WorldWideScience

Sample records for shubnikov-de haas oscillations

  1. Magnetoresistance and Shubnikov-de Haas oscillation in YSb

    Science.gov (United States)

    Yu, Qiao-He; Wang, Yi-Yan; Lou, Rui; Guo, Peng-Jie; Xu, Sheng; Liu, Kai; Wang, Shancai; Xia, Tian-Long

    2017-07-01

    YSb crystals are grown and the transport properties under magnetic field are measured. The resistivity exhibits metallic behavior under zero magnetic field and the low-temperature resistivity shows a clear upturn once a moderate magnetic field is applied. The upturn is greatly enhanced by increasing magnetic field. At low temperature (2.5 K) and high field (14 T), the transverse magnetoresistance (MR) is quite large (3.47×10^4%) . In addition, the Shubnikov-de Haas (SdH) oscillation has also been observed in YSb. The possible trivial Berry phase extracted from the SdH oscillation, the band structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrate that YSb is a topologically trivial material. The extremely large MR (XMR) in YSb may originate from the electron-hole compensation.

  2. Shubnikov de Haas quantum oscillation of the surface states in the metallic Bismuth Telluride sheets

    OpenAIRE

    Chen, Taishi; Han, Junhao; Li, Zhaoguo; Song, Fengqi; Zhao, Bo; Wang, Xuefeng; Wang, Baigeng; Wan, Jianguo; Han, Min; Zhang, Rong; Wang, Guanghou

    2013-01-01

    Metallic Bi2Te3 crystalline sheets with the room-temperature resistivity of above 10 m{\\Omega} cm were prepared and their magnetoresistive transport was measured in a field of up to 9 Tesla. The Shubnikov de Haas oscillations were identified from the secondly-derived magnetoresistance curves. While changing the angle between the field and normal axis of the sheets, we find that the oscillation periods present a cosine dependence on the angle. This indicates a two-dimensional transport due to ...

  3. Tensile strained gray tin: Dirac semimetal for observing negative magnetoresistance with Shubnikov-de Haas oscillations

    Science.gov (United States)

    Huang, Huaqing; Liu, Feng

    2017-05-01

    The extremely stringent requirement on material quality has hindered the investigation and potential applications of exotic chiral magnetic effect in Dirac semimetals. Here, we propose that gray tin is a perfect candidate for observing the chiral anomaly effect and Shubnikov-de-Haas (SdH) oscillation at relatively low magnetic field. Based on effective k .p analysis and first-principles calculations, we discover that gray tin becomes a Dirac semimetal under tensile uniaxial strain, in contrast to a topological insulator under compressive uniaxial strain as known before. In this newly found Dirac semimetal state, two Dirac points which are tunable by tensile [001] strains lie in the kz axis and Fermi arcs appear in the (010) surface. Due to the low carrier concentration and high mobility of gray tin, a large chiral anomaly induced negative magnetoresistance and a strong SdH oscillation are anticipated in this half of the strain spectrum. Comparing to other Dirac semimetals, the proposed Dirac semimetal state in the nontoxic elemental gray tin can be more easily manipulated and accurately controlled. We envision that gray tin provides a perfect platform for strain engineering of chiral magnetic effects by sweeping through the strain spectrum from positive to negative and vice versa.

  4. Coexistence of Two- and Three-dimensional Shubnikov-de Haas Oscillations in Ar^+ -irradiated KTaO_3

    Energy Technology Data Exchange (ETDEWEB)

    Harashima, S.; Bell, C.; Kim, M.; Yajima, T.; Hikita, Y.; Hwang, H.Y.

    2012-05-16

    We report the electron doping in the surface vicinity of KTaO{sub 3} by inducing oxygen-vacancies via Ar{sup +}-irradiation. The doped electrons have high mobility (> 10{sup 4} cm{sup 2}/Vs) at low temperatures, and exhibit Shubnikov-de Haas oscillations with both two- and three-dimensional components. A disparity of the extracted in-plane effective mass, compared to the bulk values, suggests mixing of the orbital characters. Our observations demonstrate that Ar{sup +}-irradiation serves as a flexible tool to study low dimensional quantum transport in 5d semiconducting oxides.

  5. Microwave radiation absorption and Shubnikov-de Haas oscillations in semimetal InAs/GaSb/AlSb composite quantum wells

    Czech Academy of Sciences Publication Activity Database

    Mikhailova, M. P.; Veinger, A.I.; Kochman, I.V.; Semenikhin, P.V.; Kalinina, K.V.; Parfeniev, R.V.; Berezovets, V.A.; Safonchik, M.O.; Hospodková, Alice; Pangrác, Jiří; Zíková, Markéta; Hulicius, Eduard

    2016-01-01

    Roč. 10, č. 4 (2016), 1-8, č. článku 046013. ISSN 1934-2608 R&D Projects: GA ČR GA13-15286S; GA MŠk LO1603 Institutional support: RVO:68378271 Keywords : Shubnikov-de Haas oscillations * microwave absorption * electron-paramagnetic resonance * composite quantum wells * InAs/GaSb/AlSb * MOVPE Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.325, year: 2016

  6. Angular-Dependent Phase Factor of Shubnikov-de Haas Oscillations in the Dirac Semimetal Cd3As2

    Science.gov (United States)

    Xiang, Z. J.; Zhao, D.; Jin, Z.; Shang, C.; Ma, L. K.; Ye, G. J.; Lei, B.; Wu, T.; Xia, Z. C.; Chen, X. H.

    2015-11-01

    We measure the magnetotransport properties of the three-dimensional Dirac semimetal Cd3As2 single crystal under magnetic fields up to 36 T. Shubnikov-de Haas (SdH) oscillations are clearly resolved and the n =1 Landau level is reached. A detailed analysis on the intercept of the Landau index plot reveals a significant dependence of the SdH phase factor on the orientation of the applied magnetic field. When the magnetic field is applied in the [001] direction, i.e., along the fourfold screw axis of the tetragonal crystal structure, a nontrivial π Berry phase, as predicted for the Dirac fermions, is observed. However, in a magnetic field tilted away from the [001] direction, the π Berry phase is evidently reduced, and a considerable enhancement of the effective mass is also revealed. Our observations demonstrate that the Dirac dispersion in Cd3As2 is effectively modified in a tilted magnetic field, whereas the preserved π Berry phase in a magnetic field along the [001] direction can be related to the realization of the Weyl fermions. The sudden change of the SdH phase also indicates a possible topological phase transition induced by the symmetry-breaking effect.

  7. Shubnikov - de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi

    Science.gov (United States)

    Pavlosiuk, Orest; Kaczorowski, Dariusz; Wiśniewski, Piotr

    2015-01-01

    We present electronic transport and magnetic properties of single crystals of semimetallic half-Heusler phase LuPdBi, having theoretically predicted band inversion requisite for nontrivial topological properties. The compound exhibits superconductivity below a critical temperature Tc = 1.8 K, with a zero-temperature upper critical field Bc2 ≈ 2.3 T. Although superconducting state is clearly reflected in the electrical resistivity and magnetic susceptibility data, no corresponding anomaly can be seen in the specific heat. Temperature dependence of the electrical resistivity suggests existence of two parallel conduction channels: metallic and semiconducting, with the latter making negligible contribution at low temperatures. The magnetoresistance is huge and clearly shows a weak antilocalization effect in small magnetic fields. Above about 1.5 T, the magnetoresistance becomes linear and does not saturate in fields up to 9 T. The linear magnetoresistance is observed up to room temperature. Below 10 K, it is accompanied by Shubnikov-de Haas oscillations. Their analysis reveals charge carriers with effective mass of 0.06 me and a Berry phase very close to π, expected for Dirac-fermion surface states, thus corroborating topological nature of the material. PMID:25778789

  8. Shubnikov-de Haas-like Quantum Oscillations in Artificial One-Dimensional LaAlO3/SrTiO3 Electron Channels

    Science.gov (United States)

    Cheng, Guanglei; Annadi, Anil; Lu, Shicheng; Lee, Hyungwoo; Lee, Jung-Woo; Huang, Mengchen; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    2018-02-01

    The widely reported magnetoresistance oscillations in LaAlO3/SrTiO3 heterostructures have invariably been attributed to the Shubnikov-de Haas (SdH) effect, despite a pronounced inconsistency with low-field Hall resistance measurements. Here we report SdH-like resistance oscillations in quasi-1D electron waveguides created at the LaAlO3/SrTiO3 interface by conductive atomic force microscopy lithography. These oscillations can be directly attributed to magnetic depopulation of magnetoelectric subbands. Our results suggest that the SdH oscillations in 2D SrTiO3 -based systems may originate from naturally forming quasi-1D channels.

  9. Experimental determination of Rashba and Dresselhaus parameters and g *-factor anisotropy via Shubnikov-de Haas oscillations

    Science.gov (United States)

    Herzog, F.; Hardtdegen, H.; Schäpers, Th; Grundler, D.; Wilde, M. A.

    2017-10-01

    The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells (QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns and coincidence measurements in doubly tilted magnetic fields. The method allows us to determine the absolute values of the Rashba and linear Dresselhaus spin-orbit interaction (SOI) coefficients, their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat node positions with respect to both polar and azimuthal angles between the magnetic field direction and the QW normal. We show that the SOI is dominated by a large Rashba coefficient together with a linear Dresselhaus coefficient that is 10% of the Rashba coefficient. Their relative sign is found to be positive. The g-tensor is found to have a marked out-of-plane anisotropy and a smaller but distinct in-plane anisotropy due to SOI.

  10. Experimental determination of Rashba and Dresselhaus parameters and g *-factor anisotropy via Shubnikov-de Haas oscillations

    International Nuclear Information System (INIS)

    Herzog, F; Grundler, D; Wilde, M A; Hardtdegen, H; Schäpers, Th

    2017-01-01

    The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells (QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns and coincidence measurements in doubly tilted magnetic fields. The method allows us to determine the absolute values of the Rashba and linear Dresselhaus spin–orbit interaction (SOI) coefficients, their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat node positions with respect to both polar and azimuthal angles between the magnetic field direction and the QW normal. We show that the SOI is dominated by a large Rashba coefficient together with a linear Dresselhaus coefficient that is 10% of the Rashba coefficient. Their relative sign is found to be positive. The g-tensor is found to have a marked out-of-plane anisotropy and a smaller but distinct in-plane anisotropy due to SOI. (paper)

  11. Shubnikov-de Haas Oscillations of filled skutterudite compounds CeOs4Sb12andNdOs4Sb12

    Science.gov (United States)

    Ho, P.-C.; Singleton, J.; Balakirev, F. F.; Maple, M. B.; Yanagisawa, T.

    2015-03-01

    The filled skutterudite compounds CeOs4Sb12, PrOs4Sb12,andNdOs4Sb12 are respectively a 1 K antiferromagnetic (AFM) Kondo insulator, a 1.85 K unconventional superconductor (SC), and a 1 K mean-field type ferromagnet (FM). Since SC in PrOs4Sb12 exhibits non-BCS properties, it may originate from proximity to AFM and FM quantum-critical points. Therefore, Fermi-surface measurements of NdOs4Sb12andCeOs4Sb12 become crucial in understanding the SC pairing mechanism in PrOs4Sb12. MHz skin-depth measurements of single crystals of CeOs4Sb12andNdOs4Sb12 were performed for temperatures down to 1.3 K and magnetic fields of up to 60 tesla in the Pulsed Field Facility at NHMFL/LANL. Proximity detection oscillator (PDO) data are taken in the 60 tesla generator-driven magnet (~ 1 s) using a rotational probe. Shubnikov-de Haas oscillations were detected for various direction of the magnetic field with respect to the crystalline orientations. The results indicate that NdOs4Sb12 has similar Fermi surfaces to those of PrOs4Sb12andLaOs4Sb12 but that the Fermi surface of CeOs4Sb12 is much different from those of the other three compounds. Research at CSU-Fresno is supported by NSF DMR-1104544; at UCSD by NSF DMR-1206553 and US DOE DE-FG02-04ER46105; at at NHMFL by DOE, NSF, and FL; at Hokkaido U by MEXT, Jpn.

  12. Transport properties and giant Shubnikov-de Haas oscillations in the first organic conductor with metal complex anion containing selenocyanate ligand, (ET){sub 2}TlHg(SeCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Laukhin, V.N. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France)]|[Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Audouard, A. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Rakoto, H. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Broto, J.M. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Goze, F. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Coffe, G. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Brossard, L. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Redoules, J.P. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Kartsovnik, M.V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Kushch, N.D. [Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Buravov, L.I.

    1995-05-01

    Temperature dependence of the resistivity in various crystallographic directions and high pulsed field magnetoresistance of organic metal {alpha}-(ET){sub 2}TlHg(SeCN){sub 4} have been studied at temperatures down to 80 mK. Giant Shubnikov-de Haas oscillations, which are attributed to the two-dimensional nature of the cylindrical Fermi surface with a very small warping along the direction of the lowest conductivity have been observed. Four harmonics of the fast oscillations with fundamental frequency F{sub 0}=653{+-}3 T and slow frequency oscillations with F{sub s}=38{+-}5 T have been revealed. (orig.).

  13. Shubnikov-de Haas effect study of InAs after transmutation doping at low temperatures

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Mueller, P.

    1990-01-01

    Degenerate InAs single crystals have been irradiated by thermal neutrons below 6 K. The Shubnikov-de Haas effect and the electrical resistivity have been measured as a function of the neutron dose and the annealing temperature. The effects of transmutation doping and simultaneous introduction of lattice defects have been analysed in terms of the conduction electron density and the scattering rates τ ρ -1 - ρne 2 /m * and τ x -1 2πkub(B)X/h/2π (where X is the Dingle temperature). The measured conduction electron density after irradiation and thermal annealing agreed well with the values calculated from the experimental and materials parameters. The effects of radiation damage may qualitatively be explained assuming neutral In vacancies to be the most common type of defect in thermal-neutron-irradiated InAs. A comparison with similar experiments on InSb is given. (author)

  14. Angle dependence of Shubnikov-de Haas effect of filled skutterudite compounds CeOs4Sb12 and NdOs4Sb12

    Science.gov (United States)

    Ho, P.-C.; Singleton, J.; Balakirev, F. F.; Maple, M. B.; Yanagisawa, T.

    Intriguingly the three filled skutterudite compounds CeOs4Sb12, PrOs4Sb12, and NdOs4Sb12 span the range from the Kondo insulator with a 1K antiferromagnetic (AFM) order, a 1.85K unconventional superconductor (SC), to a 1K mean-field type ferromagnet (FM), indicating that they reside near quantum critical points of AFM and FM with unconventional SC induced within this regime. Therefore, understanding the Fermi surfaces of NdOs4Sb12 and CeOs4Sb12 becomes crucial in elucidating the superconducting pairing mechanism in PrOs4Sb12. Penetration depths of single crystals of CeOs4Sb12 and NdOs4Sb12 were measured for temperatures down to 1.3 K and magnetic fields up to 60 tesla by using proximity detection oscillators in the Pulsed Field Facility at NHMFL/LANL. Angle dependence of Shubnikov-de Haas oscillations was detected for rotating the field with respect to the crystalline orientations [010] and [0-10]. The results indicate that LaOs4Sb12, PrOs4Sb12 and NdOs4Sb12 have similar Fermi surfaces. The Fermi surface of CeOs4Sb12 is rather isotropic and is much different from the other three compounds. Research at CSU-Fresno is supported by NSF DMR-1506677; at UCSD by NSF DMR-1206553 and US DOE DE-FG02-04ER46105; at NHMFL by DOE, NSF, and FL; at Hokkaido U by Graint-In-Aid No. 2600342,Jpn.

  15. Large linear magnetoresistance and shubnikov-de hass oscillations in single crystals of YPdBi heusler topological insulators

    KAUST Repository

    Wang, Wenhong

    2013-07-12

    We report the observation of a large linear magnetoresistance (MR) and Shubnikov-de Hass (SdH) quantum oscillations in single crystals of YPdBi Heusler topological insulators. Owning to the successfully obtained the high-quality YPdBi single crystals, large non-saturating linear MR of as high as 350% at 5K and over 120% at 300K under a moderate magnetic field of 7T is observed. In addition to the large, field-linear MR, the samples exhibit pronounced SdH quantum oscillations at low temperature. Analysis of the SdH data manifests that the high-mobility bulk electron carriers dominate the magnetotransport and are responsible for the observed large linear MR in YPdBi crystals. These findings imply that the Heusler-based topological insulators have superiorities for investigating the novel quantum transport properties and developing the potential applications.

  16. Study of Shubnikov-de Haas Oscillations and Measurement of Hole Effective Mass in Compressively Strained InxGa1-xSb Quantum Wells

    Science.gov (United States)

    2011-05-04

    superlattice of AlAs and AlSb (Fig. 1) [5]. Details on the growth are available in Refs. [5,6]. Percentage of strain in the channel layers was calculated...quantum well heterostructure with (A) InXGa1XSb and (B) GaSb channel. The AlAsXSb1X layers are composed of AlSb /AlAs short-period superlattices. Also...In0.41Ga0.59Sb (75) AlSb 1.9 900 5000 0.94 1012 A3 In0.41Ga0.59Sb (125) Al0.7Ga0.3Sb 1.8a 621 2210 1.0 1012 B1 GaSb (75) AlAs0.219Sb0.781 1.06 880 4400 1.5

  17. Oscillating Magnetoresistance in Graphene p-n Junctions at Intermediate Magnetic Fields.

    Science.gov (United States)

    Overweg, Hiske; Eggimann, Hannah; Liu, Ming-Hao; Varlet, Anastasia; Eich, Marius; Simonet, Pauline; Lee, Yongjin; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Fal'ko, Vladimir I; Ensslin, Klaus; Ihn, Thomas

    2017-05-10

    We report on the observation of magnetoresistance oscillations in graphene p-n junctions. The oscillations have been observed for six samples, consisting of single-layer and bilayer graphene, and persist up to temperatures of 30 K, where standard Shubnikov-de Haas oscillations are no longer discernible. The oscillatory magnetoresistance can be reproduced by tight-binding simulations. We attribute this phenomenon to the modulated densities of states in the n- and p-regions.

  18. Uniaxial Pressure Effect on the SdH Oscillations in Heavy-Fermion Semimetal CeRu4Sb12

    International Nuclear Information System (INIS)

    Saha, S. R.; Kobayashi, M.; Sugawara, H.; Namiki, T.; Abe, K.; Aoki, Y.; Sato, H.

    2003-01-01

    We report the first successful Shubnikov-de Haas (SdH) experiment under uniaxial pressure in the anomalous heavy-fermion semimetal CeRu 4 Sb 12 . The nature of the quantum oscillations in the magnetoresistance is found to be significantly sensitive to uniaxial pressure. The results reveal that the nearly spherical Fermi surface elongates along the direction of the uniaxial pressure. (author)

  19. Spin–orbit coupling induced magnetoresistance oscillation in a dc biased two-dimensional electron system

    International Nuclear Information System (INIS)

    Wang, C M; Lei, X L

    2014-01-01

    We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)

  20. De Haas-van Alphen oscillations in the charge-density wave compound lanthanum tritelluride (LaTe3)

    Energy Technology Data Exchange (ETDEWEB)

    Ru, N.; /Stanford U., Geballe Lab.; Borzi, R.A.; Rost, A.; Mackenzie, A.P.; /St. Andrews U., Phys. Astron.; Laverock, J.; Dugdale, S.B.; /Bristol U.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2009-12-14

    De Haas-van Alphen oscillations were measured in lanthanum tritelluride (LaTe{sub 3}) to probe the partially gapped Fermi surface resulting from charge density wave (CDW) formation. Three distinct frequencies were observed, one of which can be correlated with a FS sheet that is unaltered by CDW formation. The other two frequencies arise from FS sheets that have been reconstructed in the CDW state.

  1. Beating of magnetic oscillations in a graphene device probed by quantum capacitance

    KAUST Repository

    Tahir, M.

    2012-07-05

    We report the quantum capacitance of a monolayergraphene device in an external perpendicular magnetic field including the effects of Rashba spin-orbit interaction(SOI). The SOI mixes the spin up and spin down states of neighbouring Landau levels into two (unequally spaced) energy branches. In order to investigate the role of the SOI for the electronic transport, we study the density of states to probe the quantum capacitance of monolayergraphene.SOIeffects on the quantum magnetic oscillations (Shubnikov de Haas and de Hass-van Alphen) are deduced from the quantum capacitance.

  2. Importance of nonlocal electron correlation in the BaNiS2 semimetal from quantum oscillations studies

    Science.gov (United States)

    Klein, Yannick; Casula, Michele; Santos-Cottin, David; Audouard, Alain; Vignolles, David; Fève, Gwendal; Freulon, Vincent; Plaçais, Bernard; Verseils, Marine; Yang, Hancheng; Paulatto, Lorenzo; Gauzzi, Andrea

    2018-02-01

    By means of Shubnikov-de Haas and de Haas-van Alphen oscillations, and ab initio calculations, we have studied the Fermi surface of high-quality BaNiS2 single crystals, with mean free path l ˜400 Å . The angle and temperature dependence of quantum oscillations indicates a quasi-two-dimensional Fermi surface, made of an electronlike tube centered at Γ , and of four holelike cones, generated by Dirac bands, weakly dispersive in the out-of-plane direction. Ab initio electronic structure calculations, in the density functional theory framework, show that the inclusion of screened exchange is necessary to account for the experimental Fermi pockets. Therefore, the choice of the functional becomes crucial. A modified HSE hybrid functional with 7% of exact exchange outperforms both GGA and GGA +U density functionals, signaling the importance of nonlocal screened-exchange interactions in BaNiS2, and, more generally, in 3 d compensated semimetals.

  3. Measurement of the de Haas-van Alphen oscillations in YBCO using pulsed ultra-high magnetic fields

    International Nuclear Information System (INIS)

    Bykov, A.I.; Dolotenko, M.I.; Kolokolchikov, N.P.; Kudasov, Yu.B.; Platonov, V.V.; Tatsenko, O.M.; Golovashkin, A.I.; Ivanenko, O.M.; Mitsen, K.V.

    1995-01-01

    The measurement of magnetization for YBCO samples with the c-axis oriented along the magnetic field direction have been carried out at liquid helium temperature in ultrahigh pulsed magnetic fields up to 300 T. The magnetic fields were obtained with magnetocumulative generator MC-1 by compression of the magnetic flux by cylindrical detonation wave. The Fourier analysis of the magnetization signal has revealed the existence of oscillation with four well-defined frequencies at 3.8, 10, 13 and 20 kT. The frequencies 3.8 and 10 kT are consistent with calculated frequencies of the de Haas-van Alphen effect in YBCO. The appearance of two other frequencies calls for further investigation. (orig.)

  4. Drastic Pressure Effect on the Extremely Large Magnetoresistance in WTe2: Quantum Oscillation Study.

    Science.gov (United States)

    Cai, P L; Hu, J; He, L P; Pan, J; Hong, X C; Zhang, Z; Zhang, J; Wei, J; Mao, Z Q; Li, S Y

    2015-07-31

    The quantum oscillations of the magnetoresistance under ambient and high pressure have been studied for WTe2 single crystals, in which extremely large magnetoresistance was discovered recently. By analyzing the Shubnikov-de Haas oscillations, four Fermi surfaces are identified, and two of them are found to persist to high pressure. The sizes of these two pockets are comparable, but show increasing difference with pressure. At 0.3 K and in 14.5 T, the magnetoresistance decreases drastically from 1.25×10(5)% under ambient pressure to 7.47×10(3)% under 23.6 kbar, which is likely caused by the relative change of Fermi surfaces. These results support the scenario that the perfect balance between the electron and hole populations is the origin of the extremely large magnetoresistance in WTe2.

  5. Quantum oscillations without a Fermi surface. The anomalous de Haas-van Alphen effect and relation to SmB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Knolle, Johannes; Cooper, Nigel [T.C.M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-07-01

    The de Haas-van Alphen effect (dHvAE), describing oscillations of the magnetization as a function of magnetic field, is commonly assumed to be a definite sign for the presence of a Fermi surface (FS). Indeed, the effect forms the basis of a well-established experimental procedure for accurately measuring FS topology and geometry of metallic systems, with parameters commonly extracted by fitting to the Lifshitz-Kosevich (LK) theory based on Fermi liquid theory. Here we show that, in contrast to this canonical situation, there can be quantum oscillations even for band insulators of certain types. We provide simple analytic formulas describing the temperature dependence of the quantum oscillations in this setting, showing strong deviations from LK theory. We draw connections to recent experiments on the tentative topological Kondo insulator SmB{sub 6}.

  6. Commensurability oscillations in a periodically modulated phosphorene

    Science.gov (United States)

    Tahir, M.; Vasilopoulos, P.

    2017-10-01

    The recent experimental realization of high-quality phosphorene leads to novel electronic and optical properties with possible new device applications due to its huge direct band gap. We study the commensurability or Weiss oscillations in monolayer phosphorene in the presence of a weak perpendicular magnetic field B and a weak and periodic, electric or magnetic one-dimensional modulation. Either modulation broadens the Landau levels into bands, whose width oscillates with B, and the oscillations appear in the electrical conductivity perpendicular to the modulation taken along the direction (x) of the smaller effective mass. Compared with the oscillations of the diffusive conductivity in a two-dimensional electron gas (2DEG) for typical electron densities n_e˜1015~m-2 , the ones in phosphorene, with typical n_e˜1016~m-2 , have approximately similar height but a period significantly smaller when plotted versus 1/B while plotted versus B they occur at significantly higher fields. The Shubnikov-de Haas oscillations exhibit a similar behaviour. When the modulation is taken along the direction (y) of the larger effective mass, the oscillation period is close to that of a 2DEG. For equal modulation strengths the bandwidth due to a magnetic modulation is one order of magnitude larger than that due to an electric one and the amplitude of the oscillations in the diffusive conductivity about 50 times larger. Numerical results are presented for experimentally relevant parameters.

  7. Quantum oscillations and coherent interlayer transport in a new topological Dirac semimetal candidate YbMnSb2

    Science.gov (United States)

    Wang, Yi-Yan; Xu, Sheng; Sun, Lin-Lin; Xia, Tian-Long

    2018-02-01

    Dirac semimetals, which host Dirac fermions and represent a new state of quantum matter, have been studied intensively in condensed-matter physics. The exploration of new materials with topological states is important in both physics and materials science. We report the synthesis and the transport properties of high-quality single crystals of YbMnSb2. YbMnSb2 is a new compound with metallic behavior. Quantum oscillations, including Shubnikov-de Haas (SdH) oscillation and de Haas-van Alphen-type oscillation, have been observed at low temperature and high magnetic field. Small effective masses and nontrivial Berry phase are extracted from the analyses of quantum oscillations, which provide the transport evidence for the possible existence of Dirac fermions in YbMnSb2. The measurements of angular-dependent interlayer magnetoresistance indicate that the interlayer transport is coherent. The Fermi surface of YbMnSb2 possesses a quasi-two-dimensional characteristic as determined by the angular dependence of SdH oscillation frequency. These findings suggest that YbMnSb2 is a new candidate of topological Dirac semimetals.

  8. De Haas-van Alphen oscillations near B{sub c2} in the organic superconductor {kappa}-(ET){sub 2}Cu(NCS){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wel, P.J. van der [H.H. Wills Physics Lab., Univ. of Bristol (United Kingdom); Caulfield, J. [Clarendon Lab., Univ. of Oxford (United Kingdom); Hayden, S.M. [H.H. Wills Physics Lab., Univ. of Bristol (United Kingdom); Singleton, J. [Clarendon Lab., Univ. of Oxford (United Kingdom); Springford, M. [H.H. Wills Physics Lab., Univ. of Bristol (United Kingdom); Meeson, P. [H.H. Wills Physics Lab., Univ. of Bristol (United Kingdom); Hayes, W. [Clarendon Lab., Univ. of Oxford (United Kingdom); Kurmoo, M. [Royal Institution, London (United Kingdom); Day, P. [Royal Institution, London (United Kingdom)

    1995-03-15

    We report a study of the de Haas-van Alphen effect near the upper critical field in the organic superconductor {kappa}-(ET){sub 2}Cu(NCS){sub 2}. The experiments have been carried out for a range of sample orientations with respect to the magnetic field and of temperatures down to 20 mK. On entering the vortex state, an attenuation of the dHvA signal is observed relative to an extrapolation of the standard Lifshitz-Kosevich formula using band parameters measured in the normal state. (orig.)

  9. Angle-dependent magnetoresistance oscillations and Fermi surface reordering at high magnetic fields in {alpha}-(ET){sub 2}KHg(SCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, J. [Clarendon Lab. (United Kingdom); Blundell, S.J. [Clarendon Lab. (United Kingdom); Singleton, J. [Clarendon Lab. (United Kingdom); House, A. [Clarendon Lab. (United Kingdom); Du Croo de Jongh, M.S.L. [Clarendon Lab. (United Kingdom); Hendriks, P.T.J. [High Field Magnet Lab. and Research Inst. for Materials, Univ. of Nijmegen (Netherlands); Perenboom, J.A.A.J. [High Field Magnet Lab. and Research Inst. for Materials, Univ. of Nijmegen (Netherlands); Hayes, W. [Clarendon Lab. (United Kingdom); Kurmoo, M. [Clarendon Lab. (United Kingdom)]|[Royal Institution, London (United Kingdom); Day, P. [Royal Institution, London (United Kingdom)

    1995-03-15

    Angle dependent magnetoresistance oscillations (AMRO) have been studied in the charge transfer salt {alpha}-(ET){sub 2}KHg(SCN){sub 4} for magnetic fields in the range 0 - 30 T. This salt exhibits the onset of antiferromagnetic order at temperatures T{sub N} {approx}8-10 K and the presence below this temperature of a region of sharp negative magnetoresistance at a field around 22 T known as the ``kink``. AMRO have been measured in this salt for a wide range of applied fields since the period, amplitude, and nature of the oscillations can be used to directly infer the character of the Fermi surface (FS) as a function of field. The data indicate that a profound change in the band structure occurs at this kink transition; the high field phase is characterised by quasi-2D oscillations from a closed cylindrical FS which is elongated in the c direction; the low field phase appears to be a spin density wave groundstate, with a FS consisting of a sheet (which is quasi-1D in character and tilted at an angle of {approx}21 to the b{sup *}c plane) and small closed 2D pockets. It is suggested that the breakdown orbits between the pockets and the 1D sheets are able to account for the various Shubnikov-de Haas frequencies observed below the kink. (orig.)

  10. Magnetoresistance oscillations in Bi2Te3 microwires contacting with superconducting InGa

    International Nuclear Information System (INIS)

    Konopko, L.A.; Nikolaeva, A.A.; Huber, T.E.; Meglei, D.F.

    2013-01-01

    Full text: Recent efforts to detect and manipulate Majorana fermions in solid state devices have employed topological insulator nanowires proximity coupled to superconducting leads. We studied the transverse magnetoresistance (TMR) of the contact between in polycrystal Bi 2 Te 3 nanowires with a diameter d=16 microns in contact with superconducting InGa and we report observing a very unusual phenomenon. The microwire samples of n-type Bi 2 Te 3 with a glass coating were manufactured by liquid phase casting in a glass capillary using an improved Taylor technique. The samples with a length of L ∼ 2 mm were prepared by cutting them from a long microwire. Contacts to the copper current leads were made using eutectic InGa, a technique that yields very low contact resistance. InGa becomes superconducting at about 4 K, depending on the ratio of the components. It is possible that, because of the diffusion of InGa from the contact area to the gap between the core and the glass insulation on the surface of the Bi 2 Te 3 core, a thin cylindrical superconducting film with a width of about 50 microns was formed. At low temperatures (1.5 K-4.2 K) in a wide range of magnetic fields up to 2 T nonmonotonic changes of TMR that are equidistant in the direct magnetic field were observed. The period of oscillations ΔB ∼ 0.12 T. Than the magnetic field is increased, the oscillation amplitude decreases and the oscillation period decreases gradually with each extremum of about 7-8%. The observed oscillations cannot be referred to the Shubnikov de Haas oscillations because of they are not periodic in the inverse magnetic field and their amplitude with increasing magnetic field decreases. We also discuss the conditions under which the unusual behavior that is observed can be considered an Aharonov-Bohm effect associated with a unintended small diameter constriction or a vortex within the contact.

  11. Spin-flip transitions in magneto-optics and magneto-transport

    International Nuclear Information System (INIS)

    Zawadzki, W.

    1978-01-01

    Three-level model for InSb- and HgTe-type semiconductors is used to describe recent observations of spin-flip magnetophonon oscillations, spin-flip scattering in Shubnikov-de Haas effect, phonon- and impurity-assisted magnetooptical resonances, and resonant spin-optic-phonon interaction. (Auth.)

  12. Arthur E. Haas, His Life and Cosmologies

    Science.gov (United States)

    Wiescher, Michael

    2017-04-01

    This paper describes the life and scientific development of Arthur E. Haas, from his early career as young, ambitious Jewish-Austrian scientist at the University of Vienna to his later career in exile at the University of Notre Dame. Haas is known for his early contributions to quantum physics and as the author of several textbooks on topics of modern physics. During the last decade of his life, he turned his attention to cosmology. In 1935 he emigrated from Austria to the United States. There he assumed, on recommendation of Albert Einstein, a faculty position at the University of Notre Dame. He continued his work on cosmology and tried to establish relationships between the mass of the universe and the fundamental cosmological constants to develop concepts for the early universe. Together with Georges Lemaître he organized in 1938 the first international conference on cosmology, which drew more than one hundred attendants to Notre Dame. Haas died in February 1941 after suffering a stroke during a visit in Chicago.

  13. The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2.

    Science.gov (United States)

    Palma, Margarida; Dias, Paulo Jorge; Roque, Filipa de Canaveira; Luzia, Laura; Guerreiro, Joana Fernandes; Sá-Correia, Isabel

    2017-01-13

    The food spoilage yeast species Zygosaccharomyces bailii exhibits an extraordinary capacity to tolerate weak acids, in particular acetic acid. In Saccharomyces cerevisiae, the transcription factor Haa1 (ScHaa1) is considered the main player in genomic expression reprogramming in response to acetic acid stress, but the role of its homologue in Z. bailii (ZbHaa1) is unknown. In this study it is demonstrated that ZbHaa1 is a ScHaa1 functional homologue by rescuing the acetic acid susceptibility phenotype of S. cerevisiae haa1Δ. The disruption of ZbHAA1 in Z. bailii IST302 and the expression of an extra ZbHAA1 copy confirmed ZbHAA1 as a determinant of acetic acid tolerance. ZbHaa1 was found to be required for acetic acid stress-induced transcriptional activation of Z. bailii genes homologous to ScHaa1-target genes. An evolutionary analysis of the Haa1 homologues identified in 28 Saccharomycetaceae species genome sequences, including Z bailii, was carried out using phylogenetic and gene neighbourhood approaches. Consistent with previous studies, this analysis revealed a group containing pre-whole genome duplication species Haa1/Cup2 single orthologues, including ZbHaa1, and two groups containing either Haa1 or Cup2 orthologues from post-whole genome duplication species. S. cerevisiae Cup2 (alias Ace1) is a transcription factor involved in response and tolerance to copper stress. Taken together, these observations led us to hypothesize and demonstrate that ZbHaa1 is also involved in copper-induced transcriptional regulation and copper tolerance. The transcription factor ZbHaa1 is required for adaptive response and tolerance to both acetic acid and copper stresses. The subfunctionalization of the single ancestral Haa1/Cup2 orthologue that originated Haa1 and Cup2 paralogues after whole genome duplication is proposed.

  14. Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas

    International Nuclear Information System (INIS)

    Morrison, C.; Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.

    2014-01-01

    We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10 −28   eVm 3 and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.

  15. Electron magnetotransport in GaAs/AlGaAs superlattices with weak and strong inter-well coupling

    Czech Academy of Sciences Publication Activity Database

    Smrčka, Ludvík; Goncharuk, Natalya; Svoboda, Pavel; Vašek, Petr; Krupko, Yuriy; Wegscheider, W.

    2008-01-01

    Roč. 39, 3-4 (2008), s. 411-413 ISSN 0026-2692 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652 Grant - others:EC(XE) RITA-CT-2003-505474 Institutional research plan: CEZ:AV0Z10100521 Keywords : superlattice * Fermi surface * magnetoresistance * Hall effect * Shubnikov-de Haas oscillations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.859, year: 2008

  16. Nonlinear magnetotransport theory and Hall induced resistance oscillations in graphene.

    Science.gov (United States)

    Gutiérrez-Jáuregui, R; Torres, M

    2014-06-11

    The quantum oscillations of nonlinear magnetoresistance in graphene that occur in response to a dc current bias are investigated. We present a theoretical model for the nonlinear magnetotransport of graphene carriers. The model is based on the exact solution of the effective Dirac equation in crossed electric and magnetic fields, while the effects of randomly distributed impurities are perturbatively added. To compute the nonlinear current effects, we develop a covariant formulation of the migration center theory. The current is calculated for short- and large-range scatterers. The analysis of the differential resistivity in the large magnetic field region, shows that the extrema of the Shubnikov de Hass oscillations invert when the dc currents exceed a threshold value. These results are in good agreement with experimental observations. In the small magnetic field regime, corresponding to large filling factors, the existence of Hall induced resistance oscillations are predicted for ultra clean graphene samples. These oscillations originate from Landau-Zener tunneling between Landau levels, that are tilted by the strong electric Hall field.

  17. Separation of Rashba and Dresselhaus spin-orbit interactions using crystal direction dependent transport measurements

    International Nuclear Information System (INIS)

    Ho Park, Youn; Kim, Hyung-jun; Chang, Joonyeon; Hee Han, Suk; Eom, Jonghwa; Choi, Heon-Jin; Cheol Koo, Hyun

    2013-01-01

    The Rashba spin-orbit interaction effective field is always in the plane of the two-dimensional electron gas and perpendicular to the carrier wavevector but the direction of the Dresselhaus field depends on the crystal orientation. These two spin-orbit interaction parameters can be determined separately by measuring and analyzing the Shubnikov-de Haas oscillations for various crystal directions. In the InAs quantum well system investigated, the Dresselhaus term is just 5% of the Rashba term. The gate dependence of the oscillation patterns clearly shows that only the Rashba term is modulated by an external electric field

  18. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.

    2012-12-06

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  19. Spin Splitting in GaAs (100) Two-Dimensional Holes

    OpenAIRE

    Habib, B.; Tutuc, E.; Melinte, S.; Shayegan, M.; Wasserman, D.; Lyon, S. A.; Winkler, R.

    2004-01-01

    We measured Shubnikov-de Haas (SdH) oscillations in GaAs (100) two-dimensional holes to determine the inversion asymmetry-induced spin splitting. The Fourier spectrum of the SdH oscillations contains two peaks, at frequencies $f_-$ and $f_+$, that correspond to the hole densities of the two spin subbands and a peak, at frequency $f_\\mathrm{tot}$, corresponding to the total hole density. In addition, the spectrum exhibits an anomalous peak at $f_\\mathrm{tot}/2$. We also determined the effectiv...

  20. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    Science.gov (United States)

    Tahir, M.; Schwingenschlögl, U.

    2012-12-01

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  1. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs

    Directory of Open Access Journals (Sweden)

    Xiaochun Huang

    2015-08-01

    Full Text Available Weyl semimetal is the three-dimensional analog of graphene. According to quantum field theory, the appearance of Weyl points near the Fermi level will cause novel transport phenomena related to chiral anomaly. In the present paper, we report the experimental evidence for the long-anticipated negative magnetoresistance generated by the chiral anomaly in a newly predicted time-reversal-invariant Weyl semimetal material TaAs. Clear Shubnikov de Haas (SdH oscillations have been detected starting from a very weak magnetic field. Analysis of the SdH peaks gives the Berry phase accumulated along the cyclotron orbits as π, indicating the existence of Weyl points.

  2. Photoinduced insulator-to-metal transition in ZnO/Mg_0.15_Zn_0.85_O heterostructures

    OpenAIRE

    塚崎, 敦; Tsukazaki, Atsushi; 大友, 明; Ohtomo, Akira; 中野, 匡規; Nakano, Masaki; 川崎, 雅司; Kawasaki, Masashi

    2008-01-01

    We report on the persistent photoconductivity accompanied with a steep insulator-to-metal transition at low temperatures in ZnO/Mg0.15Zn0.85O heterostructures. The photoexcited electrons were confined in the ZnO adjacent to the Mg0.15Zn0.85O to form a two-dimensional electron gas (2DEG). The electron density was controlled either by the power or number of ultraviolet laser pulses (266 nm wavelength) irradiated to the sample. The 2DEG exhibits Shubnikov-de Haas oscillation in magnetoresistance...

  3. High mobility, large linear magnetoresistance, and quantum transport phenomena in Bi2Te3 films grown by metallo-organic chemical vapor deposition (MOCVD)

    Science.gov (United States)

    Jin, Hyunwoo; Kim, Kwang-Chon; Seo, Juhee; Kim, Seong Keun; Cheong, Byung-Ki; Kim, Jin-Sang; Lee, Suyoun

    2015-10-01

    We investigated the magnetotransport properties of Bi2Te3 films grown on GaAs (001) substrate by a cost-effective metallo-organic chemical vapor deposition (MOCVD). We observed the remarkably high carrier mobility and the giant linear magnetoresistance (carrier mobility ~ 22 000 cm2 V-1 s-1, magnetoresistance ~ 750% at 1.8 K and 9 T for a 100 nm thick film) that depends on the film thickness. In addition, the Shubnikov-de Haas oscillation was observed, from which the effective mass was calculated to be consistent with the known value. From the thickness dependence of the Shubnikov-de Haas oscillation, it was found that a two dimensional electron gas with the conventional electron nature coexists with the topological Dirac fermion states and dominates the carrier transport in the Bi2Te3 film with thickness higher than 300 nm. These results are attributed to the intrinsic nature of Bi2Te3 in the high-mobility transport regime obtained by a deliberate choice of the substrate and the growth conditions.We investigated the magnetotransport properties of Bi2Te3 films grown on GaAs (001) substrate by a cost-effective metallo-organic chemical vapor deposition (MOCVD). We observed the remarkably high carrier mobility and the giant linear magnetoresistance (carrier mobility ~ 22 000 cm2 V-1 s-1, magnetoresistance ~ 750% at 1.8 K and 9 T for a 100 nm thick film) that depends on the film thickness. In addition, the Shubnikov-de Haas oscillation was observed, from which the effective mass was calculated to be consistent with the known value. From the thickness dependence of the Shubnikov-de Haas oscillation, it was found that a two dimensional electron gas with the conventional electron nature coexists with the topological Dirac fermion states and dominates the carrier transport in the Bi2Te3 film with thickness higher than 300 nm. These results are attributed to the intrinsic nature of Bi2Te3 in the high-mobility transport regime obtained by a deliberate choice of the substrate

  4. Tunable Γ -K Valley Populations in Hole-Doped Trilayer WSe2

    Science.gov (United States)

    Movva, Hema C. P.; Lovorn, Timothy; Fallahazad, Babak; Larentis, Stefano; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K.; MacDonald, Allan H.; Tutuc, Emanuel

    2018-03-01

    We present a combined experimental and theoretical study of valley populations in the valence bands of trilayer WSe2 . Shubnikov-de Haas oscillations show that trilayer holes populate two distinct subbands associated with the K and Γ valleys, with effective masses 0.5 me and 1.2 me, respectively; me is the bare electron mass. At a fixed total hole density, an applied transverse electric field transfers holes from Γ orbitals to K orbitals. We are able to explain this behavior in terms of the larger layer polarizability of the K orbital subband.

  5. Unusual negative magnetoresistance in Bi2Se3-ySy topological insulator under perpendicular magnetic field

    Science.gov (United States)

    Singh, Rahul; Gangwar, Vinod K.; Daga, D. D.; Singh, Abhishek; Ghosh, A. K.; Kumar, Manoranjan; Lakhani, A.; Singh, Rajeev; Chatterjee, Sandip

    2018-03-01

    The magneto-transport properties of Bi2Se3-ySy were investigated. Magnetoresistance (MR) decreases with an increase in the S content, and finally, for 7% (i.e., y = 0.21) S doping, the magnetoresistance becomes negative. This negative MR is unusual as it is observed when a magnetic field is applied in the perpendicular direction to the plane of the sample. The magneto-transport behavior shows the Shubnikov-de Haas (SdH) oscillation, indicating the coexistence of surface and bulk states. The negative MR has been attributed to the non-trivial bulk conduction.

  6. Relationship between effective mass and superconducting critical temperature in the organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, J. [Physics Dept., Univ. of Oxford, Clarendon Lab. (United Kingdom); Lubczynski, W. [Physics Dept., Univ. of Oxford, Clarendon Lab. (United Kingdom); Lee, W. [School of Physics and Materials, Lancaster Univ. (United Kingdom); Singleton, J. [Physics Dept., Univ. of Oxford, Clarendon Lab. (United Kingdom); Pratt, F.L. [Physics Dept., Univ. of Oxford, Clarendon Lab. (United Kingdom); Hayes, W. [Physics Dept., Univ. of Oxford, Clarendon Lab. (United Kingdom); Kurmoo, M. [Royal Institution, London (United Kingdom); Day, P. [Royal Institution, London (United Kingdom)

    1995-03-15

    We report high pressure magnetotransport on the organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2}. The observation of Shubnikov-de Haas and magnetic breakdown oscillations has allowed the pressure dependences of the Fermi surface topology and quasiparticle effective masses to be deduced and compared with simultaneous measurements of the superconducting critical temperature T{sub c}. The data strongly suggest that the enhancement of the effective mass and the superconducting behaviour are directly connected. The results are fitted by calculations of the linearised Eliashberg equations. (orig.)

  7. Magnetocapacitance of an electrically tunable silicene device

    KAUST Repository

    Tahir, M.

    2012-09-26

    Despite their structural similarity, the electronic properties of silicene are fundamentally different from those of well-known graphene due to the strong intrinsic spin orbit interaction and buckled structure of silicene. We address the magnetocapacitance of spin and valley polarized silicene in an external perpendicular magnetic field to clarify the interplay of the spin orbit interaction and the perpendicular electric field. We find that the band gap is electrically tunable and show that the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high magnetic field.

  8. Influence of defect structure on magnetic and electronic properties of Hg1-x Crx Se and Hg1-x Cox Se

    International Nuclear Information System (INIS)

    Prozorovskij, V.D.; Reshidova, I.Yu.; Puzynya, A.I.; Paranchich, Yu.S.

    1996-01-01

    The results of experimental investigations of the Shubnikov-de Haas oscillations at superhigh frequencies, electron spin resonance, magnetic susceptibility, relaxation dielectric losses, and galvanomagnetic measurements in the Hg 1-x Cr x Se and Hg 1-x Co x Se single crystal samples are presented. Analysis of the results Hg 1-x Cr x Se and Hg 1-x Co x Se depend on the defect structure of the substance and the type of defects making this structure. The manifestation of critical phenomena in Hg 1-x Cr x Se also depends on the defect structure

  9. Exchange enhancement of the g factor in InAs/AlSb heterostructures

    International Nuclear Information System (INIS)

    Aleshkin, V. Ya.; Gavrilenko, V. I.; Ikonnikov, A. V.; Krishtopenko, S. S.; Sadofyev, Yu. G.; Spirin, K. E.

    2008-01-01

    The evolution of the Shubnikov-de Haas oscillations in InAs/AlSb heterostructures with twodimensional electron gas in InAs quantum wells 12-18 nm wide with considerable variation in the electron concentration (3-8) x 10 11 cm -2 due to the effect of negative persistent photoconductivity is studied. The values of the effective Lande factor for electrons g* = -(15-35) are determined. It is shown that the value of the g* factor increases as the quantum well width increases.

  10. SdH oscillations and pressure effect of the Weyl semimetal NbAs

    Science.gov (United States)

    Luo, Yongkang; Ghimire, N. J.; Wartenbe, M.; Choi, Hongchul; Neupane, M.; McDonald, R. D.; Bauer, E. D.; Zhu, Jianxin; Thompson, J. D.; Ronning, F.

    Via angular Shubnikov-de Hass (SdH) quantum oscillations measurements, we determine the Fermi surface topology of NbAs. The SdH oscillations consist of two frequencies, corresponding to two Fermi surface extrema: 20.8 T (α-pocket) and 15.6 T (β-pocket). The analysis shows that the β-pocket has a Berry phase of π and a small effective mass 0.033 m0, indicative of a nontrivial topology; whereas the α-pocket has a trivial Berry phase of 0 and a heavier effective mass 0.066 m0. Subtle changes can be seen in the ρxx(T) profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution under pressure, while the topological features of the two pockets remain unchanged. Specific heat measurements reveal a small Sommerfeld coefficient γ0 = 0.09(1) mJ/(molK2) and a large Debye temperature, ΘD = 450(9) K, confirming a ``hard'' crystalline lattice that is stable under pressure. We also studied the Kadowaki-Woods ratio of this low-carrier-density massless system, RKW = 3.2×104µ Ω cm mol2K2J-2. After accounting for the small carrier density in NbAs, this RKW indicates a suppressed transport scattering rate relative to other metals.

  11. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms.

    Science.gov (United States)

    Swinnen, Steve; Henriques, Sílvia F; Shrestha, Ranjan; Ho, Ping-Wei; Sá-Correia, Isabel; Nevoigt, Elke

    2017-01-09

    Besides being a major regulator of the response to acetic acid in Saccharomyces cerevisiae, the transcription factor Haa1 is an important determinant of the tolerance to this acid. The engineering of Haa1 either by overexpression or mutagenesis has therefore been considered to be a promising avenue towards the construction of more robust strains with improved acetic acid tolerance. By applying the concept of global transcription machinery engineering to the regulon-specific transcription factor Haa1, a mutant allele containing two point mutations could be selected that resulted in a significantly higher acetic acid tolerance as compared to the wild-type allele. The level of improvement obtained was comparable to the level obtained by overexpression of HAA1, which was achieved by introduction of a second copy of the native HAA1 gene. Dissection of the contribution of the two point mutations to the phenotype showed that the major improvement was caused by an amino acid exchange at position 135 (serine to phenylalanine). In order to further study the mechanisms underlying the tolerance phenotype, Haa1 translocation and transcriptional activation of Haa1 target genes was compared between Haa1 mutant, overproduction and wild-type strains. While the rapid Haa1 translocation from the cytosol to the nucleus in response to acetic acid was not affected in the Haa1 S135F mutant strain, the levels of transcriptional activation of four selected Haa1-target genes by acetic acid were significantly higher in cells of the mutant strain as compared to cells of the wild-type strain. Interestingly, the time-course of transcriptional activation in response to acetic acid was comparable for the mutant and wild-type strain whereas the maximum mRNA levels obtained correlate with each strain's tolerance level. Our data confirms that engineering of the regulon-specific transcription factor Haa1 allows the improvement of acetic acid tolerance in S. cerevisiae. It was also shown that the

  12. Observation of the i = 1/2 fractional quantum Hall plateau in AlGaAs/GaAs/AlGaAs selectively doped double heterostructures

    International Nuclear Information System (INIS)

    Lindelof, P.E.; Bruus, H.; Taboryski, R.; Soerensen, C.B.

    1989-01-01

    An inverted and a normal GaAs/AlGaAs interface grown back to back in a socalled selectively doped double heterostructure (SD DH) has been studied in magnetic fields up to 12 tesla and at temperatures down to 0.3 K. The longitudinal resistance goes to zero at minima of the Shubnikov-de Haas oscillations. The Hall resistivity is found to exhibit the quantum Hall effect. By etching the surface of the double heterostructure wafer we create an unbalance in the density of electrons in the two parallel two-dimensional electronic sheets. Although we in this way create only a modest change in the electron densities, we observe a significant change in the Shubnikov-de Haas oscillations, which can be interpreted as a beat between the oscillations of two electron layers with different densities. At the same time we observe a significant variation of the width of the quantum Hall steps. The most astonishing feature of our results is a clear quantum Hall plateou at 1/2 filling in each of the two parallel layers observed at temperatures below 1 K at a magnetic field above 10 T. Weak localization was also studied and such experiments are consistent with two parallel and independent two-dimensional electronic layers. (orig.)

  13. De Haas-van Alphen Experiments Under Pressure in UGe2

    International Nuclear Information System (INIS)

    Settai, R.; Nakashima, M.; Shishido, H.; Haga, Y.; Yamagami, H.; Onuki, Y.

    2003-01-01

    We have studied the electronic state in UGe 2 via the de Haas--van Alphen effect under pressure. The cyclotron masses are determined in the strongly polarized phase and in the paramagnetic phase for magnetic field along the c-axis and the results are compared with those along a- and b-axes. (author)

  14. Quantitative assessment of S. mutans and C. albicans in patients with Haas and Hyrax expanders

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2012-06-01

    Full Text Available OBJECTIVE: To assess and compare the number of Streptococcus mutans and Candida albicans colonies in patients with Haas and Hyrax appliances before and after insertion. METHODS: The sample consisted of 84 patients requiring orthodontic treatment. For all patients a midpalatal suture expansion was indicated. Patients were randomly divided into Group HA, who used the Haas appliance (n = 42 and Group HY, who used the Hyrax appliance (n = 42. Initially and thirty days after appliance insertion all patients were submitted to saliva collections. The saliva was diluted followed by seeding in Mitis Salivarius and CHROMagar media, for growth of S. mutans and C. albicans respectively. RESULTS: Results showed statistically significant difference between groups HA and HY for Streptococcus mutans and Candida albicans (p <0.05. Haas appliance promoted greater S. mutans and C. albicans proliferation when compared to Hyrax appliance. CONCLUSION: The Haas appliance favored greater proliferation of S. mutans and C. albicans when compared with the Hyrax appliance. Insertion of the appliances resulted in greater buildup of microorganisms.

  15. Cyclotron resonance and De Haas-Van Alphen effect in (BEDT-TTF) sub 8 Hg sub 4 Cl sub 1 sub 2 (C sub 6 H sub 5 Cl) sub 2 organic conductor

    CERN Document Server

    Voskobojnikov, I B; Samarin, N A; Cluchanko, N E; Lyubovskaya, R N; Moshchalkov, V V

    2002-01-01

    Within 0.33-1.44 K temperature range at B <= 50 T magnetic field values one measured the De Haas-Van Alphen effect for (BEDT-TTF) sub 8 Hg sub 4 Cl sub 1 sub 2 (C sub 6 H sub 5 Cl) sub 2 organic quasi-two-dimensional conductor. Analysis of quantum oscillations with regard to data on cyclotron resonance derived for 40-120 GHz frequency interval enabled to determine that a complex spectrum of quantum oscillations was formed by alpha approx 256 T and beta approx 670-610 T fundamental frequencies as well as, by combination and multiple frequencies. It is shown that nature of temperature rearrangement of oscillation spectrum may be interpreted in terms of model taking account of occurrence of magnetic phase transition at T sub c approx 0.9 K and proximity of a fundamental frequency with m* = 1.48m sub 0 efficient mass to the spin dumping condition

  16. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  17. Extremely large magnetoresistance and electronic structure of TmSb

    Science.gov (United States)

    Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long

    2018-02-01

    We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.

  18. Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas

    Science.gov (United States)

    Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.

    2016-09-01

    The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.

  19. Note on de Haas-van Alphen diamagnetism in thin, free-electron films

    Science.gov (United States)

    Grzesik, J. A.

    2012-03-01

    We revisit the problem of de Haas-van Alphen (dHvA) diamagnetic susceptibility oscillations in a thin, free-electron film trapped in a synthetic harmonic potential well. A treatment of this phenomenon at zero temperature was announced many years ago by Childers and Pincus (designated hereafter as CP), and we traverse initially much the same ground, but from a slightly different analytic perspective. That difference hinges around our use, in calculating the Helmholtz free energy F, of an inverse Laplace transform, Bromwich-type contour integral representation for the sharp distribution cutoff at Fermi level μ. The contour integral permits closed-form summation all at once over the discrete orbital Landau energy levels transverse to the magnetic field, and the energy associated with the in-plane canonical momenta ℏ k x and ℏ k z. Following such summation/integration, pole/residue pairs appear in the plane of complex transform variable s, a fourth-order pole at origin s = 0, and an infinite ladder, both up and down, of simple poles along the imaginary axis. The residue sum from the infinite pole ladder automatically engenders a Fourier series with period one in dimensionless variable μ/ ℏ ω (with effective angular frequency ω suitably defined), series which admits closed-form summation as a cubic polynomial within any given periodicity slot. Such periodicity corresponds to Landau levels slipping sequentially beneath Fermi level μ as the ambient magnetic field H declines in strength, and is manifested by the dHvA pulsations in diamagnetic susceptibility. The coëxisting steady contribution from the pole at origin has a similar cubic structure but is opposite in sign, inducing a competition whose outcome is a net magnetization that is merely quadratic in any given periodicity slot, modulated by a slow amplitude growth. Apart from some minor notes of passing discord, these simple algebraic structures confirm most of the CP formulae, and their graphic display

  20. Note on de Haas-van Alphen diamagnetism in thin, free-electron films

    Directory of Open Access Journals (Sweden)

    J. A. Grzesik

    2012-03-01

    Full Text Available We revisit the problem of de Haas-van Alphen (dHvA diamagnetic susceptibility oscillations in a thin, free-electron film trapped in a synthetic harmonic potential well. A treatment of this phenomenon at zero temperature was announced many years ago by Childers and Pincus (designated hereafter as CP, and we traverse initially much the same ground, but from a slightly different analytic perspective. That difference hinges around our use, in calculating the Helmholtz free energy F, of an inverse Laplace transform, Bromwich-type contour integral representation for the sharp distribution cutoff at Fermi level μ. The contour integral permits closed-form summation all at once over the discrete orbital Landau energy levels transverse to the magnetic field, and the energy associated with the in-plane canonical momenta ℏ k x and ℏ k z. Following such summation/integration, pole/residue pairs appear in the plane of complex transform variable s, a fourth-order pole at origin s = 0, and an infinite ladder, both up and down, of simple poles along the imaginary axis. The residue sum from the infinite pole ladder automatically engenders a Fourier series with period one in dimensionless variable μ/ ℏ ω (with effective angular frequency ω suitably defined, series which admits closed-form summation as a cubic polynomial within any given periodicity slot. Such periodicity corresponds to Landau levels slipping sequentially beneath Fermi level μ as the ambient magnetic field H declines in strength, and is manifested by the dHvA pulsations in diamagnetic susceptibility. The coëxisting steady contribution from the pole at origin has a similar cubic structure but is opposite in sign, inducing a competition whose outcome is a net magnetization that is merely quadratic in any given periodicity slot, modulated by a slow amplitude growth. Apart from some minor notes of passing discord, these simple algebraic structures confirm most of the CP formulae, and their

  1. David Schoenberg and the beauty of quantum oscillations

    International Nuclear Information System (INIS)

    Pudalov, V.M.

    2012-01-01

    The quantum oscillation effect was discovered in Leiden, in 1930, by W.J. de Haas and P.M. van Alphen in magnetization measurement, and by L.W. Shubnikov and de Haas - in magnetoresistance. Studying single crystals of bismuth, they observed oscillatory variations of magnetization and magnetoresistance with magnetic field. Shoenberg, whose first research in Cambridge had been on bismuth, found that much stronger oscillations are observed when a bismuth sample is cooled to liquid helium rather than to liquid hydrogen, which had been used by de Haas. In 1938 Shoenberg came from Cambridge to Moscow to study these oscillations at Kapitza Institute where liquid helium was available at that time. In 1947, J. Marcus observed similar oscillations in zinc, that persuaded Shoenberg to return to this research, and, since then, the dHvA effect had been one of his main research topic. In particular, he developed techniques for quantitative measurements of the effect in many metals. Theoretical explanation of quantum oscillations was given by L. Onsager in 1952, and the analytical quantitative theory by I.M. Lifshitz and A.M. Kosevich in 1955. These theoretical advancements seemed to provide a comprehensive description of the effect. Since then, quantum oscillations were commonly considered as a tool for measuring Fermi surface extremal cross-sections and all-angle electron scattering times. However, in his pioneering experiments in 1960s, Shoenberg revealed the richness and deep essence of the quantum oscillation effect and showed how the beauty of the effect is disclosed under nonlinear conditions imposed by interactions in the system under study. It was quite unexpected, that under 'magnetic interaction' conditions, the apparently weak effect of quantum oscillations may lead to such strong consequences as breaking the sample into magnetic (now called 'Shoenberg') domains and the formation of an inhomogeneous magnetic state. Owing to his contribution to the field of quantum

  2. Catalyst-free growth of millimeter-long topological insulator Bi₂Se₃ nanoribbons and the observation of the π-Berry phase.

    Science.gov (United States)

    Fang, L; Jia, Y; Miller, D J; Latimer, M L; Xiao, Z L; Welp, U; Crabtree, G W; Kwok, W-K

    2012-12-12

    We report the growth of single-crystalline Bi(2)Se(3) nanoribbons with lengths up to several millimeters via a catalyst-free physical vapor deposition method. Scanning transmission electron microscopy analysis reveals that the nanoribbons grow along the (112̅0) direction. We obtain a detailed characterization of the electronic structure of the Bi(2)Se(3) nanoribbons from measurements of Shubnikov-de Haas (SdH) quantum oscillations. Angular dependent magneto-transport measurements reveal a dominant two-dimensional contribution originating from surface states. The catalyst-free synthesis yields high-purity nanocrystals enabling the observation of a large number of SdH oscillation periods and allowing for an accurate determination of the π-Berry phase, one of the key features of Dirac fermions in topological insulators. The long-length nanoribbons open the possibility for fabricating multiple nanoelectronic devices on a single nanoribbon.

  3. Temperature Dependent Magnetoresistance of CeCu2Si2 up to 60 T [Proposal: P14728

    Energy Technology Data Exchange (ETDEWEB)

    Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lai, Y. [Florida State Univ., Tallahassee, FL (United States); Mcdonald, Ross David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baumbach, R. E. [Florida State Univ., Tallahassee, FL (United States)

    2017-03-23

    We recently investigated the chemical substitution series CeCu2Si2-xPx, for x = 0, 0.01, and 0.14, using a contactless tunnel diode oscillator technique. These measurements revealed previously unreported Shubnikov-de Haas oscillations above 45 T with an unusual temperature dependence that could potentially be explained by a high magnetic field transition. To investigate this possible transition, magnetoresistance measurements were desired. However, initial magnetoresistance measurements on CeCu2Si2 showed poor signal-to-noise due to the small value of the sample's resistivity. To overcome this obstacle, we performed micro-structuring of a single crystal specimen to increase the sample's resistance.

  4. Large g-factor enhancement in high-mobility InAs/AlSb quantum wells

    International Nuclear Information System (INIS)

    Sadofyev, Yu.G.; Ramamoorthy, A.; Naser, B.; Bird, J.P.; Johnson, S.R.; Zhang, Y.-H.

    2002-01-01

    We discuss the growth by molecular-beam epitaxy, and studies of the low-temperature electrical properties, of undoped InAs/AlSb quantum wells. The two-dimensional electron gas realized in the wells exhibits high mobility at low temperatures, and an analysis of its Shubnikov-de Haas oscillations suggests this mobility is limited by scattering from remotely located unintentional dopants. Spin splitting of the oscillations is clearly resolved at 4.2 K, revealing a g-factor as large as -60 at high magnetic fields. The size of this enhancement increases with decreasing electron density, and is thought to reflect the associated increase in the strength of the effective Coulomb interaction

  5. Casein Kinase I Isoform Hrr25 Is a Negative Regulator of Haa1 in the Weak Acid Stress Response Pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Collins, Morgan E; Black, Joshua J; Liu, Zhengchang

    2017-07-01

    Haa1 is a transcription factor that adapts Saccharomyces cerevisiae cells to weak organic acid stresses by activating the expression of various genes. Many of these genes encode membrane proteins, such as TPO2 and YRO2 How Haa1 is activated by weak acids is not clear. Here, we show that casein kinase I isoform Hrr25 is an important negative regulator of Haa1. Haa1 is known to be multiply phosphorylated. We found that mutations in HRR25 lead to reduced Haa1 phosphorylation and increased expression of Haa1 target genes and that Hrr25 interacts with Haa1. The other three casein kinase I isoforms, Yck1, Yck2, and Yck3, do not seem to play critical roles in Haa1 regulation. Hrr25 has a 200-residue C-terminal region, including a proline- and glutamine-rich domain. Our data suggest that the C-terminal region of Hrr25 is required for normal inhibition of expression of Haa1 target genes TPO2 and YRO2 and is important for cell growth but is not required for cell morphogenesis. We propose that Hrr25 is an important regulator of cellular adaptation to weak acid stress by inhibiting Haa1 through phosphorylation. IMPORTANCE Our study has revealed the casein kinase I protein Hrr25 to be a negative regulator of Haa1, a transcription factor mediating the cellular response to stresses caused by weak acids. Many studies have focused on the target genes of Haa1 and their roles in weak acid stress responses, but little has been reported on the regulatory mechanism of Haa1. Weak acids, such as acetic acid, have long been used for food preservation by slowing down the growth of fungal species, including S. cerevisiae In the biofuel industry, acetic acid in the lignocellulosic hydrolysates limits the production of ethanol, which is undesirable. By understanding how Haa1 is regulated, we can make advances in the field of food sciences to better preserve food and engineer acetic acid-resistant strains that will increase productivity in the biofuel industry. Copyright © 2017 American

  6. Impacted incisors associated with supernumerary teeth treated with a modified Haas appliance.

    Science.gov (United States)

    Sant'Anna, Eduardo Franzotti; Marquezan, Mariana; Sant'Anna, Claudia Franzotti

    2012-12-01

    Tooth impaction involves factors such as lack of space in the alveolar process, trauma, ankylosis, and mechanical barriers such as abnormal frenum, supernumerary teeth, tumors, and local cysts. When impaction occurs in the anterior region, esthetics are compromised. This report describes the successful approach to treatment for a young boy who had 2 supernumerary teeth associated with impaction of the left central and lateral permanent incisors. Treatment consisted of extracting the supernumerary teeth and performing maxillary expansion with a modified Haas appliance to guide the left central incisor into its appropriate position. The teeth erupted spontaneously after maxillary expansion and an increase in space. A fixed edgewise appliance was placed incrementally to correct the maxillary anterior tooth positions and finish the treatment. Adequate esthetics and function were achieved. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    Science.gov (United States)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  8. 75 FR 28654 - Chrysler LLC; St. Louis North Assembly Plant, Including On-Site Leased Workers From HAAS TCM, Inc...

    Science.gov (United States)

    2010-05-21

    ... Workers From HAAS TCM, Inc., Logistics Services, Inc., Robinson Solutions, and Yazaki North America... again on October 30, 2009 to include on-site leased workers from Robinson Solutions, and again March 31... request of the State Agency, the Department reviewed the certification for workers of the subject firm...

  9. 75 FR 20382 - Chrysler LLC, St. Louis North Assembly Plant, Including On-Site Leased Workers From HAAS TCM, Inc...

    Science.gov (United States)

    2010-04-19

    ... North Assembly Plant, Including On-Site Leased Workers From HAAS TCM, Inc., Logistics Services, Inc., Diversified Contract Service, Inc. 639, and Logistics Management Services, Inc., Fenton, MO; Amended... 9, 2008 to include on-site leased workers from Logistics Services, Inc., and amended on October 30...

  10. 75 FR 20384 - Chrysler LLC, St. Louis North Assembly Plant, Including On-Site Leased Workers From Haas TCM, Inc...

    Science.gov (United States)

    2010-04-19

    ... North Assembly Plant, Including On-Site Leased Workers From Haas TCM, Inc., Logistics Services, Inc. Diversified Contract Service, Inc. 639, and Logistics Management Services, Inc. Fenton, MO; Amended... 9, 2008 to include on-site leased workers from Logistics Services, Inc., and amended on October 30...

  11. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  12. Frequency Mixing of Magnetic Oscillations: Beyond Falicov-Stachowiak Theory

    Science.gov (United States)

    Fortin, Jean-Yves; Ziman, Timothy

    1998-04-01

    The interpretation of de Haas-van Alphen oscillations in the presence of magnetic breakdown is usually based on the semiclassical theory of Falicov and Stachowiak (FS). There are now glaring discrepancies between its predictions and experiments, especially in quasi-two-dimensional organic conductors. We present an extension of the theory, using the appropriate constraints of conserved electron density, which explains the occurrence of frequencies not predicted by FS, and makes explicit the amplitudes as a function of Fermi surface parameters. The results involve a tunneling amplitude between different sheets as in FS, but other parameters as well, such as the areas of different orbits.

  13. Neutrino Oscillations

    Indian Academy of Sciences (India)

    Neutrino Oscillations: New Windows to the Particle World. General Article Volume 21 Issue 10 ... Neutrino oscillation is a quantum mechanicalphenomenon whereby a neutrino created witha specific lepton flavour (electron, muon, or tau) can later bemeasured to have a different flavour. Historical developmentof the field in ...

  14. Chemical Oscillations

    Indian Academy of Sciences (India)

    The law of mass-action led chemists to the belief that reactions approach equilibrium steadily. So the discovery of chemical oscillations came as a surprise. Now chemists are very familiar with reactions that oscillate in time and/or space. Experimental and theoretical studies of such reac- tions showing temporal and spatial ...

  15. Quantum capacitance of an ultrathin topological insulator film in a magnetic field

    KAUST Repository

    Tahir, M.

    2013-02-12

    We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.

  16. Gate-tunable quantum dot in a high quality single layer MoS2 van der Waals heterostructure

    Science.gov (United States)

    Pisoni, Riccardo; Lei, Zijin; Back, Patrick; Eich, Marius; Overweg, Hiske; Lee, Yongjin; Watanabe, Kenji; Taniguchi, Takashi; Ihn, Thomas; Ensslin, Klaus

    2018-03-01

    We have fabricated an encapsulated monolayer MoS2 device with metallic ohmic contacts through a pre-patterned hexagonal boron nitride (hBN) layer. In the bulk, we observe an electron mobility as high as 3000 cm2/Vs at a density of 7 × 1012 cm-2 at a temperature of 1.7 K. Shubnikov-de Haas oscillations start at magnetic fields as low as 3.3 T. By realizing a single quantum dot gate structure on top of hBN, we are able to confine electrons in MoS2 and observe the Coulomb blockade effect. By tuning the middle gate voltage, we reach a double dot regime where we observe the standard honeycomb pattern in the charge stability diagram.

  17. Thickness dependence of the quantum Hall effect in films of the three-dimensional Dirac semimetal Cd3As2

    Directory of Open Access Journals (Sweden)

    Manik Goyal

    2018-02-01

    Full Text Available Low-temperature magnetotransport studies are reported for (112Cd3As2 films grown on (111CdTe by molecular beam epitaxy as a function of the Cd3As2 film thickness. All films show Shubnikov-de Haas oscillations. An even-integer quantum Hall effect is observed for films thinner than 70 nm. For the thinnest films, the bulk is gapped and transport at low temperatures occurs only via the gapless, two-dimensional states. The lowest Landau level is reached at ∼10 T, and the longitudinal resistance nearly vanishes at the plateaus in the Hall resistance. The results are discussed in the context of the current theoretical understanding of topological surface states in three-dimensional Dirac semimetals.

  18. Fermi surface and effect of high magnetic fields on the metal-semimetal Peierls-like transition of (TSeT)2Cl

    International Nuclear Information System (INIS)

    Laukhin, V.; Audouard, Allan; Vignolles, David; Drigo, Lois; Alemany, Pere; Canadell, Enric

    2014-01-01

    Resistance measurements in pulsed magnetic fields up to 55 T as well as a first-principles DFT calculation of the Fermi surface for the organic metal (TSeT) 2 Cl have been performed to investigate its metal-semimetal phase transition. The results obtained are in line with the imperfect nesting that can be inferred from both the observed metallic behavior of the resistivity at low temperature and the previously reported Shubnikov-de Haas oscillations due to small carrier pockets. The DFT study points out the possibility that the LUMO bands of the TSeT donor may interact with the HOMO ones and modify the shape of the Fermi surface under pressure

  19. Quantum magnetotransport for the surface states of three-dimensional topological insulators in the presence of a Zeeman field

    KAUST Repository

    Tahir, Muhammad

    2013-05-01

    We show that the surface states of magnetic topological insulators realize an activated behavior and Shubnikov de Haas oscillations. Applying an external magnetic field perpendicular to the surface of the topological insulator in the presence of Zeeman interaction, we investigate the opening of a gap at the Dirac point, making the surface Dirac fermions massive, and the effects on the transport properties. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for a transition from gapless to gapped surface states at n = 0 and activated transport is found from the temperature and magnetic-field dependence of the collisional and Hall conductivities. © Copyright EPLA, 2013.

  20. Evidence for an impurity band in the anomalous low carrier density superconductor Pb1-xTlxTe

    Science.gov (United States)

    Walmsley, Philip; Giraldo-Gallo, Paula; Sangiorgio, Boris; Abrams, Deanna; Fechner, Michael; Buchauer, Lisa; Fauque, Benoit; Riggs, Scott; McDonald, Ross; Geballe, Theodore; Spaldin, Nicola; Behnia, Kamran; Fisher, Ian

    The narrow-band-gap semiconductor PbTe superconducts with a Tc an order of magnitude greater than comparable low-density metals, but only when it is doped with the specific element thallium. Here we present a comprehensive study of the evolution of the Fermi surface of hole doped PbTe as derived from Shubnikov de Haas quantum oscillations, combined with measurements of the evolution of the electrical transport and specific heat. We compare cases for dopants that cause superconductivity (thallium) and those that don't (sodium), and identify the presence of a Tl-impurity band as the key feature associated with the presence of superconductivity. These results give the clearest description of the fermiology of PbTe to date, relevant for understanding both to its superconducting ground state and its high thermoelectric figure of merit.

  1. Spin-orbit interaction in a dual gated InAs/GaSb quantum well

    Science.gov (United States)

    Beukman, Arjan J. A.; de Vries, Folkert K.; van Veen, Jasper; Skolasinski, Rafal; Wimmer, Michael; Qu, Fanming; de Vries, David T.; Nguyen, Binh-Minh; Yi, Wei; Kiselev, Andrey A.; Sokolich, Marko; Manfra, Michael J.; Nichele, Fabrizio; Marcus, Charles M.; Kouwenhoven, Leo P.

    2017-12-01

    The spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field, the quantum well can be tuned between a single-carrier regime with exclusively electrons as carriers and a two-carrier regime where electrons and holes coexist. The spin-orbit interaction in both regimes manifests itself as a beating in the Shubnikov-de Haas oscillations. In the single-carrier regime the linear Dresselhaus strength is characterized by β =28.5 meV Å and the Rashba coefficient α is tuned from 75 to 53 meV Å by changing the electric field. In the two-carrier regime a quenching of the spin splitting is observed and attributed to a crossing of spin bands.

  2. Characterization of the Fermi surface of BEDT-TTF4[Hg2Cl6].PhCl by electronic band structure calculations

    International Nuclear Information System (INIS)

    Veiros, L.F.; Canadell, E.

    1994-01-01

    Tight-binding band structure calculations for the room temperature structure of BEDT-TTF 4 [Hg 2 Cl 6 ]-PhCl show the existence of closed electron and hole Fermi surfaces, in agreement with the 2D metallic conductivity of this salt. It is shown that these closed Fermi surfaces result from the hybridization of two hidden 1D Fermi surfaces. However, our study also shows that a transition associated with either a usual or a hidden nesting type mechanism is unlikely. This explains why this salt retains its metallic properties without any resistivity anomaly down to 1.3 K. Our study suggests that BEDT-TTF 4 [Hg 2 Cl 6 ]-PhCl is somewhat anisotropic 2D semimetal and should exhibit Shubnikov-de Haas oscillations corresponding to a cross-sectional area of approximately 13% of the first Brillouin zone. (orig.)

  3. Electrical properties of surface and interface layers of the N- and In-polar undoped and Mg-doped InN layers grown by PA MBE

    Science.gov (United States)

    Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.

    2018-01-01

    Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.

  4. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi

    Directory of Open Access Journals (Sweden)

    Satya K. Kushwaha

    2015-04-01

    Full Text Available High quality hexagon plate-like Na3Bi crystals with large (001 plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D Dirac semimetal (TDS behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  5. Tuning the magnetoresistance of ultrathin WTe2 sheets by electrostatic gating.

    Science.gov (United States)

    Na, Junhong; Hoyer, Alexander; Schoop, Leslie; Weber, Daniel; Lotsch, Bettina V; Burghard, Marko; Kern, Klaus

    2016-11-10

    The semimetallic, two-dimensional layered transition metal dichalcogenide WTe 2 has raised considerable interest due to its huge, non-saturating magnetoresistance. While for the origin of this effect, a close-to-ideal balance of electrons and holes has been put forward, the carrier concentration dependence of the magnetoresistance remains to be clarified. Here, we present a detailed study of the magnetotransport behaviour of ultrathin, mechanically exfoliated WTe 2 sheets as a function of electrostatic back gating. The carrier concentration and mobility, determined using the two band model and analysis of the Shubnikov-de Haas oscillations, indicate enhanced surface scattering for the thinnest sheets. By the back gate action, the magnetoresistance could be tuned by up to ∼100% for a ∼13 nm-thick WTe 2 sheet.

  6. Fermi surface studies of the pressure induced organic superconductor (ET){sub 3}Cl{sub 2}.2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lubczynski, W. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Caulfield, J. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Singleton, J. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Hayes, W. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Kurmoo, M. [Royal Institution, London (United Kingdom); Day, P. [Royal Institution, London (United Kingdom)

    1995-03-15

    The effects of temperature, pressure and magnetic field on the electrical transport of single crystal of (ET){sub 3}Cl{sub 2}.2H{sub 2}O are reported. Increasing pressure gradually reduces the ordering temperature of a charge density wave ground state from {approx}160 K at 1 bar to 6 K at 10.2 kbar. A superconducting state with T{sub c}>4 K is stabilised between 10.2 kbar and 13.5 kbar. Above 12.5 kbar, the observation of Shubnikov-de Haas oscillations allows the pressure dependences of the area of a closed Fermi surface pocket and the associated carrier effective mass to be deduced. (orig.)

  7. Pressure-Induced Electronic Transition in Black Phosphorus

    Science.gov (United States)

    Xiang, Z. J.; Ye, G. J.; Shang, C.; Lei, B.; Wang, N. Z.; Yang, K. S.; Liu, D. Y.; Meng, F. B.; Luo, X. G.; Zou, L. J.; Sun, Z.; Zhang, Y.; Chen, X. H.

    2015-10-01

    In a semimetal, both electrons and holes contribute to the density of states at the Fermi level. The small band overlaps and multiband effects engender novel electronic properties. We show that a moderate hydrostatic pressure effectively suppresses the band gap in the elemental semiconductor black phosphorus. An electronic topological transition takes place at approximately 1.2 GPa, above which black phosphorus evolves into a semimetal state that is characterized by a colossal positive magnetoresistance and a nonlinear field dependence of Hall resistivity. The Shubnikov-de Haas oscillations detected in magnetic field reveal the complex Fermi surface topology of the semimetallic phase. In particular, we find a nontrivial Berry phase in one Fermi surface that emerges in the semimetal state, as evidence of a Dirac-like dispersion. The observed semimetallic behavior greatly enriches the material property of black phosphorus and sets the stage for the exploration of novel electronic states in this material.

  8. Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots

    Science.gov (United States)

    Makarovsky, Oleg; Turyanska, Lyudmila; Mori, Nobuya; Greenaway, Mark; Eaves, Laurence; Patané, Amalia; Fromhold, Mark; Lara-Avila, Samuel; Kubatkin, Sergey; Yakimova, Rositsa

    2017-09-01

    We report a simultaneous increase of carrier concentration, mobility and photoresponsivity when SiC-grown graphene is decorated with a surface layer of colloidal PbS quantum dots, which act as electron donors. The charge on the ionised dots is spatially correlated with defect charges on the SiC-graphene interface, thus enhancing both electron carrier density and mobility. This charge-correlation model is supported by Monte Carlo simulations of electron transport and used to explain the unexpected 3-fold increase of mobility with increasing electron density. The enhanced carrier concentration and mobility give rise to Shubnikov-de Haas oscillations in the magnetoresistance, which provide an estimate of the electron cyclotron mass in graphene at high densities and Fermi energies up to 1.2  ×  1013 cm-2 and 400 meV, respectively.

  9. Some properties of Ga-As-Alsub(x)Gasub(1-x)As heterojunction grown by low temperature liquid phase epitaxy

    International Nuclear Information System (INIS)

    Yu Lisheng; Liu Hongxun; Zhang Bei; Wang Shumin

    1986-03-01

    GaAs-Alsub(x)Gasub(1-x)As heterojunction was grown by liquid phase epitaxy at low growth temperature 650-700 deg. C. The series resistance of heterojunction with DH laser structure was measured. Doping properties of Mg in GaAs and Alsub(x)Gasub(1-x)As were investigated. It is found that impurity concentration of Mg as high as 10 18 cm -3 can be doped easily. The Shubnikov-de-Haas oscillation was observed in GaAs-N Alsub(0.35)Gasub(0.65)As heterointerface. It is demonstrated that in these heterointerfaces there exists 2DEG with some contribution from 3D electron of N-AlGaAs layer. (author)

  10. Study on the TOC concentration in raw water and HAAs in Tehran’s water treatment plant outlet

    Science.gov (United States)

    2013-01-01

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall. PMID:24283403

  11. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sakihama, Yuri; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    The hydrolysis of lignocellulosic biomass liberates sugars, primarily glucose and xylose, which are subsequently converted to ethanol by microbial fermentation. The rapid and efficient fermentation of xylose by recombinant Saccharomyces cerevisiae strains is limited by weak acids generated during biomass pretreatment processes. In particular, acetic acid negatively affects cell growth, xylose fermentation rate, and ethanol production. The ability of S. cerevisiae to efficiently utilize xylose in the presence of acetic acid is an essential requirement for the cost-effective production of ethanol from lignocellulosic hydrolysates. Here, an acetic acid-responsive transcriptional activator, HAA1, was overexpressed in a recombinant xylose-fermenting S. cerevisiae strain to yield BY4741X/HAA1. This strain exhibited improved cell growth and ethanol production from xylose under aerobic and oxygen limited conditions, respectively, in the presence of acetic acid. The HAA1p regulon enhanced transcript levels in BY4741X/HAA1. The disruption of PHO13, a p-nitrophenylphosphatase gene, in BY4741X/HAA1 led to further improvement in both yeast growth and the ability to ferment xylose, indicating that HAA1 overexpression and PHO13 deletion act by different mechanisms to enhance ethanol production. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  13. Magnetic and superconducting phase diagram of the half-Heusler topological semimetal HoPdBi

    NARCIS (Netherlands)

    Nikitin, A.M.; Pan, Y.; Mao, X.; Jehee, R.; Araizi, G.K.; Huang, Y.K.; Paulsen, C.; Wu, S.C.; Yan, B.H.; de Visser, A.

    2015-01-01

    We report a study of the magnetic and electronic properties of the non-centrosymmetric half-Heusler antiferromagnet HoPdBi (T-N = 2.0 K). Magnetotransport measurements show HoPdBi has a semimetallic behavior with a carrier concentration n= 3.7 x 10(18) cm(-3) extracted from the Shubnikov-de Haas

  14. Electronic structure of palladium-hydrogen and palladium-deuterium from de Haas-van Alphen experiments

    International Nuclear Information System (INIS)

    Venema, W.J.

    1980-01-01

    A detailed experimental study of the electronic structure of a transition metal-hydrogen interstitial alloy is presented in this thesis. Data on the Fermi surface and on the electron scattering rates of palladium-hydrogen and palladium-deuterium are obtained from de Haas-van Alphen experiments using a torque balance spectrometer and a field modulation spectrometer. The present results suggest that the isotope effect observed in the superconductive transition temperature of concentrated PdH(D)sub(x) is, at least partly, due to a difference in the electronic structure of PdHsub(x) compared to that of PdDsub(x). (Auth.)

  15. Chemical Oscillations

    Indian Academy of Sciences (India)

    behaviour of a few complex chemical systems. We observed that these chemical oscillators are basically .... Kutta fourth order integration method to solve the Lotka-. Volterra equation as per the Fortran program given in ... This is known as the phase plane represen- tation. We have obtained these plots using the software.

  16. Chemical Oscillations

    Indian Academy of Sciences (India)

    relevant species is zero. So, oscillations can appear only if the inhibition step is somehow .... the value of such an experimental parameter can possi- bly move the system between the steady states. Per- ... states for different values of [X], obtained far from equilibrium. Figure 2. System showing. The concentrations [X] ...

  17. Lineshape studies of quantum oscillations in the ultrasonic absorption and dispersion in indium. The anomalous behaviour of the ultrasonic absorption

    International Nuclear Information System (INIS)

    Wilde, J. de; Groot, D.G. de

    1978-01-01

    Simultaneous measurements of quantum oscillations in the ultrasonic absorption and dispersion in In and dilute In/Pb alloys have been carried out using a sensitive continuous wave technique. A comparison of the field dependencies and the harmonic contents of the quantum oscillations in the absorption, dispersion and magnetisation has shown that the dispersion and magnetisation are in agreement with the existing theories. The absorption oscillations, however, do not follow the well known theories. A modified expression for the absorption lines has been derived by calculating the giant quantum oscillation lineshape in the presence of significant phase smearing. The Dingle temperatures and harmonic content calculated from this modified expression are in excellent agreement with the results obtained from the de Haas-van Alphen effect and the velocity oscillations. (author)

  18. Quantum oscillations in insulators with neutral Fermi surfaces

    Science.gov (United States)

    Sodemann, Inti; Chowdhury, Debanjan; Senthil, T.

    2018-02-01

    We develop a theory of quantum oscillations in insulators with an emergent Fermi sea of neutral fermions minimally coupled to an emergent U(1 ) gauge field. As pointed out by Motrunich [Phys. Rev. B 73, 155115 (2006), 10.1103/PhysRevB.73.155115], in the presence of a physical magnetic field the emergent magnetic field develops a nonzero value leading to Landau quantization for the neutral fermions. We focus on the magnetic field and temperature dependence of the analog of the de Haas-van Alphen effect in two and three dimensions. At temperatures above the effective cyclotron energy, the magnetization oscillations behave similarly to those of an ordinary metal, albeit in a field of a strength that differs from the physical magnetic field. At low temperatures, the oscillations evolve into a series of phase transitions. We provide analytical expressions for the amplitude and period of the oscillations in both of these regimes and simple extrapolations that capture well their crossover. We also describe oscillations in the electrical resistivity of these systems that are expected to be superimposed with the activated temperature behavior characteristic of their insulating nature and discuss suitable experimental conditions for the observation of these effects in mixed-valence insulators and triangular lattice organic materials.

  19. Pavel Haas Study Day a IMR Study Day: Inter-War Avant-Garde across National and Disciplinary Borders, 30. a 31. ledna 2016, Cardiff University School of Music, Cardiff, Velká Británie

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Markéta; Zapletal, Miloš

    2016-01-01

    Roč. 53, č. 1 (2016), s. 101-102 ISSN 0018-7003. [Pavel Haas Study Day. Cardiff, 30.01.2016] R&D Projects: GA ČR(CZ) GP14-35842P Institutional support: RVO:68378076 Keywords : Pavel Haas * conference * music * inter-war * avantgarde Subject RIV: AL - Art, Architecture, Cultural Heritage

  20. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  1. [A forgotten chapter in the prehistory of psychoanalysis in Cologne. The emigration of Hans Erich Haas (1896-1990)].

    Science.gov (United States)

    Schultz-Venrath, Ulrich

    2007-01-01

    Haas was the first medical doctor from the Rhineland who was trained at the Berlin Psychoanalytic Institute and established himself as a "specialist for psychoanalysis" in Cologne. For nearly ten years he had a flourishing practice there with a particular interest in the treatment of schizophrenia. He was Jewish and in 1936 he emigrated to England where he was the first and for a long time only psychoanalyst in Birmingham. He specialised in treating patients with personality disorders and psychosomatic diseases and was increasingly consulted as a forensic expert. As a result of his association with a hospital and with the university, he was instrumental in the foundation of the West Midlands Institute for Psychotherapy. At the time of his death in 1990, the psychoanalytic study group of Cologne lacked any knowledge of his life or work.

  2. ANALISA MODA DAN EFEK KEGAGALAN (FAILURE MODE AND EFFECTS ANALYSIS / FMEA PADA PRODUK KURSI LIPAT CHITOSE YAMATO HAA

    Directory of Open Access Journals (Sweden)

    Denny Nurkertamanda

    2012-02-01

    Full Text Available Chitose Indonesia Manufacturing merupakan perusahaan yang memproduksi dan menjual furniture dari logam dengan kerjasama negara Jepang. Berdasarkan data penjualan Chitose Indonesia Manufacturing pada tahun 2003, kursi lipat Chitose Yamato merupakan jenis kursi lipat yang memiliki angka penjualan sebesar 59% dari keseluruhan jenis produk yang diproduksi. Kursi lipat Chitose Yamato HAA merupakan salah satu sarana untuk duduk yang dilengkapi dengan sandaran sesuai dengan bentuk punggung manusia dan dapat dilipat untuk memudahkan penyimpanannya. Selain itu juga rangka kakinya yang berbentuk H sehingga dapat digunakan pada permukaan yang datar atau bergelombang. Material yang digunakan pada rangka kursi lipat Chitose Yamato HAA adalah berupa elemen struktur rangka yang bersifat isotropik, yakni memiliki keseragaman sifat dan bahan suatu elemen (regangan, tegangan, mekanis, dsb. Pada analisa moda kegagalan dilakukan identifikasi moda kegagalan yang potensial, keparahan yang ditimbulkan, dan frekuensi kejadian moda kegagalan. Dengan menggunakan analisa moda kegagalan, maka diharapkan kualitas produk akan meningkat dan dapat digunakan sesuai dengan fungsinya. RPN adalah indikator kekritisan untuk menentukan tindakan koreksi yang sesuai dengan moda kegagalan. RPN digunakan oleh banyak prosedur FMEA untuk menaksir resiko menggunakan tiga kriteria yaitu Keparahan efek (Severity S, Kejadian penyebab (Occurrence O, Deteksi penyebab (Detection D. Angka prioritas RPN merupakan hasil kali rating keparahan, kejadian, dan deteksi. Angka ini hanyalah menunjukkan rangking atau urutan defisiensi desain sistem. Kata kunci : Moda Kegagalan, Efek Kegagalan, Penyebab Kegagalan, Deteksi, Kejadian, Keparahan, RPN (Risk Priority Number.     Chitose Manufacturing Indonesia is a company that produce and sells furniture made from alloy in cooperation with Japan. Based on Sales data by Chitose Indonesia Manufacturing in 2003, Chitose Yamato foldable chair has a sales number

  3. Magnetic breakdown and frequency mixing of oscillations : beyond Falicov-Stachowiak theory

    Science.gov (United States)

    Fortin, Jean-Yves; Ziman, Timothy

    1998-03-01

    The interpretation of de Haas-van Alphen (dHvA) oscillations in the presence of magnetic breakdown is usually based on the semi-classical theory of Falicov and Stachowiak (FS). There are now glaring discrepancies between its predictions and experiments, especially in quasi two-dimensional organic conductors. We present an extension of the theory, using the appropriate constraints of conserved electron density, which explains the occurrence of frequencies not predicted by FS, and makes explicit the amplitudes as a function of Fermi surface parameters. The results involve a tunnelling amplitude between different sheets as in FS, but other parameters as well: the areas of different orbits.

  4. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.

    Science.gov (United States)

    Cunha, Joana T; Costa, Carlos E; Ferraz, Luís; Romaní, Aloia; Johansson, Björn; Sá-Correia, Isabel; Domingues, Lucília

    2018-04-02

    Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.

  5. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  6. Transverse effect of Haas and Hyrax appliances on the upper dental arch in patients with unilateral complete cleft lip and palate: A comparative study

    Directory of Open Access Journals (Sweden)

    Anna Júlia de Oliveira Façanha

    2014-04-01

    Full Text Available Objective: The aim of the present study was to evaluate the transverse effect of rapid maxillary expansion in patients with unilateral complete cleft lip and palate while comparing the Haas and Hyrax appliances. Methods: The sample consisted of 48 patients divided into two groups: Group I - 25 patients treated with modified Haas appliance (mean age: 10 years 8 months; and Group II - 23 patients treated with Hyrax appliance (mean age: 10 years 6 months. Casts were taken during pre-expansion and after removal of the appliance at the end of the retention period. The models were scanned with the aid of the 3 Shape R700 3D scanner. Initial and final transverse distances were measured at cusp tips and cervical-palatal points of maxillary teeth by using the Ortho Analyzer(tm 3D software. Results: The mean expansion obtained between cusp tips and cervical-palatal points for inter-canine width was 4.80 mm and 4.35 mm with the Haas appliance and 5.91 mm and 5.91 mm with the Hyrax appliance. As for first premolars or first deciduous molars, the values obtained were 6.46 mm and 5.90 mm in the Haas group and 7.11 mm and 6.65 mm in the Hyrax group. With regard to first molars, values were 6.11 mm and 5.24 mm in the Haas group and 7.55 mm and 6.31 mm in the Hyrax group. Conclusion: Rapid maxillary expansion significantly increased the transverse dimensions of the upper dental arch in patients with cleft palate, with no significant differences between the Hass and Hyrax expanders.

  7. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  8. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  9. Magnetic properties of anyonic systems in a normal phase

    International Nuclear Information System (INIS)

    Aronov, I.E.; Naftulin, S.A.

    1992-08-01

    We apply the concept of fractional statistics to the two-dimensional conductors. The effective Lagrangian of an external magnetic field in anyon medium at finite temperature and density is presented. The diamagnetic response to the external field is studied at temperatures above T c (i.e. in the normal phase) for various values of external parameters. Oscillations of both thermodynamic (the de Haas - van Alphen effect) and kinetic (the Shubnikov - de Haas effect) quantities are re-examined. Numerous peculiarities arise from the fact that anyon systems possess a non-zero ''statistical'' flux Φ (which is known to be a manifestation of the spontaneous parity breakdown). The cyclotron resonance is suggested as a direct test on possible parity violation (which is the key point of anyonics). The cyclotron mass dependences on external parameters reported in a series of experimental articles (H. Kublbeck and J.P. Kotthaus, Phys. Rev. Lett. 35, 1019 (1975); G. Abstreiter, J.P. Kotthaus, J.F. Koch and G. Dorda, Phys. Rev. B14, 2480 (1976)) may be attributed to an unusual behaviour or magnetic permeability in anyon medium. (author). 20 refs, 2 figs

  10. Quantum oscillation evidence for a topological semimetal phase in ZrSnTe

    Science.gov (United States)

    Hu, Jin; Zhu, Yanglin; Gui, Xin; Graf, David; Tang, Zhijie; Xie, Weiwei; Mao, Zhiqiang

    2018-04-01

    The layered WHM-type (W =Zr /Hf /La , H =Si /Ge /Sn /Sb , M =S /Se /Te ) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W , H , and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological nontrivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.

  11. A expansão rápida da maxila com haas e a fala na fissura labiopalatina transforame Rapid maxillary expansion with Haas and the speech in people with cleft lip and palate

    Directory of Open Access Journals (Sweden)

    Christiane Moraes Lazzari

    2009-01-01

    Full Text Available OBJETIVO: verificar os efeitos da Expansão Rápida da Maxila (ERM, com aparelho Haas, na fala do paciente com fissura labiopalatina (FLP Transforame. MÉTODOS: 12 indivíduos entre sete e 14 anos, sendo seis meninos e seis meninas, divididos em dois grupos. O Grupo 1 (G1, submetido à ERM com protocolo de ativação convencional e, o Grupo 2 (G2, submetido à ERM com protocolo de ativação preconizado por Liou e Tsai (2005 com expansões e constrições alternadas. Realizou-se avaliação da fala, análise acústica com programa Praat e avaliação perceptivo-auditiva por julgadores fonoaudiólogos e leigos. RESULTADOS: a medição dos tempos de emissão das vogais por análise acústica mostrou diferença estatisticamente significante na avaliação pós-ERM da vogal /i/ no G1 e da vogal /a/ no G2. Na avaliação perceptivo-auditiva, não houve diferenças estatisticamente significantes entre os grupos nas avaliações de Nasalidade e Clareza na Articulação, porém, na medida em que os julgadores atribuíram melhora à Nasalidade, também atribuíram melhora à Articulação e, assim também em relação as variáveis "Melhor", "Igual" e "Pior". CONCLUSÃO: a diminuição dos tempos de emissão pós-ERM, indica que o aumento no escape aéreo nasal ocasiona menores tempos de emissão. A análise perceptivo-auditiva mostrou-se um instrumento eficaz de avaliação, havendo concordância entre julgadores leigos e fonoaudiólogos. Essa avaliação indicou também, que na medida em que a nasalidade diminui ocorre maior clareza na articulação.PURPOSE: to check the effects of rapid maxillary expansion (RME with Haas, made by orthodontistic, in speech of the patient with cleft lip and palate. METHODS: 12 subjects, 6 boys and 6 girls, with age between 7 and 14-year old, divided in two groups. Group 1 (G1, was submitted to conventional activation RME protocol and Group 2 (G2, was submitted to activation ERM protocol in accordance with Liou and Tsai

  12. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  13. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  14. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  15. Magnetic field mediated conductance oscillation in graphene p–n junctions

    Science.gov (United States)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  16. Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Druzhinin, A., E-mail: druzh@polynet.lviv.ua [Lviv Polytechnic National University, Bandera Str., 12, 79013 Lviv (Ukraine); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, Wroclaw (Poland); Ostrovskii, I.; Khoverko, Yu. [Lviv Polytechnic National University, Bandera Str., 12, 79013 Lviv (Ukraine); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, Wroclaw (Poland); Liakh-Kaguy, N.; Khytruk, I. [Lviv Polytechnic National University, Bandera Str., 12, 79013 Lviv (Ukraine); Rogacki, K. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, Wroclaw (Poland)

    2015-12-15

    Highlights: • Magnetoresistance in InSb whiskers with impurity concentration near MIT is studied. • SdH oscillations of transverse and longitudinal magnetoresistance are examined. • Mechanisms of electron scattering are determined • Main crystal parameters of InSb whiskers are determined. - Abstract: The study of the magnetoresistance in InSb whiskers with an impurity concentration in the vicinity to the metal-insulator phase transition, at low temperature range 4.2–77 K, and in fields, with induction up to 14 T, was conducted. The presence of Shubnikov-de Haas oscillations in both transverse and longitudinal magnetoresistance was observed. The following parameters of InSb whiskers were defined: period of oscillations 0.1 T{sup −1}, cyclotron effective mass of electrons m{sub c} ≈ 0.14m{sub o,} concentration of charge carriers 2.3 × 10{sup 17} cm{sup −3}, g-factor g{sup *} ≈ 30 and Dingle temperature T{sub D} = 14.5 K. To determine the nature of crystal defects, the electron scattering processes on the short-range potential, caused by interaction with polar and nonpolar optical phonons, piezoelectric and acoustic phonons, static strain centers and ionized impurities in n-InSb whiskers, with defect concentration 2.9 × 10{sup 17} cm{sup −3}, are considered. The temperature dependences of electron mobility in the range 4.2–500 K were calculated.

  17. Lateral surface superlattices in strained InGaAs layers

    International Nuclear Information System (INIS)

    Milton, B.

    2000-08-01

    Lateral Surface Superlattices were fabricated by etching in strained InGaAs layers above a GaAs/AlGaAs 2DEG channel. These were etched both by dry plasma wet chemical etching to produce periods of 100nm, 200nm and 300nm. These superlattices were fabricated on Hall bars to allow four terminal measurement and a blanket gate was placed on top, to allow variations in the carrier concentration. The magnetoresistance effects of these superlattices were studied at varying values of gate voltage, which varies the carrier concentration and the electrostatic periodic potential and at temperatures down to 45mK in a dilution refrigerator. From the oscillations observed in the magnetoresistance trace's it is possible to calculate the magnitude of the periodic potential. This showed that the etched, strained InGaAs was producing an anisotropic piezoelectric potential, along with an isotropic electrostatic potential. The variation in period allowed a study of the change of this piezoelectric potential with the period as well as a study of the interactions between the electrostatic and piezoelectric potentials. Further, at the lowest temperatures a strong interaction was observed between the Commensurability Oscillations, caused by the periodic potential, and the Shubnikov-de Haas Oscillations due to the Landau. Levels. This interaction was studied as it varied with temperature and carrier concentration. (author)

  18. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  19. Seltskond / Annika Haas

    Index Scriptorium Estoniae

    Haas, Annika

    2007-01-01

    Turundusagentuur PNG (loovjuhiks Jüri Peetson) ühendas tänuõhtu oma klientidele ja koostööpartneritele hispaania laulja Enrique Iglesiase esinemisega 1. dets. Tallinnas Saku Suurhalli restoranis Platoo

  20. Seltskond / Annika Haas

    Index Scriptorium Estoniae

    Haas, Annika

    2008-01-01

    8. aug. Tallinnas kinos Sõprus ja klubis Juuksur tähistati 30 aasta möödumist ansambli Joy Divison sünnist ja Anton Corbijni debüütfilmi "Control" jõudmist Eesti kinodesse (näidati dokumentaalfilmi "Joy Divison")

  1. Hepatic artery aneurysms (HAAs)

    International Nuclear Information System (INIS)

    Nosratini, H.

    2004-01-01

    The hepatic artery aneurysms are rare, especially in interahepatic branches, The frequency consists of 75-80% extrahepatic and 20-25% intrahepatic. Catheterization is achieved usually from common femoral artery, other methods implemented in the case of unsuccessful catheterization from femoral artery, are translumbar and brachial catheterization. The study consist of 565 patients that were referred to the angiography ward, During seven years of assessment, five cases of hepatic artery aneurysm were found; this is a rare condition reported in the English literature. In the literature as well as in this case report the hepatic artery aneurysms are rare. In reported series the extrahepatic artery aneurysms are found more often than in the intrahepatic artery aneurysm but in this case report intrahepatic artery aneurysms are more than extrahepatic one. (author)

  2. Seltskond / Annika Haas

    Index Scriptorium Estoniae

    Haas, Annika

    2008-01-01

    Intellektipuudega noortele rajatava Maarja küla toetuseks toimunud kontserdist 17. nov. Tallinnas Vene Teatris (järgmised kontserdid on 23. nov. Pärnu teatris Endla ja 30. nov. Tartu Vanemuise suures majas)

  3. SUB’HAA

    Directory of Open Access Journals (Sweden)

    Harisnal Hadi

    2017-08-01

    Full Text Available The preparation of the artwork entitled "Subhaa", is inspired by the Minangkabau cultural phenomenon. This work focuses on the feelings of children who will be circumcised, the pressure and fear felt by the child who will be circumcised tilled in the form of Polymetrik art works. Circumcision or commonly called Basunaik by Minangkabau society is a Sunna that must be run boys of Islam; indirectly circumcision is also required for boys in Minangkabau. In the area of darek (mainland khitan has its own ceremony, begins with a child who will be circumcised is brought to the bako house to change his clothes, then paraded around the village, after arriving at home circumcised will be held. In the evening there will be entertainment in the form of randai and bagurau saluang. This piece of music is in the form of a new composition. The performance focuses more on the composition of sound as a contextual meaning to be conveyed to the appreciator. This work is a little contrary to the aesthetics that have been awakened in the brain and soul of the arts in the Sendratasik Department of FBS Universitas Negeri Padang. But it cannot be denied that a new works will create its own aesthetic realm. Keywords: Basunaik, Artwork Music. Abstrak Penyusunan karya seni yang berjudul “Subhaa”, ini terinspirasi dari fenomena budaya Minangkabau. Karya ini menitik beratkan garapan pada perasaan anak yang akan dikhitan, tekanan dan ketakutan yang dirasakan oleh anak yang akan dikhitan digarap dalam bentuk penggarapan Polymetrik. Khitan atau biasa disebut Basunaik oleh masyarakat Minangkabau merupakan sunah yang harus dijalankan anak laki-laki Islam, secara tidak langsung khitan juga diwajibkan bagi anak laki-laki di Minangkabau. Di daerah darek (daratan khitan memiliki upacara tersendiri, diawali dengan anak yang akan dikhitan dibawa ke rumah bako untuk mengganti baju, lalu diarak keliling kampung, setelah sampai di rumah baru diadakan khitan, malamnya diadakan hiburan berupa randai dan bagurau saluang. Karya musik ini berbentuk komposisi garapan baru. Penggarapan lebih menitik beratkan kepada penggarapan bunyi sebagai makna kontekstual yang akan disampaikan kepada apresiator. Karya ini memang sedikit bertolak belakang dengan estetika yang sudah terbangun dalam otak dan jiwa kalangan seni di jurusan pendidikan sendratasik FBS Universitas Negeri Padang. Namun tidak bisa dipungkiri sebuah karya garapan baru akan menciptakan ranah estetikanya sendiri. Kata Kunci: Basunaik, Karya seni Musik.

  4. Seltskond / Annika Haas

    Index Scriptorium Estoniae

    Haas, Annika

    2006-01-01

    Tallinna Ülikoolis toimunud ameerika kultuurantropoloogi Clifford Geertzi mälestusõhtust, kus esinesid rektor Rein Raud, Eesti Humanitaarinstituudi dotsent Lorenzo Cañás Bottos ja kultuuriteooria lektor Marek Tamm

  5. Seltskond / Annika Haas

    Index Scriptorium Estoniae

    Haas, Annika

    2006-01-01

    Inglise rocklaulja Gordon Matthew Sumneri raamatu "Sting. Murtud muusika" esitlusest Tallinnas Viru Keskuse Rahva Raamatu kaupluses ja kontserdist Saku Suurhallis Broken Musicu nimelise tuuri raames 28. juulil

  6. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  7. A memristor-based third-order oscillator: beyond oscillation

    Science.gov (United States)

    Talukdar, A.; Radwan, A. G.; Salama, K. N.

    2011-09-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  8. Strain induced novel quantum magnetotransport properties of topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-12-15

    Recent theoretical and experimental researches have revealed that the strained bulk HgTe can be regarded as a three-dimensional topological insulator (TI). Motivated by this, we explore the strain effects on the transport properties of the HgTe surface states, which are modulated by a weak 1D in-plane electrostatic periodic potential in the presence of a perpendicular magnetic field. We analytically derive the zero frequency (dc) diffusion conductivity for the case of quasielastic scattering in the Kubo formalism, and find that, in strong magnetic field regime, the Shubnikov–de Haas oscillations are superimposed on top of the Weiss oscillations due to the electric modulation for null and finite strain. Furthermore, the strain is shown to remove the degeneracy in inversion symmetric Dirac cones on the top and bottom surfaces. This accordingly gives rise to the splitting and mixture of Landau levels, and the asymmetric spectrum of the dc conductivity. These phenomena, not known in a conventional 2D electron gas and even in a strainless TI and graphene, are a consequence of the anomalous spectrum of surface states in a fully stained TI. These results should be valuable for electronic and spintronic applications of TIs, and thus we fully expect to see them in the further experiment. - Highlights: • The strain removes the degeneracy in inversion symmetric Dirac cones. • The strain gives rise to the splitting and mixture of the Landau levels. • The strain leads to the asymmetric spectrum of the dc conductivity. • Shubnikov de Haas oscillations are shown to be superimposed on Weiss oscillations. • Interplay between strain and electric field causes different occupancy of TI states.

  9. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  10. Self-oscillation

    Science.gov (United States)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  11. Electronic Transport and Raman Spectroscopy Characterization in Ion-Implanted Highly Oriented Pyrolytic Graphite

    Science.gov (United States)

    de Jesus, R. F.; Turatti, A. M.; Camargo, B. C.; da Silva, R. R.; Kopelevich, Y.; Behar, M.; Balzaretti, N. M.; Gusmão, M. A.; Pureur, P.

    2018-02-01

    We report on Raman spectroscopy, temperature-dependent in-plane resistivity, and in-plane magnetoresistance experiments in highly oriented pyrolytic graphite (HOPG) implanted with As and Mn. A pristine sample was also studied for comparison. Two different fluences were applied, φ = 0.5× 10^{16} {ions}/{cm}2 and φ = 1.0× 10^{16} {ions}/{cm}2. The implantations were carried out with 20 keV ion energy at room temperature. The Raman spectroscopy results reveal the occurrence of drastic changes of the HOPG surface as a consequence of the damage caused by ionic implantation. For the higher dose, the complete amorphization limit is attained. The resistivity and magnetoresistance results were obtained placing electrical contacts on the irradiated sample surface. Owing to the strong anisotropy of HOPG, the electrical current propagates mostly near the implanted surface. Shubnikov-de Haas (SdH) oscillations were observed in the magnetoresistance at low temperatures. These results allow the extraction of the fundamental SdH frequencies and the carriers' effective masses. In general, the resistivity and magnetoresistance results are consistent with those obtained from Raman measurements. However, one must consider that the electrical conduction in our samples occurs as in a parallel association of a largely resistive thin sheet at the surface strongly modified by disorder with a thicker layer where damage produced by implantation is less severe. The SdH oscillations do not hint to significant changes in the carrier density of HOPG.

  12. Three-dimensionality of the bulk electronic structure in WTe2

    Science.gov (United States)

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2017-05-01

    We use temperature- and field-dependent resistivity measurements (Shubnikov-de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the X -Γ -X direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . The combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.

  13. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    In this talk, I shall try to give a bird's eye view of the current status of neutrino oscillations. ..... the night effect. An asymmetry between the night and day rates would be an unambiguous signal for neutrino oscillations independent of the details of the solar ... It is particularly important to see the effect of the core of the earth [19].

  14. Active-bridge oscillator

    Science.gov (United States)

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  15. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  16. Grazing Impact Oscillations

    NARCIS (Netherlands)

    Weger, J.G.; Water, van de W.; Molenaar, J.

    2000-01-01

    An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical value. We study impact oscillations where collisions with the wall are with near-zero velocity (grazing impacts). A characteristic feature of grazing impact dynamics is a geometrically

  17. Harmonic oscillator Green's function

    International Nuclear Information System (INIS)

    Macek, J.H.; Ovchinnikov, S.Yu.; Khrebtukov, D.B.

    2000-01-01

    The Green's function for the harmonic oscillator in three dimensions plays an important role in the theory of atomic collisions. One representation of low-energy ion-atom collisions involves harmonic oscillator potentials. A closed-form expression for the harmonic oscillator Green's function, needed to exploit this representation, is derived. This expression is similar to the expression for the Coulomb Green's function obtained by Hostler and Pratt. Calculations of electron distributions for a model system of ion-atom collisions are reported to illustrate the theory.

  18. Oscillating foil propulsion

    OpenAIRE

    Hauge, Jacob

    2013-01-01

    Unsteady foil theory is discussed and applied on several cases of an oscillating foil. The oscillating foil is meant as a propulsion system for a platform supply vessel.Four case studies of foil oscillation have been performed. A thrust coefficient of 0.1 was achieved at an efficiency of 0.75. A thrust coefficient of minimum 0.184 is necessary to overcome the calm water resistance of the foil.Issues connected to coupled vessel-foil models are discussed.

  19. Neutrino Oscillation Physics

    CERN Document Server

    Kayser, Boris

    2014-04-10

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  20. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  1. Oscillating fluid power generator

    Science.gov (United States)

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  2. Fluctuations in LC Oscillators

    Directory of Open Access Journals (Sweden)

    O. Ondracek

    1994-03-01

    Full Text Available An analysis of the phase and amplitude fluctuations in oscillators with simple resonant circuit is presented. Negative feedback is used to minimize effect of the inherent noise produced by bipolar transistor on fluctuation characteristics.

  3. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  4. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  5. Neutrino oscillations with LSND

    International Nuclear Information System (INIS)

    Stancu, Ion

    2000-01-01

    The Liquid Scintillator Neutrino Detector (LSND) at the Los Alamos Meson Physics Facility (LAMPF) has conducted searches for ν-bar μ → ν-bar e oscillations using ν-bar μ from μ + decay at rest (DAR) and for ν μ → ν e oscillations using ν μ from π + decay in flight (DIF). For the 1993-1995 data taking period, significant beam-excess events have been found in both oscillation channels. For the DAR search, a total excess of 51.8 +18.7 -16.9 ± 8.0 events from the ν-bar e p → e + n inverse β-decay reaction is observed, with e + energies between 20-60 MeV. For the DIF search, a total excess of 18.1 ± 6.6 ± 4.0 events from the ν e C → e - X inclusive reaction is observed, with e - energies between 60-200 MeV. If interpreted as neutrino oscillations, these excesses correspond to oscillation probabilities of (3.1±1.2±0.5) x 10 -3 and (2.6 ± 1.0 ± 0.5) x 10 -3 , respectively. Additional data collected during the 1996-1998 runs has been preliminarily analyzed for the DAR channel and yields very good agreement with the previously obtained results, for a combined oscillation probability of (3.3±0.9±0.5) x 10 -3

  6. Separation of electron and hole dynamics in the semimetal LaSb

    Science.gov (United States)

    Han, F.; Xu, J.; Botana, A. S.; Xiao, Z. L.; Wang, Y. L.; Yang, W. G.; Chung, D. Y.; Kanatzidis, M. G.; Norman, M. R.; Crabtree, G. W.; Kwok, W. K.

    2017-09-01

    We report investigations on the magnetotransport in LaSb, which exhibits extremely large magnetoresistance (XMR). Foremost, we demonstrate that the resistivity plateau can be explained without invoking topological protection. We then determine the Fermi surface from Shubnikov-de Haas (SdH) quantum oscillation measurements and find good agreement with the bulk Fermi pockets derived from first-principles calculations. Using a semiclassical theory and the experimentally determined Fermi pocket anisotropies, we quantitatively describe the orbital magnetoresistance, including its angle dependence. We show that the origin of XMR in LaSb lies in its high mobility with diminishing Hall effect, where the high mobility leads to a strong magnetic-field dependence of the longitudinal magnetoconductance. Unlike a one-band material, when a system has two or more bands (Fermi pockets) with electron and hole carriers, the added conductance arising from the Hall effect is reduced, hence revealing the latent XMR enabled by the longitudinal magnetoconductance. With diminishing Hall effect, the magnetoresistivity is simply the inverse of the longitudinal magnetoconductivity, enabling the differentiation of the electron and hole contributions to the XMR, which varies with the strength and orientation of the magnetic field. This work demonstrates a convenient way to separate the dynamics of the charge carriers and to uncover the origin of XMR in multiband materials with anisotropic Fermi surfaces. Our approach can be readily applied to other XMR materials.

  7. Quantum interference and spin-orbit effects in the heterostructure with the 2D hole gas in the Si sub 0 sub . sub 2 Ge sub 0 sub . 8 quantum well

    CERN Document Server

    Andrievskij, V V; Komnik, Y F; Mironov, M; Mironov, O A; Whall, T E

    2003-01-01

    The magnetic field (approx 110 kOe)dependences of resistance of the Si sub 0 sub . sub 7 Ge sub 0 sub . sub 3 /Si sub 0 sub . sub 2 Ge sub 0 sub . sub 8 /Si sub 0 sub . sub 7 Ge sub 0 sub . sub 3 heterostructure with a 2D hole gas in the Si sub 0 sub . sub 2 Ge sub 0 sub . sub 8 quantum well were measured at T = 0.335-10 K with varying current between 100 nA and 50 mA. It was found that in high magnetic fields there occurred Shubnikov-de-Haas oscillations, while in weak fields (H<= kOe) a positive magnetoresistance transforming than in a negative one was observed. This peculiarity is due to the effects of weak localization of 2D charge carriers with very close spin-orbit and inelastic scattering time,tau sub s sub o and tau subphi, respectively. This suggests that the spin states are splitted in response to the perturbing potential associated with the generation of a two-dimensional potential well (Rashba mechanism). The analysis of the effects of weak localization yields the characteristic relaxation time...

  8. Two-dimensional electron and hole gases in GaN/AlGaN heterostructures; Zweidimensionale Elektronen- und Loechergase in GaN/AlGaN-Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Link, A.

    2004-12-01

    The aim of this PhD thesis is to investigate the electronic properties of electron and hole gases in GaN/AlGaN heterostructures. Particularly, a deeper and broadened understanding of scattering mechanisms and transport properties is in the focus of this work. The main experimental techniques used for this purpose are the study of Shubnikov-de Haas (SdH) effect and Hall measurements at low temperatures. By means of these magnetotransport measurements, a series of GaN/AlGaN heterostructures with different Al content of the AlGaN barrier were investigated. Since the sheet carrier density of the 2DEG in these semiconductor structures is strongly dependent on the Al content (n{sub s}=2 x 10{sup 12}-10{sup 13} cm{sup -2}), the variation of transport parameters was determined as a function of sheet carrier concentration. First, from the temperature dependence of the SdH oscillations the effective transport mass was calculated. A Hall bar structure with an additional gate contact was used as an alternative to tune the carrier density of a 2DEG system independent of varying structural parametes such as Al content. Thus, the scattering mechanisms were investigated in the carrier density region between 3 x 10{sup 12} and 9.5 x 10{sup 12} cm{sup -2}. The transport properties of subband electrons were studied for a 2DEG system with two occupied subbands. (orig.)

  9. Cooper Pair Writing at the LaAlO3/ SrTiO 3 Interface

    Science.gov (United States)

    Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Eom, Chang-Beom; Levy, Jeremy

    2011-03-01

    Superconducting semiconductors offer unique ways to exert electrostatic control over macroscopic quantum phases. The recently demonstrated nanoscale control over conductivity at the LaAl O3 / SrTi O3 interface raises the question of whether nanoscale control over superconducting phases can be realized. Here we report low-temperature magnetotransport experiments on structures defined with nanoscale precision at the LaAl O3 / SrTi O3 interface. A quantum phase transition is observed that is associated with the formation of Cooper pairs, but a finite resistance is observed at the lowest temperatures. Higher mobility interfaces exhibit larger Ginsburg-Landau coherence lengths, a stronger suppression of pairing by magnetic field as well as Shubnikov-de Haas oscillations. Cooper pair localization, spin-orbit coupling, and finite-size effects may factor into an explanation for some of the unusual properties observed. The work is supported by Department of Energy and State of Florida, NSF (DMR-0906443 and DMR-0704022), DOE (DE-FG02-06ER46327) and the Fine Foundation.

  10. Magneto-Transport Characterization Of E-Beam-Induced Damage In GaAs-AlGaAs Heterostructures

    Science.gov (United States)

    Fink, Tobin; Smith, Doran D.; Braddock, W. D.

    1990-01-01

    The effect of electron irradiation as a function of energy on the 2D EG transport properties of high electron mobility transistor (HEMT) structures at liquid helium temperature was measured. High mobility HEMT structures were molecular beam epitaxy (MBE) grown with a 2D EG channel approximately 850 A below the surface. A Cambridge EBMF 10.5 was used for electron irradiation with electron energies between 2.5 and 20 keV. The HEMT structures were fabricated into Hall bar geometry. Damage is assessed by changes in the 2D EG concentrations, as determined from Shubnikov-de Haas (SdH) oscillations in a magnetic field from 0 to 8.5 Telsa, and changes in the zero field Hall mobilities. For electron energies from 5.0 to 12.5 keV, the electron dose produced a degradation of the Hall mobility. No -damage effect was observed for electron energies at 2.5 keV and 15 keV and above. This result could be attributed to the penetration depth and damage distribution. Electron damage introduced parallel conduction which was exhibited in the magnetoresistance curves. The results of this work will be useful in reducing damage from electron beam proCessing of submicron devices.

  11. Cavity Optomechanics with Ultra Cold Atoms in Synthetic Abelian and Non-Abelian Gauge Field

    Directory of Open Access Journals (Sweden)

    Bikash Padhi

    2015-12-01

    Full Text Available In this article we present a pedagogical discussion of some of the optomechanical properties of a high finesse cavity loaded with ultracold atoms in laser induced synthetic gauge fields of different types. Essentially, the subject matter of this article is an amalgam of two sub-fields of atomic molecular and optical (AMO physics namely, the cavity optomechanics with ultracold atoms and ultracold atoms in synthetic gauge field. After providing a brief introduction to either of these fields we shall show how and what properties of these trapped ultracold atoms can be studied by looking at the cavity (optomechanical or transmission spectrum. In presence of abelian synthetic gauge field we discuss the cold-atom analogue of Shubnikov de Haas oscillation and its detection through cavity spectrum. Then, in the presence of a non-abelian synthetic gauge field (spin-orbit coupling, we see when the electromagnetic field inside the cavity is quantized, it provides a quantum optical lattice for the atoms, leading to the formation of different quantum magnetic phases. We also discuss how these phases can be explored by studying the cavity transmission spectrum.

  12. Study of the effects of interactions quantum interference and disorder in GaAs and of GaAs jointed to a superconductor; Etude des effets d`interference quantique et de desordre dans GaAs avec interactions et GaAs connecte a un supraconducteur

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, W.

    1997-11-07

    The aim of this thesis is to study the coherent transport in semiconducting-superconducting junctions. The SnPb-GaAs system has been studied. It has been shown that the behaviour of this junction is controlled by the disordered area induced by the annealing of the connection near the interface. For a few resistant junction, a conductance anomaly under the gap has been observed and has been explained by a mesoscopic effect in the limit of the very high disorders. The conductance of more resistant junctions has only been bound to the properties of the very disordered area of the semiconductor. The part of the electron-electron interactions on the phase coherence length and on the conductance has been studied. The evolving of the correction of the conductance due to interactions in magnetic field has been followed. The effect of the spin degeneration suppression in CdTe and the GaAs sign inversion in Shubnikov de Haas oscillations rate has been observed. At last has been studied the transport properties of the quasi-unidimensional disordered insulators. (O.M.) 116 refs.

  13. Evidence for trivial Berry phase and absence of chiral anomaly in semimetal NbP

    Science.gov (United States)

    Sudesh; Kumar, Pawan; Neha, Prakriti; Das, Tanmoy; Patnaik, Satyabrata

    2017-04-01

    The discovery of Weyl semimetals (WSM) has brought forth the condensed matter realization of Weyl fermions, which were previously theorized as low energy excitations in high energy particle physics. Recently, transition metal mono-pnictides are under intense investigation for understanding properties of inversion-symmetry broken Weyl semimetals. Non-trivial Berry phase and chirality are important markers for characterizing topological aspects of Weyl semimetals. Most recently, theoretical calculations predict strong influence of the position of Weyl nodes with respect to Fermi surface and weak disorder that can drive WSMs into chirally symmetric Dirac semimetals. Using magneto-transport measurements in single crystals of WSM NbP, we observe an exceptionally large magnetoresistance at low temperature, which is non-saturating and linear at high fields. The origin of linear transverse magnetoresistance is assigned to charge carrier mobility fluctuations. Negative longitudinal magnetoresistance is not seen, suggesting lack of well-defined chiral anomaly in NbP. Unambiguous Shubnikov-de Haas oscillations are observed at low temperatures that are correlated to a trivial Berry phase corresponding to Fermi surface extrema at 30.5 Tesla. Our results are important towards identifying topological characteristics of Weyl semimetals and their experimental manifestations in the presence of weak disorder.

  14. Crystal growth of Dirac semimetal ZrSiS with high magnetoresistance and mobility

    Science.gov (United States)

    Sankar, Raman; Peramaiyan, G.; Muthuselvam, I. Panneer; Butler, Christopher J.; Dimitri, Klauss; Neupane, Madhab; Rao, G. Narsinga; Lin, M.-T.; Chou, F. C.

    2017-01-01

    High quality single crystal ZrSiS as a theoretically predicted Dirac semimetal has been grown successfully using a vapor phase transport method. The single crystals of tetragonal structure are easy to cleave into perfect square-shaped pieces due to the van der Waals bonding between the sulfur atoms of the quintuple layers. Physical property measurement results including resistivity, Hall coefficient (RH), and specific heat are reported. The transport and thermodynamic properties suggest a Fermi liquid behavior with two Fermi pockets at low temperatures. At T = 3 K and magnetic field of Hǁc up to 9 Tesla, large magneto-resistance up to 8500% and 7200% for Iǁ(100) and Iǁ(110) were found. Shubnikov de Haas (SdH) oscillations were identified from the resistivity data, revealing the existence of two Fermi pockets at the Fermi level via the fast Fourier transform (FFT) analysis. The Hall coefficient (RH) showed hole-dominated carriers with a high mobility of 3.05 × 104 cm2 V-1 s-1 at 3 K. ZrSiS has been confirmed to be a Dirac semimetal by the Dirac cone mapping near the X-point via angle resolved photoemission spectroscopy (ARPES) with a Dirac nodal line near the Fermi level identified using scanning tunneling spectroscopy (STS).

  15. Exchange enhancement of the electron g factor in strained InGaAs/InP heterostructures

    International Nuclear Information System (INIS)

    Krishtopenko, S. S.; Maremyanin, K. V.; Kalinin, K. P.; Spirin, K. E.; Gavrilenko, V. I.; Baidus, N. V.; Zvonkov, B. N.

    2015-01-01

    The exchange enhancement of the electron g factor in strained InGaAs/InP heterostructures with a two-dimensional electron gas is studied. Analysis of the temperature dependence of the resistance in the minima of the Shubnikov-de Haas oscillations in perpendicular magnetic fields up to 12 T in the vicinity of the odd filling factors of the Landau levels yields the values of the effective electron Lande factor g* from −8.6 to −10.1. The experimental values are compared with the results of theoretical calculations of the g factor of quasiparticles. The calculations are performed using an eight-band k · p Hamiltonian and take into account exchange interaction in the two-dimensional electron gas. It is shown that, under the conditions of a large overlap between the spin-split Landau levels, the maximum value of the quasiparticle g factor can be attained in the vicinity of even filling factors. This is caused by the nonparabolicity of the electron dispersion relation

  16. High-field study of the heavy-fermion material URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Scheerer, Gernot Werner; Knafo, William; Ballon, Geraldine; Jaudet, Cyril; Proust, Cyril; Vignolles, David [Laboratoire National des Champs Magnetiques Intenses, UPR 3228, CNRS- UJF-UPS-INSA, Toulouse (France); Aoki, Dai; Flouquet, Jacques [Institut Nanosciences et Cryogenie, SPSMS, CEA-Grenoble (France); Mari, Alain [Laboratoire de Chimie de Coordination, Toulouse (France)

    2012-07-01

    URu{sub 2}Si{sub 2} is known for its ''hidden-order'' state below T{sub 0} = 17.5 K, where the order parameter is still not identified. A magnetic field along the c-axis induces a cascade of low-temperature phase transitions between 35 and 39 T from the ''hidden order'' to a polarized paramagnetic state. We have performed electrical transport and magnetization measurements in pulsed magnetic fields on ultra clean URu{sub 2}Si{sub 2} samples. We established the H-T-phase diagram for H parallel c in extended scales up to 60 T and 60 K. The vanishing of a high-temperature crossover at around 40-50 K, presumably related to intersite electronic correlations, precedes the polarization of the magnetic moments, as well as the destabilization of the ''hidden-order'' phase. Strongly sample-quality dependent magnetoresistivity confirms the Fermi surface reconstructions in a high magnetic field along c and at T{sub 0}. Shubnikov-de Haas quantum oscillations are also presented.

  17. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal.

    Science.gov (United States)

    Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr

    2016-12-09

    Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov-de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.

  18. Electronic structure of the candidate 2D Dirac semimetal SrMnSb2: a combined experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    S. V. Ramankutty, J. Henke, A. Schiphorst, R. Nutakki, S. Bron, G. Araizi-Kanoutas, S. K. Mishra, Lei Li, Y. K. Huang, T. K. Kim, M. Hoesch, C. Schlueter, T. -L. Lee, A. de Visser, Zhicheng Zhong, Jasper van Wezel, E. van Heumen, M. S. Golden

    2018-02-01

    Full Text Available SrMnSb$_2$ is suggested to be a magnetic topological semimetal. It contains square, 2D Sb planes with non-symmorphic crystal symmetries that could protect band crossings, offering the possibility of a quasi-2D, robust Dirac semi-metal in the form of a stable, bulk (3D crystal. Here, we report a combined and comprehensive experimental and theoretical investigation of the electronic structure of SrMnSb$_2$, including the first ARPES data on this compound. SrMnSb$_2$ possesses a small Fermi surface originating from highly 2D, sharp and linearly dispersing bands (the Y-states around the (0,$\\pi$/a-point in $k$-space. The ARPES Fermi surface agrees perfectly with that from bulk-sensitive Shubnikov de Haas data from the same crystals, proving the Y$-$states to be responsible for electrical conductivity in SrMnSb$_2$. DFT and tight binding (TB methods are used to model the electronic states, and both show good agreement with the ARPES data. Despite the great promise of the latter, both theory approaches show the Y-states to be gapped above E$_F$, suggesting trivial topology. Subsequent analysis within both theory approaches shows the Berry phase to be zero, indicating the non-topological character of the transport in SrMnSb$_2$, a conclusion backed up by the analysis of the quantum oscillation data from our crystals.

  19. Trigger of the Ubiquitous Surface Band Bending in 3D Topological Insulators

    Science.gov (United States)

    Frantzeskakis, E.; Ramankutty, S. V.; de Jong, N.; Huang, Y. K.; Pan, Y.; Tytarenko, A.; Radovic, M.; Plumb, N. C.; Shi, M.; Varykhalov, A.; de Visser, A.; van Heumen, E.; Golden, M. S.

    2017-10-01

    The main scientific activity in the field of topological insulators (TIs) consists of determining their electronic structure by means of magnetotransport and electron spectroscopy with a view to devices based on topological transport. There is, however, a caveat in this approach. There are systematic experimental discrepancies on the electronic structure of the most pristine surfaces of TI single crystals as determined by Shubnikov-de Haas oscillations and by angle-resolved photoelectron spectroscopy (ARPES). We identify intense ultraviolet illumination—that is inherent to an ARPES experiment—as the source for these experimental differences. We explicitly show that illumination is the key parameter, or in other words, the trigger, for energetic shifts of electronic bands near the surface of a TI crystal. This finding revisits the common belief that surface decoration is the principal cause of surface band bending and explains why band bending is not a prime issue in illumination-free magnetotransport studies. Our study further clarifies the role of illumination on the electronic band structure of TIs by revealing its dual effect: downward band bending on very small time scales followed by band flattening at large time scales. Our results therefore allow us to present and predict the complete evolution of the band structure of TIs in a typical ARPES experiment. By virtue of our findings, we pinpoint two alternatives of how to approach flat-band conditions by means of photon-based techniques and we suggest a microscopic mechanism that can explain the underlying phenomena.

  20. A simulation study on the focal plane detector of the LAUE project

    International Nuclear Information System (INIS)

    Khalil, M.; Frontera, F.; Caroli, E.; Virgilli, E.; Valsan, V.

    2015-01-01

    The LAUE project, supported by the Italian Space Agency (ASI), is devoted to the development of a long focal length (even 20 m or longer) Laue lens for gamma ray astronomy between 80 and 600 keV. These lenses take advantage of Bragg diffraction to focus radiation onto a small spot drastically improving the signal to noise ratio as well as reducing the required size of the detector significantly. In this paper we present a Monte-Carlo simulation study with MEGALIB to optimize, for space applications, the detector size to achieve high detection efficiency, and to optimize the position resolution of the detector to reconstruct the Point Spread Function of the lens considered for the LAUE project. Then we will show simulations, using the SILVACO semiconductor simulation toolkit, on the optimized detector to estimate its capacitance per channel and depletion voltage. In all of the simulations, two materials were compared; a low density material (Silicon) and a high density material (Germanium). - Highlights: • The quantized Hall plateaus and Shubnikov de Haas oscillations in transition metal doped topological insulators are observed. • The evidence of a two-dimensional/layered transport of the bulk electrons is reported. • An obvious ferromagnetism in doped topological insulators is observed. • Care should be taken to pindown the transport of the topological SS in topological insulators

  1. A simulation study on the focal plane detector of the LAUE project

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M., E-mail: mkhalil@in2p3.fr [APC Laboratory, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy); Frontera, F. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy); INAF/IASF-Bologna, Via P. Gobetti 101, Bologna (Italy); Caroli, E. [INAF/IASF-Bologna, Via P. Gobetti 101, Bologna (Italy); Virgilli, E.; Valsan, V. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, 44100 Ferrara (Italy)

    2015-06-21

    The LAUE project, supported by the Italian Space Agency (ASI), is devoted to the development of a long focal length (even 20 m or longer) Laue lens for gamma ray astronomy between 80 and 600 keV. These lenses take advantage of Bragg diffraction to focus radiation onto a small spot drastically improving the signal to noise ratio as well as reducing the required size of the detector significantly. In this paper we present a Monte-Carlo simulation study with MEGALIB to optimize, for space applications, the detector size to achieve high detection efficiency, and to optimize the position resolution of the detector to reconstruct the Point Spread Function of the lens considered for the LAUE project. Then we will show simulations, using the SILVACO semiconductor simulation toolkit, on the optimized detector to estimate its capacitance per channel and depletion voltage. In all of the simulations, two materials were compared; a low density material (Silicon) and a high density material (Germanium). - Highlights: • The quantized Hall plateaus and Shubnikov de Haas oscillations in transition metal doped topological insulators are observed. • The evidence of a two-dimensional/layered transport of the bulk electrons is reported. • An obvious ferromagnetism in doped topological insulators is observed. • Care should be taken to pindown the transport of the topological SS in topological insulators.

  2. Role of lattice inhomogeneities on the electronic properties of selenium deficient Bi2Se3

    Science.gov (United States)

    Tayal, Akhil; Kumar, Devendra; Lakhani, Archana

    2017-11-01

    Inter-layer coupling is widely considered to play a crucial role in tuning electronic properties of 3D topological insulators. The aim of this study is to evaluate the role of crystallographic defects on inter-layer coupling in the Se deficient Bi2Se3 (0 0 3) crystal using extended x-ray absorption fine structure spectroscopy (EXAFS) technique. EXAFS measurements at Se-K and Bi-L3 edges reveal distinct local geometry around these atomic sites. It has been observed that short inter-layer Bi-Se and Se-Se bonds emerge in the sample. This additional structural motif coexists with the conventional crystallographic arrangement. Within the quintuple layer Bi-Se bonds are preserved with slight compression in intra-planer Bi-Bi and Se-Se distance and overall reduction in c/a ratio. These findings suggest formation of deformed lattice region, localized and dispersed inhomogeneously within the sample. Such inhomogeneities have also resulted in interesting transport properties such as quantum Hall effect (QHE), large linear magnetoresistance and π-Berry phase in Shubnikov-de Haas (SdH) oscillations of bulk crystals. Detailed analyses of magnetotransport measurements suggest that tuning of inter-layer coupling by local lattice deformation is the key factor for unusual transport properties. Role of axial strain, and stacking faults generated due to defects and charged Se vacancies are discussed to understand the observed electronic properties.

  3. Magnetotransport in heterostructures of transition metal dichalcogenides and graphene

    Science.gov (United States)

    Völkl, Tobias; Rockinger, Tobias; Drienovsky, Martin; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan

    2017-09-01

    We use a van der Waals pickup technique to fabricate different heterostructures containing WSe2(WS2) and graphene. The heterostructures were structured by plasma etching, contacted by one-dimensional edge contacts, and a top gate was deposited. For graphene /WSe2/SiO2 samples we observe mobilities of ˜12 000 cm2V-1s-1 . Magnetic-field-dependent resistance measurements on these samples show a peak in the conductivity at low magnetic fields. This dip is attributed to the weak antilocalization (WAL) effect, stemming from spin-orbit coupling. Samples where graphene is encapsulated between WSe2(WS2) and hexagonal boron nitride show a much higher mobility of up to ˜120 000 cm2V-1s-1 . However, in these samples no WAL peak can be observed. We attribute this to a transition from the diffusive to the quasiballistic regime. At low magnetic fields a resistance peak appears, which we ascribe to a size effect due to boundary scattering. Shubnikov-de Haas oscillations in fully encapsulated samples show all integer filling factors due to complete lifting of the spin and valley degeneracies.

  4. Growth of high mobility GaN and AlGaN/GaN high electron mobility transistor structures on 4H-SiC by ammonia molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Webb, James B.; Tang, H.; Bardwell, J. A.; Coleridge, P.

    2001-01-01

    Ammonia molecular-beam epitaxy has been used to grow high-quality epilayers of GaN and AlGaN/GaN heterostructure field-effect transistor (HFET) structures on insulating 4H-SiC. The growth process, which used a magnetron sputter epitaxy deposited buffer layer of AlN, has been described previously. Ex situ pretreatment of the SiC substrate was found to be unnecessary. For a single 2.0 μm thick silicon doped epilayer, a room temperature (RT) electron mobility of 500 cm2/Vs was measured at a carrier density of 6.6x10 16 cm -3 . For the HFET structure, a room temperature mobility of 1300 cm2/Vs at a sheet carrier density of 3.3x10 12 cm -2 was observed, increasing to 11000 cm2/Vs at 77 K. The surface morphology of the layers indicated a coalesced mesa structure similar to what we observed for growth on sapphire, but with a lower overall defect density and correspondingly larger grain size. The observation of well-resolved Shubnikov de Haas oscillations at fields as low as 3 T indicated a relatively smooth interface. [copyright] 2001 American Institute of Physics

  5. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  6. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  7. Non-linear oscillations

    CERN Document Server

    Hagedorn, Peter

    1982-01-01

    Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.

  8. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  9. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  10. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model for thi...

  11. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  12. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  13. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  14. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...

  15. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...

  16. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  17. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  18. Solar neutrino oscillations

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1993-01-01

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena

  19. Charge oscillations in orbitrons

    International Nuclear Information System (INIS)

    Porto, M.; Gomes, L.C.

    1981-01-01

    A statistical model for the electron distribution in orbitrons is constructed where the effect of the end plates is considered. A comparison is made with the measured density of charge. The electromagnetic oscillations generated by orbitrons are calculated as pressure waves and the results obtained are compared with the data. (Author) [pt

  20. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    sRUBABATI GOsWAMI. Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Email: sruba@mri.ernet.in. Abstract. This article summarises the status of the solar neutrino oscillation phe- nomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed ...

  1. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  2. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  3. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  4. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  5. Plasma oscillations in porous samples

    Directory of Open Access Journals (Sweden)

    Kornyushin Y.

    2004-01-01

    Full Text Available The influence of the shape of a sample on the type of uniform dipole collective electrons oscillations is discussed. In samples of a bulk shape uniform bulk dipole oscillations cannot exist. They exist in samples of a thin slab shape only. However in essentially porous materials the electrostatic energy of the oscillation in a sample is considerably larger thus leading to stronger restoring force and higher frequency of the oscillation. When this frequency exceeds the Langmuir frequency, the oscillation becomes of a bulk type. .

  6. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  7. Oscillations in quasineutral plasmas

    International Nuclear Information System (INIS)

    Grenier, E.

    1996-01-01

    The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs

  8. Oscillations with laboratory neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Saitta, Biagio

    2001-05-01

    The status of searches for oscillations using neutrinos produced in the laboratory is reviewed. The most recent results from experiments approaching completion are reported and the potential capabilities of long baseline projects being developed in USA and Europe are considered and compared. The steps that should naturally follow this new generation of experiments are outlined and the impact of future facilities - such as neutrino factories or conventional superbeams - in precision measurements of elements of the neutrino mixing matrix is discussed.

  9. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  10. Neutrino oscillations at LAMPF

    International Nuclear Information System (INIS)

    Carlini, R.; Choi, C.; Donohue, J.

    1985-01-01

    Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF

  11. Theory of oscillators

    CERN Document Server

    Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich

    1966-01-01

    Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-

  12. Brain Oscillations, Hypnosis, and Hypnotizability

    Science.gov (United States)

    Jensen, Mark P.; Adachi, Tomonori; Hakimian, Shahin

    2014-01-01

    In this article, we summarize the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, and are usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. Here we propose that it is this role that may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis; specifically that theta oscillations may facilitate, and that changes in gamma activity observed with hypnosis may underlie, some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis, and for enhancing response to hypnotic treatments. PMID:25792761

  13. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  14. Bounded-oscillation Pushdown Automata

    Directory of Open Access Journals (Sweden)

    Pierre Ganty

    2016-09-01

    Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.

  15. An Artificial Muscle Ring Oscillator

    OpenAIRE

    O’Brien, Benjamin Marc; Anderson, Iain Alexander

    2012-01-01

    Dielectric elastomer artificialmuscles have great potential for the creation of novel pumps, motors, and circuitry. Control of these devices requires an oscillator, either as a driver or clock circuit, which is typically provided as part of bulky, rigid, and costly external electronics. Oscillator circuits based on piezo-resistive dielectric elastomer switch technology provide a way to embed oscillatory behavior into artificial muscle devices. Previous oscillator circuits were not digital, ab...

  16. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  17. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  18. Spatial computation with gamma oscillations

    Science.gov (United States)

    Engelhard, Ben; Vaadia, Eilon

    2014-01-01

    Gamma oscillations in cortex have been extensively studied with relation to behavior in both humans and animal models; however, their computational role in the processing of behaviorally relevant signals is still not clear. One oft-overlooked characteristic of gamma oscillations is their spatial distribution over the cortical space and the computational consequences of such an organization. Here, we advance the proposal that the spatial organization of gamma oscillations is of major importance for their function. The interaction of specific spatial distributions of oscillations with the functional topography of cortex enables select amplification of neuronal signals, which supports perceptual and cognitive processing. PMID:25249950

  19. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  20. Meie esimesed naisfotograafid / Annika Haas

    Index Scriptorium Estoniae

    Haas, Annika, 1974-

    2015-01-01

    Eesti naisfotograafid Hilja Riet ja Lydia Tarem. Fotomuuseumi aastanäitus "Varjust välja. Esimesed naisfotograafid Eestis", kus tutvustatakse Hilja Rieti, Lydia Taremi, Anna Kuke ja Evi Lembergi loomingut. Näituse kuraatorid Betty Ester-Väljaots, Merili Reinpalu

  1. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  2. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  3. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  4. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  5. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  6. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  7. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  8. Quasi Periodic Oscillations in Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Quasi Periodic Oscillations in Blazars ... Here we report our recent discoveries of Quasi-Periodic Oscillations (QPOs) in blazars time series data in X-ray and optical electromagnetic bands. Any such detection can give important ...

  9. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  10. Oscillating universe with quintom matter

    International Nuclear Information System (INIS)

    Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin

    2008-01-01

    In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing

  11. Oscillations of atomic nuclei in crystals

    OpenAIRE

    Vdovenkov, V. A.

    2002-01-01

    Oscillations of atomic nuclei in crystals are considered in this paper. It is shown that elastic nuclei oscillations relatively electron envelops (inherent, I-oscillations) and waves of such oscillations can exist in crystals at adiabatic condition. The types and energy quantums of I-oscillations for different atoms are determined. In this connection the adiabatic crystal model is offered. Each atom in the adiabatic model is submitted as I-oscillator whose stationary oscillatory terms are sho...

  12. Heat transfer with oscillating pressure and oscillating flow

    Science.gov (United States)

    Kornhauser, Alan A.; Smith, Joseph L., Jr.

    Heat exchangers in Stirling engines and many other reciprocating machines operating under conditions of both oscillating pressure and oscillating flow are discussed. Experiments were done on an apparatus consisting of a piston-cylinder space connected to an annular dead-end heat exchanger space. Instantaneous heat flux and center gas temperature were measured at six locations along the heat exchanger. The results were used to test the model, with the complex Nusselt number correlated against oscillating-flow Peclet number. The experimental results showed that the complex Nusselt number was capable of predicting the heat flux, but that there was at least one other important independent variable besides oscillating-flow Peclet number. Dimensional analysis suggested that this was either the ratio of gas thermal properties to those of the wall or a measure of compressibility effects.

  13. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  14. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  15. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  16. Principal oscillation patterns

    International Nuclear Information System (INIS)

    Storch, H. von; Buerger, G.; Storch, J.S. von

    1993-01-01

    The Principal Oscillation Pattern (POP) analysis is a technique which is used to simultaneously infer the characteristic patterns and time scales of a vector time series. The POPs may be seen as the normal modes of a linearized system whose system matrix is estimated from data. The concept of POP analysis is reviewed. Examples are used to illustrate the potential of the POP technique. The best defined POPs of tropospheric day-to-day variability coincide with the most unstable modes derived from linearized theory. POPs can be derived even from a space-time subset of data. POPs are successful in identifying two independent modes with similar time scales in the same data set. The POP method can also produce forecasts which may potentially be used as a reference for other forecast models. The conventional POP analysis technique has been generalized in various ways. In the cyclostationary POP analysis, the estimated system matrix is allowed to vary deterministically with an externally forced cycle. In the complex POP analysis not only the state of the system but also its ''momentum'' is modeled. Associated correlation patterns are a useful tool to describe the appearance of a signal previously identified by a POP analysis in other parameters. (orig.)

  17. Rabi oscillation between states of a coupled harmonic oscillator

    International Nuclear Information System (INIS)

    Park, Tae Jun

    2003-01-01

    Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves

  18. Magnetotransport study on AlInN/(GaN)/AlN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bayrakli, Aydin [Faculty of Engineering, Department of Physics Engineering, Hacettepe University, Ankara (Turkey); Undersecretariate for Defence Industries (SSM), Balgat, Ankara (Turkey); Arslan, Engin; Kazar, Oezguer; Cakmak, Hueseyin [Nanotechnology Research Center-NANOTAM, Bilkent University, Ankara (Turkey); Firat, Tezer; Oezcan, Sadan [Faculty of Engineering, Department of Physics Engineering, Hacettepe University, Ankara (Turkey); Oezbay, Ekmel [Nanotechnology Research Center-NANOTAM, Bilkent University, Ankara (Turkey); Departments of Physics and Electrical and Electronics Engineering, Bilkent University, Ankara (Turkey)

    2012-06-15

    We report the effect of a thin GaN (2 nm) interlayer on the magnetotransport properties of AlInN/AlN/GaN-based heterostructures. Two samples were prepared (Sample A: AlInN/AlN/GaN and sample B: AlInN/GaN/AlN/GaN). Van der Pauw and Hall measurements were performed in the 1.9-300 K temperature range. While the Hall mobilities were similar at room temperature (RT), sample B had nearly twice as large Hall mobility as sample A at the lowest temperature; 679 and 889 cm{sup 2}/Vs at RT and 1460 and 3082 cm{sup 2}/Vs at 1.9 K for samples A and B. At 1.9-10 K, the longitudinal magnetoresistance was measured up to 9 T, in turn revealing Shubnikov-de Haas (SdH) oscillations. The carrier concentration, effective mass and quantum mobility of the two-dimensional electron gas (2DEG) were determined from SdH oscillations. At 1.9 K, the 2DEG concentration of sample B was nearly seven times larger than of sample A (1.67 x 10{sup 13}/cm{sup 2} vs. 0.24 x 10{sup 13}/cm{sup 2}). On the contrary, the quantum mobility was changed adversely nearly three times (sample B 2500 cm{sup 2}/Vs and sample A 970 cm{sup 2}/Vs). The increase of the 2DEG concentration was attributed to the existence of the GaN interlayer, which has strengthened the spontaneous polarization difference between the AlInN and GaN layers of the heterostructure. Hence, the stronger electric field at the 2DEG region bent the conduction band profile downwards and consequently the quantum mobility decreased due to the increased interface roughness scattering. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Global Status of Neutrino Oscillation

    Indian Academy of Sciences (India)

    monojit

    2014-11-08

    Outline of talk. Neutrino Oscillations: the context. Solar and geo neutrino physics. Reactor neutrino physics. Atmospheric and long-baseline neutrino physics. Atmospheric neutrinos and INO. Nov 8, 2014, IASc Annual Meeting, IIT-Madras, Chennai – p. 2 ...

  20. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  1. Magnetotransport investigations of single- and heterostructure epitaxial films of IV/VI-semiconductors

    International Nuclear Information System (INIS)

    Ambrosch, K.-E.

    1985-01-01

    Lead salts are small gap semiconductors that are used for infrared detectors and lasers. PbMnTe and PbEuTe are semimagnetic semiconductors. Magnetotransport properties of epitaxial films and epitaxial heterostructures (PbTe / PbSnTe) are investigated. Epitaxial films of PbSnTe, PbMnTe and PbEuTe have been used for Shubnikov de Haas - experiments in tilted magnetic fields. This method allows the quantitative determination of the electric carrier distribution with respect to the crystal directions. The nonequal distribution is caused by strain effects that are more important for PbMnTe than for PbSnTe and PbEuTe. Magnetoresistance experiments show a deviation from cubic symmetry that leads to the same results for the carrier distribution as the Shubnikov de Haas effect. Magnetoresistance experiments performed with PbTe / PbSnTe heterostructures show no megnetoresistance if the magnetic field is in plane with the layers. The difference of the magnetoresistance for single films and heterostructures is explained by 'quasitwodimensional' carriers. Shubnikov de Haas experiments performed on heterostructures as a function of the tilt angle of the magnetic field show different behaviour compared to that of single films. Using additional information about effective masses and strain it was possible to distinguish between 'two-' and 'threedimensional' electronic systems. The distribution of carriers in single films and heterostructures has been determined by means of magnetotransport experiments. The results are explained by strain effects of the crystal lattice. In addition heterostructures show a 'quasitwodimensional' behaviour caused by interaction of their layers. (Author)

  2. Modelling solar-like oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be

    2008-10-15

    The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.

  3. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  4. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  5. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  6. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  7. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  8. Transmutation doping and lattice defects in degenerate InSb

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Glaeser, W.

    1990-01-01

    n-type InSb single crystals were irradiated with thermal neutrons below T = 6 K. The Shubnikov-de Haas effect and the resistivity ρ(T = 4.6 K) were measured as a function of the neutron dose and the holding temperature of a subsequent annealing program. The results are discussed in terms of the transport scattering rate and the lifetime of the Landau-levels. They have to be interpreted by means of n-doping due to nuclear reactions and irradiation induced negatively charged defects. Almost complete annealing of the transport parameters can be achieved by heating the samples to T A = 400 K. (author)

  9. Discomfort caused by low-frequency lateral oscillation, roll oscillation and roll-compensated lateral oscillation.

    Science.gov (United States)

    Beard, George F; Griffin, Michael J

    2013-01-01

    Roll compensation during cornering (aligning the feet-to-head axis of the body with the resultant force) reduces lateral acceleration, but how any improvement in comfort depends on the frequency of the acceleration has not previously been investigated. Seated subjects judged the discomfort caused by lateral oscillation, roll oscillation and fully roll-compensated lateral oscillation at each of seven frequencies (0.25-1.0 Hz). Irrespective of whether it was caused by pure lateral acceleration or gravitational acceleration due to pure roll, acceleration in the plane of the seat caused similar discomfort at frequencies less than 0.4 Hz. From 0.4 to 1.0 Hz, with the same lateral acceleration in the plane of the seat, there was greater discomfort from roll oscillation than from lateral acceleration. With fully roll-compensated lateral oscillation, discomfort was less than with either the lateral component or the roll component of the motion from 0.2 to 0.5 Hz, but discomfort increased with increasing frequency and caused similar discomfort to pure roll oscillation at 1.0 Hz. Tilting can reduce passenger exposure to vehicle lateral acceleration when cornering, but how comfort depends on the frequency of motion was unknown. This study shows 'tilt-compensation' only improves comfort at frequencies less than 0.5 Hz. The findings affect tilting vehicles and the prediction of discomfort caused by low-frequency motions.

  10. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    A variety of stimuli can trigger intracellular calcium oscillations. Relatively little is known about the molecular mechanisms decoding these events. We show that ALG-2, a Ca2+-binding protein originally isolated as a protein associated with apoptosis, is directly linked to Ca2+ signalling. We...... localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG...

  11. Real oscillations of virtual neutrinos

    International Nuclear Information System (INIS)

    Grimus, W.; Stockinger, P.

    1996-01-01

    We study the conditions for neutrino oscillations in a field-theoretical approach by taking into account that only the neutrino production and detection processes, which are localized in space around the coordinates x searrow P and x searrow D , respectively, can be manipulated. In this sense the neutrinos whose oscillations are investigated appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fields or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough examination of the integral over the spatial components of the inner neutrino momentum and show that in the asymptotic limit L=|x searrow D -x searrow P |→∞ the virtual neutrinos become open-quote open-quote real close-quote close-quote and under certain conditions the usual picture of neutrino oscillations emerges without ambiguities. copyright 1996 The American Physical Society

  12. Damping of coupled harmonic oscillators

    Science.gov (United States)

    Dolfo, Gilles; Vigué, Jacques

    2018-03-01

    When two harmonic oscillators are coupled in the presence of damping, their dynamics exhibit two very different regimes depending on the relative magnitude of the coupling and damping terms At resonance, when the coupling has its largest effect, if the coupling dominates the damping, there is a periodic exchange of energy between the two oscillators while, in the opposite case, the energy transfer from one oscillator to the other one is irreversible. We prove that the border between these two regimes goes through an exceptional point and we briefly explain what is an exceptional point. The present paper is written for undergraduate students, with some knowledge in classical mechanics, but it may also be of interest for graduate students.

  13. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  14. DIGITAL SELF-OSCILLATING MODULATOR

    DEFF Research Database (Denmark)

    2007-01-01

    A digital self-oscillating modulator (1) having a digital reference signal as input (Vref) comprises a forward loop with a first output and a feedback loop. The feedback loop comprises a feedback block (18) having a transfer function (MFB) and a digital output. The forward loop comprises an alter......A digital self-oscillating modulator (1) having a digital reference signal as input (Vref) comprises a forward loop with a first output and a feedback loop. The feedback loop comprises a feedback block (18) having a transfer function (MFB) and a digital output. The forward loop comprises...

  15. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  16. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  17. Ellipsoidal basis for isotropic oscillator

    International Nuclear Information System (INIS)

    Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.

    1994-01-01

    The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)

  18. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Abstract. Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable- coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota's bilinear method. The bilinear forms and analytic soliton solutions are derived, and the ...

  19. Low-Vibration Oscillating Compressor

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  20. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  1. Sound oscillation of dropwise cluster

    International Nuclear Information System (INIS)

    Shavlov, A.V.; Dzhumandzhi, V.A.; Romanyuk, S.N.

    2012-01-01

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10 2 –10 3 units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  2. High mobility two-dimensional hole gases in GaAs/AlGaAs heterostructures; Hochbewegliche zweidimensionale Lochsysteme in GaAs/AlGaAs Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Gerl, Christian

    2009-10-14

    This thesis outlines the fabrication of high mobility two-dimensional hole-gases (2DHG) in GaAs/AlGaAs heterostructures with molecular beam epitaxy (MBE) and their characterization with magnetotransport measurements at low temperatures between 4 K and 30 mK. Here the optimization of the carrier mobility is focused. This will be achieved by introducing a novel carbon-filament doping source, with which contaminations of the MBE system and therefore in the grown layers can be reduced and by vary the band structure design to minimize scattering processes. With the help of these actions, hole mobilities above 1 E6 cm{sup 2}/Vs are achievable, what reflects an increase of factor 3 in the (001)- and factor 6.5 in the (110)- oriented transport plane compared to common 2DHGs. Furthermore states of the fractional Quantum Hall Effect can be observed in these 2DHGs, only visible in n-doped 2D systems so fare. Magnetotransport measurements on 2DHGs with aluminum gates reveal a hysteretic behavior of the carrier density with respect to the gate potential which can be attributed to the incorporation mechanisms of carbon atoms as acceptor. Temperature dependent magnetotransport measurements allow the evaluation of effective mass and quantum scattering time as well as the dependence of these parameters from the band structure design. In these experiments an aperiodic behavior of the Shubnikov-de Haas oscillations can be observed in the inverse magnetic field, which is attributed to the position of the fermi energy in the immediate vicinity of crossing regions of the complex Landau fan of 2DHGs. (orig.)

  3. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi{sub 2}Te{sub 2}Se

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, S. K., E-mail: kushwaha@princeton.edu; Gibson, Q. D.; Cava, R. J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Xiong, J.; Ong, N. P. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Pletikosic, I. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States); Weber, A. P. [National Synchrotron Light Source, Brookhaven National Lab, Upton, New York 11973 (United States); Fedorov, A. V. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Valla, T. [Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States)

    2014-04-14

    A comparative study of the properties of topological insulator Bi{sub 2}Te{sub 2}Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10{sup 14} cm{sup −3}. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E{sub F}) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E{sub F}. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.

  4. A study of the magnetoresistance of the charge-transfer salt (BEDT-TTF){sub 3}Cl{sub 2}{center_dot}2H{sub 2}O at hydrostatic pressures of up to 20 kbar: evidence for a charge-density-wave ground state and the observation of pressure-induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Lubczynski, W. [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); Department of Solid State Physics, 41-800 Zabrze, Kalwalca 3 (Poland); Demishev, S.V. [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); General Physics Institute, Vavilov Street 38, 117942 Moscow (Russian Federation); Singleton, J.; Caulfield, J.M.; Jongh, L du Croo de; Blundell, S.J.; Hayes, W. [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); Kepert, C.J.; Kurmoo, M.; Day, P. [Royal Institution, 21 Albemarle Street, London W1X 4BS (United Kingdom)

    1996-08-12

    The magnetoresistance of single crystals of the quasi-two-dimensional (Q2D) organic conductor (BEDT-TTF){sub 3}Cl{sub 2} {center_dot} 2H{sub 2}O has been studied at temperatures between 700 mK and 300 K in magnetic fields of up to 15 T and hydrostatic pressures of up to 20 kbar. Measurements of the resistivity using a direct-current van der Pauw technique at ambient pressure show that the material undergoes a metal-to-insulator transition at {approx}150 K; below this temperature the resistivity increases by more than five orders of magnitude as the samples are cooled to 4.2 K. If the current exceeds a critical value, the sample resistivity undergoes irreversible changes, and exhibits non-ohmic behaviour over a wide temperature range. Below 30 K, either an abrupt increase of the resistivity by two orders of magnitude or bistable behaviour is observed, depending on the size and/or direction of the measurement current and the sample history. These experimental data strongly suggest that the metal - insulator transition and complex resistivity behaviour are due to the formation of a charge-density wave (CDW) with a well-developed domain structure. The magnetotransport data recorded under hydrostatic pressure indicate that pressure has the effect of gradually reducing the CDW ordering temperature. At higher pressures, there is a pressure-induced transition from the CDW state to a metallic, superconducting state which occurs in two distinct stages. Firstly, a relatively small number of Q2D carriers are induced, evidence for which is seen in the form of the magnetoresistance and the presence of Shubnikov - de Haas oscillations; in spite of the low carrier density, the material then superconducts below a temperature of {approx}2-3 K. Subsequently, at higher pressures, the CDW state collapses, resulting in Q1D behaviour of the magnetoresistance, and eventual suppression of the superconductivity. (author)

  5. Competition of ground states in URu2Si2 and UCoGe

    International Nuclear Information System (INIS)

    Hassinger, E.

    2010-10-01

    In this thesis, two uranium based heavy fermion compounds are studied under pressure. URu2Si2 has a mysterious ground state below T0 = 17.5 K at ambient pressure. The order parameter has not been identified yet which led to the name 'hidden order' (HO). In addition, below 1.5 K the system becomes superconducting. With pressure, the ground state switches from the HO phase to an antiferromagnetic (AF) phase at a critical pressure and superconductivity is concomitantly suppressed. Shubnikov-de Haas measurements under pressure show that the Fermi surface doesn't change between the two phases. The folding of the Fermi surface which occurs in the high pressure AF phase therefore already happens in the HO phase, indicating a unit cell doubling. Our measurements of the complete angular dependence of the oscillation frequencies test the electronic structure and support new theoretical band structure calculations with rather itinerant 5f electrons. The second part of my research focuses on another uranium compound, UCoGe. It is one of the few known materials where superconductivity (Tsc = 0.6 K) coexists with ferromagnetism (T Curie = 2.8 K). Precise studies of the pressure phase diagram by resistivity, ac calorimetry and ac susceptibility show that the ferromagnetic phase is suppressed at a pressure of about 1 GPa and the superconducting phase extends into the paramagnetic phase induced by pressure. When ferromagnetism is suppressed to the superconducting transition no further distinct ferromagnetic anomalies are observed. Thus, the pressure phase diagram of UCoGe is unique in the class of ferromagnetic superconductors. (author)

  6. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  7. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...

  8. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  9. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.

    1981-01-01

    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numeric...... results imply a ''bunched-fluxon'' mode of oscillation at larger values of bias current. Applied Physics Letters is copyrighted by The American Institute of Physics....

  10. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  11. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  12. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar ...

  13. Assessing the quality of stochastic oscillations

    Indian Academy of Sciences (India)

    Population dynamics; stochastic oscillations. ... We propose a quantification of the oscillatory appearance of the fluctuating populations, and show that good stochastic oscillations are present if a parameter of the macroscopic model is small, and that no microscopic model will show oscillations if that parameter is large.

  14. Neutrino oscillations in the early universe

    International Nuclear Information System (INIS)

    Enqvist, K.

    1990-01-01

    The oscillations of electron neutrinos into inert neutrinos may have resonant behaviour in the heat bath of the early Universe. It is shown that any initial neutrino asymmetry will be washed away by the oscillations. Neutrino oscillations would affect also primordial helium production, which implies stringent limits on the neutrino mixing parameters. (orig.)

  15. The supersymmetric Pegg-Barnett oscillator

    International Nuclear Information System (INIS)

    Shen, Jian Qi

    2005-01-01

    The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons

  16. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    journal of. December 2014 physics pp. 945–953. Dependence of synchronization frequency of Kuramoto oscillators on symmetry of intrinsic frequency in ring ... In this article, we study the difference between networks with sym- ... The dynamics of a general ith oscillator in a system of N Kuramoto oscillators is given as.

  17. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  18. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without u...

  19. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  20. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  1. Thermoelastic loss in microscale oscillators

    Science.gov (United States)

    Houston, B. H.; Photiadis, D. M.; Marcus, M. H.; Bucaro, J. A.; Liu, Xiao; Vignola, J. F.

    2002-02-01

    A simple model of thermoelastic dissipation is proposed for general, free standing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) oscillators. The theory defines a flexural modal participation factor, the fraction of potential energy stored in flexure, and approximates the internal friction by assuming the energy loss to occur solely via classical thermoelastic dissipation of this component of the motion. The theory is compared to the measured internal friction of a high Q mode of a single-crystal silicon double paddle oscillator. The loss at high temperature (above 150 K) is found to be in good agreement with the theoretical prediction. The importance of this dissipation mechanism as a function of scale is briefly discussed. We find that the relative importance of this mechanism scales with the size of the structure, and that for nanoscale structures it is less important than intrinsic phonon-phonon scattering.

  2. Neuronal oscillations in Parkinson's disease.

    Science.gov (United States)

    Witcher, Mark; Moran, Rosalyn; Tatter, Stephen B; Laxton, Adrian W

    2014-06-01

    Parkinson's Disease (PD), characterized by tremor, rigidity, and bradykinesia, is one of the most prevalent neurodegenerative disorders in the world. The pathological hallmark of PD is the loss of dopaminergic cells in the substantia nigra and other brain regions. The pathophysiological mechanisms by which dopaminergic cell loss leads to the motor manifestations of PD are yet to be fully elucidated. A growing body of evidence has revealed abnormal neuronal oscillations within and between multiple brain regions in PD. Unique oscillatory patterns are associated with specific motor abnormalities in PD. Therapies, such as dopaminergic medication and deep brain stimulation that disrupt these abnormal neuronal oscillatory patterns produce symptomatic improvement in PD patients. These findings emphasize the importance of abnormal neuronal oscillations in the pathophysiology of PD, making the disruption of these oscillatory patterns a promising target in the development of effective PD treatments.

  3. Neutrino oscillations in deconstructed dimensions

    International Nuclear Information System (INIS)

    Haellgren, Tomas; Ohlsson, Tommy; Seidl, Gerhart

    2005-01-01

    We present a model for neutrino oscillations in the presence of a deconstructed non-gravitational large extra dimension compactified on the boundary of a two-dimensional disk. In the deconstructed phase, sub-mm lattice spacings are generated from the hierarchy of energy scales between ∼ 1 TeV and the usual B-L breaking scale ∼ 10 15 GeV. Here, short-distance cutoffs down to ∼ 1 eV are motivated by the strong coupling behavior of gravity in local discrete extra dimensions. This could make it possible to probe the discretization of extra dimensions and non-trivial field configurations in theory spaces which have only a few sites, i.e., for coarse latticizations. Thus, the model has relevance to present and future precision neutrino oscillation experiments. (author)

  4. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  5. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  6. Quantum oscillations of conductivity in bismuth wires

    International Nuclear Information System (INIS)

    Condrea, Elena

    2011-01-01

    Measurements of the resistance of bismuth nanowires with several diameters and different quality reveal oscillations on the dependence of resistance under uniaxial strain at T = 4.2 K. Amplitude of oscillations is significant (38 %) at helium temperature and becomes smearing at T = 77 K. Observed oscillations originate from quantum size effect. A simple evaluation of period of oscillations allows us to identify the groups of carriers involved in transport. Calculated periods of 42.2 and 25.9 nm satisfy approximately the ratio 2:1 for two experimentally observed sets of oscillations from light and heavy electrons.

  7. Harmonic oscillator and nuclear pseudospin

    International Nuclear Information System (INIS)

    Lisboa, Ronai; Malheiro, Manuel; Castro, Antonio S. de; Alberto, Pedro; Fiolhais, Manuel

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U, linear in r. Setting either Σ = S + V or Δ = V - S to zero, analytical solutions for bound states are found. The eingenenergies and their nonrelativistic limits are presented and particular cases are discussed, especially the case Σ = 0, for which pseudospin symmetry is exact

  8. Global Status of Neutrino Oscillation

    Indian Academy of Sciences (India)

    monojit

    Number Games. The defining element in the oscillation (or survival probability) is sin. 2. ∆m2. 21L/(4E) ≡ sin. 2. 1.27(∆m2. 21eV. 2) ((L/E)km/GeV OR m/MeV). .... The 90% CL contours with 10 years' simulated ICAL in comparison with results ... Simulation showing improvement in sensitivity to the unknown CP phase.

  9. Harmonic oscillator on a lattice

    International Nuclear Information System (INIS)

    Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.

    1983-01-01

    The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)

  10. Lepton asymmetries from neutrino oscillations

    International Nuclear Information System (INIS)

    Volkas, R.R.

    2000-01-01

    Reasonably large relic neutrino asymmetries can be generated by active-sterile neutrino oscillations. After briefly discussing possible applications, I describe the Quantum Kinetic Equation formalism used to compute the asymmetry growth curves. I then show how the basic features of these curves can be understood on the basis of the adiabatic limit approximation in the collision dominated epoch, and the pure MSW effect at lower temperatures (author)

  11. Coherence effects in neutrino oscillations

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1996-01-01

    We study the effect of coherent and incoherent broadening on neutrino oscillations both in vacuum and in the presence of matter (the MSW effect). We show under very general assumptions that it is not possible to distinguish experimentally neutrinos produced in some region of space as wave packets from those produced in the same region of space as plane waves with the same energy distribution. copyright 1995 The American Physical Society

  12. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  13. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  14. Drifting oscillations in axion monodromy

    International Nuclear Information System (INIS)

    Flauger, Raphael; Westphal, Alexander

    2014-12-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  15. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  16. Drifting oscillations in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)

    2017-10-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  17. Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2

    Science.gov (United States)

    Firoz Islam, SK; Benjamin, Colin

    2016-09-01

    The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.

  18. Oscillations

    Directory of Open Access Journals (Sweden)

    Qinghua Wu

    2015-01-01

    equivalent to the GMRES method proposed by Olver (2009. Moreover, the simpler GMRES does not require upper Hessenberg matrix factorization, which leads to much simpler program and requires less work. Numerical experiments are conducted to illustrate the performance of the new method and show that in some cases the simpler GMRES method could achieve higher accuracy than GMRES.

  19. Quantum oscillations in the linear chain of coupled orbits: The organic metal with two cation layers θ-(ET)4CoBr4(C6H4Cl2)

    Science.gov (United States)

    Audouard, A.; Fortin, J.-Y.; Vignolles, D.; Lyubovskii, R. B.; Drigo, L.; Duc, F.; Shilov, G. V.; Ballon, G.; Zhilyaeva, E. I.; Lyubovskaya, R. N.; Canadell, E.

    2012-03-01

    Analytical formulae for de Haas-van Alphen (dHvA) oscillations in linear chain of coupled two-dimensional (2D) orbits (Pippard's model) are derived systematically taking into account the chemical potential oscillations in magnetic field. Although corrective terms are observed, basic (α) and magnetic-breakdown-induced (β and 2β-α) orbits can be accounted for by the Lifshits-Kosevich (LK) and Falicov-Stachowiak semiclassical models in the explored field and temperature ranges. In contrast, the "forbidden orbit"β-α amplitude is described by a non-LK equation involving a product of two classical orbit amplitudes. Furthermore, strongly non-monotonic field and temperature dependence may be observed for the second harmonics of basic frequencies such as 2α and the magnetic breakdown orbit β+α, depending on the value of the spin damping factors. These features are in agreement with the dHvA oscillation spectra of the strongly 2D organic metal θ-(ET)4CoBr4(C6H4Cl2).

  20. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  1. Clusters in nonsmooth oscillator networks

    Science.gov (United States)

    Nicks, Rachel; Chambon, Lucie; Coombes, Stephen

    2018-03-01

    For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in

  2. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb.

    Science.gov (United States)

    Wieczorek, Dagmar; Pawlik, Barbara; Li, Yun; Akarsu, Nurten A; Caliebe, Almuth; May, Klaus J W; Schweiger, Bernd; Vargas, Fernando R; Balci, Sevim; Gillessen-Kaesbach, Gabriele; Wollnik, Bernd

    2010-01-01

    Werner mesomelic syndrome (WMS) is an autosomal dominant disorder with unknown molecular etiology characterized by hypo- or aplasia of the tibiae in addition to the preaxial polydactyly (PPD) of the hands and feet and/or five-fingered hand with absence of thumbs. We show that point mutations of a specific nucleotide within the sonic hedgehog (SHH) regulatory region (ZRS) cause WMS. In a previously unpublished WMS family, we identified the causative G>A transition at position 404 of the ZRS, and in six affected family members of a second WMS family we found a 404G>C mutation of the ZRS. The 404G>A ZRS mutation is known as the "Cuban mutation" of PPD type II (PPD2). Interestingly, the index patient of that family had tibial hypoplasia as well. These data provide the first evidence that WMS is caused by a specific ZRS mutation, which leads to strong ectopic SHH expression. In contrast, we show that complete duplications of the ZRS region lead to type Haas polysyndactyly or triphalangeal thumb-polysyndactyly syndrome, but do not affect lower limb development. We suggest the term "ZRS-associated syndromes" and a clinical subclassification for the continuum of limb malformations caused by different molecular alterations of the ZRS.

  3. Harmonic oscillator and nuclear pseudospin

    International Nuclear Information System (INIS)

    Lisboa, Ronai; Malheiro, Manuel; Castro, Antonio S. de; Alberto, Pedro; Fiolhais, M.

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonians contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U, linear in r. Setting either Σ=S+V or Δ=V - S to zero, analytical solutions for bound states are found. The eigenenergies and their nonrelativistic limits are present and particular cases are discussed, especially the case Σ=0, for which pseudospin symmetry is exact. (author)

  4. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  5. Pair creation and plasma oscillations

    International Nuclear Information System (INIS)

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses

  6. Making space for harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  7. Relaxation Oscillation and Canard Explosion

    Science.gov (United States)

    Krupa, M.; Szmolyan, P.

    2001-08-01

    We give a geometric analysis of relaxation oscillations and canard cycles in singularly perturbed planar vector fields. The transition from small Hopf-type cycles to large relaxation cycles, which occurs in an exponentially thin parameter interval, is described as a perturbation of a family of singular cycles. The results are obtained by means of two blow-up transformations combined with standard tools of dynamical systems theory. The efficient use of various charts is emphasized. The results are applied to the van der Pol equation.

  8. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  9. Driven, autoresonant three-oscillator interactions

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.; Henis, Z.

    2007-01-01

    An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate

  10. Damping elastic oscillations of digging mechanism

    Science.gov (United States)

    Kuznetsov, N. K.; Makhno, D. E.; Iov, I. A.

    2017-10-01

    The article studies methods for reducing dynamic loading and elastic oscillations of excavator buckets using dampers. The authors suggest a structural scheme for damping bucket oscillations using a damping device installed in a running gear of the traction cable. The results of numerical efficiency simulation are presented. The article shows that the system helps to reduce intensity of elastic oscillations and a transition period in acceleration and deceleration modes.

  11. Oscillations of neutral B mesons systems

    CERN Document Server

    Boucrot, J.

    1999-01-01

    The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is

  12. Synchronization of weakly coupled canard oscillators

    OpenAIRE

    Köksal Ersöz, Elif; Desroches, Mathieu; Krupa, Martin

    2017-01-01

    International audience; Synchronization has been studied extensively in the context of weakly coupled oscillators using the so-called phase response curve (PRC) which measures how a change of the phase of an oscillator is affected by a small perturbation. This approach was based upon the work of Malkin, and it has been extended to relaxation oscillators. Namely, synchronization conditions were established under the weak coupling assumption, leading to a criterion for the existence of synchron...

  13. Cardiogenic oscillation induced ventilator autotriggering

    Directory of Open Access Journals (Sweden)

    Narender Kaloria

    2015-01-01

    Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.

  14. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse oscillat......Conventional ultrasound scanners can only display the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation method (TO) overcomes this limitation by introducing a transverse...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...

  15. Waves and oscillations in nature an introduction

    CERN Document Server

    Narayanan, A Satya

    2015-01-01

    Waves and oscillations are found in large scales (galactic) and microscopic scales (neutrino) in nature. Their dynamics and behavior heavily depend on the type of medium through which they propagate.Waves and Oscillations in Nature: An Introduction clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The book provides a thorough introduction for researchers and graduate students in assorted areas of physics, such as fluid dynamics,

  16. High Reliability Oscillators for Terahertz Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  17. Introduction to classical and quantum harmonic oscillators

    CERN Document Server

    Bloch, Sylvan C

    2013-01-01

    From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con

  18. Strengthening and damping of synchrotron oscillations

    International Nuclear Information System (INIS)

    Taratin, A.M.

    2001-01-01

    Resonance strengthening and damping of synchrotron oscillations of collider bunch halo particles was studied by simulation. It was shown that the strengthening of particle synchrotron oscillations can be highly efficient with using a resonance pulse sequence. The resonance damping of particle synchrotron oscillations is only possible when the inverse population of the accelerated bunch halo is realized. Resonance method of synchrotron oscillation strengthening can be used for the extraction of beam halo particles with a bent crystal to improve the background conditions for colliding beam experiments and to fulfill simultaneously some fixed target experiments

  19. Scleronomic holonomic constraints and conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Munoz, R; Gonzalez-Garcia, G; Izquierdo-De La Cruz, E Izquierdo-De La; Fernandez-Anaya, G

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present cases in which the effective potential acting on the bead is not analytical around a minimum. The small oscillation approximation cannot be applied to such pathological cases. Nonetheless, these latter instances are studied with other standard techniques.

  20. Scleronomic holonomic constraints and conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, R; Gonzalez-Garcia, G; Izquierdo-De La Cruz, E Izquierdo-De La [Universidad Autonoma de la Ciudad de Mexico, Centro Historico, Fray Servando Teresa de Mier 92, Col Centro, Del Cuauhtemoc, Mexico DF, CP 06080 (Mexico); Fernandez-Anaya, G, E-mail: rodrigo.munoz@uacm.edu.mx, E-mail: gggharper@gmail.com, E-mail: erickidc@gmail.com, E-mail: guillermo.fernandez@uia.mx [Universidad Iberoamericana, Departamento de Fisica y Matematicas, Prolongacon Paseo de de la Reforma 880, Col Lomas de Santa Fe, Del Alvaro Obregn, Mexico DF, CP 01219 (Mexico)

    2011-05-15

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present cases in which the effective potential acting on the bead is not analytical around a minimum. The small oscillation approximation cannot be applied to such pathological cases. Nonetheless, these latter instances are studied with other standard techniques.

  1. Reentrant transition in coupled noisy oscillators.

    Science.gov (United States)

    Kobayashi, Yasuaki; Kori, Hiroshi

    2015-01-01

    We report on a synchronization-breaking instability observed in a noisy oscillator unidirectionally coupled to a pacemaker. Using a phase oscillator model, we find that, as the coupling strength is increased, the noisy oscillator lags behind the pacemaker more frequently and the phase slip rate increases, which may not be observed in averaged phase models such as the Kuramoto model. Investigation of the corresponding Fokker-Planck equation enables us to obtain the reentrant transition line between the synchronized state and the phase slip state. We verify our theory using the Brusselator model, suggesting that this reentrant transition can be found in a wide range of limit cycle oscillators.

  2. Oscillating shells and oscillating balls in AdS

    Science.gov (United States)

    Banerjee, Avik; Kundu, Arnab; Roy, Pratik; Virmani, Amitabh

    2017-07-01

    It has recently been reported that certain thin timelike shells undergo oscillatory motion in AdS. In this paper, we compute two-point function of a probe field in the geodesic approximation in such an oscillating shell background. We confirm that the two-point function exhibits an oscillatory behaviour following the motion of the shell. We show that similar oscillatory dynamics is possible when the perfect fluid on the shell has a polytropic equation of state. Moreover, we show that certain ball like configurations in AdS also exhibit oscillatory motion and comment on how such a solution can be smoothly matched to an appropriate exterior solution. We also demonstrate that the weak energy condition is satisfied for these oscillatory configurations.

  3. Oscillations of Difference Equations with Several Oscillating Coefficients

    Directory of Open Access Journals (Sweden)

    L. Berezansky

    2014-01-01

    Full Text Available We study the oscillatory behavior of the solutions of the difference equation Δx(n+∑i=1mpi(nx(τi(n=0,n∈N0[∇xn-∑i=1mpinxσin=0, n∈N] where (pi(n, 1≤i≤m are real sequences with oscillating terms, τi(n[σi(n], 1≤i≤m are general retarded (advanced arguments, and Δ[∇] denotes the forward (backward difference operator Δx(n=x(n+1-x(n[∇x(n=x(n-x(n-1]. Examples illustrating the results are also given.

  4. A coupled-oscillator model of olfactory bulb gamma oscillations.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-11-01

    Full Text Available The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING, best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.

  5. Phenomenology of coupled nonlinear oscillators

    Science.gov (United States)

    Estevez-Rams, E.; Estevez-Moya, D.; Aragón-Fernández, B.

    2018-02-01

    A recently introduced model of coupled nonlinear oscillators in a ring is revisited in terms of its information processing capabilities. The use of Lempel-Ziv based entropic measures allows to study thoroughly the complex patterns appearing in the system for different values of the control parameters. Such behaviors, resembling cellular automata, have been characterized both spatially and temporally. Information distance is used to study the stability of the system to perturbations in the initial conditions and in the control parameters. The latter is not an issue in cellular automata theory, where the rules form a numerable set, contrary to the continuous nature of the parameter space in the system studied in this contribution. The variation in the density of the digits, as a function of time is also studied. Local transitions in the control parameter space are also discussed.

  6. Optimal oscillation-center transformations

    International Nuclear Information System (INIS)

    Dewar, R.L.

    1984-08-01

    A variational principle is proposed for defining that canonical transformation, continuously connected with the identity transformation, which minimizes the residual, coordinate-dependent part of the new Hamiltonian. The principle is based on minimization of the mean-square generalized force. The transformation reduces to the action-angle transformation in that part of the phase space of an integrable system where the orbit topology is that of the unperturbed system, or on primary KAM surfaces. General arguments in favor of this definition are given, based on Galilean invariance, decay of the Fourier spectrum, and its ability to include external fields or inhomogeneous systems. The optimal oscillation-center transformation for the physical pendulum, or particle in a sinusoidal potential, is constructed

  7. Local hysteresis in relaxation oscillators

    International Nuclear Information System (INIS)

    Alstroem, P.; Christiansen, B.; Levinsen, M.T.

    1988-01-01

    Relaxation oscillations or 'integrate and fire' phenomena are very commonly found in nature. When modulated by an external force a global hysteresis connected with chaos is often encountered. Besides this kind of hysteresis a local form is found in some systems. We describe briefly the difference and the circumstances under which to observe local hysteresis. A specific system treated in detail is the Fohlmeister model, originally derived to describe a neuronal encoder. In the limit of small damping an analytical solution is obtained. Furthermore, we derive an upper limit to the hysteresis. The results are compared to numerical calculations on the full system and agree quite well. In contrast to e.g. the driven damped pendulum equation the hysteresis is limited in size as compared to the phase-locked region. (orig.)

  8. Oscillating spin-2 dark matter

    Science.gov (United States)

    Marzola, Luca; Raidal, Martti; Urban, Federico R.

    2018-01-01

    The negative outcomes of laboratory searches, juxtaposed with cosmological observations, may indicate that dark matter has a gravitational origin. We show that coherent oscillations of a massive spin-2 field emerging from bimetric theory can easily account for the observed dark matter abundance. The framework, based on the only known consistent extension of general relativity to interacting spin-2 fields, is testable in precision measurements of the electric charge variation by means of atomic clocks, molecular systems, dedicated resonant mass detectors, as well as gravity interferometers and axionlike-particle experiments. These searches, therefore, provide a new window into the phenomenology of gravity which complements the results of dedicated tests of gravitation. We also present a multimetric extension of the scenario that straightforwardly implements the clockwork mechanism for gravity, explaining the apparent weakness of this force.

  9. Quantum wormholes and harmonic oscillators

    Science.gov (United States)

    Garay, Luis J.

    1993-01-01

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface which divides the space time manifold into two disconnected parts. Minisuperspace models which consist of a homogeneous massless scalar field coupled to a Friedmann-Robertson-Walker space time are considered. Once the path integral over the lapse function is performed, the requirement that the space time be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is argued that there does not exist any wave function which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. Then, the wormhole wave functions can be written as linear combinations of harmonic oscillator wave functions.

  10. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  11. Oscillating and rotating sine-Gordon system

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1986-01-01

    The interaction between a 2π kink and the background or vacuum is investigated in the pure sine-Gordon system. For an oscillating background (i.e., the k=0 part of the phonon spectrum) the 2π kink oscillates, while for increasing or decreasing vacuum two phenomena have been observed, depending on...... to a Mathieu equation explaining the excitation....

  12. Phase Multistability in Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Postnov, D.E.; Sosnovtseva, Olga

    2003-01-01

    along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase multistability, the paper examines a variety of phase-locked patterns. In particular we demonstrate the nested structure of synchronization regions for oscillations with multicrest wave forms...

  13. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/pram/070/06/1175-1198 ... Abstract. Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. ... Combined theories are used to explore and compare three types of semirandom networks for their efficacy in synchronizing oscillators.

  14. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network that resemb...

  15. Electromagnetic Radiation Originating from Unstable Electron Oscillations

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Pécseli, Hans

    1975-01-01

    Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function.......Electromagnetic oscillations in the range 300 – 700 MHz were observed from an unmagnetized argon discharge with an unstable electron velocity distribution function....

  16. Discontinuous Spirals of Stable Periodic Oscillations

    DEFF Research Database (Denmark)

    Sack, Achim; Freire, Joana G.; Lindberg, Erik

    2013-01-01

    We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...

  17. Lambda Oscillations and the Conservation Laws

    OpenAIRE

    Widom, A.; Srivastava, Y. N.

    1996-01-01

    Lowe, Bassalleck, Burkhardt, Rusek, Stephenson, and Goldman assert, under the assumption of decays at fixed space-time points, that Kaon induced Lambda oscillations disappear. We find, under the same assumption, that energy conservation and momentum conservation also disappear. Ordinary particles can exhibit quantum oscillations.

  18. Mass and oscillations of Dirac neutrinos

    International Nuclear Information System (INIS)

    Collot, J.

    1989-01-01

    In the most economical extension of the standard model, we have presented the theory of massive Dirac neutrinos. We have particularly emphasized that, in this model, a complete analogy between quarks and leptons can be erected and predicts neutrino flavor oscillations. We have reviewed the last experimental results concerning kinetic neutrino mass experiments and neutrino oscillation investigations

  19. Accelerator-based neutrino oscillation searches

    International Nuclear Information System (INIS)

    Whitehouse, D.; Rameika, G.

    1993-01-01

    This paper attempts to summarize the neutrino oscillation section of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Beam Facilities. There were very lively discussions about the merits of the different oscillation channels, experiments, and facilities, but the authors believe a substantial consensus emerged

  20. Compensation of oscillation coupling induced by solenoids

    International Nuclear Information System (INIS)

    Zelinskij, A.Yu.; Karnaukhov, I.M.; Shcherbakov, A.A.

    1988-01-01

    Methods for construction of various schemes of oscillation coupling compensation, induced by solenoids in charged particle storage rings, are described. Peculiarities of magnetic structure, enabling to localize oscillation coupling in wide energy range are discussed. Results of calculation of compensation schemes for design of NR-2000 storage ring spin rotation are presented

  1. Natural oscillation frequencies for arbitrary piping systems

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2007-01-01

    This paper concerns axial and lateral oscillations and oscillation frequencies of various empty (natural frequency of oscillation) and fluid filled (forced oscillation) piping systems. Forced oscillations of fluid filled piping systems and corresponding exchange of energy are denominated also Fluid-Structure-Interaction (FSI). Oscillations appear due to various external or internal impacts and are successfully described with eight-equation physical model for simulations of FSI during fast transients. The physical model is solved with characteristic upwind numerical method and is compiled into a computer code. Simulations were compared to the analytical solutions or solutions from the literature whenever was possible. Discussion on results and problems encountered is given. The proposed physical model gives accurate results, and it enables evaluation of natural frequency of arbitrarily loaded, arbitrarily shaped and arbitrarily supported piping systems. Piping systems are rarely empty, thus forced oscillations due to FSI effects were observed and simulated. Application of various fluids pointed out importance of the fluid's compressibility on pipe's axial oscillations. (author)

  2. Phase locking between Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1990-01-01

    We report observations of phase-locking phenomena between two Josephson soliton (fluxon) oscillators biased in self-resonant modes. The locking strength was measured as a function of bias conditions. A frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. Two coupled...

  3. The 2D κ-Dirac oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Fabiano M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, Edilberto O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil)

    2014-11-10

    In this Letter, 2D Dirac oscillator in the quantum deformed framework generated by the κ-Poincaré–Hopf algebra is considered. The problem is formulated using the κ-deformed Dirac equation. The resulting theory reveals that the energies and wave functions of the oscillator are modified by the deformation parameter.

  4. TRANSVERSE OSCILLATIONS OF SYSTEMS OF CORONAL LOOPS

    International Nuclear Information System (INIS)

    Luna, M.; Oliver, R.; Ballester, J. L.; Terradas, J.

    2009-01-01

    We study the collective kinklike normal modes of a system of several cylindrical loops using the T-matrix theory. Loops that have similar kink frequencies oscillate collectively with a frequency which is slightly different from that of the individual kink mode. On the other hand, if the kink frequency of a loop is different from that of the others, it oscillates individually with its own frequency. Since the individual kink frequency depends on the loop density but not on its radius for typical 1 MK coronal loops, a coupling between kink oscillations of neighboring loops takes place when they have similar densities. The relevance of these results in the interpretation of the oscillations studied by Schrijver and Brown in 2000 and Verwichte et al. in 2004, in which transverse collective loop oscillations seem to be detected, is discussed. In the first case, two loops oscillating in antiphase are observed; interpreting this motion as a collective kink mode suggests that their densities are roughly equal. In the second case, there are almost three groups of tubes that oscillate with similar periods, and therefore their dynamics can be collective, which again seems to indicate that the loops of each group share a similar density. All the other loops seem to oscillate individually and their densities can be different from the rest.

  5. Neutrino oscillations: Present status and outlook

    Indian Academy of Sciences (India)

    Abstract. The status of neutrino oscillations from global data is summarized, with the focus on the three-flavour picture. The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Further- more, an outlook on the measurement of the mixing angle θ13 ...

  6. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...

  7. Autonomous Duffing-Holmes Type Chaotic Oscillator

    DEFF Research Database (Denmark)

    Tamaševičius, A.; Bumelienė, S.; Kirvaitis, R.

    2009-01-01

    We have designed and built a novel Duffing type autonomous 3rd-order chaotic oscillator. In comparison with the common non-autonomous DuffingHolmes type oscillator the autonomous circuit has an internal positive feedback loop instead of an external periodic drive source. In addition...

  8. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    ... a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.

  9. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  10. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  11. Half-linear discrete oscillation theory

    Directory of Open Access Journals (Sweden)

    P. Rehak

    2000-01-01

    where $\\alpha>1$, are investigated. A particular attention is devoted to the connection with oscillation theory of its continuous counterpart, half--linear differential equation and also with the theory of linear differential and difference equations. We present not only the overview of the existing results but we also establish new oscillation and nonoscillation criteria.

  12. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    Abstract. The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies ω and with. ≫ ω. In the damped and biharmoni- cally driven classical Morse oscillator, ...

  13. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in ...

  14. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characteri...

  15. Neutrino oscillations: Present status and outlook

    Indian Academy of Sciences (India)

    Abstract. The status of neutrino oscillations from global data is summarized, with the focus on the three-flavour picture. The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Further-more, an outlook on the measurement of the mixing angle 13 ...

  16. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  17. Behavior of forced asymmetric oscillators at resonance

    Directory of Open Access Journals (Sweden)

    C. Fabry

    2000-12-01

    Full Text Available This article collects recent results concerning the behavior at resonance of forced oscillators driven by an asymmetric restoring force, with or without damping. This synthesis emphasizes the key role played by a function denoted by $Phi_{alpha,eta,p}$, which is, up to a sign reversal of its argument, a correlation product of the forcing term $p$ and of a function representing a free oscillation for theundamped equation. The theoretical results are accompanied by graphical representations illustrating the behavior of the damped and undamped oscillators. In particular, the damped oscillator is considered, with a forcing term whose frequency is close to the frequency of the free oscillations. For that problem, frequency-response curves are studied, both theoretically and through numerical computations, revealing a hysteresis phenomenon, when $Phi_{alpha,eta,p}$ is of constant sign.

  18. Improved memristor-based relaxation oscillator

    KAUST Repository

    Mosad, Ahmed G.

    2013-09-01

    This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.

  19. New neutrino oscillation results from NOVA

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses.  The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...

  20. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  1. Monlithic nonplanar ring oscillator and method

    Science.gov (United States)

    Nilsson, Alan C. (Inventor); Byer, Robert L. (Inventor)

    1991-01-01

    A monolithic nonplanar ring oscillator having an optically isotropic solid-state laser body for propagating laser radiation about a nonplanar ring path internal to the laser body is disclosed. The monolithic laser body is configured to produce a 2N reflection nonplanar ring light path, where N is an integer greater than or equal to 2, comprising 2N-1 total internal reflections and one reflection at a coupler in a single round trip. Undirectional traveling wave oscillation of the laser is induced by the geometry of the nonplanar ring path together with the effect of an applied magnetic field and partial polarizer characteristics of the oblique reflection from the coupler. The 6-reflection nonplanar ring oscillator makes possible otpimal unidirectional oscillation (low loss for the oscillating direction of propagation and, simultaneously high loss for the nonoscillating direction of propagation) in monolithic NPROs using materials with index of refraction smaller than the square root of 3, for example, laser glass.

  2. Atmospheric neutrino oscillations for earth tomography

    International Nuclear Information System (INIS)

    Winter, Walter

    2016-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  3. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  4. Uniform plasma oscillations in ellipsoid of conductive material

    OpenAIRE

    Kornyushin, Yuri

    2007-01-01

    The influence of the shape of a sample on the type of uniform dipole collective electrons oscillations is discussed. In samples of a bulk shape uniform bulk dipole oscillation (Langmuir oscillation) cannot exist. It exists in samples of a thin slab shape only. As uniform bulk dipole oscillations cannot penetrate ellipsoidal samples of conductive material they exist in the surface layer of a sample only (Mie oscillations). Frequencies of Mie oscillations are calculated for a sample of the shap...

  5. Active shunt capacitance cancelling oscillator circuit

    Science.gov (United States)

    Wessendorf, Kurt O.

    2003-09-23

    An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.

  6. Introduction to Classical and Quantum Harmonic Oscillators

    International Nuclear Information System (INIS)

    Latal, H

    1997-01-01

    As the title aptly states, this book deals with harmonic oscillators of various kinds, from classical mechanical and electrical oscillations up to quantum oscillations. It is written in a lively language, and occasional interspersed anecdotes make the reading of an otherwise mathematically oriented text quite a pleasure. Although the author claims to have written an 'elementary introduction', it is certainly necessary to have a good deal of previous knowledge in physics (mechanics, electrodynamics, quantum theory), electrical engineering and, of course, mathematics in order to follow the general line of his arguments. The book begins with a thorough treatment of classical oscillators (free, damped, forced) that is followed by an elaboration on Fourier analysis. Lagrange and Hamilton formalisms are then introduced before the problem of coupled oscillations is attacked. A chapter on statistical perspectives leads over to the final discussion of quantum oscillations. With the book comes a diskette containing a number of worksheets (Microsoft Excel) that can be used by the reader for instant visualization to get a better qualitative and quantitative understanding of the material. To the reviewer it seems difficult to pinpoint exactly the range of prospective readership of the book. It can certainly not be intended as a textbook for students, but rather as a reference book for teachers of physics or researchers, who want to look up one or other aspect of harmonic oscillations, for which purpose the diskette represents a very valuable tool. (book review)

  7. Directional Transverse Oscillation Vector Flow Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2017-01-01

    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In Directional Transverse Oscillation (DTO) a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound...... beam to increase the amount of data for vector velocity estimation. The approach is self-calibrating as the lateral oscillation period is estimated from the directional signal through a Fourier transform to yield quantitative velocity results over a large range of depths. The approach was extensively...

  8. Self-seeding ring optical parametric oscillator

    Science.gov (United States)

    Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM

    2005-12-27

    An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.

  9. Quantum electronics maser amplifiers and oscillators

    CERN Document Server

    Fain, V M; Sanders, J H

    2013-01-01

    Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma

  10. Intensity noise coupling in soliton fiber oscillators.

    Science.gov (United States)

    Wan, Chenchen; Schibli, Thomas R; Li, Peng; Bevilacqua, Carlo; Ruehl, Axel; Hartl, Ingmar

    2017-12-15

    We present an experimental and numerical study on the spectrally resolved pump-to-output intensity noise coupling in soliton fiber oscillators. In our study, we observe a strong pump noise coupling to the Kelly sidebands, while the coupling to the soliton pulse is damped. This behavior is observed in erbium-doped as well as holmium-doped fiber oscillators and confirmed by numerical modeling. It can be seen as a general feature of laser oscillators in which soliton pulse formation is dominant. We show that spectral blocking of the Kelly sidebands outside the laser cavity can improve the intensity noise performance of the laser dramatically.

  11. Universality of oscillating boiling in Leidenfrost transition.

    Science.gov (United States)

    Khavari, Mohammad; Tran, Tuan

    2017-10-01

    The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon and verify the prediction experimentally for various liquids.

  12. Color oscillations and measuring the quark charge

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1979-01-01

    Color oscillations analogous to neutrino oscillations but with very high frequency are shown to be present in hadron states below color threshold. Experiments to distinguish between fractionally charged and integrally charged quark models both below and above color threshold are discussed. The instantaneous quark charge is shown to be measurable only in very fast processes determined by the high energy behavior of transition amplitudes well above color threshold. Results from the naive parton model for deep inelastic processes which indicate that real charges of quarks and gluons can be measured are shown to be in error because of neglect of color oscillations and interference terms. (author)

  13. Synchronization of Time-Continuous Chaotic Oscillators

    DEFF Research Database (Denmark)

    Yanchuk, S.; Maistrenko, Yuri; Mosekilde, Erik

    2003-01-01

    Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded...... the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled Rossler oscillators...

  14. Damping of Crank–Nicolson error oscillations

    DEFF Research Database (Denmark)

    Britz, Dieter; Østerby, Ole; Strutwolf, J.

    2003-01-01

    The Crank–Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one...... be computationally more expensive with some systems. The simple device of starting with one backward implicit (BI, or Laasonen) step does damp the oscillations, but not always sufficiently. For electrochemical microdisk simulations which are two-dimensional in space and using CN, the use of a first BI step is much...

  15. Oscillations in glycolysis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kloster, Antonina; Olsen, Lars Folke

    2012-01-01

    also decreases by stimulating the ATPase activity, e.g. by FCCP or Amphotericin B. Thus, ATPase activity strongly affects the glycolytic oscillations. We discuss these data in relation to a simple autocatalytic model of glycolysis which can reproduce the experimental data and explain the role...... of membrane-bound ATPases . In addition we also studied a recent detailed model of glycolysis and found that, although thismodel faithfully reproduces the oscillations of glycolytic intermediates observed experimentally, it is not able to explain the role of ATPase activity on the oscillations....

  16. Oscillators - an approach for a better understanding

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2003-01-01

    The aim of this tutorial is to provide an electronic engineer knowledge and insight for a better understanding of the mechanisms behind the behaviour of electronic oscillators. A linear oscillator is a mathematical fiction which can only be used as a starting point for the design of a real...... oscillator based on the Barkhausen criteria. Statements in textbooks and papers saying that the nonlinearities are bringing back the poles to the imaginary axis are wrong. The concept of "frozen eigenvalues" is introduced by means of piece-wise-linear modelling of the nonlinear components which are necessary...

  17. Polaritonic Rabi and Josephson Oscillations.

    Science.gov (United States)

    Rahmani, Amir; Laussy, Fabrice P

    2016-07-25

    The dynamics of coupled condensates is a wide-encompassing problem with relevance to superconductors, BECs in traps, superfluids, etc. Here, we provide a unified picture of this fundamental problem that includes i) detuning of the free energies, ii) different self-interaction strengths and iii) finite lifetime of the modes. At such, this is particularly relevant for the dynamics of polaritons, both for their internal dynamics between their light and matter constituents, as well as for the more conventional dynamics of two spatially separated condensates. Polaritons are short-lived, interact only through their material fraction and are easily detuned. At such, they bring several variations to their atomic counterpart. We show that the combination of these parameters results in important twists to the phenomenology of the Josephson effect, such as the behaviour of the relative phase (running or oscillating) or the occurence of self-trapping. We undertake a comprehensive stability analysis of the fixed points on a normalized Bloch sphere, that allows us to provide a generalized criterion to identify the Rabi and Josephson regimes in presence of detuning and decay.

  18. Quantum theory of anharmonic oscillators

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kyoto Univ.

    1983-01-01

    This in investigation of an anharmonic oscillator characterized by the potential ωsub(o) 2 /2 g 2 + lambda'q 4 . By using the equations of motion and the relations obtained by evaluating where O is an arbitrary operator, H is our total Hamiltonian and |i> and |j> are exact eigenstates of H, we derive an exact recurrence formula. This formula allows us to express tau-functions with a higher power of the variables through tau-functions with a lower power of the variables and energy eigenvalues. In this way we derive several exact relations, which are, in a sense, generalizations of the virial theorem and sum rules. These exact relations are the central equations of this paper. On the basis of these exact relations we propose our 'nearest neighbour level' (N.N.L.) approximation, which seems to provide a good approximation scheme. We can also use our exact relations to test the validity of various approximation methods, and as an example, we discuss the 'New-Tamm-Dancoff' (N.T.D)-type of approximation in detail. (Author)

  19. Torsional oscillations of strange stars

    Directory of Open Access Journals (Sweden)

    Mannarelli Massimo

    2014-01-01

    Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  20. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn [Key Laboratory of Advanced Transducer and Intelligent Control system, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Zhe-Jie, E-mail: pandanlzj@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-05-15

    We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.

  1. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Guo

    2015-05-01

    Full Text Available We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.

  2. Magneto-elastic torsional oscillations of magnetars

    International Nuclear Information System (INIS)

    Gabler, Michael; Cerda-Duran, Pablo; Mueller, Ewald; Font, Jose A; Stergioulas, Nikolaos

    2011-01-01

    We extend a general-relativistic ideal magneto-hydrodynamical code to include the effects of elasticity. Using this numerical tool we analyse the magneto-elastic oscillations of highly magnetised neutron stars (magnetars). In simulations without magnetic field we are able to recover the purely crustal shear oscillations within an accuracy of about a few per cent. For dipole magnetic fields between 5 x 10 13 and 10 15 G the Alfven oscillations become modified substantially by the presence of the crust. Those quasi-periodic oscillations (QPOs) split into three families: Lower QPOs near the equator, Edge QPOs related to the last open field line and Upper QPOs at larger distance from the equator.

  3. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  4. Pseudospin symmetry and the relativistic harmonic oscillator

    International Nuclear Information System (INIS)

    Lisboa, R.; Malheiro, M.; Castro, A.S. de; Alberto, P.; Fiolhais, M.

    2004-01-01

    A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U linear in r. Setting either or both combinations Σ=S+V and Δ=V-S to zero, analytical solutions for bound states of the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particular cases are discussed, devoting a special attention to the nonrelativistic limit and the case Σ=0, for which pseudospin symmetry is exact. We also show that the case U=Δ=0 is the most natural generalization of the nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combinations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot be described in the framework of the relativistic harmonic oscillator in the pseudospin limit

  5. Impact of Neutrino Oscillation Measurements on Theory

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Hitoshi

    2003-11-30

    Neutrino oscillation data had been a big surprise to theorists, and indeed they have ongoing impact on theory. I review what the impact has been, and what measurements will have critical impact on theory in the future.

  6. Adaptive elimination of synchronization in coupled oscillator

    International Nuclear Information System (INIS)

    Zhou, Shijie; Lin, Wei; Ji, Peng; Feng, Jianfeng; Zhou, Qing; Kurths, Jürgen

    2017-01-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh–Nagumo spiking oscillators and the Hindmarsh–Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy. (paper)

  7. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  8. Star-shaped oscillations of Leidenfrost drops

    Science.gov (United States)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  9. Atmospheric neutrinos and discovery of neutrino oscillations.

    Science.gov (United States)

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  10. Generalized decomposition methods for singular oscillators

    International Nuclear Information System (INIS)

    Ramos, J.I.

    2009-01-01

    Generalized decomposition methods based on a Volterra integral equation, the introduction of an ordering parameter and a power series expansion of the solution in terms of the ordering parameter are developed and used to determine the solution and the frequency of oscillation of a singular, nonlinear oscillator with an odd nonlinearity. It is shown that these techniques provide solutions which are free from secularities if the unknown frequency of oscillation is also expanded in power series of the ordering parameter, require that the nonlinearities be analytic functions of their arguments, and, at leading-order, provide the same frequency of oscillation as two-level iterative techniques, the homotopy perturbation method if the constants that appear in the governing equation are expanded in power series of the ordering parameter, and modified artificial parameter - Linstedt-Poincare procedures.

  11. First integral method for an oscillator system

    Directory of Open Access Journals (Sweden)

    Xiaoqian Gong

    2013-04-01

    Full Text Available In this article, we consider the nonlinear Duffing-van der Pol-type oscillator system by means of the first integral method. This system has physical relevance as a model in certain flow-induced structural vibration problems, which includes the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. Firstly, we apply the Division Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to explore a quasi-polynomial first integral to an equivalent autonomous system. Then, through solving an algebraic system we derive the first integral of the Duffing-van der Pol-type oscillator system under certain parametric condition.

  12. Differential Resonant Ring YIG Tuned Oscillator

    Science.gov (United States)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n

  13. Sapphire Ring Resonator For Microwave Oscillator

    Science.gov (United States)

    Dick, G. John; Saunders, Jon

    1991-01-01

    Sapphire dielectric ring resonator operating in "whispering-gallery" mode helps to stabilize frequency and phase of microwave oscillator. Reduces phase noise appreciably at room temperature and promises unprecedented stability of phase at cryogenic temperatures.

  14. Phase-locked Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source, a frequ......Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  15. On the κ-Dirac oscillator revisited

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, PR (Brazil); Silva, E.O., E-mail: edilbertoos@pq.cnpq.br [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil); Ferreira, M.M., E-mail: manojr.ufma@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil); Rodrigues, E.C., E-mail: ednilson.fisica@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil)

    2014-04-04

    This Letter is based on the κ-Dirac equation, derived from the κ-Poincaré–Hopf algebra. It is shown that the κ-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, p→p−imωβr, in the κ-Dirac equation, one obtains the κ-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.

  16. Laser-induced skin temperature oscillations

    Science.gov (United States)

    Podtaev, S.; Dumler, A.; Muravyov, N.; Myasnikov, M.; Tsiberkin, K.

    2010-11-01

    Adaptive wavelet analysis algorithms are used to study skin temperature oscillations caused by periodic changes in the blood flow resulting from oscillations in the vasomotor smooth muscle tone. Reduction in the amplitude of temperature fluctuations with frequency arises because the skin, owing to its low thermal diffusivity, has the properties of a lowfrequency filter. In view of their small amplitude, oscillations in the spectral range, reflecting the influence of heartbeat and respiration, cannot be distinguished from the external thermal noise. To analyze changes in oscillations of skin temperature during the laser stimulation (10 mW/cm2, 630 nm) we extract three frequency bands, corresponding to myogenic, neurogenic and endothelial vascular tone regulation mechanisms. Red laser irradiation causes temperature fluctuations changes within spectral ranges corresponding endothelial functioning and neurogenic activity.

  17. Anharmonic potential in the oscillator representation

    International Nuclear Information System (INIS)

    Dineykhan, M.; Efimov, G.V.

    1994-01-01

    In the non relativistic and relativized Schroedinger equation the Wick ordering method called the oscillator representation is proposed to calculate the energy spectrum for a wide class of potentials allowing the existence of a bound state. The oscillator representation method gives a unique regular way to describe and calculate the energy levels of ground as well as orbital and radial excitation states for a wide class of potentials. The results of the zeroth approximation oscillator representation are in good agreement with the exact values for the anharmonic potentials. The oscillator representation method was applied to the relativized Schroedinger equation too. The perturbation series converges fairly fast, i.e., the highest perturbation corrections over the interaction Hamiltonian are small enough. 29 refs.; 4 tabs. (author)

  18. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  19. Adaptive elimination of synchronization in coupled oscillator

    Science.gov (United States)

    Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei

    2017-08-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.

  20. Oscillation theory for second order dynamic equations

    CERN Document Server

    Agarwal, Ravi P; O''Regan, Donal

    2003-01-01

    The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.

  1. On the Design of Chaotic Oscillators

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, A; Cenys, A.

    1998-01-01

    A discussion of the chaotic oscillator concept from a design methodology pointof view. The attributes of some chaoticoscillators are discussed and a systematicdesign method based on eigenvalue investigation is proposed. The method isillustrated with a chaotic Wien-bridgeoscillator design....

  2. Some Problems with Neutrino Flavor Oscillation Theory

    CERN Document Server

    Williams, J M

    2002-01-01

    This poster session explains three theoretical shortcomings of the usual neutrino oscillation theory and illustrates that theory's empirical weakness. Heisenberg's uncertainty principle shows that a superposition of independent mass eigenstates can not be propagated as postulated to long distances. There is no justification for assuming that mass eigenstate phases may evolve independently during propagation while directions of propagation may not. A difference in masses among the propagating states, a hierarchy in masses among neutrinos, and a different mixture of states for different final flavors, is inconsistent with conservation of energy, momentum, or both. The uncertainty in mass state postulated to permit oscillation in flavor state is inadequate for flavor oscillation in any experiment yet performed. Even if viewed as a way of defining an arbitrary function to fit curves to the data, the usual oscillation theory may require four free parameters to fit five benchmark data points. An empirical fit is sh...

  3. Climate Prediction Center Southern Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and Sea Surface Temperature (SST)Indices. It contains Southern Oscillation Index which is standardized sea level...

  4. On Oscillators in Phyllosilicate Excitable Automata

    Science.gov (United States)

    Adamatzky, Andrew

    2013-06-01

    Phyllosilicate is a sheet of silicate tetrahedra bound by basal oxygens. A phyllosilicate excitable automaton is a regular network of finite state machines, which mimics structure of a silicate sheet. A node of the silicate sheet is an automaton, which takes resting, excited and refractory states, and updates its state in discrete time depending on a sum of excited states of its three (silicon automata) or six (oxygen automata) closest neighbors. Oscillator is a localized compact configuration of nonquiescent states which undergoes finite growth and modification but returns to its original state in a finite number of steps. We show that phyllosilicate excitable automata exhibit waves and oscillating localizations (oscillators) dynamics. Basic types of oscillators are classified and characterized.

  5. Shape oscillations of a viscoelastic drop

    International Nuclear Information System (INIS)

    Khismatullin, Damir B.; Nadim, Ali

    2001-01-01

    Small-amplitude axisymmetric shape deformations of a viscoelastic liquid drop in microgravity are theoretically analyzed. Using the Jeffreys constitutive equation for linear viscoelasticity, the characteristic equation for the frequency and decay factor of the shape oscillations is derived. Asymptotic analysis of this equation is performed in the low- and high-viscosity limits and for the cases of small, moderate, and large elasticities. Elastic effects are shown to give rise to a type of shape oscillation that does not depend on the surface tension. The existence of such oscillations is confirmed by numerical solution of the characteristic equation in various regimes. A method for determining the viscoelastic properties of highly viscous liquids based upon experimental measurements of the frequency and damping rate of such shape oscillations is suggested

  6. Monolithic, Widely Tunable, THz Local Oscillator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes development of a new type of quantum-cascade laser for use as a local oscillator at frequencies above 2 THz. The THz source described is a...

  7. Inter-area oscillations in power systems

    CERN Document Server

    Messina, Arturo R

    2009-01-01

    Deals with the application of fresh techniques based on time-frequency system representations and statistical approaches to the study, characterization, and control of nonlinear and non-stationary inter-area oscillations in power systems.

  8. Ring oscillator switching noise under NBTI wearout

    OpenAIRE

    Fernández García, Raúl; Gil Galí, Ignacio; Ruiz, José María; Morata Cariñena, Marta

    2011-01-01

    In this paper the switching noise of a CMOS ring oscillator has been analysed when their pFETs are subjected to negative bias temperature instability (NBTI). The impact of pFET under NBTI has been experimentally quantified whereas CMOS ring oscillator frequency and the switching noise has been analysed by means of electrical full-model simulation. The results show that the impact on the electromagnetic compatibility behaviour increases with NBTI wearout. Peer Reviewed

  9. Rabi oscillations in bidimensional photonic crystals

    International Nuclear Information System (INIS)

    Centeno, E.; Felbacq, D.

    2000-01-01

    We theoretically and numerically investigate transient phenomena in finite two-dimensional photonic crystals doped by single-mode microcavities. We show that for antisymmetric defect modes, there are Rabi oscillations between the microcavities. We develop a spectral analysis which permits us to compute the Rabi frequencies of these oscillations as well as the Q factor of the microcavities. We present a method allowing the computation of the coupling factor between localized modes

  10. Taking a peek at Bloch oscillations

    Science.gov (United States)

    Morsch, Oliver

    2016-11-01

    Bloch oscillations arise when matter waves inside a periodic potential, such as a crystal lattice, are accelerated by a constant force. Keßler et al (2016 New J. Phys. 18 102001) have now experimentally tested a method that allows one to observe those oscillations continuously, without a destructive measurement on the matter wave. Their approach could help to make cold atom-based accelerometers and gravimeters more precise.

  11. Neutron oscillations and the primordial magnetic field

    International Nuclear Information System (INIS)

    Sarkar, S.

    1988-01-01

    It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)

  12. Neutrino oscillations and a new Faraday effect

    International Nuclear Information System (INIS)

    Anwar Mughal, M.; Ahmed, K.

    1992-07-01

    By analogy with the classical Faraday effect for the electromagnetic waves, a Faraday effect for massive neutrinos is found to be a somewhat generic description of neutrino oscillations when the neutrinos traverse a dense medium with or without a magnetic field. We further plot the Faraday angle for the solar neutrino problem as an illustration of the fact that the Faraday effect may yield a conceptually convenient parametrization of various neutrino oscillation scenarios. (author). 8 refs, 3 figs

  13. A compact low-power oscillation circuit for the high performance silicon oscillating accelerometer

    Science.gov (United States)

    Zhang, Jiashi; Qiu, Anping; Shi, Qin; Xia, Guoming; Zhao, Yang

    2017-10-01

    This paper describes a compact and low-power oscillating circuit for silicon oscillating accelerometer (SOA). The influence of oscillation amplitude control strategy on accelerometer performance is analyzed. A rail to rail comparator replaces the traditional AGC (automatic gain control) circuit for oscillation amplitude control. It makes the circuit more compact, lower power consumption, and reduces the flicker noise introduced by amplitude control greatly. The experiment shows the bias stability is 13.3µg from 22.9µg, the bias-instability is 4.3µg from 9.3µg, and the system power consumption is reduced to 200mW from 1.2W.

  14. Engagine me, engaging you ....Ah Haa

    OpenAIRE

    Rooke, S; Brooke, C; Crossley, V

    2017-01-01

    As a non-traditional research office, we have been heavily involved in dissemination activity and, increasingly, rather than just academic staff who are already interested in the outcome of research projects, this means attempting to engage, involve and inspire the public. Public engagement involves a range of approaches that universities or research institutes can take to involve the public with their work. An important part of any public engagement work is to think about the people you want...

  15. Seltskond : [fotod] / tekst ja fotod Annika Haas

    Index Scriptorium Estoniae

    2008-01-01

    29. mail tutvustasid autorid oma lasteraamatuid Eesti Lastekirjanduse Keskuses: Kass, Kristiina. Petra lood. [Tallinn] : Tänapäev, 2008 ; Vainola, Kätlin. Mia, Konrad ja avanevad uksed : [jutustus] / pildid joonistanud Toomas Pääsuke. [Tallinn] : Tänapäev, 2008 ; Saarna, Meelike. Mattias ja mamma. [Tallinn] : Tänapäev, 2008

  16. Mathematical Modeling of an Oscillating Droplet

    Science.gov (United States)

    Berry, S.; Hyers, R. W.; Racz, L. M.; Abedian, B.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is performed by electromagnetic levitation. The natural oscillation frequency of the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k-epsilon turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity.

  17. Spontaneous blood pressure oscillations in mechanically ventilated patients with sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Greve, Anders M

    2016-01-01

    ') oscillations were absent in 9% and 22% of the patients, respectively. In patients in whom spontaneous blood pressure oscillations were preserved, the MF' oscillations occurred at 0.021 Hz (median, interquartile range 0.013-0.030), whereas the LF' oscillations occurred at 0.009 Hz (median, interquartile range 0...

  18. Mixed Mode Oscillations due to the Generalized Canard Phenomenon

    DEFF Research Database (Denmark)

    Brøns, Morten; Krupa, Martin; Wechselberger, Martin

    2006-01-01

    Mixed mode oscillations combine features of small oscillations and large oscillations of relaxation type. We describe a mechanism for mixed mode oscillations based on the presence of canard solutions, which are trajectories passing from a stable to an unstable slow manifold. An important ingredient...

  19. Memristor-based relaxation oscillators using digital gates

    KAUST Repository

    Khatib, Moustafa A.

    2012-11-01

    This paper presents two memristor-based relaxation oscillators. The proposed oscillators are designed without the need of any reactive elements, i.e., capacitor or inductor. As the \\'resistance storage\\' property of the memristor can be exploited to generate the oscillation. The proposed oscillators have the advantage that they can be fully integrated on-chip giving an area-efficient solution. Furthermore, these oscillators give higher frequency other than the existing reactance-less oscillator and provide a wider range of the resistance. The concept of operation and the mathematical analysis for the proposed oscillators are explained and verified with circuit simulations showing an excellent agreement. © 2012 IEEE.

  20. Impact of Oscillation Parameters on Surface Quality of Cast Billets

    Directory of Open Access Journals (Sweden)

    Cibulka J.

    2016-03-01

    Full Text Available The paper is focused on impact of different oscillation parameters on surface quality of peritectic steel grades cast into billets 150x150 mm. Hydraulic oscillation used for this purpose was temporarily installed on one strand of the billet caster. Hydraulic oscillation enables, in comparison to ordinary used electromechanical oscillation, flexible set-up of basic parameters of the oscillation cycle (negative strip time and its ratio. Proper oscillation mode is capable to assure regular oscillation marks development, good lubrication in the mould and adequate compression of the solidifying shell. Impact of an oscillation mode providing negative strip time 0.085 s and its ratio -50 % on surface quality of cast billets is compared with standard oscillation mode applied on strands equipped with electromechanical oscillation characterized with variable negative strip time between 0.084 and 0.096 s and fixed negative strip ratio to -14 %.

  1. Modified variational iteration method for an El Niño Southern Oscillation delayed oscillator

    International Nuclear Information System (INIS)

    Cao Xiao-Qun; Song Jun-Qiang; Zhu Xiao-Qian; Zhang Li-Lun; Zhang Wei-Min; Zhao Jun

    2012-01-01

    This paper studies a delayed air—sea coupled oscillator describing the physical mechanism of El Niño Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model. (general)

  2. Parametric oscillators from factorizations employing a constant-shifted Riccati solution of the classical harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Khmelnytskaya, K.V. [Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas s/n, C.P. 76010 Santiago de Queretaro, Qro. (Mexico)

    2011-09-19

    We determine the kind of parametric oscillators that are generated in the usual factorization procedure of second-order linear differential equations when one introduces a constant shift of the Riccati solution of the classical harmonic oscillator. The mathematical results show that some of these oscillators could be of physical nature. We give the solutions of the obtained second-order differential equations and the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry. Possible applications are mentioned. -- Highlights: → A particular Riccati solution of the classical harmonic oscillator is shifted by a constant. → Such a solution is used in the factorization brackets to get different equations of motion. → The properties of the parametric oscillators obtained in this way are examined.

  3. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  4. Viewing Majorana Bound States by Rabi Oscillations.

    Science.gov (United States)

    Wang, Zhi; Liang, Qi-Feng; Yao, Dao-Xin; Hu, Xiao

    2015-07-08

    We propose to use Rabi oscillation as a probe to view the fractional Josepshon relation (FJR) associated with Majorana bound states (MBSs) expected in one-dimensional topological superconductors. The system consists of a quantum dot (QD) and an rf-SQUID with MBSs at the Josephson junction. Rabi oscillations between energy levels formed by MBSs are induced by ac gate voltage controlling the coupling between QD and MBS when the photon energy proportional to the ac frequency matches gap between quantum levels formed by MBSs and QD. As a manifestation of the Rabi oscillation in the whole system involving MBSs, the electron occupation on QD oscillates with time, which can be measured by charge sensing techniques. With Floquet theorem and numerical analysis we reveal that from the resonant driving frequency for coherent Rabi oscillation one can directly map out the FJR cos(πΦ/Φ0) as a signature of MBSs, with Φ the magnetic flux through SQUID and Φ0 = hc/2e the flux quantum. The present scheme is expected to provide a clear evidence for MBSs under intensive searching.

  5. Excitation of atmospheric oscillations by volcanic eruptions

    Science.gov (United States)

    Kanamori, Hiroo; Mori, Jim; Harkrider, David G.

    1994-11-01

    We investigated the mechanism of atmospheric oscillations with periods of about 300 s which were observed for the 1991 Pinatubo and the 1982 El Chichon eruptions. Two distinct spectral peaks, at T = 270 and 230 s for the Pinatubo eruption and at T = 195 and 266 s for the El Chichon eruptions, have been reported. We found similar oscillations for the 1980 Mount St. Helens and the 1883 Krakatoa eruptions. To explain these observations, we investigated excitation problems for two types of idealized sources, 'mass injection' and 'energy injection' sources, placed in an isothermal atmosphere. In general, two modes of oscillations, 'acoustic' and 'gravity' modes, can be excited. For realistic atmospheric parameters, the acoustic and gravity modes have a period of 275 and 304 s, respectively. For a realistic time history of eruption, atmospheric oscillations with an amplitude of 50 to 100 Pa (0.5 to 1 mbar) can be excited by an energy injection source with a total energy of 10(exp 17) J. This result is consistent with the observations and provides a physical basis for interpretation of atmospheric oscillations excited by volcanic eruptions.

  6. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  7. The vertical oscillations of coupled magnets

    Science.gov (United States)

    Kewei, Li; Jiahuang, Lin; Yang, Kang Zi; Liang, Samuel Yee Wei; Wong Say Juan, Jeremias

    2011-07-01

    The International Young Physicists' Tournament (IYPT) is a worldwide, annual competition for high school students. This paper is adapted from the winning solution to Problem 14, Magnetic Spring, as presented in the final round of the 23rd IYPT in Vienna, Austria. Two magnets were arranged on top of each other on a common axis. One was fixed, while the other could move vertically. Various parameters of interest were investigated, including the effective gravitational acceleration, the strength, size, mass and geometry of the magnets, and damping of the oscillations. Despite its simplicity, this setup yielded a number of interesting and unexpected relations. The first stage of the investigation was concerned only with the undamped oscillations of small amplitudes, and the period of small amplitude oscillations was found to be dependent only on the eighth root of important magnet properties such as its strength and mass. The second stage sought to investigate more general oscillations. A numerical model which took into account magnet size, magnet geometry and damping effects was developed to model the general oscillations. Air resistance and friction were found to be significant sources of damping, while eddy currents were negligible.

  8. Continuous oscillation: outcome in critically ill patients.

    Science.gov (United States)

    Traver, G A; Tyler, M L; Hudson, L D; Sherrill, D L; Quan, S F

    1995-09-01

    To compare turning by an oscillating bed to standard 2-hour turning. Outcomes were survival, length of stay (LOS), duration of mechanical ventilation, and incidence of pneumonia. One hundred and three intensive care patients were randomly assigned to standard turning or turning by an oscillating bed. Data, collected at baseline, daily for 7 days, and then three times weekly until study discharge, included demographics, initial Acute Physiology and Chronic Health Evaluation (APACHE II) score, ventilatory/gas exchange parameters, indicators of pneumonia, nursing measures, and chest roentgenograph. There were no significant differences for LOS, duration of ventilation, nor incidence of pneumonia. Higher survival for subjects on the oscillating bed reached borderline significance (P = .056) for subjects with APACHE II greater than or equal to 20. Longitudinal data were analyzed using the random effects model. No differences in ventilatory or gas exchange parameters were identified. Among subjects who developed pneumonia there was a significantly higher respiratory score (nursing acuity scale) for subjects on the oscillating bed. In selected critically ill patients oscillating therapy may improve survival and improve airway clearance. The frequency and degree of turning needed to prevent complications and improve outcome remains unclear. These newer beds should be used with discrimination so as to not increase hospital costs unnecessarily.

  9. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  10. Antineutrino Oscillations in the Atmospheric Sector

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Alexander I. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for vμ → $\\bar{v}$μ transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |Δ$\\bar{m}$atm 2| = (3.36-0.40+0.46(stat) ± 0.06(syst)) x 10-3 eV2 and sin2(2$\\bar{θ}$23) = 0.860-0.12+0.11(stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  11. Chaotic synchronization of two complex nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Gamal M. [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: gmahmoud@aun.edu.eg; Mahmoud, Emad E. [Department of Mathematics, Faculty of Science, Sohag University (Egypt)], E-mail: emad_eluan@yahoo.com; Farghaly, Ahmed A. [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: ahmed_1_66@yahoo.com; Aly, Shaban A. [Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71511 (Egypt)], E-mail: shhaly12@yahoo.com

    2009-12-15

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  12. Chaotic synchronization of two complex nonlinear oscillators

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.

    2009-01-01

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  13. Synchronization of weakly coupled canard oscillators

    Science.gov (United States)

    Köksal Ersöz, Elif; Desroches, Mathieu; Krupa, Martin

    2017-06-01

    Synchronization has been studied extensively in the context of weakly coupled oscillators using the so-called phase response curve (PRC) which measures how a change of the phase of an oscillator is affected by a small perturbation. This approach was based upon the work of Malkin, and it has been extended to relaxation oscillators. Namely, synchronization conditions were established under the weak coupling assumption, leading to a criterion for the existence of synchronous solutions of weakly coupled relaxation oscillators. Previous analysis relies on the fact that the slow nullcline does not intersect the fast nullcline near one of its fold points, where canard solutions can arise. In the present study we use numerical continuation techniques to solve the adjoint equations and we show that synchronization properties of canard cycles are different than those of classical relaxation cycles. In particular, we highlight a new special role of the maximal canard in separating two distinct synchronization regimes: the Hopf regime and the relaxation regime. Phase plane analysis of slow-fast oscillators undergoing a canard explosion provides an explanation for this change of synchronization properties across the maximal canard.

  14. Relaxation oscillation logic in Josephson junction circuits

    International Nuclear Information System (INIS)

    Fulton, T.A.

    1981-01-01

    A dc powered, self-resetting Josephson junction logic circuit relying on relaxation oscillations is described. A pair of Josephson junction gates are connected in series, a first shunt is connected in parallel with one of the gates, and a second shunt is connected in parallel with the series combination of gates. The resistance of the shunts and the dc bias current bias the gates so that they are capable of undergoing relaxation oscillations. The first shunt forms an output line whereas the second shunt forms a control loop. The bias current is applied to the gates so that, in the quiescent state, the gate in parallel with the second shunt is at V O, and the other gate is undergoing relaxation oscillations. By controlling the state of the first gate with the current in the output loop of another identical circuit, the invert function is performed

  15. Theoretical Interpretation of Current Neutrino Oscillation Data

    Science.gov (United States)

    Fogli, Gianluigi; Lisi, Eligio

    We discuss the theoretical interpretation of neutrino oscillation data in terms of 3v and 4v mixing. Two-neutrino oscillations, often used to describe experimental results in a first approximation, are briefly recalled (Sect. 5.1). The main focus of our review is 3v mixing (Sect. 5.2), which accommodates both the negative results of oscillation searches at reactors (Sect. 5.3) and the evidence for flavor transitions obtained from atmospheric and solar neutrino data (Sects. 5.4 and 5.5). The status and problems of 4v scenarios embedding the additional LSND signal are also discussed (Sect. 5.7). Finally, we outline the impact of the very latest data (Sect. 5.8). Standard electroweak neutrino interactions are assumed in all cases; scenarios with nonstandard dynamics are beyond the scope of this review.

  16. Universality of oscillating boiling in Leidenfrost transition

    Science.gov (United States)

    Tran, Tuan; Khavari, Mohammad

    2017-11-01

    The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a new phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling, and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon, and verify the prediction experimentally for various liquids. This work was funded by Nanyang Technological University and A*STAR, Singapore.

  17. Second International Workshop on Harmonic Oscillators

    Science.gov (United States)

    Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)

    1995-01-01

    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.

  18. Cluster synchronization of dry friction oscillators

    Directory of Open Access Journals (Sweden)

    Marszal Michał

    2018-01-01

    Full Text Available Synchronization is a well known phenomenon in non-linear dynamics and is treated as correlation in time of at least two different processes. In scope of this article, we focus on complete and cluster synchronization in the systems of coupled dry friction oscillators, coupled by linear springs. The building block of the system is the classic stick-slip oscillator, which consists of mass, spring and belt-mass friction interface. The Stribeck friction itself is modelled using Stribeck friction model with exponential non-linearity. The oscillators in the systems are connected in nearest neighbour fashion, both in open and closed ring topology. We perform a numerical study of the properties of the dynamics of the systems in question, in two-parameter space (coupling coefficient vs. angular excitation frequency and explore the possible configurations of cluster synchronization.

  19. The fractional oscillator process with two indices

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    We introduce a new fractional oscillator process which can be obtained as a solution of a stochastic differential equation with two fractional orders. Basic properties such as fractal dimension and short-range dependence of the process are studied by considering the asymptotic properties of its covariance function. By considering the fractional oscillator process as the velocity of a diffusion process, we derive the corresponding diffusion constant, fluctuation-dissipation relation and mean-square displacement. The fractional oscillator process can also be regarded as a one-dimensional fractional Euclidean Klein-Gordon field, which can be obtained by applying the Parisi-Wu stochastic quantization method to a nonlocal Euclidean action. The Casimir energy associated with the fractional field at positive temperature is calculated by using the zeta function regularization technique

  20. Thermal explosion in oscillating ambient conditions

    Science.gov (United States)

    Novozhilov, Vasily

    2016-07-01

    Thermal explosion problem for a medium with oscillating ambient temperature at its boundaries is considered. This is a new problem in thermal explosion theory, not previously considered in a distributed system formulation, but important for combustion and fire science. It describes autoignition of wide range of fires (such as but not limited to piles of biosolids and other organic matter; storages of munitions, explosives, propellants) subjected to temperature variations, such as seasonal or day/night variation. The problem is considered in formulation adopted in classical studies of thermal explosion. Critical conditions are determined by frequency and amplitude of ambient temperature oscillations, as well as by a number of other parameters. Effects of all the parameters on critical conditions are quantified. Results are presented for the case of planar symmetry. Development of thermal explosion in time is also considered, and a new type of unsteady thermal explosion development is discovered where thermal runaway occurs after several periods of temperature oscillations within the medium.

  1. Oscillation criteria for delay difference equations

    Directory of Open Access Journals (Sweden)

    Jianhua Shen

    2001-01-01

    Full Text Available This paper is concerned with the oscillation of all solutions of the delay difference equation $$ x_{n+1}-x_n+p_nx_{n-k}=0, quad n=0,1,2,dots $$ where ${p_n}$ is a sequence of nonnegative real numbers and $k$ is a positive integer. Some new oscillation conditions are established. These conditions concern the case when none of the well-known oscillation conditions $$ limsup_{no infty}sum_{i=0}^kp_{n-i}>1 quad{ m and}quad liminf_{no infty}frac{1}{k}sum_{i=1}^kp_{n-i}>frac{k^k}{(k+1^{k+1}} $$ is satisfied.

  2. Suppression of Rabi oscillations for moving atoms

    International Nuclear Information System (INIS)

    Navarro, B.; Egusquiza, I. L.; Muga, J. G.; Hegerfeldt, G. C.

    2003-01-01

    The well-known laser-induced Rabi oscillations of a two-level atom are shown to be suppressed under certain conditions when the atom is entering a laser-illuminated region. For temporal Rabi oscillations the effect has two regimes: a first classical-like one, taking place at intermediate atomic velocities, and a second purely quantum case at low velocities. The classical regime is associated with the formation of incoherent internal states of the atom in the laser region, whereas in the quantum, low velocity regime the laser projects the atom onto a pure internal state that can be controlled by detuning. Spatial Rabi oscillations are only suppressed in this low velocity, quantum regime

  3. Quantum anharmonic oscillator: The airy function approach

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia); University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); AlFaify, S. [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia)

    2014-05-15

    New and simple numerical method is being reported to solve anharmonic oscillator problems. The method is setup to approach the real potential V(x) of the anharmonic oscillator system as a piecewise linear potential u(x) and to solve the Schrödinger equation of the system using the Airy function. Then, solutions continuity conditions lead to the energy quantification condition, and consequently, the energy eigenvalues. For testing purpose, the method was applied on the sextic and octic oscillators systems. The proposed method is found to be realistic, computationally simple, and having high degrees of accuracy. In addition, it can be applied to any form of potential. The results obtained by the proposed method were seen closely agreeing with results reached by other complicated methods.

  4. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...

  5. Reentrant Metal-Insulator Transitions in Silicon -

    Science.gov (United States)

    Campbell, John William M.

    This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by

  6. New Realizations of Single OTRA-Based Sinusoidal Oscillators

    Directory of Open Access Journals (Sweden)

    Hung-Chun Chien

    2014-01-01

    Full Text Available This study proposes three new sinusoidal oscillators based on an operational transresistance amplifier (OTRA. Each of the proposed oscillator circuits consists of one OTRA combined with a few passive components. The first circuit is an OTRA-based minimum RC oscillator. The second circuit is capable of providing independent control on the condition of oscillation without affecting the oscillation frequency. The third circuit exhibits independent control of oscillation frequency through a capacitor. This study first introduces the OTRA and the related formulations of the proposed oscillator circuits, and then discusses the nonideal effects, sensitivity analyses, and frequency stability of the presented circuits. The proposed oscillators exhibit low sensitivities and good frequency stability. Because the presented circuits feature low impedance output, they can be connected directly to the next stage without cascading additional voltage buffers. HSPICE simulations and experimental results confirm the feasibility of the new oscillator circuits.

  7. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  8. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  9. A Wnt oscillator model for somitogenesis

    DEFF Research Database (Denmark)

    Jensen, Peter Bjødstrup; Pedersen, Lykke; Krishna, Sandeep

    2010-01-01

    We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by beta-catenin, which in turn is degraded by a complex of GSK3beta and Axin2...... for the oscillations is the saturated degradation of Axin2. Somite formation in chick and mouse embryos is controlled by a spatial Wnt gradient which we introduce in the model through a time-dependent decrease in Wnt3a ligand level. We find that the oscillations disappear as the ligand concentration decreases...

  10. ROBUST CONTROL OF OSCILLATIONS IN AGRICULTURAL TRACTORS

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    for agricultural tractors equiped with hicth and implements. A control strategy is developed to make the implement counteract the movement of the tractor and thereby reducing the pitching oscillation. The control strategy is based on a linear plant model with constant or slowly varying parameters. Using...... element acting between the vehicle and the ground but the suspension and damping properties of the tires cannotmeet the demands for fast, safe and comfortable road transportation. In this paper, the mentioned phenomenon was undertaken for investigation with special focus on robust oscillations...

  11. Search for free neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Gigli Berzolari, A.; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Ratti, S.P.; Scannicchio, D.; Torre, P.; Conversi, M.; De Zorzi, G.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Terrani, M.

    1989-01-01

    Small violations of the baryon number conservation law are predicted by the Grand Unified Theories. Several attempts have been made to observe a ΔB = 1 violation in proton decay experiments. The negative result of these searches can also be interpreted to give a lower limit in the range 10 7 /10 8 sec to the characteristic time of the ΔB = 2 process of n-anti n oscillations. But this limit rests on nuclear model assumptions. Only one experiment has been carried out so far to search directly for free neutron-antineutron oscillations, using cold neutrons from the ILL Grenoble reactor. (orig./HSI)

  12. Search for free neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Genoni, M.; Gigli Berzolari, A.; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Ratti, S.P.; Torre, P.; Bini, C.; Conversi, M.; De Zorzi, G.; Gauzzi, P.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Scannicchio, D.; Terrani, M.

    1989-01-01

    A search for free neutron-antineutron oscillations has been carried out at the Pavia Triga Mark II research reactor. A thin carbon target is crossed by a beam of thermal neutrons propagating in a 18.5 m long channel where the earth magnetic field is attenuated by a factor of 50. The total neutron current through the target is 3.2x10 10 n/s. Possible antineutron annihilations are identified by a large track detector surrounding the target. A lower limit on the oscillation time of 4.7x10 5 s (90% C.L.) has been reached. (orig.)

  13. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....

  14. Quantum oscillators in the canonical coherent states

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Lima, A.F. de; Ferreira, K. de Araujo; Vaidya, A.N.

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  15. Resonant tunneling diode oscillators for optical communications

    Science.gov (United States)

    Watson, Scott; Zhang, Weikang; Wang, Jue; Al-Khalidi, Abdullah; Cantu, Horacio; Figueiredo, Jose; Wasige, Edward; Kelly, Anthony E.

    2017-08-01

    The ability to use resonant tunneling diodes (RTDs) as both transmitters and receivers is an emerging topic, especially with regards to wireless communications. Successful data transmission has been achieved using electronic RTDs with carrier frequencies exceeding 0.3 THz. Specific optical-based RTDs, which act as photodetectors, have been developed by adjusting the device structure to include a light absorption layer and small optical windows on top of the device to allow direct optical access. This also allows the optical signal to directly modulate the RTD oscillation. Both types of RTD oscillators will allow for seamless integration of high frequency radio and optical fiber networks.

  16. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  17. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  18. Generalized Cherry oscillators and negative energy waves

    International Nuclear Information System (INIS)

    Pfirsch, D.

    1990-02-01

    In 1925 Cherry discussed two oscillators of positive and negative energy that are nonlinearly coupled in a special way, and presented exact solutions of the nonlinear equations showing explosive instabilities independent of the strength of the nonlinearity and the initial amplitudes. In this paper Cherry's Hamiltonian is transformed into a form which allows a simple physical interpretation. The new Hamiltonian is generalized to three nonlinearly coupled oscillators; it corresponds to three-wave interaction in a continuum theory, like the Vlasov-Maxwell theory, if there exist linear negative energy waves. (orig.)

  19. Small oscillations, Sturm sequences, and orthogonal polynomials

    International Nuclear Information System (INIS)

    Baake, M.

    1986-07-01

    The relation between small oscillations of one-dimensional mechanical systems and the theory of orthogonal polynomials is investigated. It is shown how the polynomials provide a natural tool to determine the eigenfrequencies and eigencoordinates completely, where the existence of a certain two-termed recurrence formula is essential. Physical and mathematical statements are formulated in terms of the recursion coefficients which can directly be obtained from the corresponding secular equation. Several known as well as new results on Sturm sequences and orthogonal polynomials are presented with respect to the treatment of small oscillations. (orig.)

  20. Analytical solution of strongly nonlinear Duffing oscillators

    OpenAIRE

    El-Naggar, A.M.; Ismail, G.M.

    2016-01-01

    In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m...

  1. Single-ion nonlinear mechanical oscillator

    International Nuclear Information System (INIS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-01-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  2. Generalized model for Memristor-based Wien family oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-23

    In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types though oscillating resistance and time dependent poles are present. We have also proposed an analytical model to estimate the desired amplitude of oscillation before the oscillation starts. These Memristor-based oscillation results, presented for the first time, are in good agreement with simulation results. © 2011 Elsevier Ltd.

  3. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-12-01

    State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  4. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    Science.gov (United States)

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  5. A family of memristor-based reactance-less oscillators

    KAUST Repository

    Zidan, Mohammed A.

    2013-05-03

    In this paper, we present for the first time a family of memristor-based reactance-less oscillators (MRLOs). The proposed oscillators require no reactive components, that is, inductors or capacitors, rather, the ‘resistance storage’ property of memristor is exploited to generate the oscillation. Different types of MRLO family are presented, and for each type, closed form expressions are derived for the oscillation condition, oscillation frequency, and range of oscillation. Derived equations are further verified using transient circuit simulations. A comparison between different MRLO types is also discussed. In addition, detailed fabrication steps of a memristor device and experimental results for the first MRLO physical realization are presented.

  6. Comparison of steady-state oscillation and non-stationary oscillation in MR elastography

    International Nuclear Information System (INIS)

    Oida, Takenori; Fujiwara, Takuya; Amano, Akira; Matsuda, Tetsuya; Kang, Yubong; Tsutsumi, Sadami

    2006-01-01

    Magnetic resonance elastography (MRE) is one of the non-invasive methods to measure the viscoelastic properties of tissue. In MRE measurement, viscoelastic properties are estimated from the wavelength and damping factor of the viscoelastic waves in the object; however, the influence of reflection and refraction are not considered in the estimation methods applied (e.g., algebraic inversion of the differential equation and elastic wave fitting). Therefore, in general reflection and refraction are avoided by shortening the interval between object oscillation and acquisition of the MRE signal. However, the viscoelastic properties of transient-state oscillation can be measured using this method, since a specific time period is necessary to realize steady-state oscillation. This may lead to a less accurate measurement of the viscoelastic properties. In this paper, we first show that the viscoelastic properties in transient-state oscillation are measured when the interval between object oscillation and MRE signal acquisition is short, and show that the accuracy of viscoelastic properties is high when using steady-state oscillation. Then, we propose a reflection reduction method using a spatio-temporal directional filter (STDF). The experiments using a silicon gel phantom showed that the viscoelastic properties during transient-state oscillation were measured when the interval between object oscillation and MRE signal acquisition was short. These results suggest that steady-state oscillation improves the accuracy of viscoelastic property measurement. In addition, the reflection wave could be reduced using the STDF, which leads improved accuracy in measuring the viscoelastic properties of MRE images with reflected waves. (author)

  7. Entrainment of two coupled van der Pol oscillators by an external oscillation. As a base of "holonic control".

    Science.gov (United States)

    Ohsuga, M; Yamaguchi, Y; Shimizu, H

    1985-01-01

    A system composed of two coupled internal oscillators and an external oscillation is studied as a model of biological control systems. The type of interaction between the internal oscillators is a mutual and dissipative one. Three macroscopic states of the internal oscillators are demonstrated in the absence of the external oscillation. Strict and loose entrainment regions of the internal oscillators by the external oscillation are shown in respect to the intensity of the mutual interaction, the intrinsic frequency difference of the internal oscillations, and the magnitude and frequency of the external oscillation. On the other hand, an idea of "holonic system" is introduced and the fundamental properties of the model as a holonic system are elucidated.

  8. Polymerization and oscillation stuttering in a filamentous model of the subcellular Min oscillation

    Science.gov (United States)

    Rutenberg, Andrew; Sengupta, Supratim; Sain, Anirban; Derr, Julien

    2011-03-01

    We present a computational model of the E. coli Min oscillation that involves polymerization of MinD filaments followed by depolymerization stimulated by filament-end zones of MinE. Our stochastic model is fully three-dimensional, and tracks the diffusion and interactions of every MinD and MinE molecule. We recover self-organized Min oscillations. We investigate the experimental phenomenon of oscillation stuttering, which we relate to the disruption of MinE tip-binding at the filament scale.

  9. Fractal Scaling Models of Resonant Oscillations in Chain Systems of Harmonic Oscillators

    Directory of Open Access Journals (Sweden)

    Müller H.

    2009-04-01

    Full Text Available Logarithmic scaling invariance is a wide distributed natural phenomenon and was proved in the distributions of physical properties of various processes — in high en- ergy physics, chemistry, seismicity, biology, geology and technology. Based on the Gantmacher-Krein continued fraction method the present paper introduces fractal scal- ing models of resonant oscillations in chain systems of harmonic oscillators. These models generate logarithmic scaling spectra. The introduced models are not based on any statements about the nature of the link or interaction between the elements of the oscillating system. Therefore the model statements are quite generally, what opens a wide field of possible applications.

  10. Ka Band Phase Locked Loop Oscillator Dielectric Resonator Oscillator for Satellite EHF Band Receiver

    Directory of Open Access Journals (Sweden)

    S. Coco

    2008-01-01

    Full Text Available This paper describes the design and fabrication of a Ka Band PLL DRO having a fundamental oscillation frequency of 19.250 GHz, used as local oscillator in the low-noise block of a down converter (LNB for an EHF band receiver. Apposite circuital models have been created to describe the behaviour of the dielectric resonator and of the active component used in the oscillator core. The DRO characterization and measurements have shown very good agreement with simulation results. A good phase noise performance is obtained by using a very high Q dielectric resonator.

  11. Broadband hyperchaotic oscillator with delay line

    DEFF Research Database (Denmark)

    Cenys, Antanas; Lindberg, Erik; Anagnostopoulos, A. N.

    2002-01-01

    Dynamical systems with time delay can be employed as high dimensional hyperchaotic oscillators with multiple positive Lyapunov exponents. We describe an electronic circuit composed of a 3-stage amplifier and a delay line in the feedback loop. The 1st stage of the amplifier is a nonlinear one while...

  12. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    This being the most conservative assumption will cover the largest class of oscillators including those which have multiple, disjoint α regions of stability as can ..... intake of food and energy which will be fruitful only if the new networks are a great improvement and provide the organisms some evolutionary advantages. In.

  13. Oscillator Phase Noise: A Geometrical Approach

    DEFF Research Database (Denmark)

    Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens

    2009-01-01

    We construct a coordinate-independent description of oscillator linear response through a decomposition scheme derived independently of any Floquet theoretic results. Trading matrix algebra for a simpler graphical methodology, the text will present the reader with an opportunity to gain...

  14. Synchronization of indirectly coupled Lorenz oscillators: An ...

    Indian Academy of Sciences (India)

    E-mail: m.shrimali@gmail.com. Abstract. The dynamics of indirectly coupled Lorenz circuits is investigated experimentally. The in-phase and anti-phase synchronization of indirectly coupled chaotic oscillators reported in Phys. Rev. E 81, 046216 (2010) is verified by physical experiments with electronic circuits. Two chaotic.

  15. Hyperchaotic circuit with damped harmonic oscillators

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    2001-01-01

    capacitors and one nonlinear active conductor. The Lyapunov exponents are presented to confirm the hyperchaotic nature of the oscillations of the circuit. The nonlinear conductor is realized with a diode. A negative impedance converter and a linear resistor. The performance of the circuit is investigated...

  16. Oscillation theory of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Došlý, Ondřej

    2000-01-01

    Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics

  17. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    its involvement in the generation of alpha rhythms in the brain. Unfortunately, Wiener's mathematical approach based on Fourier integrals [7] has turned out to be a dead end. [9]. In 1975, Kuramoto introduced a model, which took into consideration oscillators, which were coupled to each other and showed the phenomenon ...

  18. Oscillator clustering in a resource distribution chain

    DEFF Research Database (Denmark)

    Postnov, D.; Sosnovtseva, Olga; Mosekilde, Erik

    2005-01-01

    The paper investigates the special clustering phenomena that one can observe in systems of nonlinear oscillators that are coupled via a shared flow of primary resources (or a common power supply). This type of coupling, which appears to be quite frequent in nature, implies that one can no longer...

  19. CHAOTIC DUFFING TYPE OSCILLATOR WITH INERTIAL DAMPING

    DEFF Research Database (Denmark)

    Tamaševicius, Arunas; Mykolaitis, Gytis; Kirvaitis, Raimundas

    2009-01-01

    A novel Duffing-Holmes type autonomous chaotic oscillator is described. In comparison with the well-known non-autonomous Duffing-Holmes circuit it lacks the external periodic drive, but includes two extra linear feedback sub-circuits, namely a direct positive feedback loop, and an inertial negati...

  20. Laguerre polynomials by a harmonic oscillator

    Science.gov (United States)

    Baykal, Melek; Baykal, Ahmet

    2014-09-01

    The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.

  1. Laguerre polynomials by a harmonic oscillator

    International Nuclear Information System (INIS)

    Baykal, Melek; Baykal, Ahmet

    2014-01-01

    The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)

  2. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    oscillation death and settle down to fixed points. The time series and spatiotemporal plots of both the fast and slow variables in this dynamical region are shown in figure 3. For coupling strengths greater than 0.65 all the cells settle down to fixed points. The number of distinct fixed points depends on the value of ϵ again.

  3. Present and future oscillation experiments at reactors

    International Nuclear Information System (INIS)

    Mikaehlyan, L.A.

    2001-01-01

    A report is presented on recent progress and developments (since the NANP'99 Conference) in the current and future long baseline (∼100 - 800 km) oscillation experiments at reactors. These experiments, under certain assumptions, can fully reconstruct the internal mass structure of the electron neutrino and provide a laboratory test of solar and atmospheric neutrino problems

  4. Oscillation control system for electric motor drive

    Science.gov (United States)

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  5. Liquid Oscillations in a U-Tube

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco; Navarro, Luis Barba

    2018-01-01

    In hydrostatics, pressure measurement with U-gauges and their relationship to density is a well-known experiment. Very little is studied or experimented with the dynamics of the movement of a liquid in a U-tube probably due to its theoretical complexity but, after all, it is a simple damped oscillating system. In this paper we present a relatively…

  6. Synchronization of oscillators in complex networks

    Indian Academy of Sciences (India)

    Abstract. Theory of identical or complete synchronization of identical oscillators in arbitrary networks is introduced. In addition, several graph theory concepts and results that augment the synchronization theory and a tie in closely to random, semirandom, and regular networks are introduced. Combined theories are used to ...

  7. Synthetic hydrogen spectra of prominence oscillations

    Czech Academy of Sciences Publication Activity Database

    Heinzel, Petr; Zapiór, M.; Oliver, R.; Ballester, J.L.

    2014-01-01

    Roč. 562, February (2014), A103/1-A103/9 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0906 Grant - others:MEC(ES) AYA2011-22846 Institutional support: RVO:67985815 Keywords : Sun * oscillations * filament Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  8. ROBUST CONTROL OF OSCILLATIONS IN AGRICULTURAL TRACTORS

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    for agricultural tractors equiped with hicth and implements. A control strategy is developed to make the implement counteract the movement of the tractor and thereby reducing the pitching oscillation. The control strategy is based on a linear plant model with constant or slowly varying parameters. Using...

  9. Control of partial synchronization in chaotic oscillators

    Indian Academy of Sciences (India)

    2015-02-07

    Feb 7, 2015 ... Abstract. A design of coupling is proposed to control partial synchronization in two chaotic oscil- lators in a driver–response mode. A control of synchrony between one response variables is made possible (a transition from a complete synchronization to antisynchronization via amplitude death and vice ...

  10. Sobolev spaces associated to the harmonic oscillator

    Indian Academy of Sciences (India)

    2Departamento de Matemática, Facultad de Ciencias, Universidad Autónoma de. Madrid, Spain. E-mail: bbongio@math.unl.edu.ar; joseluis.torrea@uam.es. MS received 27 September 2005. Abstract. We define the Hermite–Sobolev spaces naturally associated to the harmonic oscillator H = − + |x|2. Structural properties ...

  11. Robust signatures of solar neutrino oscillation solutions

    CERN Document Server

    Bahcall, J N; Peña-Garay, C; Bahcall, John N.; Peña-Garay, Carlos

    2002-01-01

    With the goal of identifying signatures that select specific neutrino oscillation parameters, we test the robustness of global oscillation solutions that fit all the available solar and reactor experimental data. We use three global analysis strategies previously applied by different authors and also determine the sensitivity of the oscillation solutions to the critical nuclear fusion cross section, S_{17}(0), for the production of 8B. The neutral current to charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma) for the favored LMA, LOW, and VAC solutions, which is separated from the no-oscillation value of 1.0 by much more than the expected experimental error. The predicted range of the day-night difference in charged current rates is between 0% and 21% (3 sigma) and is to be strongly correlated with the day-night effect for neutrino-electron scattering. A measurement by SNO of either a NC to CC ratio > 3.3 or a day-night difference > 10%, would favor a small region of the currently allowed LM...

  12. Solar and atmospheric four-neutrino oscillations

    CERN Document Server

    González-Garciá, M Concepción; Peña-Garay, C

    2001-01-01

    We present an analysis of the neutrino oscillation solutions of the solar and atmospheric neutrino problems in the framework of four--neutrino mixing where a sterile neutrino is added to the three standard ones and the mass spectra presents two separated doublets. Such scenarios allow for simultaneous transitions of solar $\

  13. The oscillation of separately locally Lipschitz functions

    Directory of Open Access Journals (Sweden)

    V. H. Herasymchuk

    2011-06-01

    Full Text Available We prove that a function which dened on the product of two metric Baire spaces is the oscillation of some separately locally Lipschitz function if and only if it is an upper semicontinuous non-negative function which has a crosswise nowhere dense closure of its support.

  14. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    Abstract. We show that in the case of unknown harmonic oscillator coherent states it is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state.

  15. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    article/fulltext/pram/059/02/0263-0267. Keywords. Cloning; coherent states. Abstract. We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that ...

  16. Oscillation and chaos in physiological control systems.

    Science.gov (United States)

    Mackey, M C; Glass, L

    1977-07-15

    First-order nonlinear differential-delay equations describing physiological control systems are studied. The equations display a broad diversity of dynamical behavior including limit cycle oscillations, with a variety of wave forms, and apparently aperiodic or "chaotic" solutions. These results are discussed in relation to dynamical respiratory and hematopoietic diseases.

  17. Chemical Oscillations Based on Photoautocatalysis of Ozone

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel

    2001-01-01

    Roč. 342, 3/4 (2001), s. 287-292 ISSN 0009-2614 R&D Projects: GA MŠk LN00A032 Grant - others:Volkswagen Stiftung(DE) I/5908 Institutional research plan: CEZ:AV0Z4040901 Keywords : chemical oscillations * photochemistry * autocatalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.364, year: 2001

  18. Seasonality and mechanisms of tropical intraseasonal oscillations

    Science.gov (United States)

    Hazra, Abheera; Krishnamurthy, V.

    2018-01-01

    This study has compared the monsoon intraseasonal oscillation (MISO) during the boreal summer and Madden Julian Oscillation (MJO) during the boreal winter. Based on MISO and MJO in high-resolution three-dimensional diabatic heating, the possible mechanisms are discussed through observational analyses of dynamical and thermodynamical variables. The MISO and MJO are extracted as nonlinear oscillations during boreal summer and winter, respectively, by applying multi-channel singular spectrum analysis on daily anomalies of diabatic heating over the Indo-Pacific region. Lead and lag relations among moisture, temperature and surface fields relative to diabatic heating are analyzed to compare the mechanisms of MISO and MJO. While both the oscillations show eastward propagation, MISO has a strong northward propagation and MJO has a weak southward propagation as well. The analysis shows that MJO and MISO are essentially driven by the same mechanisms but with some difference in the meridional propagation. The westerly shear leads the diabatic heating, while the vorticity has weak correlation. Large-scale circulation creates positive moisture preconditioning before convection and negative moisture preconditioning before suppressed conditions. A positive lower level horizontal advection of temperature and upper level temperature tendencies lead the convective state while a negative lower level horizontal advection of temperature and upper level temperature tendencies lead the suppressed state. There is positive feedback from the SST to atmosphere. The difference in the meridional propagation of MISO and MJO is hypothesized to be because of the different differential heating meridionally during the two seasons.

  19. Accelerator-based neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  20. Oscillations of first order difference equations

    Indian Academy of Sciences (India)

    equations (see [3, 4]), it seems that the qualitative behaviour of their solutions is not yet studied systematically. In ([4], (see p. 64)) ... study oscillation of (2), the associated nonhomogeneous equation. ynЗ1 З pnyn И bn. Е3Ж and the nonlinear .... the former case, 0  ...

  1. Assessing the quality of stochastic oscillations

    Indian Academy of Sciences (India)

    Abstract. We analyze the relationship between the macroscopic and microscopic de- scriptions of two-state systems, in particular the regime in which the microscopic one shows sustained 'stochastic oscillations' while the macroscopic tends to a fixed point. We propose a quantification of the oscillatory appearance of the ...

  2. Long term oscillations in Danish rainfall extremes

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan

    with a possible link to different climatic drivers, like sea level pressure and sea surface temperature. Regarding Danish drainage design, the found oscillations have implied a substantial variation in the design intensities over time and are partly responsible for the most recent increase observed from 1979...

  3. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    Abstract. Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grat- ing and etalon in combination, grazing angle of incidence, entangled ...

  4. Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 26; Issue 2-3. Asteroseismic Theory of Rapidly Oscillating Ap Stars. Margarida S. Cunha. Volume 26 Issue 2-3 June-September 2005 pp 213-221. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state. By making use ...

  6. Assessing the quality of stochastic oscillations

    Indian Academy of Sciences (India)

    . Mi- croscopic fluctuations are responsible for other interesting phenomena in chemical or chemical-like systems, such as the transition between a chaotic attractor and a fixed point suppression of chaotic oscillations [8–10]. Figure 1 shows the ...

  7. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  8. Synchronization of indirectly coupled Lorenz oscillators: An ...

    Indian Academy of Sciences (India)

    Partial synchronization occurs in a population of chemical oscillators coupled through the concentration of chemical in the surrounding solutions [19]. Two nonlinear chaotic systems coupled indirectly through a common dynamic environment synchronize to in-phase or anti-phase state [20]. The early stages of Alzheimer's ...

  9. QUANTUM THEORY OF DAMPED HARMONIC OSCILLATOR

    African Journals Online (AJOL)

    DJFLEX

    However, the problem of quantum oscillator with time-varying frequency had been solved (Um et al,. 1987). The Hamiltonian of this model is usually quadratic in co-ordinates and momentum operators (Ikot et al, 2008). The quantum calculation is applied because it will give the information about the particle at intermediate ...

  10. Oscillator strength of instantaneous diatomic sodium molecules

    Energy Technology Data Exchange (ETDEWEB)

    Perny, G.

    1991-10-01

    We introduce definitely the notion of instantaneous molecules, real or fictitious, in spite of its utilization in certain fields of the supraconductivity, genetics and advanced medical research. Calculation of the oscillator strength of instantaneous sodium diatomic molecules gives (f{sub mol})sup(Na{sub 2(i)})=6,86. This method is transposable at lithium and other Ia elements. (orig.).

  11. Oscillator strength of instantaneous diatomic sodium molecules

    Science.gov (United States)

    Perny, G.

    1991-12-01

    We introduce definitely the notion of instantaneous molecules, real or fictitious, in spite of its utilization in certain fields of the supraconductivity, genetics and advanced medical research. Calculation of the oscillator strength of instantaneous sodium diatomic molecules gives [ f mol]Na 2( i)=6,86. This method is transposable at lithium and other Ia elements.

  12. A Parametric Oscillator Experiment for Undergraduates

    Science.gov (United States)

    Huff, Alison; Thompson, Johnathon; Pate, Jacob; Kim, Hannah; Chiao, Raymond; Sharping, Jay

    We describe an upper-division undergraduate-level analytic mechanics experiment or classroom demonstration of a weakly-damped pendulum driven into parametric resonance. Students can derive the equations of motion from first principles and extract key oscillator features, such as quality factor and parametric gain, from experimental data. The apparatus is compact, portable and easily constructed from inexpensive components. Motion control and data acquisition are accomplished using an Arduino micro-controller incorporating a servo motor, laser sensor, and data logger. We record the passage time of the pendulum through its equilibrium position and obtain the maximum speed per oscillation as a function of time. As examples of the interesting physics which the experiment reveals, we present contour plots depicting the energy of the system as functions of driven frequency and modulation depth. We observe the transition to steady state oscillation and compare the experimental oscillation threshold with theoretical expectations. A thorough understanding of this hands-on laboratory exercise provides a foundation for current research in quantum information and opto-mechanics, where damped harmonic motion, quality factor, and parametric amplification are central.

  13. Movement of the pulsars and neutrino oscillations

    International Nuclear Information System (INIS)

    Barkovich, M.A.

    2005-01-01

    The astronomical observations show that the pulsars are not in the center of the remainder of the supernovae that gave its origin, but rather are displaced of the same one and moving to a speed of about 500 km/s, which is much bigger that of the progenitor star. This fact constitutes a strong evidence that the pulsars is accelerated in the moment of its birth and by this it is denominated to this phenomenon 'pulsars kick'. They exist numerous and varied mechanisms to explain this effect, but none makes it in way completely satisfactory. In this thesis we will study in detail a mechanism proposed originally by Kusenko and Segre and that is based on an asymmetric emission of the neutrinos flow induced by the oscillations of the same ones when its spread in a magnetized media. For this end we will develop, in first instance, the Eddington model. This is based on the transport of the neutrino flux and it describes in a reasonable way the atmosphere of a neutron protostar, place where take place the oscillations. Next we will study the problem of the emission of a neutrino gas from a resonance volume. These results will be applied to the study of the kick in the cases of oscillations among active neutrinos and actives with sterile to determine the magnetic field and the oscillation parameters (difference of the square of the masses of those neutrinos and mixture angle in vacuum) required. Finally we will analyze those neutrino oscillations induced by a possible violation of the Equivalence principle and it implication in the pulsars dynamics. (Author)

  14. Enhancing synchronization in chaotic oscillators by induced heterogeneity

    Science.gov (United States)

    Banerjee, Ranjib; Bera, Bidesh K.; Ghosh, Dibakar; Dana, Syamal Kumar

    2017-06-01

    We report enhancing of complete synchronization in identical chaotic oscillators when their interaction is mediated by a mismatched oscillator. The identical oscillators now interact indirectly through the intermediate relay oscillator. The induced heterogeneity in the intermediate oscillator plays a constructive role in reducing the critical coupling for a transition to complete synchronization. A common lag synchronization emerges between the mismatched relay oscillator and its neighboring identical oscillators that leads to this enhancing effect. We present examples of one-dimensional open array, a ring, a star network and a two-dimensional lattice of dynamical systems to demonstrate how this enhancing effect occurs. The paradigmatic Rössler oscillator is used as a dynamical unit, in our numerical experiment, for different networks to reveal the enhancing phenomenon.

  15. MMIC Cavity Oscillator at 50 and 94 GHz, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative, ultra low noise, single chip cavity oscillator is proposed. The oscillator is fully integrated on standard MMIC process. It operates in the frequency...

  16. Fractal Scaling Models of Resonant Oscillations in Chain Systems of Harmonic Oscillators

    OpenAIRE

    Müller H.

    2009-01-01

    Logarithmic scaling invariance is a wide distributed natural phenomenon and was proved in the distributions of physical properties of various processes — in high en- ergy physics, chemistry, seismicity, biology, geology and technology. Based on the Gantmacher-Krein continued fraction method the present paper introduces fractal scal- ing models of resonant oscillations in chain systems of harmonic oscillators. These models generate logarithmic scaling spect...

  17. Driven damped harmonic oscillator resonance with an Arduino

    Science.gov (United States)

    Goncalves, A. M. B.; Cena, C. R.; Bozano, D. F.

    2017-07-01

    In this paper we propose a simple experimental apparatus that can be used to show quantitative and qualitative results of resonance in a driven damped harmonic oscillator. The driven oscillation is made by a servo motor, and the oscillation amplitude is measured by an ultrasonic position sensor. Both are controlled by an Arduino board. The frequency of free oscillation measured was campatible with the resonance frequency that was measured.

  18. Phase patterns of coupled oscillators with application to wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.

    2008-01-02

    Here we study the plausibility of a phase oscillators dynamical model for TDMA in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.

  19. Quorum Sensing and Synchronization in Populations of Coupled Chemical Oscillators

    Science.gov (United States)

    Taylor, Annette F.; Tinsley, Mark R.; Showalter, Kenneth

    2013-12-01

    Experiments and simulations of populations of coupled chemical oscillators, consisting of catalytic particles suspended in solution, provide insights into density-dependent dynamics displayed by many cellular organisms. Gradual synchronization transitions, the "switching on" of activity above a threshold number of oscillators (quorum sensing) and the formation of synchronized groups (clusters) of oscillators have been characterized. Collective behavior is driven by the response of the oscillators to chemicals emitted into the surrounding solution.

  20. Direct observation of surface-state thermal oscillations in SmB6 oscillators

    Science.gov (United States)

    Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing

    2018-01-01

    SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.