WorldWideScience

Sample records for shuttle pressurized astronaut

  1. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  2. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  3. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  4. Astronaut Anna Fisher demonstrates sleep restraints on shuttle

    Science.gov (United States)

    1984-01-01

    Astronaut Anna L. Fisher demonstrates the versatility of shuttle sleep restraints to accommodate the preference of crewmembers as she appears to have configured hers in a horizontal hammock mode. Stowage lockers, one of the middeck walls, another sleep restraint, a jury-rigged foot and hand restraint are among other items in the frame.

  5. The Role and Training of NASA Astronauts in the Post-Shuttle Era

    Science.gov (United States)

    2011-01-01

    In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  6. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  7. STS-102 Astronaut Thomas Views International Space Station Through Shuttle Window

    Science.gov (United States)

    2001-01-01

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  8. Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition.

    Science.gov (United States)

    Reschke, Millard F; Kolev, Ognyan I; Clément, Gilles

    2017-10-27

    Between 1989 and 1995, NASA evaluated how increases in flight duration of up to 17 days affected the health and performance of Space Shuttle astronauts. Thirty-one Space Shuttle pilots participating in 17 space missions were tested at 3 different times before flight and 3 different times after flight, starting within a few hours of return to Earth. The astronauts moved their head and eyes as quickly as possible from the central fixation point to a specified target located 20°, 30°, or 60° off center. Eye movements were measured with electro-oculography (EOG). Head movements were measured with a triaxial rate sensor system mounted on a headband. The mean time to visually acquire the targets immediately after landing was 7-10% (30-34 ms) slower than mean preflight values, but results returned to baseline after 48 hours. This increase in gaze latency was due to a decrease in velocity and amplitude of both the eye saccade and head movement toward the target. Results were similar after all space missions, regardless of length.

  9. Astronaut Stephen Oswald during emergency bailout training

    Science.gov (United States)

    1994-01-01

    Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).

  10. Astronaut training plans and training facilities in Japan; Uchu hikoshi tanjo eno michi (kunren to kunren setsubi)

    Energy Technology Data Exchange (ETDEWEB)

    Harada, C. [National Space Development Agency of Japan, Tokyo (Japan)

    1999-10-05

    Introduced are the training of astronauts for duties aboard a space shuttle, training provided by NASDA (National Space Development Agency of Japan), and training facilities. The astronaut candidate training course involves space science, space medicine, ocean science, and others, in addition to flight training aboard the T-38 jet trainer, emergency procedure training, shuttle system training, weightlessness training aboard the KC-135 jet plane on a ballistic flight, and SCUBA training. After candidates are named to serve aboard the space shuttle, they are to undergo training related to the shuttle system, emergency exit, adaptation to the surroundings, and the space laboratory system. As for ISS (international space station), astronauts will have to construct the station, and to stay there for a long time operating and maintaining the station and manipulating various experimental apparatuses. The astronaut training process in Japan covers approximately four years, including candidate training, advanced training, and mission dependent training. The training facilities include a weightless environment test system, low-pressure environment adaptation training system, etc., available at NASDA's Tsukuba Space Center. (NEDO)

  11. Astronaut Jean-Francois Clervoy in middeck during launch/entry training

    Science.gov (United States)

    1994-01-01

    Wearing a training version of a partial pressure suit, Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, secures himself on a collapsible seat on the middeck of a shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  12. Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era

    Science.gov (United States)

    2011-01-01

    In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  13. Astronaut training ground

    OpenAIRE

    2000-01-01

    "While most NPS graduates are still assigned to sea missions, so many are venturing into the "Final Frontier" that NPS is among the top four schools in producing future astronauts. Since moving to Monterey from the Naval Academy in 1951, NPS has already graduated 35 astronauts, some of whom have flown Space Shuttle missions..."

  14. 24-h blood pressure in Space: The dark side of being an astronaut

    NARCIS (Netherlands)

    Karemaker, John M.; Berecki-Gisolf, Janneke

    2009-01-01

    Inflight 24-h profiles of blood pressure (BP) and heart rate (HR) were recorded in 2 ESA-astronauts by automatic upper arm cuff measurements. In one astronaut this was combined with Portapres (TM) continuous finger blood pressure recordings. It was the intention to contrast the latter to 24-h

  15. European astronaut training in Houston.

    Science.gov (United States)

    Chiarenza, O

    1993-11-01

    Three European astronauts are currently training as Space Shuttle Mission Specialists at NASA's Johnson Space Center in Houston. Two of the astronauts, Maurizio Cheli and Jean-Francois Clervoy, recently became members of NASA's 'astronaut pool' and have entered the Advanced Training phase. The third one, Claude Nicollier, is now preparing for the mission to service the Hubble Space Telescope in December.

  16. Astronaut Wendy Lawrence participates in training session in the CCT

    Science.gov (United States)

    1994-01-01

    Seated in the pilot's seat of a JSC Shuttle trainer, astronaut Wendy B. Lawrence, STS-67 flight engineer, participates in a training session. The 1992 astronaut class graduate is in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory.

  17. Astronaut training for STS 41-D mission

    Science.gov (United States)

    1984-01-01

    Astronauts David C. Leestma and Kathryn D. Sullivan, two of three 41-D mission specialists, rehearse some of the duties they will be performing on their flight. Dr. Sullivan holds the Krimsky rule against her cheekbones as part of an ongoing Shuttle study on near vision acuity. Astronaut Leestma reviews a flight data file flipbook. They are seated on the floor of the Space Shuttle Simulator, in front of the forward middeck lockers.

  18. Astronauts Parise and Jernigan check helmets prior to training session

    Science.gov (United States)

    1994-01-01

    Attired in training versions of the Shuttle partial-pressure launch and entry suits, payload specialist Dr. Ronald A Parise (left) and astronaut Tamara E. Jernigan, payload commander, check over their helmets prior to a training session. Holding the helmets is suit expert Alan M. Rochford, of NASA. The two were about to join their crew mates in a session of emergency bailout training at JSC's Weightless Environment Training Facility (WETF).

  19. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    Science.gov (United States)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  20. Astronaut Donald H. Peterson talks with others during training session STS-6

    Science.gov (United States)

    1982-01-01

    Astronaut Donald H. Peterson talks with Astronaut James P. Bagian (almost out of frame at right edge) during a training session for STS-6 crew members in the Shuttle mockup and integration laboratory. Petterson is wearing the shuttle flight suit and holding his helmet.

  1. Astronaut C. Michael Foale is briefed on use of Sky Genie

    Science.gov (United States)

    1994-01-01

    Astronaut C. Michael Foale, STS-63 mission specialist, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  2. Official portrait of astronaut Stephen S. Oswald

    Science.gov (United States)

    1992-01-01

    Official portrait of astronaut Stephen S. Oswald. Oswald, a member of Astronaut Class 11, wears launch and entry suit (LES) with launch and entry helmet (LEH) positioned at his side. In the background is the United States (U.S.) flag and a space shuttle orbiter model.

  3. Official portrait of Astronaut Ronald E. McNair

    Science.gov (United States)

    1985-01-01

    Official portrait of Astronaut Ronald E. McNair. McNair is in the blue shuttle flight suit, standing in front of a table which holds a model of the Space Shuttle. An American flag is visible behind him.

  4. Astronaut training for STS 41-G mission

    Science.gov (United States)

    1984-01-01

    Astronauts training for STS 41-G mission. Payload specialist Paul Scully-Power sits in an office near the space shuttle simulator reviewing a diagram. He is wearging a communications head set. At his elbow is an example of food packets to be used aboard the shuttle.

  5. STS-118 Astronaut Tracy Caldwell During Training

    Science.gov (United States)

    2006-01-01

    Tracy E. Caldwell, STS-118 astronaut and mission specialist, participates in a training session on the usage of a special device, used to lower oneself from a troubled shuttle, in the Space Vehicle Mockup Facility at the Johnson Space Center. Caldwell is wearing a training version of her shuttle launch and entry suit.

  6. Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts.

    Science.gov (United States)

    Wostyn, Peter; De Deyn, Peter Paul

    2017-11-01

    A significant proportion of the astronauts who spend extended periods in microgravity develop ophthalmic abnormalities. Understanding this syndrome, called visual impairment and intracranial pressure (VIIP), has become a high priority for National Aeronautics and Space Administration, especially in view of future long-duration missions (e.g., Mars missions). Moreover, to ensure selection of astronaut candidates who will be able to complete long-duration missions with low risk of the VIIP syndrome, it is imperative to identify biomarkers for VIIP risk prediction. Here, we hypothesize that the optic nerve sheath response to alterations in intracranial pressure may be a potential predictive biomarker for optic disc edema in astronauts. If confirmed, this biomarker could be used for preflight identification of astronauts at risk for developing VIIP-associated optic disc edema.

  7. Astronaut Tamara Jernigan in the CCT during a training session

    Science.gov (United States)

    1994-01-01

    Astronaut Tamara E. Jernigan, STS-67 payload commander, is shown here in the Shuttle Training Facility at JSC participating in a training session. Jernigan is training with the RMS controls in the Crew Compartment Trainer (CCT) of JSC's Shuttle mockup and integration laboratory.

  8. Astronaut Stephen Oswald and fellow crew members on middeck

    Science.gov (United States)

    1995-01-01

    Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.

  9. Official portrait of astronaut Ronald J. Grabe

    Science.gov (United States)

    1989-01-01

    Official portrait of Ronald J. Grabe, United States Air Force (USAF) Colonel, member of Astronaut Class 9 (1980), and space shuttle pilot. Grabe wears launch and entry suit (LES) with helmet displayed on table at his left.

  10. Astronaut suitability requirements and selection process; Uchu hikoshi tanjo eno michi (shishitsu yokyu)

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1999-10-05

    Manned space activities at National Space Development Agency of Japan and the suitability requirements that an astronaut is supposed to satisfy are described. At the first phase, candidates have to participate in a manned space experiment utilizing a NASA space shuttle and, in 1985, Mori, Mukai, and Doi were selected to be payload specialists. At the second phase, Astronauts Wakata, Doi, and Mori were sent to the mission specialist training course, this being one of the jobs aboard a space shuttle, which was for preparing for the construction and operation of the international space station. In January, 1996, Astronaut Wakata performed extravehicular tool manipulation and so forth, and Astronaut Doi did the same in 1997. The endowments that an astronaut is expected to have include undoubted professionalism, adaptability to branches out of his field, adaptability to a prolonged stay in space, spirit of teamwork and coordination, and ability to perform wide range of duties aboard an international space station. (NEDO)

  11. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    Science.gov (United States)

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  12. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    Science.gov (United States)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  13. Astronaut Ronald Sega in crew cabin

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.

  14. Astronaut Voss Works in the Destiny Laboratory

    Science.gov (United States)

    2001-01-01

    In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.

  15. Astronaut Anna Fisher Suits Up for NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  16. Astronaut Anna Fisher Suiting Up For NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  17. Astronaut Anna Fisher Suited Up For NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  18. Eating in space--from an astronaut's perspective

    Science.gov (United States)

    Kerwin, Joseph; Seddon, Rhea

    2002-01-01

    Food systems and meal components are constantly under review and development at the National Aerospace and Space Administration. The goal of this work is to generate a diet that meets the nutrient requirements of astronauts and satiates them. The constraints involved in shorter- and longer-term missions are described. The insight provided by observations of astronauts from the Skylab and Shuttle eras will allow researchers to consider the fact that, for any nutritional regimen to work, it must consider the limitations and taste buds of the individuals involved. Otherwise, the best diet design generated by their work may never be consumed.

  19. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  20. Is autonomic modulation different between European and Chinese astronauts?

    Science.gov (United States)

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E

    2015-01-01

    The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.

  1. Is autonomic modulation different between European and Chinese astronauts?

    Directory of Open Access Journals (Sweden)

    Jiexin Liu

    Full Text Available The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences.Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions. Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability.Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts.Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.

  2. Astronaut Scott Parazynski during egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  3. Astronaut Dale Gardner rehearses during EVA practice

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  4. The last of NASA's original pilot astronauts expanding the space frontier in the late sixties

    CERN Document Server

    Shayler, David J

    2017-01-01

    Resulting from the authors’ deep research into these two pre-Shuttle astronaut groups, many intriguing and untold stories behind the selection process are revealed in the book. The often extraordinary backgrounds and personal ambitions of these skilled pilots, chosen to continue NASA’s exploration and knowledge of the space frontier, are also examined. In April 1966 NASA selected 19 pilot astronauts whose training was specifically targeted to the Apollo lunar landing missions and the Earth-orbiting Skylab space station. Three years later, following the sudden cancellation of the USAF’s highly classified Manned Orbiting Laboratory (MOL) project, seven military astronauts were also co-opted into NASA’s space program. This book represents the final chapter by the authors in the story of American astronaut selections prior to the era of the Space Shuttle. Through personal interviews and original NASA documentation, readers will also gain a true insight into a remarkable age of space travel as it unfolded ...

  5. Astronauts McNair and Stewart prepare for reentry

    Science.gov (United States)

    1984-01-01

    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  6. An overview of Space Shuttle anthropometry and biomechanics research with emphasis on STS/Mir recumbent seat system design

    Science.gov (United States)

    Klute, Glenn K.; Stoycos, Lara E.

    1994-01-01

    The Anthropometry and Biomechanics Laboratory (ABL) at JSC conducts multi-disciplinary research focusing on maximizing astronaut intravehicular (IVA) and extravehicular (EVA) capabilities to provide the most effective work conditions for manned space flight and exploration missions. Biomechanics involves the measurement and modeling of the strength characteristics of the human body. Current research for the Space Shuttle Program includes the measurement of torque wrench capability during weightlessness, optimization of foot restraint, and hand hold placement, measurements of the strength and dexterity of the pressure gloved hand to improve glove design, quantification of the ability to move and manipulate heavy masses (6672 N or 1500 lb) in weightlessness, and verification of the capability of EVA crewmembers to perform Hubble Space Telescope repair tasks. Anthropometry is the measurement and modeling of the dimensions of the human body. Current research for the Space Shuttle Program includes the measurement of 14 anthropometric parameters of every astronaut candidate, identification of EVA finger entrapment hazards by measuring the dimensions of the gloved hand, definition of flight deck reach envelopes during launch and landing accelerations, and measurement of anthropometric design parameters for the recumbent seat system required for the Shuttle/Mir mission (STS-71, Spacelab M) scheduled for Jun. 1995.

  7. Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training

    Science.gov (United States)

    1996-01-01

    STS-77 TRAINING VIEW --- Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training for crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Brown will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.

  8. Prevalence of Sleep Deficiency and Hypnotic Use Among Astronauts Before, During and After Spaceflight: An Observational Study

    Science.gov (United States)

    Barger, Laura K.; Flynn-Evans, Erin E.; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M.; Wang, Wei; Wright, Kenneth P.; Czeisler, Charles A.

    2014-01-01

    Background Sleep deprivation and fatigue are common subjective complaints among astronauts. We conducted the first large-scale evaluation of objectively-estimated sleep of astronauts on both short- and long-duration spaceflight missions. Methods Allnon-Russian crewmembers assigned to space shuttle flights with inflight experiments from July 2001 until July 2011 or ISS Expeditions from 2006 –2011 were eligible to participate. We objectively assessed, via wrist actigraphy and daily logs, sleep-wake timing of 64 astronauts on 80 Space Shuttle missions, encompassing 26 Space Transportation System flights (1,063 inflight days), and 21 astronauts on the International Space Station (ISS) (3,248 inflight days) and, for each astronaut, during two Earth-based data-collection intervals prior to and one following spaceflight (4,013 ground-based days). Findings Astronauts attempted and obtained significantly less actigraphically-estimated sleep per night on space shuttle missions (7·35 ± 0·47 and 5·96 ± 0·56 hours, respectively), in the 11-days before spaceflight (7·35 ± 0·51 and 6·04 ± 0·72 hours, respectively) and even three months before spaceflight (7·40 ± 0·59 and 6·29 ± 0·67 hours, respectively) than they did upon their return to Earth (8·01 ± 0·78 and 6·74 ± 0·91 hours, respectively) (p Astronauts on ISS missions also obtained significantly less sleep three months prior (6.41 ± 0.65), in the 11 days prior (5.86 ± 0.94) and during spaceflight (6.09 ± 0.67 hours), as compared to the first week post-mission (6.95 ± 1.04 hours; p astronauts was prevalent not only during space shuttle and ISS missions, but also throughout a 3-month pre-flight training interval. Despite chronic sleep curtailment, sleeping pill use was pervasive during spaceflight. As chronic sleep loss produces performance decrements, these findings highlight the need for development of effective counter measures to promote sleep. Funding The study was supported by NASA

  9. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    Science.gov (United States)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  10. Astronaut Anna Fisher in NBS Training For Hubble Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher training on a mock-up of a modular section of the HST for an axial scientific instrument change out.

  11. Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts

    NARCIS (Netherlands)

    Wostyn, Peter; De Deyn, Peter Paul

    2017-01-01

    A significant proportion of the astronauts who spend extended periods in microgravity develop ophthalmic abnormalities. Understanding this syndrome, called visual impairment and intracranial pressure (VIIP), has become a high priority for National Aeronautics and Space Administration, especially in

  12. Astronaut Anna Fisher practices control of the RMS in a trainer

    Science.gov (United States)

    1984-01-01

    Astronaut Anna Lee Fisher, mission specialist for 51-A, practices control of the remote manipulator system (RMS) at a special trainer at JSC. Dr. Fisher is pictured in the manipulator development facility (MDF) of JSC's Shuttle mockup and integration laboratory.

  13. STS-71 astronauts and cosmonauts listen to briefing during training session

    Science.gov (United States)

    1994-01-01

    A number of Russian cosmonauts and an American astronaut listen to a briefing on launch and landing emergency situations during a training session in the Systems Integration Facility at JSC. Scheduled to launch aboard the Space Shuttle Atlantis with the S

  14. An advanced regulator for the helium pressurization systems of the Space Shuttle OMS and RCS

    Science.gov (United States)

    Wichmann, H.

    1973-01-01

    The Space Shuttle Orbit Maneuvering System and Reaction Control System are pressure-fed rocket propulsion systems utilizing earth storable hypergolic propellants and featuring engines of 6000 lbs and 900 lbs thrust, respectively. The helium pressurization system requirements for these propulsion systems are defined and the current baseline pressurization systems are described. An advanced helium pressure regulator capable of meeting both OMS and RCS helium pressurization system requirements is presented and its operating characteristics and predicted performance characteristics are discussed.

  15. Meals in orbit. [Space Shuttle food service planning

    Science.gov (United States)

    1980-01-01

    Space foods which will be available to the Space Shuttle crew are discussed in view of the research and development of proper nutrition in space that began with the pastelike tube meals of the Mercury and Gemini astronauts. The variety of food types proposed for the Space Shuttle crew which include thermostabilized, intermediate moisture, rehydratable, irradiated, freeze-dried and natural forms are shown to be a result of the successive improvements in the Apollo, Skylab and Apollo Soyuz test project flights. The Space Shuttle crew will also benefit from an increase of caloric content (3,000 cal./day), the convenience of a real oven and a comfortable dining and kitchen area.

  16. Astronaut Curtis Brown on flight deck mockup during training

    Science.gov (United States)

    1994-01-01

    Astronaut Curtis L. Brown, STS-66 pilot, mans the pilot's station during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  17. Identifying the "Right Stuff": An Exploration-Focused Astronaut Job Analysis

    Science.gov (United States)

    Barrett, J. D.; Holland, A. W.; Vessey, W. B.

    2015-01-01

    Industrial and organizational (I/O) psychologists play a key role in NASA astronaut candidate selection through the identification of the competencies necessary to successfully engage in the astronaut job. A set of psychosocial competencies, developed by I/O psychologists during a prior job analysis conducted in 1996 and updated in 2003, were identified as necessary for individuals working and living in the space shuttle and on the International Space Station (ISS). This set of competencies applied to the space shuttle and applies to current ISS missions, but may not apply to longer-duration or long-distance exploration missions. With the 2015 launch of the first 12- month ISS mission and the shift in the 2020s to missions beyond low earth orbit, the type of missions that astronauts will conduct and the environment in which they do their work will change dramatically, leading to new challenges for these crews. To support future astronaut selection, training, and research, I/O psychologists in NASA's Behavioral Health and Performance (BHP) Operations and Research groups engaged in a joint effort to conduct an updated analysis of the astronaut job for current and future operations. This project will result in the identification of behavioral competencies critical to performing the astronaut job, along with relative weights for each of the identified competencies, through the application of job analysis techniques. While this job analysis is being conducted according to job analysis best practices, the project poses a number of novel challenges. These challenges include the need to identify competencies for multiple mission types simultaneously, to evaluate jobs that have no incumbents as they have never before been conducted, and working with a very limited population of subject matter experts. Given these challenges, under the guidance of job analysis experts, we used the following methods to conduct the job analysis and identify the key competencies for current and

  18. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  19. Astronaut Scott Parazynski in hatch of CCT during training

    Science.gov (United States)

    1994-01-01

    Astronaut Scott E. Parazynski, STS-66 mission specialist, poses near the hatchway of the crew compartment trainer (CCT) (out of frame) in JSC's Shuttle mockup and integration laboratory. Crew members were about to begin a rehearsal of procedures to be followed during the launch and entry phases of their flight. That rehearsal was followed by a training session on emergency egress procedures.

  20. Effect of oxygen pressure on sensitivity of CR-39 used for astronauts radiation dosimetry

    International Nuclear Information System (INIS)

    Murai, T.; Yabe, S.; Nagamatsu, A.; Tawara, H.; Kumagai, H.; Miyazawa, Y.; Kitajo, K.; Kodaira, S.; Yasuda, N.

    2006-01-01

    The personal radiation dosimeters for astronauts are exposed to low-pressure oxygen gas (0.29 atmospheres) during extra-vehicle activities. CR-39 plastic track detectors are one of the typical passive dosimeters for space radiation monitoring. We investigated change in track formation sensitivity of the antioxidant-doped CR-39 plastic with which oxygen gas comes in contact at different pressures up to 2 atmospheres for 1h to 10 days. The oxygen effect on sensitivity was measured for the C, Si and Fe ions (10-200 keV/μm) from the HIMAC heavy ion accelerator. The sensitivity is obviously sensitive to oxygen pressure at heavy-ion exposures, but not sensitive to the experience of oxygen atmosphere before and after the ion exposures. The maximum sensitivity is obtained at 0.29 atmospheres. The present experimental data suggested that the effect depends on LET of incident particles. (author)

  1. Behavioral Health and Performance Operations During the Space Shuttle Program

    Science.gov (United States)

    Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.

    2011-01-01

    Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions

  2. Epstein-Barr virus shedding by astronauts during space flight

    Science.gov (United States)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  3. Incidence of Epstein-Barr Virus in Astronaut Saliva During Spaceflight

    Science.gov (United States)

    Payne, Deborah A.; Mehta, Satish K.; Tyring, Stephen K.; Stowe, Raymond P.; Pierson, Duane L.

    1998-01-01

    Astronauts experience psychological and physical stresses that may result in re-activation of latent viruses during spaceflight, potentially increasing the risk of disease among crew members. The shedding of Epstein-Barr virus (EBV) in the saliva of astronauts will increase during spaceflight. A total of 534 saliva specimens were collected from 11 EBV-seropositive astronauts before, during, and after four space shuttle missions. The presence of EBV DNA in saliva, assessed by polymerase chain reaction (PCR), was used to determine shedding patterns before, during, and after spaceflight. EBV DNA was detected more frequently before flight than during (p less than 0.001) or after (p less than 0.01) flight. No significant difference between the in-flight and postflight periods was detected in the frequency of occurrence of EBV DNA. The increased frequency of shedding of EBV before flight suggests that stress levels may be greater before launch than during or after spaceflight.

  4. A review and assessment of crack case problems in pressurized systems on the space shuttle

    International Nuclear Information System (INIS)

    Patin, R.M.; Forman, R.G.; Horiuchi, G.K.

    1993-01-01

    The principal effort for fracture control during development of the Space Shuttle was concentrated on primary structure, pressure vessels, and the main engines. The real occurrence of crack problems leading to safety-of-flight reviews, however, have been primarily affiliated with pressurized subsystems in the vehicle. The cracking of components in pressurized subsystems has occurred mostly from lack of weld penetration, porosity, and joint design oversight where mode 2 loading accelerated the crack initiation process. This paper provides a synopsis of several crack cases that have occurred, and points out the importance of applying a comprehensive fracture control plan to pressurized systems in space programs

  5. The astronaut of 1988. [training and selection

    Science.gov (United States)

    Slayton, D. K.

    1973-01-01

    Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.

  6. Spaceflight-Induced Visual Impairment and Globe Deformations in Astronauts Are Linked to Orbital Cerebrospinal Fluid Volume Increase.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M

    2018-01-01

    Most of the astronauts onboard the International Space Station (ISS) develop visual impairment and ocular structural changes that are not fully reversible upon return to earth. Current understanding assumes that the so-called visual impairments/intracranial pressure (VIIP) syndrome is caused by cephalad vascular fluid shift. This study assesses the roles of cerebrospinal fluid (CSF) and intracranial pressure (ICP) in VIIP. Seventeen astronauts, 9 who flew a short-duration mission on the space shuttle (14.1 days [SD 1.6]) and 7 who flew a long-duration mission on the ISS (188 days [SD 22]) underwent MRI of the brain and orbits to assess the pre-to-post spaceflight changes in four categories: VIIP severity measures: globe flattening and nerve protrusion; orbital and ventricular CSF volumes; cortical gray and white matter volumes; and MR-derived ICP (MRICP). Significant pre-to-post-flight increase in globe flattening and optic nerve protrusion occurred only in the long-duration cohort (0.031 [SD 0.019] vs -0.001 [SD 0.006], and 0.025 [SD 0.013] vs 0.001 [SD 0.006]; p < 0.00002 respectively). The increased globe deformations were associated with significant increases in orbital and ventricular CSF volumes, but not with increased tissue vascular fluid content. Additionally, a moderate increase in MRICP of 6 mmHg was observed in only two ISS astronauts with large ocular structure changes. These findings are evidence for the primary role of CSF and a lesser role for intracranial cephalad fluid-shift in the formation of VIIP. VIIP is caused by a prolonged increase in orbital CSF spaces that compress the globes' posterior pole, even without a large increase in ICP.

  7. Astronaut Heidemarie M. Stefanyshyn-Piper During STS-115 Training

    Science.gov (United States)

    2005-01-01

    Wearing a training version of the shuttle launch and entry suit, STS-115 astronaut and mission specialist, Heidemarie M. Stefanyshyn-Piper, puts the final touches on her suit donning process prior to the start of a water survival training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. Launched on September 9, 2006, the STS-115 mission continued assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  8. Changes in Neutrophil Functions in Astronauts

    Science.gov (United States)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  9. Astronauts McMonagle and Brown on flight deck mockup during training

    Science.gov (United States)

    1994-01-01

    Astronauts Donald R. McMonagle, STS-66 mission commander, left, and Curtis L. Brown, STS-66 pilot, man the commander's and pilot's stations, respectively, during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  10. Views of the extravehicular activity of Astronaut Stewart during STS 41-B

    Science.gov (United States)

    1984-01-01

    Close up frontal view of Astronaut Robert L. Stewart, mission specialist, as he participates in a extravehicular activity (EVA), a few meters away from the cabin of the shuttle Challenger. The open payload bay is reflected in his helmet visor as he faces the camera. Stewart is wearing the extravehicular mobility unit (EMU) and one of the manned maneuvering units (MMU) developed for this mission.

  11. Quantitative risk analysis of a space shuttle subsystem

    International Nuclear Information System (INIS)

    Frank, M.V.

    1989-01-01

    This paper reports that in an attempt to investigate methods for risk management other than qualitative analysis techniques, NASA has funded pilot study quantitative risk analyses for space shuttle subsystems. The authors performed one such study of two shuttle subsystems with McDonnell Douglas Astronautics Company. The subsystems were the auxiliary power units (APU) on the orbiter, and the hydraulic power units on the solid rocket booster. The technology and results of the APU study are presented in this paper. Drawing from a rich in-flight database as well as from a wealth of tests and analyses, the study quantitatively assessed the risk of APU-initiated scenarios on the shuttle during all phases of a flight mission. Damage states of interest were loss of crew/vehicle, aborted mission, and launch scrub. A quantitative risk analysis approach to deciding on important items for risk management was contrasted with the current NASA failure mode and effects analysis/critical item list approach

  12. Orbital Fitness: An Overview of Space Shuttle Cardiopulmonary Exercise Physiology Findings

    Science.gov (United States)

    Moore, Alan D.

    2011-01-01

    Limited observations regarding the cardiopulmonary responses to aerobic exercise had been conducted during short-duration spaceflight before the Space Shuttle program. This presentation focuses on the findings regarding changes observed in the cardiopulmonary exercise responses during and following Shuttle flights. During flight, maximum oxygen uptake (VO2max) remained unchanged as did the maximum work rate achievable during cycle exercise testing conducted during the last full flight day. Immediately following flight, the ubiquitous finding, confirmed by investigations conducted during the Spacelab Life Sciences missions 1 and 2 and by NASA Detailed Supplemental Objective studies, indicated that VO2max was reduced; however, the reduction in VO2max was transient and returned to preflight levels within 7 days following return. Studies regarding the influence of aerobic exercise countermeasures performed during flight on postflight performance were mostly limited to the examination of the heart rate (HR) response to submaximal exercise testing on landing day. These studies revealed that exercise HR was elevated in individuals who performed little to no exercise during their missions as compared to individuals who performed regular exercise. In addition, astronauts who performed little to no aerobic exercise during flight demonstrated an increased HR and lowered pulse pressure response to the standard stand test on landing day, indicating a decrease in orthostatic function in these individuals. With regard to exercise modality, four devices were examined during the Shuttle era: two treadmills, a cycle ergometer, and a rowing device. Although there were limited investigations regarding the use of these devices for exercise training aboard the Shuttle, there was no clear consensus reached regarding which proved to be a "superior" device. Each device had a unique operational or physiologic limitation associated with its use. In conclusion, exercise research conducted

  13. Custom Gradient Compression Stockings May Prevent Orthostatic Intolerance in Astronauts After Space Flight

    Science.gov (United States)

    Stenger, Michael B.; Lee, Stuart M. C.; Westby, Christian M.; Platts, Steven H.

    2010-01-01

    Orthostatic intolerance after space flight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. NASA astronauts currently wear an inflatable anti-gravity suit (AGS) during re-entry, but this device is uncomfortable and loses effectiveness upon egress from the Shuttle. We recently determined that thigh-high, gradient compression stockings were comfortable and effective after space flight, though to a lesser degree than the AGS. We also recently showed that addition of splanchnic compression to this thigh-high compression stocking paradigm improved orthostatic tolerance to a level similar to the AGS, in a ground based model. Purpose: The purpose of this study was to evaluate a new, three-piece breast-high gradient compression garment as a countermeasure to post-space flight orthostatic intolerance. Methods: Eight U.S. astronauts have volunteered for this experiment and were individually fitted for a three-piece, breast-high compression garment to provide 55 mmHg compression at the ankle which decreased to approximately 20 mmHg at the top of the leg and provides 15 mmHg over the abdomen. Orthostatic testing occurred 30 days pre-flight (w/o garment) and 2 hours after flight (w/ garment) on landing day. Blood pressure (BP), Heart Rate (HR) and Stroke Volume (SV) were acquired for 2 minutes while the subject lay prone and then for 3.5 minutes after the subject stands up. To date, two astronauts have completed pre- and post-space flight testing. Data are mean SD. Results: BP [pre (prone to stand): 137+/-1.6 to 129+/-2.5; post: 130+/-2.4 to 122+/-1.6 mmHg] and SV [pre (prone to stand): 61+/-1.6 to 38+/-0.2; post: 58+/-6.4 to 37+/-6.0 ml] decreased with standing, but no differences were seen post-flight w/ compression garments compared to pre-flight w/o garments. HR [pre (prone to stand): 66+/-1.6 to 74+/-3.0, post: 67+/-5.6 to 78+/-6.8 bpm] increased with standing, but no differences were seen pre- to post-flight. Conclusion: After space

  14. From the Shuttle to the Lab, NPS Alumni Look for Solutions to Today’s Space Challenges

    OpenAIRE

    Naval Postgraduate School Public Affairs Office

    2011-01-01

    Naval Postgraduate School alumni and former astronauts Kent Rominger and Ken Reightler have seen time change a lot of things. The shuttle program is at its end, their days as astronauts with NASA are behind them, and they are now part of the ever-evolving commercial space industry. But the thing that hasn’t changed – the one certainty of space travel and exploration – there will always be challenges that need solutions.

  15. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI.

    Science.gov (United States)

    Roberts, Donna R; Albrecht, Moritz H; Collins, Heather R; Asemani, Davud; Chatterjee, A Rano; Spampinato, M Vittoria; Zhu, Xun; Chimowitz, Marc I; Antonucci, Michael U

    2017-11-02

    There is limited information regarding the effects of spaceflight on the anatomical configuration of the brain and on cerebrospinal fluid (CSF) spaces. We used magnetic resonance imaging (MRI) to compare images of 18 astronauts' brains before and after missions of long duration, involving stays on the International Space Station, and of 16 astronauts' brains before and after missions of short duration, involving participation in the Space Shuttle Program. Images were interpreted by readers who were unaware of the flight duration. We also generated paired preflight and postflight MRI cine clips derived from high-resolution, three-dimensional imaging of 12 astronauts after long-duration flights and from 6 astronauts after short-duration flights in order to assess the extent of narrowing of CSF spaces and the displacement of brain structures. We also compared preflight ventricular volumes with postflight ventricular volumes by means of an automated analysis of T 1 -weighted MRIs. The main prespecified analyses focused on the change in the volume of the central sulcus, the change in the volume of CSF spaces at the vertex, and vertical displacement of the brain. Narrowing of the central sulcus occurred in 17 of 18 astronauts after long-duration flights (mean flight time, 164.8 days) and in 3 of 16 astronauts after short-duration flights (mean flight time, 13.6 days) (P<0.001). Cine clips from a subgroup of astronauts showed an upward shift of the brain after all long-duration flights (12 astronauts) but not after short-duration flights (6 astronauts) and narrowing of CSF spaces at the vertex after all long-duration flights (12 astronauts) and in 1 of 6 astronauts after short-duration flights. Three astronauts in the long-duration group had optic-disk edema, and all 3 had narrowing of the central sulcus. A cine clip was available for 1 of these 3 astronauts, and the cine clip showed upward shift of the brain. Narrowing of the central sulcus, upward shift of the brain

  16. Astronaut Parazynski greets First Lady Hillary Clinton and Chelsea Clinton

    Science.gov (United States)

    1999-01-01

    First Lady Hillary Rodham Clinton (right) and her daughter, Chelsea, are greeted by NASA Astronaut Scott E. Parazynski (left) upon their arrival at the Skid Strip at Cape Canaveral Air Station to view the launch of Space Shuttle mission STS-93. Liftoff is scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  17. Temazepam, but not zolpidem, causes orthostatic hypotension in astronauts after spaceflight

    Science.gov (United States)

    Shi, Shang-Jin; Garcia, Kathleen M.; Meck, Janice V.

    2003-01-01

    Insomnia is a common symptom, not only in the adult population but also in many astronauts. Hypnotics, such as temazepam (a benzodiazepine) and zolpidem (an imidazopyridine), are often taken to relieve insomnia. Temazepam has been shown clinically to have hemodynamic side effects, particularly in the elderly; however, the mechanism is not clear. Zolpidem does not cause hemodynamic side effects. The purpose of this study was to determine whether the use of different hypnotics during spaceflight might contribute significantly to the high incidence of postflight orthostatic hypotension, and to compare the findings in astronauts with clinical research. Astronauts were separated into three groups: control (n = 40), temazepam (15 or 30 mg; n = 9), and zolpidem (5 or 10 mg; n = 8). In this study, temazepam and zolpidem were only taken the night before landing. The systolic and diastolic blood pressures and heart rates of the astronauts were measured during stand tests before spaceflight and on landing day. On landing day, systolic pressure decreased significantly and heart rate increased significantly in the temazepam group, but not in the control group or in the zolpidem group. Temazepam may aggravate orthostatic hypotension after spaceflight when astronauts are hemodynamically compromised. Temazepam should not be the initial choice as a sleeping aid for astronauts. These results in astronauts may help to explain the hemodynamic side effects in the elderly who are also compromised. Zolpidem may be a better choice as a sleeping aid in these populations.

  18. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts

    Science.gov (United States)

    Meck, J. V.; Reyes, C. J.; Perez, S. A.; Goldberger, A. L.; Ziegler, M. G.

    2001-01-01

    OBJECTIVE: The incidence of postflight orthostatic intolerance after short-duration spaceflight is about 20%. However, the incidence after long-duration spaceflight was unknown. The purpose of this study was to test the hypothesis that orthostatic intolerance is more severe after long-duration than after short-duration flight. METHODS: We performed tilt tests on six astronauts before and after long-duration (129-190 days) spaceflights and compared these data with data obtained during stand tests before and after previous short-duration missions. RESULTS: Five of the six astronauts studied became presyncopal during tilt testing after long-duration flights. Only one had become presyncopal during stand testing after short-duration flights. We also compared the long-duration flight tilt test data to tilt test data from 20 different astronauts who flew on the short-duration Shuttle missions that delivered and recovered the astronauts to and from the Mir Space Station. Five of these 20 astronauts became presyncopal on landing day. Heart rate responses to tilt were no different between astronauts on long-duration flights and astronauts on short-duration flights, but long-duration subjects had lower stroke volumes and cardiac outputs than short-duration presyncopal subjects, suggesting a possible decrease in cardiac contractile function. One subject had subnormal norepinephrine release with upright posture after the long flight but not after the short flight. Plasma volume losses were not greater after long flights. CONCLUSION: Long-duration spaceflight markedly increases orthostatic intolerance, probably with multiple contributing factors.

  19. Regulation of circadian blood pressure: from mice to astronauts.

    Science.gov (United States)

    Agarwal, Rajiv

    2010-01-01

    Circadian variation is commonly seen in healthy people; aberration in these biological rhythms is an early sign of disease. Impaired circadian variation of blood pressure (BP) has been shown to be associated with greater target organ damage and with an elevated risk of cardiovascular events independent of the BP load. The purpose of this review is to examine the physiology of circadian BP variation and propose a tripartite model that explains the regulation of circadian BP. The time-keeper in mammals resides centrally in the suprachiasmatic nucleus. Apart from this central clock, molecular clocks exist in most peripheral tissues including vascular tissue and the kidney. These molecular clocks regulate sodium balance, sympathetic function and vascular tone. A physiological model is proposed that integrates our understanding of molecular clocks in mice with the circadian BP variation among humans. The master regulator in this proposed model is the sleep-activity cycle. The equivalents of peripheral clocks are endothelial and adrenergic functions. Thus, in the proposed model, the variation in circadian BP is dependent upon three major factors: physical activity, autonomic function, and sodium sensitivity. The integrated consideration of physical activity, autonomic function, and sodium sensitivity appears to explain the physiology of circadian BP variation and the pathophysiology of disrupted BP rhythms in various conditions and disease states. Our understanding of molecular clocks in mice may help to explain the provenance of blunted circadian BP variation even among astronauts.

  20. The Visual Impairment Intracranial Pressure Syndrome in Long Duration NASA Astronauts: An Integrated Approach

    Science.gov (United States)

    Otto, C. A.; Norsk, P.; Shelhamer, M. J.; Davis, J. R.

    2015-01-01

    The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA's number one human space flight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots, globe flattening, and distended optic nerve sheaths). In some cases, elevated cerebrospinal fluid pressure has been documented postflight reflecting increased intracranial pressure (ICP). While the eye appears to be the main affected end organ of this syndrome, the ocular affects are thought to be related to the effect of cephalad fluid shift on the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity induced head-ward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, both leading to cephalic congestion and increased ICP. Although not all crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that all astronauts exposed to microgravity have some degree of ICP elevation in-flight. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and has been reported to cause mild cognitive impairment in the analog terrestrial population of Idiopathic Intracranial Hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them.

  1. Former astronauts Schirra and Armstrong visit KSC for STS-83 launch

    Science.gov (United States)

    1997-01-01

    Among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 were Apollo 7 Commander Walter M. 'Wally' Schirra (left ) and Apollo l1 Commander Neil A. Armstrong. The two former astronauts are posing in front of the Apollo Command and Service Module in the Apollo/Saturn V Center at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission.

  2. Feasibility study of a pressure fed engine for a water recoverable space shuttle booster Volume 2: Technical, phase A effort

    Science.gov (United States)

    1972-01-01

    Design and systems considerations are presented on an engine concept selection for further preliminary design and program evaluation. These data have been prepared from a feasibility study of a pressure-fed engine for the water recoverable space shuttle booster.

  3. Astronaut Gordon Cooper during flight tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, relaxes while waiting for weight and balance tests to begin (03974); Cooper prior to entering the Mercury Spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance (03975); Cooper undergoing suit pressurization tests (03976).

  4. Flexible Plug Repair for Shuttle Wing Leading Edge

    Science.gov (United States)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; hide

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  5. Spaceflight-induced changes in white matter hyperintensity burden in astronauts.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M; Lee, Sang H

    2017-11-21

    To assess the effect of weightlessness and the respective roles of CSF and vascular fluid on changes in white matter hyperintensity (WMH) burden in astronauts. We analyzed prespaceflight and postspaceflight brain MRI scans from 17 astronauts, 10 who flew a long-duration mission on the International Space Station (ISS) and 7 who flew a short-duration mission on the Space Shuttle. Automated analysis methods were used to determine preflight to postflight changes in periventricular and deep WMH, CSF, and brain tissue volumes in fluid-attenuated inversion recovery and high-resolution 3-dimensional T1-weighted imaging. Differences between cohorts and associations between individual measures were assessed. The short-term reversibility of the identified preflight to postflight changes was tested in a subcohort of 5 long-duration astronauts who had a second postflight MRI scan 1 month after the first postflight scan. Significant preflight to postflight changes were measured only in the long-duration cohort and included only the periventricular WMH and ventricular CSF volumes. Changes in deep WMH and brain tissue volumes were not significant in either cohort. The increase in periventricular WMH volume was significantly associated with an increase in ventricular CSF volume (ρ = 0.63, p = 0.008). A partial reversal of these increases was observed in the long-duration subcohort with a 1-month follow-up scan. Long-duration exposure to microgravity is associated with an increase in periventricular WMH in astronauts. This increase was linked to an increase in ventricular CSF volume documented in ISS astronauts. There was no associated change in or abnormal levels of WMH volumes in deep white matter as reported in U-2 high-altitude pilots. © 2017 American Academy of Neurology.

  6. Challenges in the 1990's for astronaut training simulators

    Science.gov (United States)

    Brown, Patrick M.; Hajare, Ankur R.; Stark, George E.

    1990-01-01

    New challenges for the simulation community at the Johnson Space Center both in near and long terms are considered. In the near term, the challenges of supporting an increasing flight rate, maintaining operations while replacing obsolete subsystems, and incorporating forthcoming changes to the Space Shuttle are discussed, and focus is placed on a change of forward flight-deck instruments from electro-mechanical devices to electronic displays. Training astronauts for complex concurrent missions involving multiple spacecraft and geographically dispersed ground facilities is considered to be foremost of the long-term challenges, in addition to the tasks of improving the simulator reliability and the operational efficiency of the facilities.

  7. Den danske astronaut

    DEFF Research Database (Denmark)

    Jakobsen, Lars Sejersgård

    2014-01-01

    Undervisningsmateriale til mellemtrinnet om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015......Undervisningsmateriale til mellemtrinnet om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015...

  8. Den danske astronaut

    DEFF Research Database (Denmark)

    Jakobsen, Lars Sejersgård

    2014-01-01

    Undervisningsmateriale til udskolingen om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015......Undervisningsmateriale til udskolingen om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015...

  9. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  10. Space Shuttle Atlantis is on Launch Pad 39B

    Science.gov (United States)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis arrives on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11- day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.

  11. Astronauts For Hire The Emergence of a Commercial Astronaut Corps

    CERN Document Server

    Seedhouse, Erik

    2012-01-01

    The spaceflight industry is being revolutionized. It is no longer the sole preserve of professional astronauts working on government-funded manned spaceflight programs. As private companies are being encouraged to build and operate launch vehicles, and even spacecraft that can be hired on a contract basis, a new breed of astronauts is coming into being. Astronauts for Hire describes how this commercial astronaut corps will be selected and trained. It provides a unique insight into the kinds of missions and tasks that the astronauts will be involved in, from suborbital science missions to commercial trips to low Earth orbit. The book also describes the new fleet of commercial spaceships being developed - reusable rocket-propelled vehicles that will offer quick, routine, and affordable access to the edge of space. The author also explores the possibility of private enterprise establishing interplanetary spaceports, lunar bases, and outposts on the surface of Mars.

  12. Astronaut Preflight Cardiovascular Variables Associated with Vascular Compliance are Highly Correlated with Post-Flight Eye Outcome Measures in the Visual Impairment Intracranial Pressure (VIIP) Syndrome Following Long Duration Spaceflight

    Science.gov (United States)

    Otto, Christian; Ploutz-Snyder, R.

    2015-01-01

    The detection of the first VIIP case occurred in 2005, and adequate eye outcome measures were available for 31 (67.4%) of the 46 long duration US crewmembers who had flown on the ISS since its first crewed mission in 2000. Therefore, this analysis is limited to a subgroup (22 males and 9 females). A "cardiovascular profile" for each astronaut was compiled by examining twelve individual parameters; eleven of these were preflight variables: systolic blood pressure, pulse pressure, body mass index, percentage body fat, LDL, HDL, triglycerides, use of anti-lipid medication, fasting serum glucose, and maximal oxygen uptake in ml/kg. Each of these variables was averaged across three preflight annual physical exams. Astronaut age prior to the long duration mission, and inflight salt intake was also included in the analysis. The group of cardiovascular variables for each crew member was compared with seven VIIP eye outcome variables collected during the immediate post-flight period: anterior-posterior axial length of the globe measured by ultrasound and optical biometry; optic nerve sheath diameter, optic nerve diameter, and optic nerve to sheath ratio- each measured by ultrasound and magnetic resonance imaging (MRI), intraocular pressure (IOP), change in manifest refraction, mean retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT), and RNFL of the inferior and superior retinal quadrants. Since most of the VIIP eye outcome measures were added sequentially beginning in 2005, as knowledge of the syndrome improved, data were unavailable for 22.0% of the outcome measurements. To address the missing data, we employed multivariate multiple imputation techniques with predictive mean matching methods to accumulate 200 separate imputed datasets for analysis. We were able to impute data for the 22.0% of missing VIIP eye outcomes. We then applied Rubin's rules for collapsing the statistical results across our 200 multiply imputed data sets to assess the canonical

  13. Radiation dosimetry for crewmember exposure to cosmic radiation during astronaut training operations

    International Nuclear Information System (INIS)

    Shavers, M.R.; Gersey, B.B.; Wilkins, R.T.; Semones, E.J.; Cucinotta, F.A.

    2003-01-01

    'Atmospheric exposures' of astronauts to cosmic ions and secondary particles during air-flight training are being measured and analytically modeled for inclusion in the astronaut medical records database. For many of the ∼170 astronauts currently in the astronaut corps, their occupational radiation exposure history will be dominated by cosmic ion exposures during air-travel rather than short-duration spaceflight. Relatively low (usually <10 μSv hr -1 ) and uniform organ dose rates result from the penetrating mix of cosmic particles during atmospheric exposures at all altitudes, but at rates that vary greatly due to differences in flight profiles and the geomagnetic conditions at the time of flight. The precision and accuracy to which possible deleterious effects of the exposures can be assessed suffers from limitations that similarly impact assessment of human exposures in low-Earth orbit: uncertainties associated with the environmental measurements and their interpretation, uncertainties associated with the analytical tools that transport the cosmic radiation environment, and uncertain biological responses to low-dose-rate exposures to radiation fields of mixed radiation 'quality'. Lineal energy spectra will be measured using a Tissue Equivalent Proportional Counter designed for training and operational sorties frequently flown in T-38, Space Shuttle Trainer, and high altitude WB-57 aircraft. Linear energy spectra will be measured over multiple flights using CR-39 plastic nuclear track detectors, as well. Flight records are available for nearly 200,000 sorties flown in NASA aircraft by astronauts and flight officers in the Johnson Space Center Aircraft Operations Division over the past 25 years, yet this database only partially documents the complete exposure histories. Age-dependent risk analysis indicates significant impact, particularly to young women who anticipate lengthy on-orbit careers

  14. A contribution towards establishing more comfortable space weather to cope with increased human space passengers for ISS shuttles

    Science.gov (United States)

    Kalu, A.

    Space Weather is a specialized scienctific descipline in Meteorology which has recently emerged from man's continued research efforts to create a familiar spacecraft environment which is physiologically stable and life sustaining for astronauts and human passengers in distant space travels. As the population of human passengers in space shuttles rapidly increases, corresponding research on sustained micro-climate of spacecrafts is considered necessary and timely. This is because existing information is not meant for a large population in spacecrafts. The paper therefore discusses the role of meteorology (specifically micrometeorology) in relation to internal communication, spacecraft instrumentation and physiologic comfort of astronauts and space passengers (the later may not necessarily be trained astronauts, but merely business men or tourist space travellers for business transactions in the International Space Station (ISS)). It is recognized that me eorology which is a fundamental science amongt multidiscplinary sciences has been found to be vital in space travels and communication. Space weather therefore appears in slightly different format where temperature and humidity changes and variability within the spacecraft exert very significant influences on the efficiency of astronauts and the effectiveness of the various delicate instrument gadgets aimed at reducing the frequency of computer failures and malfunction of other instruments on which safety of the spacecraft depends. Apart from the engineering and technological problems which space scientists must have to overcome when human population in space shuttles increases as we now expect, based on evidence from successful missions to ISS, the maint enace of physiologic comfort state of astronauts, which, as far as scientifically possible, should be as near as possible to their Earth-Atmosphere condition. This is one of the most important and also most difficult conditions to attain. It demands a mor e

  15. Philosophy on astronaut protection: Perspective of an astronaut

    International Nuclear Information System (INIS)

    Baker, E.

    1997-01-01

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the 'job' of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one's risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk

  16. Exploration of Habitability Factors Influencing Short Duration Spaceflight: Structured Postflight Interviews of Shuttle Crewmembers

    Science.gov (United States)

    Locke, James; Leveton, Lauren; Keeton, Kathryn; Whitmire, Alexandra

    2009-01-01

    Astronauts report significant difficulties with sleep during Space missions. Psychological, physiological, and habitability factors are all thought to play a role in spaceflight insomnia. Crewmembers gain experience with the spaceflight sleep environment as their missions progress, but this knowledge is not formally collected and communicated to subsequent crews. This lack of information transfer prevents crews from optimizing their capability to sleep during mission, which leads to fatigue and its potentially deleterious effects. The goal of this project is astronauts with recent spaceflight experience to gather their knowledge of and insights into sleep in Space. Structured interviews consisting of standardized closed and open-ended questionnaires are administered to astronauts who have flown on the Space Shuttle since the Columbia disaster. It is hoped that review and analysis of the pooled responses to the interview questions will lead to greater understanding of the sleep environment during short duration spaceflight, with attention placed on problem aspects and their potential solutions.

  17. Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program

    Science.gov (United States)

    Winter, D. L.

    1975-01-01

    Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.

  18. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    Science.gov (United States)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  19. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    Science.gov (United States)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  20. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    Science.gov (United States)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  1. Subjective Sleep Experience During Shuttle Missions

    Science.gov (United States)

    Whitmire, Alexandra; Slack, Kelley; Locke, James; Patterson, Holly; Faulk, Jeremy; Keeton, Kathryn; Leveton, Lauren

    2012-01-01

    It is now known that for many astronauts, sleep is reduced in spaceflight. Given that sleep is intimately tied to performance, safety, health, and well being, it is important to characterize factors that hinder sleep in space, so countermeasures can be implemented. Lessons learned from current spaceflight can be used to inform the development of space habitats and mitigation strategies for future exploration missions. The purpose of this study was to implement a survey and one-on-one interviews to capture Shuttle flyers' subjective assessment of the factors that interfered with a "good nights sleep" during their missions. Strategies that crewmembers reported using to improve their sleep quality during spaceflight were also discussed. Highlights from the interview data are presented here.

  2. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    Science.gov (United States)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  3. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    Science.gov (United States)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to

  4. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix F: Data base plots for SSME tests 750-120 through 750-200

    Science.gov (United States)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is presented. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level.

  5. Microparticle impacts in space: Results from Solar Max and shuttle witness plate inspections

    Science.gov (United States)

    Mckay, David S.

    1989-01-01

    The Solar Maximum Satellite developed electronic problems after operating successfully in space for several years. Astronauts on Space Shuttle mission STS-41C retrieved the satellite into the orbiter cargo bay, replaced defective components, and re-deployed the repaired satellite into orbit. The defective components were returned to Earth for study. The space-exposed surfaces were examined. The approach and objectives were to: document morphology of impact; find and analyze projectile residue; classify impact by origin; determine flux distribution; and determine implications for space exposure. The purpose of the shuttle witness plate experiment was to detect impacts from PAM D2 solid rocket motor; determine flux and size distribution of particles; and determine abrasion effects on various conditions. Results are given for aluminum surfaces, copper surfaces, stainless steel surfaces, Inconel surfaces, and quartz glass surfaces.

  6. Astronaut Demographic Database: Everything You Want to Know About Astronauts and More

    Science.gov (United States)

    Keeton, Kathryn; Patterson, Holly

    2011-01-01

    A wealth of information regarding the astronaut population is available that could be especially useful to researchers. However, until now, it has been difficult to obtain that information in a systematic way. Therefore, this "astronaut database" began as a way for researchers within the Behavioral Health and Performance Group to keep track of the ever growing astronaut corps population. Before our effort, compilation of such data could be found, but not in a way that was easily acquired or accessible. One would have to use internet search engines, read through lengthy and potentially inaccurate informational sites, or read through astronaut biographies compiled by NASA. Astronauts are a unique class of individuals and, by examining such information, which we dubbed "Demographics," we hoped to find some commonalities that may be useful for other research areas and future research topics. By organizing the information pertaining to astronauts1 in a formal, unified catalog, we believe we have made the information more easily accessible, readily useable, and user friendly. Our end goal is to provide this database to others as a highly functional resource within the research community. Perhaps the database can eventually be an official, published document for researchers to gain full access.

  7. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    Science.gov (United States)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  8. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix B: Data base plots for SSME tests 901-290 through 901-414

    Science.gov (United States)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.

  9. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    Science.gov (United States)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  10. Development of an expert system for analysis of Shuttle atmospheric revitalization and pressure control subsystem anomalies

    Science.gov (United States)

    Lafuse, Sharon A.

    1991-01-01

    The paper describes the Shuttle Leak Management Expert System (SLMES), a preprototype expert system developed to enable the ECLSS subsystem manager to analyze subsystem anomalies and to formulate flight procedures based on flight data. The SLMES combines the rule-based expert system technology with the traditional FORTRAN-based software into an integrated system. SLMES analyzes the data using rules, and, when it detects a problem that requires simulation, it sets up the input for the FORTRAN-based simulation program ARPCS2AT2, which predicts the cabin total pressure and composition as a function of time. The program simulates the pressure control system, the crew oxygen masks, the airlock repress/depress valves, and the leakage. When the simulation has completed, other SLMES rules are triggered to examine the results of simulation contrary to flight data and to suggest methods for correcting the problem. Results are then presented in form of graphs and tables.

  11. Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction

    Science.gov (United States)

    McCluskey, R.

    2004-01-01

    Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a pcorrelations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.

  12. Concepts and embodiment design of a reentry recumbent seating system for the NASA Space Shuttle

    Science.gov (United States)

    Mcmillan, Scott; Looby, Brent; Devany, Chris; Chudej, Chris; Brooks, Barry

    1993-01-01

    This report deals with the generation of a recumbent seating system which will be used by NASA to shuttle astronauts from the Russian space station Mir. We begin by examining the necessity for designing a special couch for the returning astronauts. Next, we discuss the operating conditions and constraints of the recumbent seating system and provide a detailed function structure. After working through the conceptual design process, we came up with ten alternative designs which are presented in the appendices. These designs were evaluated and weighted to systematically determine the best choice for embodiment design. A detailed discussion of all components of the selected system follows with design calculations for the seat presented in the appendices. The report concludes with an evaluation of the resulting design and recommendations for further development.

  13. Astronauts' menu problem.

    Science.gov (United States)

    Lesso, W. G.; Kenyon, E.

    1972-01-01

    Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.

  14. Astronauts Stefanyshyn-Piper, Lindsey and Currie greet First Lady Hillary Clinton at the Skid Strip

    Science.gov (United States)

    1999-01-01

    First Lady Hillary Rodham Clinton is greeted by Astronauts (from left) Heidemarie M. Stefanyshyn-Piper, Steven W. Lindsey, and Nancy Jane Currie upon Mrs. Clinton's arrival at the Skid Strip at Cape Canaveral Air Station. She and her daughter, Chelsea (far right) are here to view the launch of Space Shuttle mission STS- 93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  15. Astronautics and psychology: recommendations for the psychological training of astronauts.

    Science.gov (United States)

    Haupt, G F

    1991-11-01

    The methods presently applied in the psychological training of astronauts are based on the principle of ensuring maximum performance of astronauts during missions. The shortcomings are obvious since those undergoing training provide nothing but the best ability to cope with Earth problem situations and add simply an experience of space problem situations as they are presently conceived. Earth attitudes and Earth behaviour remain and are simply modified. Through the utilization of interdisciplinary space knowledge a much higher degree of problem anticipation could be achieved and the astronaut be psychologically transformed into a space-being. This would at the same time stimulate interdisciplinary space research. The interdisciplinary space knowledge already available suggests that space requires not only physical and mental adjustments, but a profoundly new relationship with life.

  16. From Model Rockets to Spacewalks: an Astronaut Physician’s Journey and the Science of the United States’ Space Program*

    OpenAIRE

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can ...

  17. Astronaut Joseph Kerwin takes blood sample from Astronaut Charles Conrad

    Science.gov (United States)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin (right), Skylab 2 science pilot and a doctor of medicine, takes a blood sample from Astronaut Charles Conrad Jr., Sylab 2 commander, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1 and 2 space station cluster in Earth orbit. The blood sampling was part of the Skylab Hematology and Immunology Experiment M110 series.

  18. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    Science.gov (United States)

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  19. Determination of the Risk of Radiation-Associated Circulatory and Cancer Disease Mortality in a NASA Early Astronaut Cohort

    Science.gov (United States)

    Elgart, S. R.; Chappell, L.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Little, M.; Patel, Z. S.

    2017-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to determine if there was sufficient evidence for excess risk of cardiovascular disease and cancer in early NASA astronaut cohorts. NASA astronauts in selection groups 1-7 were chosen; this relatively homogeneous cohort consists of 73 white males, who unlike today's astronauts, maintained similar smoking and drinking habits to the general US population, and have published radiation doses. The participants flew in space on missions Mercury through Shuttle and received space radiation doses between 0-74.1 milligrays. Cause of death information was obtained from the Lifetime Surveillance of Astronaut Health (LSAH) program at NASA Johnson Space Center. Mortality was compared with the US male population. Trends of mortality with dose were assessed using a logistic model, fitted by maximum likelihood. Only 32 (43.84 percent) of the 73 early astronauts have died. Standard mortality ratios (SMRs) for cancer (n=7, SMR=43.4, 95 percent CI 17.8, 84.9), all circulatory disease (n=7, SMR=33.2, 95 percent CI 13.7, 65.0), and ischemic heart disease (IHD) (n=5, SMR=40.1, 95 percent CI 13.2, 89.4) were significantly lower than for the US white male population. For cerebrovascular disease, the upper confidence interval for SMR included 100, indicating it was not significantly different from the US population (n=2, SMR = 77.0, 95 percent CI 9.4, 268.2). The power of the study is low and remains below 10 percent even when risks 10 times those reported in the literature are assumed. Due to small sample size, there is currently insufficient statistical power to evaluate space

  20. Analysis of aluminum protective effect for female astronauts in solar particle events

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-01-01

    Full Text Available In order to ensure the health and safety of female astronauts in space, the risks of space radiation should be evaluated, and effective methods for protecting against space radiation should be investigated. In this paper, a dose calculation model is established for Chinese female astronauts. The absorbed doses of some organs in two historical solar particle events are calculated using Monte Carlo methods, and the shielding conditions are 0 gcm-2 and 5 gcm-2 aluminum, respectively. The calculated results are analysed, compared, and discussed. The results show that 5 gcm-2 aluminum cannot afford enough effective protection in solar particle events. Hence, once encountering solar particle events in manned spaceflight missions, in order to ensure the health and safety of female astronauts, they are not allowed to stay in the pressure vessel, and must enter into the thicker shielding location such as food and water storage cabin.

  1. Astronauts Need Their Rest Too: Sleep-Wake Actigraphy and Light Exposure During Space Flight

    Science.gov (United States)

    Czeisler, Charles; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    The success and effectiveness of human space flight depends on astronauts' ability to maintain a high level of cognitive performance and vigilance. This alert state ensures the proper operation of sophisticated instrumentation. An important way for humans to remedy fatigue and maintain alertness is to get plenty of rest. Astronauts, however, commonly experience difficulty sleeping while in space. During flight, they may also experience disruption of the body's circadian rhythm - the natural phases the body goes through every day as we oscillate between states of high activity during the waking day and recuperation, rest, and repair during nighttime sleep. Both of these factors are associated with impairment of alertness and performance, which could have important consequences during a mission in space. The human body was designed to sleep at night and be alert and active during the day. We receive these cues from the time of day or amount of light, such as the rising or setting of the sun. However, in the environment of the Space Shuttle or the International Space Station where light levels are highly variable, the characteristics of a 24-hour light/dark cycle are not present to cue the astronauts' bodies about what time of the day it is. Astronauts orbiting Earth see a sunset and sunrise every 90 minutes, sending potentially disruptive signals to the area of the brain that regulates sleep. On STS-107, researchers will measure sleep-wake activity with state-of-the-art technology to quantify how much sleep astronauts obtain in space. Because light is the most powerful time cue to the body's circadian system, individual light exposure patterns of the astronauts will also be monitored to determine if light exposure is associated with sleep disruption. The results of this research could lead to the development of a new treatment for sleep disturbances, enabling crewmembers to avoid the decrements in alertness and performance due to sleep deprivation. What we learn

  2. Astronautics Degrees for Space Industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R.; Erwin, D.; Kunc, J.

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science degree program in Astronautics combines basic science and engineering classes with specialized astronautics classes. The Master of Science degree program in Astronautics offers classes in various areas of space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers. The new world of distance learning presents new challenges and opens new opportunities. We show how the transformation of distance learning and particularly the introduction of webcasting transform organization of the program and class delivery. We will describe in detail the academic focus of the program, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  3. A model for the Space Shuttle Main Engine High Pressure Oxidizer Turbopump shaft seal system

    Science.gov (United States)

    Paxson, Daniel E.

    1990-01-01

    A model of the High Pressure Oxidizer Turbopump (HPOTP) shaft seal system on the Space Shuttle Main Engine (SSME) is described. The model predicts the fluid properties and flow rates throughout this system for a number of conditions simulating failed seals. The results agree well with qualitative expectations and redline values but cannot be verified with actual data due to the lack thereof. The results indicate that each failure mode results in a unique distribution of properties throughout the seal system and can therefore be individually identified given the proper instrumentation. Furthermore, the detection process can be built on the principle of qualitative reasoning without the use of exact fluid property values. A simplified implementation of the model which does not include the slinger/labyrinth seal combination has been developed and will be useful for inclusion in a real-time diagnostic system.

  4. Some psychological and engineering aspects of the extravehicular activity of astronauts.

    Science.gov (United States)

    Khrunov, E V

    1973-01-01

    One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some

  5. Astronaut observations of the Persian (Arabian) Gulf during STS-45

    Science.gov (United States)

    Ackleson, Steven G.; Pitts, David E.; Sullivan, Kathryn D.; Reynolds, R. M.

    1992-01-01

    As a result of the 1991 Persian Gulf war, between mid-January and June 1991, the Persian Gulf was contaminated with an estimated 4 to 6 million barrels of crude oil, released directly into the Gulf from refinement facilities, transhipment terminals, and moored tankers along the coast of Kuwait, and precipitated from oil fire smoke plumes. To assess the environmental impact of the oil, an international team of marine scientists representing 14 nations was assembled under the auspices of the United Nations International Oceanic Commission and the Regional Organization for Protection of the Marine Environment to conduct detailed surveys of the Persian Gulf, the Strait of Hormuz, and the Gulf of Oman, including hydrographic, chemical, and biological measurements. To supplement the field surveys and to serve as an aid in data interpretation, astronauts aboard the Space Shuttle Atlantis photographed water features and coastal habitats in the Persian Gulf during mission STS-45 (24 March to 02 April 1992). The astronauts collected 111 hand-held, color photographs of the Gulf (72 70-mm photographs and 39 5-inch photographs) from an altitude of 296 km (160 n.mi.). The photographs reveal distributions in water turbidity associated with outflow from the Shatt-al-Arab and water circulation along the entire coast of Iran and the Strait of Hormuz, coastal wetlands and shallow-water habitats, and sticks appearing in the sunglint pattern, which appear to be oil.

  6. A Noninvasive Miniaturized-Wireless Laser-Doppler Fiber-Optic Sensor for Understanding Distal Fingertip Injuries in Astronauts

    Science.gov (United States)

    Ansari, Rafat R.; Jones, Jeffrey A.; Pollonini, Luca; Rodriquez, Mikael; Opperman, Roedolph; Hochstein, Jason

    2009-01-01

    During extra-vehicular activities (EVAs) or spacewalks astronauts over use their fingertips under pressure inside the confined spaces of gloves/space suits. The repetitive hand motion is a probable cause for discomfort and injuries to the fingertips. We describe a new wireless fiber-optic probe that can be integrated inside the astronaut glove for noninvasive blood perfusion measurements in distal fingertips. In this preliminary study, we present blood perfusion measurements while performing hand-grip exercises simulating the use of space tools.

  7. International Space Station (ISS) Oxygen High Pressure Storage Management

    Science.gov (United States)

    Lewis, John R.; Dake, Jason; Cover, John; Leonard, Dan; Bohannon, Carl

    2004-01-01

    High pressure oxygen onboard the ISS provides support for Extra Vehicular Activities (EVA) and contingency metabolic support for the crew. This high pressure 02 is brought to the ISS by the Space Shuttle and is transferred using the Oxygen Recharge Compressor Assembly (ORCA). There are several drivers that must be considered in managing the available high pressure 02 on the ISS. The amount of O2 the Shuttle can fly up is driven by manifest mass limitations, launch slips, and on orbit Shuttle power requirements. The amount of 02 that is used from the ISS high pressure gas tanks (HPGT) is driven by the number of Shuttle docked and undocked EVAs, the type of EVA prebreath protocol that is used and contingency use of O2 for metabolic support. Also, the use of the ORCA must be managed to optimize its life on orbit and assure that it will be available to transfer the planned amount of O2 from the Shuttle. Management of this resource has required long range planning and coordination between Shuttle manifest on orbit plans. To further optimize the situation hardware options have been pursued.

  8. Space radiation and astronaut safety

    CERN Document Server

    Seedhouse, Erik

    2018-01-01

    This brief explores the biological effects of long-term radiation on astronauts in deep space. As missions progress beyond Earth's orbit and away from the protection of its magnetic shielding, astronauts risk constant exposure to higher levels of galactic cosmic rays and solar particle events. The text concisely addresses the full spectrum of biomedical consequences from exposure to space radiation and goes on to present possible ways to mitigate such dangers and protect astronauts within the limitations of existing technologies.

  9. Geoscience Training for NASA Astronaut Candidates

    Science.gov (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  10. Astronauts Exercising in Space Video

    Science.gov (United States)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  11. Astronaut James S. Voss Performs Tasks in the Destiny Laboratory

    Science.gov (United States)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  12. Which Way is Up? Lessons Learned from Space Shuttle Sensorimotor Research

    Science.gov (United States)

    Wood, S. J.; Reschke, M. F.; Harm, D. L.; Paloski, W. H.; Bloomberg, J. J.

    2011-01-01

    The Space Shuttle Program provided the opportunity to examine sensorimotor adaptation to space flight in unprecedented numbers of astronauts, including many over multiple missions. Space motion sickness (SMS) severity was highly variable across crewmembers. SMS generally lasted 2-3 days in-flight with approximately 1/3 of crewmembers experiencing moderate to severe symptoms, and decreased incidence in repeat flyers. While SMS has proven difficult to predict from susceptibility to terrestrial analogs, symptoms were alleviated by medications, restriction of early activities, maintaining familiar orientation with respect to the visual environment and maintaining contact cues. Adaptive changes were also reflected by the oculomotor and perceptual disturbances experienced early inflight and by the perceptual and motor coordination problems experienced during re-entry and landing. According to crew self-reports, systematic head movements performed during reentry, as long as paced within one's threshold for motion tolerance, facilitated the early readaptation process. The Shuttle provided early postflight crew access to document the initial performance decrements and time course of recovery. These early postflight measurements were critical to inform the program of risks associated with extending the duration of Shuttle missions. Neurological postflight deficits were documented using a standardized subjective rating by flight surgeons. Computerized dynamic posturography was also implemented as a quantitative means of assessing sensorimotor function to support crew return-to-duty assessments. Towards the end of the Shuttle Program, more emphasis has been placed on mapping physiological changes to functional performance. Future commercial flights will benefit from pre-mission training including exposures to launch and entry G transitions and sensorimotor adaptability assessments. While SMS medication usage will continue to be refined, non-pharmacological countermeasures (e

  13. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  14. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis

    Science.gov (United States)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.

    1973-01-01

    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  15. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    Science.gov (United States)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  16. Proteomic Assessment of Fluid Shifts and Association with Visual Impairment and Intracranial Pressure in Twin Astronauts

    Science.gov (United States)

    Rana, Brinda K.; Stenger, Michael B.; Lee, Stuart M. C.; Macias, Brandon R.; Siamwala, Jamila; Piening, Brian Donald; Hook, Vivian; Ebert, Doug; Patel, Hemal; Smith, Scott; hide

    2016-01-01

    BACKGROUND: Astronauts participating in long duration space missions are at an increased risk of physiological disruptions. The development of visual impairment and intracranial pressure (VIIP) syndrome is one of the leading health concerns for crew members on long-duration space missions; microgravity-induced fluid shifts and chronic elevated cabin CO2 may be contributing factors. By studying physiological and molecular changes in one identical twin during his 1-year ISS mission and his ground-based co-twin, this work extends a current NASA-funded investigation to assess space flight induced "Fluid Shifts" in association with the development of VIIP. This twin study uniquely integrates physiological and -omic signatures to further our understanding of the molecular mechanisms underlying space flight-induced VIIP. We are: (i) conducting longitudinal proteomic assessments of plasma to identify fluid regulation-related molecular pathways altered by long-term space flight; and (ii) integrating physiological and proteomic data with genomic data to understand the genomic mechanism by which these proteomic signatures are regulated. PURPOSE: We are exploring proteomic signatures and genomic mechanisms underlying space flight-induced VIIP symptoms with the future goal of developing early biomarkers to detect and monitor the progression of VIIP. This study is first to employ a male monozygous twin pair to systematically determine the impact of fluid distribution in microgravity, integrating a comprehensive set of structural and functional measures with proteomic, metabolomic and genomic data. This project has a broader impact on Earth-based clinical areas, such as traumatic brain injury-induced elevations of intracranial pressure, hydrocephalus, and glaucoma. HYPOTHESIS: We predict that the space-flown twin will experience a space flight-induced alteration in proteins and peptides related to fluid balance, fluid control and brain injury as compared to his pre-flight protein

  17. Designing Interfaces for Astronaut Autonomy in Space

    Science.gov (United States)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  18. Educating Astronauts About Conservation Biology

    Science.gov (United States)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  19. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6

    Science.gov (United States)

    Anderson, P. J.; Johnson, R. L.

    1984-01-01

    Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  20. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts

    Science.gov (United States)

    Arai, Tatsuya; Lee, Kichang; Stenger, Michael B.; Platts, Steven H.; Meck, Janice V.; Cohen, Richard J.

    2011-04-01

    Orthostatic intolerance (OI) is a significant challenge for astronauts after long-duration spaceflight. Depending on flight duration, 20-80% of astronauts suffer from post-flight OI, which is associated with reduced vascular resistance. This paper introduces a novel algorithm for continuously monitoring changes in total peripheral resistance (TPR) by processing the peripheral arterial blood pressure (ABP). To validate, we applied our novel mathematical algorithm to the pre-flight ABP data previously recorded from twelve astronauts ten days before launch. The TPR changes were calculated by our algorithm and compared with the TPR value estimated using cardiac output/heart rate before and after phenylephrine administration. The astronauts in the post-flight presyncopal group had lower pre-flight TPR changes (1.66 times) than those in the non-presyncopal group (2.15 times). The trend in TPR changes calculated with our algorithm agreed with the TPR trend calculated using measured cardiac output in the previous study. Further data collection and algorithm refinement are needed for pre-flight detection of OI and monitoring of continuous TPR by analysis of peripheral arterial blood pressure.

  1. Shuttle APS propellant thermal conditioner study

    Science.gov (United States)

    Pearson, W. E.

    1971-01-01

    A study program was performed to allow selection of thermal conditioner assemblies for superheating O2 and H2 at supercritical pressures. The application was the auxiliary propulsion system (APS) for the space shuttle vehicle. The O2/H2 APS propellant feed system included propellant conditioners, of which the thermal conditioner assemblies were a part. Cryogens, pumped to pressures above critical, were directed to the thermal conditioner assembly included: (1) a gas generator assembly with ignition system and bipropellant valves, which burned superheated O2 and H2 at rich conditions; (2) a heat exchanger assembly for thermal conditioning of the cryogenic propellant; and (3) a dump nozzle for heat exchanger exhaust.

  2. STS-71 astronauts training in Russia

    Science.gov (United States)

    1994-01-01

    Astronauts Norman E. Thagard and Bonnie J. Dunbar in cosmonaut space suits in the Training Simulator Facility at the Gagarin Cosmonaut Training Center (Star City), near Moscow, Russia. In March 1995, astronaut Thagard is scheduled to be launched in a Russ

  3. STS-71 astronauts before egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Robert L. Gibson (left), STS-71 mission commander, converses with two crew mates prior to emergency egress training in the Systems Integration Facility at JSC. Astronaut Bonnie J. Dunbar and Gregory J. Harbaugh are attired in training versions o

  4. A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment

    Science.gov (United States)

    Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.

    1982-01-01

    A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.

  5. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    Science.gov (United States)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  6. Shoulder Injury Incidence Rates in NASA Astronauts

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Foy, Millennia; Wear, Mary L.; Van Baalen, Mary

    2014-01-01

    Evaluation of the astronaut shoulder injury rates began with an operational concern at the Neutral Buoyancy Laboratory (NBL) during Extravehicular Activity (EVA) training. An astronaut suffered a shoulder injury during an NBL training run and commented that it was possibly due to a hardware issue. During the subsequent investigation, questions arose regarding the rate of shoulder injuries in recent years and over the entire history of the astronaut corps.

  7. Moon bound choosing and preparing NASA's lunar astronauts

    CERN Document Server

    Burgess, Colin

    2013-01-01

    Often lost in the shadow of the first group of astronauts for the Mercury missions, the second and third groups included the leading figures for NASA's activities for the following two decades. “Moon Bound” complements the author’s recently published work, “Selecting the Mercury Seven” (2011), extending the story of the men who helped to launch human spaceflight and broaden the American space program. Although the initial 1959 group became known as the legendary pioneering Mercury astronauts, the astronauts of Groups 2 and 3 gave us many household names. Sixteen astronauts from both groups traveled to the Moon in Project Apollo, with several actually walking on the Moon, one of them being Neil Armstrong. This book draws on interviews to tell the astronauts' personal stories and recreate the drama of that time. It describes the process by which they were selected as astronauts and explains how the criteria had changed since the first group. “Moon Bound” is divided into two parts, recounting the b...

  8. Psychosocial issues in space: results from Shuttle/Mir

    Science.gov (United States)

    Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Bostrom, A.; Kozerenko, O.; Sled, A.; Marmar, C. R.

    2001-01-01

    Important psychosocial issues involving tension, cohesion, leader support, and displacement of negative emotions were evaluated in a 4 1/2-year study involving five U.S. and four Russian Shuttle/Mir space missions. Weekly mood and group climate questionnaires were completed by five U.S. astronauts, eight Russian cosmonauts, and 42 U.S. and 16 Russian mission control subjects. There were few findings that supported our hypothesized changes in tension, cohesion, and leader support in crew and ground subjects using various time models, although crewmembers reported decreasing leader support in the 2nd half of the missions, and astronauts showed some evidence of a novelty effect in the first few weeks. There was no evidence suggesting a 3rd quarter effect among crewmembers on any of the 21 subscales evaluated. In contrast, there was strong evidence to support the hypothesized displacement of tension and negative emotions from crewmembers to mission control personnel and from mission control personnel to management. There were several significant differences in response between Americans vs. Russians, crewmembers vs. mission control personnel, and subjects in this study vs. people in comparable groups on Earth. Subject responses before, during, and after the missions were similar, and we did not find evidence for asthenia in space. Critical incidents that were reported generally dealt with events on-board the Mir and interpersonal conflicts, although most of the responses were from a relatively small number of subjects. Our findings have implications for future training and lead to a number of countermeasures.

  9. Low urinary albumin excretion in astronauts during space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2003-01-01

    BACKGROUND: Physiological changes occur in man during space missions also at the renal level. Proteinuria was hypothesized for space missions but research data are missing. METHODS: Urinary albumin, as an index of proteinuria, and other variables were analyzed in 4 astronauts during space missions...... onboard the MIR station and on the ground (control). Mission duration before first urine collection in the four astronauts was 4, 26, 26, and 106 days, respectively. On the ground, data were collected 2 months before mission in two astronauts, 6 months after in the other astronauts. A total of twenty......-two 24-hour urine collections were obtained in space (n per astronaut = 1-14) and on the ground (n per astronaut = 2-12). Urinary albumin was measured by radioimmunoassay. For each astronaut, mean of data in space and on the ground was defined as individual average. RESULTS: The individual averages of 24...

  10. Space Shuttle main engine product improvement

    Science.gov (United States)

    Lucci, A. D.; Klatt, F. P.

    1985-01-01

    The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.

  11. Characterization of Space Shuttle Thermal Protection System (TPS) Materials for Return-to-Flight following the Shuttle Columbia Accident Investigation

    Science.gov (United States)

    Wingard, Doug

    2006-01-01

    During the Space Shuttle Columbia Accident Investigation, it was determined that a large chunk of polyurethane insulating foam (= 1.67 lbs) on the External Tank (ET) came loose during Columbia's ascent on 2-1-03. The foam piece struck some of the protective Reinforced Carbon-Carbon (RCC) panels on the leading edge of Columbia's left wing in the mid-wing area. This impact damaged Columbia to the extent that upon re-entry to Earth, superheGed air approaching 3,000 F caused the vehicle to break up, killing all seven astronauts on board. A paper after the Columbia Accident Investigation highlighted thermal analysis testing performed on External Tank TPS materials (1). These materials included BX-250 (now BX-265) rigid polyurethane foam and SLA-561 Super Lightweight Ablator (highly-filled silicone rubber). The large chunk of foam from Columbia originated fiom the left bipod ramp of the ET. The foam in this ramp area was hand-sprayed over the SLA material and various fittings, allowed to dry, and manually shaved into a ramp shape. In Return-to-Flight (RTF) efforts following Columbia, the decision was made to remove the foam in the bipod ramp areas. During RTF efforts, further thermal analysis testing was performed on BX-265 foam by DSC and DMA. Flat panels of foam about 2-in. thick were sprayed on ET tank material (aluminum alloys). The DSC testing showed that foam material very close to the metal substrate cured more slowly than bulk foam material. All of the foam used on the ET is considered fully cured about 21 days after it is sprayed. The RTF culminated in the successful launch of Space Shuttle Discovery on 7-26-05. Although the flight was a success, there was another serious incident of foam loss fiom the ET during Shuttle ascent. This time, a rather large chunk of BX-265 foam (= 0.9 lbs) came loose from the liquid hydrogen (LH2) PAL ramp, although the foam did not strike the Shuttle Orbiter containing the crew. DMA testing was performed on foam samples taken fiom

  12. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    Science.gov (United States)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  13. An Innovative Virtual Training Simulator for Columbus Astronauts

    Science.gov (United States)

    Risola, F.; Morzuch, G.

    2004-06-01

    The International Space Station (ISS) is a co-operative programme among the main world space agencies. The European Space Agency contribution is the Automated Transfer Vehicle and the Columbus Orbital Facility, which is the European laboratory of the ISS. It provides a pressurized environment to house up to ten payload racks containing scientific instruments for the conduct of a broad band of experiments. The astronauts on-board of the ISS interact with the payloads for the preparation and execution of the experiments and before their expedition, they have to train on ground in the most realistic manner. The training is carried out at the European Astronauts Centre in the Columbus Trainer, a complex facility that reproduces the physical layout of the ISS European laboratory and a set of payload racks simulators. These simulators are being developed by Dataspazio with an innovative low-cost approach combining the high realism of the simulation with the flexibility and re-usability of the payloads simulators. The hearth of this approach is the interactive payload Virtual Front-panel Interface. The development of these high-realism training payload simulators incorporate several technological issues such as Digital Light ProcessingTM, projected capacitance touch-screen, high-fidelity graphics and simulation software.

  14. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    Science.gov (United States)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  15. Application of regression analysis to creep of space shuttle materials

    International Nuclear Information System (INIS)

    Rummler, D.R.

    1975-01-01

    Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage (less than or equal to 0.65 mm) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on creep behavior and to develop constitutive creep equations for small sets of data, regression techniques are applied and discussed

  16. STS-61B Astronaut Ross During ACCESS Extravehicular Activity

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, VA and the Marshall Space Flight Center (MSFC), ACCESS and EASE were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  17. Cancer Risk in Astronauts: A Constellation of Uncommon Consequences

    Science.gov (United States)

    Milder, Caitlin M.; Elgart, S. Robin; Chappell, Lori; Charvat, Jaqueline M.; Van Baalen, Mary; Huff, Janice L.; Semones, Edward J.

    2017-01-01

    Excess cancers resulting from external radiation exposures have been noted since the early 1950s, when a rise in leukemia rates was first reported in young atomic bomb survivors [1]. Further studies in atomic bomb survivors, cancer patients treated with radiotherapy, and nuclear power plant workers have confirmed that radiation exposure increases the risk of not only leukemia, but also a wide array of solid cancers [2,3]. NASA has long been aware of this risk and limits astronauts' risk of exposure-induced death (REID) from cancer by specifying permissible mission durations (PMD) for astronauts on an individual basis. While cancer is present among astronauts, current data does not suggest any excess of known radiation-induced cancers relative to a comparable population of U.S. adults; however, very uncommon cancers have been diagnosed in astronauts including nasopharyngeal cancer, lymphoma of the brain, and acral myxoinflammatory fibroblastic sarcoma. In order to study cancer risk in astronauts, a number of obstacles must be overcome. Firstly, several factors make the astronaut cohort considerably different from the cohorts that have previously been studied for effects resulting from radiation exposure. The high rate of accidents and the much healthier lifestyle of astronauts compared to the U.S. population make finding a suitable comparison population a problematic task. Space radiation differs substantially from terrestrial radiation exposures studied in the past; therefore, analyses of galactic cosmic radiation (GCR) in animal models must be conducted and correctly applied to the human experience. Secondly, a large enough population of exposed astronauts must exist in order to obtain the data necessary to see any potential statistically significant differences between the astronauts and the control population. Thirdly, confounders and effect modifiers, such as smoking, diet, and other space stressors, must be correctly identified and controlled for in those

  18. Medically induced amenorrhea in female astronauts.

    Science.gov (United States)

    Jain, Varsha; Wotring, Virginia E

    2016-01-01

    Medically induced amenorrhea can be achieved through alterations in the normal regulatory hormones via the adoption of a therapeutic agent, which prevents menstrual flow. Spaceflight-related advantages for medically induced amenorrhea differ according to the time point in the astronaut's training schedule. Pregnancy is contraindicated for many pre-flight training activities as well as spaceflight, therefore effective contraception is essential. In addition, the practicalities of menstruating during pre-flight training or spaceflight can be challenging. During long-duration missions, female astronauts have often continuously taken the combined oral contraceptive pill to induce amenorrhea. Long-acting reversible contraceptives (LARCs) are safe and reliable methods used to medically induce amenorrhea terrestrially but as of yet, not extensively used by female astronauts. If LARCs were used, daily compliance with an oral pill is not required and no upmass or trash would need disposal. Military studies have shown that high proportions of female personnel desire amenorrhea during deployment; better education has been recommended at recruitment to improve uptake and autonomous decision-making. Astronauts are exposed to similar austere conditions as military personnel and parallels can be drawn with these results. Offering female astronauts up-to-date, evidence-based, comprehensive education, in view of the environment in which they work, would empower them to make informed decisions regarding menstrual suppression while respecting their autonomy.

  19. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the

  20. Astronauts Prepare for Mission With Virtual Reality Hardware

    Science.gov (United States)

    2001-01-01

    Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  1. The Application of Leap Motion in Astronaut Virtual Training

    Science.gov (United States)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  2. Integration of the Shuttle RMS/CBM Positioning Virtual Environment Simulation

    Science.gov (United States)

    Dumas, Joseph D.

    1996-01-01

    Constructing the International Space Station, or other structures, in space presents a number of problems. In particular, payload restrictions for the Space Shuttle and other launch mechanisms prohibit assembly of large space-based structures on Earth. Instead, a number of smaller modules must be boosted into orbit separately and then assembled to form the final structure. The assembly process is difficult, as docking interfaces such as Common Berthing Mechanisms (CBMS) must be precisely positioned relative to each other to be within the "capture envelope" (approximately +/- 1 inch and +/- 0.3 degrees from the nominal position) and attach properly. In the case of the Space Station, the docking mechanisms are to be positioned robotically by an astronaut using the 55-foot-long Remote Manipulator System (RMS) robot arm. Unfortunately, direct visual or video observation of the placement process is difficult or impossible in many scenarios. One method that has been tested for aligning the CBMs uses a boresighted camera mounted on one CBM to view a standard target on the opposing CBM. While this method might be sufficient to achieve proper positioning with considerable effort, it does not provide a high level of confidence that the mechanisms have been placed within capture range of each other. It also does nothing to address the risk of inadvertent contact between the CBMS, which could result in RMS control software errors. In general, constraining the operator to a single viewpoint with few, if any, depth cues makes the task much more difficult than it would be if the target could be viewed in three-dimensional space from various viewpoints. The actual work area could be viewed by an astronaut during EVA; however, it would be extremely impractical to have an astronaut control the RMS while spacewalking. On the other hand, a view of the RMS and CBMs to be positioned in a virtual environment aboard the Space Shuttle orbiter or Space Station could provide similar benefits

  3. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  4. CRAFT: Collaborative Rover and Astronauts Future Technology

    Science.gov (United States)

    Da-Poian, V. D. P.; Koryanov, V. V. K.

    2018-02-01

    Our project is focusing on the relationship between astronauts and rovers to best work together during surface explorations. Robots will help and assist astronauts, and will also work autonomously. Our project is to develop this type of rover.

  5. Preflight and postflight microbiological results from 25 space shuttle crews

    Science.gov (United States)

    Pierson, Duane L.; Bassinger, Virginia J.; Molina, Thomas C.; Gunter, Emelie G.; Groves, Theron O.; Cioletti, Louis J.; Mishra, S. K.

    1993-01-01

    Clinical-microbiological investigations are an important aspect of the crew health stabilization program. To ensure that space crews have neither active nor latent infections, clinical specimens, including throat and nasal swabs and urine samples, are collected at 10 days (L-10) and 2days (L-2) before launch, and immediately after landing (L+0). All samples are examined for the presence of bacteria and fungi. In addition, fecal samples are collected at L-10 and examined for bacteria, fungi and parasites. This paper describes clinical-microbiological findings from 144 astronauts participating in 25 Space Shuttle missions spanning Space Transportation System (STS)-26 to STS-50. The spectrum of microbiological findings from the specimens included 25 bacterial and 11 fungal species. Among the bacteria isolated most frequently were Staphylococcus aureus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Streptococcus agalactiae. Candida albicans was the most frequently isolated fungal pathogen.

  6. Hematological measurements in rats flown on Spacelab shuttle SL-3

    International Nuclear Information System (INIS)

    Lange, R.D.; Andrews, R.B.; Gibson, L.A.; Congdon, C.C.; Wright, P.; Dunn, C.D.R.; Jones, J.B.

    1987-01-01

    Previous studies have shown that a decrease in red cell mass occurs in astronauts, and some studies indicate a leukocytosis occurs. A life science module housing young and mature rats was flown on shuttle mission Spacelab 3 (SL-3), and the results of hematology studies of flight and control rats are presented. Statistically significant increases in the hematocrit, red blood cell counts, and hemoglobin determinations, together with a mild neutrophilia and lymphopenia, were found in flight animals. No significant changes were found in bone marrow and spleen cell differentials or erythropoietin determinations. Clonal assays demonstrated an increased erythroid colony formation of flight animal bone marrow cells at erythropoietin doses of 0.02 and 1.0 U/ml but not 0.20 U/ml. These results agree with some but vary from other previously published studies. Erythropoietin assays performed by radioimmunoassay and clonal studies were performed for the first time

  7. Astronautics degrees for the space industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  8. Cardiovascular Disease Outcomes Among the NASA Astronaut Corps

    Science.gov (United States)

    Charvat, Jacqueline M.; Lee, Stuart M. C.; Wear, Mary L.; Stenger, Michael B.; Van Baalen, Mary

    2018-01-01

    BACKGROUND: Acute effects of spaceflight on the cardiovascular system have been studied extensively, but the combined chronic effects of spaceflight and aging are not well understood. Preparation for and participation in spaceflight activities are associated with changes in the cardiovascular system such as decreased carotid artery distensibility and decreased ventricular mass which may lead to an increased risk of cardiovascular disease. Additionally, astronauts who travel into space multiple times or for longer durations may be at an increased risk across their lifespan. To that end, the purpose of this study was to determine the incidence of common cardiovascular disease (CVD) outcomes among the NASA astronaut corps during their active career and through retirement. METHODS: Cardiovascular disease outcomes were defined as reports of any of the following: myocardial infarction (MI), revascularization procedures (coronary artery bypass graft surgery [CABG] or percutaneous coronary intervention [PCI]), hypertension, stroke or transient ischemic attack [TIA], heart failure, or total CVD (as defined by the AHA - combined outcome of MI, Angina Pectoris, heart failure, stroke, and hypertension). Each outcome was identified individually from review of NASA's Electronic Medical Record (EMR), EKG reports, and death certificates using ICD-9 codes as well as string searches of physician notes of astronaut exams that occurred between 1959 and 2016. RESULTS: Of 338 NASA astronauts selected as of 2016, 9 reported an MI, 12 reported a revascularization procedure, (7 PCI and 5 CABG), 4 reported Angina (without MI), 5 reported heart failure, 9 reported stroke/TIA, and 96 reported hypertension. Total CVD was reported in 105 astronauts. No astronaut who had an MI or revascularization procedure flew a spaceflight mission following the event. All MI, revascularization, and stroke events occurred in male astronauts. When reviewing astronaut ECG reports, abnormal ECG reports were found

  9. Increased Intracranial Pressure and Visual Impairment Associated with Long-Duration Spaceflight

    Science.gov (United States)

    Marshall-Bowman, Karina

    2011-01-01

    Although humans have been flying in space since the 1960s, more recent missions have revealed a new suite of physiological adaptations and consequences of space flight. Notably, 60% of long-duration crewmembers (ISS/MIR) and >25% of short-duration (Shuttle) crewmembers have reported subjective degradation in vision (based on debrief comments) (Gibson 2011). Decreased near-visual acuity was demonstrated in 46% of ISS/Mir and 21% of Shuttle crewmembers, resulting in a shift of up to 1-2 diopters in their refractive correction. It is likely that the recently revealed ophthalmic changes have been present since the first days of human space flight, but have been overlooked or attributed to other causations. The reported changes in vision have occurred at various time points throughout missions, with ranging degrees of visual degradation. Although some cases resolved upon return to Earth, several astronauts have not regained preflight visual acuity, indicating that the damage may be permanent. While observing these changes over the years, without other overt symptomology and with the given age range of the flying population, this has largely been attributed to an expected hyperopic shift due to aging. However, the availability of onboard analysis techniques, including visual acuity assessments, retinal imagery, and ultrasounds of the eye and optic nerve tracts, along with more detailed post-flight techniques, has led to the recent recognition of a wider syndrome. Along with vision changes, findings include flattening of the globe, swelling of the optic disc (papilledema), choroidal folds in the retina, swelling of the optic nerve sheath, and visual field defects. It is widely hypothesized that this constellation of findings may be explained by an elevation of intracranial pressure (ICP). Out of the 60% of long-duration astronauts that have reported a subjective degradation in vision, a subset (currently 10 astronauts) have developed this syndrome. The National

  10. In-flight Assessment of Lower Body Negative Pressure as a Countermeasure for Post-flight Orthostatic Intolerance

    Science.gov (United States)

    Charles, J. B.; Stenger, M. B.; Phillips, T. R.; Arzeno, N. M.; Lee, S. M. C.

    2009-01-01

    Introduction. We investigated the efficacy of combining fluid loading with sustained lower body negative pressure (LBNP) to reverse orthostatic intolerance associated with weightlessness during and immediately after Space Shuttle missions. Methods. Shuttle astronauts (n=13) underwent 4 hours of LBNP at -30 mm(Hg) and ingested water and salt ( soak treatment) during flight in two complementary studies. In the first study (n=8), pre-flight heart rate (HR) and blood pressure (BP) responses to an LBNP ramp (5-min stages of -10 mm(Hg) steps to -50 mm(Hg) were compared to responses in-flight one and two days after LBNP soak treatment. In the second study (n=5), the soak was performed 24 hr before landing, and post-flight stand test results of soak subjects were compared with those of an untreated cohort (n=7). In both studies, the soak was scheduled late in the mission and was preceded by LBNP ramp tests at approximately 3-day intervals to document the in-flight loss of orthostatic tolerance. Results. Increased HR and decreased BP responses to LBNP were evident early in-flight. In-flight, one day after LBNP soak, HR and BP responses to LBNP were not different from pre-flight, but the effect was absent the second day after treatment. Post-flight there were no between-group differences in HR and BP responses to standing, but all 5 treatment subjects completed the 5-minute stand test whereas 2 of 7 untreated cohort subjects did not. Discussion. Exaggerated HR and BP responses to LBNP were evident within the first few days of space flight, extending results from Skylab. The combined LBNP and fluid ingestion countermeasure restored in-flight LBNP HR and BP responses to pre-flight levels and provided protection of post-landing orthostatic function. Unfortunately, any benefits of the combined countermeasure were offset by the complexity of its implementation, making it inappropriate for routine application during Shuttle flights.

  11. Radiation hazards to astronauts

    International Nuclear Information System (INIS)

    Bergmann, R.; Hajek, M.; Berger, T.; Reitz, G.; Bilski, P.; Puchalska, M.

    2009-01-01

    Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses at the level of critical radiosensitive organs and tissues. Within the European MATROSHKA experiment, the dose profile in an anthropomorphic phantom body was investigated at intra- and extravehicular activities on the International Space Station. The effective scientific exploitation of obtained dosimetric data is ensured within the 7 th EU Framework Programme project HAMLET. Based on experimental data and radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body shall be developed to further refine estimations of radiation risks on interplanetary long-term missions. (orig.)

  12. History of Space Shuttle Rendezvous

    Science.gov (United States)

    Goodman, John L.

    2011-01-01

    This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.

  13. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  14. Astronaut Neil Armstrong during thermovacuum training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  15. From model rockets to spacewalks: an astronaut physician's journey and the science of the United States' space program.

    Science.gov (United States)

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author's life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA's efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation's plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE).

  16. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  17. Space Shuttle Orbiter oxygen partial pressure sensing and control system improvements

    Science.gov (United States)

    Frampton, Robert F.; Hoy, Dennis M.; Kelly, Kevin J.; Walleshauser, James J.

    1992-01-01

    A program aimed at developing a new PPO2 oxygen sensor and a replacement amplifier for the Space Shuttle Orbiter is described. Experimental design methodologies used in the test and modeling process made it possible to enhance the effectiveness of the program and to reduce its cost. Significant cost savings are due to the increased lifetime of the basic sensor cell, the maximization of useful sensor life through an increased amplifier gain adjustment capability, the use of streamlined production processes for the manufacture of the assemblies, and the refurbishment capability of the replacement sensor.

  18. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on

  19. CERN Shuttles - Enlarged Regular Shuttle Services as from 8/02/2010

    CERN Multimedia

    2010-01-01

    As of Monday 8 February 2010, please note the enhancement of the regular shuttle services: - with now two shuttles dedicated to the transportation within and between both CERN sites, Meyrin and Prevessin with bus stop at more buildings - To and from the Geneva airport every hour (from building 500) to complement the TPG bus Y For timetable details, please click here: http://gs-dep.web.cern.ch/gs-dep/groups/sem/ls/RegularShuttleTimetable_Feb2010.htm GS-SEM

  20. EAC trains its first international astronaut class.

    Science.gov (United States)

    Bolender, Hans; Bessone, Loredana; Schoen, Andreas; Stevenin, Herve

    2002-11-01

    After several years of planning and preparation, ESA's ISS training programme has become operational. Between 26 August and 6 September, the European Astronaut Centre (EAC) near Cologne gave the first ESA advanced training course for an international ISS astronaut class. The ten astronauts who took part--two from NASA, four from Japan and four from ESA--had begun their advanced training programme back in 2001 with sessions at the Johnson Space Center (JSC) in Houston and at the Japanese Training Centre in Tsukuba. During their stay in Cologne, the ten astronauts participated in a total of 33 classroom lessons and hands-on training sessions, which gave them a detailed overview of the systems and subsystems of the Columbus module, the Automated Transfer Vehicle (ATV), and the related crew operations tasks. They were also introduced to the four ESA experiment facilities to be operated inside the Columbus module. After their first week of training at EAC, the astronauts were given the opportunity to see the flight model of the Columbus module being integrated at the site of ESA's ISS prime contractor, Astrium in Bremen. The second week of training at EAC included hands-on instruction on the Columbus Data Management System (DMS) using the recently installed Columbus Crew Training Facility. In preparation for the first advanced crew training session at EAC, two Training Readiness Reviews (TRR) were conducted there in June and August. These reviews were supported by training experts and astronauts from NASA, NASDA and CSA (Canada), who were introduced to ESA's advanced training concept and the development process, and then analysed and evaluated the training flow, content and instructional soundness of lessons and courses, as well as the fidelity of the training facilities and the skills of the ESA training instructors. The International Training Control Board (ITCB), made up of representatives from all of the ISS International Partners and mandated to control and

  1. Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain

  2. Management of the Post-Shuttle Extravehicular Mobility Unit (EMU) Water Circuits

    Science.gov (United States)

    Steele, John W.; Etter, David; Rector, Tony; Hill, Terry; Wells, Kevin

    2011-01-01

    The EMU incorporates two separate water circuits for the rejection of metabolic heat from the astronaut and the cooling of electrical components. The first (the Transport Water Loop) circulates in a semi-closed-loop manner and absorbs heat into a Liquid Coolant and Ventilation Garment (LCVG) warn by the astronaut. The second (the Feed Water Loop) provides water to a cooling device (Sublimator) with a porous plate, and that water subsequently sublimates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. Efforts are underway to streamline the use of a water processing kit (ALCLR) that is being used to periodically clean and disinfect the Transport Loop Water. Those efforts include a fine tuning of the duty cycle based on a review of prior performance data as well as an assessment of a fixed installation of this kit into the EMU backpack or within on-orbit EMU interface hardware. Furthermore, testing is being conducted to ensure compatibility between the International Space Station (ISS) Water Processor Assembly (WPA) effluent and the EMU Sublimator as a prelude to using the WPA effluent as influent to the EMU Feed Water loop. This work is undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  3. Space shuttle booster multi-engine base flow analysis

    Science.gov (United States)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  4. Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques

    Science.gov (United States)

    Goodman, John L.; Walker, Stephen R.

    2009-01-01

    Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.

  5. Radiation monitoring system for astronauts

    International Nuclear Information System (INIS)

    Thomson, I.; MacKay, G.; Ng, A.; Tomi, L.

    1996-01-01

    Astronauts in space are constantly under the bombardment of radiation particles from trapped electrons, and trapped proton. In addition, cosmic rays, while penetrating the spacecraft shell, generate secondary radiation of neutrons. As astronauts' stay in space is getting longer, the need for a real-time radiation monitoring device has become critical. Thermoluminescent dosemeter (TLD), used onboard both the MIR and the Space Transportation System (STS), cannot provide real-time dose reading. This paper describes a real-time direct read-out device, currently under development, which can measure skin, eye, and Blood Forming Organ (BFO) doses separately. (author)

  6. STS-71 astronauts and cosmonauts during egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Robert L. Gibson (arms folded, near center) STS-71 mission commander, joins several crew mates during a briefing preceding emergency egress training in the Systems Integration Facility at JSC. Astronauts Bonnie J. Dunbar and Gregory J. Harbaugh

  7. Traditional Cardiovascular Risk Factors as Predictors of Cardiovascular Events in the U.S. Astronaut Corps

    Science.gov (United States)

    Halm, M. K.; Clark, A.; Wear, M. L.; Murray, J. D.; Polk, J. D.; Amirian, E.

    2009-01-01

    Risk prediction equations from the Framingham Heart Study are commonly used to predict the absolute risk of myocardial infarction (MI) and coronary heart disease (CHD) related death. Predicting CHD-related events in the U.S. astronaut corps presents a monumental challenge, both because astronauts tend to live healthier lifestyles and because of the unique cardiovascular stressors associated with being trained for and participating in space flight. Traditional risk factors may not hold enough predictive power to provide a useful indicator of CHD risk in this unique population. It is important to be able to identify individuals who are at higher risk for CHD-related events so that appropriate preventive care can be provided. This is of special importance when planning long duration missions since the ability to provide advanced cardiac care and perform medical evacuation is limited. The medical regimen of the astronauts follows a strict set of clinical practice guidelines in an effort to ensure the best care. The purpose of this study was to evaluate the utility of the Framingham risk score (FRS), low-density lipoprotein (LDL) and high-density lipoprotein levels, blood pressure, and resting pulse as predictors of CHD-related death and MI in the astronaut corps, using Cox regression. Of these factors, only two, LDL and pulse at selection, were predictive of CHD events (HR(95% CI)=1.12 (1.00-1.25) and HR(95% CI)=1.70 (1.05-2.75) for every 5-unit increase in LDL and pulse, respectively). Since traditional CHD risk factors may lack the specificity to predict such outcomes in astronauts, the development of a new predictive model, using additional measures such as electron-beam computed tomography and carotid intima-media thickness ultrasound, is planned for the future.

  8. Shuttle Discovery Landing at Edwards

    Science.gov (United States)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout

  9. Seismic excitation by space shuttles

    Science.gov (United States)

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  10. Screening and Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James; Sargsyan, Ashot; Garcia, Kathleen

    2017-01-01

    Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.

  11. Methodology for astronaut reconditioning research.

    Science.gov (United States)

    Beard, David J; Cook, Jonathan A

    2017-01-01

    Space medicine offers some unique challenges, especially in terms of research methodology. A specific challenge for astronaut reconditioning involves identification of what aspects of terrestrial research methodology hold and which require modification. This paper reviews this area and presents appropriate solutions where possible. It is concluded that spaceflight rehabilitation research should remain question/problem driven and is broadly similar to the terrestrial equivalent on small populations, such as rare diseases and various sports. Astronauts and Medical Operations personnel should be involved at all levels to ensure feasibility of research protocols. There is room for creative and hybrid methodology but careful systematic observation is likely to be more achievable and fruitful than complex trial based comparisons. Multi-space agency collaboration will be critical to pool data from small groups of astronauts with the accepted use of standardised outcome measures across all agencies. Systematic reviews will be an essential component. Most limitations relate to the inherent small sample size available for human spaceflight research. Early adoption of a co-operative model for spaceflight rehabilitation research is therefore advised. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Social and Cultural Issues During Shuttle/Mir Space Missions

    Science.gov (United States)

    Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Gushin, Vadim; Weiss, Daniel S.; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.

    2000-07-01

    A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were signficantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions.

  13. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  14. Space Shuttle - A personal view

    Science.gov (United States)

    Mark, H.

    1977-01-01

    A typical flight profile for the Space Shuttle is reviewed, and the operation of the Spacelab, as well as deployment of a satellite from the Shuttle, is considered. Selection of crews for a Space Shuttle mission, which may include as many as four payload specialists, is also discussed. Since medical requirements and flight training standards need not be as high for payload specialists as for the three members of the flight crew, the Shuttle may provide an opportunity for many scientists to perform experiments in space. Investigations of the critical opalescence of fluids and laser holography are proposed for Shuttle missions; X-ray astronomy is another likely candidate for inclusion in the program.

  15. Psychological training of German science astronauts.

    Science.gov (United States)

    Manzey, D; Schiewe, A

    1992-07-01

    Although the significance of psychosocial issues of manned space flights has been discussed very often in recent literature, up to now, very few attempts have been made in North-America or Europe to provide astronaut candidates or spacecrew members with some kind of psychological training. As a first attempt in this field, a psychological training program for science astronauts is described, which has been developed by the German Aerospace Research Establishment and performed as part of the mission-independent biomedical training of the German astronauts' team. In contrast to other training concepts, this training program focused not only on skills needed to cope with psychosocial issues regarding long-term stays in space, but also on skills needed to cope with the different demands during the long pre-mission phase. Topics covered in the training were "Communication and Cooperation", "Stress-Management", "Coping with Operational Demands", "Effective Problem Solving in Groups", and "Problem-Oriented Team Supervision".

  16. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    Science.gov (United States)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  17. Undergraduate Astronautics at the United States Naval Academy.

    Science.gov (United States)

    Bagaria, William J.

    1991-01-01

    The aerospace engineering curriculum at the U.S. Naval Academy which includes an astronautical and an aeronautical track is described. The objective of the program is to give students the necessary astronautical engineering background to perform a preliminary spacecraft design during the last semester of the program. (KR)

  18. Results of investigations conducted in the LaRC 8-foot transonic pressure tunnel using the 0.010-scale 72-OTS model of the space shuttle integrated vehicle (IA93), volume 2

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Test procedures, history, and plotted coefficient data are presented for an aero-loads investigation on the updated configuration-5 space shuttle launch vehicle at Mach numbers from 0.600 to 1.205. Six-component vehicle forces and moments, base and sting-cavity pressures, elevon hinge moments, wing-root bending and torsion moments, and normal shear force data were obtained. Full simulation of updated vehicle protuberances and attach hardware was employed.

  19. From Model Rockets to Spacewalks: an Astronaut Physician’s Journey and the Science of the United States’ Space Program*

    Science.gov (United States)

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA’s efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation’s plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE). PMID:18528479

  20. Latent Virus Reactivation in Astronauts and Shingles Patients

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  1. Three astronauts inside Command Module Simulator during Apollo Simulation

    Science.gov (United States)

    1968-01-01

    Three astronauts inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Left to right are Astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  2. Astronauts Armstrong and Scott arrive at Hickam Field, Hawaii

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott, pilot, arrive at Hickam Field, Hawaii on their way from Naha, Okinawa, to Cape Kennedy, Florida. Astronaut Walter M. Schirra Jr. is at extreme left.

  3. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    Science.gov (United States)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  4. Characterizing Fractures Across the Astronaut Corps: Preliminary Findings from Population-Level Analysis

    Science.gov (United States)

    Rossi, Meredith M.; Charvat, Jacqueline; Sibonga, Jean; Sieker, Jeremy

    2017-01-01

    Despite evidence of bone loss during spaceflight and operational countermeasures to mitigate this loss, the subsequent risk of fracture among astronauts is not known. The physiologic process of diminished bone density and bone recovery during or following spaceflight is multifactorial. Such factors as age, sex, fracture history, and others may combine to increase fracture risk among astronauts. As part of the 2016 Bone Research and Clinical Advisory Panel (RCAP), the authors analyzed data collected on 338 NASA astronauts to describe the demographics, bone-relevant characteristics, and fracture history of the astronaut population. The majority of the population are male (n=286, 84.6%), have flown at least one mission (n=306, 90.5%), and were between the ages of 30 and 49 at first mission (n=296, 96.7% of those with at least one mission). Of the 338 astronauts, 241 (71.3%) experienced a fracture over the course of their lifetime. One hundred and five (43.5%) of these 241 astronauts only experienced a fracture prior to being selected into the Astronaut Corps, whereas 53 (22.0%) only experienced a fracture after selection as an astronaut. An additional 80 astronauts (33.2%) had both pre- and post-selection fractures. The remaining 3 astronauts had a fracture of unknown date, which could not be categorized as pre- or post-selection. Among the 133 astronauts with at least one post-selection fracture, males comprised 90.2% (n=120) compared to 84.5% of the entire Corps, and females accounted for 9.8% (n=13) compared to 15.4% of the Corps. Ninety-seven of the 133 astronauts with post-selection fractures (72.9%) had one fracture event, 22 (16.5%) had two fractures, and 14 (10.5%) had three or more fractures. Some astronauts with multiple fractures suffered these in a single event, such as an automobile accident. The 133 astronauts with a post-selection fracture accounted for a total of 188 fracture events. One hundred and four (78.2%) of astronauts with post

  5. Food packages for Space Shuttle

    Science.gov (United States)

    Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

    1978-01-01

    The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

  6. High Pressure Industrial Water Facility

    Science.gov (United States)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  7. Enhancing astronaut performance using sensorimotor adaptability training

    OpenAIRE

    Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the bal...

  8. Atrial Arrhythmias in Astronauts. Summary of a NASA Summit

    Science.gov (United States)

    Barr, Yael; Watkins, Sharmila; Polk, J. D.

    2011-01-01

    This slide presentation reviews the findings of a panel of heart experts brought together to study if atrial arrhythmias more prevalent in astronauts, and potential risk factors that may predispose astronauts to atrial arrhythmias. The objective of the panel was to solicit expert opinion on screening, diagnosis, and treatment options, identify gaps in knowledge, and propose relevant research initiatives. While Atrial Arrhythmias occur in approximately the same percents in astronauts as in the general population, they seem to occur at younger ages in astronauts. Several reasons for this predisposition were given: gender, hypertension, endurance training, and triggering events. Potential Space Flight-Related Risk factors that may play a role in precipitating lone atrial fibrillation were reviewed. There appears to be no evidence that any variable of the space flight environment increases the likelihood of developing atrial arrhythmias during space flight.

  9. Train Like an Astronaut Educational Outreach

    Science.gov (United States)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  10. Mission X: Train Like an Astronaut Challenge

    Science.gov (United States)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  11. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    Science.gov (United States)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  12. The Functional Task Test (FTT): An Interdisciplinary Testing Protocol to Investigate the Factors Underlying Changes in Astronaut Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.; hide

    2011-01-01

    Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.

  13. Psychometric Personality Differences Between Candidates in Astronaut Selection.

    Science.gov (United States)

    Mittelstädt, Justin M; Pecena, Yvonne; Oubaid, Viktor; Maschke, Peter

    This paper investigates personality traits as potential factors for success in an astronaut selection by comparing personality profiles of unsuccessful and successful astronaut candidates in different phases of the ESA selection procedure. It is further addressed whether personality traits could predict an overall assessment rating at the end of the selection. In 2008/2009, ESA performed an astronaut selection with 902 candidates who were either psychologically recommended for mission training (N = 46) or failed in basic aptitude (N = 710) or Assessment Center and interview testing (N = 146). Candidates completed the Temperament Structure Scales (TSS) and the NEO Personality Inventory Revised (NEO-PI-R). Those candidates who failed in basic aptitude testing showed higher levels of Neuroticism (M = 49.8) than the candidates who passed that phase (M = 45.4 and M = 41.6). Additionally, candidates who failed in basic testing had lower levels of Agreeableness (M = 132.9) than recommended candidates (M = 138.1). TSS scales for Achievement (r = 0.19) and Vitality (r = 0.18) showed a significant correlation with the overall assessment rating given by a panel board after a final interview. Results indicate that a personality profile similar to Helmreich's "Right Stuff" is beneficial in astronaut selection. Influences of test anxiety on performance are discussed. Mittelstädt JM, Pecena Y, Oubaid V, Maschke P. Psychometric personality differences between candidates in astronaut selection. Aerosp Med Hum Perform. 2016; 87(11):933-939.

  14. TDRSS S-shuttle unique receiver equipment

    Science.gov (United States)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  15. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis

    Science.gov (United States)

    Fang, Xianjie; Cacherat, Bastien; Morandi, Bill

    2017-11-01

    The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

  16. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    Science.gov (United States)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the

  17. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  18. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    Science.gov (United States)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  19. Use of tissue equivalent proportional counters to characterize radiation quality on the space shuttle

    International Nuclear Information System (INIS)

    Braby, L.A.; Conroy, T.J.; Elegy, D.C.; Brackenbush, L.W.

    1992-04-01

    Tissue equivalent proportional counters (TEPC) are essentially cavity ionization chambers operating at low pressure and with gas gain. A small, battery powered, TEPC spectrometer, which records lineal energy spectra at one minute intervals, has been used on several space shuttle missions. The data it has collected clearly show the South Atlantic anomaly and indicate a mean quality factor somewhat higher than expected. An improved type of instrument has been developed with sufficient memory to record spectra at 10 second intervals, and with increased resolution for low LET events. This type of instrument will be used on most future space shuttle flights and in some international experiments

  20. Motivational profile of astronauts at the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    2010-11-01

    Research has demonstrated that the motive triad of needs for achievement, power, and affiliation can predict variables such as occupational success and satisfaction, innovation, aggressiveness, susceptibility to illness, cooperation, conformity, and many others. The present study documents the motivational profiles of astronauts at three stages of their expedition. Thematic content analysis was employed for references to Winter's well-established motive markers in narratives (media interviews, journals, and oral histories) of 46 astronauts participating in International Space Station (ISS) expeditions. Significant pre-flight differences were found in relation to home agency and job status. NASA astronauts, compared with those from the Russian Space Agency, are motivated by higher need for power, as are commanders in comparison to flight engineers. The need for affiliation motive showed a significant change from pre-flight to in-flight stages. The implications of the relationship between the motivational profile of astronauts and the established behavioural correlates of such profiles are discussed.

  1. Astronaut John W. Young during water egress training

    Science.gov (United States)

    1966-01-01

    Astronaut John W. Young, prime crew command pilot for the Gemini 10 space flight, sits in Static Article 5 during water egress training activity on board the NASA Motor Vessel Retriever. The SA-5 will be placed in the water and he and Astronaut Michael Collins, will then practice egress and water survival techniques. At right is Gordon Harvey, Spacecraft Operations Branch, Flight Crew Support Division.

  2. Chemical Shuttle Additives in Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher

  3. The simulation of the alternate turbopump development high pressure oxygen and fuel turbopumps for the space shuttle main engine using the Shaberth computer program

    Science.gov (United States)

    Mcdonald, Gary H.

    1988-01-01

    The Space Shuttle Main Engine (SSME) is basically comprised of a combustion chamber and nozzle, high and low pressure oxygen turbopumps and high and low pressure fuel turbopumps. In the current configuration, the high pressure fuel (HPTFP) and high pressure oxygen turbopumps (HPOTP) have experienced a history of ball bearing wear. The wear problem can be attributed to numerous factors including the hydrodynamic axial and radial loads caused by the flow of liquid oxygen and liquid hydrogen through the turbopump impellers and turbine. Also, friction effects between the rolling elements, races, and cage can create thermally induced bearing geometry changes. To alleviate some of the current configuration problems, an alternate turbopump development (ATD) was proposed. However, the ATD HPOTP and HPTFP are constrained to operate interchangeably with the current turbopumps, thus, the operation conditions must be similar. The ATD configuration features a major change in bearings used to support the integrated shaft, impeller, and turbine system. A single ball and single roller will replace the pump-end and turbine and duplex ball bearings. The Shaft-Bearing-Thermal (SHABERTH) computer code was used to model the ATD HPOTP and ATD HPFTP configurations. A two bearing model was used to simulate the HPOTP and HPFTP bearings and shaft geometry. From SHABERTH, a comparison of bearing reaction loads, frictional heat generation rates, and Hertz contact stresses will be attempted with analysis at the 109 percent and 65 percent power levels.

  4. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  5. CERN Shuttles - NEW Regular Shuttle Services as from 11/01/2010

    CERN Document Server

    GS Department

    2010-01-01

    As of Monday 11 January a new regular shuttle service (from Monday to Friday) will be available to facilitate transportation: Within and between both CERN sites, Meyrin and Prevessin; To and from the following LHC points: ATLAS, ALICE, CMS, LHCb. For further details, please consult the timetable for this service. We should also like to take this opportunity to encourage you to use the new regular TPG Y bus service rather than the special on-demand CERN transport service to and from Geneva Airport whenever possible. The TPG buses run from 06:00 to 00:30. For further details, please consult the TPG timetable. Please do not hesitate to give us your feedback on the shuttle services: e-mail to veronique.marchal@cern.ch. In case of problems with the shuttles, please contact 75411. GS-SEM Group Infrastructure and General Services Department

  6. Game-based evaluation of personalized support for astronauts in long duration missions

    NARCIS (Netherlands)

    Smets, N.J.J.M.; Abbing, M.S.; Neerincx, M.A.; Lindenberg, J.; Oostendorp, H. van

    2008-01-01

    Long duration missions set high requirements for personalized astronaut support that takes into account the social, cognitive and affective state of the astronaut. Such support should be tested as thoroughly as possible before deployment into space. The in-orbit influences of the astronaut's state

  7. Space shuttle OMS helium regulator design and development

    Science.gov (United States)

    Wichmann, H.; Kelly, T. L.; Lynch, R.

    1974-01-01

    Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.

  8. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    Science.gov (United States)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  9. Astronaut John Young in Command Module Simulator during Apollo Simulation

    Science.gov (United States)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  10. Astronautics and Aeronautics: A Chronology, 1996-2000

    Science.gov (United States)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  11. Astronautics and Aeronautics: A Chronology, 2001-2005

    Science.gov (United States)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  12. Space shuttle prototype check valve development

    Science.gov (United States)

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  13. Visual Impairment/Increased Intracranial Pressure (VIIP): Layman's Summary

    Science.gov (United States)

    Fogarty, Jennifer

    2011-01-01

    To date NASA has documented that seven long duration astronauts have experienced in-flight and post-flight changes in vision and eye anatomy including degraded distant vision, swelling of the back of the eye, and changes in the shape of the globe. We have also documented in a few of these astronauts post-flight, increases in the pressure of the fluid that surrounds the brain and spinal cord. This is referred to as increased intracranial pressure (ICP). The functional and anatomical changes have varied in severity and duration. In the post-flight time period, some individuals have experienced a return to a pre-flight level of visual function while others have experienced changes that remain significantly altered compared to pre-flight. In addition, the increased ICP also persists in the post-flight time period. Currently, the underlying cause or causes of these changes is/are unknown but the spaceflight community at NASA suspects that the shift of blood toward the head and the changes in physiology that accompany it, such as increased intracranial pressure, play a significant role.

  14. Lactate shuttles in nature.

    Science.gov (United States)

    Brooks, G A

    2002-04-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously under fully aerobic conditions. "Cell-cell" and "intracellular lactate shuttle" concepts describe the roles of lactate in the delivery of oxidative and gluconeogenic substrates, as well as in cell signalling. Examples of cell-cell shuttles include lactate exchanges between white-glycolytic and red-oxidative fibres within a working muscle bed, between working skeletal muscle and heart, and between tissues of net lactate release and gluconeogenesis. Lactate exchange between astrocytes and neurons that is linked to glutamatergic signalling in the brain is an example of a lactate shuttle supporting cell-cell signalling. Lactate uptake by mitochondria and pyruvate-lactate exchange in peroxisomes are examples of intracellular lactate shuttles. Lactate exchange between sites of production and removal is facilitated by monocarboxylate transport proteins, of which there are several isoforms, and, probably, also by scaffolding proteins. The mitochondrial lactate-pyruvate transporter appears to work in conjunction with mitochondrial lactate dehydrogenase, which permits lactate to be oxidized within actively respiring cells. Hence mitochondria function to establish the concentration and proton gradients necessary for cells with high mitochondrial densities (e.g. cardiocytes) to take up and oxidize lactate. Arteriovenous difference measurements on working cardiac and skeletal muscle beds as well as NMR spectral analyses of these tissues show that lactate is formed and oxidized within the cells of formation in vivo. Glycolysis and lactate oxidation within cells permits high flux rates and the maintenance of redox balance in the cytosol and mitochondria. Other examples of intracellular lactate shuttles include lactate uptake and oxidation in sperm mitochondria and the facilitation of beta-oxidation in peroxisomes by pyruvate

  15. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    Science.gov (United States)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  16. Essays on the History of Rocketry and Astronautics: Proceedings of the Third through the Sixth History Symposia of the International Academy of Astronautics, volume 1

    Science.gov (United States)

    Hall, R. C. (Editor)

    1977-01-01

    This two volume publication presents the proceedings of the third through sixth history symposia of the International Academy of Astronautics. Thirty-nine papers are divided into four categories: (1) Early Solid Propellant Rocketry; (2) Rocketry and Astronautics: Concepts, Theory, and Analyses after 1880; (3) The Development of Liquid and Solid Propellant Rockets from 1880 to 1945; and (4) Rocketry and Astronautics after 1945. Categories 1 and 2 will be found in volume 1 and the remainder in volume 2. Among other diciplines, Rocketry and Astronautics encompasses the physical and engineering sciences including fluid mechanics, thermodynamics, vibration theory, structural mechanics, and celestial mechanics. Papers presented in these two volumes range from those of empirical experimenters who used the time-honored cut and try methods to scientists wielding theoretical principles. The work traces the coupling of the physical and engineering sciences, industrial advances, and state support that produced the awesome progress in rocketry and astronautics for the most part within living memory. The proceedings of the four symposia present in these two volumes contain information on the work of leading investigators and their associates carried out in the first two-thirds of the twentieth century.

  17. Spaceflight Modulates Gene Expression in Astronauts

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts are exposed to a unique combination of stressors during spaceflight which leads to alterations in their physiology and potentially increases their...

  18. Former Astronaut Neil A. Armstrong Visits MSFC

    Science.gov (United States)

    2007-01-01

    Among several other NASA dignitaries, former astronaut Neil A. Armstrong visited the Marshall Space Flight Center (MSFC) in attendance of the annual NASA Advisory Council Meeting. While here, Mr. Armstrong was gracious enough to allow the casting of his footprint. This casting will join those of other astronauts on display at the center. Armstrong was first assigned to astronaut status in 1962. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971. Pictured with Armstrong is MSFC employee Daniel McFall, who assisted with the casting procedure.

  19. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    Science.gov (United States)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  20. Extravehicular mobility unit training and astronaut injuries

    Science.gov (United States)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  1. Astronauts Armstrong and Aldrin study rock samples during field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, and Astronaut Edwin Aldrin, Lunar module pilot for Apollo 11, study rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  2. Problems of psychological monitoring in astronaut training.

    Science.gov (United States)

    Morgun, V V

    1997-10-01

    Monitoring of the goal-oriented psychological changes of a man during professional training is necessary. The level development of the astronaut psychic features is checked by means of psychological testing with the final aim to evaluate each professionally important psychological qualities and to evaluate in general. The list of psychological features needed for evaluation is determined and empirically selected weight factors based on wide statistical sampling is introduced. Accumulation of psychological test results can predict an astronaut's ability of solving complicated problems in a flight mission. It can help to correct the training process and reveal weakness.

  3. Advanced Health Management System for the Space Shuttle Main Engine

    Science.gov (United States)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  4. Echocardiography in the flight program

    Science.gov (United States)

    Charles, John B.; Bungo, Michael W.; Mulvagh, Sharon L.

    1991-01-01

    Observations on American and Soviet astronauts have documented the association of changes in cardiovascular function during orthostasis with space flight. A basic understanding of the cardiovascular changes occurring in astronauts requires the determination of cardiac output and total peripheral vascular resistance as a minimum. In 1982, we selected ultrasound echocardiography as our means of acquiring this information. Ultrasound offers a quick, non-invasive and accurate means of determining stroke volume which, when combined with the blood pressure and heart rate measurements of the stand test, allows calculation of changes in peripheral vascular resistance, the body's major response to orthostatic stress. The history of echocardiography in the Space Shuttle Program is discussed and the results are briefly presented.

  5. Slide release mechanism. [for space shuttle orbiter/external tank connection device

    Science.gov (United States)

    Bunker, J. W.; Ritchie, R. S. (Inventor)

    1985-01-01

    A releasable support device is described which is comprised of a hollow body with a sleeve extending transversely there-through for receiving the end of a support shank. A slider-latch, optionally lubricated, extends through side recesses in the sleeve to straddle the shank, respectively, in latched and released positions. The slider-latch is slid from its latched to its unlatched position by a pressure squib whereupon a spring or other pressure means pushes the shank out of the sleeve. At the same time, a follower element is lodged in and closed the hole in the body wall from which the shank was discharged. The mechanism was designed for the shuttle orbiter/external tank connection device.

  6. Astronaut James Lovell checks body temperature with oral temperature probe

    Science.gov (United States)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  7. Origins of astronautics in Switzerland

    Science.gov (United States)

    Wadlis, A.

    1977-01-01

    Swiss contributions to astronautics are recounted. Scientists mentioned include: Bernoulli and Euler for their early theoretical contributions; the balloonist, Auguste Piccard; J. Ackeret, for his contributions to the study of aerodynamics; the rocket propulsion pioneer, Josef Stemmer; and the Swiss space scientists, Eugster, Stettbacker, Zwicky, and Schurch.

  8. Space station astronauts discuss life in space during AGU interview

    Science.gov (United States)

    Showstack, Randy

    2012-07-01

    Just one day after China's Shenzhou-9 capsule, carrying three Chinese astronauts, docked with the Tiangong-1 space lab on 18 June, Donald Pettit, a NASA astronaut on the International Space Station (ISS), said it is “a step in the right direction” that more people are in space. “Before they launched, there were six people in space,” he said, referring to those on ISS, “and there are 7 billion people on Earth.” The astronauts were “like one in a billion. Now there are nine people in space,” Pettit said during a 19 June interview that he and two other astronauts onboard ISS had with AGU. Pettit continued, “So the gradient of human beings going into space is moving in the right direction. We need to change these numbers so that more and more human beings can call space their home so we can expand off of planet Earth and move out into our solar system.”

  9. Continuity and Change in Family's Role in Long-Duration Space Missions

    Science.gov (United States)

    Johnson, Phyllis

    As long-duration missions become commonplace, it will be important to consider the effect of the astronaut's career on his/her family, and the role of family in supporting that career. In the short history of the space program, archival information about three long-duration programs- Skylab, Shuttle-Mir, and the International Space Station—-provides valuable information about the astronauts' adjustment to increasingly longer times in space. These sources potentially include the astronaut's views about the role of family in that adjustment. The purpose of this paper is to present a qualitative analysis of the astronauts' views about the role family played in his/her career, as well as the effect of the astronaut career on his/her family. Specifically, what roles did family play, e.g., being there at important events, accepting the importance of the astronaut career? How did astronauts view the effects of separation, risks, and publicity on their family? How much did astronauts emphasize dealing with separation through communication with family? How consistent have astronauts' views remained over the three types of missions which have spanned from 1973 to today? The data base for this qualitative study is the Johnson Space Center oral histories for astronauts who participated in Skylab or Shuttle-Mir, and the Johnson Space Center archives of ISS mission journals and logs, and pre-flight interviews with ISS astronauts. Male astronauts are the main focus of the change-over-time information as only one woman participated in Shuttle- Mir and no women were in the Skylab program. However, qualitative data will be presented about female astronauts on ISS and on Shuttle-Mir for some comparative information by sex for those programs. Skylab preliminary findings: Having a wife and parents who were supportive made all of the difference in the astronaut career. It would not have been possible to maintain some semblance of family life without the wife's managing it. Private

  10. Astronauts under high supervision

    International Nuclear Information System (INIS)

    Debiar, A.; Loverini, M.J.; Annibal, M.

    1997-01-01

    The CEA radiobiology and radio-pathology laboratory, together with the CNES (the French space agency), have carried out Biodose, a study on the Mir space station astronauts, which objective was to study the processes and mechanisms of the chromosomal damages induced by cosmic radiations, through physical and biological dosimetric experiments. Results are summarized, which show the unusual nature of the chromosomal abnormalities due to heavy ions

  11. Nevada Test Site craters used for astronaut training

    Science.gov (United States)

    Moore, H. J.

    1977-01-01

    Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.

  12. Enhancing astronaut performance using sensorimotor adaptability training.

    Science.gov (United States)

    Bloomberg, Jacob J; Peters, Brian T; Cohen, Helen S; Mulavara, Ajitkumar P

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  13. Quantum Shuttle in Phase Space

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Jauho, Antti-Pekka

    2003-01-01

    Abstract: We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus...

  14. Upgrading the Space Shuttle.

    Science.gov (United States)

    1999-01-01

    Motors, Honda , Toyota , and Nissan ). By learning from and applying the technologies developed elsewhere, NASA could greatly leverage its funding for...assessing risks to the shuttle. The committee believes that this tool has the potential to be very helpful in assessing and comparing the impact of...environmental regulations). Figure 2-2 shows how the S&PU budget compared to the total shuttle budget during four different years since 1985

  15. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    Science.gov (United States)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The

  16. Calculation of Radiation Protection Quantities and Analysis of Astronaut Orientation Dependence

    Science.gov (United States)

    Clowdsley, Martha S.; Nealy, John E.; Atwell, William; Anderson, Brooke M.; Luetke, Nathan J.; Wilson, John W.

    2006-01-01

    Health risk to astronauts due to exposure to ionizing radiation is a primary concern for exploration missions and may become the limiting factor for long duration missions. Methodologies for evaluating this risk in terms of radiation protection quantities such as dose, dose equivalent, gray equivalent, and effective dose are described. Environment models (galactic cosmic ray and solar particle event), vehicle/habitat geometry models, human geometry models, and transport codes are discussed and sample calculations for possible lunar and Mars missions are used as demonstrations. The dependence of astronaut health risk, in terms of dosimetric quantities, on astronaut orientation within a habitat is also examined. Previous work using a space station type module exposed to a proton spectrum modeling the October 1989 solar particle event showed that reorienting the astronaut within the module could change the calculated dose equivalent by a factor of two or more. Here the dose equivalent to various body tissues and the whole body effective dose due to both galactic cosmic rays and a solar particle event are calculated for a male astronaut in two different orientations, vertical and horizontal, in a representative lunar habitat. These calculations also show that the dose equivalent at some body locations resulting from a solar particle event can vary by a factor of two or more, but that the dose equivalent due to galactic cosmic rays has a much smaller (<15%) dependence on astronaut orientation.

  17. Space Shuttle critical function audit

    Science.gov (United States)

    Sacks, Ivan J.; Dipol, John; Su, Paul

    1990-01-01

    A large fault-tolerance model of the main propulsion system of the US space shuttle has been developed. This model is being used to identify single components and pairs of components that will cause loss of shuttle critical functions. In addition, this model is the basis for risk quantification of the shuttle. The process used to develop and analyze the model is digraph matrix analysis (DMA). The DMA modeling and analysis process is accessed via a graphics-based computer user interface. This interface provides coupled display of the integrated system schematics, the digraph models, the component database, and the results of the fault tolerance and risk analyses.

  18. Space shuttle main propulsion pressurization system probabilistic risk assessment

    International Nuclear Information System (INIS)

    Plastiras, J.K.

    1989-01-01

    This paper reports that, in post-Challenger discussions with Congressional Committees and the National Research Council Risk Management Oversight Panel, criticism was levied against NASA because of the inability to prioritize the 1300+ single point failures. In the absence of a ranking it was difficult to determine where special effort was needed in failure evaluation, in design improvement, in management review of problems, and in flight readiness reviews. The belief was that the management system was overwhelmed by the quantity of critical hardware items that were on the Critical Items List (CIL) and that insufficient attention was paid to the items that required it. Congressional staff members from Congressman Markey's committee who have oversight responsibilities in the nuclear industry, and specifically over the nuclear power supplies for NASA's Galileo and Ulysses missions, felt very strongly that the addition of Probabilistic Risk Assessment (PRA) to the existing Failure Mode Effects Analysis/Hazard Analysis (FMEA/HA) methods was exceedingly important. Specifically, the Markey committee recognized that the inductive, qualitative component-oriented FMEA could be supplemented by the deductive, quantitative systems-oriented PRA. Furthermore, they felt that the PRA approach had matured to the extent that it could be used to assess risk, even with limited shuttle-specific failure data. NASA responded with arguments that the FMEA/HA had illuminated all significant failure modes satisfactorily and that no failure rate data base was available to support the PRA approach

  19. Intraocular Lens Use in an Astronaut During Long Duration Spaceflight.

    Science.gov (United States)

    Mader, Thomas H; Gibson, C Robert; Schmid, Josef F; Lipsky, William; Sargsyan, Ashot E; Garcia, Kathleen; Williams, Jeffrey N

    2018-01-01

    The purpose of this paper is to report the first use of an intraocular lens (IOL) in an astronaut during long duration spaceflight (LDSF). An astronaut developed a unilateral cataract and underwent phacoemulsification with insertion of an acrylic IOL. Approximately 15 mo later he flew on a Soyuz spacecraft to the International Space Station (ISS), where he successfully completed a 6-mo mission. Ocular examination, including ultrasound (US), was performed before, during, and after his mission and he was questioned regarding visual changes during each portion of his flight. We documented no change in IOL position during his space mission. This astronaut reported excellent and stable vision during liftoff, entry into microgravity (MG), 6 mo on the ISS, descent, and landing. Our results suggest that modern IOLs are stable, effective, and well tolerated during LDSF.Mader TH, Gibson CR, Schmid JF, Lipsky W, Sargsyan AE, Garcia K, Williams JN. Intraocular lens use in an astronaut during long duration spaceflight. Aerosp Med Hum Perform. 2018; 89(1):63-65.

  20. Spaceflight modulates gene expression in the whole blood of astronauts.

    Science.gov (United States)

    Barrila, Jennifer; Ott, C Mark; LeBlanc, Carly; Mehta, Satish K; Crabbé, Aurélie; Stafford, Phillip; Pierson, Duane L; Nickerson, Cheryl A

    2016-01-01

    Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1 , HSP27 , GPX1 , XRCC1 , BAG-1 , HHR23A , FAP48 , and C-FOS . No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

  1. Brand-new signage for the CERN shuttles

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    If, after reading the title of this article, you're striving to remember what the signs for the CERN shuttles look like, then you just hit the nail on the head: we bet that only a few people can actually do so. In order to make it easier for CERN users to move around the CERN sites, a graphic restyling of the shuttle signage has been implemented. You will start to see the new timetables in the coming days.   Larisa Kuchina, a graphic designer in the Communication Group, restyled the shuttle signage to make it more visible and intelligible. “I was inspired by the very clear and user friendly interface of the Geneva Public Transport system (TPG)”, explains Larisa. “Each timetable will also include the corresponding shuttle route. We will soon introduce new road signs for shuttle stops to make sure they are visible from a distance”. There are currently four shuttle lines, serving 28,000 passengers since February 2010: two of them operate between Meyrin and Pr...

  2. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    Science.gov (United States)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  3. Haige astronaut venitab Atlantise missiooni / Liisi Poll

    Index Scriptorium Estoniae

    Poll, Liisi, 1980-

    2008-01-01

    Saksamaa astronaut ei saanud haiguse tõttu minna avakosmosesse, mistõttu lükkus edasi ka Euroopa Kosmoseagentuuri laborimooduli paigaldamine rahvusvahelisse kosmosejaama (ISS). Lisa: Teaduslabor Columbos

  4. Apollo 11 astronaut Neil Armstrong suits up before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  5. Apollo 11 astronaut Neil Armstrong looks over flight plans

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong is looking over flight plans while being assisted by a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  6. EAC training and medical support for International Space Station astronauts.

    Science.gov (United States)

    Messerschmid, E; Haignere, J P; Damian, K; Damann, V

    2000-11-01

    The operation of the International Space Station (ISS) will be a global multilateral endeavour. Each International Partner will be responsible for the operation of its elements and for providing a crew complement proportional to its share of the overall resources. The preparations of the European Astronaut Centre to furnish training and medical support for the ISS astronauts are described.

  7. High-LET particle exposure of Skylab astronauts

    International Nuclear Information System (INIS)

    Benton, E.V.; Peterson, D.D.; Bailey, J.V.; Parnell, T.

    1977-01-01

    High-LET particle radiation was registered in nuclear track recording plastic dosimeters worn on the wrists of Skylab astronauts and located in a heavily shielded film vault. The mission-average planar flux of high-LET particles with LET >= 100 keV/micron . tissue has been determined to be 2.7 +- 0.6 particles/cm 2 . day . 2π sr and 0.34 +- 0.4 particles/cm 2 . day . 2π sr, respectively, for the nine astronauts and for the film vault. Comparison of results representative of a wide range of shielding depths reveals that the magnitude and slope of the integral LET spectrum of high-LET particles inside spacecraft are proportional to the amount of shielding. (author)

  8. Space Shuttle Endeavour launch

    Science.gov (United States)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  9. Space Shuttle Main Engine Public Test Firing

    Science.gov (United States)

    2000-01-01

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  10. Current Noise Spectrum of a Quantum Shuttle

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Jauho, Antti-Pekka

    2005-01-01

    We present a method for calculating the full current noise spectrum S(omega) for the class of nano-electromechanical systems (NEMS) that can be described by a Markovian generalized master equation. As a specific example we apply the method to a quantum shuttle. The noise spectrum of the shuttle has...... peaks at integer multiples of the mechanical frequency, which is slightly renormalized. The renormalization explains a previously observed small deviation of the shuttle Current compared to the expected value given by the product of the natural mechanical frequency and the electron charge. For a certain...... parameter range the quantum shuttle exhibits a coexistence regime, where the charges are transported by two different mechanisms: Shuttling and sequential tunneling. In our previous studies we showed that characteristic features in the zero-frequency noise could be quantitatively understood as a slow...

  11. Nanoparticle shuttle memory

    Science.gov (United States)

    Zettl, Alex Karlwalter [Kensington, CA

    2012-03-06

    A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

  12. Acoustic Modeling and Analysis for the Space Shuttle Main Propulsion System Liner Crack Investigation

    Science.gov (United States)

    Casiano, Matthew J.; Zoladz, Tom F.

    2004-01-01

    Cracks were found on bellows flow liners in the liquid hydrogen feedlines of several space shuttle orbiters in 2002. An effort to characterize the fluid environment upstream of the space shuttle main engine low-pressure fuel pump was undertaken to help identify the cause of the cracks and also provide quantitative environments and loads of the region. Part of this effort was to determine the duct acoustics several inches upstream of the low-pressure fuel pump in the region of a bellows joint. A finite element model of the complicated geometry was made using three-dimensional fluid elements. The model was used to describe acoustics in the complex geometry and played an important role in the investigation. Acoustic mode shapes and natural frequencies of the liquid hydrogen in the duct and in the cavity behind the flow liner were determined. Forced response results were generated also by applying an edgetone-like forcing to the liner slots. Studies were conducted for state conditions and also conditions assuming two-phase entrapment in the backing cavity. Highly instrumented single-engine hot fire data confirms the presence of some of the predicted acoustic modes.

  13. Biological dosimetry in astronauts

    International Nuclear Information System (INIS)

    Durante, M.

    1996-01-01

    Due to the unavoidable presence of ionizing radiation in space, astronauts are classified as radiation workers. I fact, dose rate in space is considerably higher than on earth. Radiation dose absorbed after one day in space is close to the dose received by all natural sources, excluding radon, in one year on earth. Large solar particle events can considerably increase this dose, and could even be life threatening for an inadequately protected crew

  14. Enhancing Astronaut Performance using Sensorimotor Adaptability Training

    Directory of Open Access Journals (Sweden)

    Jacob J Bloomberg

    2015-09-01

    Full Text Available Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments - enhancing their ability to learn to learn. We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  15. Risk of Orthostatic Intolerance During Re-Exposure to Gravity

    Science.gov (United States)

    Platts, Steven; Stenger, Michael B.; Lee, Stuart M. C.; Westby, Christian M.; Phillips, Tiffany R.; Arzeno, Natalia M.; Johnston, Smith; Mulugeta, Lealem

    2015-01-01

    Post-spaceflight orthostatic intolerance remains a significant concern to NASA. In Space Shuttle missions, astronauts wore anti-gravity suits and liquid cooling garments to protect against orthostatic intolerance during re-entry and landing, but in-flight exercise and the end-of-mission fluid loading failed to protect approximately 30% of Shuttle astronauts when these garments were not worn. The severity of the problem appears to be increased after long-duration space flight. Five of six US astronauts could not complete a 10-minutes upright-posture tilt testing on landing day following 4-5 month stays aboard the Mir space station. The majority of these astronauts had experienced no problems of orthostatic intolerance following their shorter Shuttle flights. More recently, four of six US astronauts could not complete a tilt test on landing day following approximately 6 month stays on the International Space Station. Similar observations were made in the Soviet and Russian space programs, such that some cosmonauts wear the Russian compression garments (Kentavr) up to 4 days after landing. Future exploration missions, such as those to Mars or Near Earth Objects, will be long duration, and astronauts will be landing on planetary bodies with no ground-support teams. The occurrence of severe orthostatic hypotension could threaten the astronauts' health and safety and success of the mission.

  16. Determining spherical lens correction for astronaut training underwater.

    Science.gov (United States)

    Porter, Jason; Gibson, C Robert; Strauss, Samuel

    2011-09-01

    To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration astronauts while training underwater. The replica space suit's helmet contains curved visors that induce refractive power when submersed in water. Anterior surface powers and thicknesses were measured for the helmet's protective and inside visors. The impact of each visor on the helmet's refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet's total induced spherical power underwater and the astronaut's manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. The helmet's visors induced a total power of -2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (r = 0.971) with 70% of eyes having a difference in magnitude of astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater.

  17. A comparison of two Shuttle launch and entry suits - Reach envelope, isokinetic strength, and treadmill tests

    Science.gov (United States)

    Schafer, Lauren E.; Rajulu, Sudhakar L.; Klute, Glenn K.

    1992-01-01

    A quantification has been conducted of any existing differences between the performance, in operational conditions, of the Space Shuttle crew Launch Entry Suit (LES) and the new Advanced Crew Escape Suit (ACES). While LES is a partial-pressure suit, the ACES system which is being considered as a replacement for LES is a full-pressure suit. Three tests have been conducted with six subjects to ascertain the suits' reach envelope, strength, and treadmill performance. No significant operational differences were found between the two suit designs.

  18. Intelligent Shuttle Management and Routing Algorithm

    Science.gov (United States)

    Thomas, Toshen M.; Subashanthini, S.

    2017-11-01

    Nowadays, most of the big Universities and campuses have Shuttle cabs running in them to cater the transportational needs of the students and faculties. While some shuttle services ask for a meagre sum to be paid for the usage, no digital payment system is onboard these vehicles to go truly cashless. Even more troublesome is the fact that sometimes during the day, some of these cabs run with bare number of passengers, which can result in unwanted budget loss to the shuttle operator. The main purpose of this paper is to create a system with two types of applications: A web portal and an Android app, to digitize the Shuttle cab industry. This system can be used for digital cashless payment feature, tracking passengers, tracking cabs and more importantly, manage the number of shuttle cabs in every route to maximize profit. This project is built upon an ASP.NET website connected to a cloud service along with an Android app that tracks and reads the passengers ID using an attached barcode reader along with the current GPS coordinates, and sends these data to the cloud for processing using the phone’s internet connectivity.

  19. Results of investigations conducted in the LaRC 8-foot transonic pressure tunnel using the 0.010-scale 72-OTS model of the space shuttle integrated vehicle (IA93)

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Test procedures, history, and data from the wind tunnel test are presented. Aero-loads were investigated on the updated configuration-5 space shuttle launch vehicle at Mach numbers from 0.600 to 1.205. Six-component vehicle forces and moments, base and sting-cavity pressures, elevon hinge moments, wing-root bending and torsion moments, and normal shear force data were obtained. Full simulation of updated vehicle protuberances and attach hardware was employed. Various elevon deflection angles were tested with two different forward orbiter-to-external-tank attach-strut configurations. The entire model was supported by means of a balance mounted in the orbiter through its base and suspended from a sting.

  20. Astronaut Dale Gardner holds up for sale sign after EVA

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  1. Astronauts Cooper and Conrad prepare cameras during visual acuity tests

    Science.gov (United States)

    1965-01-01

    Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.

  2. Application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows

    Science.gov (United States)

    Buning, Pieter G.; Parks, Steven J.; Chan, William M.; Renze, Kevin J.

    1992-01-01

    Several issues relating to the application of Chimera overlapped grids to complex geometries and flowfields are discussed. These include the addition of geometric components with different grid topologies, gridding for intersecting pieces of geometry, and turbulence modeling in grid overlap regions. Sample results are presented for transonic flow about the Space Shuttle launch vehicle. Comparisons with wind tunnel and flight measured pressures are shown.

  3. Shuttle on-orbit contamination and environmental effects

    Science.gov (United States)

    Leger, L. J.; Jacobs, S.; Ehlers, H. K. F.; Miller, E.

    1985-01-01

    Ensuring the compatibility of the space shuttle system with payloads and payload measurements is discussed. An extensive set of quantitative requirements and goals was developed and implemented by the space shuttle program management. The performance of the Shuttle system as measured by these requirements and goals was assessed partly through the use of the induced environment contamination monitor on Shuttle flights 2, 3, and 4. Contamination levels are low and generally within the requirements and goals established. Additional data from near-term payloads and already planned contamination measurements will complete the environment definition and allow for the development of contamination avoidance procedures as necessary for any payload.

  4. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  5. STS-61B Astronauts Ross and Spring Work on Experimental Assembly of Structures in Extravehicular

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). This STS-61B onboard photo depicts astronauts Ross and Spring working on EASE. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  6. Gaseous environment of the Shuttle early in the Spacelab 2 mission

    Science.gov (United States)

    Pickett, Jolene S.; Murphy, Gerald B.; Kurth, William S.

    1988-01-01

    A cold-cathode ionization gage was flown on Space Shuttle flight STS-5IF as part of the Spacelab 2 payload. Neutral pressure data that were taken in the payload bay during the first few hours on orbit are presented. These data show that when the payload bay is oriented such that the atmospheric gases are ramming into it, the pressure rises to a peak of 4 x 10 to the -6th Torr. Pressure is also slightly higher during the sunlit portion of each orbit. Outgassing of the payload bay causes the pressure to be elevated to a few times 10 to the -6th Torr early in the mission. In addition, several effects on pressure have been identified that are due to chemical releases. Substantial increases (50-150 percent) are seen during another experiment's gas purge. Orbiter chemical-release effects include: pressure increases of 200 percent up to 7 x 10 to the -6th Torr due to Orbital Maneuvering System burns, minor perturbations in pressure due to vernier thruster firings and little or no increase in pressure due to water dumps. In the case of vernier thruster firings, effects are seen only from down-firing thrusters in the back of the Orbiter, which are probably due to reflection of thruster gases off Orbiter surfaces.

  7. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    Science.gov (United States)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  8. Use of PRA in Shuttle Decision Making Process

    Science.gov (United States)

    Boyer, Roger L.; Hamlin, Teri L.

    2010-01-01

    How do you use PRA to support an operating program? This presentation will explore how the Shuttle Program Management has used the Shuttle PRA in its decision making process. It will reveal how the PRA has evolved from a tool used to evaluate Shuttle upgrades like Electric Auxiliary Power Unit (EAPU) to a tool that supports Flight Readiness Reviews (FRR) and real-time flight decisions. Specific examples of Shuttle Program decisions that have used the Shuttle PRA as input will be provided including how it was used in the Hubble Space Telescope (HST) manifest decision. It will discuss the importance of providing management with a clear presentation of the analysis, applicable assumptions and limitations, along with estimates of the uncertainty. This presentation will show how the use of PRA by the Shuttle Program has evolved overtime and how it has been used in the decision making process providing specific examples.

  9. Radiation hazards to astronauts; Strahlengefahren fuer Astronauten

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, R.; Hajek, M. [Inst. of Atomic and Subatomic Physics, Vienna Univ. of Tech. (Austria); Berger, T.; Reitz, G. [Inst. of Aerospace Medicine, German Aerospace Center (Germany); Bilski, P. [Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences (Poland); Puchalska, M. [Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences (Poland); Dept. of Applied Physics, Chalmers Univ. of Tech. (Sweden)

    2009-07-01

    Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses at the level of critical radiosensitive organs and tissues. Within the European MATROSHKA experiment, the dose profile in an anthropomorphic phantom body was investigated at intra- and extravehicular activities on the International Space Station. The effective scientific exploitation of obtained dosimetric data is ensured within the 7{sup th} EU Framework Programme project HAMLET. Based on experimental data and radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body shall be developed to further refine estimations of radiation risks on interplanetary long-term missions. (orig.)

  10. Astronaut Glenn in the Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn in the Friendship 7 capsule during the first manned orbital flight, the MA-6 mission. Boosted by the Mercury-Atlas vehicle, a modified Atlas (intercontinental ballistic missile), the MA-6 mission lasted for 5 hours and orbited the Earth three times.

  11. Shuttle Columbia Post-landing Tow - with Reflection in Water

    Science.gov (United States)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials

  12. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Science.gov (United States)

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  13. Ergonomic Evaluation of Space Shuttle Light-Weight Seat Lever Position and Operation

    Science.gov (United States)

    Maida, J.; Rajulu, Sudhakar L.; Bond, Robert L. (Technical Monitor)

    2000-01-01

    During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with

  14. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    Science.gov (United States)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  15. Redox shuttles for safer lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Zonghai; Qin, Yan; Amine, Khalil

    2009-01-01

    Overcharge protection is not only critical for preventing the thermal runaway of lithium-ion batteries during operation, but also important for automatic capacity balancing during battery manufacturing and repair. A redox shuttle is an electrolyte additive that can be used as intrinsic overcharge protection mechanism to enhance the safety characteristics of lithium-ion batteries. The advances on stable redox shuttles are briefly reviewed. Fundamental studies for designing stable redox shuttles are also discussed.

  16. Astronaut training manual

    Science.gov (United States)

    Coleman, E. A.

    1980-01-01

    Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.

  17. Astronauts Ross and Helms at CAPCOM station during STS-61 simulations

    Science.gov (United States)

    1993-01-01

    Astronauts Jerry L. Ross and Susan J. Helms are pictured at the Spacecraft Communicators console during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  18. Philosophy on astronaut protection: A physician's perspective

    International Nuclear Information System (INIS)

    Holloway, H.

    1997-01-01

    The National Aeronautics and Space Administration has a responsibility to assure that proper ethical standards are applied in establishing and applying limits for the control of radiation doses to the astronauts. Such a responsibility obviously includes assuring that the astronauts are properly informed of the hazards associated with individuals missions and that they agree to accept the associated risks. The responsibility, however, does not end there. It includes a need to discuss how to initiate a discourse for developing the related ethical standards and how to determine who should be involved in their establishment. To assure that such proper communications on matters that encompass the realms of policy, science, politics, and ethics. There is also a need to mesh public perceptions with those of the scientific and technical community. This will be a monumental undertaking

  19. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    Science.gov (United States)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  20. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  1. Leisure time activities in space: A survey of astronauts and cosmonauts

    Science.gov (United States)

    Kelly, Alan D.; Kanas, Nick

    Questionnaires were returned from 54 astronauts and cosmonauts which addressed preferences for media and media-generated subjects that could be used to occupy leisure time in space. Ninety-three percent of the respondents had access to records or audio cassettes, and cosmonauts had greater access than astronauts to multiple media. Cosmonauts and long-duration space travelers reported that they missed various media more than their astronaut and short-duration counterparts. Media subjects that related to international events, national events and historical topics were rated as most preferable by all respondents and by several of the respondent groups. The findings are discussed in terms of their relevance for occupying free time during future long-duration manned space missions.

  2. Cosmonauts and astronauts during medical operations training

    Science.gov (United States)

    1994-01-01

    Cosmonaut Alexandr F. Poleshchuk (right) inventories medical supplies with Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Poleshchuk, a Mir reserve crew member, and a number of other cosmonauts and astronauts participati

  3. Astronauts Grissom and Young during water egress training in Gulf of Mexico

    Science.gov (United States)

    1965-01-01

    A technician adjusts the suit of Astronaut Virgil I. Grissom during water egress training operations in the Gulf of Mexico. Astronaut John W. Young (standing) observes. Grissom and Young are the prime crew for the Gemini-Titan 3 flight scheduled this spring.

  4. Shot noise of a quantum shuttle

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Flindt, Christian

    2004-01-01

    We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (Fsimilar or equal to10(-2)) in the shuttling regim...

  5. Human interactions during Shuttle/Mir space missions

    Science.gov (United States)

    Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Kozerenko, O.; Sled, A.; Marmar, C. R.

    2001-01-01

    To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.

  6. Astronautics and aeronautics, 1976. A chronology

    Science.gov (United States)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  7. Astronaut Neil Armstrong participates in simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  8. Morphing: A Novel Approach to Astronaut Suit Sizing

    Science.gov (United States)

    Margerum, Sarah; Clowers, Kurt; Rajulu, Sudhakar

    2006-01-01

    The fitting of a spacesuit to an astronaut is an iterative process consisting of two parts. The first uses anthropometric data to provide an approximation of the suit components that will fit the astronaut. The second part is the subjective fitting, where small adjustments are made based on the astronaut s preference. By providing a better approximation of the correct suit components, the entire fit process time can be reduced significantly. The goals of this project are twofold: (1) To evaluate the effectiveness of the existing sizing algorithm for the Mark III Hybrid suit and (2) to determine what additional components are needed in order to provide adequate sizing for the existing astronaut population. A single subject was scanned using a 3D whole-body scanner (VITUS 3D) in the Mark III suit in eight different poses and four subjects in minimal clothing were also scanned in similar poses. The 3D external body scans of the suit and the subject are overlaid and visually aligned in a customized MATLAB program. The suit components were contracted or expanded linearly along the subjects limbs to match the subjects segmental lengths. Two independent measures were obtained from the morphing program on four subjects and compared with the existing sizing information. Two of the four subjects were in correspondence with the sizing algorithm and morphing results. The morphing outcome for a third subject, incompatible with the suit, suggested that an additional arm element at least 6 inches smaller than the existing smallest suit component would need to be acquired. The morphing result of the fourth subject, deemed incompatible with the suit using the sizing algorithm, indicated a different suit configuration which would be compatible. This configuration matched with the existing suit fit check data.

  9. CERN Shuttles – TRAM arrival – Two additional shuttles as from 2 May 2011

    CERN Document Server

    General Infrastructure Services Department

    2011-01-01

    With the TRAM’s arrival at CERN and to facilitate mobility inside CERN, the GS Department is reinforcing CERN's shuttle services and will provide users with two additional shuttles from/to Building 33 (CERN Reception) as from Monday 2 May: Circuit No. 5: serving the Meyrin site (approx. every 15 minutes) •\tfrom 7·30 to 9·15 •\tfrom 11·30 to 13·28 (serving restaurants Nos.1 and 2) •\tfrom 16·30 to 18·35   Circuit No. 6: serving the Prevessin site (approx. every 20 minutes) •\tfrom 7·30 to 9·10 •\tfrom 11·30 to 13·28 (serving restaurants Nos. 1, 2 and 3) •\tfrom 16·30 to 18·23 For further details, please consult the timetable for these circuits at the following url: http://gs-dep.web.cern.ch/gs-dep/groups/SEM/ls/ShuttleService/ Please do not hesitate to give us your feedback...

  10. Cerebrovascular Accident Incidence in the NASA Astronaut Population

    Science.gov (United States)

    LaPelusa, Michael B.; Charvat, Jacqueline M.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    The development of atherosclerosis is strongly associated with an increased risk for cerebrovascular accidents (CVA), including stroke and transient ischemic attacks (TIA). Certain unique occupational exposures that individuals in the NASA astronaut corps face, specifically high-performance aircraft training, SCUBA training, and spaceflight, are hypothesized to cause changes to the cardiovascular system. These changes, which include (but are not limited to) oxidative damage as a result of radiation exposure and circadian rhythm disturbance, increased arterial stiffness, and increased carotid-intima-media thickness (CIMT), may contribute to the development of atherosclerosis and subsequent CVA. The purpose of this study was to review cases of CVA in the NASA astronaut corps and describe the comorbidities and occupational exposures associated with CVA.

  11. Astronautics and Aeronautics, 1979-1984: A chronology

    Science.gov (United States)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  12. APOLLO 17 PRELAUNCH ASTRONAUT TRAINING

    Science.gov (United States)

    1972-01-01

    Apollo Command Module Pilot Evans, left, and Mission Commander Cernan, right, discuss their flight plans as each prepares to fly a T-38 jet aircraft at Patrick Air Force Base just south of the Spaceport. Astronauts Cernan and Evans flew the T-38 aircraft today on training flights over the Kennedy Space Center area to practice flying skills in preparation for upcoming launch to the Moon scheduled 12/06/72.

  13. NASA Astronaut Selection 2009: Behavioral Overview

    Science.gov (United States)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  14. STS-62 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  15. Astronaut Joseph Tanner is assisted into his EMU during training

    Science.gov (United States)

    1994-01-01

    Astronaut Joseph R. Tanner, STS-66 mission specialist, is assisted by Boeing suit expert Steve Voyles in donning the gloves for his extravehicular mobility unit (EMU) as he prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Though no extravehicular activity (EVA) is planned for the mission, at least two astronauts are trained to perform tasks that would require a space walk in the event of failure of remote systems.

  16. Astronauts Work in the Russian Zvezda Service Module

    Science.gov (United States)

    2001-01-01

    Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000 pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  17. Shuttle requests

    CERN Multimedia

    2007-01-01

    Please note that starting from 1 March 2007, the shuttle requests: for official visits or bidders' conferences on the CERN site; towards/from the airport or central Geneva; for long distances, shall be made via Fm.Support@cern.ch or by calling 77777. The radio taxi will still be reachable at 76969. TS/FM Group

  18. Astronautics and aeronautics, 1978: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  19. Space Shuttle Redesigned Solid Rocket Motor nozzle natural frequency variations with burn time

    Science.gov (United States)

    Lui, C. Y.; Mason, D. R.

    1991-01-01

    The effects of erosion and thermal degradation on the Space Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle's structural dynamic characteristics were analytically evaluated. Also considered was stiffening of the structure due to internal pressurization. A detailed NASTRAN finite element model of the nozzle was developed and used to evaluate the influence of these effects at several discrete times during motor burn. Methods were developed for treating erosion and thermal degradation, and a procedure was developed to account for internal pressure stiffening using differential stiffness matrix techniques. Results were verified using static firing test accelerometer data. Fast Fourier Transform and Maximum Entropy Method techniques were applied to the data to generate waterfall plots which track modal frequencies with burn time. Results indicate that the lower frequency nozzle 'vectoring' modes are only slightly affected by erosion, thermal effects and internal pressurization. The higher frequency shell modes of the nozzle are, however, significantly reduced.

  20. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  1. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  2. Christer Fuglesang, a former CERN physicist-turned-astronaut

    CERN Multimedia

    NASA

    2006-01-01

    European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, participates in the mission's second extravehicular activity (EVA) as construction resumes on the International Space Station. Image: NASA.

  3. Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings

    Science.gov (United States)

    Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erwin V.

    2008-01-01

    A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for the four actuators on one shuttle, each with a 2-bearing shaft assembly, established a reliability level of 96.9 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.

  4. NPS Adds Another Astronaut Alumnus With NASA’s Newest Class

    OpenAIRE

    Kuska, Dale M.

    2013-01-01

    Article taken from the NPS website: http://www.nps.edu/About/News/NPS-Adds-Another-Astronaut-Alumnus-With-NASAs-Newest-Class.html When NASA Administrator Charles Bolden announced the latest class of NASA’s eight astronaut candidates, June 17, the Naval Postgraduate School (NPS) was able to add yet another space-traveling alumnus to its ranks, now totaling 41 and counting. Lt. Cmdr. Victor Glover, an F/A-18 combat pilot currently serving as a Legislative Fellow in the office of Senat...

  5. Salivary Varicella Zoster Virus in Astronauts and in Patients of Herpes Zoster

    Science.gov (United States)

    Mehta, Satish; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpes viruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpesviruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors? offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  6. 20 Plus Years of Chimera Grid Development for the Space Shuttle. STS-107, Return to Flight, End of the Program

    Science.gov (United States)

    Gomez, Reynaldo J., III

    2010-01-01

    This slide presentation reviews the progress in grid development for the space shuttle, with particular focus on the development from the los of STS-107 and the return to flight, to the end of the program. Included are views from the current Space Shuttle Launch Vehicle (SSLV) grid system, containing 1.8 million surface points, and 95+ million volume points. Charts showing wind tunnel tests comparisons, and Computational fluid dynamics (CFD) vs 1A613B wing pressures, wind tunnel test comparison with CFD of the proposed ice/frost ramp configuration are shown. The use of pressure sensitive paint and particle imaging velocimetry was used to support debris transport tools, The actual creation of the grids and the use of overset CFD to assess the external tank redesign was also reviewed. It also asks was the use of the overset tool the right choice. The presentation ends with a review of the work to be done still.

  7. Changes to the shuttle circuits

    CERN Multimedia

    GS Department

    2011-01-01

    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  8. Astronaut Bonnie Dunbar watches crewmates during training

    Science.gov (United States)

    1994-01-01

    Astronaut Bonnie J. Dunbar, STS-71 mission specialist, smiles as she watches a crew mate (out of frame) make a simulated parachute landing in nearby water. The action came as part of an emergency bailout training session in the JSC Weightless Environment

  9. Astronautics and aeronautics, 1985: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  10. A Shuttle Derived Vehicle launch system

    Science.gov (United States)

    Tewell, J. R.; Buell, D. N.; Ewing, E. S.

    1982-01-01

    This paper describes a Shuttle Derived Vehicle (SDV) launch system presently being studied for the NASA by Martin Marietta Aerospace which capitalizes on existing Shuttle hardware elements to provide increased accommodations for payload weight, payload volume, or both. The SDV configuration utilizes the existing solid rocket boosters, external tank and the Space Shuttle main engines but replaces the manned orbiter with an unmanned, remotely controlled cargo carrier. This cargo carrier substitution more than doubles the performance capability of the orbiter system and is realistically achievable for minimal cost. The advantages of the SDV are presented in terms of performance and economics. Based on these considerations, it is concluded that an unmanned SDV offers a most attractive complement to the present Space Transportation System.

  11. Getting to the Heart of Cardiovascular Risk Assessment in Astronauts for Exploration Class Missions

    Science.gov (United States)

    Elgart, S. R.; Shavers, M. R.; Chappell, L.; Milder, C. M.; Huff, J. L.; Semones, E. J.; Simonsen, L. C.; Patel, Z. S.

    2017-01-01

    Since the beginning of manned spaceflight, NASA has recognized the potential risk of cardiovascular decrements due to stressors in the space environment. Of particular concern is the effect of space radiation on cardiovascular disease since astronauts will be exposed to higher levels of galactic cosmic rays outside the Earth's protective magnetosphere. To date, only a few studies have examined the effects of heavy ion radiation on cardiovascular disease, and at lower, space-relevant doses, the association between radiation exposure and cardiovascular pathology is more varied and unclear. Furthermore, other spaceflight conditions such as microgravity, circadian shifts, and confinement stress pose unique challenges in estimating the health risks that can be attributed to exposure to ionizing radiations. In this work, we review age, cause of mortality, and radiation exposure amongst early NASA astronauts in selection groups and discuss the limitations of assessing such a cohort when attempting to characterize the risk of space flight, including stressors such as space radiation and microgravity exposure, on cardiovascular health. METHODS: NASA astronauts in selection groups 1-7 were chosen and the comparison population was white men of the same birth cohort as drawn from data from the CDC Wonder Database and CDC National Center for Health Statistics Life Tables. Cause of death information was obtained from the Lifetime Surveillance of Astronaut Health program and deceased astronauts were classified based on ICD-10 codes: ischemic heart disease (IHD), stroke, cancer, acute occupational events, non-NASA accidents, and other/unknown. Expected years of life left and expected age at death were calculated for the cohort. RESULTS AND CONCLUSIONS: There were 32 deaths in this early astronaut population, 12 of which were due to accidents or acute occupational events that impacted lifespan considerably. The average age at death from these causes is 30 years lower than the

  12. From Homo Sapiens to Homo Cosmicus - Astronautics, Darwinism abd Historical Determinism

    Science.gov (United States)

    Tolkowsky, G.

    Since its inception in late-nineteenth century, astronautics has been viewed as a historical outcome of human evolution as well as a future driver thereof. The history of astronautics-related, evolutionary thought reveals a tension between the Darwinian notion of natural selection and that of homocosmic predestination - be it of dialectical materialistic or theological nature. One can detect the influence of this ideological diversity on the American and Soviet space programs.

  13. Quantum mechanical models for the Fermi shuttle

    Science.gov (United States)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  14. Reporters Interview Family of Apollo 11 Astronaut Neil Armstrong

    Science.gov (United States)

    1969-01-01

    Newsmen talked with the wife and sons of Apollo 11 astronaut Neil A. Armstrong after the successful launch of Apollo 11 on its trajectory to the moon. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  16. How can we protect astronauts from cosmic rays?

    International Nuclear Information System (INIS)

    Parker, E.

    2006-01-01

    Interplanetary astronauts would absorb more radiation in a single year than radiation workers are supposed to receive in a lifetime and as a consequence large number of them would develop radiation-related illnesses like cancer, cataract or would suffer from brain damage. In recognition to radiation threats, Nasa set up the space radiation shielding program in 2003. The first idea was to protect the astronauts by surrounding them with matter, by analogy of the earth's atmosphere but the problem of such a shield is its weight: the required mass would be at least 400 tons. The second proposal was to deflect the cosmic rays magnetically but the deflection of particles that have energies up to 2 GeV requires a magnetic field 600.000 times as strong as earth's equatorial field. Strong magnetic field may itself be dangerous. A more recent idea has been to give the spacecraft a positive charge which would repel any incoming positively charged nucleus. The drawback is that the ship will attract and accelerate negatively charged particles over distances as long as a few tens of thousands of kilometers. The result would be that the natural cosmic-ray flux would be replaced with a much more intense artificial one. At the present time the different solutions for protecting the astronauts from cosmic rays give little encouragement. (A.C.)

  17. Shuttle SBUV (SSBUV) Solar Spectral Irradiance V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shuttle Solar Backscatter Ultraviolet (SSBUV) level-2 irradiance data are available for eight space shuttle missions flown between 1989 and 1996. SSBUV, a...

  18. AMS gets lift on space shuttle Discovery

    CERN Multimedia

    2009-01-01

    AMS-02, the CERN-recognized experiment that will seek dark matter, missing matter and antimatter in Space aboard the International Space Station (ISS), has recently got the green light to be part of the STS-134 NASA mission in 2010. Installation of AMS detectors in the Prévessin experiment hall.In a recent press release, NASA announced that the last or last-but-one mission of the Space Shuttle programme would be the one that will deliver AMS, the Alpha Magnetic Spectrometer, to the International Space Station. The Space Shuttle Discovery is due to lift off in July 2010 from Kennedy Space Center and its mission will include the installation of AMS to the exterior of the space station, using both the shuttle and station arms. "It wasn’t easy to get a lift on the Space Shuttle from the Bush administration," says professor Samuel Ting, spokesperson of the experiment, "since during his administration all the funds for space research w...

  19. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  20. Shuttle sonic boom - Technology and predictions. [environmental impact

    Science.gov (United States)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  1. Electron shuttles in biotechnology.

    Science.gov (United States)

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  2. Astronaut John Glenn Enters Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  3. How Can "Weightless" Astronauts Be Weighed?

    Science.gov (United States)

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's "weight" when it is in free fall. The solution shows that the "weight" is zero and this leads to a discussion of the concept of weight. There are permanent free-fall situations such as astronauts in a spacecraft orbiting…

  4. Official portrait of Astronaut Anna L. Fisher

    Science.gov (United States)

    1985-01-01

    Official portrait of Astronaut Anna L. Fisher. Fisher is posing with her helmet on the table in front of her and the American flag appears over the opposite shoulder (34357); Posing with an empty table in front of her and the American flag behind her (34358).

  5. Telecast of Astronauts Armstrong and Aldrin by the Lunar Module

    Science.gov (United States)

    1969-01-01

    Astronauts Neil A. Armstrong (in center) commander; and Edwin E. Aldrin Jr. (on right), lunar module pilot, are seen standing near their Lunar Module in this black and white reproduction taken from a telecast by the Apollo 11 lunar surface television camera during the Apollo 11 extravehicular activity. This picture was made from a televised image received at the Deep Space Network tracking station at Goldstone, California. President Richard M. Nixon had just spoken to the two astronauts by radio and Aldrin, a colonel in the U.S. Air Force, is saluting the president.

  6. Revised estimates for ozone reduction by shuttle operation

    Science.gov (United States)

    Potter, A. E.

    1978-01-01

    Previous calculations by five different modeling groups of the effect of space shuttle operations on the ozone layer yielded an estimate of 0.2 percent ozone reduction for the Northern Hemisphere at 60 launches per year. Since these calculations were made, the accepted rate constant for the reaction between hydroperoxyl and nitric oxide to yield hydroxyl and nitrogen dioxide, HO2 + NO yields OH + NO2, was revised upward by more than an order of magnitude, with a resultant increase in the predicted ozone reduction for chlorofluoromethanes by a factor of approximately 2. New calculations of the shuttle effect were made with use of the new rate constant data, again by five different modeling groups. The new value of the shuttle effect on the ozone layer was found to be 0.25 percent. The increase resulting from the revised rate constant is considerably less for space shuttle operations than for chlorofluoromethane production, because the new rate constant also increases the calculated rate of downward transport of shuttle exhaust products out of the stratosphere.

  7. Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base

    Science.gov (United States)

    Breit, Terry J.; Elliott, George

    1987-01-01

    The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.

  8. Shuttle bus services quality assessment Tangerang Selatan toward smart city

    Science.gov (United States)

    Fassa, Ferdinand; Sitorus, Fredy Jhon Philip; Adikesuma, Tri Nugraha

    2017-11-01

    Around the world, shuttle bus operation played the significant role to accommodate transportation for commuting bus passengers. Shuttle Bus services in cities are provided by various bus agencies with kinds of own specific purposes. For instance, at Tangerang Selatan, Indonesia, it was said that shuttle bus In Trans Bintaro is run and operated by private bus companies hire by Bintaro developer. The aim of this research is to identify factors of satisfaction of shuttle bus service in Kota Tangerang Selatan, Indonesia. Several factors are used to analyze sums of 20 parameters performance indicators of Shuttle Bus. A face to face interview using a questionnaire (N=200) was used to collect data on October and March 2017. Likert and diagram Cartesian were used to model the all the parameters. This research succeeded in finding some categories of Shuttle bus service attributes such as accessibility, comfort, and safety. Users agreed that eight indicators in shuttle bus have the excellent achievement, while three indicators on performance remain low and should receive more attention especially punctuality of the bus.

  9. Characterizing Fractures Across the Astronaut Corps: Preliminary Findings from Population-Level Analysis

    Science.gov (United States)

    Rossi, Meredith M.; Charvat, Jacqueline M.; Sibonga, Jean D.; Sieker, Jeremy

    2017-01-01

    Despite evidence of bone loss during spaceflight and the implementation of countermeasures to mitigate this loss, the subsequent risk of fracture among astronauts is not known. Multiple factors such as age, sex, fracture history, and others may combine to increase fracture risk. The purpose of this study was to describe fractures among the astronaut population and generate questions for future occupational surveillance studies.

  10. Shuttle/TDRSS modelling and link simulation study

    Science.gov (United States)

    Braun, W. R.; Mckenzie, T. M.; Biederman, L.; Lindsey, W. C.

    1979-01-01

    A Shuttle/TDRSS S-band and Ku-band link simulation package called LinCsim was developed for the evaluation of link performance for specific Shuttle signal designs. The link models were described in detail and the transmitter distortion parameters or user constraints were carefully defined. The overall link degradation (excluding hardware degradations) relative to an ideal BPSK channel were given for various sets of user constraint values. The performance sensitivity to each individual user constraint was then illustrated. The effect of excessive Spacelab clock jitter on the return link BER performance was also investigated as was the problem of subcarrier recovery for the K-band Shuttle return link signal.

  11. Optimal Wafer Cutting in Shuttle Layout Problems

    DEFF Research Database (Denmark)

    Nisted, Lasse; Pisinger, David; Altman, Avri

    2011-01-01

    . The shuttle layout problem is frequently solved in two phases: first, a floorplan of the shuttle is generated. Then, a cutting plan is found which minimizes the overall number of wafers needed to satisfy the demand of each die type. Since some die types require special production technologies, only compatible...

  12. Psychological Selection of NASA Astronauts for International Space Station Missions

    Science.gov (United States)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  13. Apollo 11 Astronaut Neil Armstrong During Lunar Rock Collection Training

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil A. Armstrong uses a geologist's hammer in selecting rock specimens during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. Armstrong, alongside astronaut Edwin (Buzz) Aldrin, practiced gathering rock specimens using special lunar geological tools in preparation for the first Lunar landing. Mission was accomplished in July of the same year. Aboard the Marshall Space Fight center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Armstrong, commander; Aldrin, Lunar Module pilot; and a third astronaut Michael Collins, Command Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin, while Collins remained in lunar orbit. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The lunar surface exploration was concluded in 2½ hours.

  14. Artists concept of Apollo 11 Astronaut Neil Armstrong on the moon

    Science.gov (United States)

    1969-01-01

    A Grumman Aircraft Engineering Corporation artist's concept depicting mankind's first walk on another celestianl body. Here, Astronaut Neil Armstrong, Apollo 11 commander, is making his first step onto the surface of the moon. In the background is the Earth, some 240,000 miles away. Armstrong. They are continuing their postflight debriefings. The three astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  15. Shuttle Transportation System Case-Study Development

    Science.gov (United States)

    Ransom, Khadijah

    2012-01-01

    A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.

  16. Sequential Imaging of Earth by Astronauts: 50 Years of Global Change

    Science.gov (United States)

    Evans, Cynthia A.

    2009-01-01

    For nearly 50 years, astronauts have collected sequential imagery of the Earth. In fact, the collection of astronaut photography comprises one of the earliest sets of data (1961 to present) available to scientists to study the regional context of the Earth s surface and how it changes. While today s availability of global high resolution satellite imagery enables anyone with an internet connection to examine specific features on the Earth s surface with a regional context, historical satellite imagery adds another dimension (time) that provides researchers and students insight about the features and processes of a region. For example, one of the geographic areas with the longest length of record contained within the astronaut photography database is the lower Nile River. The database contains images that document the flooding of Lake Nasser (an analog to today s flooding behind China s Three Gorges Dam), the changing levels of Lake Nasser s water with multiyear cycles of flood and drought, the recent flooding and drying of the Toshka Lakes, as well as urban growth, changes in agriculture and coastal subsidence. The imagery database allows investigations using different time scales (hours to decades) and spatial scales (resolutions and fields of view) as variables. To continue the imagery collection, the astronauts on the International Space Station are trained to understand basic the Earth Sciences and look for and photograph major events such as tropical storms, landslides, and volcanic eruptions, and document landscapes undergoing change (e.g., coastal systems, cities, changing forest cover). We present examples of selected sequences of astronaut imagery that illustrate the interdependence of geological processes, climate cycles, human geography and development, and prompt additional questions about the underlying elements of change.

  17. Assessment of Astronaut Hand Function Using a Robotic Exoskeleton

    Data.gov (United States)

    National Aeronautics and Space Administration — An extended period of space exploration has deleterious effects on the neuromuscular system. Sensorimotor impairments can hinder an astronaut's performance by...

  18. Results of the psychiatric, select-out evaluation of US astronaut applications

    Science.gov (United States)

    Faulk, D. M.; Santy, P. A.; Holland, A. W.; Marsh, R.

    1992-01-01

    The psychiatric exclusion criteria for astronauts are based on NASA Medical Psychiatric Standards for space flight. Until recently, there were no standardized methods to evaluate disqualifying psychopathology in astronaut applicants. Method: One hundred and six astronaut applicants who had passed the intitial screening were evaluated for Axis 1 and Axis 2 DSM-3-R diagnoses using the NASA structured psychiatric interview. The interview consisted of three parts: (1) an unstructured portion for obtaining biographical and historical information, (2) the schedule for effective disorders-lifetime version (SASDL), specially modified to include all disqualifying Axis 1 mental disorders; and, (3) the personality assessment schedule (PAS) also modified to evaluate for Axis 2 disorders. Results: Nine of 106 candidates (8.5 percent) met diagnostic criteria for six Axis 1 disorders (including V code) or Axis 2 disorders. Two of these disorders were disqualifying for the applicants. 'Near' diagnoses (where applicants met at least 50 percent of the listed criteria) were assessed to demonstrate that clinicians using the interview were able to overcome applicants' reluctance to report symptomatomatology. Conclusion: The use of the NASA structured interview was effective in identifying past and present psychopathology in a group of highly motivated astronaut applicants. This was the first time a structured psychiatric interview had been used in such a setting for this purpose.

  19. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  20. Astronauts and cosmonauts during emergency bailout training session

    Science.gov (United States)

    1994-01-01

    Using small life rafts, several cosmonauts and astronauts participating in joint Russia - United States space missions take part in an emergency bailout training session in the JSC Weightless Environment Training Facility (WETF) 25-feet-deep pool. In the

  1. Liquid Hydrogen Consumption During Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  2. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins.

    Science.gov (United States)

    Fu, Xuekun; Liang, Chao; Li, Fangfei; Wang, Luyao; Wu, Xiaoqiu; Lu, Aiping; Xiao, Guozhi; Zhang, Ge

    2018-05-12

    Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.

  3. AI mass spectrometers for space shuttle health monitoring

    Science.gov (United States)

    Adams, F. W.

    1991-01-01

    The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.

  4. Shuttle Repair Tools Automate Vehicle Maintenance

    Science.gov (United States)

    2013-01-01

    Successfully building, flying, and maintaining the space shuttles was an immensely complex job that required a high level of detailed, precise engineering. After each shuttle landed, it entered a maintenance, repair, and overhaul (MRO) phase. Each system was thoroughly checked and tested, and worn or damaged parts replaced, before the shuttle was rolled out for its next mission. During the MRO period, workers needed to record exactly what needed replacing and why, as well as follow precise guidelines and procedures in making their repairs. That meant traceability, and with it lots of paperwork. In 2007, the number of reports generated during electrical system repairs was getting out of hand-placing among the top three systems in terms of paperwork volume. Repair specialists at Kennedy Space Center were unhappy spending so much time at a desk and so little time actually working on the shuttle. "Engineers weren't spending their time doing technical work," says Joseph Schuh, an electrical engineer at Kennedy. "Instead, they were busy with repetitive, time-consuming processes that, while important in their own right, provided a low return on time invested." The strain of such inefficiency was bad enough that slow electrical repairs jeopardized rollout on several occasions. Knowing there had to be a way to streamline operations, Kennedy asked Martin Belson, a project manager with 30 years experience as an aerospace contractor, to co-lead a team in developing software that would reduce the effort required to document shuttle repairs. The result was System Maintenance Automated Repair Tasks (SMART) software. SMART is a tool for aggregating and applying information on every aspect of repairs, from procedures and instructions to a vehicle s troubleshooting history. Drawing on that data, SMART largely automates the processes of generating repair instructions and post-repair paperwork. In the case of the space shuttle, this meant that SMART had 30 years worth of operations

  5. Astronaut Neil A. Armstrong during water egress training

    Science.gov (United States)

    1965-01-01

    Astronaut Neil A. Armstrong, Gemini 5 backup crew command pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  6. Space shuttle orbital maneuvering engine platelet injector program

    Science.gov (United States)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  7. Astronaut radiation. Will it become a problem?

    International Nuclear Information System (INIS)

    Parker, I.

    1988-01-01

    The U.S. NRCP recommendations to NASA for astronauts' dose limits to deep-body, eyes and skin are discussed in outline in relation to the longer space flights (e.g. space station duties and a manned Mars mission). Cosmic rays, solar flares and trapped Van Allen belt radiation are considered. (U.K.)

  8. Shuttle and ISS Food Systems Management

    Science.gov (United States)

    Kloeris, Vickie

    2000-01-01

    Russia and the U.S. provide the current International Space Station (ISS) food system. Each country contributes half of the food supply in their respective flight food packaging. All of the packaged flight food is stowed in Russian provided containers, which interface with the Service Module galley. Each country accepts the other's flight worthiness inspections and qualifications. Some of the food for the first ISS crew was launched to ISS inside the Service Module in July of 2000, and STS-106 in September 2000 delivered more food to the ISS. All subsequent food deliveries will be made by Progress, the Russian re-supply vehicle. The U.S. will ship their portion of food to Moscow for loading onto the Progress. Delivery schedules vary, but the goal is to maintain at least a 45-day supply onboard ISS at all times. The shelf life for ISS food must be at least one year, in order to accommodate the long delivery cycle and onboard storage. Preservation techniques utilized in the US food system include dehydration, thermo stabilization, intermediate moisture, and irradiation. Additional fresh fruits and vegetables will be sent with each Progress and Shuttle flights as permitted by volume allotments. There is limited refrigeration available on the Service Module to store fresh fruits and vegetables. Astronauts and cosmonauts eat half U.S. and half Russian food. Menu planning begins 1 year before a planned launch. The flight crews taste food in the U.S. and in Russia and rate the acceptability. A preliminary menu is planned, based on these ratings and the nutritional requirements. The preliminary menu is then evaluated by the crews while training in Russia. Inputs from this evaluation are used to finalize the menu and flight packaging is initiated. Flight food is delivered 6 weeks before launch. The current challenge for the food system is meeting the nutritional requirements, especially no more than 10 mg iron, and 3500 mg sodium. Experience from Shuttle[Mir also indicated

  9. CERN Shuttle

    CERN Multimedia

    General Infrastructure Services Department

    2011-01-01

    As of Monday 21 February, a new schedule will come into effect for the Airport Shuttle (circuit No. 4) at the end of the afternoon: Last departure at 7:00 pm from Main Buildig, (Bldg. 500) to Airport (instead of 5:10 p.m.); Last departure from Airport to CERN, Main Buildig, (Bldg. 500), at 7:30 p.m. (instead of 5:40 p.m.). Group GS-IS

  10. Macro Level Simulation Model Of Space Shuttle Processing

    Science.gov (United States)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  11. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  12. Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle

    Science.gov (United States)

    Hale, N. Wayne (Editor); Lulla, Kamlesh (Editor); Lane, Helen W. (Editor); Chapline, Gail (Editor)

    2010-01-01

    This Space Shuttle book project reviews Wings In Orbit-scientific and engineering legacies of the Space Shuttle. The contents include: 1) Magnificent Flying Machine-A Cathedral to Technology; 2) The Historical Legacy; 3) The Shuttle and its Operations; 4) Engineering Innovations; 5) Major Scientific Discoveries; 6) Social, Cultural, and Educational Legacies; 7) Commercial Aerospace Industries and Spin-offs; and 8) The Shuttle continuum, Role of Human Spaceflight.

  13. Effect of sampling schedule on pharmacokinetic parameter estimates of promethazine in astronauts

    Science.gov (United States)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2005-08-01

    Six astronauts on the Shuttle Transport System (STS) participated in an investigation on the pharmacokinetics of promethazine (PMZ), a medication used for the treatment of space motion sickness (SMS) during flight. Each crewmember completed the protocol once during flight and repeated thirty days after returned to Earth. Saliva samples were collected at scheduled times for 72 h after PMZ administration; more frequent samples were collected on the ground than during flight owing to schedule constraints in flight. PMZ concentrations in saliva were determined by a liquid chromatographic/mass spectrometric (LC-MS) assay and pharmacokinetic parameters (PKPs) were calculated using actual flight and ground-based data sets and using time-matched sampling schedule on ground to that during flight. Volume of distribution (Vc) and clearance (Cls) decreased during flight compared to that from time-matched ground data set; however, ClS and Vc estimates were higher for all subjects when partial ground data sets were used for analysis. Area under the curve (AUC) normalized with administered dose was similar in flight and partial ground data; however AUC was significantly lower using time-matched sampling compared with the full data set on ground. Half life (t1/2) was longest during flight, shorter with matched-sampling schedule on ground and shortest when complete data set from ground was used. Maximum concentration (Cmax), time for Cmax (tmax), parameters of drug absorption, depicted a similar trend with lowest and longest respectively, during flight, lower with time- matched ground data and highest and shortest with full ground data.

  14. Stennis Holds Last Planned Space Shuttle Engine Test

    Science.gov (United States)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  15. A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    Science.gov (United States)

    Greenisen, Michael C.; West, Phillip; Newton, Frederick K.; Gilbert, John H.; Squires, William G.

    1991-01-01

    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement.

  16. Astronaut Terry J. Hart in training session RMS for STS-2 bldg 29

    Science.gov (United States)

    1981-01-01

    Astronaut Terry J. Hart in training session with the Remote Manipulator System (RMS) for STS-2 bldg 29. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame while Astronaut Sally Ride waits on right for her time at the RMS.

  17. A survey of Rocketry and astronautics in Spain

    Science.gov (United States)

    Maluquer, J. J.

    1977-01-01

    The entire field of rocketry and astronautics in Spain was studied. Congreve war rockets in military actions were emphasized in the African war, the Cuban campaign and the Spanish Civil War. Rockets in space travel were also summarized along with space science fiction.

  18. Astronaut Robert L. Crippen prepares for underwater training session

    Science.gov (United States)

    1983-01-01

    Astronaut Robert L. Crippen, STS-7 crew commander, adjusts his extravehicular mobility unit's (EMU) gloves prior to donning his helmet for a training session in the weightless environment test facility (WETF).

  19. Shuttles set for US Gulf lift off

    Energy Technology Data Exchange (ETDEWEB)

    DeLuca, Marshall

    2002-09-01

    The author reports on discussions with two US companies about plans for using shuttle tankers to transport oil from platforms in the Gulf of Mexico to US ports as an alternative to pipeline networks. This follows approval by the US Minerals Management Service for FPSOs in the Gulf. The companies are American Shuttle Tankers and Conoco-owned Seahorse Shuttling and Technology. Because the vessels will enter US ports and operate in US waters, they must conform with the US Jones Act: they must be US-built, US-flagged and manned by US crews. They must also be double-hulled. This increases cost and reduces market opportunities for the vessels outside the US. The article also considers the use of articulated tug barges as another option. (UK)

  20. The Shuttle Cost and Price model

    Science.gov (United States)

    Leary, Katherine; Stone, Barbara

    1983-01-01

    The Shuttle Cost and Price (SCP) model was developed as a tool to assist in evaluating major aspects of Shuttle operations that have direct and indirect economic consequences. It incorporates the major aspects of NASA Pricing Policy and corresponds to the NASA definition of STS operating costs. An overview of the SCP model is presented and the cost model portion of SCP is described in detail. Selected recent applications of the SCP model to NASA Pricing Policy issues are presented.

  1. Protecting Astronaut Medical Privacy: Review of Presentations and Publications for Attributability

    Science.gov (United States)

    Wear, M. L.; Charvat, J. M.; Lee, L. R.; Babiak-Vazquez, A.; Mason, S. S.; Van Baalen, M.

    2018-01-01

    Retrospective research and medical data collected on astronauts can be a valuable resource for researchers. This data can be requested from two separate NASA Archives. The Lifetime Surveillance of Astronaut Health (LSAH) holds astronaut medical data, and the Life Sciences Data Archive (LSDA) holds research data. One condition of use of astronaut research and medical data is the requirement that all abstracts, publications and presentations using this data must be reviewed for attributability. All final versions of abstracts, presentations, posters, and manuscripts must be reviewed by LSDA/LSAH prior to submission to a conference, journal, or other entities outside the Principal Investigator (PI) laboratory [including the NASA Export Control Document Availability Authorization (DAA) system]. If material undergoes multiple revisions (e.g., journal editor comments), the new versions must also be reviewed by LSDA/LSAH prior to re-submission to the journal. The purpose of this review is to ensure that no personally identifiable information (PII) is included in materials that are presented in a public venue or posted to the public domain. The procedures for submitting materials for review will be outlined. The process that LSAH/LSDA follows for assessing attributability will be presented. Characteristics and parameter combinations that often prompt attributability concerns will be identified. A published case report for a National Football League (NFL) player will be used to demonstrate how, in a population of public interest, a combination of information can result in inadvertent release of private or sensitive information.

  2. Astronaut Gordon Cooper in centrifuge for tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  3. Three Conservation Applications of Astronaut Photographs of Earth: Tidal Flat Loss (Japan), Elephant Impacts on Vegetation (Botswana), and Seagrass and Mangrove Monitoring (Australia)

    Science.gov (United States)

    Lulla, Kamlesh P.; Robinson, Julie A.; Minorukashiwagi; Maggiesuzuki; Duanenellis, M.; Bussing, Charles E.; Leelong, W. J.; McKenzie, Andlen J.

    2000-01-01

    NASA photographs taken from low Earth orbit can provide information relevant to conservation biology. This data source is now more accessible due to improvements in digitizing technology, Internet file transfer, and availability of image processing software. We present three examples of conservation-related projects that benefited from using orbital photographs. (1) A time series of photographs from the Space Shuttle showing wetland conversion in Japan was used as a tool for communicating about the impacts of tidal flat loss. Real-time communication with astronauts about a newsworthy event resulted in acquiring current imagery. These images and the availability of other high resolution digital images from NASA provided timely public information on the observed changes. (2) A Space Shuttle photograph of Chobe National Park in Botswana was digitally classified and analyzed to identify the locations of elephant-impacted woodland. Field validation later confirmed that areas identified on the image showed evidence of elephant impacts. (3) A summary map from intensive field surveys of seagrasses in Shoalwater Bay, Australia was used as reference data for a supervised classification of a digitized photograph taken from orbit. The classification was able to distinguish seagrasses, sediments and mangroves with accuracy approximating that in studies using other satellite remote sensing data. Orbital photographs are in the public domain and the database of nearly 400,000 photographs from the late 1960s to the present is available at a single searchable location on the Internet. These photographs can be used by conservation biologists for general information about the landscape and in quantitative applications.

  4. Astronauts McDivitt and White look over training plans

    Science.gov (United States)

    1965-01-01

    Astronauts James A. McDivitt (left) and Edward H. White II are shown looking over training plans at Cape Kennedy during prelaunch preparations. The NASA Headquarters alternative photo number is 65-H-275.

  5. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    Science.gov (United States)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  6. Death of the TonB Shuttle Hypothesis.

    Science.gov (United States)

    Gresock, Michael G; Savenkova, Marina I; Larsen, Ray A; Ollis, Anne A; Postle, Kathleen

    2011-01-01

    A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFP-TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFP-TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon Green(®) 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm.

  7. Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture

    Science.gov (United States)

    Lewandowski, Beth; Myers, Jerry; Licata, Angelo

    2015-01-01

    Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement

  8. What Threats to Human Health Does Space Radiation Pose in Orbit

    Science.gov (United States)

    Wu, Honglu; Semones, Eddie; Weyland, Mark; Zapp, Neal; Cucinotta, Francis A.

    2011-01-01

    The Space Shuttle program spanned more than the entire length of a solar cycle. Investigations aimed towards understanding the health risks of the astronauts from exposures to space radiation involved mostly physical measurements of the dose and the linear energy transfer (LET) spectrum. Measurement of the dose rate on the Shuttle provided invariable new data for different periods of the solar cycle, whereas measurement of the LET spectrum using the tissue equivalent proportional counter (TEPC) produced the most complete mapping of the radiation environment of the low Earth orbits (LEO). Exposures to the Shuttle astronauts were measured by the personal dosimeter worn by the crewmembers. Analysis of over 300 personal dosimeter readings indicated a dependence on the mission duration, the altitude and inclination of the orbit, and the solar cycle, with the crewmembers on the launch and repair of the Hubble telescope receiving the highest doses due to the altitude of the mission. Secondary neutrons inside the Shuttle were determined by recoil protons or with Bonner spheres, and may contribute significantly to the risks of the crewmembers. In addition, the skin dose and the doses received at different organs were compared using a human phantom onboard a Shuttle mission. A number of radiobiology investigations wer e also performed. The biological doses were determined on six astronauts/cosmonauts on long-duration Shuttle/Mir missions and on two crewmembers on a Hubble repair mission by analyzing the damages in the chromosomes of the crewmembers? white blood cells. Several experiments were also conducted to address the question of possible synergistic effects of spaceflight, microgravity in particular, on the repair of radiation-induced DNA damages. The experimental design included exposure of cells before launch, during flight, or after landing. These physical and biological studies were invaluable in predicting the health risks for astronauts on ISS and future

  9. Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System

    Science.gov (United States)

    1996-01-01

    A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.

  10. Endeavour blasts-off on ambitious mission

    Science.gov (United States)

    1993-12-01

    "I am delighted to see the servicing mission off to such a beautiful start", said Roger Bonnet, ESA's Director of Science, who watched the launch from the Kennedy Space Center, Florida. "We are anxious to see the Hubble Space Telescope restored to its full capability so astronomers world- wide can take advantage of this unique observatory". During the eight and a half minute climb to orbit ESA astronaut Claude Nicollier helped the shuttle commander and pilot monitor the cockpit displays. Nicollier is the first international astronaut to serve as a shuttle's flight engineer. He will perform the same task at the end of the mission for reentry and landing. The European Space Agency has a major role in the telescope servicing mission. In addition to the presence of its astronaut, the agency is supplying new, improved power generating solar arrays and helped NASA test the Costar system of corrective optics. Nicollier will be responsible for operation of the shuttle's robot arm during the 11-day mission. He will use the arm to pluck the telescope from orbit and move astronauts and equipment around the payload bay during the mission's five spacewalks. The astronauts are spending their first hours in space setting up equipment in the orbiter's crew cabin. They will fire the shuttle's manoeuvring jets before going to bed to begin the two-day pursuit of the orbiting telescope. There will be three orbital manoeuvres tomorrow to further close the gap. The shuttle is due to reach the telescope Saturday and repair work will begin Sunday. Checkouts of the four space suits and the robot arm will occupy the crew tomorrow. Nicollier will use the arm to inspect the equipment in the cargo bay and later practise the manoeuvre he will use on Saturday to capture the telescope. Hubble Space Telescope science operations will be suspended at midnight tonight EST (06h00 a.m. CET tomorrow) and the HST aperture door closed at 07h30 a.m. EST (01h30 p.m. CET).

  11. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    OpenAIRE

    Lixun Zhang; Yupeng Zou; Lan Wang; Xinping Pei

    2012-01-01

    A novel Astronaut Rehabilitative Training Robot (ART) based on a cable‐driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut’s active movements. Based on the dynamics modelling of the cable‐driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC) is presented...

  12. Astronauts Scott and Armstrong undergoe water egress training

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini 8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise.

  13. Apollo 11 Astronaut Armstrong Arrives at the Flight Crew Training Building

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil Armstrong walks to the flight crew training building at the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. High-Pressure Systems Suppress Fires in Seconds

    Science.gov (United States)

    2012-01-01

    Much deserved attention is given to the feats of innovation that allow humans to live in space and robotic explorers to beam never-before-seen images back to Earth. In the background of these accomplishments is a technology that makes it all possible the rockets that propel NASA s space exploration efforts skyward. Marshall Space Flight Center has been at the heart of the Agency s rocketry and spacecraft propulsion efforts since its founding in 1960. Located at the Redstone Arsenal near Huntsville, Alabama, the Center has a legacy of success stretching back to the Saturn rockets that carried the Apollo astronauts into space. Even before Marshall was established, Redstone was the site of significant advances in American rocketry under the guidance of famous rocket engineer Werner Von Braun; these included the Juno I rocket that successfully carried the United States first satellite, Explorer 1, into orbit in 1958. And from the first orbital test flight of the Space Shuttle Columbia through the final flights of the shuttle program this year, these vehicles have been enabled by the solid rocket boosters, external tank, and orbiter main engines created at Marshall. Today, Marshall continues to host innovation in rocket and spacecraft propulsion at state-of-the-art facilities such as the Propulsion Research Laboratory. Like many of its past successes, some of the Center s current advancements are being made with the help of private industry partners. The efforts have led not only to new propulsion technologies, but to terrestrial benefits in a seemingly unrelated field in this case, firefighting.

  15. Holography on the NASA Space Shuttle

    Science.gov (United States)

    Wuerker, R. F.; Heflinger, L. O.; Flannery, J. V.; Kassel, A.; Rollauer, A. M.

    1980-01-01

    The SL-3 flight on the Space Shuttle will carry a 25 mW He-Ne laser holographic recorder for recording the solution growth of triglycine sulfate (TGS) crystals under low-zero gravity conditions. Three hundred holograms (two orthogonal views) will be taken (on SO-253 film) of each growth experiment. Processing and analysis (i.e., reconstructed imagery, holographic schlieren, reverse reference beam microscopy, and stored beam interferometry) of the holographic records will be done at NASA/MSFC. Other uses of the recorder on the Shuttle have been proposed.

  16. The use of the Space Shuttle for land remote sensing

    Science.gov (United States)

    Thome, P. G.

    1982-01-01

    The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.

  17. Use of Probabilistic Risk Assessment in Shuttle Decision Making Process

    Science.gov (United States)

    Boyer, Roger L.; Hamlin, Teri, L.

    2011-01-01

    This slide presentation reviews the use of Probabilistic Risk Assessment (PRA) to assist in the decision making for the shuttle design and operation. Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and disciplined approach to identifying and analyzing risk in complex systems and/or processes that seeks answers to three basic questions: (i.e., what can go wrong? what is the likelihood of these occurring? and what are the consequences that could result if these occur?) The purpose of the Shuttle PRA (SPRA) is to provide a useful risk management tool for the Space Shuttle Program (SSP) to identify strengths and possible weaknesses in the Shuttle design and operation. SPRA was initially developed to support upgrade decisions, but has evolved into a tool that supports Flight Readiness Reviews (FRR) and near real-time flight decisions. Examples of the use of PRA for the shuttle are reviewed.

  18. Astronautics and aeronautics, 1972. [a chronology of events

    Science.gov (United States)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  19. Behavioral Issues Associated With Long Duration Space Expeditions: Review and Analysis of Astronaut Journals

    Science.gov (United States)

    Struster, Jack

    2010-01-01

    Personal journals maintained by NASA astronauts during six-month expeditions onboard the International Space Station were analyzed to obtain information concerning a wide range of behavioral and human factors issues. Astronauts wrote most about their work, followed by outside communications (with mission control, family, and friends), adjustment to the conditions, interactions with crew mates, recreation/leisure, equipment (installation, maintenance), events (launches, docking, hurricanes, etc.), organization/management, sleep, and food. The study found evidence of a decline in morale during the third quarters of the missions and identified key factors that contribute to sustained adjustment and optimal performance during long-duration space expeditions. Astronauts reported that they benefited personally from writing in their journals because it helped maintain perspective on their work and relations with others. Responses to questions asked before, during, and after the expeditions show that living and working onboard the ISS is not as difficult as the astronauts anticipate before starting their six-month tours of duty. Recommendations include application of study results and continuation of the experiment to obtain additional data as crew size increases and operations evolve.

  20. Space Shuttle GN and C Development History and Evolution

    Science.gov (United States)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  1. A Dynamic Risk Model for Evaluation of Space Shuttle Abort Scenarios

    Science.gov (United States)

    Henderson, Edward M.; Maggio, Gaspare; Elrada, Hassan A.; Yazdpour, Sabrina J.

    2003-01-01

    The Space Shuttle is an advanced manned launch system with a respectable history of service and a demonstrated level of safety. Recent studies have shown that the Space Shuttle has a relatively low probability of having a failure that is instantaneously catastrophic during nominal flight as compared with many US and international launch systems. However, since the Space Shuttle is a manned. system, a number of mission abort contingencies exist to primarily ensure the safety of the crew during off-nominal situations and to attempt to maintain the integrity of the Orbiter. As the Space Shuttle ascends to orbit it transverses various intact abort regions evaluated and planned before the flight to ensure that the Space Shuttle Orbiter, along with its crew, may be returned intact either to the original launch site, a transoceanic landing site, or returned from a substandard orbit. An intact abort may be initiated due to a number of system failures but the highest likelihood and most challenging abort scenarios are initiated by a premature shutdown of a Space Shuttle Main Engine (SSME). The potential consequences of such a shutdown vary as a function of a number of mission parameters but all of them may be related to mission time for a specific mission profile. This paper focuses on the Dynamic Abort Risk Evaluation (DARE) model process, applications, and its capability to evaluate the risk of Loss Of Vehicle (LOV) due to the complex systems interactions that occur during Space Shuttle intact abort scenarios. In addition, the paper will examine which of the Space Shuttle subsystems are critical to ensuring a successful return of the Space Shuttle Orbiter and crew from such a situation.

  2. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  3. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    Science.gov (United States)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  4. Astronaut Neil Armstrong participates in simulation of moon's surface

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, deploys a lunar surface television camera during lunar surface simulation training in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission.

  5. Astronauts Armstrong and Scott during photo session outside KSC

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. They are standing in front of a radar dish.

  6. 78 FR 72011 - Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry

    Science.gov (United States)

    2013-12-02

    ..., from engaging in operational functions during an FAA-licensed launch or reentry. NASA noted that all... environmental controls and life support systems.'' NASA also asked the FAA whether NASA's astronauts could... an off-nominal or emergency situation, the NASA astronaut would, much of the time, be using...

  7. Heat transfer and pressure measurements for the SSME fuel turbine

    Science.gov (United States)

    Dunn, Michael G.; Kim, Jungho

    1991-01-01

    A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.

  8. Proceedings of the Space Shuttle Environmental Assessment Workshop on Stratospheric Effects

    Science.gov (United States)

    Potter, A. E. (Compiler)

    1977-01-01

    Various aspects of the potential environmental impact of space shuttle exhaust are explored. Topics include: (1) increased ultraviolet radiation levels in the biosphere due to destruction of atmospheric ozone; (2) climatic changes due to aerosol particles affecting the planetary albedo; (3) space shuttle propellants (including alternate formulations); and (4) measurement of space shuttle exhaust products.

  9. Synchronizing a single-electron shuttle to an external drive

    Science.gov (United States)

    Moeckel, Michael J.; Southworth, Darren R.; Weig, Eva M.; Marquardt, Florian

    2014-04-01

    The nanomechanical single-electron shuttle is a resonant system in which a suspended metallic island oscillates between and impacts at two electrodes. This setup holds promise for one-by-one electron transport and the establishment of an absolute current standard. While the charge transported per oscillation by the nanoscale island will be quantized in the Coulomb blockade regime, the frequency of such a shuttle depends sensitively on many parameters, leading to drift and noise. Instead of considering the nonlinearities introduced by the impact events as a nuisance, here we propose to exploit the resulting nonlinear dynamics to realize a highly precise oscillation frequency via synchronization of the shuttle self-oscillations to an external signal. We link the established phenomenological description of synchronization based on the Adler equation to the microscopic nonlinear dynamics of the electron shuttle by calculating the effective Adler constant analytically in terms of the microscopic parameters.

  10. Synchronizing a single-electron shuttle to an external drive

    International Nuclear Information System (INIS)

    Moeckel, Michael J; Southworth, Darren R; Weig, Eva M; Marquardt, Florian

    2014-01-01

    The nanomechanical single-electron shuttle is a resonant system in which a suspended metallic island oscillates between and impacts at two electrodes. This setup holds promise for one-by-one electron transport and the establishment of an absolute current standard. While the charge transported per oscillation by the nanoscale island will be quantized in the Coulomb blockade regime, the frequency of such a shuttle depends sensitively on many parameters, leading to drift and noise. Instead of considering the nonlinearities introduced by the impact events as a nuisance, here we propose to exploit the resulting nonlinear dynamics to realize a highly precise oscillation frequency via synchronization of the shuttle self-oscillations to an external signal. We link the established phenomenological description of synchronization based on the Adler equation to the microscopic nonlinear dynamics of the electron shuttle by calculating the effective Adler constant analytically in terms of the microscopic parameters

  11. Aboard the Space Shuttle.

    Science.gov (United States)

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  12. Mobile Christian - shuttle flight

    Science.gov (United States)

    2009-01-01

    Erin Whittle, 14, (seated) and Brianna Johnson, 14, look on as Louis Stork, 13, attempts a simulated landing of a space shuttle at StenniSphere. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

  13. Physiological responses of astronaut candidates to simulated +Gx orbital emergency re-entry.

    Science.gov (United States)

    Wu, Bin; Xue, Yueying; Wu, Ping; Gu, Zhiming; Wang, Yue; Jing, Xiaolu

    2012-08-01

    We investigated astronaut candidates' physiological and pathological responses to +Gx exposure during simulated emergency return from a running orbit to advance astronaut +Gx tolerance training and medical support in manned spaceflight. There were 13 male astronaut candidates who were exposed to a simulated high +Gx acceleration profile in a spacecraft during an emergency return lasting for 230 s. The peak value was 8.5 G. Subjective feelings and symptoms, cardiovascular and respiratory responses, and changes in urine component before, during, and after +Gx exposure were investigated. Under high +Gx exposure, 15.4% of subjects exhibited arrhythmia. Heart rate (HR) increased significantly and four different types of HR response curves were distinguished. The ratio of QT to RR interval on the electrocardiograms was significantly increased. Arterial oxygen saturation (SaO2) declined with increasing G value and then returned gradually. SaO2 reached a minimum (87.7%) at 3 G during the decline phase of the +Gx curve. Respiratory rate increased significantly with increasing G value, while the amplitude and area of the respiratory waves were significantly reduced. The overshoot appeared immediately after +Gx exposure. A few subjects suffered from slight injuries, including positive urine protein (1/13), positive urinary occult blood (1/13), and a large area of petechiae on the back (1/13). Astronaut candidates have relatively good tolerance to the +Gx profile during a simulation of spacecraft emergent ballistic re-entry. However, a few subjects exhibited adverse physiological responses and slight reversible pathological injuries.

  14. A Program of Research and Education in Astronautics at the NASA Langley Research Center

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

  15. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    Science.gov (United States)

    Ryan, R.; Gross, L. A.

    1995-05-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  16. Directional control-response compatibility of joystick steered shuttle cars.

    Science.gov (United States)

    Burgess-Limerick, Robin; Zupanc, Christine M; Wallis, Guy

    2012-01-01

    Shuttle cars are an unusual class of vehicle operated in underground coal mines, sometimes in close proximity to pedestrians and steering errors may have very serious consequences. A directional control-response incompatibility has previously been described in shuttle cars which are controlled using a steering wheel oriented perpendicular to the direction of travel. Some other shuttle car operators are seated perpendicular to the direction of travel and steer the car via a seat mounted joystick. A virtual simulation was utilised to determine whether the steering arrangement in these vehicles maintains directional control-response compatibility. Twenty-four participants were randomly assigned to either a condition corresponding to this design (consistent direction), or a condition in which the directional steering response was reversed while driving in-bye (visual field compatible). Significantly less accurate steering performance was exhibited by the consistent direction group during the in-bye trials only. Shuttle cars which provide the joystick steering mechanism described here require operators to accommodate alternating compatible and incompatible directional control-response relationships with each change of car direction. A virtual simulation of an underground coal shuttle car demonstrates that the design incorporates a directional control-response incompatibility when driving the vehicle in one direction. This design increases the probability of operator error, with potential adverse safety and productivity consequences.

  17. Mission X: Train Like an Astronaut Pilot Study

    Science.gov (United States)

    Lloyd, Charles W.; Olivotto, C.; Boese, A.; Spiero, F.; Galoforo, G.; Niihori, M.

    2011-01-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experiences

  18. College of Engineering alumnus honored with American Institute of Aeronautics and Astronautics Abe M. Zarem Award

    OpenAIRE

    Nystrom, Lynn A.

    2009-01-01

    Adam Cowling, a recent master's graduate of Virginia Tech's Aerospace and Ocean Engineering Department in the College of Engineering, is the 2009 recipient of the American Institute of Aeronautics and Astronautics (AIAA) Abe M. Zarem Award for Distinguished Achievement in Astronautics.

  19. Identification of Psychological Stresses for Astronauts and Cosmonauts

    Science.gov (United States)

    Marsh, Melinda

    As humans continue to explore and expand in the solar system, psychological problems brought about by high stress of living in the space environment will continue to increase. Unfortunately, due to many reasons, including relative difficulties with gaining access to astronauts and cosmonauts and to gather psychological data from them regarding stressors, this area is not very well known and discussed. Five astronauts and cosmonauts from three space agencies: ESA, RSA, and JAXA were unoffi- cially surveyed regarding their experiences with ten general categories of psychological stressors as well as eight subcategories of interpersonal conflict stressors accepted in space related community of psychologists. The two subjects in space for longer periods of time reported more stressors and were likely to rate stressors as having a greater effect on the chance of mission failure. Shorter duration flyers reported nearly all general stressors were likely to increase in the event of a longer duration space flight. With the increased interest in long duration spaceflight, psychological stressors are more likely to affect mission success.

  20. Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: An emerging understanding

    Science.gov (United States)

    Marshall-Bowman, Karina; Barratt, Michael R.; Gibson, C. Robert

    2013-06-01

    For many years, there have been anecdotal reports of vision changes by astronauts following short and long-duration spaceflight. Much of this was attributed to hyperopic shifts related to the age of the flying population. However, it has recently been recognized that vision changes are actually quite common in astronauts and are associated with a constellation of findings including elevated intracranial pressure, optic disc edema, globe flattening, optic nerve sheath thickening, hyperopic shifts and retinal changes. With advanced imaging modalities available on the ground along with the fidelity of in-flight diagnostic capabilities previously unavailable, information on this newly recognized syndrome is accumulating. As of this writing, 11 cases of visual impairment experienced by astronauts during missions on-board the International Space Station (ISS) have been documented and studied. Although the exact mechanisms of the vision changes are unknown, it is hypothesized that increased intracranial pressure (ICP) is a contributing factor. Microgravity is the dominant cause of many physiological changes during spaceflight and is thought to contribute significantly to the observed ophthalmic changes. However, several secondary factors that could contribute to increased ICP and vision changes in spaceflight have been proposed. Possible contributors include microgravity-induced cephalad fluid shift, venous obstruction due to microgravity-induced anatomical shifts, high levels of spacecraft cabin carbon dioxide, heavy resistive exercise, and high sodium diet. Individual susceptibility to visual impairment is not fully understood, though a demographic of affected astronauts is emerging. This paper describes the current understanding of this newly recognized syndrome, presents data from 11 individual cases, and discusses details of potential contributing factors. The occurrence of visual changes in long duration missions in microgravity is one of the most significant

  1. Space Shuttle Orbiter Endeavour STS-47 Launch

    Science.gov (United States)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Orbiter Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke on September 12, 1992. The primary payload for the plarned seven-day flight was the Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  2. Combined Effects of Spaceflight and Age in Astronauts as Assessed by Areal Bone Mineral Density [BMD] and Trabecular Bone Score

    Science.gov (United States)

    Sibonga, Jean D.; Spector, Elizabeth R.; Ploutz-Snyder, R.; Evans, H. J.; King, L.; Watts, N. B.; Hans, D.; Smith, S. A.

    2013-01-01

    Spaceflight is a potential risk factor for secondary osteoporosis in astronauts. Although lumbar spine (LS) BMD declines rapidly, more than expected for age, there have been no fragility fractures in astronauts that can clearly be attributed to spaceflight. Recently, astronauts have been returning from 6-month spaceflights with absolute BMD still above young adult mean BMD. In spite of these BMD measurements, we project that the rapid loss in bone mass over long-duration spaceflight affects the bone microarchitecture of the LS which might predispose astronauts to premature vertebral fractures. Thus, we evaluated TBS, a novel texture index correlated with vertebral bone microarchitecture, as a means of monitoring changes to bone microarchitecture in astronauts as they age. We previously reported that TBS detects an effect of spaceflight (6-month duration), independent of BMD, in 51 astronauts (47+/-4 y) (Smith et al, J Clin Densitometry 2014). Hence, TBS was evaluated in serial DXA scans (Hologic Discovery W) conducted triennially in all active and retired astronauts and more frequently (before spaceflight, after spaceflight and until recovery) in the subset of astronauts flying 4-6- month missions. We used non-linear models to describe trends in observations (BMD or TBS) plotted as a function of astronaut age. We fitted 1175 observations of 311 astronauts, pre-flight and then postflight starting 3 years after landing or after astronaut's BMD for LS was restored to within 2% of preflight BMD. Observations were then grouped and defined as follows: 1) LD: after exposure to at least one long-duration spaceflight > 100 days and 2) SD: before LD and after exposure to at least one short-duration spaceflight < 30 days. Data from males and females were analyzed separately. Models of SD observations revealed that TBS and BMD had similar curvilinear declines with age for both male and female astronauts. However, models of LD observations showed TBS declining with age while

  3. A Data Mining Project to Identify Cardiovascular Related Factors That May Contribute to Changes in Visual Acuity Within the US Astronaut Corps

    Science.gov (United States)

    Westby, Christian M.; Stein, Sydney P.; Platts, Steven H.

    2011-01-01

    Many of the cardiovascular-related adaptations that occur in the microgravity environment are due, in part, to a well-characterized cephalad-fluid shift that is evidenced by facial edema and decreased lower limb circumference. It is believed that most of these alterations occur as a compensatory response necessary to maintain a "normal" blood pressure and cardiac output while in space. However, data from both flight and analog research suggest that in some instances these microgravity-induced alterations may contribute to cardiovascular-related pathologies. Most concerning is the potential relation between the vision disturbances experienced by some long duration crewmembers and changes in cerebral blood flow and intra-ocular pressure. The purpose of this project was to identify cardiovascular measures that may potentially distinguish individuals at risk for visual disturbances after long duration space flight. Toward this goal, we constructed a dataset from Medical Operation tilt/stand test evaluations pre- (days L-15-L-5) and immediate post-flight (day R+0) on 20 (3 females, 17 males). We restricted our evaluation to only crewmembers who participated in both shuttle and space station missions. Data analysis was performed using both descriptive and analytical methods (Stata 11.2, College Station, TX) and are presented as means +/- 95% CI. Crewmembers averaged 5207 (3447 - 8934) flight hours across both long (MIR-23 through Expedition16) and short (STS-27 through STS-101) duration missions between 1988 and 2008. The mean age of the crew at the time of their most recent shuttle flight was 41 (34-44) compared to 47 (40-54) years during their time on station. In order to focus our analysis (we did not have codes to separate out subjects by symptomotology) , we performed a visual inspection of each cardiovascular measures captured during testing and plotted them against stand time, pre- to post-flight, and between mission duration. It was found that pulse pressure most

  4. Astronaut Neil Armstrong studies rock samples during geological field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, studies rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  5. Private Astronaut Training Prepares Commercial Crews of Tomorrow

    Science.gov (United States)

    2015-01-01

    A new company that includes a handful of former NASA personnel is already taking applications for the first comprehensive commercial astronaut training approved by the Federal Aviation Administration. Waypoint 2 Space, located at Johnson Space Center, hopes to draw space tourists and enthusiasts and future commercial crewmembers with first-hand NASA know-how, as well as agency training technology.

  6. 'Secret' Shuttle payloads revealed

    Science.gov (United States)

    Powell, Joel W.

    1993-05-01

    A secret military payload carried by the orbiter Discovery launched on January 24 1985 is discussed. Secondary payloads on the military Shuttle flights are briefly reviewed. Most of the military middeck experiments were sponsored by the Space Test Program established at the Pentagon to oversee all Defense Department space research projects.

  7. A novel variable-gravity simulation method: potential for astronaut training.

    Science.gov (United States)

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  8. Redox shuttles for overcharge protection of lithium batteries

    Science.gov (United States)

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  9. NASA Shuttle Logistics Depot (NSLD) - The application of ATE

    Science.gov (United States)

    Simpkins, Lorenz G.; Jenkins, Henry C.; Mauceri, A. Jack

    1990-01-01

    The concept of the NASA Shuttle Logistics Depot (NSLD) developed for the Space Shuttle Orbiter Program is described. The function of the NSLD at Cape Canaveral is to perform the acceptance and diagnostic testing of the Shuttle's space-rated line-replaceable units and shop-replaceable units (SRUs). The NSLD includes a comprehensive electronic automatic test station, program development stations, and assorted manufacturing support equipment (including thermal and vibration test equipment, special test equipment, and a card SRU test system). The depot activities also include the establishment of the functions for manufacturing of mechanical parts, soldering, welding, painting, clean room operation, procurement, and subcontract management.

  10. Spaceflight-Induced Intracranial Hypertension: An Overview

    Science.gov (United States)

    Traver, William J.

    2011-01-01

    This slide presentation is an overview of the some of the known results of spaceflight induced intracranial hypertension. Historical information from Gemini 5, Apollo, and the space shuttle programs indicated that some vision impairment was reported and a comparison between these historical missions and present missions is included. Optic Disc Edema, Globe Flattening, Choroidal Folds, Hyperopic Shifts and Raised Intracranial Pressure has occurred in Astronauts During and After Long Duration Space Flight. Views illustrate the occurrence of Optic Disc Edema, Globe Flattening, and Choroidal Folds. There are views of the Arachnoid Granulations and Venous return, and the question of spinal or venous compliance issues is discussed. The question of increased blood flow and its relation to increased Cerebrospinal fluid (CSF) is raised. Most observed on-orbit papilledema does not progress, and this might be a function of plateau homeostasis for the higher level of intracranial pressure. There are seven cases of astronauts experiencing in flight and post flight symptoms, which are summarized and follow-up is reviewed along with a comparison of the treatment options. The question is "is there other involvement besides vision," and other Clinical implications are raised,

  11. Astronaut Pedro Duque Watches A Water Bubble

    Science.gov (United States)

    2003-01-01

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  12. The F.I.T. Story: Astronautics at F.I.T.

    Science.gov (United States)

    Aviation/Space, 1980

    1980-01-01

    Describes the astronautic programs and research at the Florida Institute of Technology, Melborne, Florida. Undergraduate and graduate students participate in research, such as Lighter-Than-Air vehicles, optical observation, auroral-magnetospheric research, and geomagnetism. (DS)

  13. Geological trainings for analogue astronauts: Lessons learned from MARS2013 expedition, Morocco

    Science.gov (United States)

    Orgel, C.; Achorner, I.; Losiak, A.; Gołębiowska, I.; Rampey, M.; Groemer, G.

    2013-09-01

    The Austrian Space Forum (OeWF) is a national organisation for space professionals and space enthusiasts. In collaboration with internal partner organisations, the OeWF focuses on Mars analogue research with their space volunteers and organises space-related outreach/education activities and conducts field tests with the Aouda.X and Aouda.S spacesuit simulators in Mars analogue environment. The main project of OeWF is called "PolAres" [1]. As the result of lessons learned from the Río Tinto 2011 expedition [4], we started to organise geological training sessions for the analogue astronauts. The idea was to give them basic geological background to perform more efficiently in the field. This was done in close imitation of the Apollo astronaut trainings that included theoretical lectures (between Jan. 1963-Nov. 1972) about impact geology, igneous petrology of the Moon, geophysics and geochemistry as well as several field trips to make them capable to collect useful samples for the geoscientists on Earth [3] [5]. In the last year the OeWF has organised three geoscience workshops for analogue astronauts as the part of their "astronaut" training. The aim was to educate the participants to make them understand the fundamentals in geology in theory and in the field (Fig. 1.). We proposed the "Geological Experiment Sampling Usefulness" (GESU) experiment for the MARS2013 simulation to improve the efficiency of the geological trainings. This simulation was conducted during February 2013, a one month Mars analogue research was conducted in the desert of Morocco [2] (Fig. 2.).

  14. Shuttle Planning for Link Closures in Urban Public Transport Networks

    DEFF Research Database (Denmark)

    van der Hurk, Evelien; Koutsopoulos, Haris N.; Wilson, Nigel

    2016-01-01

    Urban public transport systems must periodically close certain links for maintenance, which can have significant effects on the service provided to passengers. In practice, the effects of closures are mitigated by replacing the closed links with a simple shuttle service. However, alternative...... cost, which includes transfers and frequency-dependent waiting time costs. This model is applied to a shuttle design problem based on a real-world case study of the Massachusetts Bay Transportation Authority network of Boston, Massachusetts. The results show that additional shuttle routes can reduce...

  15. Muscular soreness following prolonged intermittent high-intensity shuttle running.

    Science.gov (United States)

    Thompson, D; Nicholas, C W; Williams, C

    1999-05-01

    The aim of this study was to examine the impact of prolonged intermittent high-intensity shuttle running on soreness and markers of muscle damage. Sixteen males took part in the study, half of whom were assigned to a running group and half to a resting control group. The exercise protocol involved 90 min of intermittent shuttle running and walking (Loughborough Intermittent Shuttle Test: LIST), reflecting the activity pattern found in multiple-sprint sports such as soccer. Immediately after exercise, there was a significant increase (P < 0.05) in serum activities of creatine kinase and aspartate aminotransferase, and values remained above baseline for 48 h (P < 0.05). Median peak activities of creatine kinase and aspartate aminotransferase occurred 24 h post-exercise and were 774 and 43 U x l(-1), respectively. The intensity of general muscle soreness, and in the specific muscles investigated, was greater than baseline for 72 h after the shuttle test (P < 0.05), peaking 24-48 h post-exercise (P < 0.05). Muscle soreness was not correlated with either creatine kinase or aspartate aminotransferase activity. Soreness was most frequently reported in the hamstrings. Neither soreness nor serum enzyme activity changed in the controls over the 4 day observation period. It appears that unaccustomed performance of prolonged intermittent shuttle running produces a significant increase in both soreness and markers of muscle damage.

  16. Astronaut Clothing for Exploration Missions

    Science.gov (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  17. A History of Space Shuttle Main Engine (SSME) Redline Limits Management

    Science.gov (United States)

    Arnold, Thomas M.

    2011-01-01

    The Space Shuttle Main Engine (SSME) has several "redlines", which are operational limits designated to preclude a catastrophic shutdown of the SSME. The Space Shuttle Orbiter utilizes a combination of hardware and software to enable or disable the automated redline shutdown capability. The Space Shuttle is launched with the automated SSME redline limits enabled, but there are many scenarios which may result in the manual disabling of the software by the onboard crew. The operational philosophy for manually enabling and disabling the redline limits software has evolved continuously throughout the history of the Space Shuttle Program, due to events such as SSME hardware changes and updates to Space Shuttle contingency abort software. In this paper, the evolution of SSME redline limits management will be fully reviewed, including the operational scenarios which call for manual intervention, and the events that triggered changes to the philosophy. Following this review, improvements to the management of redline limits for future spacecraft will be proposed.

  18. Proposed application of lower body negative pressure to cardiology

    Science.gov (United States)

    Schmidt, E. V.; Debusk, R. F.; Popp, R. L.

    1975-01-01

    Potential medical applications are presented of lower body negative pressure to the evaluation and treatment of cardiac patients. The essential features of an LBNP unit and the basic cardiovascular physiology of lower body negative pressure (LBNP) testing are described. Some of the results of previous spaceflight experiences and bedrest studies are summarized. The deconditioning effects of weightlessness experienced by orbiting astronauts are compared with the effects of bedrest restrictions prescribed for convalescing cardiac patients. The potential of LBNP for evaluating both pharmacological and physical activity regimens was examined, particularly in relation to post-myocardial infarction and coronary artery bypass patients. Applications of LBNP to the cardiac catheterization laboratory and the out-patient follow-up of cardiac patients are proposed.

  19. Report of the Space Shuttle Management Independent Review Team

    Science.gov (United States)

    1995-02-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  20. Astronaut Neil Armstrong participates in lunar surface siumlation training

    Science.gov (United States)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  1. Death of the TonB shuttle hypothesis

    Directory of Open Access Journals (Sweden)

    Michael George Gresock

    2011-10-01

    Full Text Available A complex of ExbB, ExbD, and TonB transduces cytoplasmic membrane (CM proton motive force (pmf to outer membrane (OM transporters so that large, scarce, and important nutrients can be released into the periplasmic space for subsequent transport across the CM. TonB is the component that interacts with the OM transporters and enables ligand transport, and several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous efforts to test the shuttle model by anchoring TonB to the CM by fusion to a large globular cytoplasmic protein have been hampered by the proteolytic susceptibility of the fusion constructs. Here we confirm that GFP-TonB, tested in a previous study by another laboratory, again gave rise to full-length TonB and slightly larger potentially shuttleable fragments that prevented unambiguous interpretation of the data. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide the first conclusive evidence that TonB does not shuttle during energy transduction. The interpretations of our previous study, which concluded that TonB shuttled in vivo, were complicated by the fact that the probe used in those studies, Oregon Green® 488 maleimide, was permeant to the CM and could label proteins, including a TonB ∆TMD derivative, confined exclusively to the

  2. Shuttle Topography Data Inform Solar Power Analysis

    Science.gov (United States)

    2013-01-01

    The next time you flip on a light switch, there s a chance that you could be benefitting from data originally acquired during the Space Shuttle Program. An effort spearheaded by Jet Propulsion Laboratory (JPL) and the National Geospatial-Intelligence Agency (NGA) in 2000 put together the first near-global elevation map of the Earth ever assembled, which has found use in everything from 3D terrain maps to models that inform solar power production. For the project, called the Shuttle Radar Topography Mission (SRTM), engineers at JPL designed a 60-meter mast that was fitted onto Shuttle Endeavour. Once deployed in space, an antenna attached to the end of the mast worked in combination with another antenna on the shuttle to simultaneously collect data from two perspectives. Just as having two eyes makes depth perception possible, the SRTM data sets could be combined to form an accurate picture of the Earth s surface elevations, the first hight-detail, near-global elevation map ever assembled. What made SRTM unique was not just its surface mapping capabilities but the completeness of the data it acquired. Over the course of 11 days, the shuttle orbited the Earth nearly 180 times, covering everything between the 60deg north and 54deg south latitudes, or roughly 80 percent of the world s total landmass. Of that targeted land area, 95 percent was mapped at least twice, and 24 percent was mapped at least four times. Following several years of processing, NASA released the data to the public in partnership with NGA. Robert Crippen, a member of the SRTM science team, says that the data have proven useful in a variety of fields. "Satellites have produced vast amounts of remote sensing data, which over the years have been mostly two-dimensional. But the Earth s surface is three-dimensional. Detailed topographic data give us the means to visualize and analyze remote sensing data in their natural three-dimensional structure, facilitating a greater understanding of the features

  3. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    Science.gov (United States)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  4. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    Science.gov (United States)

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.

  5. Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    Science.gov (United States)

    Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.

    1989-01-01

    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru

  6. Tracing the transition of a macro electron shuttle into nonlinear response

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chulki [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136791 (Korea, Republic of); Prada, Marta [I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstr. 9, Hamburg 20355 (Germany); Qin, Hua [Key Laboratory of Nanodevices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Industrial Park, Suzhou City, Jiangsu 215123 (China); Kim, Hyun-Seok [Division of Electronics and Electrical Engineering, Dongguk University-Seoul, 100715 Seoul (Korea, Republic of); Blick, Robert H., E-mail: rblick@physnet.uni-hamburg.de [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin-53706 (United States); Center for Hybrid Nanostructures, Universität Hamburg, Jungiusstr. 11c, Hamburg 20355 (Germany); Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Dr. Madison, Wisconsin-53706 (United States)

    2015-02-09

    We present a study on a macroscopic electron shuttle in the transition from linear to nonlinear response. The shuttle consists of a classical mechanical pendulum situated between two capacitor plates. The metallic pendulum enables mechanical transfer of electrons between the plates, hence allowing to directly trace electron shuttling in the time domain. By applying a high voltage to the plates, we drive the system into a controlled nonlinear response, where we observe period doubling.

  7. Schedule and complex motion of shuttle bus induced by periodic inflow of passengers

    Science.gov (United States)

    Nagatani, Takashi; Naito, Yuichi

    2011-09-01

    We have studied the dynamic behavior of a bus in the shuttle bus transportation with a periodic inflow. A bus schedule is closely related to the dynamics. We present the modified circle map model for the dynamics of the shuttle bus. The motion of the shuttle bus depends on the loading parameter and the inflow period. The shuttle bus displays the periodic, quasi-periodic, and chaotic motions with varying both loading parameter and inflow rate.

  8. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    Science.gov (United States)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  9. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    Science.gov (United States)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility

  10. Subclinical Shed of Infectious Varicella zoster Virus in Astronauts

    Science.gov (United States)

    Cohrs, Randall J.; Mehta, Satish K.; Schmid, D. Scott; Gilden, Donald H.; Pierson, Duane L.

    2007-01-01

    Aerosol borne varicella zoster virus (VZV) enters the nasopharynx and replicates in tonsillar T-cells, resulting in viremia and varicella (chickenpox). Virus then becomes latent in cranial nerve, dorsal root and autonomic nervous system ganglia along the entire neuraxis (1). Decades later, as cell-mediated immunity to VZV declines (4), latent VZV can reactivate to produce zoster (shingles). Infectious VZV is present in patients with varicella or zoster, but shed of infectious virus in the absence of disease has not been shown. We previously detected VZV DNA in saliva of astronauts during and shortly after spaceflight, suggesting stress induced subclinical virus reactivation (3). We show here that VZV DNA as well as infectious virus in present in astronaut saliva. VZV DNA was detected in saliva during and after a 13-day spaceflight in 2 of 3 astronauts (Fig. panel A). Ten days before liftoff, there was a rise in serum anti-VZV antibody in subjects 1 and 2, consistent with virus reactivation. In subject 3, VZV DNA was not detected in saliva, and there was no rise in anti-VZV antibody titer. Subject 3 may have been protected from virus reactivation by having zoster DNA was detected in astronaut saliva months before spaceflight, or in saliva of 10 age/sex-matched healthy control subjects sampled on alternate days for 3 weeks (88 saliva samples). Saliva taken 2-6 days after landing from all 3 subjects was cultured on human fetal lung cells (Fig. panel B). Infectious VZV was recovered from saliva of subjects 1 and 2 on the second day after landing. Virus specificity was confirmed by antibody staining and DNA analysis which showed it to be VZV of European descent, common in the US (5). Further, both antibody staining and DNA PCR demonstrated that no HSV-1 was detected in any infected culture. This is the first report of infectious VZV shedding in the absence of clinical disease. Spaceflight presents a uniquely stressful environment which includes physical isolation and

  11. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  12. 2009 Space Shuttle Probabilistic Risk Assessment Overview

    Science.gov (United States)

    Hamlin, Teri L.; Canga, Michael A.; Boyer, Roger L.; Thigpen, Eric B.

    2010-01-01

    Loss of a Space Shuttle during flight has severe consequences, including loss of a significant national asset; loss of national confidence and pride; and, most importantly, loss of human life. The Shuttle Probabilistic Risk Assessment (SPRA) is used to identify risk contributors and their significance; thus, assisting management in determining how to reduce risk. In 2006, an overview of the SPRA Iteration 2.1 was presented at PSAM 8 [1]. Like all successful PRAs, the SPRA is a living PRA and has undergone revisions since PSAM 8. The latest revision to the SPRA is Iteration 3. 1, and it will not be the last as the Shuttle program progresses and more is learned. This paper discusses the SPRA scope, overall methodology, and results, as well as provides risk insights. The scope, assumptions, uncertainties, and limitations of this assessment provide risk-informed perspective to aid management s decision-making process. In addition, this paper compares the Iteration 3.1 analysis and results to the Iteration 2.1 analysis and results presented at PSAM 8.

  13. Shuttle Planning for Link Closures in Urban Public Transport Networks

    NARCIS (Netherlands)

    van der Hurk, E.; Koutsopoulos, H.; Wilson, N.H.M.; Kroon, L.G.; Maroti, G.

    2016-01-01

    Urban public transport systems must periodically close certain links for maintenance, which can have significant effects on the service provided to passengers. In practice, the effects of closures are mitigated by replacing the closed links with a simple shuttle service. However, alternative shuttle

  14. Astronaut Prepares for Mission With Virtual Reality Hardware

    Science.gov (United States)

    2001-01-01

    Astronaut John M. Grunsfeld, STS-109 payload commander, uses virtual reality hardware at Johnson Space Center to rehearse some of his duties prior to the STS-109 mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. This technology allows NASA astronauts to practice International Space Station work missions in advance. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  15. Land Cover/Land Use Classification and Change Detection Analysis with Astronaut Photography and Geographic Object-Based Image Analysis

    Science.gov (United States)

    Hollier, Andi B.; Jagge, Amy M.; Stefanov, William L.; Vanderbloemen, Lisa A.

    2017-01-01

    For over fifty years, NASA astronauts have taken exceptional photographs of the Earth from the unique vantage point of low Earth orbit (as well as from lunar orbit and surface of the Moon). The Crew Earth Observations (CEO) Facility is the NASA ISS payload supporting astronaut photography of the Earth surface and atmosphere. From aurora to mountain ranges, deltas, and cities, there are over two million images of the Earth's surface dating back to the Mercury missions in the early 1960s. The Gateway to Astronaut Photography of Earth website (eol.jsc.nasa.gov) provides a publically accessible platform to query and download these images at a variety of spatial resolutions and perform scientific research at no cost to the end user. As a demonstration to the science, application, and education user communities we examine astronaut photography of the Washington D.C. metropolitan area for three time steps between 1998 and 2016 using Geographic Object-Based Image Analysis (GEOBIA) to classify and quantify land cover/land use and provide a template for future change detection studies with astronaut photography.

  16. Dynamical localization of two electrons in triple-quantum-dot shuttles

    International Nuclear Information System (INIS)

    Qu, Jinxian; Duan, Suqing; Yang, Ning

    2012-01-01

    The dynamical localization phenomena in two-electron quantum-dot shuttles driven by an ac field have been investigated and analyzed by the Floquet theory. The dynamical localization occurs near the anti-crossings in Floquet eigenenergy spectrum. The oscillation of the quantum-dot shuttles may increase the possibility of the dynamical localization. Especially, even if the two electrons are initialized in two neighbor dots, they can be localized there for appropriate intensity of the driven field. The studies may help the understanding of dynamical localization in electron shuttles and expand the application potential of nanoelectromechanical devices. -- Highlights: ► The dynamical localization in electron shuttle is studied by Floquet theory. ► There is a relation between quasi-energy anti-crossings and dynamical localization. ► The oscillation of quantum dot increases the dynamical localization. ► Even the electrons are initialized in different dots, the localization can occur.

  17. An Update on Mortality in the U.S. Astronaut Corps: 1959-2009

    Science.gov (United States)

    Amirian, E.; Clark, April; Halm, Melissa; Hartnett, Heather

    2009-01-01

    Although it has now been over 50 years since mankind first ventured into space, the long-term health impacts of human space flight remain largely unknown. Identifying factors that affect survival and prognosis among those who participate in space flight is vitally important, as the era of commercial space flight approaches and NASA prepares for missions to Mars. The Longitudinal Study of Astronaut Health is a prospective study designed to examine trends in astronaut morbidity and mortality. The purpose of this analysis was to describe and explore predictors of overall and cause-specific mortality among individuals selected for the U.S. astronaut corps. All U.S. astronauts (n=321), regardless of flight status, were included in this analysis. Death certificate searches were conducted to ascertain vital status and cause of death through April 2009. Data were collected from medical records and lifestyle questionnaires. Multivariable Cox regression modeling was used to calculate the mortality hazard associated with embarking on space flight, adjusted for sex, race, and age at selection. Between 1959 and 2009, there were 39 (12.1%) deaths. Of these deaths, 18 (42.2%) were due to occupational accidents; 7 (17.9%) were due to other accidents; 6 (15.4%) were attributable to cancer; 6 (15.4%) resulted from cardiovascular/circulatory diseases; and 2 (5.1%) were from other causes. Participation in space flight did not significantly increase mortality hazard over time (adjusted hazard ratio=0.57; 95% confidence interval=0.26-1.26. Because our results are based on a small sample size, future research that includes payload specialists, other space flight participants, and international crew members is warranted to maximize statistical power.

  18. STS-59 crewmembers in training for onboard Earth observations

    Science.gov (United States)

    1993-01-01

    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  19. A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques

    Science.gov (United States)

    Ruiz, Jose O,; Hart, Jeremy

    2010-01-01

    The Orion spacecraft will replace the space shuttle and will be the first human spacecraft since the Apollo program to leave low earth orbit. This vehicle will serve as the cornerstone of a complete space transportation system with a myriad of mission requirements necessitating rendezvous to multiple vehicles in earth orbit, around the moon and eventually beyond . These goals will require a complex and robust vehicle that is, significantly different from both the space shuttle and the command module of the Apollo program. Historically, orbit operations have been accomplished with heavy reliance on ground support and manual crew reconfiguration and monitoring. One major difference with Orion is that automation will be incorporated as a key element of the man-vehicle system. The automated system will consist of software devoted to transitioning between events based on a master timeline. This effectively adds a layer of high level sequencing that moves control of the vehicle from one phase to the next. This type of automated control is not entirely new to spacecraft since the shuttle uses a version of this during ascent and entry operations. During shuttle orbit operations however many of the software modes and hardware switches must be manually configured through the use of printed procedures and instructions voiced from the ground. The goal of the automation scheme on Orion is to extend high level automation to all flight phases. The move towards automation represents a large shift from current space shuttle operations, and so these new systems will be adopted gradually via various safeguards. These include features such as authority-to-proceed, manual down modes, and functional inhibits. This paper describes the contrast between the manual and ground approach of the space shuttle and the proposed automation of the Orion vehicle. I will introduce typical orbit operations that are common to all rendezvous missions and go on to describe the current Orion automation

  20. Filament wound pressure vessels with load sharing liners for space shuttle orbiter applications

    International Nuclear Information System (INIS)

    Ecord, G.M.

    1976-01-01

    Early in the development of orbiter propulsion and environmental control subsystems it was recognized that use of overwrapped pressure vessels with load sharing liners may provide significant weight savings for high pressure gas containment. A program is described which was undertaken by Rockwell International to assess the utility for orbiter applications of titanium 6Al--4V and Inconel 718 liners overwrapped with Kevlar fibers. Also briefly described are programs administered by the NASA Lewis Research Center to evaluate cryoformed steel liners overwrapped with Kevlar fibers and to establish a method that can guarantee cyclic life of the vessels

  1. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    Directory of Open Access Journals (Sweden)

    Lixun Zhang

    2012-08-01

    Full Text Available A novel Astronaut Rehabilitative Training Robot (ART based on a cable-driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut's active movements. Based on the dynamics modelling of the cable-driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC is presented. A planning method for the cable tension is proposed so that the dynamic load produced by the ART can realistically simulate the gravity and inertial force of the barbell in a gravity environment. Finally, MATLAB simulation results of the man-machine cooperation system are provided in order to verify the effectiveness of the proposed control strategy. The simulation results show that the hybrid control method based on the structure invariance principle can inhibit the surplus force and that ICMAC can improve the dynamic performance of the passive force servo system. Furthermore, the hybrid force controller based on ICMAC can ensure the stability of the system.

  2. KSC-03PD-1754

    Science.gov (United States)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Japanese Experiment Module (JEM) Pressurized Module is ready to be offloaded from the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japans primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.

  3. Russian language instruction for two American ASTP astronauts

    Science.gov (United States)

    1974-01-01

    Two astronauts associated with the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) receive instruction in the Russian language during ASTP activity at JSC. They are Robert F. Overmyer, a member of the support team of the American ASTP crew, who is seated at left; and Vance D. Brand (in center), the command module pilot of the American ASTP prime crew. The instructor is Anatoli Forestanko.

  4. Development of a prototype specialist shuttle vehicle for chipped woodfuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This report gives details of a project to develop and test a specialist chip shuttle vehicle for conveying woodchips out of the forest with the aim of reducing the cost of woodfuel production. The design objectives are described and include the need to allow easy transfer of the chips from the chipper to the shuttle and on into haulage units, good performance and manoeuvrability on and off roads, and high-tip capacity. Estimates of the improved production and reduced woodfuel production costs are discussed along with the anticipated satisfactory operation of the chipper-shuttle combination in a forestry site.

  5. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    Science.gov (United States)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  6. Schedule and complex motion of shuttle bus induced by periodic inflow of passengers

    International Nuclear Information System (INIS)

    Nagatani, Takashi; Naito, Yuichi

    2011-01-01

    We have studied the dynamic behavior of a bus in the shuttle bus transportation with a periodic inflow. A bus schedule is closely related to the dynamics. We present the modified circle map model for the dynamics of the shuttle bus. The motion of the shuttle bus depends on the loading parameter and the inflow period. The shuttle bus displays the periodic, quasi-periodic, and chaotic motions with varying both loading parameter and inflow rate. -- Highlights: → We studied the dynamic behavior of a bus in the shuttle bus transportation. → We presented the modified circle map model for the bus schedule. → We clarified the dependence of the tour time on both loading parameter and inflow period.

  7. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  8. Astronaut William Fisher preparing to train in the WETF

    Science.gov (United States)

    1985-01-01

    Astronaut William Fisher is shown in his extravehicular mobility unit (EMU) preparing to train in the Weightless Environment Training Facility (WETF). He is wearing the communications carrier assembly but not the full helmet (32102); Reflections of the WETF can be seen on the closed visor of the EMU helmet Fiser is wearing (32103).

  9. Astronaut Neil Armstrong participates in lunar surface simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  10. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  11. Astronaut Neil Armstrong in Launch Complex 16 trailer during suiting up

    Science.gov (United States)

    1966-01-01

    Astronaut Neil A. Armstrong, command pilot of the Gemini 8 space flight, sits in the Launch Complex 16 trailer during suiting up operations for the Gemini 8 mission. Suit technician Jim Garrepy assists.

  12. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.

    Science.gov (United States)

    Smirnova, Olga A; Cucinotta, Francis A

    2018-02-01

    A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can

  13. What it takes to Fly in Space...Training to be an Astronaut and Daily Operations on ISS

    Science.gov (United States)

    Ham, Michelle

    2009-01-01

    This presentation highlights NASA requirements to become an astronaut, training astronauts must do to fly on the International Space Station (ISS), systems and other training, and day-to-day activities onboard ISS. Additionally, stowage, organization and methods of communication (email, video conferenceing, IP phone) are discussed.

  14. Astronaut Neil A. Armstrong Undergoes Communications Systems Final Check

    Science.gov (United States)

    1969-01-01

    Dunned in his space suit, mission commander Neil A. Armstrong does a final check of his communications system before before the boarding of the Apollo 11 mission. Launched via a Saturn V launch vehicle, the first manned lunar mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Armstrong; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) Pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. Meanwhile, astronaut Collins piloted the CM in a parking orbit around the Moon. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight

    Science.gov (United States)

    Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.

    2011-01-01

    Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).

  16. Improvements to the Ionizing Radiation Risk Assessment Program for NASA Astronauts

    Science.gov (United States)

    Semones, E. J.; Bahadori, A. A.; Picco, C. E.; Shavers, M. R.; Flores-McLaughlin, J.

    2011-01-01

    To perform dosimetry and risk assessment, NASA collects astronaut ionizing radiation exposure data from space flight, medical imaging and therapy, aviation training activities and prior occupational exposure histories. Career risk of exposure induced death (REID) from radiation is limited to 3 percent at a 95 percent confidence level. The Radiation Health Office at Johnson Space Center (JSC) is implementing a program to integrate the gathering, storage, analysis and reporting of astronaut ionizing radiation dose and risk data and records. This work has several motivations, including more efficient analyses and greater flexibility in testing and adopting new methods for evaluating risks. The foundation for these improvements is a set of software tools called the Astronaut Radiation Exposure Analysis System (AREAS). AREAS is a series of MATLAB(Registered TradeMark)-based dose and risk analysis modules that interface with an enterprise level SQL Server database by means of a secure web service. It communicates with other JSC medical and space weather databases to maintain data integrity and consistency across systems. AREAS is part of a larger NASA Space Medicine effort, the Mission Medical Integration Strategy, with the goal of collecting accurate, high-quality and detailed astronaut health data, and then securely, timely and reliably presenting it to medical support personnel. The modular approach to the AREAS design accommodates past, current, and future sources of data from active and passive detectors, space radiation transport algorithms, computational phantoms and cancer risk models. Revisions of the cancer risk model, new radiation detection equipment and improved anthropomorphic computational phantoms can be incorporated. Notable hardware updates include the Radiation Environment Monitor (which uses Medipix technology to report real-time, on-board dosimetry measurements), an updated Tissue-Equivalent Proportional Counter, and the Southwest Research Institute

  17. An ethical duty: Let astronautical development unfold - to make the people more secure

    Science.gov (United States)

    Bernasconi, Marco C.

    2014-11-01

    In examining alternative space-development models, one observes that Heinlein postulated the first Moon flight as the outcome of the focused action of an individual - building upon an ample commercial aerospace transportation infrastructure. The same technological basis and entrepreneurial drive would then sustain a fast human and economic expansion on three new planets. Instead, historically, humans reached the Moon thanks to a "Faustian bargain" between astronautical developers and governments. This approach brought the early Apollo triumphs, but it also created the presumption of this method as the sole one for enabling space development. Eventually, the application of this paradigm caused the decline of the astronautical endeavor. Thus, just as conventional methods became unable to sustain the astronautical endeavor, space development appeared as vital, e.g., to satisfy the people's basic needs (metabolic resources, energy, materials, and space), as shown elsewhere. Such an endeavor must grow from actions generating new wealth through commercial activities to become self-supporting. Acquisition and distribution of multiform space resources call, however, for a sound ethical environment, as predatory governments can easily forfeit those resources. The paper begins the search for means apt to maintain a societal environment suited for this purpose. Among numerous initiatives needed, dissemination of factual information and moral-right education support take a central position: In fact, the vital condition for true Astronautics - a vast increase in actual respect of moral rights - can also become its best consequence, as the prosperity from the space arena empowers the people, making them materially safer and more secure in their fundamental moral rights.

  18. Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm

    Science.gov (United States)

    Gao, Qing; Liu, Jinguo; Tian, Tongtong; Li, Yangmin

    2017-09-01

    Space robots can perform some tasks in harsh environment as assistants of astronauts or substitutions of astronauts. Taking the limited working time and the arduous task of the astronauts in the space station into account, an astronaut assistant robot (AAR-2) applied in the space station is proposed and designed in this paper. The AAR-2 is achieved with some improvements on the basis of AAR-1 which was designed before. It can exploit its position and attitude sensors and control system to free flight or hover in the space cabin. And it also has a definite environmental awareness and artificial intelligence to complete some specified tasks under the control of astronauts or autonomously. In this paper, it mainly analyzes and controls the 6-DOF motion of the AAR-2. Firstly, the system configuration of AAR-2 is specifically described, and the movement principles are analyzed. Secondly, according to the physical model of the AAR-2, the Newton - Euler equation is applied in the preparation of space dynamics model of 6-DOF motion. Then, according to the mathematical model's characteristics which are nonlinear and strong coupling, a dual closed loop position and attitude controller based on fuzzy sliding mode control is proposed and designed. Finally, simulation experiments are appropriate to provide for AAR-2 control system by using Matlab/Simulink. From the simulation results it can be observed that the designed fuzzy sliding mode controller can control the 6-DOF motion of AAR-2 quickly and precisely.

  19. Apollo 10 astronauts in space suits in front of Command Module

    Science.gov (United States)

    1968-01-01

    Three astronauts named as the prime crew of the Apollo 10 space mission. Left to right, are Eugene A. Cernan, lunar module pilot; John W. Young, command module pilot; and Thomas P. Stafford, commander.

  20. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    Science.gov (United States)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  1. Impact of shuttle environment on prelaunch handling of nickel-hydrogen batteries

    Science.gov (United States)

    Green, R. S.

    1986-01-01

    Deployment of the American Satellite Company 1 spacecraft for the Space Shuttle Discovery in August 1985 set a new milestone in nickel-hydrogen battery technology. This communications satellite is equipped with two 35 Ah nickel-hydrogen batteries and it is the first such satellite launched into orbit via the Space Shuttle. The prelaunch activities, combined with the environmental constraints onboard the Shuttle, led to the development of a new battery handling procedure. An outline of the prelaunch activities, with particular attention to battery charging, is presented.

  2. Astronautics and Aeronautics, 1986-1990: A Chronology

    Science.gov (United States)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  3. Astronautics and Aeronautics, 1991-1995: A Chronology

    Science.gov (United States)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  4. A facility for training Space Station astronauts

    Science.gov (United States)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  5. Dr. David Brown poses with a portrait of Ronald McNair

    Science.gov (United States)

    1999-01-01

    In the gymnasium of Ronald McNair Magnet School in Cocoa, Fla., Dr. David Brown, a NASA astronaut, poses with a portrait of NASA astronaut Ronald McNair. The portrait was presented to the school by Walt Disney World during a tribute to McNair. The school had previously been renamed for the fallen astronaut who was one of a crew of seven who lost their lives during an accident following launch of the Space Shuttle Challenger in January 1986.

  6. Astronautics summary and prospects

    CERN Document Server

    Kiselev, Anatoly Ivanovich; Menshikov, Valery Alexandrovich

    2003-01-01

    The monograph by A.I.Kiselev, A.A. Medvedev and Y.A.Menshikov, Astronautics: Summary and Prospects, aroused enthusiasm both among experts and the public at large. This is due to the felicitous choice of presentation that combines a simple description of complex space matters with scientificsubstantiation of the sub­ jectmatter described. The wealth of color photos makes the book still more attractive, and it was nominated for an award at the 14th International Moscow Book Fair, being singled out as the "best publication of the book fair". The book's popularity led to a second edition, substantially revised and enlarged. Since the first edition did not sufficiently cover the issues of space impact on ecology and the prospective development of space systems, the authors revised the entire volume, including in it the chapter "Space activity and ecology" and the section "Multi-function space systems". Using the federal monitoring system, now in the phase of system engi­ neering, as an example, the authors consi...

  7. The Evolution of the Rendezvous Profile During the Space Shuttle Program

    Science.gov (United States)

    Summa, William R.

    2010-01-01

    The rendezvous and proximity operations approach design techniques for space shuttle missions has changed significantly during the life of the program in response to new requirements that were not part of the original mission design. The flexibility of the shuttle onboard systems design and the mission planning process has allowed the program to meet these requirements. The design of the space shuttle and the shift from docking to grappling with a robotic ann prevented use of legacy Apollo rendezvous techniques. Over the life of the shuttle program the rendezvous profile has evolved due to several factors, including lowering propellant consumption and increasing flexibility in mission planning. Many of the spacecraft that the shuttle rendezvoused with had unique requirements that drove the creation of mission-unique proximity operations. The dockings to the Russian Mir space station and International Space Station (ISS) required further evolution of rendezvous and proximity operations techniques and additional sensors to enhance crew situational awareness. After the Columbia accident, a Rendezvous Pitch Maneuver (RPM) was added to allow tile photography from ISS. Lessons learned from these rendezvous design changes are applicable to future vehicle designs and operations concepts.

  8. NASA study backs SSTO, urges shuttle phaseout

    Science.gov (United States)

    Asker, James R.

    1994-03-01

    A brief discusion of a Congressionally ordered NASA study on how to meet future US Government space launch needs is presented. Three options were examined: (1) improvement ofthe Space Shuttle; (2) development of expendable launch vehicles (ELVs); and (3) development of a single-stage-to-orbit (SSTO), manned vehicle that is reusable with advanced technology. After examining the three options, it was determined that the most economical approach to space access through the year 2030 would be to develop the SSTO vehicle and phase out Space Shuttle operations within 15 years and ELVs within 20 years. Other aspects of the study's findings are briefly covered.

  9. Radiation dosimetry for the space shuttle program

    International Nuclear Information System (INIS)

    Jones, K.L.; Richmond, R.G.; Cash, B.L.

    1985-01-01

    Radiation measurements aboard the Space Shuttle are made to record crew doses for medical records, to verify analytical shielding calculations used in dose predictions and to provide dosimetry support for radiation sensitive payloads and experiments. Low cost systems utilizing thermoluminescent dosimeters, nuclear track detectors and activation foils have been developed to fulfill these requirements. Emphasis has been placed on mission planning and dose prediction. As a result, crew doses both inside the orbiter and during extra-vehicular activities have been reasonable low. Brief descriptions of the space radiation environment, dose prediction models, and radiation measurement systems are provided, along with a summary of the results for the first fourteen Shuttle flights

  10. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    International Nuclear Information System (INIS)

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination

  11. Drugs in space: Pharmacokinetics and pharmacodynamics in astronauts.

    Science.gov (United States)

    Kast, Johannes; Yu, Yichao; Seubert, Christoph N; Wotring, Virginia E; Derendorf, Hartmut

    2017-11-15

    Space agencies are working intensely to push the current boundaries of human spaceflight by sending astronauts deeper into space than ever before, including missions to Mars and asteroids. Spaceflight alters human physiology due to fluid shifts, muscle and bone loss, immune system dysregulation, and changes in the gastrointestinal tract and metabolic enzymes. These alterations may change the pharmacokinetics and/or pharmacodynamics of medications used by astronauts and subsequently might impact drug efficacy and safety. Most commonly, medications are administered during space missions to treat sleep disturbances, allergies, space motion sickness, pain, and sinus congestion. These medications are administered under the assumption that they act in a similar way as on Earth, an assumption that has not been investigated systematically yet. Few inflight pharmacokinetic data have been published, and pharmacodynamic and pharmacokinetic/pharmacodynamic studies during spaceflight are also lacking. Therefore, bed-rest models are often used to simulate physiological changes observed during microgravity. In addition to pharmacokinetic/pharmacodynamic changes, decreased drug and formulation stability in space could also influence efficacy and safety of medications. These alterations along with physiological changes and their resulting pharmacokinetic and pharmacodynamic effects must to be considered to determine their ultimate impact on medication efficacy and safety during spaceflight. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Apollo 11 Astronaut Neil Armstrong Performs Ladder Practice

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first Lunar landing mission, Apollo 11 crew members underwent training activities to practice activities they would be performing during the mission. In this photograph, Neil Armstrong, donned in his space suit, practices getting back to the first rung of the ladder on the Lunar Module (LM). The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  13. Apollo 11 Astronaut Neil Armstrong Approaches Practice Helicopter

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  14. Astronaut John Young during final suiting operations for Apollo 10 mission

    Science.gov (United States)

    1969-01-01

    A technician attaches hose from test stand to spacesuit of Astronaut John W. Young, Apollo 10 command module pilot, during final suiting operations for the Apollo 10 lunar orbit mission. Another technician makes adjustment behind Young.

  15. Astronaut James S. Voss Performs Task in the Russian Zvezda Service Module

    Science.gov (United States)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, performs an electronics task in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian-built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity, the first U.S.-built component to the ISS. Zvezda (Russian word for star), the third component of the ISS and the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  16. Effects of thruster firings on the shuttle's plasma and electric field environment

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Burke, W.J.; Retterer, J.M.; Hunton, D.E.; Jasperse, J.R.; Smiddy, M.

    1993-01-01

    Simultaneous plasma and AC/DC electric field measurements taken during the space shuttle mission STS-4 at times of prolonged thruster firings are analyzed and cross correlated. Depending on the orientation of the shuttle's velocity vector to the magnetic field, ion densities and electric field wave spectra were enhanced or decreased. The systematic picture of interactions within the shuttle's plasma/neutral gas environment of Cairns and Gurnett (1991b) is confirmed and extended. Waves are excited by outgassed and thruster-ejected molecules that ionize in close proximity to the shuttle. On time scales significantly less than an ion gyroperiod, the newly created ions act as beams in the background plasma. These beams are sources of VLF waves that propagate near the shuttle and intensify during thruster firings. Plasma density depletions and/or the shuttle's geometry may hinder wave detection in the payload bay. A modified two-stream analysis indicates that beam components propagating at large angles to the magnetic field are unstable to the growth of lower hybrid waves. The beam-excited, lower hybrid waves heat some electrons to sufficient energies to produce impact ionization. Empirical evidence for other wave-growth mechanisms outside the lower-hybrid band is presented. 42 refs., 15 figs., 3 tabs

  17. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    Science.gov (United States)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  18. Selecting the Mercury Seven The Search for America's First Astronauts

    CERN Document Server

    Burgess, Colin

    2011-01-01

    In January 1959, after an exhaustive search through military service records, a number of Americas elite test pilots received orders to attend a series of top-secret briefings in Washington, D.C. These briefings were designed to assist in selecting a group of astronauts for the newly formed National Aeronautics and Space Administration (NASA) and its man-in-space program, Project Mercury. Following in-depth medical and psychological screening, 32 finalists were chosen. They would be subjected to the most rigorous, exploratory, and even degrading medical and psychological stress tests ever imposed on the nation's service personnel. NASA wanted the best of the best in its quest for the nation's first astronauts, and this is the story of that search for a group of near-supermen who were destined to become trailblazing pioneers of American space flight. For the very first time, after extensive research and numerous interviews, the names and amazing stories of those 32 finalists are finally revealed in this book. ...

  19. Space Shuttle and Hypersonic Entry

    Science.gov (United States)

    Campbell, Charles H.; Gerstenmaier, William H.

    2014-01-01

    Fifty years of human spaceflight have been characterized by the aerospace operations of the Soyuz, of the Space Shuttle and, more recently, of the Shenzhou. The lessons learned of this past half decade are important and very significant. Particularly interesting is the scenario that is downstream from the retiring of the Space Shuttle. A number of initiatives are, in fact, emerging from in the aftermath of the decision to terminate the Shuttle program. What is more and more evident is that a new era is approaching: the era of the commercial usage and of the commercial exploitation of space. It is probably fair to say, that this is the likely one of the new frontiers of expansion of the world economy. To make a comparison, in the last 30 years our economies have been characterized by the digital technologies, with examples ranging from computers, to cellular phones, to the satellites themselves. Similarly, the next 30 years are likely to be characterized by an exponential increase of usage of extra atmospheric resources, as a result of more economic and efficient way to access space, with aerospace transportation becoming accessible to commercial investments. We are witnessing the first steps of the transportation of future generation that will drastically decrease travel time on our Planet, and significantly enlarge travel envelope including at least the low Earth orbits. The Steve Jobs or the Bill Gates of the past few decades are being replaced by the aggressive and enthusiastic energy of new entrepreneurs. It is also interesting to note that we are now focusing on the aerospace band, that lies on top of the aeronautical shell, and below the low Earth orbits. It would be a mistake to consider this as a known envelope based on the evidences of the flights of Soyuz, Shuttle and Shenzhou. Actually, our comprehension of the possible hypersonic flight regimes is bounded within really limited envelopes. The achievement of a full understanding of the hypersonic flight

  20. HAL/S programmer's guide. [for space shuttle program

    Science.gov (United States)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.