually have a sheath composite consisting of different metals. For the inner sheath with direct contact to the superconducting filament, chemically inert Nb may be used as a reaction barrier and thermal stabilization is provided by a highly conductive metal like Cu. A mechanical reinforcement can be achieved by the addition of stainless steel. In order to illuminate the influence of defects in the reaction barrier, monofilament in situ wires with direct contact between the MgB 2 filament and frequently applied reactive sheath metals like Cu, Ni or Monel are studied. Reactions of Mg and B with a Cu-containing sheath lead to Cu-based by-products penetrating the whole filament. Reactions with Ni-containing sheaths lead to Ni-based by-products which tend to remain at the filament-sheath interface. Cu and/or Ni contamination of the filament lowers the MgB 2 -forming temperature due to the eutectic reaction between Mg, Ni and Cu. Thus, for the samples heat-treated at low temperatures J C and (partly) T C are increased compared to stainless-steel-sheathed wires. At high heat treatment temperatures uncontaminated filaments lead to the highest J C values. From the point of view of broken reaction barriers in real wires, the contamination of the filament with Cu and/or Ni does not necessarily constrain the superconductivity; it may even improve the properties of the wire, depending on the desired application.

  13. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  14. Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder

    Science.gov (United States)

    Zhang, Xudong; Hu, Xiaowu; Jiang, Xiongxin; Li, Yulong

    2018-04-01

    The formation and growth of intermetallic compound (IMC) layer at the interface between Sn3.0Ag0.5Cu (SAC305) solder and Cu- xNi ( x = 0, 0.5, 1.5, 5, 10 wt%) substrate during reflowing and aging were investigated. The soldering was conducted at 270 °C using reflowing method, following by aging treatment at 150 °C for up to 360 h. The experimental results indicated that the total thickness of IMC increased with increasing aging time. The scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were observed between SAC305 solder and purely Cu substrate. As the content of Ni element in Cu substrate was 0.5% or 1.5%, the scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were still found between solder and Cu-Ni substrate and the total thickness of IMC layer decreased with the increasing Ni content. Besides, when the Ni content was up to 5%, the long prismatic (Cu,Ni)6Sn5 phase was the only product between solder and substrate and the total thickness of IMC layer increased significantly. Interestingly, the total thickness of IMC decreased slightly as the Ni addition was up to 10%. In the end, the grains of interfacial IMC layer became coarser with aging time increasing while the addition of Ni in Cu substrate could refine IMC grains.

  15. De interactie van SiC met Fe, Ni en hun legeringen

    NARCIS (Netherlands)

    Schiepers, R.C.J.

    1991-01-01

    De interactie tussen SiC en metalen gebaseerd op Fe en Ni is bestudeerd in het temperatuurtraject 700-1035°C door middel van vaste-stof-diffusiekoppels. In de koppels van SiC met Fe, Ni en hun legeringen treden hevige reakties op, die de vorming van een goede verbinding verhinderen. Door het grate

  16. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel

    Science.gov (United States)

    Guo, Zhengqi; Pan, Jian; Zhu, Deqing; Zhang, Feng

    2018-02-01

    In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.

  17. To study the mechanical properties of unidirectionally and cross rolled Ni-Cu alloy produced in VIM

    International Nuclear Information System (INIS)

    Afzal, M.; Ajmal, M.; Butt, Z.T.

    2009-01-01

    Ni-Cu alloy was developed by melting in a vacuum induction furnace using pure elements i.e., Ni, Cu, Fe, Si, Mn and Cr. Four heats of approximately 4 kg each were prepared. All the heats have been casted in an ingot of 10 cm long and 5 cm in diameter in vacuum. These ingots were hot forged at a temperature of 900 deg. C to break down the cast dendritic structure. All forged plates were cut into two halve. One half was rolled in unidirectional while other was rolled in multiple directions (cross rolling). During rolling after every 25 % reduction, the cold rolled samples were annealed at a temperature of 900 deg. C for one hour. Each plate was cold rolled to a final thickness of 0.345 mm. Half of these rolled plate produced either by cross rolling or unidirectional rolling were annealed at 900 deg. C for 20 minutes. The mechanical properties of each rolled plate in cold reduction and in annealed were also measured. Unidirectional rolling and cross rolling has almost similar mechanical properties. The annealing of cross rolled and unidirectional rolling drastically reduced the yield strength. It was observed that the Ni-Cu alloy produced has slightly lower yield and ultimate tensile strength compared to the values reported in standards of Monel-400. However, it is within the acceptable range to be used for the various applications. (author)

  18. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  19. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    temperature using synchrotron radiation. The icosahedral quasicrystal structure is retained up to the highest hydrostatic pressure used (approximately 28 GPa) and is reversible after decompression. The bulk modulus at zero pressure and its pressure derivative of the icosahedral Zr-Al-Ni-Cu-Ag quasicrystal......The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient......-Al-Ni-Cu-Ag quasicrystals induced by pressure....

  20. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, A.T. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Ferrandini, P.L. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Costa, C.A.R. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Goncalves, M.C. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Caram, R. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil)]. E-mail: rcaram@fem.unicamp.br

    2005-08-16

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni{sub 3}Si. This paper deals with the directional solidification of Ni-Ni{sub 3}Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni{sub 3}Si phase. It could be noticed that the solid/solid transformations by which Ni{sub 3}Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface.

  1. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    International Nuclear Information System (INIS)

    Dutra, A.T.; Ferrandini, P.L.; Costa, C.A.R.; Goncalves, M.C.; Caram, R.

    2005-01-01

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni 3 Si. This paper deals with the directional solidification of Ni-Ni 3 Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni 3 Si phase. It could be noticed that the solid/solid transformations by which Ni 3 Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface

  2. High-temperature Au implantation into Ni-Be and Ni-Si alloys

    Science.gov (United States)

    James, M. R.; Lam, N. Q.; Rehn, L. E.; Baldo, P. M.; Funk, L.; Stubbins, J. F.

    1992-12-01

    Effects of implantation temperature and target composition on depth distribution of implanted species were investigated. Au+ ions were implanted at 300 keV into polycrystalline Ni-Be and Ni-Si alloys between 25 and 700C to a dose of 10(exp 16) cm(exp -2). Depth distributions of Au were analyzed with RBS using He+ at both 1.7 and 3.0 MeV, and those of the other alloying elements by SIMS. Theoretical modeling of compositional redistribution during implantation at elevated temperatures was also carried out with the aid of a comprehensive kinetic model. The analysis indicated that below approximately 250C, the primary controlling processes were preferential sputtering and displacement mixing, while between 250 and 600C radiation-induced segregation was dominant. Above 600C, thermal-diffusion effects were most important. Fitting of model calculations to experimental measurements provided values for various defect migration and formation parameters.

  3. Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys

    International Nuclear Information System (INIS)

    Takahashi, H.; Garner, F.A.

    1992-01-01

    Additions of silicon and aluminium suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminium on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminium segregates away from these boundaries. Whereas the formation of the Ni 3 Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation. (orig.)

  4. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yun; Liu, Qing, E-mail: qingliu@cqu.edu.cn; Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn; Xing, Yuan; Ding, Lipeng; Wang, Xueli

    2017-05-31

    Highlights: • High Cu alloy with high Mg/Si ratio has the best comprehensive property. • Addition of excess Mg could improve the intergranular corrosion resistance. • Si containing particles on the grain boundaries of Si-rich alloys promote IGC. • IGC susceptibility depends primarily on Cu content and secondarily on Mg/Si ratio. - Abstract: 6000-series aluminium alloys with high Cu or excess Si addition were susceptible to intergranular corrosion (IGC). In order to obtain good IGC resistance, four alloys with low/high Cu and various Mg/Si ratios were designed. The corrosion behaviour of four alloys was investigated by accelerated corrosion test, electrochemical test and electron microscopies. It was revealed that IGC susceptibility of alloys was the result of microgalvanic coupling between the noble grain boundary precipitates and the adjacent precipitates free zone (PFZ), which was closely related to a combination of Cu content and the Mg/Si ratio. Excess Mg could improve the IGC resistance of alloys by forming discontinuous precipitates on the grain boundaries. The designed alloy with high Cu and excess Mg has the same corrosion level as the commercial alloy with low Cu and excess Si, which provides possibility for developing new alloy.

  5. The influence of Pt redistribution on Ni1-xPtxSi growth properties

    International Nuclear Information System (INIS)

    Demeulemeester, J.; Smeets, D.; Temst, K.; Vantomme, A.; Comrie, C. M.; Van Bockstael, C.; Knaepen, W.; Detavernier, C.

    2010-01-01

    We have studied the influence of Pt on the growth of Ni silicide thin films by examining the Pt redistribution during silicide growth. Three different initial Pt configurations were investigated, i.e., a Pt alloy (Ni+Pt/ ), a Pt capping layer (Pt/Ni/ ) and a Pt interlayer (Ni/Pt/ ), all containing 7 at. % Pt relative to the Ni content. The Pt redistribution was probed using in situ real-time Rutherford backscattering spectrometry (RBS) whereas the phase sequence was monitored during the solid phase reaction (SPR) using in situ real-time x-ray diffraction. We found that the capping layer and alloy exhibit a SPR comparable to the pure Ni/ system, whereas Pt added as an interlayer has a much more drastic influence on the Ni silicide phase sequence. Nevertheless, for all initial sample configurations, Pt redistributes in an erratic way. This phenomenon can be assigned to the low solubility of Pt in Ni 2 Si compared to NiSi and the high mobility of Pt in Ni 2 Si compared to pure Ni. Real-time RBS further revealed that the crucial issue determining the growth properties of each silicide phase is the Pt concentration at the Si interface during the initial stages of phase formation. The formation of areas rich in Pt reduce the Ni silicide growth kinetics which influences the phase sequence and properties of the silicides.

  6. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    A study on the inhibition of Al-Cu-Ni alloy in simulated sea-water environment was investigated using Sodium Chromate as inhibitor. The inhibitor concentration was varied as control, 0.25, 0.5, 1.0, 1.5 and 2.0 Molar. Al-Cu-Ni alloy was sand cast into cylindrical bars of 20 mm x 300 mm dimension. The corrosion of the ...

  7. Exchange correlation length and magnetoresistance in Fe-Cu and Fe-Cu-Ni melt-spun ribbons

    International Nuclear Information System (INIS)

    El Ghannami, M.; Gomez-Polo, C.; Rivero, G.; Hernando, A.

    1994-01-01

    The magnetic properties of Fe 30 Cu 70 melt-spun ribbons are reported for the first time. In the as-cast state, the microstructure consists of b.c.c.-Fe grains immersed in a Cu-rich matrix. However, the addition of a small percentage of Ni gives rise to the appearance of new Cu-Fe-Ni phases. Under suitable thermal treatments, the microstructure of both alloys evolves towards a complete phase segregation in b.c.c-Fe and f.c.c.-Cu immiscibles phases. The temperature dependence of the magnetic properties is analysed and related to the microstructural changes produced during the thermal treatments. Remarkable magneto-resistance effects have been observed in both as-cast alloys, with maximum values of the order of 6% at low measuring temperatures. (orig.)

  8. Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui-Feng [Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433 (China); Yan, Yan-Gang [Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433 (China); Huo, Sheng-Juan [Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433 (China); Cai, Wen-Bin [Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433 (China); Department of Enviromental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); E-mail: wbcai@fudan.edu.cn; Xu, Qun-Jie [Department of Enviromental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Osawa, Masatoshi [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan)

    2007-05-25

    A seeded-growth approach has been developed to fabricate a Cu nanoparticle film (simplified hereafter with nanofilm) on Si for electrochemical ATR surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The approach comprises an initial activation of the reflecting plane of hemicylindrical Si prism by introducing a Cu seed layer in a CuSO{sub 4}-HF solution and the subsequent electroless deposition of the Cu nanofilms from an electroless Cu plating bath. The as-deposited Cu nanofilm exhibited strong SEIRA effect for the CO probe and interfacial free H{sub 2}O. ATR-SEIRAS was also applied to characterize the adsorbed geometries of pyridine at the Cu/electrolyte interface. Only vibrational bands assignable to the A {sub 1} symmetry modes were detected in the entire potential window investigated, suggestive of an end-on adsorption via the ring N-atom on a Cu electrode.

  9. Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications

    International Nuclear Information System (INIS)

    Wang, Hui-Feng; Yan, Yan-Gang; Huo, Sheng-Juan; Cai, Wen-Bin; Xu, Qun-Jie; Osawa, Masatoshi

    2007-01-01

    A seeded-growth approach has been developed to fabricate a Cu nanoparticle film (simplified hereafter with nanofilm) on Si for electrochemical ATR surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The approach comprises an initial activation of the reflecting plane of hemicylindrical Si prism by introducing a Cu seed layer in a CuSO 4 -HF solution and the subsequent electroless deposition of the Cu nanofilms from an electroless Cu plating bath. The as-deposited Cu nanofilm exhibited strong SEIRA effect for the CO probe and interfacial free H 2 O. ATR-SEIRAS was also applied to characterize the adsorbed geometries of pyridine at the Cu/electrolyte interface. Only vibrational bands assignable to the A 1 symmetry modes were detected in the entire potential window investigated, suggestive of an end-on adsorption via the ring N-atom on a Cu electrode

  10. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    Science.gov (United States)

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  11. Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite

    Science.gov (United States)

    Le, Trong Trung; Valdez-Nava, Zarel; Lebey, Thierry; Mazaleyrat, Frédéric

    2018-04-01

    In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT) and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz) for the new wide band gap semiconductors (SiC, GaN) allow to interleave switching cell at higher frequencies than silicon-based semiconductors (materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP) into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.

  12. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni{sub 2}Si formation and the resulting barrier height changes

    Energy Technology Data Exchange (ETDEWEB)

    Tengeler, Sven, E-mail: stengeler@surface.tu-darmstadt.de [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Kaiser, Bernhard [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Chaussende, Didier [Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Jaegermann, Wolfram [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2017-04-01

    Highlights: • Schottky behavior (Φ{sub B} = 0.41 eV) and Fermi level pining were found pre annealing. • Ni{sub 2}Si formation was confirmed for 5 min at 850 °C. • 3C/Ni{sub 2}Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni{sub 2}Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni{sub 2}Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  13. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni_2Si formation and the resulting barrier height changes

    International Nuclear Information System (INIS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-01-01

    Highlights: • Schottky behavior (Φ_B = 0.41 eV) and Fermi level pining were found pre annealing. • Ni_2Si formation was confirmed for 5 min at 850 °C. • 3C/Ni_2Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni_2Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni_2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  14. The electrochemical properties of melt-spun Al-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun Zhanbo, E-mail: szb@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Song Xiaoping; Yang Sen; Wang Liqun [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-10-03

    Highlights: {yields} Non-equilibrium Al{sub 75-X}Si{sub 25}Cu{sub X} alloys exhibit high lithiation storages. {yields} The lithiation mechanism is different from melt-spun Al-Si-Mn system. {yields} The structural evolution is mitigated in the non-equilibrium alloys. {yields} Volume variation is alleviated due to the co-existence of Al{sub 2}Cu, {alpha}-Si and {alpha}-Al. - Abstract: Melt spinning was used to prepare Al{sub 75-X}Si{sub 25}Cu{sub X} (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, {alpha}-Si and Al{sub 2}Cu co-existed in the alloys. Nano-scaled {alpha}-Al grains, as the matrix, formed in the as-quenched ribbons. The Al{sub 74}Si{sub 25}Cu{sub 1} and Al{sub 71}Si{sub 25}Cu{sub 4} anodes exhibited initial discharge specific capacities of 1539 mAh g{sup -1}, 1324 mAh g{sup -1} and reversible capacities above 472 mAh g{sup -1}, 508 mAh g{sup -1} at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled {alpha}-Al, {alpha}-Si, and Al{sub 2}Cu for the present alloys.

  15. The electrochemical properties of melt-spun Al-Si-Cu alloys

    International Nuclear Information System (INIS)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing; Sun Zhanbo; Song Xiaoping; Yang Sen; Wang Liqun

    2011-01-01

    Highlights: → Non-equilibrium Al 75-X Si 25 Cu X alloys exhibit high lithiation storages. → The lithiation mechanism is different from melt-spun Al-Si-Mn system. → The structural evolution is mitigated in the non-equilibrium alloys. → Volume variation is alleviated due to the co-existence of Al 2 Cu, α-Si and α-Al. - Abstract: Melt spinning was used to prepare Al 75-X Si 25 Cu X (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al 2 Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al 74 Si 25 Cu 1 and Al 71 Si 25 Cu 4 anodes exhibited initial discharge specific capacities of 1539 mAh g -1 , 1324 mAh g -1 and reversible capacities above 472 mAh g -1 , 508 mAh g -1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al 2 Cu for the present alloys.

  16. Site determination of Ni atoms in Cu-Al-Ni shape memory alloys by electron channelling enhanced microanalysis

    International Nuclear Information System (INIS)

    Nakata, Yoshiyuki; Tadaki, Tsugio; Shimizu, Ken-ichi

    1990-01-01

    The crystallographic site of Ni atoms in the parent phase of differently heat-treated Cu-28.6Al-3.7Ni (at.%) shape memory alloys has been examined by electron channelling enhanced microanalysis (ALCHEMI) in order to clarify effects of heat-treatments on the Ni atom site and M s temperature. The heat-treatments were as follows: (a) Quenching into a 10% NaOH solution at 263 K, (b) Quenching into hot water at 363 K and (c) Aging at 523 K for 3.6 ks after treatment (b). The M s temperatures of specimens (a), (b) and (c) were 158, 185 and 259 K, respectively, increasing with lowering quenching rate or aging. ALCHEMI revealed that Ni atoms occupied an identical site in all the three kinds of specimens: The Ni atoms were located at the nearest neighbor sites around Al atoms. This preferential occupation of Ni atoms was attributed to the strong binding force between Ni and Al atoms. Thus, the change in M s temperature due to different heat-treatments was not directly related to the crystallographic site of Ni atoms, but might be caused by the ordering between the next nearest neighbor Cu and Al atoms. (author)

  17. Local atomic and crystal structure rearrangement during the martensitic transformation in Ti50Ni25Cu25 shape memory alloy

    International Nuclear Information System (INIS)

    Menushenkov, Alexey; Grishina, Olga; Shelyakov, Alexander; Yaroslavtsev, Alexander; Zubavichus, Yan; Veligzhanin, Alexey; Bednarcik, Jozef; Chernikov, Roman; Sitnikov, Nikolay

    2014-01-01

    Highlights: • Local crystalline structure of TiNiCu SMA is investigated using EXAFS. • Peculiarities of Ni and Cu local environment are found. • Ti atoms show greater mobility relative to Ni atoms. • Ni local environment change is significant for shape memory effect. -- Abstract: The changes of crystal structure and local crystalline environment of Ti, Ni and Cu atoms in Ti 50 Ni 25 Cu 25 shape memory alloy are investigated using X-ray diffraction and extended X-ray absorption fine structure spectroscopy (EXAFS) in temperature range of martensite transformation. The analysis of the EXAFS-spectra shows that the bonds involving Ni atoms have the highest degree of disorder and the change in the local environment around Ni atoms is significant for the occurrence of the shape memory effect, while Cu atoms occupy the normal positions in the crystallographic structure and have the lowest displacement amplitude leading to the stabilization of both phases

  18. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique

    International Nuclear Information System (INIS)

    Chang Jian-Guang; Wu Chun-Bo; Ji Xiao-Li; Ma Hao-Wen; Yan Feng; Shi Yi; Zhang Rong

    2012-01-01

    We investigate the leakage current of ultra-shallow Ni-silicided SiGe/Si junctions for 45 nm CMOS technology using a Si cap layer and the pre-amorphization implantation (PAI) process. It is found that with the conventional Ni silicide method, the leakage current of a p + (SiGe)—n(Si) junction is large and attributed to band-to-band tunneling and the generation-recombination process. The two leakage contributors can be suppressed quite effectively when a Si cap layer is added in the Ni silicide method. The leakage reduction is about one order of magnitude and could be associated with the suppression of the agglomeration of the Ni germano-silicide film. In addition, the PAI process after the application of a Si cap layer has little effect on improving the junction leakage but reduces the sheet resistance of the silicide film. As a result, the novel Ni silicide method using a Si cap combined with PAI is a promising choice for SiGe junctions in advanced technology. (cross-disciplinary physics and related areas of science and technology)

  19. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular rings as detected by μsR

    OpenAIRE

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P.V.; Timco, G.; Winpenny, R. E.P.; Blundell, S. J.; Lascialfari, A.

    2017-01-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J, while Cr7Ni-Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J ≪ J. The longitudinal muon relaxation rate λ collected at low magnetic fields...

  20. Microstructure, texture and magnetic properties of Ni-Cu-W substrates for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Andersen, Niels Hessel

    2013-01-01

    concentrations of copper, increasing the Cu-content to 10 at% and 15 at% leads to increased frequencies of annealing twins in the cube-textured matrix. It is suggested that the (Ni 95W5)100-xCux alloy with x=5 at% Cu may be a good candidate material for using as a substrate for coated conductors. © 2012 Elsevier...

  1. New investigation of phase equilibria in the system Al-Cu-Si.

    Science.gov (United States)

    Ponweiser, Norbert; Richter, Klaus W

    2012-01-25

    The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.

  2. Nonvolatile memory characteristics influenced by the different crystallization of Ni-Si and Ni-N nanocrystals

    International Nuclear Information System (INIS)

    Chen, W.-R.; Yeh, J.-L.; Chang, C.-Y.; Chang, T.-C.; Chen, S.-C.

    2008-01-01

    The formation of Ni-Si and Ni-N nanocrystals by sputtering a Ni 0.3 Si 0.7 target in argon and nitrogen environment were proposed in this paper. A transmission electron microscope analysis shows the nanocrystals embedded in the nitride layer. X-ray photoelectron spectroscopy and x-ray diffraction also offer the chemical material analysis of nanocrystals with surrounding dielectric and the crystallization of nanocrystals for different thermal annealing treatments. Nonvolatile Ni-Si nanocrystal memories reveal superior electrical characteristics for charge storage capacity and reliability due to the improvement of thermal annealing treatment. In addition, we used energy band diagrams to explain the significance of surrounding dielectric for reliability

  3. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    Science.gov (United States)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  4. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  5. Correlated electron state in CeCu2Si2 controlled through Si to P substitution

    Science.gov (United States)

    Lai, Y.; Saunders, S. M.; Graf, D.; Gallagher, A.; Chen, K.-W.; Kametani, F.; Besara, T.; Siegrist, T.; Shekhter, A.; Baumbach, R. E.

    2017-08-01

    CeCu2Si2 is an exemplary correlated electron metal that features two domes of unconventional superconductivity in its temperature-pressure phase diagram. The first dome surrounds an antiferromagnetic quantum critical point, whereas the more exotic second dome may span the termination point of a line of f -electron valence transitions. This behavior has received intense interest, but what has been missing are ways to access the high pressure behavior under milder conditions. Here we study Si → P chemical substitution, which compresses the unit cell volume but simultaneously weakens the hybridization between the f - and conduction electron states and encourages complex magnetism. At concentrations that show magnetism, applied pressure suppresses the magnetic ordering temperature and superconductivity is recovered for samples with low disorder. These results reveal that the electronic behavior in this system is controlled by a nontrivial combination of effects from unit cell volume and electronic shell filling. Guided by this topography, we discuss prospects for uncovering a valence fluctuation quantum phase transition in the broader family of Ce-based ThCr2Si2 -type materials through chemical substitution.

  6. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  7. The Prognosis of the Phase Equilibrium Diagram of the System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina Cziple

    2007-10-01

    Full Text Available The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer

  8. Synthesis and charge storage properties of double-layered NiSi nanocrystals

    International Nuclear Information System (INIS)

    Yoon, Jong-Hwan

    2010-01-01

    Based on bidirectional diffusion of Ni atoms, double-layered nickel silicide (NiSi) nanocrystals (NCs) for multilevel charge storage were fabricated, and their charge storage properties were examined. The double layer was produced by long-term thermal annealing (for 4 h at 900 o C) of a sandwich structure comprised of a thin Ni film of 0.3 nm sandwiched between two silicon-rich oxide (SiO 1.36 ) layers. Transmission electron microscopic image clearly exhibits a distinct NiSi nanocrystal double layer with a gap of about 7 nm between the mean positions of particle distribution in each NC layer. Capacitance-voltage measurements on the metal/oxide/semiconductor (MOS) capacitors with the double-layered NiSi nanocrystals are shown to have the apparent two plateaus of charge storage, the large memory window of about 9 V and the improved charge retention stability.

  9. Effect of TiO2 addition on reaction between SiC and Ni in SiC-Ni cermet spray coatings. Part 2. ; Development of SiC-based cermet spray coatings. SiC-Ni yosha himakuchu no SiC-Ni kaimen hanno ni oyobosu TiO2 tenka no koka. 2. ; SiC-ki sametto yosha himaku no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T [Kumano Technical College, Mie (Japan); Oki, S; Goda, S [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1992-09-30

    The depression of the reaction between SiC and Ni, by adding TiO2 powder in spraying powder which has caused uniform dispersion in spray coating and reduction of TiO2 by the reaction during spraying, was studied. The mass ratio of the mixed components has been, SiC:Ni:TiO2=3:2:1. The spray coating was examined by electron prove microanalysis as well as X-ray diffractometry, centering mainly to the SiC-metal interface reaction. The formation of Ni-Si compounds have been depressed by the addition of TiO2 to spraying powder and by using plasma gas containing H2. Reason for this has been that the TiC formed in the SiC-Ni interface has depressed the reaction at the SiC-Ni interface. Further, TiO2 is reduced during spraying, and TiC is thought to be formed by the reaction between Ti and SiC or reaction between TiO2 and SiC. 8 refs., 6 figs., 1 tab.

  10. Giant magnetoresistance in melt spun Cu85Co10Ni5

    DEFF Research Database (Denmark)

    Curiotto, Stefano; Johnson, Erik; Celegato, Federica

    2009-01-01

    CuCoNi rapidly solidified alloys are interesting because they display giant magnetoresistance (GMR). In the present work a Cu85Co10Ni5 alloy has been synthesized by melt spinning and analysed for GMR. The ribbons obtained have been annealed at different temperatures and the evolution of the crystal...... structure with annealing has been studied by X-ray diffraction. The. ne microstructure has been observed by TEM and related to the magnetic properties, investigated in a vibrating sample magnetometer. In the studied composition the magnetoresistance was found to be lower than in binary CuCo alloys without...

  11. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    International Nuclear Information System (INIS)

    Lee, Kee Ahn; Kim, Yong Chan; Kim, Jung Han; Lee, Chong Soo; Namkung, Jung; Kim, Moon Chul

    2007-01-01

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys

  12. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Ahn [School of Advanced Materials Engineering, Andong National University, Andong 760-749 (Korea, Republic of)]. E-mail: keeahn@andong.ac.kr; Kim, Yong Chan [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Jung Han [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Lee, Chong Soo [Center for Advanced Aerospace materials, POSTECH, Pohang 790-784 (Korea, Republic of); Namkung, Jung [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of); Kim, Moon Chul [New Metals Research Team, RIST, Pohang 790-330 (Korea, Republic of)

    2007-03-25

    The mechanical properties and crystallization behavior of new Fe-Ni-Cr-Si-B-based bulk glassy alloys were investigated. The suitability of the continuous roll casting method for the production of bulk metallic glass (BMG) sheets in such alloy systems was also examined. BMG samples (Fe-Ni-Cr-Si-B, Fe-Ni-Zr-Cr-Si-B, Fe-Ni-Zr-Cr-W-Si-B) in amorphous strip, cylindrical, and sheet forms were prepared through melt spinning, copper mold casting, and twin roll strip casting, respectively. Fe-Ni-Cr-Si-B alloy exhibited compressive strength of up to 2.93 GPa and plastic strain of about 1.51%. On the other hand, the Fe-Ni-Zr-Cr-Si-B, composite-type bulk sample with diameter of 2.0 mm showed remarkable compressive plastic strain of about 4.03%. The addition of zirconium was found to enhance the homogeneous precipitation of nanocrystalline less than 7 nm and to develop a hybrid-composite microstructure with increasing sample thickness. Twin roll strip casting was successfully applied to the fabrication of sheets in Fe-Ni-Cr-Si-B-based BMGs. The combined characteristics of high mechanical properties and ease of microstructure control proved to be promising in terms of the future progress of structural bulk amorphous alloys.

  13. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome

    2017-08-15

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  14. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  15. Impact of medium-range order on the glass transition in liquid Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.; Entel, P.

    2011-09-01

    We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.

  16. Shape memory effect and microstructures of sputter-deposited Cu-Al-Ni films

    International Nuclear Information System (INIS)

    Minemura, T.; Andoh, H.; Kita, Y.; Ikuta, I.

    1985-01-01

    The shape memory effect has been found in many alloy systems which exhibit a thermoelastic martensite transformation. Cu-Al-Ni alloys exhibit an excellent shape memory effect in single crystalline states, but they have not yet been commercially used due to their brittle fracture along the grain boundaries in polycrystalline states. This letter reports the shape memory effect and microstructures of the sputter-deposited Cu-Al-Ni films. Cu-14%Al-4%Ni alloy ingot was prepared. A target for sputter deposition was cut from the ingot. Aluminium foils (20 μm thick) were used for the substrates of sputter deposition. The microstructures and crystal structures of the films were investigated by transmission electron microscopy (TEM) and X-ray diffraction using CuKα radiation, respectively. The effect of the sputtering conditions such as substrate temperature, partial pressure of argon gas, and the sputtering power on the structures of sputter-deposited Cu-14%Al-4%Ni films were investigated by X-ray diffraction. Results are shown and discussed. Photographs demonstrate shape memory behaviour of Cu-14%Al-4%Ni films sputter-deposited on aluminium foils from (a) liquid nitrogen temperature to (d) room temperature. (author)

  17. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    Science.gov (United States)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  18. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    Science.gov (United States)

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  19. Polycrystalline oxides formation during transient oxidation of (001) Cu-Ni binary alloys studied by in situ TEM and XRD

    International Nuclear Information System (INIS)

    Yang, J.C.; Li, Z.Q.; Sun, L.; Zhou, G.W.; Eastman, J.A.; Fong, D.D.; Fuoss, P.H.; Baldo, P.M.; Rehn, L.E.; Thompson, L.J.

    2009-01-01

    The nucleation and growth of Cu 2 O and NiO islands due to oxidation of Cu x Ni 1-x (001) films were monitored, at various temperatures, by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM) and in situ synchrotron X-ray diffraction (XRD). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands formed with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. In situ XRD experiments revealed that NiO formed first epitaxially, then other orientations appeared, and finally polycrystalline Cu 2 O developed as the oxidation pressure was increased. The segregation of Ni and Cu towards or away, respectively, from the alloy surface during oxidation could disrupt the surface and cause polycrystalline oxide formation.

  20. Fabrication and structure of bulk nanocrystalline Al-Si-Ni-mishmetal alloys

    International Nuclear Information System (INIS)

    Latuch, Jerzy; Cieslak, Grzegorz; Kulik, Tadeusz

    2007-01-01

    Al-based alloys of structure consisting of nanosized Al crystals, embedded in an amorphous matrix, are interesting for their excellent mechanical properties, exceeding those of the commercial crystalline Al-based alloys. Recently discovered nanocrystalline Al alloys containing silicon (Si), rare earth metal (RE) and late transition metal (Ni), combine high tensile strength and good wear resistance. The aim of this work was to manufacture bulk nanocrystalline alloys from Al-Si-Ni-mishmetal (Mm) system. Bulk nanostructured Al 91-x Si x Ni 7 Mm 2 (x = 10, 11.6, 13 at.%) alloys were produced by ball milling of nanocrystalline ribbons followed by high pressure hot isostating compaction

  1. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  2. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  3. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  4. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  5. Evaluation of the barrier capability of Zr-Si films with different substrate temperature for Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Ding Minghui; Shao Lei

    2009-01-01

    Barrier capability of Zr-Si diffusion barriers in Cu metallization has been investigated. Amorphous Zr-Si diffusion barriers were deposited on the Si substrates by RF reactive magnetron sputtering under various substrate temperatures. An increase in substrate temperature results in a slightly decreased deposition rate together with an increase in mass density. An increase in substrate temperature also results in grain growth as deduced from field emission scanning electron microscopy (FE-SEM) micrographs. X-ray diffraction (XRD) spectra and Auger electron spectroscopy (AES) depth profiles for Cu/Zr-Si(RT)/Si and Cu/Zr-Si(300 deg. C)/Si samples subjected to anneal at various temperatures show that the thermal stability was strongly correlated with the deposition temperature (consequently different density and chemical composition etc.) of the Zr-Si barrier layers. ZrSi(300 deg. C) with higher mass density make the Cu/Zr-Si(300 deg. C)/Si sample more stable. The appearance of Cu 3 Si in the Cu/Zr-Si/Si sample is attributed to the failure mechanism which may be associated with the diffusion of Cu and Si via the grain boundaries of the Zr-Si barriers.

  6. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-01-01

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer. PMID:28914819

  7. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Luoxiao Zhou

    2017-09-01

    Full Text Available Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2 and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  8. Wetting and interface phenomena in the B4C/(Cu-B-Si) system

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Shapiro-Tsoref, E.; Dariel, M.P.; Frage, N.

    2005-01-01

    The addition of Si to a Cu-B liquid alloy improves wetting of the boron carbide substrate and allows maintaining a flat metal/ceramic interface. Improved wetting is associated with a shift of the boron content in the near surface layer of the substrate towards a higher B/C ratio. The experimental results are consistent with the thermodynamic analysis of the Cu-B-C-Si system

  9. Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-12-01

    Full Text Available Electrochemical corrosion characteristics of the thermally treated 2 wt % Ni-containing Al-6Si-0.5Mg alloy were studied in NaCl solutions. The corrosion behavior of thermally treated (T6 Al-6Si-0.5Mg (-2Ni alloys in 0.1 M NaCl solution was investigated by electrochemical potentiodynamic polarization technique consisting of linear polarization method using the fit of Tafel plot and electrochemical impedance spectroscopy (EIS techniques. Generally, linear polarization experiments revealed a decrease of the corrosion rate at thermal treated Al-6Si-0.5Mg-2Ni alloy. The EIS test results showed that there is no significant change in charge transfer resistance (Rct after addition of Ni to Al-6Si-0.5Mg alloy. The magnitude of the positive shift in the open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit increased with the addition of Ni to Al-6Si-0.5Mg alloy. The forms of corrosion in the studied Al-6Si-0.5Mg alloy (except Al-6Si-0.5Mg-2Ni alloy are pitting corrosion as obtained from the scanning electron microscopy (SEM study.

  10. Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks.

    Science.gov (United States)

    Šillerová, Hana; Chrastný, Vladislav; Vítková, Martina; Francová, Anna; Jehlička, Jan; Gutsch, Marissa R; Kocourková, Jana; Aspholm, Paul E; Nilsson, Lars O; Berglen, Tore F; Jensen, Henning K B; Komárek, Michael

    2017-09-01

    The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM 10 ). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ 60 Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ 65 Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ 60 Ni and δ 65 Cu values determined in the smelter, i.e. in feeding material and slag (δ 60 Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ 65 Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ 60 Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ 65 Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Crystallization and electrical resistivity of Cu{sub 2}O and CuO obtained by thermal oxidation of Cu thin films on SiO{sub 2}/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos Valladares, L., E-mail: ld301@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Salinas, D. Hurtado [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Dominguez, A. Bustamante [Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Najarro, D. Acosta [Instituto de Fisica, Departamento de Materia Condensada, Universidad Nacional Autonoma de Mexico, Ap. Postal 20-364, CP 01000 (Mexico); Khondaker, S.I. [NanoScience Technology Centre and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Mitrelias, T.; Barnes, C.H.W. [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Aguiar, J. Albino [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Majima, Y. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); CREST, Japan Science and Technology Agency (JST), 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2012-08-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO{sub 2}/Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 Degree-Sign C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu {yields} Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO was detected. Pure Cu{sub 2}O films are obtained at 200 Degree-Sign C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300-550 Degree-Sign C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current-voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: Black-Right-Pointing-Pointer The crystallization and electrical resistivity of oxides in a Cu films are studied. Black-Right-Pointing-Pointer In annealing Cu films, the phase evolution Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO occurs. Black-Right-Pointing-Pointer A resistivity phase diagram, obtained from the current-voltage response, is presented. Black-Right-Pointing-Pointer Some decreases in the resistivity may be related to the crystallization.

  12. Electroplating Ni-63 metal ions in chloride bath on the Cu-plate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwon Mo; Uhm, Young Rang; Son, Kwang Jae; Park, Keun Yung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ni-63 plating is similar to other electroplating processes that employ soluble metal anodes. The nickel plating solution described by Watts in 1916 eventually replaced all other strategies in use up to that time. Charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged Ni-63 ions are formed by dissolving metal Ni-63. Specifically, it requires the passage of direct current (DC) between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The flow of a DC causes one of the electrodes (the anode) to dissolve and the other electrode (the cathode) to become covered with nickel. The nickel in the solution is present in the form of divalent positively charged ions (Ni{sup 2+}). When the current flows, the positive ions react with two electrons (2e{sup -}) and are converted into metallic nickel (Ni{sup 0}) at the cathode surface. In the present study, we optimize and established process for the electroplating Ni-63 on Cu-plate. Nanocrystalline nickel (Ni) coatings were synthesized by DC electro deposition at a current density of 15 mA/cm{sup 2}. The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni-63 metal particles in HCl. The prototype for electroplating radioactive Ni-63 has been established. The electroplating was carried out by two-step processes such as preparation of ionic solution including Ni-63, and coating processes on the substrate.

  13. Electroplating Ni-63 metal ions in chloride bath on the Cu-plate

    International Nuclear Information System (INIS)

    Yoo, Kwon Mo; Uhm, Young Rang; Son, Kwang Jae; Park, Keun Yung

    2014-01-01

    Ni-63 plating is similar to other electroplating processes that employ soluble metal anodes. The nickel plating solution described by Watts in 1916 eventually replaced all other strategies in use up to that time. Charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged Ni-63 ions are formed by dissolving metal Ni-63. Specifically, it requires the passage of direct current (DC) between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The flow of a DC causes one of the electrodes (the anode) to dissolve and the other electrode (the cathode) to become covered with nickel. The nickel in the solution is present in the form of divalent positively charged ions (Ni 2+ ). When the current flows, the positive ions react with two electrons (2e - ) and are converted into metallic nickel (Ni 0 ) at the cathode surface. In the present study, we optimize and established process for the electroplating Ni-63 on Cu-plate. Nanocrystalline nickel (Ni) coatings were synthesized by DC electro deposition at a current density of 15 mA/cm 2 . The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni-63 metal particles in HCl. The prototype for electroplating radioactive Ni-63 has been established. The electroplating was carried out by two-step processes such as preparation of ionic solution including Ni-63, and coating processes on the substrate

  14. Characterization of Ni-P-SiO2 nano-composite coating on magnesium

    Science.gov (United States)

    Sadreddini, S.; Salehi, Z.; Rassaie, H.

    2015-01-01

    In this study, the effects of SiO2 nanoparticles added to the electroless Ni-P coating were studied. The surface morphology, corrosion behavior, hardness and porosity of Ni-P-SiO2composite were investigated. The related microstructure was investigated through field emission scanning electron microscopy (FESEM) and the amount of SiO2 was examined by Energy Dispersive Analysis of X-ray (EDX). The corrosion behavior was evaluated through electrochemical impedance spectroscopy (EIS) and polarization techniques. The results illustrated that with increasing the quantity of the SiO2 nanoparticles, the corrosion rate decreased and the hardness increased.

  15. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability

    International Nuclear Information System (INIS)

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-01-01

    Highlights: • Metal speciation controls bioavailability in mangrove ecosystem. • Bioavailability of Ni was controlled by Fe/Mn-oxyhydroxide and organic phases • Bioavailability of Cu in mangrove roots was controlled by organic phase in the sediments. • Cu interacts more strongly with organic phases than Ni in mangrove sediment. - Abstract: Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system

  16. RF magnetron sputtered TiNiCu shape memory alloy thin film

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun

    2003-01-01

    Shape memory alloys (SMAs) offer a unique combination of novel properties, such as shape memory effect, super-elasticity, biocompatibility and high damping capacity, and thin film SMAs have the potential to become a primary actuating mechanism for micro-actuators. In this study, TiNiCu films were successfully prepared by mix sputtering of a Ti 55 Ni 45 target with a separated Cu target. Crystalline structure, residual stress and phase transformation properties of the TiNiCu films were investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and curvature measurement methods. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Results showed that films prepared at a high Ar gas pressure exhibited a columnar structure, while films deposited at a low Ar gas pressure showed smooth and featureless structure. Chemical composition of TiNiCu thin films was dependent on the DC power of copper target. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNiCu films. When the free-standing film was heated and cooled, a 'two-way' shape-memory effect can be clearly observed

  17. Irradiation creep transients in Ni-4 at.% Si

    International Nuclear Information System (INIS)

    Nagakawa, J.

    1983-01-01

    In the course of irradiation creep experiments on Ni-4 at.% Si alloy, two types of creep transients were observed on the termination of irradiation. The short term transient was completed within one minute while the long term transient persisted for nearly ten hours. A change in the temperature distribution was excluded from the possible causes, partly because the stress dependence of the observed transient strains was not linear, and partly because the strain increase expected from the temperature change was much smaller than the observed value. Transient behavior of point defects was examined in conjunction with the climb-glide mechanism and the steady-state irradiation creep data. Calculated creep transient due to excess vacancy flux to dislocations was in good agreement with the observed short term transient. The long term transient appears to be a result of dislocation microstructure change. The present results suggest an enhanced irradiation creep under cyclic irradiation conditions which will be encountered in the early generations of fusion reactors. (orig.)

  18. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability

    International Nuclear Information System (INIS)

    Sun, Y.J.; Qu, D.D.; Huang, Y.J.; Liss, K.-D.; Wei, X.S.; Xing, D.W.; Shen, J.

    2009-01-01

    Zr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr 53 Cu 18.7 Ni 12 Al 16.3 to 14 mm for Zr 50.7 Cu 28 Ni 9 Al 12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration of Cu in the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu atoms for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase in their glass-forming ability

  19. Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires

    KAUST Repository

    Zhang, Shengmao

    2010-02-23

    An experiment was conducted to show the solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. The Ni-sheathed Cu nanowires were synthesized with a one-pot approach. 30 mL of high concentration NaOH, Cu(NO3)2. 3H2O, Cu(NO3)2. 3H2O and 0.07-0.30 mL of Ni(NO3)2. 6H 2O aqueous solutions were added into a plastic reactor with a capacity of 50.0 mL. A varying amount of ethylenediamine (EDA) and hydrazine were also added sequentially, followed by thorough mixing of all reagents. The dimension, morphology, and chemical composition of the products were examined with scanning electron microscopy with energy dispersive X-ray spectroscopy. The XPS analysis on the as formed Cu nanowires confirms that there is indeed no nickel inclusion in the nanowires prior to the formation of nickel overcoat, which rules out the possibility of Cu-Ni alloy formation.

  20. Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires

    KAUST Repository

    Zhang, Shengmao; Zeng, Hua Chun

    2010-01-01

    An experiment was conducted to show the solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. The Ni-sheathed Cu nanowires were synthesized with a one-pot approach. 30 mL of high concentration NaOH, Cu(NO3)2. 3H2O, Cu(NO3)2. 3H2O and 0.07-0.30 mL of Ni(NO3)2. 6H 2O aqueous solutions were added into a plastic reactor with a capacity of 50.0 mL. A varying amount of ethylenediamine (EDA) and hydrazine were also added sequentially, followed by thorough mixing of all reagents. The dimension, morphology, and chemical composition of the products were examined with scanning electron microscopy with energy dispersive X-ray spectroscopy. The XPS analysis on the as formed Cu nanowires confirms that there is indeed no nickel inclusion in the nanowires prior to the formation of nickel overcoat, which rules out the possibility of Cu-Ni alloy formation.

  1. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    International Nuclear Information System (INIS)

    Palmero, E. M.; Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.

    2014-01-01

    Arrays of Ni 100−x Cu x nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  2. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B.D., E-mail: bpolat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Eryilmaz, O.L. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keleş, O., E-mail: ozgulkeles@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Erdemir, A. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Amine, K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-01

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g{sup −1} capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g{sup −1} (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g{sup −1} as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g{sup −1} capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.b - Highlights: • Highly adherent SiCu films are deposited by magnetron sputtering. • Compositionally graded SiCu film is produced and characterized. • Decrease of Cu content diverted the propagation of stress in the anode. • Cu rich layer at the bottom improves the adherence of the film.

  3. Alleviation of process-induced cracking of the antireflection TiN coating (ARC-TiN) in Al-Cu and Al-Cu-Si films

    CERN Document Server

    Peng, Y C; Yang, Y R; Hsieh, W Y; Hsieh, Y F

    1999-01-01

    The alleviation of cracking of the TiN-ARC layer on Al-Cu and Al-Cu-Si films after the development process has been achieved. For the TiN-ARC/Al-Cu system, the stress-induced defects decreased with increasing TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling, thereby inducing poor coverage with high aspect-ratio holes. As a result, the photoresist developer penetrated through the films. Chemical vapor deposition of TiN-ARC or predeposition of a Ti Interposing layer was used to eliminate the formation of Si nodules.

  4. 161Dy Moessbauer spectroscopy of the intermetallic compounds DyNi2Si2, DyNi2Ge2 and DyAg2Si2

    International Nuclear Information System (INIS)

    Onodera, Hideya; Murata, Akifumi; Koizuka, Masaaki; Ohashi, Masayoshi; Yamaguchi, Yasuo

    1994-01-01

    161 Dy Moessbauer spectroscopic study has been performed on DyNi 2 Si 2 , DyNi 2 Ge 2 and DyAg 2 Si 2 in order to clarify microscopic properties of antiferromagnets with incommensurate and sinusoidally moment-modulated structure. The experiments were done using the standard 161 Tb Moessbauer sources prepared by neutron irradiation at the Japan Material Testing Reactor. The Moessbauer spectra of DyNi 2 Si 2 are analyzed satisfactorily by a single set of hyperfine parameters, and hence the sinusoidal moment-modulation is considered to be realized through a distribution of spin relaxation rate. The broadened spectra of DyNi 2 Ge 2 are fitted tentatively by three subspectra. It seems for DyNi 2 Ge 2 that the incommensurate arrangement of Dy moments differed in magnitude as well as the distribution of spin relaxation rate originates the moment modulation. The fact that the spectrum of DyAg 2 Si 2 at 3 K consists of two distinct subspectra ensures the complicated antiferromagnetic structure where two kinds of Dy moments differed in magnitude are arranged noncollinearly. (author)

  5. The influence of Ni additions on the relative stability of η and η′ Cu6Sn5

    KAUST Repository

    Schwingenschlögl, Udo

    2010-02-09

    We investigate how 5 at. % Ni influences the relative stability of η and η′ Cu6Sn5. Synchrotron x-ray diffraction shows that, while Cu6Sn5 exists as η′ at 25 and 150 °C and transforms to η on heating to 200 °C, Cu5.5Ni0.5Sn5 is best fit to η throughout 25–200 °C. Our first principles calculations predict that η′ is stable at T=0 K in both Cu6Sn5 and Cu5.5Ni0.5Sn5, but that the energy difference is substantially reduced from 1.21 to 0.90 eV per 22 atom cell by the Ni addition. This effect is attributed to Ni developing distinct bonding to both Cu and Sn in the η phase.

  6. Microstructure and magnetic studies of Mg-Ni-Zn-Cu ferrites

    International Nuclear Information System (INIS)

    Bachhav, S.G.; Patil, R.S.; Ahirrao, P.B.; Patil, A.M.; Patil, D.R.

    2011-01-01

    Highlights: → Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 ferrite shows spinel structure. → Lattice parameter, X-ray density, porosity increase with increase in Ni content. → The IR spectra show tetrahedral and octahedral complexes. → Initial permeability remains constant with temperature and drops to zero at certain temperature which is in close agreement with Curie temperature. → The Curie temperature shows increasing trend with Ni content. - Abstract: Soft Mg-Ni-Zn-Cu spinel ferrites having general chemical formula Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 (where x 0.1, 0.2, 0.3, 0.4 and 0.5) were prepared by standard double sintering ceramic method. The samples were characterized by X-ray diffraction at room temperature. The X-ray diffraction (XRD) study revealed that lattice parameter decreases with increase in Ni content, resulting in a reduction in lattice strain. The electrical and magnetic properties of the synthesized ferrites have been investigated as a function of temperature. The variation of initial permeability and AC susceptibility with temperature exhibits normal ferrimagnetic behavior. The variation of initial permeability with frequency is studied. The Curie temperature (T C ) in the present work was determined from initial permeability and AC susceptibility. The Curie temperature increases with Ni content.

  7. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes

    Science.gov (United States)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-04-01

    The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  8. Damage-free laser patterning of silicon nitride on textured crystalline silicon using an amorphous silicon etch mask for Ni/Cu plated silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, Mark S., E-mail: mbailly@asu.edu; Karas, Joseph; Jain, Harsh; Dauksher, William J.; Bowden, Stuart

    2016-08-01

    We investigate the optimization of laser ablation with a femtosecond laser for direct and indirect removal of SiN{sub x} on alkaline textured c-Si. Our proposed resist-free indirect removal process uses an a-Si:H etch mask and is demonstrated to have a drastically improved surface quality of the laser processed areas when compared to our direct removal process. Scanning electron microscope images of ablated sites show the existence of substantial surface defects for the standard direct removal process, and the reduction of those defects with our proposed process. Opening of SiN{sub x} and SiO{sub x} passivating layers with laser ablation is a promising alternative to the standard screen print and fire process for making contact to Si solar cells. The potential for small contacts from laser openings of dielectrics coupled with the selective deposition of metal from light induced plating allows for high-aspect-ratio metal contacts for front grid metallization. The minimization of defects generated in this process would serve to enhance the performance of the device and provides the motivation for our work. - Highlights: • Direct laser removal of silicon nitride (SiN{sub x}) damages textured silicon. • Direct laser removal of amorphous silicon (a-Si) does not damage textured silicon. • a-Si can be used as a laser patterned etch mask for SiN{sub x}. • Chemically patterned SiN{sub x} sites allow for Ni/Cu plating.

  9. The Formation of Metal (M=Co(II), Ni(II), and Cu(II)) Complexes by Aminosilanes Immobilized within Mesoporous Molecular Sieves

    International Nuclear Information System (INIS)

    Park, Dong Ho; Park, Sung Soo; Choe, Sang Joon

    1999-01-01

    The immobilization of APTMS(3-(2-aminoethylamino)propyltrimethoxysilane) and AAPTMS(3-(2-(2-aminoethyl) aminoethylamino)propyltrimethoxysilane) on the surface of high quality mesoporous molecular sieves MCM-41 and MCM-48 have been confirmed by F.T.-IR spectroscopy, Raman spectroscopy, 29 Si solid state NMR, and a surface polarity measurement using Reichardt's dye. The formation of metal (Co(II), Ni(II), and Cu(II)) complexes by immobilized aminosilanes have been investigated by photoacoustic spectroscopy(PAS). The assignment of UV-Vis. PAS bands makes it possible to identify the structure of metal complexes within mesoporous molecular sieves. Co(II) ion may be coordinated mainly in a tetrahedral symmetry by two APTMS onto MCM-41, and in an octahedral one by two AAPTMS. Both Ni(II) and Cu(II) coordinated by aminosilanes within MCM-41 form possibly the octahedral complexes such as [Ni(APTMS) 2 (H 2 O) 2 ] 2+ , [Ni(AAPTMS) 2 ] 2+ , [Cu(APTMS) 2 (H 2 O) 2 ] 2+ , and [Cu(AAPTMS)(H 2 O) 3 ] 2+ , respectively. The PAS band shapes of complexes onto MCM-48 are similar to those of corresponding MCM-41 with the variation of PAS intensity. Most of metal ion(II) within MCM-41 and MCM-48 are coordinated by aminosilanes without the impregnation on the surface

  10. Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol

    Science.gov (United States)

    Guan, Huijuan; Chao, Cong; Kong, Weixiao; Hu, Zonggao; Zhao, Yafei; Yuan, Siguo; Zhang, Bing

    2017-06-01

    In this work, the mesoporous SiO2 nanofibers from pyrolyzing precursor of electrospun nanofibers were employed as support to immobilize PtNi nanocatalyst (PtNi/SiO2 nanofibers). AFM, XRD, SEM, TEM, XPS, ICP-AES and N2 adsorption/desorption analysis were applied to systematically investigate the morphology and microstructure of as-prepared products. Results showed that PtNi alloy nanoparticles with average diameter of 18.7 nm were formed and could be homogeneously supported on the surface of porous SiO2 nanofiber, which further indicated that the SiO2 nanofibers with well-developed porous structure, large specific surface area, and roughened surface was a benefit for the support of PtNi alloy nanoparticles. The PtNi/SiO2 nanofibers catalyst exhibited an excellent catalytic activity towards the reduction of p-nitrophenol, and the catalyst's kinetic parameter ( k n = 434 × 10-3 mmol s-1 g-1) was much higher than those of Ni/SiO2 nanofibers (18 × 10-3 mmol s-1 g-1), Pt/SiO2 nanofibers (55 × 10-3 mmol s-1 g-1) and previous reported PtNi catalysts. The catalyst could be easily recycled from heterogeneous reaction system based on its good magnetic properties (the Ms value of 11.48 emu g-1). In addition, PtNi/SiO2 nanofibers also showed an excellent stability and the conversion rate of p-nitrophenol still could maintain 94.2% after the eighth using cycle.

  11. Annealing effect on redistribution of atoms in austenite of Fe-Ni-Mo and Fe-Ni-Si alloys

    International Nuclear Information System (INIS)

    Rodionov, Yu.L.; Isfandiyarov, G.G.; Zambrzhitskij, V.N.

    1980-01-01

    Using the Moessbauer spectrum method, studied has been the change in the fine atomic structure of the Fe-(28-36)%Ni austenite alloys with Mo and Si additives during annealing in the 200-800 deg C range. Also, the energy of the activation of processes, occurring at the annealing temperatures of below 500 deg C has been researched. On the basis of the obtained results a conclusion is drawn that the annealing of the investigated alloys at 300-500 deg C is conducive to the redistribution of the atoms of the alloying element and to the formation of regions with a higher content of Ni and Mo(Si) atoms

  12. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun; Zhang, Sam; Huang Weimin

    2005-01-01

    TiNi films were prepared by co-sputtering TiNi and Ti targets. X-ray photoelectron spectroscopy (XPS) was employed to study surface chemistry of the films and interfacial structure of Si/TiNi system. Exposure of the TiNi film to the ambient atmosphere (23 deg. C and 80% relatively humidity) facilitated quick adsorption of oxygen and carbon on the surface. With time, carbon and oxygen content increased drastically at the surface, while oxygen diffused further into the layer. After a year, carbon content at the surface became as high as 65.57% and Ni dropped below the detection limit of XPS. Depth profiling revealed that significant inter-diffusion occurred between TiNi film and Si substrate with a layer of 90-100 nm. The detailed bond changes of different elements with depth were obtained using XPS and the formation of titanium silicides at the interface were identified

  13. Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys

    International Nuclear Information System (INIS)

    Li Chong; Wu Yaping; Li Hui; Wu Yuying; Liu Xiangfa

    2010-01-01

    Research highlights: → By the injection of rod-like NiAl 3 phase in Al-Mg 2 Si alloys, Al-Mg 2 Si binary eutectic structure gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic. → The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. → The mechanism of structural evolution was analyzed in terms of the detailed microstructural observations. → The high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structural evolution. - Abstract: The aim of this work is to investigate the eutectic structural evolution of hypereutectic Al-20% Mg 2 Si with Ni addition under a gravity casting process. Three-dimensional morphologies of eutectic phases were observed in detail using field emission scanning electron microscopy, after Al matrix was removed by deep etching or extraction. The results show that Al-Mg 2 Si binary eutectic gradually evolves into Al-Mg 2 Si-NiAl 3 ternary eutectic with the increase of Ni content, and flake-like eutectic Mg 2 Si transforms into rods. The ternary eutectic presents a unique double rod structure that rod-like NiAl 3 and Mg 2 Si uniformly distribute in Al matrix. Further, the high temperature (350 deg. C) tensile strength of the alloy increases by 23% due to the eutectic structure evolution, and the mechanism of structural evolution was discussed and analyzed in terms of the detailed microstructural observations.

  14. Efficient strategy to Cu/Si catalyst into vertically aligned carbon ...

    Indian Academy of Sciences (India)

    Abstract. Bamboo-shaped vertically aligned carbon nanotubes (bs-VACNTs) were fabricated on Cu/Si catalyst by ... on Si wafer material when compared to the other commer- ..... [3] Li H, Zhao N, He C, Shi C, Du X, Li J and Cui Q 2008 Mater.

  15. Corrosion Behavior of Ni3(Si,Ti + 2Mo in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The corrosion behavior of Ni3(Si,Ti + 2Mo intermetallic compound (L12 and (L12 + Niss mixture region has been investigated using an immersion test, polarization method and surface analytical method (scanning electron microscope and energy-dispersive X-Ray spectrometry in 0.5 kmol/m3 hydrochloric acid (HCl solution at 303 K.  In addition, the results obtained were compared to those of the L12 single-phase Ni3(Si,Ti intermetallic compound and C 276 alloy.  It was found that Ni3(Si,Ti + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss mixture region.  From the immersion test and polarization curves, Ni3(Si,Ti + 2Mo and C276 showed the lowest corrosion resistance and the highest corrosion resistance in the solution, respectively.  From this work, It implied that unlike C276, Ni3(Si,Ti +2Mo intermetallic compound was difficult to form a stable passive film in HCl solution as well as Ni3(Si,Ti in the same solution.

  16. Magnetic and transport properties of EuNi(Si1-xGex)3 compounds

    International Nuclear Information System (INIS)

    Uchima, K; Takaesu, Y; Akamine, H; Kakihana, M; Tomori, K; Uejo, T; Teruya, A; Nakamura, A; Hedo, M; Nakama, T; Yagasaki, K; Matsubayashi, K; Uwatoko, Y

    2014-01-01

    The magnetization M, electrical resistivity ρ, thermopower S and specific heat C of EuNi(Si 1-x Ge x ) 3 compounds have been measured at temperatures from 2 to 300 K. For the compounds of EuNi(Si 1-x Ge x ) 3 , we obtained an effective magnetic moment of μ eff ∼ 7.7 μ B , which is close to the divalent Eu value of μ eff =7.94 μ B . All compounds of EuNi(Si 1-x Ge x ) 3 order antiferromagnetically. The Néel temperature T N decreases monotonously with increasing the Ge concentration x from T N =49 K for EuNiSi 3 to T N =14 K for EuNiGe 3 . In the low temperature region below T N , anomalies corresponding to an additional magnetic phase transition into ferromagnetic state for compounds with x < 0.3, and into another antiferromagnetic for x > 0.3 were observed. The Curie temperature T C rapidly decreases with increasing x and vanishes at x ≈ 0.3. It is found that the magnetic phase transition temperatures of T N and T C in EuNi(Si 1-x Ge x ) 3 are strongly connected with the change of volume induced by the atomic substitution of Si by Ge

  17. Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Fu, Tao; Peng, Xianghe; Weng, Shayuan; Zhao, Yinbo; Gao, Fengshan; Deng, Lijun; Wang, Zhongchang

    2016-01-01

    We perform molecular dynamics simulation of the indentation on pure Cu and Ni films and Cu/Ni multilayered films with a cylindrical indenter, aimed to investigate the effects of the cubic-on-cubic interface and hetero-twin interface on their mechanical properties. We also investigate systematically the formation of twin boundary in the pure metals and the effects of the cubic-on-cubic and hetero-twin interface on mechanical properties of the multilayers. We find that the slip of the horizontal stacking fault can release the internal stress, resulting in insignificant strengthening. The change in the crystal orientation by horizontal movement of the atoms in a layer-by-layer manner is found to initiate the movement of twin boundary, and the hetero-twin interface is beneficial to the hardening of multilayers. Moreover, we also find that increasing number of hetero-twin interfaces can harden the Cu/Ni multilayers.

  18. SYNTHESIS OF ACETIC ACID FROM ETHANOL BY ELECTROOXIDATION TECHNIQUE USING Ni-Cu-PVC ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2017-11-01

    Full Text Available A usage of Ni-Cu-PVC electrode for the oxidation of ethanol by electrochemical technique will be reported in this paper. In this work, the effect of electrodes on the yields of acetic acid was determined. Electrode used was made of the mixtures of Ni powder, Cu powder and of polyvinyl chloride (PVC with various percentages. Electrooxidation of 0.20 M ethanol in 0.16 M KOH  (24 mL were carried out using chrono coulometry (CC at a potential of 1050 mV for 6 hours with continious stirring. Electrooxdation result obtained was analyzed using High Performance Liquid Chromatography (HPLC. The test result shows that the composition of  Ni:Cu:PVC  at 75:20:5 have higher efficiency in the electrooxidation of ethanol to acetic acid.

  19. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    Science.gov (United States)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  20. Comparison between thermal annealing and ion mixing of alloyed Ni-W films on Si. I

    International Nuclear Information System (INIS)

    Pai, C.S.; Lau, S.S.; Poker, D.B.; Hung, L.S.

    1985-01-01

    The reactions between Ni-W alloys and Si substrates induced by thermal annealing and ion mixing were investigated and compared. Samples were prepared by sputtering of Ni-W alloys, both Ni-rich and W-rich, onto the Si substrates, and followed by either furnace annealing (200--900 0 C) or ion mixing (2 x 10 15 -- 4 x 10 16 86 Kr + ions/cm 2 ). The reactions were analyzed by Rutherford backscattering and x-ray diffraction (Read camera). In general, thermal annealing and ion mixing lead to similar reactions. Phase separation between Ni and W with Ni silicides formed next to the Si substrate and W silicide formed on the surface was observed for both Ni-rich and W-rich samples under thermal annealing. Phase separation was also observed for Ni-rich samples under ion mixing; however, a Ni-W-Si ternary compound was possibly formed for ion-mixed W-rich samples. These reactions were rationalized in terms of the mobilities of various atoms and the energetics of the systems

  1. Phase-field modeling of Mn-Ni-Si precipitate behavior on the bcc-Fe matrix

    International Nuclear Information System (INIS)

    Chang, Kun Ok; Kwon, Jun Hyun

    2016-01-01

    The formation of Mn-Ni-Si precipitate (hereafter MNS precipitate) is widely accepted by one of the main reasons of late stage hardening and embrittlement of Reactor Pressure Vessel (RPV) during nuclear power plant (NPP) operation. Since MNS precipitate is not considered in current regulatory model, this late stage hardening can be a limiting factor for life extension of nuclear power plants up to 80 or more years. The stability of the MNS precipitate was investigated from the thermodynamic view point and they concluded that MNS precipitate is a stable phase even with very little Cu contents, and they assessed UW1 thermodynamic database which can predict the thermodynamic stability of MNS precipitate at operating temperature of NPP ( ∼ 290 .deg. C). Based on the non-classical nucleation theory, we performed the phase-field modeling of nucleation and growth of MNS precipitate. The microstructure evolution of Mn-Ni-Cu precipitate has been simulated using the phase-field method and their approaches are focused on a role of the Cu contents. Also, a role of the interstitial loop on the nucleation and growth kinetics of MNS precipitate was analyzed.

  2. Effect of Si and Co on the crystallization of Al-Ni-RE amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.H. [Key Lab of Liquid structure and Heredity of Materials, Ministry of Education, South Campus of Shandong University, Jinan 250061 (China); Bian, X.F. [Key Lab of Liquid structure and Heredity of Materials, Ministry of Education, South Campus of Shandong University, Jinan 250061 (China)], E-mail: xfbian@sdu.edu.cn

    2008-04-03

    Crystallization of Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}, Al{sub 85}Ni{sub 10}Ce{sub 5}, Al{sub 87}Ni{sub 7}Nd{sub 6} and Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6} amorphous alloys has been studied by using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The multiple transition metal (TM) (containing metalloid element) have significant effect on the crystallization behavior. A small addition of Si transforms a eutectic crystallization (Al{sub 85}Ni{sub 10}Ce{sub 5}) to a primary crystallization (Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}); while a small addition of Co transforms a primary crystallization (Al{sub 87}Ni{sub 7}Nd{sub 6}) to a eutectic crystallization (Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6}). In addition, the activation energies for crystallization (E{sub a}) are obtained to be 191, 290, 221 and 166 kJ/mol for the Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}, Al{sub 85}Ni{sub 10}Ce{sub 5}, Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6} and Al{sub 87}Ni{sub 7}Nd{sub 6} amorphous alloys based on the Kissinger method, respectively. It is found that the primary crystallization of fcc-Al is characteristic of a lower E{sub a}, as compared with eutectic crystallization.

  3. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    International Nuclear Information System (INIS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-01-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm 2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm −2 of Nickle-63 ( 63 Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure. - Highlights: • Silicon parameters were studied in betavoltaic batteries. • Studied betavoltaic batteries include p-n and Schottky barrier structures. • The p-n structure has higher conversion efficiency.

  4. Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite

    Directory of Open Access Journals (Sweden)

    Trong Trung Le

    2018-04-01

    Full Text Available In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz for the new wide band gap semiconductors (SiC, GaN allow to interleave switching cell at higher frequencies than silicon-based semiconductors (<1 MHz. Intercell transformers must follow this increase in frequency times-fold the number of switching cells. Current applications for ICT transformers use Mn-Zn based materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.

  5. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating

    International Nuclear Information System (INIS)

    Shi Lei; Sun Chufeng; Gao Ping; Zhou Feng; Liu Weimin

    2006-01-01

    Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L -1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating

  6. Photoluminescence and semiconducting behavior of Fe, Co, Ni and Cu implanted in heavy metal oxide glasses

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2016-07-01

    Full Text Available Transition metal ions (0.5 wt% of Fe2O3, CoO, NiO or CuO doped heavy metal oxide glasses having chemical composition of 60PbO·20Bi2O3·20 MxOy mol% (where MxOy = B2O3 or SiO2 or P2O5 were prepared by conventional melt annealing method. Combined optical and photoluminescence properties have been measured and employed to evaluate the prepared glassy samples. From the absorption edge data, the values of the optical band gap Eopt, Urbach energy (ΔE and refractive index were calculated to estimate semiconducting behavior. Photoluminescence and values of the optical energy gap were found to be dependent on the glass composition. The variations of the photoluminescence intensity, values of optical band gap, Urbach energy and refractive index gave an indication to use the prepared glasses for design of novel functional optical materials with higher optical performance.

  7. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kunchan; Xia, Ming [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Weishan [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-01-15

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  8. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Wang, Kunchan; Xia, Ming; Xiao, Tao; Lei, Ting; Yan, Weishan

    2017-01-01

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  9. Comparative study on hydrogenation of propanal on Ni(111) and Cu(111) from density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    An, Wei, E-mail: weian@sues.edu.cn; Men, Yong; Wang, Jinguo

    2017-02-01

    Highlights: • Hydrogenation of propanal is kinetically much faster on Ni(111) than Cu(111). • Hydroxyl route is prefered over alkoxy route on Ni(111). • Alkoxy route is prefered over hydroxyl route on Cu(111). • Activation barrier for hydrogenation of carbonyl is lowered by H-tunneling effect. • η{sup 2}(C,O)-adsorption mode is beneficial for hydrogenation/dehydrogenation of aldehyde. - Abstract: Using propanal as a probe molecule, we have comparatively investigated hydrogenation of carbonyl (C=O) in short carbon-chain aldehyde on Ni(111) and Cu(111) by means of periodic density functional theory. Our focus is in particular on the differentiation of reaction route in sequential hydrogenation on Ni(111) and Cu(111) following Langmuir–Hinshelwood mechanism. Strong binding with alkoxy intermediates has great impact on altering reaction pathways on the two surfaces, where hydroxyl route via 1-hydroxyl propyl intermediate is dominant on Ni(111), but alkoxy route via propoxyl intermediate is more likely on Cu(111) due to a higher activiation barrier of initial hydrogenation in hydroxyl route. In comparison, hydrogenation of carbonyl on Ni(111) is kinetically much faster than that on Cu(111) as a result of much lower activation barrier in rate-determining step (i.e., 13.2 vs 26.8 kcal/mol) of most favorable reaction pathways. Furthermore, the discrepancy in calculated and experimental barriers can be well explained by using the concept of H-tunneling effect on bond forming with H atoms during sequential hydrogenation. The different features of electronic structure exhibited by the two metal surfaces provide insight into their catalytic behaviors.

  10. Characteristics of slowly cooled Zr-Al-Cu-Ni bulk samples with different oxygen content

    International Nuclear Information System (INIS)

    Gebert, A.; Eckert, J.; Bauer, H.-D.; Schultz, L.

    1998-01-01

    Bulk samples of the glass-forming Zr 65 Al 7.5 Cu 17.5 Ni 10 and Zr 55 Al 10 Cu 30 Ni 5 alloys with 3 mm diameter were prepared by die casting into a copper mould. The oxygen content of the samples was varied between 0.26 at.% and 0.73 at.% by adjusting the oxygen partial pressure in the argon atmosphere upon casting. Characterization of the microstructure of as-cast samples and of specimens continuously heated to 873 K was carried out by X-ray diffraction (XRD), optical microscopy (OM) and transmission electron microscopy (TEM). Thermal stability was investigated by constant-rate differential scanning calorimetry (DSC). The phase formation and the thermal stability of the slowly cooled zirconium-based bulk samples are essentially influenced by the oxygen content of the material. Furthermore, the sensitivity to oxygen depends on the composition of the alloy. In bulk Zr 65 Al 7.5 Cu 17.5 Ni 10 samples only small oxygen traces induce nucleation and crystal growth during slow cooling whereas Zr 55 Al 10 Cu 30 Ni 5 samples are completely amorphous for all oxygen contents investigated. The processes of the oxygen-induced phase formation are discussed in detail also with respect to the results obtained for the heat treated samples. With increasing oxygen content the thermal stability deteriorates, as it is obvious from a diminution of the supercooled liquid region (ΔT x = T x - T g ) which is mainly due to a reduction of the crystallization temperature T x . Furthermore, the thermal behaviour of Zr 65 Al 7.5 Cu 17.5 Ni 10 and Zr 55 Al 10 Cu 30 Ni 5 reveals significant differences. (orig.)

  11. Mechanical properties of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials

    OpenAIRE

    Umezawa, Osamu

    2005-01-01

    Tensile and high-cycle fatigue behavior of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials were studied. Through the repeated thermomechanical treatment (RTMT) which is a repeat of the multi steps cold-working followed by heat treatment, Si crystals and/or intermetallic compounds were broken into some fragments and dispersed in the aluminum matrix. Fine dispersion of the second phase particles exhibited good ductility, since early fracture was overcome. A few large Si cry...

  12. Microstructure of AlSi17Cu5 alloy after overheating over liquidus temperature

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2015-01-01

    Full Text Available The paper presents microstructure tests of alloy AlSi17Cu5. In order to disintegrate the primary grain of silicon the so-called time-temperature transformation TTT was applied which was based on overheating the liquid alloy way over the temperature Tliq., soaking in it for 30 minutes and casting it to a casting mould. It was found that such process causes the achievement of fine-crystalline structure and primary silicon crystals take up the form of pentahedra or frustums of pyramids. With the use of X-ray microanalysis and X-ray diffraction analysis the presence of intermetallic phases Al2Cu, Al4Cu9 which are the ingredients of eutectics α - AlCu - β and phase Al9Fe2Si which is a part of eutectic α - AlFeSi - β was confirmed.

  13. Preparation, mechanical strengths, and thermal stability of Ni-Si-B and Ni-P-B amorphous wires

    International Nuclear Information System (INIS)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-01-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni/sub 75/Si/sub 8/B/sub 17/ and Ni/sub 78/P/sub 12/B/sub 10/ alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin Al/sub 2/O/sub 3/ film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (N/sub 0.75/Si/sub 0.08/B/sub 0.17/)/sub 99/Al/sub 1/ wire and 2170 MPa and 2.4 pct for (Ni/sub 0.78/P/sub 0.12/B/sub 0.1/)/sub 99/Al/sub 1/ wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a NiSi-B-Al wire, which is higher by 0.15 pct than that of a Fe/sub 75/Si/sub 10/B/sub 15/ amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance

  14. Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.S.; Buznikov, N.A. E-mail: n_buznikov@mail.ru; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M

    2002-08-01

    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors.

  15. Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    International Nuclear Information System (INIS)

    Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M.

    2002-01-01

    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors

  16. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  17. Preparation of Copper (Cu)-Nickel (Ni) Alloy Thin Films for Bilayer Graphene Growth

    Science.gov (United States)

    2016-02-01

    of each sample after annealing . Transene brand APS-100 etchant is used to completely wet etch away the unmasked portion of the Cu-Ni alloy, and...morphological changes in the metal surfaces such as roughness, grain size, and crystal orientation due to the effects of annealing temperature, hydrogen...post- annealed at 1000 °C for 30 min, 40% H2, 15 Torr.............5 Fig. 6 AFM imaging of Cu:Ni alloyed films with ratios of a) 6:1 , b) 4:1, and c) 3

  18. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  19. X-ray diffraction study of chalcopyrite CuFeS2, pentlandite (Fe,Ni)9S8 and Pyrrhotite Fe1-xS obtained from Cu-Ni orebodies

    International Nuclear Information System (INIS)

    Nkoma, J.S.; Ekosse, G.

    1998-05-01

    The X-ray Diffraction (XRD) technique is applied to study five samples of Cu-Ni orebodies, and it is shown that they contain chalcopyrite CuFeS 2 as the source of Cu, pentlandite (Fe,Ni) 9 S 8 as the source of Ni and pyrrhotite Fe 1-x S as a dominant compound. There are also other less dominant compounds such as bunsenite NiO, chalcocite Cu 2 S, penrosite (Ni, Cu)Se 2 and magnetite Fe 3 O 4 . Using the obtained XRD data, we obtain the lattice parameters for tetragonal chalcopyrite as a=b=5.3069A and c=10.3836A, cubic pentlandite as a=b=c=10.0487A, and hexagonal pyrrhotite as a=b=6.8820A and c=22.8037A. (author)

  20. Selective hydrogenation of furfural to cyclopentanone over Cu-Ni-Al hydrotalcite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongyan; Zhou, Minghao; Zeng, Zuo; Xiao, Guomin; Xiao, Rui [Southeast University, Nanjing (China)

    2014-04-15

    A series of Cu-Ni-Al hydrotalcites derived oxides with a (Cu+Ni)/Al mole ratio of 3 with varied Cu/Ni mole ratio (from 0.017 to 0.5, with a Cu ratio of 0.0125 to 0.25) were prepared by co-precipitation method, then applied to the hydrogenation of furfural in aqueous. Their catalytic performance for liquid phase hydrogenation of furfural to prepare cyclopentanone was described in detail, considering reaction temperature, catalyst composition, reaction time and so on. The yield of cyclopentanone was influenced by the mole ratio of Cu-Ni-Al based heterogeneous catalyst and depended on the reaction conditions. The yield of cyclopentanone was up to 95.8% when the reaction was carried out under 413 K with H{sub 2} pressure of 40 bar for 8 h. The catalysts were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and H{sub 2} temperature-programmed reduction (H{sub 2}-TPR)

  1. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest; Fusion y caracterizacion de una aleacion Cu-Zn-Al-Ni de interes nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Santana M, J.S

    2003-07-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  2. Preparation and mechanical properties of in situ TiC{sub x}–Ni (Si, Ti) alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjuan [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhai, Hongxiang, E-mail: hxzhai@sina.com [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Chen, Lin; Huang, Zhenying [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Bei, Guoping; Baumgärtner, Christoph; Greil, Peter [Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, 91058 Erlangen (Germany)

    2014-10-20

    Novel in situ TiC{sub x} reinforced Ni (Si, Ti) alloy composites with superior mechanical properties were prepared at 1250 °C for 30 min by pressureless sintering Ti{sub 3}SiC{sub 2} (10 and 20 vol%) and Ni as precursors. The Ti{sub 3}SiC{sub 2} particles decomposed into substoichiometric TiC{sub x} phase, while the additional Si and partial Ti atoms derived from Ti{sub 3}SiC{sub 2} diffused into Ni matrix to form Ni (Si, Ti) alloy. The in situ formed TiC{sub x} phases are mainly dispersed on the grain boundaries of the Ni (Si, Ti) alloying, forming a strong skeleton and refining the microstructures of the metal matrix. The hardness, the yield stress σ{sub 0.2%} and ultimate compressive strength of 20.6 vol%TiC{sub x}–Ni(Si, Ti) composite can reach 2.15±0.04 GPa, 466.8±55.8 MPa and 733.3±78.4 MPa, respectively. The enhanced mechanical properties of TiC{sub x}–Ni(Si, Ti) composites are due to the in situ formation of TiC{sub x} skeleton, the refined microstructures of Ni (Si, Ti) alloys and solid solution effects as well as good wettability between TiC{sub x} and Ni (Si, Ti) matrix.

  3. Mechanical properties of Al-Cu alloy-SiC composites

    Science.gov (United States)

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-01

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  4. Mechanical properties of Al-Cu alloy-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Anggara, B. S., E-mail: anggorobs1960@yahoo.com [Jurusan Fisika, FMIPA Universitas Negeri Jakarta, Indonesia 13220 and PPS Ilmu Material, Department Fisika, FMIPA, Universitas Indonesia (Indonesia); Handoko, E. [Jurusan Fisika, FMIPA Universitas Negeri Jakarta, 13220 (Indonesia); Soegijono, B. [PPS Ilmu Material, Department Fisika, FMIPA, Universitas Indonesia (Indonesia)

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  5. Paduan Ni-Cu-Mn Sebagai Logam Alternatif Kedokteran Gigi: Efek Perendaman dalam Larutan 0,1% Sodium Sulfida

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-09-01

    Full Text Available In this study, the ternary base alloys of nickel-copper-manganese (Ni-Cu-Mn alloys are prepared and these ternary alloys systems, which were constituted from higher nickel and lower copper contents than copper-base alloy ones, were evaluated by a tarnish test. Tarnish tests conducted in a 0,1% sodium sulphide solution (pH=12 at 37◦C. All test specimens were case into square paddles of 15 mm x 20 mm x 2,5 mm using the lost-wax technique with a phosphate-bonded investment. The surface of the specimens were then prepared with abrasion papers down to a 600 grit finish. Tarnish attack was quantitatively evaluated by Fibre colorimetry. The results of tarnish test showed that ternary nickel-copper-manganese alloys, such as 40Ni-30Cu-30Mn and 50Ni-30Cu-20Mn, have superior tarnishment resistance than other alloys, e.g. 20Ni-40Cu-40Mn, 30Ni-30Cu-40Mn and 30Ni-40Cu-30Mn. It was also found that 40Ni-30Cu-30Mn and 50Ni-30Cu-20Mn alloys have lower values of colour change vector than the other alloys given above.

  6. Crystal field and low energy excitations measured by high resolution RIXS at the L edge of Cu, Ni and Mn

    DEFF Research Database (Denmark)

    Ghiringhelli, G.; Piazzalunga, A.; Wang, X.

    2009-01-01

    of the 3d transition metals with unprecedented energy resolution, of the order of 100 meV for Mn, Ni and Cu. We present here some preliminary spectra on CuO, malachite, NiO, , MnO and . The dd excitations are very well resolved allowing accurate experimental evaluation of 3d state energy splitting. The low...

  7. Study on the characteristics of the impingement erosion-corrosion for Cu-Ni Alloy sprayed coating(I)

    International Nuclear Information System (INIS)

    Lee, Sang Yeol; Lim, Uh Joh; Yun, Byoung Du

    1998-01-01

    Impingement erosion-corrosion test and electrochemical corrosion test in tap water(5000Ω-cm) and seawater(25Ω-cm). Thermal spraying coated Cu-Ni alloy on the carbon steel was carried out. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of the substrate(SS41) and Cu-Ni thermal spray coating were investigated. The erosion-corrosion control efficiency of Cu-Ni coating to substrate was also estimated quantitatively. Main results obtained are as follows : 1) Under the flow velocity of 13m/s, impingement erosion-corrosion of Cu-Ni coating is under the control of electrochemical corrosion factor rather than that of mechanical erosion. 2) The corrosion potential of Cu-Ni coating becomes more noble than that of substrate, and the current density of Cu-Ni coating under the corrosion potential is drained lowly than that of substrate. 3) The erosion-corrosion control efficiency of Cu-Ni coating to substrate is excellent in the tap water of high specific resistance solution, but it becomes dull in the seawater of low specific resistance. 4) The corrosion control efficiency of Cu-Ni coating to substrate in the seawater appears to be higher than that in the tap water

  8. Crystallization of Pd40CU30Ni10P20 bulk metallic glass with and without pressure

    DEFF Research Database (Denmark)

    Yang, B.; Jiang, Jianzhong; Zhuang, Yanxin

    2007-01-01

    The glass-transition behavior of Pd40Cu30Ni10P20 bulk metallic glass was investigated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). The effect of pressure on the crystallization behavior of Pd40Cu30Ni10P20 bulk glass was studied by in situ high-pressure and high...

  9. Chemical diffusion of Cr, Ni and Si in welded joints. II

    International Nuclear Information System (INIS)

    Kucera, J.; Ciha, K.

    1987-01-01

    The results are given of a study in chemical diffusion in welded joints P2/A and P3/A. P2 stands for the steel (Fe-17.48 Cr-8.15 Ni-0.14 Si), P3 for (Fe-18.52 Cr-8.20 Ni-1.78 Si) and A for the Fe-Arema. Triadic sandwiche-like samples were diffusion heated at temperatures from 920 to 1170 degC. The concentration distributions N(x,t) of the given elements were measured with microprobe JXA-3A. The evaluation of the experimental data was carried out either by Grube's method, or in some cases by the spline-polynomial method. The evaluated diffusivities D-bar satisfy the Arrhenius relation and yield the standard diffusion characteristics D 0 and H. The diffusivities D-bar of Cr, Ni and Si in P1/A, in P2/A and P3/A welded joints vary with Si content in P1, P2 and P3 alloys, similar to the Cr-51 and Ni-63 self-diffusivities in Fe-18 Cr-12 Ni-X Si steels, and tend to increase with increasing Si content. The values D-bar measured in the vicinity of grain boundaries are higher than the bulk diffusion coefficients. The most rapid diffusant is Si and the slowest one Ni. Thus, the relations D-bar Si :D-bar Cr :D-bar Ni ≅ 6:3:1 (P3/A) and D-bar Si :D-bar Cr :D-bar Ni ≅ 1.7:1.4:1 (P3/A) are valid at 1050 degC. Comparing the results with those published if can be noted that the Cr-51 and Ni-63 self-diffusion in Fe-18 Cr-12 Ni-X Si steels is faster than chemical diffusion of these elements in the said steel welded joints P2/A and P3/A; X varies from 0.14 to 1.98. (author). 7 tabs., 7 figs., 20 refs

  10. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    Science.gov (United States)

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  11. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    Science.gov (United States)

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  12. Characteristics of magnetic tunnel junctions comprising ferromagnetic amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Kim, Y.K.; Hwang, J.Y.; Yim, H.I.; Rhee, J.R.; Kim, T.W.

    2007-01-01

    Magnetic tunnel junctions (MTJs), which consisted of amorphous ferromagnetic Ni 16 Fe 62 Si 8 B 14 free layers, were investigated. NiFeSiB has a lower saturation magnetization (M s : 800 emu/cm 3 ) than Co 90 Fe 10 and a higher anisotropy constant (K u : 2700 erg/cm 3 ) than Ni 80 Fe 20 . By increasing the free layer thickness, the tunnel magnetoresistance (TMR) ratio of up to 41% was achieved and it exhibited a much lower switching field (H sw ) than the conventionally used CoFe free layer MTJ. Furthermore, by inserting a thin CoFe layer (1 nm) at the tunnel barrier/NiFeSiB interface, the TMR ratio and switching squareness were enhanced

  13. Electroless Ni-Mo-P diffusion barriers with Pd-activated self-assembled monolayer on SiO2

    International Nuclear Information System (INIS)

    Liu Dianlong; Yang Zhigang; Zhang Chi

    2010-01-01

    Ternary Ni-based amorphous films can serve as a diffusion barrier layer for Cu interconnects in ultralarge-scale integration (ULSI) applications. In this paper, electroless Ni-Mo-P films deposited on SiO 2 layer without sputtered seed layer were prepared by using Pd-activated self-assembled monolayer (SAM). The solutions and operating conditions for pretreatment and deposition were presented, and the formation of Pd-activated SAM was demonstrated by XPS (X-ray photoelectron spectroscopy) analysis and BSE (back-scattered electron) observation. The effects of the concentration of Na 2 MoO 4 added in electrolytes, pH value, and bath temperature on the surface morphology and compositions of Ni-Mo-P films were investigated. The microstructures, diffusion barrier property, electrical resistivity, and adhesion were also examined. Based on the experimental results, the Ni-Mo-P alloys produced by using Pd-activated SAM had an amorphous or amorphous-like structure, and possessed good performance as diffusion barrier layer.

  14. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  15. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng

    2013-12-01

    In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.

  16. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  17. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  18. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    Directory of Open Access Journals (Sweden)

    Marco Abdo Gravina

    2014-01-01

    Full Text Available OBJECTIVE: This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni Titanium (Ti conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek, to the wires with addition of copper (CuNiTi 27oC and 35oC, Ormco after traction test. METHODS: The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV with EDS system of microanalysis (energy dispersive spectroscopy. RESULTS : The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu. As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27oC and 35oC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi. 4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27oC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35oC wires presented inadequate wire-surface roughness in the fracture region. CONCLUSION: CuNiTi 35oC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region.

  19. Studies on SiC(p) reinforced Al-Al sub 3 Ni eutectic matrix composites

    International Nuclear Information System (INIS)

    Masrom, A.K.; Foo, L.C.; Ismail, A.B.

    1996-01-01

    An investigation on processing of Al-5.69wt% Ni eutectic with SiC particulate composites is reported. The intermetallic composites are prepared by elemental powder metallurgy route and sintered at two different temperatures, i.e., 600 degree C and 620 degree C. Results show that the metal matrix was Al-Al sub 3 Ni eutectic. The phase analysis by XRD identified the presence of Al sub 3 Ni and Al as dominant phases together with silicon and Al sub 4 C sub 3 phase as minor phases. The Al sub 4 C sub 3 and Si phases are formed during sintering due to SiC-Al interface reaction. SEM micrographs also reveal the formation of microvoid surrounding the SiC particle

  20. Phase selection and microstructure in directional solidification of glass forming Pd-Si-Cu alloys

    Science.gov (United States)

    Huo, Yang

    Phase selection and microstructure formation during the rapid solidification of alloy melts has been a topic of substantial interest over the last several decades, attributed mainly to the access to novel structures involving metastable crystalline and non-crystalline phases. In this work, Bridgeman type directional solidification was conducted in Pd-Si-Cu glass forming system to study such cooling rate dependent phase transition and microstructure formation. The equilibrium state for Pd-Si-Cu ternary system was investigated through three different works. First of all, phase stabilities for Pd-Si binary system was accessed with respects of first-principles and experiments, showing Pd5Si, Pd9Si2, Pd3Si and Pd 2Si phase are stable all way to zero Kevin while PdSi phase is a high temperature stable phase, and Pd2Si phase with Fe2P is a non-stoichiometry phase. A thermodynamic database was developed for Pd-Si system. Second, crystal structures for compounds with ternary compositions were studied by XRD, SEM and TEM, showing ordered and disordered B2/bcc phases are stable in Pd-rich part. At last, based on many phase equilibria and phase transitions data, a comprehensive thermodynamic discrption for Pd-Si-Cu ternary system was first time to be developed, from which different phase diagrams and driving force for kinetics can be calculated. Phase selection and microstructure formation in directional solidification of the best glass forming composition, Pd 77.5Si16.5Cu6, in this system with growth velocities from 0.005 to 7.5mm/s was systematically studied and the solidification pathways at different conditions were interpreted from thermodynamic simulation. The results show that for growth velocities are smaller than 0.1mm/s Pd 3Si phase is primary phase and Pd9Si2 phase is secondary phase, the difficulty for Pd9Si2 phase nucleation gives rise to the formation of two different eutectic structure. For growth velocities between 0.4 and 1mm/s, instead of Pd3Si phase, Pd9Si2

  1. Atom probe characterization of precipitation in an aged Cu-Ni-P alloy

    International Nuclear Information System (INIS)

    Aruga, Yasuhiro; Saxey, David W.; Marquis, Emmanuelle A.; Cerezo, Alfred; Smith, George D.W.

    2011-01-01

    A temporal evolution of clusters associated with age hardening behavior in a Cu-Ni-P alloy during ageing at 250 o C for up to 100 ks after solution treatment has been carried out. A three-dimensional atom probe (3DAP) analysis has showed that Ni-P clusters are present in the as-quenched condition, and that the cluster density increases as the ageing time increases. The clusters have a wide range of Ni/P ratios when they are relatively small, whereas larger clusters exhibit a narrow distribution of the Ni/P ratio, approaching a ratio of approximately two. These results would indicate that the clusters with various Ni/P ratios form at the early stage of precipitation and the ratio approaches a value identical to that of the equilibrium phase at 250 o C as the clusters enlarge during ageing. -- Research highlights: → We characterize the clustering behavior in a Cu-Ni-P alloy during ageing at 250 o C. → The clusters have a wide range of Ni/P ratios when they are relatively small. → Larger clusters exhibit a narrow distribution of the ratio. → Hardness increases almost linearly with the logarithm of ageing time beyond 100s. → We believe increasing density and size of the clusters leads to the age hardening.

  2. Toxicity assessment and selective leaching characteristics of Cu-Al-Ni shape memory alloys in biomaterials applications.

    Science.gov (United States)

    Chang, Shih-Hang; Chen, Bor-Yann; Lin, Jin-Xiang

    2016-04-06

    Cu-Al-Ni shape memory alloys (SMAs) possess two-way shape memory effects, superelasticity, and damping capacity. Nonetheless, Cu-Al-Ni SMAs remain promising candidates for use in biomedical applications, as they are more economical and machinable than other SMAs. Ensuring the biocompatibility of Cu-Al-Ni SMAs is crucial to their development for biomedical applications. Therefore, this study aimed to assess the toxicity of Cu-Al-Ni SMAs using a Probit dose-response model and augmented simplex design. In this study, the effects of Cu2+, Al3+ and Ni2+ metal ions on bacteria (Escherichia coli DH5α) using Probit dose-response analysis and augmented simplex design to assess the actual toxicity of the Cu-Al-Ni SMAs. Extraction and repetition of Escherichia coli DH5α solutions with high Cu2+ ion concentrations and 30-hour incubation demonstrated that Escherichia coli DH5α was able to alter its growth mechanisms in response to toxins. Metal ions leached from Cu-Al-Ni SMAs appeared in a multitude of compositions with varying degrees of toxicity, and those appearing close to a saddle region identified in the contour plot of the augmented simplex model were identified as candidates for elevated toxicity levels. When the Cu-13.5Al-4Ni SMA plate was immersed in Ringer's solution, the selective leaching rate of Ni2+ ions far exceeded that of Cu2+ and Al3+. The number of Cu2+, Al3+ and Ni2+ ions leached from Cu-Al-Ni SMAs increased with immersion time; however, at higher ratios, toxicity interactions among the metal ions had the effect of gradually reducing overall toxicity levels with regard to Escherichia coli DH5α. The quantities of Cu2+, Al3+ and Ni2+ ions leached from the Cu-13.5Al-4Ni SMA plate increased with immersion time, the toxicity interactions associated with these compositions reduced the actual toxicity to Escherichia coli DH5α.

  3. The Relationship between Nanocluster Precipitation and Thermal Conductivity in Si/Ge Amorphous Multilayer Films: Effects of Cu Addition

    Directory of Open Access Journals (Sweden)

    Ahmad Ehsan Mohd Tamidi

    2016-01-01

    Full Text Available We have used a molecular dynamics technique to simulate the relationship between nanocluster precipitation and thermal conductivity in Si/Ge amorphous multilayer films, with and without Cu addition. In the study, the Green-Kubo equation was used to calculate thermal conductivity in these materials. Five specimens were prepared: Si/Ge layers, Si/(Ge + Cu layers, (Si + Cu/(Ge + Cu layers, Si/Cu/Ge/Cu layers, and Si/Cu/Ge layers. The number of precipitated nanoclusters in these specimens, which is defined as the number of four-coordinate atoms, was counted along the lateral direction of the specimens. The observed results of precipitate formation were considered in relation to the thermal conductivity results. Enhancement of precipitation of nanoclusters by Cu addition, that is, densification of four-coordinate atoms, can prevent the increment of thermal conductivity. Cu dopant increases the thermal conductivity of these materials. Combining these two points, we concluded that Si/Cu/Ge is the best structure to improve the conversion efficiency of the Si/Ge amorphous multilayer films.

  4. Novel Cu@SiO{sub 2}/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bo [Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 (China); Department of Life Sciences of Lianyungang Teacher' s College, Sheng Hu Lu 28, Lianyungang 222006 (China); Huang, Yang; Zhu, Chunlin; Chen, Chuntao; Chen, Xiao; Fan, Mengmeng [Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 (China); Sun, Dongping, E-mail: sundpe301@163.com [Chemicobiology and Functional Materials Institute of Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 (China)

    2016-05-01

    The antibacterial composite based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of SiO{sub 2} coated Cu nanoparticles (Cu@SiO{sub 2}/BC) and its properties were characterized. Its chemical structures and morphologies were evaluated by Fourier transformation infrared spectrum (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the SiO{sub 2} coated Cu particles were well homogeneously precipitated on the surface of BC. The Cu@SiO{sub 2}/BC was more resistant to oxidation than the Cu nanoparticles impregnated into BC (Cu/BC) and then Cu@SiO{sub 2}/BC could prolong the antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). - Graphical abstract: Schematic illustration of the preparation of Cu@SiO{sub 2}/BC. Due to its unique structure, the Cu@SiO{sub 2}/BC membrane shows excellent antibacterial effects and can be used for a long time. - Highlights: • This work paves the novel way to fabricate antibacterial nanomaterial with good efficiency. • We prepare the antibacterial membrane based on bacterial cellulose by in-situ synthesis of SiO{sub 2}-coated Cu nanoparticles. • The antibacterial membrane is more resistant to oxidation and can prolong the antimicrobial activity.

  5. The influence of Ni additions on the relative stability of η and η′ Cu6Sn5

    KAUST Repository

    Schwingenschlö gl, Udo; Di Paola, Cono; Gourlay, C. M.; Nogita, K.

    2010-01-01

    We investigate how 5 at. % Ni influences the relative stability of η and η′ Cu6Sn5. Synchrotron x-ray diffraction shows that, while Cu6Sn5 exists as η′ at 25 and 150 °C and transforms to η on heating to 200 °C, Cu5.5Ni0.5Sn5 is best fit to η

  6. Effect of magnetic ion Ni doping for Cu in the CuO{sub 2} plane on electronic structure and superconductivity on Y123 cuprate

    Energy Technology Data Exchange (ETDEWEB)

    Cao Shixun; Li Pinglin; Cao Guixin; Zhang Jincang

    2003-05-15

    The YBa{sub 2}Cu{sub 3-x}Ni{sub x}O{sub 7-{delta}} with x=0-0.4 have been studied using positron annihilation technique. The changes of positron annihilation parameters with the Ni substitution concentration x are given. From the change of electronic density n{sub e} and T{sub c}, it would prove that the localized carriers (electron and hole) in Cu-O chain and CuO{sub 2} planes have enormous influence on superconductivity by affecting charge transfer between the reservoir layer and CuO{sub 2} planes.

  7. Levels Of Mn, Fe, Ni, Cu, Zn And Cd, In Effluent From A Sewage ...

    African Journals Online (AJOL)

    This study reports the results of preliminary investigation of heavy metal levels-Ni, Cd, Fe, Zn, Cu and Mn; pH; temperature and electrical conductivity in effluents from a sewage treatment oxidation pond and its receiving stream. The heavy metal concentrations were determined with Inductively Coupled Plasma-Mass ...

  8. Austenite-martensite interfaces in strained foils of CuAlNi alloy

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andrej; Paidar, Václav; Zárubová, Niva

    2009-01-01

    Roč. 100, č. 3 (2009), 342-344 ISSN 1862-5282 R&D Projects: GA MŠk OC 149; GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10100520 Keywords : martensitic transformation * CuAlNi * habit planes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  9. Multidimensional effects in dissociative chemisorption: H2 on Cu and Ni surfaces

    DEFF Research Database (Denmark)

    Engdahl, C.; Lundqvist, Bengt; Nielsen, U.

    1992-01-01

    It is shown that, in order to describe and understand the trends found experimentally for the variation of the H2 sticking probability with crystal face on Cu and Ni surfaces, the dynamics of all six molecular degrees of freedom must be included. The effective-medium theory is used to estimate...

  10. The response of macrophages to a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd

    2010-09-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.

  11. Dissociated Structure of Dislocation Loops with Burgers Vector alpha in Electron-Irradiated Cu-Ni

    DEFF Research Database (Denmark)

    Bilde-Sørensen, Jørgen; Leffers, Torben; Barlow, P.

    1977-01-01

    The rectangular dislocation loops with total Burgers vector a100 which are formed in Cu-Ni alloys during 1 MeV electron irradiation at elevated temperatures have been examined by weak-beam electron microscopy. The loop edges were found to take up a Hirth-lock configuration, dissociating into two ...

  12. Thermodynamic studies on the adsorption of Cu2+, Ni2+ and Cd2+ ...

    African Journals Online (AJOL)

    Amine-modified bentonite (TEPA-Bn) has been prepared with tetraethylenepentamine (TEPA) as a modifier. The structure of Ca-based bentonite (Ca-Bn), TEPA-Bn and TEPA-Bn after adsorbing Cu2+,Ni2+,Cd2+ had been characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and ...

  13. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-28

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g(-1) at the scan rate of 5 mV s(-1). In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  14. Magnetic susceptibility, specific heat and magnetic structure of CuNi2(PO4)2

    International Nuclear Information System (INIS)

    Escobal, Jaione; Pizarro, Jose L.; Mesa, Jose L.; Larranaga, Aitor; Fernandez, Jesus Rodriguez; Arriortua, Maria I.; Rojo, Teofilo

    2006-01-01

    The CuNi 2 (PO 4 ) 2 phosphate has been synthesized by the ceramic method at 800 deg. C in air. The crystal structure consists of a three-dimensional skeleton constructed from MO 4 (M II =Cu and Ni) planar squares and M 2 O 8 dimers with square pyramidal geometry, which are interconnected by (PO 4 ) 3- oxoanions with tetrahedral geometry. The magnetic behavior has been studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The bimetallic copper(II)-nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at, approximately, 29.8 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements exhibit a three-dimensional magnetic ordering (λ-type) peak at 29.5 K. The magnetic structure of this phosphate shows ferromagnetic interactions inside the Ni 2 O 8 dimers, whereas the sublattice of Cu(II) ions presents antiferromagnetic couplings along the y-axis. The change of the sign in the magnetic unit-cell, due to the [1/2, 0, 1/2] propagation vector determines a purely antiferromagnetic structure. - Graphical abstract: Magnetic structure of CuNi2(PO4)2

  15. In-situ observation of the energy dependence of defect production in Cu and Ni

    International Nuclear Information System (INIS)

    King, W.E.; Merkel, K.L.; Baily, A.C.; Haga, K.; Meshii, M.

    1983-01-01

    The damage function, the average number of Frenkel pairs created as a function of lattice atom recoil energy, was investigated in Cu and Ni using in-situ electrical-resistivity damage-rate measurements in the high-voltage electron micrscope (HVEM) at T < 10K. Electron and proton irradiations were performed in-situ on the same polycrystalline specimens using the Argonne National Laboratory HVEM-Ion Beam Interface. Both Ni and Cu exhibit a sharp rise in the damage function above the minimum threshold energy (approx. 18 eV for Cu and approx. 20 eV for Ni) as displacements in the low-threshold energy regions of the threshold energy surface become possible. A plateau is observed for both materials (0.54 Frenkel pairs for Cu and 0.46 Frenkel pairs for Ni) indicating that no further directions become productive until much higher recoil energies. These damage functions show strong deviations from simple theoretical models, such as the Modified Kinchin-Pease damage function. The results are discussed in terms of the mechanisms of defect production that govern the single-displacement regime of the damage function and are compared with results from recent molecular-dynamics simulations

  16. Adsorption of Cu 2+ and Ni 2+ ions from their aqueous solutions ...

    African Journals Online (AJOL)

    The adsorption of Cu2+ and Ni2+ions at room temperature (27°C) onto two types of biomass produced from orange mesocarp namely: untreated orange mesocarp (Me) of 250 μm particle size and xanthated orange mesocarp (XMe) produced from Me of 250 μm particle size were studied. The results obtained showed that ...

  17. Synthesis of CuO-NiO core-shell nanoparticles by homogeneous precipitation method

    International Nuclear Information System (INIS)

    Bayal, Nisha; Jeevanandam, P.

    2012-01-01

    Highlights: ► CuO-NiO core-shell nanoparticles have been synthesized using a simple homogeneous precipitation method for the first time. ► Mechanism of the formation of core-shell nanoparticles has been investigated. ► The synthesis route may be extended for the synthesis of other mixed metal oxide core-shell nanoparticles. - Abstract: Core-shell CuO–NiO mixed metal oxide nanoparticles in which CuO is the core and NiO is the shell have been successfully synthesized using homogeneous precipitation method. This is a simple synthetic method which produces first a layered double hydroxide precursor with core-shell morphology which on calcination at 350 °C yields the mixed metal oxide nanoparticles with the retention of core-shell morphology. The CuO–NiO mixed metal oxide precursor and the core-shell nanoparticles were characterized by powder X-ray diffraction, FT-IR spectroscopy, thermal gravimetric analysis, elemental analysis, scanning electron microscopy, transmission electron microscopy, and diffuse reflectance spectroscopy. The chemical reactivity of the core-shell nanoparticles was tested using catalytic reduction of 4-nitrophenol with NaBH 4 . The possible growth mechanism of the particles with core-shell morphology has also been investigated.

  18. Interfacial reactions in the Sb–Sn/(Cu, Ni) systems: Wetting experiments

    International Nuclear Information System (INIS)

    Novakovic, R.; Lanata, T.; Delsante, S.; Borzone, G.

    2012-01-01

    Interfacial reactions in the Sb–Sn/Cu and Sb–Sn/Ni systems have been investigated by means of wetting experiments. The wetting behaviour of two lead-free alloys, namely, Sb 2.5 Sn 97.5 and Sb 14.5 Sn 85.5 (at.%), in contact with Cu and Ni-substrates has been studied in view of possible applications as high-temperature solders in the electronics industry. The contact angle measurements on Cu and Ni plates were performed by using a sessile drop apparatus. The solder/substrate interface was characterised by the SEM-EDS analyses. -- Highlights: ► Sb–Sn alloys are used as high temperature lead-free solders. ► Sb–Sn alloys have good wetting properties on Cu and Ni substrates. ► Interfacial reactions and products are important for joint properties. ► Interfacial reactions/products data can be used to study the phase diagrams.

  19. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  20. Recovery stress and shape memory stability in Ni-Ti-Cu thin wires at high temperatures

    Czech Academy of Sciences Publication Activity Database

    Molnár, Peter; Van Humbeeck, J.

    2011-01-01

    Roč. 102, č. 11 (2011), s. 1362-1368 ISSN 1862-5282 Institutional research plan: CEZ:AV0Z10100520 Keywords : shape memory alloys * recovery stress * Ni-Ti-Cu * stress relaxation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2011 http://www.ijmr.de/directlink.asp?MK110596

  1. Discontinuous precipitation and ordering in Ni/sub 2/V-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V D; Boyarshinova, T S; Shashkov, O D

    1986-12-01

    Ni-V-Cu system alloys were used to investigate the effect of ordering on over-saturated solid solution decomposition. It was discovered that ordering in the process of grain boundary migration (discontinuous disordering), stimulated changing of continuous precipitation mechanism for discontinuous one.

  2. Discontinuous precipitation and ordering in Ni2V-Cu alloys

    International Nuclear Information System (INIS)

    Sukhanov, V.D; Boyarshinova, T.S.; Shashkov, O.D.

    1986-01-01

    Ni-V-Cu system alloys were used to investigate the effect of ordering on over-saturated solid solution decomposition. It was discovered that ordering in the process of grain boundary migration (discontinuous disordering), stimulated changing of continuous precipitation mechanism for discontinuous one

  3. Potential of Azolla filiculoides in the removal of Ni and Cu from ...

    African Journals Online (AJOL)

    ra

    Heavy metals constitute a serious health risk because they accumulate in soils, water and organisms. One of the methods of ... The aim of this study was to verify the ability of A. filiculoides to fix Ni and Cu from polluted waters. The maximum uptake ..... due to the C–O stretching vibration of ketones, aldehydes and lactones or ...

  4. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    Science.gov (United States)

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  5. Enhanced electrical transport and thermoelectric properties in Ni doped Cu3SbSe4

    Science.gov (United States)

    Kumar, Aparabal; Dhama, P.; Das, Anish; Sarkar, Kalyan Jyoti; Banerji, P.

    2018-05-01

    In this study, we report the enhanced thermoelectric performance of Cu3SbSe4 by Ni doping at Cu site. Cu3-xNixSbSe4 (x = 0, 0.01, 0.03, 0.05) were prepared by melt growth, ball milling followed by spark plasma sintering. Structural characterization, phase analysis and surface morphology were carried out using X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Electrical and thermal properties of all the samples were investigated in the temperature range 300 - 650 K. Decrease in electrical resistivity with Ni doping due to increase in carrier concentration with enhanced Seebeck coefficient via increase in density of state near the Fermi level gives a remarkably high power factor. At the same time, thermal conductivity was found to decrease due to increased carrier-phonon scattering and acoustic phonon scattering. Consequently, a remarkable enhancement in the thermoelectric figure of merit (ZT˜ 0.65) of Cu3-xNixSbSe4 was achieved for x = 0.01 sample. Thus, Ni doping is an effective approach to improve the efficiency of Cu3SbSe4.

  6. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  7. Simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix for production of radioisotope "6"4Cu

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2011-01-01

    The simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix has been carried out as a preliminary study for production of medical radioisotope Cu-64 based on nuclear reaction of "6"4Ni (p,n) "6"4Cu. The nickel target preparation was performed by means of electroplating method using acidic solution of nickel chloride - boric acid mixture and basic solution of nickel sulphate - nickel chloride mixture on a silver - surfaced-target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel target containing both irradiated nickel and radioactive copper, but in the presented work the proton irradiation of nickel target was omitted, while the radioactive copper was originally obtained from neutron irradiation of CuO target. The separation of radioactive copper from the nickel target matrix was based on anion exchange column chromatography in which the radiocopper was conditioned to form anion complex CuCl_4"2"- and retained on the column while the nickel was kept in the form of Ni"2"+ cation and eluted off from the column. The retained radioactive copper was then eluted out the column in the condition of dilute HCl changing back the copper anion complex into Cu"2"+ cation. It was found that the electroplating result from the acidic solution was more satisfied than that from the basic solution. By conditioning the matrix solution at HCl 6 M, the radioactive copper was found in the forms of Cu"2"+ and CuCl_4"2"- while the nickel was totally in the form of Ni"2"+. In the condition of HCl 9 M, the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was found as both Ni"2"+ and NiCl_4"2"-. The best condition of separation was in HCl 8 M in which the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was mostly in the form of Ni"2"+. The retained CuCl_4"2"- was then changed back into Cu_2_+ cation form and eluted out the column by using HCl 0.05 M

  8. Enhancing the Photovoltage of Ni/ n-Si Photoanode for Water Oxidation through a Rapid Thermal Process.

    Science.gov (United States)

    Li, Shengyang; She, Guangwei; Chen, Cheng; Zhang, Shaoyang; Mu, Lixuan; Guo, Xiangxin; Shi, Wensheng

    2018-03-14

    The Ni in the Ni/ n-Si photoanode can not only protect Si from corrosion, but also catalyze the water oxidation reaction. However, the high density of interface states at the Ni/ n-Si interface could pin the Fermi level of silicon, which will lower the Schottky barrier height of the Ni/ n-Si. As a result, a low photovoltage and consequent high onset potential of Ni/ n-Si photoanode for water oxidation were generated. In this study, the interfacial states of the Ni/ n-Si photoanodes were efficiently diminished through a rapid thermal process (RTP). Calculated from the Mott-Schottky plots, the Schottky barrier height of Ni/ n-Si was increased from 0.58 to 0.78 eV after RTP. Under the illumination of 100 mW cm -2 of the Xe lamp, the onset potential of the Ni/ n-Si photoanode for water oxidation was negatively shifted for 150 mV after RTP. Besides, the RTP-treated Ni/ n-Si photoanode exhibited a high stability during the PEC water oxidation of 8 h in 1 M KOH solution.

  9. Anodic dissolution and corrosion of alloy Cu30Ni in chloride solutions

    International Nuclear Information System (INIS)

    Zolotarev, E.I.

    1989-01-01

    The anodic and corrosion behavior of alloy Cu30Ni is studied in a solution of 3 N NaCl + 0.01 N HCl by a radiometric method using gamma isotopes of 58 Co (as a marker for Ni) and 64 Cu in combination with electrochemical measurements. It was established that under stationary conditions there was uniform dissolution of the alloy both during free corrosion and anodic polarization. The authors obtained partial anodic dissolution curves for the components of the alloy. It was shown that the dissolution kinetics differed from the mechanisms controlling dissolution of the corresponding pure metals. During corrosion of the alloy in an oxygen atmosphere a back precipitation of copper on the surface of the alloy was not observed. The characteristics observed in the corrosion-electrochemical behavior of the alloy in concentrated chloride solutions can be explained by the presence of Ni on the surface of the dissolving alloy

  10. Anomalous magnetoresistance in antiferromagnetic polycrystalline materials R2Ni3Si5 (R=rare earth)

    International Nuclear Information System (INIS)

    Mazumdar, C.; Nigam, A.K.; Nagarajan, R.; Gupta, L.C.; Chandra, G.; Padalia, B.D.; Godart, C.; Vijayaraghaven, R.

    1997-01-01

    Magnetoresistance (MR) studies on polycrystalline R 2 Ni 3 Si 5 , (R=Y, rare earth) which order antiferromagnetically at low temperatures, are reported here. MR of the Nd, Sm, and Tb members of the series exhibit positive giant magnetoresistance, largest among polycrystalline materials (85%, 75%, and 58% for Tb 2 Ni 3 Si 5 , Sm 2 Ni 3 Si 5 , and Nd 2 Ni 3 Si 5 , respectively, at 4.4 K in a field of 45 kG). These materials have, to the best of our knowledge, the largest positive GMR reported ever for any bulk polycrystalline compounds. The magnitude of MR does not correlate with the rare earth magnetic moments. We believe that the structure of these materials, which can be considered as a naturally occurring multilayer of wavy planes of rare earth atoms separated by Ni endash Si network, plays a role. The isothermal MR of other members of this series (R=Pr,Dy,Ho) exhibits a maximum and a minimum, below their respective T N close-quote s. We interpret these in terms of a metamagnetic transition and short-range ferromagnetic correlations. The short-range ferromagnetic correlations seem to be dominant in the temperature region just above T N . copyright 1997 American Institute of Physics

  11. Fast diffusion in the intermetallics Ni3Sb and Fe3Si: a neutron scattering study

    International Nuclear Information System (INIS)

    Randl, O.G.

    1994-02-01

    We present the results of neutron scattering experiments designed to elucidate the reason for the extraordinarily fast majority component diffusion in two intermetallic alloys of DO 3 structure, Fe 3 Si and Ni 3 Sb: We have performed diffraction measurements in order to determine the crystal structure and the state of order of both alloys as a function of composition and temperature. The results on Fe 3 Si essentially confirm the classical phase diagram: The alloys of a composition between 16 and 25 at % Si are DO 3 -ordered at room temperature and disorder at high temperatures. The high-temperature phase Ni 3 Sb also crystallizes in the DO 3 structure. Vacancies are created in one Ni sublattice at Sb contents beyond 25 at %. In a second step the diffusion mechanism in Ni 3 Sb has been studied by means of quasielastic neutron scattering. The results are reconcileable with a very simple NN jump model between the two different Ni sublattices. Finally, the lattice dynamics of Fe 3 Si and Ni 3 Sb has been studied by inelastic neutron scattering in dependence of temperature (both alloys) and alloy composition (Fe 3 Si only). The results on Fe 3 Si indicate clearly that phonon enhancement is not the main reason for fast diffusion in this alloy. In Ni 3 Sb no typical signs of phonon-enhanced diffusion have been found either. As a conclusion, fast diffusion in DO 3 intermetallics is explained by extraordinarily high vacancy concentrations (several atomic percent) in the majority component sublattices. (author)

  12. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane

    Science.gov (United States)

    Gao, Doudou; Zhang, Yuhong; Zhou, Liqun; Yang, Kunzhou

    2018-01-01

    The catalysts containing Cu, Ni bi-metallic nanoparticles were successfully synthesized by in-situ reduction of Cu2+ and Ni2+ salts into the highly porous and hydrothermally stable metal-organic framework MIL-101 via a simple liquid impregnation method. When the total amount of loading metal is 3 × 10-4 mol, Cu2Ni1@MIL-101 catalyst shows higher catalytic activity comparing to CuxNiy@MIL-101 with different molar ratio of Cu and Ni (x, y = 0, 0.5, 1.5, 2, 2.5, 3). Cu2Ni1@MIL-101 catalyst has the highest catalytic activity comparing to mono-metallic Cu and Ni counterparts and pure bi-metallic CuNi nanoparticles in hydrolytic dehydrogeneration of ammonia borane (AB) at room temperature. Additionally, in the hydrolysis reaction, the Cu2Ni1@MIL- 101 catalyst possesses excellent catalytic performances, which exhibit highly catalytic activity with turn over frequency (TOF) value of 20.9 mol H2 min-1 Cu mol-1 and a very low activation energy value of 32.2 kJ mol-1. The excellent catalytic activity has been successfully achieved thanks to the strong bi-metallic synergistic effects, uniform distribution of nanoparticles and the bi-functional effects between CuNi nanoparticles and the host of MIL-101. Moreover, the catalyst also displays satisfied durable stability after five cycles for the hydrolytically releasing H2 from AB. The non-noble metal catalysts have broad prospects for commercial applications in the field of hydrogen-stored materials due to the low prices and excellent catalytic activity.

  13. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  14. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  15. Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy

    Science.gov (United States)

    Cai, Yuan-hua; Wang, Cong; Zhang, Ji-shan

    2013-07-01

    Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast Al-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like β/δ-AlFeSi white intermetallics, and Chinese script-like α-AlFeSi compounds. During high temperature homogenization treatment, only harmful needle-like β-AlFeSi phase undergoes fragmentation and spheroidizing at its tips, and the destructive needle-like δ-phase does not show any morphological and size changes. Phase transitions from β-AlFeSi to α-AlFeSi and from δ-AlFeSi to β-AlFeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.

  16. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  17. Precipitation kinetics of Al-1.12 Mg{sub 2}Si-0.35 Si and Al-1.07 Mg{sub 2}Si-0.33 Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Gaffar, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)]. E-mail: mgaafar@aucegypt.edu; Mostafa, M.S. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Zeid, E.F. Abo [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2007-02-21

    The kinetics of hardening precipitates of Al-1.12 wt.% Mg{sub 2}Si-0.35 wt.% Si (excess Si) and Al-1.07 wt.% Mg{sub 2}Si-0.33 wt.% Cu (balanced + Cu) alloys have been investigated by means of differential scanning calorimetry and hardness measurements. The excess Si enhances the precipitation kinetics and improves the strength of the material. On the other hand, however addition of Cu assist formation of the Q' phase which positively changed the alloy strength. The high binding energy between vacancies and solute atoms (Si and Mg) enhances the combination of Si, Mg and vacancies to form Si-Mg-vacancy clusters. These clusters act as nucleation sites for GP-zones. The coexistence of the {beta}'- and Q'-precipitates in the balanced + Cu alloy results in a higher peak age hardening compared to the alloy with Si in excess.

  18. Hydrogen desorption properties of MgH2–Ni–Ni2Si composites prepared by mechanochemical method

    International Nuclear Information System (INIS)

    Shimada, Motoki; Higuchi, Eiji; Inoue, Hiroshi

    2013-01-01

    Highlights: ► The MgH 2 –Ni composite showed fast hydrogen desorption rate at 250 °C. ► The MgH 2 –Ni–Ni 2 Si composite showed fast hydrogen desorption rate at 220 °C. ► Nanocrystalline Mg 2 Ni and Mg 2 Si were formed between Mg and adjacent Ni or Si. ► Ni 2 Si did not form any alloys and work as a catalyst. -- Abstract: To improve hydrogen desorbability of Mg, some composites were prepared from MgH 2 , Ni and Ni 2 Si mixed powders by the mechanochemical method. The MgH 2 –Ni(2 mol%)–Ni 2 Si(1 mol%) composite was slower in hydrogen desorption rate at 250 °C than the MgH 2 –Ni(2 mol%) composite, while the hydrogen desorption rate at 220 °C for the former was faster than that for the latter. The XRD pattern of the MgH 2 –Ni(2 mol%) composite showed that after hydrogen desorption at 400 °C small diffraction peaks assigned to Mg 2 Ni were observed with peaks assigned to Mg. They shifted to smaller angles after hydrogen absorption at 250 °C and come back to the original positions after hydrogen desorption at 250 °C, suggesting reversible hydrogen absorption/desorption of Mg 2 Ni. In contrast, Ni 2 Si was not changed over the whole processes. These results indicated that Ni 2 Si worked as a catalyst for hydrogen desorption, leading to the improvement of desorbability at 220 °C

  19. Derivative thermo analysis of the near eutectic Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-12-01

    Full Text Available For determining of the dependence between cooling Speer, chemical composition and structure of the Al–Si–Cu aluminium cast alloy the thermo-analysis was carried out, using the UMSA device (Universal Metallurgical Simulator and Analyzer, next the optical and electron scanning microscopy was used for investigation of the structure, phase and chemical composition of the AC-AlSi7Cu3Mg grade Al cast alloy also using the EDS microanalysis as well the EBSD technique.

  20. Microstructure and mechanical properties of AC AlSi9CuX alloys

    OpenAIRE

    L.A. Dobrzański; R. Maniara; M. Krupiński; J.H. Sokołowski

    2007-01-01

    Purpose: In order to gain a better understanding of how to control the as-cast microstructure, it is important to understand the evaluation of microstructure during solidification and understanding how influence the changes of chemical concentration on this microstructure and mechanical properties. In this research, the effect of Cu content on the microstructure and mechanical properties of AC AlSi9CuX series alloys has been investigated.Design/methodology/approach: The experimental alloy ...

  1. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg) alloys

    OpenAIRE

    M. Kaczorowski; A. Krzyńska

    2007-01-01

    The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg) type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening ...

  2. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  3. The evaluation of Young's modulus and residual stress of Cu films by NiFe/Cu bilayer film microbridge tests

    International Nuclear Information System (INIS)

    Zhou Zhimin; Zhou Yong; Cao Ying; Ding Wen; Mao Haiping

    2008-01-01

    This paper proposes a method to estimate the thickness limit for single-layer microbridge tests and also the thickness limit of one film on another film with known thickness for bilayer microbridge tests. To evaluate the mechanical properties of the Cu film, which could not be measured by single-layer microbridge tests, the NiFe single-layer film and NiFe/Cu bilayer film on silicon substrate are fabricated onto the microbridge by the MEMS technique. A load–deflection experiment is conducted upon the ceramic shaft adhered to the microbridge center by means of the XP nanoindenter system. From single-layer microbridge theory, Young's modulus and the residual stress of the NiFe film are deduced to be 192.74 ± 8.10 GPa and 287.75 ± 16.18 MPa, respectively. The data are introduced into bilayer microbridge theory and Young's modulus and the residual stress of the copper film are calculated to be 118.71 ± 6.54 GPa and 41.34 ± 4.42 MPa, respectively. The experimental results correspond well with those of nanoindentation

  4. CuNiO nanoparticles assembled on graphene as an effective platform for enzyme-free glucose sensing

    International Nuclear Information System (INIS)

    Zhang, Xiaohui; Liao, Qingliang; Liu, Shuo; Xu, Wei; Liu, Yichong; Zhang, Yue

    2015-01-01

    Highlights: • Hydrothermal CuNiO nanoparticles assembled on CVD synthesized graphene. • CuNiO–graphene nanocomposite was applied to construct nonenzymatic glucose sensor. • Wide linear range up to 16 mM, good selectivity and stability were achieved. - Abstract: We utilized CuNiO nanoparticles modified graphene sheets (CuNiO–graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO–graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9–16 mM) and high sensitivity (225.75 μA mM −1 cm −2 and 32.44 μA mM −1 cm −2 , respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense

  5. Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process

    Science.gov (United States)

    Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya

    2017-06-01

    The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).

  6. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    International Nuclear Information System (INIS)

    Guo, M.X.; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-01-01

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  7. Influence of copper content on microstructure development of AlSi9Cu3 alloy

    Directory of Open Access Journals (Sweden)

    Brodarac Zovko Z.

    2014-01-01

    Full Text Available Microstructure development and possible interaction of present elements have been determined in charge material of EN AlSi9Cu3 quality. Literature review enables prediction of solidification sequence. Modelling of equilibrium phase diagram for examined chemical composition has been performed, which enables determination of equilibrium solidification sequence. Microstructural investigation indicated distribution and morphology of particular phase. Metallographic analysis tools enable exact determination of microstructural constituents: matrix αAl, eutectic αAl+βSi, iron base intermetallic phase - Al5FeSi, Alx(Fe,MnyCuuSiw and/or Alx(Fe,MnyMgzCuuSiw and copper base phases in ternary eutectic morphology Al-Al2Cu-Si and in complex intermetallic ramified morphology Alx(Fe,MnyMgzSiuCuw. Microstructure development examination reveals potential differences due to copper content which is prerequisite for high values of final mechanical, physical and technological properties of cast products.

  8. Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure

    Science.gov (United States)

    Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector

    2015-06-01

    Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up

  9. Laser-induced Ni(Pt) germanosilicide formation through a self-limiting melting phenomenon on Si1-xGex/Si heterostructure

    International Nuclear Information System (INIS)

    Setiawan, Y.; Lee, P. S.; Pey, K. L.; Wang, X. C.; Lim, G. C.; Tan, B. L.

    2007-01-01

    Laser-induced Ni(Pt) germanosilicide formation on Si 1-x Ge x /Si substrate has resulted in the formation of smooth Ni(Pt) germanosilicide/Si interface with minimum interface roughness which is preferred as a contact material. A confined (self-limiting) melting phenomenon occurred during the laser-induced silicidation process at laser fluence of 0.4 J cm -2 (just at the melting threshold of the sample). This phenomenon is caused by significant differences in material properties of Si 1-x Ge x alloy and Si substrates. Formation of highly textured [Ni 1-v (Pt) v ](Si 1-y Ge y ) phase was detected in the sample after 20-pulsed laser thermal annealing at 0.4 J cm -2 . The formation mechanism of the Ni(Pt) monogermanosilicide is discussed

  10. Electrochemical behavior of low phosphorus electroless Ni-P-Si3N4 composite coatings

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Ezhil Selvi, V.; Rajam, K.S.

    2010-01-01

    In the present investigation the electroless Ni-P-Si 3 N 4 composite coatings were prepared by using a low phosphorus bath containing submicron size silicon nitride particles. Plain Ni-P deposits were also prepared for comparison. The phosphorus contents present in electroless plain Ni-P and Ni-P-Si 3 N 4 coatings are 3.7 and 3.4 wt.%, respectively. Scanning electron microscope (SEM) images obtained for composite coatings (cross-sections) showed that the second phase particles are uniformly distributed throughout the thickness of the deposits. It was found that nodularity increased with particle codeposition in Ni-P matrix. To find out the electrochemical behavior of plain Ni-P and composite coatings, potentiodynamic polarization and electrochemical impedance (EIS) studies were carried out in 3.5 wt.% sodium chloride solution in non-deaerated condition. Second phase particle incorporation in Ni-P matrix indicated a marginal decrease in corrosion current density compared to the plain Ni-P deposits. This was further confirmed by EIS studies and SEM analysis of the corroded samples.

  11. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  12. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  13. Thermophysical properties of a highly superheated and undercooled Ni-Si alloy melt

    Science.gov (United States)

    Wang, H. P.; Cao, C. D.; Wei, B.

    2004-05-01

    The surface tension of superheated and undercooled liquid Ni-5 wt % Si alloy was measured by an electromagnetic oscillating drop method over a wide temperature range from 1417 to 1994 K. The maximum undercooling of 206 K (0.13TL) was achieved. The surface tension of liquid Ni-5 wt % Si alloy is 1.697 N m-1 at the liquidus temperature 1623 K, and its temperature coefficient is -3.97×10-4 N m-1 K-1. On the basis of the experimental data of surface tension, the other thermophysical properties such as the viscosity, the solute diffusion coefficient, and the density of liquid Ni-5 wt % Si alloy were also derived.

  14. Synthesis and microwave absorption enhancement of Fe-doped NiO@SiO2@graphene nanocomposites

    International Nuclear Information System (INIS)

    Wang, Lei; Huang, Ying; Ding, Xiao; Liu, Panbo; Zong, Meng; Wang, Yan

    2013-01-01

    Highlights: • Fe-doped NiO@SiO 2 @graphene composites have excellent microwave performance. • The reflection loss of Fe doped NiO@SiO 2 @graphene was below −10 dB in 7–11 GHz. • The maximum absorption of Fe-doped NiO@SiO 2 @graphene was −51.2 dB at 8.6 GHz. -- Abstract: Fe-doped NiO@SiO 2 @graphene nanocomposites have been successfully fabricated for the first time, in which Fe-doped NiO nanoparticles are about 3 nm in diameter. In order to measure their electromagnetic properties, Fe-doped NiO@SiO 2 @graphene (25 wt%) wax composites were then prepared. The experimental results show that Fe-doped NiO@SiO 2 @graphene nanocomposites exhibit significantly enhanced microwave absorption performance in terms of both the maximum reflection loss value and the absorption bandwidth in comparison with NiO@SiO 2 @graphene. The maximum reflection loss of Fe-doped NiO@SiO 2 @graphene nanocomposites can reach −51.2 dB at 8.6 GHz with a thickness of 4 mm, and the absorption bandwidth with the reflection loss below −10 dB is 4 GHz (from 7 to 11 GHz). Therefore, this kind of nanocomposites may have the potential as high-efficient absorbers for microwave absorption applications

  15. Microstructures Evolution and Micromechanics Features of Ni-Cr-Si Coatings Deposited on Copper by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Peilei Zhang

    2018-05-01

    Full Text Available Three Ni-Cr-Si coatings were synthesized on the surface of copper by laser cladding. The microstructures of the coatings were characterized by optical microscopy (OM, X-ray diffraction (XRD, and scanning electron microscopy (SEM with an energy dispersive spectrometer (EDS. According to the analysis results of phase compositions, Gibbs free energy change and microstructures, the phases of three coatings appeared were Cr3Si+γ-Ni+Cuss (Coating 1, Ni-26Cr-29Si, Cr6Ni16Si7+Ni2Si+Cuss (Coating 2, Ni-10Cr-30Si and Cr3Ni5Si2+Cr2Ni3+Cuss (Coating 3, Ni-29Cr-16Si. The crystal growth in the solidification process was analyzed with a modified model, which is a combination of Kurz-Giovanola-Trivedi (KGT and Lipton-Kurz-Trivedi (LKT models. The dendrite tip undercooling in Coating 2 was higher than those of Coating 1 and Coating 3. Well-developed dendrites were found in Coating 2. A modification of Hunt’s model was adopted to describe the morphological differences in the three coatings. The results show that Coating 1 was in the equiaxed dendrite region, while Coatings 2 and 3 were in the columnar dendrite region. The average friction coefficients of the three coatings were 0.45, 0.5 and 0.4, respectively. Obvious plastic deformation could be found in the subsurface zone of Coatings 2 and 3.

  16. Novel La(Fe,Si){sub 13}/Cu composites for magnetic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P. [Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Cohen, Lesley F. [Department of Physics, Imperial College London, London, SW7 2AZ (United Kingdom)

    2012-11-15

    An approach to engineering magnetic refrigerant materials with defined thermal transport properties is demonstrated using the example of high magnetocaloric performance La-Fe-Si alloys. A tunability of up to 300% of the thermal conductivity can be achieved in composites consisting of a La(Fe,Si){sub 13} compound and Cu prepared by electroless copper plating without compromising the magnitude of the magnetocaloric effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Electrical resistivity of nanocrystals in Fe-Al-Ga-P-B-Si-Cu alloy

    International Nuclear Information System (INIS)

    Pekala, K.; Jaskiewicz, P.; Nowinski, J.L.; Pekala, M.

    2003-01-01

    In new supercooled Fe 74 Al 4 Ga 2 P 11 B 4 Si 4 Cu 1 alloy the 10 nm size α-Fe(Si) nanocrystals are precipitated. Thermal stability is analyzed by the electron transport and magnetization measurements. Temperature variation of electrical resistivity of nanocrystals is determined and discussed for alloys with different initial crystalline fraction. Possible mechanism inhibiting the grain growth is presented

  18. Kinetics of acetic acid synthesis from ethanol over a Cu/SiO2 catalyst

    DEFF Research Database (Denmark)

    Voss, Bodil; Schjødt, Niels Christian; Grunwaldt, Jan-Dierk

    2011-01-01

    The dehydrogenation of ethanol via acetaldehyde for the synthesis of acetic acid over a Cu based catalyst in a new process is reported. Specifically, we have studied a Cu on SiO2 catalyst which has shown very high selectivity to acetic acid via acetaldehyde compared to competing condensation routes....... In light of this, an observed intrinsic activity difference between whole catalyst pellets and crushed pellets may be explained by the Cu crystal size and growth rate being functions of the catalyst particle size and time....

  19. Magnetic order in Pu2M3Si5 (M = Co, Ni)

    International Nuclear Information System (INIS)

    Bauer, E D; Tobash, P H; Mitchell, J N; Kennison, J A; Ronning, F; Scott, B L; Thompson, J D

    2011-01-01

    The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of two new plutonium compounds Pu 2 M 3 Si 5 (M = Co, Ni) are reported. Pu 2 Ni 3 Si 5 crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, which can be considered a variant of the BaAl 4 tetragonal structure, while Pu 2 Co 3 Si 5 adopts the closely related monoclinic Lu 2 Co 3 Si 5 type. Magnetic order is observed in both compounds, with Pu 2 Ni 3 Si 5 ordering ferromagnetically at T C = 65 K then undergoing a transition into an antiferromagnetic state below T N = 35 K. Two successive magnetic transitions are also observed at T mag1 = 38 K and T mag2 = 5 K in Pu 2 Co 3 Si 5 . Specific heat measurements reveal that these two materials have a moderately enhanced Sommerfeld coefficient γ ∼ 100 mJ/mol Pu K 2 in the magnetic state with comparable RKKY and Kondo energy scales.

  20. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  1. Interplay between interface structure and magnetism in NiFe/Cu/Ni-based pseudo-spin valves

    Science.gov (United States)

    Loving, Melissa G.; Ambrose, Thomas F.; Ermer, Henry; Miller, Don; Naaman, Ofer

    2018-05-01

    Magnetic pseudo spin valves (PSVs) with superconducting Nb electrodes, have been leading candidates for an energy-efficient memory solution compatible with cryogenic operation of ultra-low power superconducting logic. Integration of these PSV Josephson junctions in a standard multi-layer Nb process requires growing high-quality thin magnetic films on a thick Nb bottom electrode (i.e. ≥1.5kÅ, to achieve bulk superconducting properties). However, as deposited, 1.5kÅ Nb exhibits a rough surface with a characteristic rice grain morphology, which severely degrades the switching properties of subsequently deposited PSVs. Therefore, in order to achieve coherent switching throughout a PSV, the Nb interface must be modified. Here, we demonstrate that the Nb surface morphology and PSV crystallinity can be altered with the incorporation of separate 50Å Cu or 100Å Al/50Å Cu non-magnetic seed layers, and demonstrate their impact on the magnetic switching of a 15Å Ni80Fe20/50Å Cu/20Å Ni PSV, at both room temperature and at 10 K. Most notably, these results show that the incorporation of an Al seed layer leads to an improved face centered cubic templating through the bulk of the PSV, and ultimately to superior magnetic switching.

  2. Microdiffraction and CBED crystal structure determination of the Si-rich phase in laser-clad Ni alloy FP-5

    International Nuclear Information System (INIS)

    Liu, Y.; Mazumder, J.

    1995-01-01

    This paper demonstrates an example of using kinematical microdiffraction to solve an unknown Si-rich phase of micrometer size in a laser-clad Ni alloy FP-5 on Al alloy AA333. The composition of the Si-rich phase obtained by energy-dispersice X-ray spectroscopy (EDX) analysis in a transmission electron microscope is approximately 0.7wt%Al, 71wt%Si, 3.3wt%Cr, 0.8wt%Fe, 21wt%Ni and 2.8wt%Cu. The point group was identified by the standard convergent-beam symmetry analysis to be P6 3 /mmc (No. 194). Structure analysies by microdiffraction (MD) indicates that the Si-rich phase is a close-packed structure.The intensity distribution in the microdiffraction pattern of the [1120] zone axis taken with a very thin area showed a close match with kinematical calculation. A close-packed-structure model specified as ABCACB was deduced from the [1120] zone axis MD pattern. The randomly distributed atoms of all the elements in the unit cell are at 2/3, 1/3-1/12; 1/3, 1/12; 0, 0, 3/12, 1/3, 2/3, 5/12, 2/3, 1/3, 7/12; 0,0, 9/12. The model was checked by comparison with a simulated diffraction pattern map and with a simulated [0001] zone-axis CBED pattern, which showed complete agreement with the proposed model. (orig.)

  3. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  4. Microstructures and mechanical properties of directionally solidified Ni-25%Si full lamellar in situ composites

    International Nuclear Information System (INIS)

    Zhang, Binggang; Li, Xiaopeng; Wang, Ting; Liu, Zheng

    2016-01-01

    Directional solidification experiments have been performed on Ni-25 at% Si alloy using electron beam floating zone method. A fully regular eutectic microstructures consisting of Ni, γ-Ni 31 Si 12 and β 1 -Ni 3 Si have been obtained. The influences of the directional solidification rate on the microstructures and properties of the full lamellar structures have been studied. The results show that the relationship between the mean interphase spacing (λ) and withdrawal rate (v) meets λ=29.9v −0.65 . The hardness increases with the increasing of growth rate (v) and decreasing of the interlamellar spacing (λ) which meets the relationship of H V =445.2v 0.14 and H V =910λ −0.21 . The maximum compressive strength, 2576 MPa, for DS samples is obtained by 10 mm/h. The average fracture toughness value found for 5 mm/h, 7 mm/h, 10 mm/h is 28.3 MPa m 1/2 , 29.1 MPa m 1/2 and 35.9 MPa m 1/2 , respectively. The crack bridging and crack deflection/interface debonding are the main toughening mechanism of Ni-25 at% Si with full lamellar structures.

  5. Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Chemical, Materials and Biomolecular Engineering, 191 Auditorium Road, University of Connecticut, Storrs 06269, CT (United States)], E-mail: jbasu@engr.uconn.edu; Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ranganathan, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2008-10-06

    Miedema's approach has been useful in determining the glass forming composition range for a particular alloy system. The concept of mixing enthalpy and mismatch entropy can be used in order to quantify Inoue's criteria of bulk metallic glass formation. In the present study, glass forming composition range has been determined for different binary and ternary (Zr, Ti, Hf)-(Cu, Ni) alloys based on the mixing enthalpy and mismatch entropy calculations. Though copper and nickel appear next to each other in the periodic table, the glass forming ability of the copper and nickel bearing alloys is different. Thermodynamic analysis reveals that the glass forming behaviour of Zr and Hf is similar, whereas it is different from that of Ti. The smaller atomic size of Ti and the difference in the heat of mixing of Ti, Zr, Hf with Cu and Ni leads to the observed changes in the glass forming behaviour. Enthalpy contour plots can be used to distinguish the glass forming compositions on the basis of the increasing negative enthalpy of the composition. This method reveals the high glass forming ability of binary Zr-Cu, Hf-Cu, Hf-Ni systems over a narrow composition range.

  6. Effects of Cu intercalation on the graphene/Ni(111) surface: density-functional calculations

    International Nuclear Information System (INIS)

    Kwon, Se Gab; Kang, Myung Ho

    2012-01-01

    The Cu-intercalated graphene/Ni(111) surface has been studied by using density-functional theory calculations. We find that (1) the intercalation-induced decoupling between graphene and the Ni(111) substrate begins sharply at a Cu coverage of about 0.75 ML, (2) at the optimal Cu coverage of 1 ML, graphene recovers an almost ideal Dirac-cone band structure with no band gap, and (3) the Dirac point is located at 0.17 eV below the Fermi level, indicating a small charge transfer from the substrate. Cu thus plays essentially the same role as Au in realizing quasi-free-standing graphene by intercalation. Our charge character analysis shows that the Dirac-cone bands near the Fermi level reveal a weakening of their π character when crossing the Ni d bands, suggesting that the resulting low Dirac-cone intensity could possibly be the origin of the recent photoemission report of a relatively large band gap of 0.18 eV.

  7. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    Science.gov (United States)

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  8. Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongzhen [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Wang, Anding; Chang, Chuntao [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Zhenhai District, Ningbo, Zhejiang 315201 (China); Wang, Yanguo [Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 (China); Dong, Bangshao [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Zhou, Shaoxiong, E-mail: sxzhou@atmcn.com [China Iron and Steel Research Institute Group, Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2014-10-25

    Highlights: • Thermal stability of the FeSiBPNbCu alloys is strongly dependent on the Fe content. • The FeSiBPNbCu alloys with high Fe content exhibit good soft magnetic properties. • The coexistence of Cu, P and Nb leads to the excellent soft magnetic properties. - Abstract: A series of [Fe{sub 0.76+x}(Si{sub 0.4}B{sub 0.4}P{sub 0.2}){sub 0.24−x}]{sub 98.25}Nb{sub 1}Cu{sub 0.75} (x = 0–0.08) nanocrystalline soft-magnetic alloys with high saturation magnetization were synthesized by adjusting Fe content and improving the crystallization behavior, soft-magnetic properties and microstructure. It is found that the temperature interval between the two crystallization peaks is significantly enlarged from 50 to 180 °C when the Fe content of the alloys increases from x = 0 to x = 0.08, which greatly expands the optimum annealing temperature range. The alloys with higher Fe content are prone to form more uniform nanocomposite microstructure with better thermal stability and soft magnetic properties. The Fe-rich FeSiBPNbCu nanocrystalline alloys with x = 0.08 exhibit excellent soft-magnetic properties, including the high saturation magnetic flux density of up to 1.74 T, low coercivity of about 3.3 A/m and high effective permeability of more than 2.2 × 10{sup 4} at 1 kHz under a field of 1 A/m. The combination of excellent soft-magnetic properties, low cost and good productivity makes the FeSiBPNbCu alloys to be a kind of promising soft-magnetic materials for electrical and electronic industry applications.

  9. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance

    Science.gov (United States)

    Li, Ruiqian; Hou, Yuanyuan; Liang, Jun

    2016-03-01

    Electro-codeposition of nano-sized SiO2 particles into the metal matrix in aqueous solution is generally difficult. In this paper, the nano-sized SiO2 particles were successfully codeposited in the Ni matrix from a choline chloride (ChCl)/ethylene glycol (EG) based deep eutectic solvent (DES) by pulse electro-codeposition. The effects of nano-sized SiO2 particles on electrochemical behaviour of Ni(II) were investigated. The microstructure, composition and corrosion resistance of pure Ni and Ni-SiO2 nanocomposite coatings were explored. Results showed that the SiO2 nanoparticles exhibited excellent dispersion stability in ChCl:2EG DES without any stabilizing additives and the presence of SiO2 nanoparticles have significant effects on the nucleation mechanism of Ni. The maximum content of SiO2 nanoparticles in composite coatings can achieve 4.69 wt.%, which closes to the level of co-deposition micro-sized SiO2 particles from aqueous solution. The Ni-SiO2 nanocomposite coatings exhibit much better corrosion resistance than pure Ni coating, and the corrosion resistance performance increases with increasing SiO2 content in the composite coatings.

  10. Optical metrology of Ni and NiSi thin films used in the self-aligned silicidation process

    International Nuclear Information System (INIS)

    Kamineni, V. K.; Bersch, E. J.; Diebold, A. C.; Raymond, M.; Doris, B. B.

    2010-01-01

    The thickness-dependent optical properties of nickel metal and nickel monosilicide (NiSi) thin films, used for self-aligned silicidation process, were characterized using spectroscopic ellipsometry. The thickness-dependent complex dielectric function of nickel metal films is shown to be correlated with the change in Drude free electron relaxation time. The change in relaxation time can be traced to the change in grain boundary (GB) reflection coefficient and grain size. A resistivity based model was used as the complementary method to the thickness-dependent optical model to trace the change in GB reflection coefficient and grain size. After silicidation, the complex dielectric function of NiSi films exhibit non-Drude behavior due to superimposition of interband absorptions arising at lower frequencies. The Optical models of the complete film stack were refined using x-ray photoelectron spectroscopy, Rutherford backscattered spectroscopy, and x-ray reflectivity (XRR).

  11. Preparation and characterization of monel (70% Ni-30% Cu) metallic filters; Preparacao e caracterizacao de filtro metalico monel (70% Ni-30% Cu)

    Energy Technology Data Exchange (ETDEWEB)

    Camargo Lavos, I de

    1994-12-31

    This work investigates a process for the fabrication and characterization of monel (Ni-Cu) filters. The powder consolidation was made by vibration or by pressing at various pressures (200, 300 e 400 MPa). The sintering was carried out at 1100{sup 0} C during 1 hour under H{sub 2} atmosphere. The filter characterization was performed by measuring its density, porosity, filtering capacity and permeability. It was obtained a correlation between the processing variables (consolidation and sintering), including powder properties, and the filters characteristics. (author). 59 refs, 41 figs, 7 tabs.

  12. The Janus effect on superhydrophilic Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles for oil/water separation

    Science.gov (United States)

    Luo, Zhi-Yong; Lyu, Shu-Shen; Fu, Yuan-Xiang; Heng, Yi; Mo, Dong-Chuan

    2017-07-01

    Janus effect has been studied for emerging materials like Janus membranes, Janus nanoparticles, etc., and the applications including fog collection, oil/water separation, CO2 removal and stabilization of multiphasic mixtures. However, the Janus effect on oil/water separation is still unclear. Herein, Janus Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles is synthesized via selective electrodeposition, in which we keep one side of Cu mesh (Janus A) to be superhydrophilic, while manipulate the wettability of another side (Janus B) from hydrophobic to superhydrophilic. Experimental results indicate that Cu mesh with both-side superhydrophilic shows the superior oil/water separation performance (separation efficiency >99.5%), which is mainly due to its higher water capture percentage as well as larger oil intrusion pressure. Further, we demonstrate the orientation of Janus membranes for oil/water separation, and summarize that the wettability of the upper surface plays a more important role than the lower surface to achieve remarkable performance. Our work provides a clear insight of Janus effect on oil/water separation, it is significative to design high-performance membranes for oil/water separation and many other applications.

  13. Preparation and Optoelectrical Properties of p-CuO/n-Si Heterojunction by a Simple Sol-Gel Method

    Science.gov (United States)

    He, Bo; Xu, Jing; Ning, Huanpo; Zhao, Lei; Xing, Huaizhong; Chang, Chien-Cheng; Qin, Yuming; Zhang, Lei

    The Cuprous oxide (CuO) thin film was prepared on texturized Si wafer by a simple sol-gel method to fabricate p-CuO/n-Si heterojunction photoelectric device. The novel sol-gel method is very cheap and convenient. The structural, optical and electrical properties of the CuO film were studied by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometer and Hall effect measurement. A good nonlinear rectifying behavior is obtained for the p-CuO/n-Si heterojunction. Under reverse bias, good photoelectric behavior is obtained.

  14. Structure change in 25 Cr - 20 Ni steels as a function of their Cr, Ni, Si and W content

    International Nuclear Information System (INIS)

    Gribaudo, L.M.; Durand, F.; Durand-Charre, M.

    1983-01-01

    The influence of varying the Cr, Ni, Si and W concentrations on the type and composition of the carbides of solidification and on the phase shift temperature is studied with 18 alloys of composition close to stainless steel-25-20 (AISI 310) composition. Experimental techniques used are differential thermal analysis, microprobe and scanning electron microscope. Crystallization is interpreted with the equilibrium diagram Ni-Cr-C. The formation of the interdendritic σ phase for a chromium rich alloys is interpreted with the phase equilibrium diagram of Fe-Ni-Cr-C. Mechanical properties and corrosion resistance are dependent on the morphology of the carbides M 7 C 3 and M 23 C 6 [fr

  15. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  16. Evaluaciones calorimétricas de la precipitación en aleaciones Cu-Co-Si, ricas en Cu

    Directory of Open Access Journals (Sweden)

    Donoso, Eduardo

    2001-08-01

    Full Text Available The precipitation process of cobalt and silicon atoms from supersaturated solid solutions of Cu-Co-Si for two compositions was studied by differential scanning calorimetry (DSC. Calorimetric traces analysis showed the presence of two overlapping exothermic reactions (stages 1 and 2, which can are attributed to two precipitation processes. First stage correspond to the preceding formation of a cobalt precipitate, while the second stage correspond to the formation of stoichiometric CO2Si composition which takes place by silicon diffusion to the first precipitate. Heat contents during the stages 1 and 2 are proportional to precipitates volume fractions. Activation energies of both precipitates, calculated from the Kissinger method, are consistent with those corresponding to diffussion of Co in Cu and Si in Cu. Both processes can be decribed by the Johnson-Mehl Avrami (JMA equation. Values of n are compatible with precipitate nucleation from the solid solution (stage 1 and with growth of paticles from preexisting Co precipitates. Furthermore,, the kinetic of the concentration decay of Co and Si in the matrix was estimated as function of the transformated fraction for each thermal event and from their respective volume fractions.

    Mediante calorimetría diferencial de barrido (DSC se estudió el proceso de precipitación de átomos de cobalto y silicio a partir de dos soluciones sólidas supersaturadas de Cu-Co- Si. El análisis de las trazas calorimétricas muestra la presencia de dos reacciones exotérmicas traslapadas (etapas 1 y 2, que se interpretan como la formación de dos tipos de precipitados. La primera etapa corresponde a la formación precursora de un precipitado de cobalto, en tanto que la etapa 2 corresponde a la formación de un precipitado de composición estequiométrica CO2Si producido por difusión de silicio hacia la primera partícula. Los calores liberados durante las etapas 1 y 2 son proporcionales a

  17. Switching properties of SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3 capacitor grown on Cu-coated Si substrate measured at various temperatures

    Science.gov (United States)

    Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.

    2014-09-01

    SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.

  18. The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.

    Science.gov (United States)

    Polat, B Deniz; Keles, Ozgul

    2015-12-01

    The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.

  19. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    Science.gov (United States)

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  20. Effects of MeV Si ions bombardment on the thermoelectric generator from SiO{sub 2}/SiO{sub 2} + Cu and SiO{sub 2}/SiO{sub 2} + Au nanolayered multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Budak, S., E-mail: satilmis.budak@aamu.edu [Department of Electrical Engineering, Alabama A and M University, Normal, AL (United States); Chacha, J., E-mail: chacha_john79@hotmail.com [Department of Electrical Engineering, Alabama A and M University, Normal, AL (United States); Smith, C., E-mail: cydale@cim.aamu.edu [Center for Irradiation of Materials, Alabama A and M University, Normal, AL (United States); Department of Physics, Alabama A and M University, Normal, AL (United States); Pugh, M., E-mail: marcuspughp@yahoo.com [Department of Electrical Engineering, Alabama A and M University, Normal, AL (United States); Colon, T. [Department of Mechanical Engineering, Alabama A and M University, Normal, AL (United States); Heidary, K., E-mail: kaveh.heidary@aamu.edu [Department of Electrical Engineering, Alabama A and M University, Normal, AL (United States); Johnson, R.B., E-mail: barry@w4wb.com [Department of Physics, Alabama A and M University, Normal, AL (United States); Ila, D., E-mail: ila@cim.aamu.edu [Center for Irradiation of Materials, Alabama A and M University, Normal, AL (United States); Department of Physics, Alabama A and M University, Normal, AL (United States)

    2011-12-15

    The defects and disorder in the thin films caused by MeV ions bombardment and the grain boundaries of these nanoscale clusters increase phonon scattering and increase the chance of an inelastic interaction and phonon annihilation. We prepared the thermoelectric generator devices from 100 alternating layers of SiO{sub 2}/SiO{sub 2} + Cu multi-nano layered superlattice films at the total thickness of 382 nm and 50 alternating layers of SiO{sub 2}/SiO{sub 2} + Au multi-nano layered superlattice films at the total thickness of 147 nm using the physical vapor deposition (PVD). Rutherford Backscattering Spectrometry (RBS) and RUMP simulation have been used to determine the stoichiometry of the elements of SiO{sub 2}, Cu and Au in the multilayer films and the thickness of the grown multi-layer films. The 5 MeV Si ions bombardments have been performed using the AAMU-Center for Irradiation of Materials (CIM) Pelletron ion beam accelerator to make quantum (nano) dots and/or quantum (quantum) clusters in the multilayered superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardments we have measured Seebeck coefficient, cross-plane electrical conductivity, and thermal conductivity in the cross-plane geometry for different fluences.

  1. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  2. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    International Nuclear Information System (INIS)

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  3. Efficient strategy to Cu/Si catalyst into vertically aligned carbon ...

    Indian Academy of Sciences (India)

    The catalytic material (Cu/Si) playeda vital role in attaining bs-VACNTs, which is ... Using this catalytic support, we have achieved the tip growth bs-VACNTs at low ... Department of Nanoscience, School of Basic Sciences, Vels University, ...

  4. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.

    Science.gov (United States)

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2016-12-01

    Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.

  5. The direct transformation of ethanol to ethyl acetate over Cu/SiO2 ...

    Indian Academy of Sciences (India)

    Cu/SiO2 catalysts that contain copper phyllosilicate, were successfully ... of attention because both components are simple, non- .... bate on a Micromeritics ASAP 2010 system at liquid- ... The reactor was. Page 3. Direct transformation of ethanol to ethyl acetate. 1015 connected to gas chromatography using a six-port high.

  6. A Study of Thin Film Resistors Prepared Using Ni-Cr-Si-Al-Ta High Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Ruei-Cheng Lin

    2015-01-01

    Full Text Available Ni-Cr-Si-Al-Ta resistive thin films were prepared on glass and Al2O3 substrates by DC magnetron cosputtering from targets of Ni0.35-Cr0.25-Si0.2-Al0.2 casting alloy and Ta metal. Electrical properties and microstructures of Ni-Cr-Si-Al-Ta films under different sputtering powers and annealing temperatures were investigated. The phase evolution, microstructure, and composition of Ni-Cr-Si-Al-Ta films were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and Auger electron spectroscopy (AES. When the annealing temperature was set to 300°C, the Ni-Cr-Si-Al-Ta films with an amorphous structure were observed. When the annealing temperature was at 500°C, the Ni-Cr-Si-Al-Ta films crystallized into Al0.9Ni4.22, Cr2Ta, and Ta5Si3 phases. The Ni-Cr-Si-Al-Ta films deposited at 100 W and annealed at 300°C which exhibited the higher resistivity 2215 μΩ-cm with −10 ppm/°C of temperature coefficient of resistance (TCR.

  7. Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)

    Science.gov (United States)

    Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.

    2018-04-01

    We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.

  8. Thermal dependence of coercivity in granular CoNiCu glass coated microwires

    International Nuclear Information System (INIS)

    Zhukova, V.; Zhukov, A.; Palomares, F.J.; Pigazo, F.; Cebollada, F.; Del Val, J.J.; Garcia, C.; Gonzalez, J.M.; Gonzalez, J.

    2007-01-01

    Cu 80 Co 19 Ni 1 glass covered microwire samples with different geometric ratio, 0.13≤ρ≤0.5, has been investigated by using X-ray diffraction (XRD) and VSM technique. Our results show (i) the presence of FCC Co crystallites dispersed on the Cu matrix, (ii) the observation in all the samples of the coercivity, at room temperature, of the order of kA, exhibiting a maximum and decreased down to a value of the order of the room temperature one at 25 K. These results are discussed in terms of a distribution of superparamagnetic Co nanoparticles

  9. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    Science.gov (United States)

    Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-01

    We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.

  10. Effect of Nb on glass forming ability and plasticity of (Ti-Cu)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    A Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 bulk metallic glass has been developed by Nb partial substitution for Zr in Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 alloy. The glass forming ability Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy has been investigated using differential scanning calorimetry and X-ray diffractometry. Partial Nb substitutes for Zr promote the glass forming ability. Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG with diameter of 3 mm can be fabricated by Cu-mold injection casting method. The glass forming ability of Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy is enhanced by stabilizing the undercooled liquid against crystallization. The plastic strain up to 2.5% was obtained for Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG compared to 0.15% for Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 BMG, which demonstrates that small amount of Nb addition can have a dramatic effect on plasticity enhancement in Ti-Cu-based BMG. The intersection and branching of the shear bands are observed. The plastic strain of the Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG can be improved by the generation of nanocrystalline particles, which lead to multiple shear bands.

  11. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy

    Science.gov (United States)

    Li, Yukun; Du, Xiaodong; Zhang, Ya; Zhang, Zhen; Fu, Junwei; Zhou, Shi'ang; Wu, Yucheng

    2018-02-01

    In the present study, the effects of Mg, Cu, Sc and Zr combined additions on the microstructure and mechanical properties of hypoeutectic Al-Si cast alloy were systematically investigated. Characterization techniques such as optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron back-scatter diffraction (EBSD), atomic force microscopy (AFM), transmission electron microscope (TEM), Brinell hardness tester and universal testing machine were employed to analyze the microstructure and mechanical properties. The results showed that Sc served as modifier on the microstructure of Al-3Si-0.45Mg-0.45Cu-0.2Zr alloys, including modification of eutectic Si and grains. Extraordinarily, grain refinement was found to be related to the primary particles, which exhibited a close orientation to matrix. After T6 heat treatment, the grain structures were composed of nano-scaled secondary Al3(Sc, Zr) precipitates and spherical eutectic Si. Combined with T6 heat treatment, the highest hardness, yield strength, ultimate tensile strength and elongation were achieved in 0.56 wt.% Sc-modified alloy. Interestingly, the strength and ductility had a similar tendency. This paper demonstrated that combined additions of Mg, Cu, Sc and Zr could significantly improve the microstructure and performance of the hypoeutectic Al-Si cast alloy.

  12. Preparation of 64Cu based on nuclear reaction of 64Ni (p,n) 64Cu: Simulations of target preparation and radionuclidic separation

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2010-01-01

    As a preliminary study for production technology of 64 Cu based on nuclear reaction of 64 Ni (p,n) 64 Cu, the nickel targets were prepared by electroplating method using acidic solution of nickel chloride - boric acid and basic solution of nickel sulphate - nickel chloride mixtures on a silver-surfaced target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel containing radioactive copper. In the presented work the irradiation of nickel target was omitted, while the radioactive copper was obtained from neutron irradiation of CuO target. The separation of radioactive copper was based on anion exchange column chromatography in which the radiocopper was conditioned to form CuCl 4 2- anion complex, while the nickel was kept as Ni 2+ cation. It was found that the electroplating deposit from the acidic solution was better than that form the basic solution. By conditioning the matrix solution in 6 M HCl, the radioactive copper was indicated in the forms of Cu 2+ and CuCl 4 2- while the nickel was in the form of Ni 2+ . In the condition of 9 M HCl, the radioactive copper was in the form of CuCl 4 2- , while the nickel was found as both Ni 2+ and CuCl 4 2- . The best condition of separation was in 8 M HCl in which the radioactive copper was in the form of CuCl 4 2- , while the nickel was in the form of Ni 2+ . The retained CuCl 4 2- was then changed back into Cu 2+ cation and eluted out from the column by using 0.05 M HCl. The γ-spectrometric analysis showed a single strong peak at 511 keV in accordance to γ-annihilation peak coming from positron decay of 64 Cu, and a very weak peak at 1346 keV related to γ-ray from internal energy transition of 64 Cu. (author)