WorldWideScience

Sample records for shows potential anticancer

  1. Biological evaluation of tubulysin A: A potential anticancer and antiangiogenic natural product

    NARCIS (Netherlands)

    Kaur, Gurmeet; Hollingshead, Melinda; Holbeck, Susan; Schauer-Vukašinović, Vesna; Camalier, Richard F.; Dömling, Alexander; Agarwal, Seema

    2006-01-01

    Tubulysin A (tubA) is a natural product isolated from a strain of myxobacteria that has been shown to depolymerize microtubules and induce mitotic arrest. The potential of tubA as an anticancer and antiangiogenic agent is explored in the present study. tubA shows potent antiproliferative activity in

  2. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone

    Directory of Open Access Journals (Sweden)

    Xuejing Lin

    2015-05-01

    Full Text Available Costunolide (CE and dehydrocostuslactone (DE are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.

  3. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    Science.gov (United States)

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  4. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    van Leeuwen, R. W. F.; Brundel, D. H. S.; Neef, C.; van Gelder, T.; Mathijssen, R. H. J.; Burger, D. M.; Jansman, F. G. A.

    2013-01-01

    Background: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment. Methods: A

  5. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    R.W.F. van Leeuwen (Roelof); D.H.S. Brundel (D. H S); C. Neef (Cees); T. van Gelder (Teun); A.H.J. Mathijssen (Ron); D.M. Burger (David); F.G.A. Jansman (Frank)

    2013-01-01

    textabstractBackground: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment.

  6. Dihydrochalcone Compounds Isolated from Crabapple Leaves Showed Anticancer Effects on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Qin

    2015-11-01

    Full Text Available Seven dihydrochalcone compounds were isolated from the leaves of Malus crabapples, cv. “Radiant”, and their chemical structures were elucidated by UV, IR, ESI-MS, 1H-NMR and 13C-NMR analyses. These compounds, which include trilobatin (A1, phloretin (A2, 3-hydroxyphloretin (A3, phloretin rutinoside (A4, phlorizin (A5, 6′′-O-coumaroyl-4′-O-glucopyranosylphloretin (A6, and 3′′′-methoxy-6′′-O-feruloy-4′-O-glucopyranosyl-phloretin (A7, all belong to the phloretin class and its derivatives. Compounds A6 and A7 are two new rare dihydrochalcone compounds. The results of a MTT cancer cell growth inhibition assay demonstrated that phloretin and these derivatives showed significant positive anticancer activities against several human cancer cell lines, including the A549 human lung cancer cell line, Bel 7402 liver cancer cell line, HepG2 human ileocecal cancer cell line, and HT-29 human colon cancer cell line. A7 had significant effects on all cancer cell lines, suggesting potential applications for phloretin and its derivatives. Adding a methoxyl group to phloretin dramatically increases phloretin’s anticancer activity.

  7. Synthesis and Evaluation of New Potential Benzo[a]phenoxazinium Photosensitizers for Anticancer Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2018-06-01

    Full Text Available The use of photodynamic therapy (PDT and development of novel photosensitizers (PSs for cancer treatment have received more and more attention nowadays. In the present work, five benzo[a]phenoxazinium derivatives have been prepared and evaluated for their in vitro anticancer photodynamic activity for the first time. They are red light absorbers and show low fluorescence quantum yield. Of these compounds, PS4 exhibited a higher quantum yield for reactive oxygen species (ROS generation. The assays with cells in vitro showed that PS1 and PS4 were not significantly toxic in the dark, but was robustly toxic against the murine breast adenocarcinoma cells 4T1 and normal murine fibroblast cells NIH-3T3 upon photoactivation. More interestingly, PS5 was particularly selective towards 4T1 cancer cells and nearly non-phototoxic to non-cancerous NIH-3T3 cells. The results described in this report suggest that these new benzo[a]phenoxazinium derivatives are potential candidates as PSs for anticancer PDT. Further investigation of benzo[a]phenoxaziniums for anticancer PDT is warranted.

  8. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Francesca Carlini

    Full Text Available BACKGROUND: Transposable Elements (TEs comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1 and Human Endogenous Retroviruses (HERVs that code for their own endogenous reverse transcriptase (RT. Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC, a nucleoside reverse transcription inhibitor (NRTI, on PC3 and LNCaP prostate cancer cell lines. PRINCIPAL FINDINGS: ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. CONCLUSIONS: Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications.

  9. A functional perspective of nitazoxanide as a potential anticancer drug

    International Nuclear Information System (INIS)

    Di Santo, Nicola; Ehrisman, Jessie

    2014-01-01

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  10. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  11. Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants.

    Science.gov (United States)

    Ntie-Kang, Fidele; Simoben, Conrad Veranso; Karaman, Berin; Ngwa, Valery Fuh; Judson, Philip Neville; Sippl, Wolfgang; Mbaze, Luc Meva'a

    2016-01-01

    Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B β, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner-Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa's expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.

  12. Anticancer Potential of Nutraceutical Formulations in MNU-induced Mammary Cancer in Sprague Dawley Rats.

    Science.gov (United States)

    Pitchaiah, Gummalla; Akula, Annapurna; Chandi, Vishala

    2017-01-01

    Nutraceuticals help in combating some of the major health problems of the century including cancer, and 'nutraceutical formulations' have led to the new era of medicine and health. To develop different nutraceutical formulations and to assess the anticancer potential of nutraceutical formulations in N-methyl-N-nitrosourea (MNU)-induced mammary cancer in Sprague Dawley rats. Different nutraceutical formulations were prepared using fine powders of amla, apple, garlic, onion, papaya, turmeric, and wheat grass with and without cow urine distillate. Total phenolic content, acute oral toxicity, and microbial load of nutraceutical formulations were assessed. The anticancer potential of nutraceutical formulations was evaluated against MNU-induced mammary cancer in female Sprague Dawley rats. Improvement in total phenolic content was significant ( P safe to use in animals. Microbial load was within the limits. Significant longer tumor-free days ( P apple, garlic, onion, papaya, turmeric, and wheat grass with and without cow urine distillate. Total phenolic content, acute oral toxicity, and microbial load of nutraceutical formulations were assessed. The anticancer potential of nutraceutical formulations was evaluated against MNU-induced mammary cancer in female Sprague Dawley rats. Improvement in total phenolic content was observed after self-fortification process. Toxicity studies showed that the nutraceutical formulations were safe to use in animals. Microbial load was within the limits. Longer tumor-free days, lower tumor incidence, lower tumor multiplicity and tumor burden were observed for nutraceutical formulation-treated groups. This suggests that combination of whole food-based nutraceuticals acted synergistically in the prevention of mammary cancer. Further, the process of fortification enhanced the anticancer potential of nutraceutical formulations. Abbreviations used: HMNU: N-methyl-N-nitrosourea, CAM: Complementary and Alternative Medicine, NF: Nutraceutical

  13. Glycosides from Medicinal Plants as Potential Anticancer Agents: Emerging Trends towards Future Drugs.

    Science.gov (United States)

    Khan, Haroon; Saeedi, Mina; Nabavi, Seyed Mohammad; Mubarak, Mohammad S; Bishayee, Anupam

    2018-04-03

    Cancer continues to be a global burden, despite the advancement of various technological and pharmaceutical improvements over the past two decades. Methods for treating cancer include surgery, radiotherapy and chemotherapy in addition to other specialized techniques. On the other hand, medicinal plants have been traditionally employed either as the complementary medicine or dietary agents in the treatment and management of cancer. Medicinal plants are a rich source of secondary metabolites with interesting biological and pharmacological activities. Among these metabolites, glycosides are naturally occurring substances and have outstanding therapeutic potential and clinical utility. Different medical research engines such GoogleScholar, PubMed, SpringerLink, ScienceDirect were used to collect related literature on the subject matter. In this regard, only peer reviewed journals were considered. Emerging results showed that numerous glycosides isolated from various plants possessed marked anticancer activity against a variety of cancer cell lines. Accordingly, the aim of the present review is to shed light on the anticancer effects of glycosides, analyze possible mechanisms of action, and highlight the role of these natural agents as complementary and alternative medicine in combating and managing cancer. The glycosides isolated from different plants demonstrated potent cytotoxic effects against various cancer cell lines in initial preclinical studies. The anticancer effect was mediated through multiple mechanisms; however further detail studies are needed to understand the full potential of glycosides for clinical utility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    Science.gov (United States)

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  15. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles.

    Science.gov (United States)

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.

  16. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents.

    Science.gov (United States)

    Zheng, Yanyan; Zhu, Li; Fan, Lulu; Zhao, Wenna; Wang, Jianlong; Hao, Xianxiao; Zhu, Yunhui; Hu, Xiufang; Yuan, Yaofeng; Shao, Jingwei; Wang, Wenfeng

    2017-01-05

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum L., has been demonstrated to exhibit good anti-cancer effect. In this study, a series of novel quaternary ammonium salts of emodin, anthraquinone and anthrone were synthesized and their anticancer activities were tested in vitro. The effects of emodin quaternary ammonium salts on cell viability, apoptosis, intracellular ROS, and mitochondrial membrane potential were investigated in A375, BGC-823, HepG2 and HELF cells. The results demonstrated that compound 4a induced morphological changes and decreased cell viability. Apoptosis triggered by compound 4a was visualized using DAPI staining and Annexin V-FITC/PI staining. Compound 4a-induced apoptosis of A375 cells were showed to be associated with the dissipation of mitochondrial membrane potential (ΔΨm) as a result of the up-regulation of P53 and Caspase-3. When cancer cells were treated with emodin derivative, their ability to generate reactive oxygen species (ROS) rose significantly and the mitochondrial membrane potential decreased. Additionally, confocal microscopy assay confirmed that compound 4a was primarily located in the mitochondria of A375 cells. These results suggested that compound 4a has the potential for use in cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Strategies to enhance the anticancer potential of TNF.

    Science.gov (United States)

    Pilati, Pierluigi; Rossi, Carlo Riccardo; Mocellin, Simone

    2008-01-01

    Although tumor necrosis factor (TNF) antitumor activity is evident in several preclinical models and in non-comparative clinical trials, no evidence exists that TNF-based treatments increase patient survival. Furthermore, due to systemic toxicity, TNF can only be administered via sophisticated drug-delivery systems in patients with solid tumors confined to one extremity or organ. The impossibility to administer TNF systemically does not allow to test the effectiveness of this cytokine in other clinical settings for the treatment of a broader spectrum of tumor types. Dissecting the cascade of molecular events underlying tumor sensitivity to TNF researchers will allow to further exploit the anticancer potential of this molecule. The rational for the development of strategies aimed at sensitizing malignant cells to TNF is to modulate tumor-specific molecular derangements in order to maximize the selectivity of TNF cytotoxicity towards cancer. This would enhance the anticancer activity of current TNF-based locoregional regimens and would pave the way to the systemic administration of this cytokine and thus to a much wider clinical experimentation of TNF in the oncology field.

  18. Maltese Mushroom (Cynomorium coccineum L. as Source of Oil with Potential Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Antonella Rosa

    2015-01-01

    Full Text Available The present study aimed to examine the potential anticancer properties of fixed oil obtained from Maltese mushroom (Cynomorium coccineum L., an edible, non-photosynthetic plant, used in traditional medicine of Mediterranean countries to treat various ailments and as an emergency food during the famine. We investigated the effect of the oil, obtained from dried stems by supercritical fractioned extraction with CO2, on B16F10 melanoma and colon cancer Caco-2 cell viability and lipid profile. The oil, rich in essential fatty acids (18:3n-3 and 18:2n-6, showed a significant growth inhibitory effect on melanoma and colon cancer cells. The incubation (24 h with non-toxic oil concentrations (25 and 50 μg/mL induced in both cancer cell lines a significant accumulation of the fatty acids 18:3n-3 and 18:2n-6 and an increase of the cellular levels of eicosapentaenoic acid (20:5n-3 with anticancer activity. Moreover, the oil exhibited the ability to potentiate the growth inhibitory effect of the antitumor drug 5-fluorouracil in Caco-2 cells and to influence the melanin content in B16F10 cells. The results qualify C. coccineum as a resource of oil, with potential benefits in cancer prevention, for nutraceutical and pharmaceutical applications.

  19. Functional evaluation of synthetic flavonoids and chalcones for potential antiviral and anticancer properties.

    Science.gov (United States)

    Mateeva, Nelly; Eyunni, Suresh V K; Redda, Kinfe K; Ononuju, Ucheze; Hansberry, Tony D; Aikens, Cecilia; Nag, Anita

    2017-06-01

    Flavonoids, stilbenes, and chalcones are plant secondary metabolites that often possess diverse biological activities including anti-inflammatory, anti-cancer, and anti-viral activities. The wide range of bioactivities poses a challenge to identify their targets. Here, we studied a set of synthetically generated flavonoids and chalcones to evaluate for their biological activity, and compared similarly substituted flavonoids and chalcones. Substituted chalcones, but not flavonoids, showed inhibition of viral translation without significantly affecting viral replication in cells infected with hepatitis C virus (HCV). We suggest that the chalcones used in this study inhibit mammalian target of rapamycin (mTOR) pathway by ablating phosphorylation of ribosomal protein 6 (rps6), and also the kinase necessary for phosphorylating rps6 in Huh7.5 cells (pS6K1). In addition, selected chalcones showed inhibition of growth in Ishikawa, MCF7, and MDA-MB-231 cells resulting an IC 50 of 1-6µg/mL. When similarly substituted flavonoids were used against the same set of cancer cells, we did not observe any inhibitory effect. Together, we report that chalcones show potential for anti-viral and anti-cancer activities compared to similarly substituted flavonoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery

    Directory of Open Access Journals (Sweden)

    Yuan-Seng Wu

    2017-10-01

    Full Text Available Surfactin, a cyclic lipopeptide biosurfactant produced by various strains of Bacillus genus, has been shown to induce cytotoxicity against many cancer types, such as Ehrlich ascites, breast and colon cancers, leukemia and hepatoma. Surfactin treatment can inhibit cancer progression by growth inhibition, cell cycle arrest, apoptosis, and metastasis arrest. Owing to the potent effect of surfactin on cancer cells, numerous studies have recently investigated the mechanisms that underlie its anticancer activity. The amphiphilic nature of surfactin allows its easy incorporation nano-formulations, such as polymeric nanoparticles, micelles, microemulsions, liposomes, to name a few. The use of nano-formulations offers the advantage of optimizing surfactin delivery for an improved anticancer therapy. This review focuses on the current knowledge of surfactin properties and biosynthesis; anticancer activity against different cancer models and the underlying mechanisms involved; as well as the potential application of nano-formulations for optimal surfactin delivery.

  1. Cytogenotoxic effects of two potential anticancer Ruthenium(III Schiff Bases complexes

    Directory of Open Access Journals (Sweden)

    Izet Eminovic

    2016-10-01

    Full Text Available Introduction: Treatment of cancer has been subject of great interest. Researchers are continuously searching for new medicines. In this sense, ruthenium complexes have big potential. Some evidences suggest that ruthenium compounds possess anticancer activities. We synthesized two recently published ruthenium(III complexes with bidentate O,N and tridentate O,O,N Schiff bases derived from 5-substituted salicylaldehyde and aminophenol or anilineare. These compounds showed affinity for binding to the DNA molecule, however, insufficient data are available regarding their possible toxic effects on biological systems.Methods: In the present study we evaluated genotoxic, cytotoxic, and cytostatic effects of Na[RuCl2(L12] and Na[Ru(L22], using the Allium cepa assay.Results: Different toxic effects were observed depending on the substance, tested concentration, and endpoint measured. In general, the tested compounds significantly lowered the root growth and mitotic index values as compared to the control group. Additionally, a wide range of abnormal mitotic stages, both clastogenic and non-clastogenic were observed in the treated cells. Na[RuCl2(L12] significantly increased the frequency of sticky metaphases, chromosome bridges, micronuclei, impaired chromosome segregation, as well as number of apoptotic and necrotic cells over the controls. In contrast, Na[Ru(L22] did not show significant evidence of genotoxicity with regard to chromosome aberrations and micronuclei, however, significant differences were detected in the number of apoptotic and necrotic cells when the highest concentration was applied.Conclusions: In this study we demonstrated antiproliferative effects of Na[RuCl2(L12] and Na[Ru(L22]. At clinical level, these results could be interesting for further studies on anticancer potential of the ruthenium(III complexes using animal models.

  2. Evaluation of DNA-damaging marine natural product with potential anticancer activity

    International Nuclear Information System (INIS)

    Nisa, M.; Amjad, S.; Chaudhary, M.I.; Sualah, R.; Khan, S.H.

    2002-01-01

    The treatment for the dreadful disease cancer require a continued development of novel and improved chemo preventive and chemotherapeutic agents. An exploitable feature of tumor cell is that it has defect in its ability to repair damage to DNA as compared with normal cell, suggesting that agent with selective toxicity towards DNA repair deficient cell might be potential anticancer agent. In a recently developed mechanism based approach discovery. DNA repair a recombination-deficient mutants of the yeast Saccharomyces cerevisiae were utilized, as yeast and bacteria are the popular genetically engineered microorganisms. We have scanned organic solvent extracts of about thirty five different species of marine flora and fauna under DNA-damaging activity assays. Marine plants showed no activity towards this bioassay, whereas marine animals tested under this bioassay showed good activity. Detail results of our studies will be discussed in this paper. (author)

  3. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    Science.gov (United States)

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Anticancer potential of Hericium erinaceus extracts against particular human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Younis AM

    2017-06-01

    Full Text Available Cancer is a leading cause of death worldwide. Cancer resulted in 8.2 million human deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2013 to 22 million within the next two decades. Mushrooms are extensively used as nutritional supplements in many countries. Moreover, mushrooms have many medicinal properties, including anticancer activity. In this study, the anticancer activity of different polar and non-polar extracts of Hericium erinaceus were evaluated against different human cancer cell lines including human liver carcinoma (Hep G2, the human colonic epithelial carcinoma (HCT 116, the human cervical cancer cells (HeLa and the human breast adenocarcinoma (MCF-7 using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Furthermore, as a control, the cytotoxicity effect of the different extracts were tested against isolated mouse hepatocytes. It was observed that the extracts by water and methanol from fresh and lyophilized fruiting bodies of H. erinaceus had the strongest anticancer effect. In contrast, the extracts by ether and ethyl acetate from mycelia and broth of H. erinaceus showed lower anticancer activity against the tested carcinoma cell lines. The highest anticancer activity was recorded for aqueous extract of lyophilized fruiting bodies with half maximal inhibitory concentration (IC50 values of 6.1±0.2, 5.1±0.1, 5.7±0.2 and 5.8±0.3 µg/ml against Hep G2, HCT 116, HeLa and MCF-7 cells, respectively with non-significant effect on the normal mouse hepatocytes. To summarise, polar extracts of H. erinaceus can be good sources for isolating natural anticancer compounds. I recommend further chemical studies to isolate the active principles of the extract of H. erinaceus evaluated in the present.

  5. Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Xu De Wang

    2018-04-01

    Full Text Available Background: AD-2 (20(R-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD is a ginsenoside and isolated from Panax ginseng, showing anticancer activity against extensive human cancer cell lines. In this study, effects and mechanisms of 1C ((20R-3b-O-(L-alanyl-dammarane-12b, 20, 25-triol, a modified version of AD-2, were evaluated for its development as a novel anticancer drug. Methods: MTT assay was performed to evaluate cell cytotoxic activity. Cell cycle and levels of reactive oxygen species (ROS were determined using flow cytometry analysis. Western blotting was employed to analyze signaling pathways. Results: 1C concentration-dependently reduces prostate cancer cell viability without affecting normal human gastric epithelial cell line-1 viability. In LNCaP prostate cancer cells, 1C triggered apoptosis via Bcl-2 family-mediated mitochondria pathway, downregulated expression of mouse double minute 2, upregulated expression of p53 and stimulated ROS production. ROS scavenger, N-acetylcysteine, can attenuate 1C-induced apoptosis. 1C also inhibited the proliferation of LNCaP cells through inhibition on Wnt/β-catenin signaling pathway. Conclusion: 1C shows obvious anticancer activity based on inducing cell apoptosis by Bcl-2 family-mediated mitochondria pathway and ROS production, inhibiting Wnt/β-catenin signaling pathway. These findings demonstrate that 1C may provide leads as a potential agent for cancer therapy. Keywords: 1C, AD-2, apoptosis, reactive oxygen species, Wnt/β-catenin pathway

  6. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin.

    Science.gov (United States)

    Tyagi, Amit Kumar; Prasad, Sahdeo; Yuan, Wei; Li, Shiyou; Aggarwal, Bharat B

    2015-12-01

    Considering that as many as 80% of the anticancer drugs have their roots in natural products derived from traditional medicine, we examined compounds other than curcumin from turmeric (Curcuma longa) that could exhibit anticancer potential. Present study describes the isolation and characterization of another turmeric-derived compound, β-sesquiphellandrene (SQP) that exhibits anticancer potential comparable to that of curcumin. We isolated several compounds from turmeric, including SQP, α-curcumene, ar-turmerone, α-turmerone, β-turmerone, and γ-turmerone, only SQP was found to have antiproliferative effects comparable to those of curcumin in human leukemia, multiple myeloma, and colorectal cancer cells. While lack of the NF-κB-p65 protein had no effect on the activity of SQP, lung cancer cells that expressed p53 were more susceptible to the cytotoxic effect of SQP than were cells that lacked p53 expression. SQP was also found to be highly effective in suppressing cancer cell colony formation and inducing apoptosis, as shown by assays of intracellular esterase activity, plasma membrane integrity, and cell-cycle phase. SQP was found to induce cytochrome c release and activate caspases that lead to poly ADP ribose polymerase cleavage. SQP exposure was associated with downregulation of cell survival proteins such cFLIP, Bcl-xL, Bcl-2, c-IAP1, and survivin. Furthermore, SQP was found to be synergistic with the chemotherapeutic agents velcade, thalidomide and capecitabine. Overall, our results indicate that SQP has anticancer potential comparable to that of curcumin.

  7. Apoptin towards safe and efficient anticancer therapies.

    Science.gov (United States)

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  8. (-)-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer.

    Science.gov (United States)

    Crous-Masó, Joan; Palomeras, Sònia; Relat, Joana; Camó, Cristina; Martínez-Garza, Úrsula; Planas, Marta; Feliu, Lidia; Puig, Teresa

    2018-05-11

    (-)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.

  9. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity.

    Science.gov (United States)

    Xia, Yi; Qu, Fanqi; Peng, Ling

    2010-08-01

    Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.

  10. Potential Anticancer Properties of Grape Antioxidants

    Directory of Open Access Journals (Sweden)

    Kequan Zhou

    2012-01-01

    Full Text Available Dietary intake of foods rich in antioxidant properties is suggested to be cancer protective. Foods rich in antioxidant properties include grape (Vitis vinifera, one of the world’s largest fruit crops and most commonly consumed fruits in the world. The composition and cancer-protective effects of major phenolic antioxidants in grape skin and seed extracts are discussed in this review. Grape skin and seed extracts exert strong free radical scavenging and chelating activities and inhibit lipid oxidation in various food and cell models in vitro. The use of grape antioxidants are promising against a broad range of cancer cells by targeting epidermal growth factor receptor (EGFR and its downstream pathways, inhibiting over-expression of COX-2 and prostaglandin E2 receptors, or modifying estrogen receptor pathways, resulting in cell cycle arrest and apoptosis. Interestingly, some of these activities were also demonstrated in animal models. However, in vivo studies have demonstrated inconsistent antioxidant efficacy. Nonetheless, a growing body of evidence from human clinical trials has demonstrated that consumption of grape, wine and grape juice exerts many health-promoting and possible anti-cancer effects. Thus, grape skin and seed extracts have great potential in cancer prevention and further investigation into this exciting field is warranted.

  11. (−-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Joan Crous-Masó

    2018-05-01

    Full Text Available (−-Epigallocatechin 3-gallate (EGCG is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN, which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination to be further characterized in vitro and in vivo.

  12. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-01

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  13. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-15

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  14. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra

    Directory of Open Access Journals (Sweden)

    Bednarski Patrick J

    2009-03-01

    Full Text Available Abstract Background Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island for their in vitro anticancer, antimicrobial and antioxidant activities. Methods The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7 by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done. Results Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia, Euclea divinorum, Euphorbia socotrana, Leucas samhaensis, Leucas virgata, Rhus thyrsiflora, and Teucrium sokotranum with inhibition zones > 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and Commiphora ornifolia showed good antioxidant potential

  15. Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra

    Science.gov (United States)

    2009-01-01

    Background Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island) for their in vitro anticancer, antimicrobial and antioxidant activities. Methods The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7) by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done. Results Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and Commiphora ornifolia showed good antioxidant potential at low concentrations (more than 80% at 50 μg/ml). Conclusion Our results show once again that medicinal plants can be promising sources of natural products with potential anticancer, antimicrobial and antioxidative activity. The results will guide

  16. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells

    International Nuclear Information System (INIS)

    Sasaki, Kazuhito; Hiyoshi, Masaya; Kaneko, Manabu; Kitayama, Joji; Takahashi, Koki; Nagawa, Hirokazu; Tsuno, Nelson H; Sunami, Eiji; Tsurita, Giichiro; Kawai, Kazushige; Okaji, Yurai; Nishikawa, Takeshi; Shuno, Yasutaka; Hongo, Kumiko

    2010-01-01

    Chloroquine (CQ), the worldwide used anti-malarial drug, has recently being focused as a potential anti-cancer agent as well as a chemosensitizer when used in combination with anti-cancer drugs. It has been shown to inhibit cell growth and/or to induce cell death in various types of cancer. 5-Fluorouracil (5-FU) is the chemotherapeutic agent of first choice in colorectal cancer, but in most cases, resistance to 5-FU develops through various mechanisms. Here, we focused on the combination of CQ as a mechanism to potentiate the inhibitory effect of 5-FU on human colon cancer cells. HT-29 cells were treated with CQ and/or 5-FU, and their proliferative ability, apoptosis and autophagy induction effects, and the affection of the cell cycle were evaluated. The proliferative ability of HT-29 was analyzed by the MTS assay. Apoptosis was quantified by flow-cytometry after double-staining of the cells with AnnexinV/PI. The cell cycle was evaluated by flow-cytometry after staining of cells with PI. Autophagy was quantified by flow-cytometry and Western blot analysis. Finally, to evaluate the fate of the cells treated with CQ and/or 5-FU, the colony formation assay was performed. 5-FU inhibited the proliferative activity of HT-29 cells, which was mostly dependent on the arrest of the cells to the G0/G1-phase but also partially on apoptosis induction, and the effect was potentiated by CQ pre-treatment. The potentiation of the inhibitory effect of 5-FU by CQ was dependent on the increase of p21 Cip1 and p27 Kip1 and the decrease of CDK2. Since CQ is reported to inhibit autophagy, the catabolic process necessary for cell survival under conditions of cell starvation or stress, which is induced by cancer cells as a protective mechanism against chemotherapeutic agents, we also analyzed the induction of autophagy in HT-29. HT-29 induced autophagy in response to 5-FU, and CQ inhibited this induction, a possible mechanism of the potentiation of the anti-cancer effect of 5-FU. Our

  17. Macroalgae Extracts From Antarctica Have Antimicrobial and Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Rosiane M. Martins

    2018-03-01

    sequentially with different solventsThe antimicrobial and anticancer potential of macroalgae extracts were evaluatedEthyl acetate extract of H. grandifolius showed noticeable antifungal activity against all the fungal strains tested, including fluconazole-resistant samplesEthyl acetate extract of I. cordata was highly cytotoxic against the A-431 cancer cell lineMost of the algal extracts tested showed little or no cytotoxicity against normal cell lines

  18. Anticancer Activity of Bacterial Proteins and Peptides.

    Science.gov (United States)

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  19. New chroman-4-one/thiochroman-4-one derivatives as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Seref Demirayak

    2017-11-01

    Full Text Available The synthesis of 3-[3/4-(2-aryl-2-oxoethoxyarylidene]chroman/thiochroman-4-one derivatives (1–34 and evaluation of their anticancer activities were aimed in this work. Final compounds were obtained in multistep synthesis reactions using phenol/thiophenol derivatives as starting materials. For anticancer activity evaluation, all compounds were offered to National Cancer Institute (NCI, USA and selected ones were tested against sixty human tumor cell lines derived from nine neoplastic diseases. The activity results were evaluated according to the drug screening protocol of the institute. Compounds containing thiochromanone skeleton exhibited higher anticancer activity.

  20. Fascaplysin Sensitizes Anti-Cancer Effects of Drugs Targeting AKT and AMPK

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-12-01

    Full Text Available Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB, also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK, which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.

  1. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    Directory of Open Access Journals (Sweden)

    Chi H.J. Kao

    2013-02-01

    Full Text Available ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides being widely known as the major active ingredients, the different biological pathways by which they exert their anti-cancer effect remain poorly defined. Therefore, understanding the mechanisms of action may lead to more widespread use of Ganoderma as an anti-cancer agent.The aim of this paper is to summarise the various bioactive mechanisms that have been proposed for the anti-cancer properties of triterpenes and polysaccharides extracted from G. lucidum. A literature search of published papers on NCBI with keywords “Ganoderma” and “cancer” was performed. Among those, studies which specifically examined the anti-cancer activities of Ganoderma triterpenes and polysaccharides were selected to be included in this paper.We have found five potential mechanisms which are associated with the anti-cancer activities of Ganoderma triterpenes and three potential mechanisms for Ganoderma polysaccharides. In addition, G. lucidum has been used in combination with known anti-cancer agents to improve the anti-cancer efficacies. This suggests Ganoderma’s bioactive pathways may compliment that of anti-cancer agents. In this paper we present several potential anti-cancer mechanisms of Ganoderma triterpenes and polysaccharides which can be used for the development of Ganoderma as an anti-cancer agent.

  2. Marine Fungi: A Source of Potential Anticancer Compounds

    Directory of Open Access Journals (Sweden)

    Sunil K. Deshmukh

    2018-01-01

    Full Text Available Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines.

  3. Anticancer effects of Ganoderma lucidum: a review of scientific evidence.

    Science.gov (United States)

    Yuen, John W M; Gohel, Mayur Danny I

    2005-01-01

    "Lingzhi" (Ganoderma lucidum), a popular medicinal mushroom, has been used in China for longevity and health promotion since ancient times. Investigations into the anticancer activity of lingzhi have been performed in both in vitro and in vivo studies, supporting its application for cancer treatment and prevention. The proposed anticancer activity of lingzhi has prompted its usage by cancer patients. It remains debatable as to whether lingzhi is a food supplement for health maintenance or actually a therapeutic "drug" for medical proposes. Thus far there has been no report of human trials using lingzhi as a direct anticancer agent, despite some evidence showing the usage of lingzhi as a potential supplement to cancer patients. Cellular immune responses and mitogenic reactivity of cancer patients have been enhanced by lingzhi, as reported in two randomized and one nonrandomized trials, and the quality of life of 65% of lung cancer patients improved in one study. The direct cytotoxic and anti-angiogenesis mechanisms of lingzhi have been established by in vitro studies; however, clinical studies should not be neglected to define the applicable dosage in vivo. At present, lingzhi is a health food supplement to support cancer patients, yet the evidence supporting the potential of direct in vivo anticancer effects should not be underestimated. Lingzhi or its products can be classified as an anticancer agent when current and more direct scientific evidence becomes available.

  4. Design, synthesis and development of novel indolocarbazole derivatives as potential anti-cancer agents

    OpenAIRE

    Pierce, Laurence Thomas

    2011-01-01

    This thesis describes work carried out on the design of new routes to a range of bisindolylmaleimide and indolo[2,3-a]carbazole analogs, and investigation of their potential as successful anti-cancer agents. Following initial investigation of classical routes to indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycons, a new strategy employing base-mediated condensation of thiourea and guanidine with a bisindolyl β-ketoester intermediate afforded novel 5,6-bisindolylpyrimidin-4(3H)-ones in moderat...

  5. Anticancer potential of Hericium erinaceus extracts against human gastrointestinal cancers.

    Science.gov (United States)

    Li, Guang; Yu, Kai; Li, Fushuang; Xu, Kangping; Li, Jing; He, Shujin; Cao, Shousong; Tan, Guishan

    2014-04-28

    indole, pyrimidines, amino acids and derivative, three flavones, one anthraquinone, and six small aromatic compounds. HTJ5 and HTJ5A exhibited concentration-dependent cytotoxicity in vitro against liver cancer HepG2 and Huh-7, colon cancer HT-29, and gastric cancer NCI-87 cells with the IC50 in 2.50±0.25 and 2.00±0.25, 0.80±0.08 and 1.50±0.28, 1.25±0.06 and 1.25±0.05, and 5.00±0.22 and 4.50±0.14 mg/ml; respectively. For in vivo tumor xenograft studies, HTJ5 and HTJ5A showed significantly antitumor efficacy against all four xenograft models of HepG2, Huh-7, HT-29 and NCI-87 without toxicity to the host. Furthermore, HTJ5 and HTJ5A are more effective than that of 5-FU against the four tumors with less toxicity. HE extracts (HTJ5 and HTJ5A) are active against liver cancer HepG2 and Huh-7, colon cancer HT-29 and gastric cancer NCI-87 cells in vitro and tumor xenografts bearing in SCID mice in vivo. They are more effective and less toxic compared to 5-FU in all four in vivo tumor models. The compounds have the potential for development into anticancer agents for the treatment of gastrointestinal cancer used alone and/or in combination with clinical used chemotherapeutic drugs. However, further studies are required to find out the active chemical constituents and understand the mechanism of action associated with the super in vivo anticancer efficacy. In addition, future studies are needed to confirm our preliminary results of in vivo synergistic antitumor efficacy in animal models of tumor xenografts with the combination of HE extracts and clinical used anticancer drugs such as 5-FU, cisplatin and doxurubicin for the treatment of gastrointestinal cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Thujone-Rich Fraction of Thuja occidentalis Demonstrates Major Anti-Cancer Potentials: Evidences from In Vitro Studies on A375 Cells

    Directory of Open Access Journals (Sweden)

    Raktim Biswas

    2011-01-01

    Full Text Available Crude ethanolic extract of Thuja occidentalis (Fam: Cupressaceae is used as homeopathic mother tincture (TOΦ to treat various ailments, particularly moles and tumors, and also used in various other systems of traditional medicine. Anti-proliferative and apoptosis-inducing properties of TOΦ and the thujone-rich fraction (TRF separated from it have been evaluated for their possible anti-cancer potentials in the malignant melanoma cell line A375. On initial trial by S-diphenyltetrazolium bromide assay, both TOΦ and TRF showed maximum cytotoxic effect on A375 cell line while the other three principal fractions separated by chromatography had negligible or no such effect, because of which only TRF was further characterized and subjected to certain other assays for determining its precise anti-proliferative and apoptotic potentials. TRF was reported to have a molecular formula of C10H16O with a molecular weight of 152. Exposure of TRF of Thuja occidentalis to A375 cells in vitro showed more cytotoxic, anti-proliferative and apoptotic effects as compared with TOΦ, but had minimal growth inhibitory responses when exposed to normal cells (peripheral blood mononuclear cell. Furthermore, both TOΦ and TRF also caused a significant decrease in cell viability, induced inter-nucleosomal DNA fragmentation, mitochondrial transmembrane potential collapse, increase in ROS generation, and release of cytochrome c and caspase-3 activation, all of which are closely related to the induction of apoptosis in A375 cells. Thus, TRF showed and matched all the anti-cancer responses of TOΦ and could be the main bio-active fraction. The use of TOΦ in traditional medicines against tumors has, therefore, a scientific basis.

  7. In Silico Screening and Designing Synthesis of Cinchona Alkaloids Derivatives as Potential Anticancer

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi

    2017-06-01

    Full Text Available P-glycoprotein (P-gp resistance in cancer cells decreases intracellular accumulation of various anticancer drugs. This multidrug resistance (MDR protein can be modulated by a number of non-cytotoxic drugs. We have screened 30 chincona alkaloids derivatives as a potent P-gp inhibitor agent in silico. Hereby, we report the highest potential inhibitions of P-gp is Cinchonidine isobutanoate through molecular docking approach. with affinity energy -8.6 kcal/mol and inhibition constant, Ki is 4.89 x 10-7 M. Cinchonidine isobutanoate is also known has molecular weight below 500, Log P value 3.5, which is indicated violation free of Lipinski`s rule of five. Thus, Cinchonidine isobutanoate is the most potent compound as anticancer compare to other Cinchona alkaloids. Ultimately, we design Cinchonidine isobutanoate for further lead synthesis by using DBSA, act as a combined Brønsted acid-surfactant-catalyst (BASC to obtain high concentration of organic product by forming micellar aggregates which is very powerful catalytic application in water environment.

  8. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Science.gov (United States)

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  9. Anticancer Potential of Nutraceutical Formulations in MNU-induced Mammary Cancer in Sprague Dawley Rats

    OpenAIRE

    Pitchaiah, Gummalla; Akula, Annapurna; Chandi, Vishala

    2017-01-01

    Background: Nutraceuticals help in combating some of the major health problems of the century including cancer, and ?nutraceutical formulations? have led to the new era of medicine and health. Objective: To develop different nutraceutical formulations and to assess the anticancer potential of nutraceutical formulations in N-methyl-N-nitrosourea (MNU)-induced mammary cancer in Sprague Dawley rats. Materials and Methods: Different nutraceutical formulations were prepared using fine powders of a...

  10. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Maria P. Crespo-Ortiz

    2012-01-01

    Full Text Available Improvement of quality of life and survival of cancer patients will be greatly enhanced by the development of highly effective drugs to selectively kill malignant cells. Artemisinin and its analogs are naturally occurring antimalarials which have shown potent anticancer activity. In primary cancer cultures and cell lines, their antitumor actions were by inhibiting cancer proliferation, metastasis, and angiogenesis. In xenograft models, exposure to artemisinins substantially reduces tumor volume and progression. However, the rationale for the use of artemisinins in anticancer therapy must be addressed by a greater understanding of the underlying mechanisms involved in their cytotoxic effects. The primary targets for artemisinin and the chemical base for its preferential effects on heterologous tumor cells need yet to be elucidated. The aim of this paper is to provide an overview of the recent advances and new development of this class of drugs as potential anticancer agents.

  11. Au/TiO2 nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing

    International Nuclear Information System (INIS)

    Cui, Jingjie; Xu, Ping; Li, Hong; Chen, Jing; Chen, Shaowei; Gao, Li

    2016-01-01

    Cancer is a cell dysfunction disease. The detection of cancer cells is extremely important for early diagnosis and clinical treatments. At present, the pretreatment for the detection of cancer cells is costly, complicated and time-consuming. As different species of the analytes may give rise to specific voltammetric signals at distinctly different potentials, simple potential sensing has the specificity to detect different cellular species. By taking advantage of the different electrochemical characteristics of normal cells, cancer cells and biointeractions between anticancer drugs and cancer cells, we develop a specific, sensitive, direct, cost-effective and rapid method for the detection of cancer cells by electrochemical potential sensing based on Au/TiO 2 nanobelt heterostructure electrodes that will be of significance in early cancer diagnosis, in vitro screening of anticancer drugs  and molecular biology research. (paper)

  12. The effect of near-infrared fluorescence conjugation on the anti-cancer potential of cetuximab.

    Science.gov (United States)

    Yun, Ji Young; Hyun, Byung-Hwa; Nam, Sang Yoon; Yun, Young Won; Lee, Hu-Jang; Lee, Beom-Jun

    2018-03-01

    This study investigated the anti-cancer potential of a near-infrared fluorescence (NIRF) molecule conjugated with Cetuximab (Cetuximab-NIRF) in six-week-old female BALB/c athymic (nu+/nu+) nude mice. A431 cells were cultured and injected into the animals to induce solid tumors. Paclitaxel (30 mg/kg body weight (BW)), Cetuximab (1 mg/kg BW), and Cetuximab-NIRF (0.25, 0.5 and 1.0 mg/kg BW) were intraperitoneally injected twice a week into the A431 cell xenografts of the nude mice. Changes in BW, tumor volume and weight, fat and lean mass, and diameter of the peri-tumoral blood vessel were determined after two weeks. Tumor volumes and weights were significantly decreased in the Cetuximab-NIRF (1 mg/kg BW) group compared with the control group ( P <0.001). Lean mass and total body water content were also conspicuously reduced in the Cetuximab-NIRF (1 mg/kg BW) group compared with the vehicle control group. Peri-tumoral blood vessel diameters were very thin in the Cetuximab-NIRF groups compared with those of the paclitaxel group. These results indicate that the conjugation of Cetuximab with NIRF does not affect the anti-cancer potential of Cetuximab and NIRF can be used for molecular imaging in cancer treatments.

  13. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    Science.gov (United States)

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. In Silico-Based Repositioning of Phosphinothricin as a Novel Technetium-99m Imaging Probe with Potential Anti-Cancer Activity.

    Science.gov (United States)

    Sakr, Tamer M; Khedr, Mohammed A; Rashed, Hassan M; Mohamed, Maged E

    2018-02-23

    l-Phosphinothricin (glufosinate or 2-amino-4-((hydroxy(methyl) phosphinyl) butyric acid ammonium salt (AHPB)), which is a structural analog of glutamate, is a recognized herbicide that acts on weeds through inhibition of glutamine synthetase. Due to the structural similarity between phosphinothricin and some bisphosphonates (BPs), this study focuses on investigating the possibility of repurposing phosphinothricin as a bisphosphonate analogue, particularly in two medicine-related activities: image probing and as an anti-cancer drug. As BP is a competitive inhibitor of human farnesyl pyrophosphate synthase (HFPPS), in silico molecular docking and dynamic simulations studies were established to evaluate the binding and stability of phosphinothricin with HFPPS, while the results showed good binding and stability in the active site of the enzyme in relation to alendronate. For the purpose of inspecting bone-tissue accumulation of phosphinothricin, a technetium ( 99m Tc)-phosphinothricin complex was developed and its stability and tissue distribution were scrutinized. The radioactive complex showed rapid, high and sustained uptake into bone tissues. Finally, the cytotoxic activity of phosphinothricin was tested against breast and lung cancer cells, with the results indicating cytotoxic activity in relation to alendronate. All the above results provide support for the use of phosphinothricin as a potential anti-cancer drug and of its technetium complex as an imaging probe.

  15. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Directory of Open Access Journals (Sweden)

    Anwar Rayan

    Full Text Available Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  16. Polypharmacology of Approved Anticancer Drugs.

    Science.gov (United States)

    Amelio, Ivano; Lisitsa, Andrey; Knight, Richard A; Melino, Gerry; Antonov, Alexey V

    2017-01-01

    The major drug discovery efforts in oncology have been concentrated on the development of selective molecules that are supposed to act specifically on one anticancer mechanism by modulating a single or several closely related drug targets. However, a bird's eye view on data from multiple available bioassays implies that most approved anticancer agents do, in fact, target many more proteins with different functions. Here we will review and systematize currently available information on the targets of several anticancer drugs along with revision of their potential mechanisms of action. Polypharmacology of the current antineoplastic agents suggests that drug clinical efficacy in oncology can be achieved only via modulation of multiple cellular mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.

    Science.gov (United States)

    Ali, Imran; Lone, Mohammad Nadeem; Al-Othman, Zeid A; Al-Warthan, Abdulrahman; Sanagi, Mohd Marsin

    2015-01-01

    Cancer has been cursed for human beings for long time. Millions people lost their lives due to cancer. Despite of the several anticancer drugs available, cancer cannot be cured; especially at the late stages without showing any side effect. Heterocyclic compounds exhibit exciting medicinal properties including anticancer. Some market selling heterocyclic anticancer drugs include 5-flourouracil, methortrexate, doxorubicin, daunorubicin, etc. Besides, some natural products such as vinblastine and vincristine are also used as anticancer drugs. Overall, heterocyclic moeities have always been core parts in the expansion of anticancer drugs. This article describes the importance of heterocyclic nuclei in the development of anticancer drugs. Besides, the attempts have been made to discuss both naturally occurring and synthetic heterocyclic compounds as anticancer agents. In addition, some market selling anticancer heterocyclic compounds have been described. Moreover, the efforts have been made to discuss the mechanisms of actions and recent advances in heterocyclic compounds as anticancer agents. The current challenges and future prospectives of heterocyclic compounds have also been discussed. Finally, the suggestions for syntheses of effective, selective, fast and human friendly anticancer agents are discussed into the different sections.

  18. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    Science.gov (United States)

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Anticancer Activity Of Plant Genus Clerodendrum (Lamiaceae: A Review

    Directory of Open Access Journals (Sweden)

    Donald Emilio Kalonio

    2017-12-01

    Full Text Available Plants of the genus Clerodendrum (Lamiaceae is widespread in tropical and subtropical regions. Plants of this genus are used both empirically and scientifically as anti-inflammatory, antidiabetic, antimalarial, antiviral, antihypertensive, hypolipidemic, antioxidant, and antitumor. Results of the molecular docking simulation of chemical content of these plants could potentially provide an anticancer effect. This paper aims to review the anticancer activity of plant genus Clerodendrum based on scientific data. The method used in this study is the literature study. Searches were conducted online (in the database PubMed, Science Direct and Google Scholar and on various books (Farmakope Herbal Indonesia and PROSEA. A total 12 plants of the genus Clerodendrum have anticancer activity in vitro and in vivo, thus potentially to be developed as a source of new active compounds with anticancer activity.

  20. Telomerase Inhibitors from Natural Products and Their Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-12-01

    Full Text Available Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.

  1. Green tea phytocompounds as anticancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-04-01

    Full Text Available Green tea is universally considered significant and its benefits have been experimentally explored by researchers and scientists. Anticancer potential of green tea has been completely recognized now. Green tea contains anti-cancerous constituents and nutrients that have powerful remedial effects. By using electronic data base (1998–2015, different compounds in green tea possessing anticancer activity including epigallocatechin-3-gallate, paclitaxel and docetaxel combinations, ascorbic acid, catechins, lysine, synergistic arginine, green tea extract, proline, and green tea polyphenols has been reported. Green tea extracts exhibited remedial potential against cancer of lung, colon, liver, stomach, leukemic cells, prostate, breast, human cervical cells, head, and neck. For centuries, green tea has been utilized as medicine for therapeutic purposes. It originated in China and extensively used in Asian countries for blood pressure depression and as anticancer medicine. Green tea has therapeutic potential against many diseases such as lowering of blood pressure, Parkinson’s disease, weight loss, esophageal disease, skin-care, cholesterol, Alzheimer’s disease and diabetes.

  2. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    Science.gov (United States)

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  3. Structural and vibrational analyses of new potential anticancer drug 2-(phenylmethyl)-2-azaspiro[5.11]heptadecane-1,3,7-trione

    Science.gov (United States)

    Vitnik, Željko J.; Popović-Đorđević, Jelena B.; Vitnik, Vesna D.

    2017-06-01

    The establishment of the most stable structures of 2-(phenylmethyl)-2-azaspiro[5.11]heptadecane-1,3,7-trione, potential anticancer and antimicrobial drug has been investigated in this work. A detailed interpretation of experimental and calculated IR, UV and NMR spectra were reported. The equilibrium geometry, harmonic vibrational frequencies and electronic properties have been investigated with Density Functional Theory using B3LYP/6-311++G(d,p) method. The scaled theoretical wavenumber showed very good agreement with the experimental values. The charge transfer in the molecule was confirmed with NBO analysis. Ultraviolet-visible spectrum was calculated using TD-DFT method and compared with experimental spectrum. The calculated energy and oscillator strength well reproduce the experimental data. The molecular electrostatic potential surface map portrays potential binding sites of the title molecule.

  4. Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: A cell-based study

    Directory of Open Access Journals (Sweden)

    Satish Kumar Vemuri

    2017-12-01

    Full Text Available Cancer related morbidity and mortality is a major health care concern. Developing potent anti-cancer therapies which are non-toxic, sustainable and affordable is of alternative medicine. This study was designed to investigate the aqueous natural extracts mixture (NE mix prepared from common spices turmeric, ginger and garlic for its free radical scavenging potential and anti-cancer property against human breast cancer cell lines (MCF-7, ZR-75 and MDA-MB 231. Qualitative analysis of their bioactive constituents from turmeric, ginger and garlic were done using liquid chromatography-ESI- mass spectrometry (LC-ESI-MS/MS. To the best of our knowledge, NE mix with and without Tamoxifen has not been tested for its anti-cancer potential. We observed that the NE mix induced apoptosis in all the breast cancer cell lines, but it was more prominent in MCF-7 and ZR-75 cell lines in comparison to MDA-MB 231 cell line. The extent of apoptosis due to combined treatment with NE mix-Tamoxifen was higher than Tamoxifen alone, indicating a potential role of the NE mix in sensitizing the ER-positive breast cancer cells towards Tamoxifen. In support to MTT assay, cell cycle analysis, our RT-PCR results also prove that the NE mix 10 μg, Tam 20 μg and combination of NE mix 10 μg-Tam 20 μg altered the expression of apoptotic markers (p53 and Caspase 9 leading to apoptosis in all three cell lines. Our data strongly indicate that our NE mixture is a potential alternative therapeutic approach in certain types of cancer. Keywords: Breast cancer, Antagonists, Natural extracts, Tamoxifen, Turmeric, Ginger, Garlic, LC-ESI-MS/MS

  5. Anticancer Properties of Capsaicin Against Human Cancer.

    Science.gov (United States)

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Alcoholic Extract of Eclipta alba Shows In Vitro Antioxidant and Anticancer Activity without Exhibiting Toxicological Effects

    Directory of Open Access Journals (Sweden)

    Navneet Kumar Yadav

    2017-01-01

    Full Text Available As per WHO estimates, 80% of people around the world use medicinal plants for the cure and prevention of various diseases including cancer owing to their easy availability and cost effectiveness. Eclipta alba has long been used in Ayurveda to treat liver diseases, eye ailments, and hair related disorders. The promising medicinal value of E. alba prompted us to study the antioxidant, nontoxic, and anticancer potential of its alcoholic extract. In the current study, we evaluated the in vitro cytotoxic and antioxidant effect of the alcoholic extract of Eclipta alba (AEEA in multiple cancer cell lines along with control. We have also evaluated its effect on different in vivo toxicity parameters. Here, we found that AEEA was found to be most active in most of the cancer cell lines but it significantly induced apoptosis in human breast cancer cell lines by disrupting mitochondrial membrane potential and DNA damage. Moreover, AEEA treatment inhibited migration in both MCF 7 and MDA-MB-231 cells in a dose dependent manner. Further, AEEA possesses robust in vitro antioxidant activity along with high total phenolic and flavonoid contents. In summary, our results indicate that Eclipta alba has enormous potential in complementary and alternative medicine for the treatment of cancer.

  7. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  8. Investigation of anticancer potential of hypophyllanthin and phyllanthin against breast cancer by in vitro and in vivo methods

    Directory of Open Access Journals (Sweden)

    Madhukiran Parvathaneni

    2014-02-01

    Full Text Available Objective: To investigate the in vitro and in vivo anticancer activities of hypophyllanthin and phyllanthin isolated from Phyllanthus amarus Schum & Thonn against breast cancer. Methods: In vitro anticancer activity was evaluated against two cell lines (MCF-7 and MDAMB-231 using MTT assay. In vivo anticancer activity was tested using Sprague-Dawley rats with N-methyl-N-nitrosourea induced mammary cancer. Results: In vitro studies demonstrated a dose-dependent inhibitory effect on cell growth with IC50 values of (35.18依1.48 µg/mL (hypophyllanthin and (32.51依0.95 µg/mL (phyllanthin for MCF-7; (38.74 依1.24 (hypophyllanthin and (32.2依1.17 (phyllanthin for MDA-MB-231 breast cancer cell lines. Tumor weights per group at doses of 5 and 10 mg/kg/day for hypophyllanthin (12.82 and 12.06 g and phyllanthin (11.95 and 8.87 g treated groups were significantly (P<0.001 lower than untreated N-methyl-N-nitrosourea group (35.85. Conclusions: Results of the present research work indicated that the isolated lignan compounds, hypophyllanthin and phyllanthin showed significant anticancer activities against breast cancer, in vitro and in vivo.

  9. In Silico-Based Repositioning of Phosphinothricin as a Novel Technetium-99m Imaging Probe with Potential Anti-Cancer Activity

    Directory of Open Access Journals (Sweden)

    Tamer M. Sakr

    2018-02-01

    Full Text Available l-Phosphinothricin (glufosinate or 2-amino-4-((hydroxy(methyl phosphinyl butyric acid ammonium salt (AHPB, which is a structural analog of glutamate, is a recognized herbicide that acts on weeds through inhibition of glutamine synthetase. Due to the structural similarity between phosphinothricin and some bisphosphonates (BPs, this study focuses on investigating the possibility of repurposing phosphinothricin as a bisphosphonate analogue, particularly in two medicine-related activities: image probing and as an anti-cancer drug. As BP is a competitive inhibitor of human farnesyl pyrophosphate synthase (HFPPS, in silico molecular docking and dynamic simulations studies were established to evaluate the binding and stability of phosphinothricin with HFPPS, while the results showed good binding and stability in the active site of the enzyme in relation to alendronate. For the purpose of inspecting bone-tissue accumulation of phosphinothricin, a technetium (99mTc–phosphinothricin complex was developed and its stability and tissue distribution were scrutinized. The radioactive complex showed rapid, high and sustained uptake into bone tissues. Finally, the cytotoxic activity of phosphinothricin was tested against breast and lung cancer cells, with the results indicating cytotoxic activity in relation to alendronate. All the above results provide support for the use of phosphinothricin as a potential anti-cancer drug and of its technetium complex as an imaging probe.

  10. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  11. 12-Chloracetyl-PPD, a novel dammarane derivative, shows anti-cancer activity via delay the progression of cell cycle G2/M phase and reactive oxygen species-mediate cell apoptosis.

    Science.gov (United States)

    Wang, Xu De; Sun, Yuan Yuan; Zhao, Chen; Qu, Fan Zhi; Zhao, Yu Qing

    2017-03-05

    (20R)-Dammarane-3β, 12β, 20, 25-tetrol (25-OH-PPD) is a ginsenoside isolated from Panax ginseng (C. A. Meyer). This compound exhibits anti-cancer activities on many human cancer cell lines. In this study, we investigated anti-cancer mechanisms of 12β-O-( L -Chloracetyl)-dammar-20(22)-ene-3β,25-diol(12-Chloracetyl-PPD), a modified 25-OH-PPD. We found that compound 12-Chloracetyl-PPD resulted in a concentration-dependent inhibition of viability in prostate, breast, and gastric cancer cells, without affecting the viability of normal cell (human gastric epithelial cell line-GES-1, hair follicle dermal papilla cell line-HHDPC and rat myocardial cell line-H9C2). In MDA-MB-435 and C4-2B cancer cells, 12-Chloracetyl-PPD induced G2/M cell cycle arrest, down-regulated mouse double minute 2 (MDM2) expression, up-regulated p53 expression, triggered apoptosis, and stimulated reactive oxygen species production. Apoptosis can be attenuated by the reactive oxygen species scavenger N-acetylcysteine. Our results suggested that compound 12-Chloracetyl-PPD showed obvious anti-cancer activity based on delaying cell cycle arrest and inducing cell apoptosis by reactive oxygen species production, which supported development of 12-Chloracetyl-PPD as a potential agent for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A synthetic coumarin (4-methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced skin cancer in mice.

    Science.gov (United States)

    Bhattacharyya, Soumya S; Paul, Saili; Mandal, Sushil K; Banerjee, Antara; Boujedaini, Naoual; Khuda-Bukhsh, Anisur R

    2009-07-01

    Scopoletin, an alkaloid separated from ethanolic extract of the medicinal plant, Gelsemium sempervirens (Fam: Loganiaceae) has been reported to have anti-cancer potentials. The synthetic coumarin (4-Methyl-7 hydroxy coumarin) derived from resorcinol and ethyl aceto-acetate in presence of concentrated sulphuric acid is structurally close to scopoletin, being a coumarin derivative. Whether this synthetic compound also has anti-cancer potentials has been evaluated in vivo on DMBA (7,12-Dimethylbenz[a]anthracene) induced skin cancer in mice by analyzing results of several cytogenetic endpoints, Comet assay, and fluorescence activated cell sorting (FACS). Further, expressions of signal proteins like Aryl hydrocarbon receptor , p53, PCNA, Akt, Bcl-2, Bcl-xL, Bad, Bax, NF-kappaB Apaf, IL-6, Cytochrome-c, Caspase-3 and Caspase-9 were studied by immunoblot analysis along with histology of skin and immuno-histochemical localization of Aryl hydrocarbon receptor and PCNA in DMBA treated mice vis-a-vis carcinogen treated synthetic coumarin fed mice. Feeding of this synthetic coumarin induced positive modulations in expression of all biomarkers in DMBA administered mice, giving clues on its possible signaling pathway(s) - primarily through down-regulation of Aryl hydrocarbon receptor and PCNA and up-regulation of apoptotic proteins like Bax, Bad, Cytochrome c, Apaf, Caspase-3 and Caspase-9, resulting in an appreciable reduction in growth of papilloma in mice. Therefore, this synthetic coumarin shows promise for use in cancer therapy, particularly in skin cancer.

  13. Synthesis, DNA binding ability and anticancer activity of 2-heteroaryl substituted benzimidazoles linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates.

    Science.gov (United States)

    Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda

    2013-08-01

    As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.

  14. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  15. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  16. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  17. Fenbendazole as a potential anticancer drug.

    Science.gov (United States)

    Duan, Qiwen; Liu, Yanfeng; Rockwell, Sara

    2013-02-01

    To evaluate the anticancer activity of fenbendazole, a widely used antihelminth with mechanisms of action that overlap with those of the hypoxia-selective nitroheterocyclic cytotoxins/radiosensitizers and the taxanes. We used EMT6 mouse mammary tumor cells in cell culture and as solid tumors in mice to examine the cytotoxic and antitumor effects of fenbendazole as a single agent and in combination regimens. Intensive treatments with fenbendazole were toxic to EMT6 cells in vitro; toxicity increased with incubation time and under conditions of severe hypoxia. Fenbendazole did not alter the dose-response curves for radiation or docetaxel; instead, the agents produced additive cytotoxicities. Febendazole in maximally-intensive regimens did not alter the growth of EMT6 tumors, or increase the antineoplastic effects of radiation. These studies provided no evidence that fenbendazole would have value in cancer therapy, but suggested that this general class of compounds merits further investigation.

  18. Development, Characterization and Evaluation of Solid Lipid Nanoparticles as a potential Anticancer Drug Delivery System

    Science.gov (United States)

    Patel, Meghavi

    Solid lipid nanoparticles (SLNs) consist of spherical solid lipid particles in the nanometer size range, which are dispersed in water or in an aqueous surfactant solution. SLN technology represents a promising new approach to deliver hydrophilic as well as lipophilic drugs. The commercialization of SLN technology remains limited despite numerous efforts from researchers. The purpose of this research was to advance SLN preparation methodology by investigating the feasibility of preparing glyceryl monostearate (GMS) nanoparticles by using three preparation methods namely microemulsion technique, magnetic stirring technique and temperature modulated solidification technique of which the latter two were developed in our laboratory. An anticancer drug 5-fluorouracil was incorporated in the SLNs prepared via the temperature modulated solidification process. Optimization of the magnetic stirring process was performed to evaluate how the physicochemical properties of the SLN was influenced by systematically varying process parameters including concentration of the lipid, concentration of the surfactant, type of surfactant, time of stirring and temperature of storage. The results demonstrated 1:2 GMS to tween 80 ratio, 150 ml dispersion medium and 45 min stirring at 4000 RPM speed provided an optimum formulation via the temperature modulated solidification process. SLN dispersions were lyophilized to stabilize the solid lipid nanoparticles and the lyophilizates exhibited good redispersibility. The SLNs were characterized by particle size analysis via dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), drug encapsulation efficiency and in vitro drug release studies. Particle size of SLN dispersion prepared via the three preparation techniques was approximately 66 nm and that of redispersed lyophilizates was below 500 nm. TEM images showed spherical to oval particles that were less dense in the core

  19. Anti-cancer natural products isolated from chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wu Guosheng

    2011-07-01

    Full Text Available Abstract In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin, alkaloids (berberine, terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid, quinones (shikonin and emodin and saponins (ginsenoside Rg3, which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

  20. The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines

    Directory of Open Access Journals (Sweden)

    C Gutiérrez-Lovera

    2017-11-01

    Full Text Available In the last few decades, the field of nanomedicine applied to cancer has revolutionized cancer treatment: several nanoformulations have already reached the market and are routinely being used in the clinical practice. In the case of genetic nanomedicines, i.e., designed to deliver gene therapies to cancer cells for therapeutic purposes, advances have been less impressive. This is because of the many barriers that limit the access of the therapeutic nucleic acids to their target site, and the lack of models that would allow for an improvement in the understanding of how nanocarriers can be tailored to overcome them. Zebrafish has important advantages as a model species for the study of anticancer therapies, and have a lot to offer regarding the rational development of efficient delivery of genetic nanomedicines, and hence increasing the chances of their successful translation. This review aims to provide an overview of the recent advances in the development of genetic anticancer nanomedicines, and of the zebrafish models that stand as promising tools to shed light on their mechanisms of action and overall potential in oncology.

  1. Comparative investigation of the free radical scavenging potential and anticancer property of Diospyros blancoi (Ebenaceae

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Khan

    2016-05-01

    Conclusions: Our results indicate that Diospyros blancoi stem bark had the significant highest antioxidant and free radical scavenging properties as well as moderate anticancer activity. Hence, we assume that the anticancer activity of this plant can be, at least in part, attributed to its content in phenolic compounds as well as its significant free radical scavenging properties.

  2. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    Science.gov (United States)

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  3. A potential photocatalytic, antimicrobial and anticancer activity of chitosan-copper nanocomposite.

    Science.gov (United States)

    Arjunan, Nithya; Singaravelu, Chandra Mohan; Kulanthaivel, Jeganathan; Kandasamy, Jothivenkatachalam

    2017-11-01

    In this study, chitosan-copper (CS-Cu) nanocomposite was synthesized without the aid of any external chemical reducing agents. The optical, structural, spectral, thermal and morphological analyses were carried out by several techniques. The prepared nanocomposite acts as a photocatalyst for the removal of Rhodamine B (RhB) and Conge red (CR) dyes under visible light irradiation. The pseudo first order kinetics was derived according to Langmuir-Hinshelwood (L-H) model. The nanocomposite also proved to be an excellent antimicrobial agent against Gram-positive and Gram-negative bacteria; and also show activity against fungus. The advanced material was used for the major research areas which include photocatalytic materials for waste water treatment; biological applications in the development of drug resistant antimicrobials and anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Design, Synthesis and Biological Evaluation of Novel Bromophenol Derivatives Incorporating Indolin-2-One Moiety as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2015-02-01

    Full Text Available A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g–4i, 5h, 6d, 7a, 7b showed potent activity against the tested five human cancer cell lines. Wound-healing assay demonstrated that compound 4g can be used as a potent compound for inactivating invasion and metastasis by inhibiting the migration of cancer cells. The structure–activity relationships (SARs of bromophenol derivatives had been discussed, which were useful for exploring and developing bromophenol derivatives as novel anticancer drugs.

  5. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    Directory of Open Access Journals (Sweden)

    Nelson G. M. Gomes

    2015-06-01

    Full Text Available Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i selectivity between normal and cancer cells (ii activity against multidrug-resistant (MDR cancer cells; and (iii a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  6. Anticancer potential of Thevetia peruviana fruit methanolic extract.

    Science.gov (United States)

    Ramos-Silva, Alberto; Tavares-Carreón, Faviola; Figueroa, Mario; De la Torre-Zavala, Susana; Gastelum-Arellanez, Argel; Rodríguez-García, Aída; Galán-Wong, Luis J; Avilés-Arnaut, Hamlet

    2017-05-02

    potential as natural anti-cancer product with critical effects in the proliferation, motility, and adhesion of human breast and colorectal cancer cells, and apoptosis induction in human prostate and lung cancer cell lines, with minimal effects on non-tumorigenic cell lines.

  7. Uptake, delivery, and anticancer activity of thymoquinone nanoparticles in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fakhoury, Isabelle [American University of Beirut, Department of Biology (Lebanon); Saad, Walid [American University of Beirut, Department of Chemical and Petroleum Engineering (Lebanon); Bouhadir, Kamal [American University of Beirut, Department of Chemistry (Lebanon); Nygren, Peter [Uppsala University, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology (Sweden); Schneider-Stock, Regine [University of Erlangen-Nuremberg, Experimental Tumor Pathology, Institute for Pathology (Germany); Gali-Muhtasib, Hala, E-mail: amro@aub.edu.lb [American University of Beirut, Department of Biology (Lebanon)

    2016-07-15

    Thymoquinone (TQ) is a promising anticancer molecule but its development is hindered by its limited bioavailability. Drug encapsulation is commonly used to overcome low drug solubility, limited bioavailability, and nonspecific targeting. In this project, TQ nanoparticles (TQ-NP) were synthesized and characterized. The cytotoxicity of the NP was investigated in nontumorigenic MCF-10-A breast cells, while the uptake, distribution, as well as the anticancer potential were investigated in MCF-7 and MDA-MB-231 breast cancer cells. Flash Nanoprecipitation and dynamic light scattering coupled with scanning electron microscopy were used to prepare and characterize TQ-NP prior to measuring their anticancer potential by MTT assay. The uptake and subcellular intake of TQ-NP were evaluated by fluorometry and confocal microscopy. TQ-NP were stable with a hydrodynamic average diameter size around 100 nm. Entrapment efficiency and loading content of TQ-NP were high (around 80 and 50 %, respectively). In vitro, TQ-NP had equal or enhanced anticancer activity effects compared to TQ in MCF-7 and aggressive MDA-MB-231 breast cancer cells, respectively, with no significant cytotoxicity of the blank NP. In addition, TQ and TQ-NP were relatively nontoxic to MCF-10-A normal breast cells. TQ-NP uptake mechanism was both time and concentration dependent. Treatment with inhibitors of endocytosis suggested the involvement of caveolin in TQ-NP uptake. This was further confirmed by subcellular localization findings showing the colocalization of TQ-NP with caveolin and transferrin as well as with the early and late markers of endocytosis. Altogether, the results describe an approach for the enhancement of TQ anticancer activity and uncover the mechanisms behind cell-TQ-NP interaction.Graphical Abstract.

  8. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  9. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.

  10. Synthesis of New 3-Heteroarylindoles as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Abdou O. Abdelhamid

    2016-07-01

    Full Text Available 2-(3-(1H-Indol-3-yl-5-(p-tolyl-4,5-dihydro-1H-pyrazol-1-yl-4-substituted-5-(substituted diazenylthiazoles and 2-(1H-indol-3-yl-9-substituted-4,7-disubstituted pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(7H-ones were synthesized via reaction of hydrazonoyl halides with each of 3-(1H-indol-2-yl-5-(p-tolyl-4,5-dihydro-1H-pyrazole-1-carbothioamide and 7-(1H-indol-3-yl-2- thioxo-5-substituted-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H-ones, respectively. Also, hydrazonoyl halides were reacted with N’-(1-(1H-indol-3-ylethylidene-2-cyanoacetohydrazide to afford 1,3,4-thiadiazole derivatives. Structures of the new synthesis were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic routes whenever possible. Fifteen of the new compounds have been evaluated for their antitumor activity against the MCF-7 human breast carcinoma cell line. The results indicated that many of the tested compounds showed moderate to high anticancer activity when compared with doxorubicin as a reference drug.

  11. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaifeng, E-mail: kaifeng_wangdr@sina.com [Cancer center, the Affiliated Hospital of Hangzhou Normal University, Hangzhou (China); Fan, Yaohua [Oncology Department, No. 1 Hospital of Jiaxing, Zhejiang Province, Jiaxing (China); Chen, Gongying [Oncology Department, The Affiliated Hospital Hangzhou Normal University, Hangzhou (China); Wang, Zhengrong [Taizhou Hospital, Zhejiang Province, Taizhou (China); Kong, Dexin; Zhang, Peng [Oncology Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou (China)

    2016-05-27

    The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway in HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors. -- Highlights: •WAY-600 inhibits HCC cell survival and proliferation in vitro. •WAY-600 activates caspase-dependent apoptosis in HCC cells. •WAY-600 blocks mTORC1/2 activation, but activates MEK-ERK in HCC cells. •MEK-ERK inhibitors or MEK1/2 shRNA enhances WAY-600's cytotoxicity against HCC cells. •MEK-162 co-administration potentiates WAY-600-induced the anti-HepG2 tumor efficacy.

  12. Anticancer properties and enhancement of therapeutic potential of cisplatin by leaf extract of Zanthoxylum armatum DC

    Directory of Open Access Journals (Sweden)

    Thangjam Davis Singh

    2015-01-01

    Full Text Available BACKGROUND: Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylum armatum DC. (ZALE induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin. This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs. RESULTS: ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK, p38 and c-Jun N-ter-minal kinase (JNK. Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE. CONCLUSION: Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.

  13. Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties.

    Science.gov (United States)

    Troeira Henriques, Sónia; Lawrence, Nicole; Chaousis, Stephanie; Ravipati, Anjaneya S; Cheneval, Olivier; Benfield, Aurélie H; Elliott, Alysha G; Kavanagh, Angela Maria; Cooper, Matthew A; Chan, Lai Yue; Huang, Yen-Hua; Craik, David J

    2017-09-15

    Gomesin, a disulfide-rich antimicrobial peptide produced by the Brazilian spider Acanthoscurria gomesiana, has been shown to be potent against Gram-negative bacteria and to possess selective anticancer properties against melanoma cells. In a recent study, a backbone cyclized analogue of gomesin was shown to be as active but more stable than its native form. In the current study, we were interested in improving the antimicrobial properties of the cyclic gomesin, understanding its selectivity toward melanoma cells and elucidating its antimicrobial and anticancer mode of action. Rationally designed analogues of cyclic gomesin were examined for their antimicrobial potency, selectivity toward cancer cells, membrane-binding affinity, and ability to disrupt cell and model membranes. We improved the activity of cyclic gomesin by ∼10-fold against tested Gram-negative and Gram-positive bacteria without increasing toxicity to human red blood cells. In addition, we showed that gomesin and its analogues are more toxic toward melanoma and leukemia cells than toward red blood cells and act by selectively targeting and disrupting cancer cell membranes. Preference toward some cancer types is likely dependent on their different cell membrane properties. Our findings highlight the potential of peptides as antimicrobial and anticancer leads and the importance of selectively targeting cancer cell membranes for drug development.

  14. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    International Nuclear Information System (INIS)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  15. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India); Shivashangari, Kanchi Subramanian, E-mail: shivashangari@gmail.com [Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu (India); Ravikumar, Vilwanathan, E-mail: ravikumarbdu@gmail.com [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  16. Using Molecular Docking Analysis to Discovery Dregea sinensis Hemsl. Potential Mechanism of Anticancer, Antidepression, and Immunoregulation.

    Science.gov (United States)

    Liu, Xiujie; Shi, Yu; Deng, Yulin; Dai, Rongji

    2017-01-01

    Dregea sinensis Hemsl. plant of the genus Dregea volubilis (Asclepiadaceae), plays a vital role in anticancer, antidepression, and immunoregulation. Steroidal glycosides are the main constituents of this herb, which were significant biological active ingredients. The objective of this study is to recognize the mechanism of anticancer, antidepression, and immunoregulation of D. sinensis Hemsl. Seventy-two steroidal glycosides of D. sinensis Hemsl. were evaluated on the docking behavior of tumor-associated proteins (PI3K, Akt, mTOR), depression-related proteins (MAO-A, MAO-B) and immune-related proteins (tumor necrosis factor-α [TNF-α], tumor necrosis factor receptor 2 [TNFR2], interleukin-2Rα [IL-2Rα]) using Discovery Studio version 3.1 (Accelrys, San Diego, USA). The molecular docking analysis revealed that mostly steroidal glycosides of D. sinensis Hemsl. exhibited powerful interaction with the depression-related protein (MAO-A) and the immune-related proteins (TNFR2, IL-2Rα). Some ligands exhibited high binding energy for the tumor-associated proteins (PI3K, Akt, mTOR) and the immune-related protein (TNF-α), but MAO-B showed none interaction with the ligands. This study has paved better understanding of steroidal glycosides from D. sinensis Hemsl. as potential constituents to the prevention of associated cancer, depression and disorders of immunoregulation. The ligand database was consist of 72 steroidal glycosides from Dregea sinensis HemslSteroidal glycosides had the potential to dock with the tumor-associated proteins (PI3K, Akt, mTOR)Steroidal glycosides were bounded with MAO-A rather than MAO-B, accorded with the inhibitor selectivity of MAOs, can be considered as potent candidate inhibitors of MAO-A72 ligands got high interaction with TNFR2 and IL-2Rα, regard the steroidal glycoside as powerful candidate inhibitors of TNFR2 and IL-2Rα. Abbreviations used: PI3K: Phosphatidyl inositol 3-kinase; Akt: Protein kinase B; mTOR: Mammalian target of

  17. Anticancer effects of deproteinized asparagus polysaccharide on hepatocellular carcinoma in vitro and in vivo.

    Science.gov (United States)

    Xiang, Jianfeng; Xiang, Yanjie; Lin, Shengming; Xin, Dongwei; Liu, Xiaoyu; Weng, Lingling; Chen, Tao; Zhang, Minguang

    2014-04-01

    Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies in the world whose chemoprevention became increasingly important in HCC treatment. Although the anticancer effects of asparagus constituents have been investigated in several cancers, its effects on hepatocellular carcinoma have not been fully studied. In this study, we investigated the anticancer effects of the deproteinized asparagus polysaccharide on the hepatocellular carcinoma cells using the in vitro and in vivo experimental model. Our data showed that deproteinized asparagus polysaccharide might act as an effective inhibitor on cell growth in vitro and in vivo and exert potent selective cytotoxicity against human hepatocellular carcinoma Hep3B and HepG2 cells. Further study showed that it could potently induce cell apoptosis and G2/M cell cycle arrest in the more sensitive Hep3B and HepG2 cell lines. Moreover, deproteinized asparagus polysaccharide potentiated the effects of mitomycin both in vitro and in vivo. Mechanistic studies revealed that deproteinized asparagus polysaccharide might exert its activity through an apoptosis-associated pathway by modulating the expression of Bax, Bcl-2, and caspase-3. In conclusion, deproteinized asparagus polysaccharide exhibited significant anticancer activity against hepatocellular carcinoma cells and could sensitize the tumoricidal effects of mitomycin, indicating that it is a potential therapeutic agent (or chemosensitizer) for liver cancer therapy.

  18. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    Science.gov (United States)

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  19. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola).

    Science.gov (United States)

    Gavamukulya, Yahaya; Abou-Elella, Faten; Wamunyokoli, Fred; AEl-Shemy, Hany

    2014-09-01

    To determine the phytochemical composition, antioxidant and anticancer activities of ethanolic and water leaves extracts of Annona muricata (A. muricata) from the Eastern Uganda. Phytochemical screening was conducted using standard qualitative methods and a Chi-square goodness of fit test was used to assign the relative abundance of the different phytochemicals. The antioxidant activity was determined using the 2, 2-diphenyl-2-picrylhydrazyl and reducing power methods whereas the in vitro anticancer activity was determined using three different cell lines. Phytochemical screening of the extracts revealed that they were rich in secondary class metabolite compounds such as alkaloids, saponins, terpenoids, flavonoids, coumarins and lactones, anthraquinones, tannins, cardiac glycosides, phenols and phytosterols. Total phenolics in the water extract were (683.69±0.09) μg/mL gallic acid equivalents (GAE) while it was (372.92±0.15) μg/mL GAE in the ethanolic extract. The reducing power was 216.41 μg/mL in the water extract and 470.51 μg/mL GAE in the ethanolic extract. In vitro antioxidant activity IC50 was 2.0456 mg/mL and 0.9077 mg/mL for ethanolic and water leaves extracts of A. muricata respectively. The ethanolic leaves extract was found to be selectively cytotoxic in vitro to tumor cell lines (EACC, MDA and SKBR3) with IC50 values of 335.85 μg/mL, 248.77 μg/mL, 202.33 μg/mL respectively, while it had no cytotoxic effect on normal spleen cells. The data also showed that water leaves extract of A. muricata had no anticancer effect at all tested concentrations. The results showed that A. muricata was a promising new antioxidant and anticancer agent. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  20. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  1. Anticancer Potential of Aqueous Ethanol Seed Extract of Ziziphus mauritiana against Cancer Cell Lines and Ehrlich Ascites Carcinoma

    Directory of Open Access Journals (Sweden)

    Tulika Mishra

    2011-01-01

    Full Text Available Ziziphus mauritiana (Lamk. is a fruit tree that has folkloric implications against many ailments and diseases. In the present study, anticancer potential of seed extract of Ziziphus mauritiana in vitro against different cell lines (HL-60, Molt-4, HeLa, and normal cell line HGF by MTT assay as well as in vivo against Ehrich ascites carcinoma bearing Swiss albino mice was investigated. The extract was found to markedly inhibit the proliferation of HL-60 cells. Annexin and PI binding of treated HL-60 cells indicated apoptosis induction by extract in a dose-dependent manner. The cell cycle analysis revealed a prominent increase in sub Go population at concentration of 20 μg/ml and above. Agarose gel electrophoresis confirmed DNA fragmentation in HL-60 cells after 3 h incubation with extract. The extract also exhibited potent anticancer potential in vivo. Treatment of Ehrlich ascites carcinoma bearing Swiss albino mice with varied doses (100–800 mg/kg b.wt. of plant extract significantly reduced tumor volume and viable tumor cell count and improved haemoglobin content, RBC count, mean survival time, tumor inhibition, and percentage life span. The enhanced antioxidant status in extract-treated animals was evident from decline in levels of lipid peroxidation and increased levels of glutathione, catalase, and superoxide dismutase.

  2. Anticancer screening of medicinal plant phytochemicals against Cyclin-Dependent Kinase-2 (CDK2: An in-silico approach

    Directory of Open Access Journals (Sweden)

    Wajahat Khan

    2017-08-01

    Full Text Available Background: Cyclin-Dependent Kinase-2 (CDK2 is a member of serine/threonine protein kinases family and plays an important role in regulation of various eukaryotic cell division events. Over-expression of CDK2 during cell cycle may lead to several cellular functional aberrations including diverse types of cancers (lung cancer, primary colorectal carcinoma, ovarian cancer, melanoma and pancreatic carcinoma in humans. Medicinal plants phytochemicals which have anticancer potential can be used as an alternative drug resource. Methods: This study was designed to find out anticancer phytochemicals from medicinal plants which could inhibit CDK2 with the help of molecular docking technique. Molecular Operating Environment (MOE v2009 software was used to dock 2300 phytochemicals in this study. Results: The outcome of this study shows that four phytochemicals Kushenol T, Remangiflavanone B, Neocalyxins A and Elenoside showed the lowest S-score (-17.83, -17.57, -17.26, -17.17 respectively and binds strongly with all eight active residues Tyr15, Lys33, Ileu52, Lys56, Leu78, phe80, Asp145 and Phe146 of CDK2 binding site. These phytochemicals could successfully inhibit the CDK2. Conclusion: These phytochemicals can be considered as potential anticancer agents and used in drug development against CDK2. We anticipate that this study would pave way for phytochemical based novel small molecules as more efficacious and selective anti-cancer therapeutic compounds.

  3. Metal complexes of alkyl-aryl dithiocarbamates: Structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals

    Science.gov (United States)

    Andrew, Fartisincha P.; Ajibade, Peter A.

    2018-03-01

    Dithiocarbamates are versatile ligands able to stabilize wide range of metal ions in their various oxidation states with the partial double bond character of Csbnd N and Csbnd S of thioureide moiety. Variation of the substituents attached to the nitrogen atom of dithiocarbamate moiety generates various intermolecular interactions, which lead to different structural arrangement in the solid state. The presence of bulky substituents on the N atom obviates the supramolecular aggregation via secondary Msbnd S interactions whereas smaller substituents encourage such aggregation that results in their wide properties and applications. Over the past decades, the synthesis and structural studies of metal complexes of dithiocarbamates have received considerable attention as potential anticancer agents with various degree of DNA binding affinity and cytotoxicity and as single molecule precursors for the preparation of semiconductor nanocrystals. In this paper, we review the synthesis, structural studies, anticancer potency and the use of alkyl-phenyl dithiocarbamate complexes as precursors for the preparation of semiconductor nanocrystals. The properties of these compounds and activities are ascribed to be due to either the dithiocarbamate moieties, the nature or type of the substituents around the dithiocarbamate backbone and the central metal ions or combination of these factors.

  4. Osmium(VI) complexes as a new class of potential anti-cancer agents.

    Science.gov (United States)

    Ni, Wen-Xiu; Man, Wai-Lun; Cheung, Myra Ting-Wai; Sun, Raymond Wai-Yin; Shu, Yuan-Lan; Lam, Yun-Wah; Che, Chi-Ming; Lau, Tai-Chu

    2011-02-21

    A nitridoosmium(VI) complex [Os(VI)(N)(sap)(OH(2))Cl] (H(2)sap = N-salicylidene-2-aminophenol) displays prominent in vitro and in vivo anti-cancer properties, induces S- and G2/M-phase arrest and forms a stable adduct with dianionic 5'-guanosine monophosphate.

  5. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group

    Directory of Open Access Journals (Sweden)

    Subtel’na I. Yu.

    2011-04-01

    Full Text Available The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anticancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program, among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected.

  6. Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-10-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Jung Hyun Park, Eunsu Kim, Yun-Jung Choi, Deug-Nam Kwon, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea Background: Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide–silver (rGO–Ag nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO–Ag were evaluated in ovarian cancer cells. Methods: The synthesized rGO–Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO–Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780. Results: AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO–Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. Conclusion: T. amurensis plant extract

  7. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2015-11-01

    Full Text Available A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3, 2.0 and 1.8 folds higher inhibitory effect against HCT116, HT29 and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic towards colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.

  8. Lichen Secondary Metabolites in Flavocetraria cucullata Exhibit Anti-Cancer Effects on Human Cancer Cells through the Induction of Apoptosis and Suppression of Tumorigenic Potentials

    Science.gov (United States)

    Nguyen, Thanh Thi; Yoon, Somy; Yang, Yi; Lee, Ho-Bin; Oh, Soonok; Jeong, Min-Hye; Kim, Jong-Jin; Yee, Sung-Tae; Crişan, Florin; Moon, Cheol; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2014-01-01

    Lichens are symbiotic organisms which produce distinct secondary metabolic products. In the present study, we tested the cytotoxic activity of 17 lichen species against several human cancer cells and further investigated the molecular mechanisms underlying their anti-cancer activity. We found that among 17 lichens species, F. cucullata exhibited the most potent cytotoxicity in several human cancer cells. High performance liquid chromatography analysis revealed that the acetone extract of F. cucullata contains usnic acid, salazinic acid, Squamatic acid, Baeomycesic acid, d-protolichesterinic acid, and lichesterinic acid as subcomponents. MTT assay showed that cancer cell lines were more vulnerable to the cytotoxic effects of the extract than non-cancer cell lines. Furthermore, among the identified subcomponents, usnic acid treatment had a similar cytotoxic effect on cancer cell lines but with lower potency than the extract. At a lethal dose, treatment with the extract or with usnic acid greatly increased the apoptotic cell population and specifically activated the apoptotic signaling pathway; however, using sub-lethal doses, extract and usnic acid treatment decreased cancer cell motility and inhibited in vitro and in vivo tumorigenic potentials. In these cells, we observed significantly reduced levels of epithelial-mesenchymal transition (EMT) markers and phosphor-Akt, while phosphor-c-Jun and phosphor-ERK1/2 levels were only marginally affected. Overall, the anti-cancer activity of the extract is more potent than that of usnic acid alone. Taken together, F. cucullata and its subcomponent, usnic acid together with additional component, exert anti-cancer effects on human cancer cells through the induction of apoptosis and the inhibition of EMT. PMID:25360754

  9. POTENTIAL APPLICATIONS OF SOS-GFP BIOSENSOR TO IN VITRO RAPID SCREENING OF CYTOTOXIC AND GENOTOXIC EFFECT OF ANTICANCER AND ANTIDIABETIC PHARMACIST RESIDUES IN SURFACE WATER

    Directory of Open Access Journals (Sweden)

    Marzena Matejczyk

    2014-12-01

    Full Text Available Escherichia coli K-12 GFP-based bacterial biosensors allowed the detection of cytotoxic and genotoxic effect of anticancer drug– cyclophosphamide and antidiabetic drug – metformin in PBS buffer and surface water. Experimental data indicated that recA::gfpmut2 genetic system was sensitive to drugs and drugs mixture applied in experiment. RecA promoter was a good bioindicator in cytotoxic and genotoxic effect screening of cyclophosphamide, metformin and the mixture of the both drugs in PBS buffer and surface water. The results indicated that E. coli K-12 recA::gfp mut2 strain could be potentially useful for first-step screening of cytotoxic and genotoxic effect of anticancer and antidiabetic pharmacist residues in water. Next steps in research will include more experimental analysis to validate recA::gfpmut2 genetic system in E. coli K-12 on different anticancer drugs.

  10. and in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Monika Toma

    2014-09-01

    Full Text Available Nowadays, cancer and anticancer therapy are increasingly mentioned topics. Groups of researchers keep looking for a tool that will specifically and efficiently eliminate abnormal cells without any harm for the normal ones. Such method entails the reduction of therapy’s side effects, thus also improving patient’s recovery. Discovery of synthetic lethality has become a new hope to create effective, personalized therapy of cancer. Researchers noted that pairs of simultaneously mutated genes can lead to cell death, whereas each gene from that pair mutated individually does not result in cell lethality. Cancer cells accumulate numerous changes in their genetic material. By defining the pairs of genes interacting in cell pathways we are able to identify a potential anticancer therapy. It is believed that such a process has evolved to create cell resistance for a single gene mutation. Proper functioning of a pathway is not dependent on a single gene. Such a solution, however, also led to the evolution of multifactorial diseases such as cancer. Research techniques using iRNA, shRNA or small molecule libraries allow us to find genes that are connected in synthetic lethality interactions. Synthetic lethality may be applied not only as an anticancer therapy but also as a tool for identifying the functions of recently recognized genes. In addition, studying synthetic lethality broadens our understanding of the molecular mechanisms governing cancer cells, which should be helpful in designing highly effective personalized cancer therapies.

  11. Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Tzu-Ting Huang

    2017-06-01

    Full Text Available The Src homology 2 (SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1, a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3 and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.

  12. Anticancer peptides from bacteria

    OpenAIRE

    Tomasz M. Karpiński; Anna K. Szkaradkiewicz

    2013-01-01

    Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data ...

  13. Natural flora and anticancer regime: milestones and roadmap.

    Science.gov (United States)

    Bhatnagar, Ira; Thomas, Noel Vinay; Kim, Se-Kwon

    2013-07-01

    Cancer has long been an area of extensive research both at the molecular as well as pharmaceutical level. However, lack of understanding of the underlying molecular signalling and the probable targets of therapeutics is a major concern in successful treatment of cancer. The situation becomes even worse, with the increasing side effects of the existing synthetic commercial drugs. Natural compounds especially those derived from plants have been best explored for their anticancer properties and most of them have been efficient against the known molecular targets of cancer. However, advent of biotechnology and resulting advances in medical arena have let to the increasing knowledge of newer carcinogenic signaling agents which has made the anticancer drug discovery even more demanding. The present review aims to bring forward the molecular mediators of cancer and compiles the plant derived anticancer agents with special emphasis on their clinical status. Since marine arena has proved to be a tremendous source of pharmaceutical agents, this review also focuses on the anticancer potential of marine plants especially algae. This is a comprehensive review covering major aspects of cancer mediation and utilization of marine flora for remediation of this deadly disease.

  14. Ganoderma: insights into anticancer effects.

    Science.gov (United States)

    Kladar, Nebojša V; Gavarić, Neda S; Božin, Biljana N

    2016-09-01

    The genus Ganoderma includes about 80 species growing on cut or rotten trees. The most commonly used species is Ganoderma ludicum. Biomolecules responsible for the health benefits of Ganoderma are polysaccharides with an immunostimulative effect and triterpenes with a cytotoxic action. For more than 2000 years, it has been used traditionally in the treatment of various pathological conditions and recently, its immunoregulatory, antiviral, antibacterial, antioxidant, hepatoprotective, and anticancer potential has been confirmed. A wide range of Ganoderma extracts and preparations arrest the cell cycle in different phases and consequently inhibit the growth of various types of cancer cells. Extracts containing polysaccharides stimulate immunological reactions through the production of various cytokines and mobilization of immune system cells. In-vivo studies have confirmed the anticancer potential and the antimetastatic effects of compounds originating from Ganoderma. There is also evidence for the chemopreventive action of Ganoderma extracts in bladder, prostate, liver, and breast cancer. The results of clinical studies suggest the combined use of G. lucidum with conventional chemotherapy/radiotherapy, but the methodology and the results of these studies are being questioned. Therefore, a constant need for new clinical trials exists.

  15. Characterization of anticancer, DNase and antifungal activity of pumpkin 2S albumin.

    Science.gov (United States)

    Tomar, Prabhat Pratap Singh; Nikhil, Kumar; Singh, Anamika; Selvakumar, Purushotham; Roy, Partha; Sharma, Ashwani Kumar

    2014-06-13

    The plant 2S albumins exhibit a spectrum of biotechnologically exploitable functions. Among them, pumpkin 2S albumin has been shown to possess RNase and cell-free translational inhibitory activities. The present study investigated the anticancer, DNase and antifungal activities of pumpkin 2S albumin. The protein exhibited a strong anticancer activity toward breast cancer (MCF-7), ovarian teratocarcinoma (PA-1), prostate cancer (PC-3 and DU-145) and hepatocellular carcinoma (HepG2) cell lines. Acridine orange staining and DNA fragmentation studies indicated that cytotoxic effect of pumpkin 2S albumin is mediated through induction of apoptosis. Pumpkin 2S albumin showed DNase activity against both supercoiled and linear DNA and exerted antifungal activity against Fusarium oxysporum. Secondary structure analysis by CD showed that protein is highly stable up to 90°C and retains its alpha helical structure. These results demonstrated that pumpkin 2S albumin is a multifunctional protein with host of potential biotechnology applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Voin Petrovic

    2018-04-01

    Full Text Available The use of garlic and garlic-based extracts has been linked to decreased incidence of cancer in epidemiological studies. Here we examine the molecular and cellular activities of a simple homemade ethanol-based garlic extract (GE. We show that GE inhibits growth of several different cancer cells in vitro, as well as cancer growth in vivo in a syngeneic orthotopic breast cancer model. Multiple myeloma cells were found to be especially sensitive to GE. The GE was fractionated using solid-phase extractions, and we identified allicin in one GE fraction; however, growth inhibitory activities were found in several additional fractions. These activities were lost during freeze or vacuum drying, suggesting that the main anti-cancer compounds in GE are volatile. The anti-cancer activity was stable for more than six months in −20 °C. We found that GE enhanced the activities of chemotherapeutics, as well as MAPK and PI3K inhibitors. Furthermore, GE affected hundreds of proteins involved in cellular signalling, including changes in vital cell signalling cascades regulating proliferation, apoptosis, and the cellular redox balance. Our data indicate that the reduced proliferation of the cancer cells treated by GE is at least partly mediated by increased endoplasmic reticulum (ER stress.

  17. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    Science.gov (United States)

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  18. Stereoselective synthesis, X-ray analysis, computational studies and biological evaluation of new thiazole derivatives as potential anticancer agents.

    Science.gov (United States)

    Mabkhot, Yahia N; Alharbi, Mohammed M; Al-Showiman, Salim S; Ghabbour, Hazem A; Kheder, Nabila A; Soliman, Saied M; Frey, Wolfgang

    2018-05-11

    The synthesis of new thiazole derivatives is very important because of their diverse biological activities. Also , many drugs containing thiazole ring in their skeletons are available in the market such as Abafungin, Acotiamide, Alagebrium, Amiphenazole, Brecanavir, Carumonam, Cefepime, and Cefmatilen. Ethyl cyanoacetate reacted with phenylisothiocyanate, chloroacetone, in two different basic mediums to afford the thiazole derivative 6, which reacted with dimethylformamide- dimethyl acetal in the presence of DMF to afford the unexpected thiazole derivative 11. The structures of the thiazoles 6 and 11 were optimized using B3LYP/6-31G(d,p) method. The experimentally and theoretically geometric parameters agreed very well. Also, the natural charges at the different atomic sites were predicted. HOMO and LUMO demands were discussed. The anticancer activity of the prepared compounds was evaluated and showed moderate activity. Synthesis of novel thiazole derivatives was done. The structure was established using X-ray and spectral analysis. Optimized molecular structures at the B3LYP/6-31G(d,p) level were investigated. Thiazole derivative 11 has more electropositive S-atom than thiazole 6. The HOMO-LUMO energy gap is lower in the former compared to the latter. The synthesized compounds showed moderate anticancer activity.

  19. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  20. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani

    DEFF Research Database (Denmark)

    Romans-Fuertes, Patricia; Sondergaard, Teis Esben; Sandmann, Manuela Ilse Helga

    2016-01-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate kno...... and Trichoderma virens, which suggests that the ability to produce compounds related to destruxin and sansalvamide is widespread....

  1. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.

  2. Fabrication of β-chitosan nanoparticles and its anticancer potential against human hepatoma cells.

    Science.gov (United States)

    Subhapradha, Namasivayam; Shanmugam, Annaian

    2017-01-01

    β-Chitosan from the gladius was enzymatically depolymerized and utilized for the synthesis of β-chitosan nanoparticles using sodium tripolyphosphate by ionotropic gelation. The size and zeta potential of β-Chitosan nanoparticles (β-CNP) were determined. The structural features were evaluated by FT-IR and NMR spectral analysis. The morphological characterization, composition and surface topography of β-CNP were explored by SEM, EDAX and AFM techniques. The thermal and crystallographic nature of β-CNP was also studied. The cell viability of HepG2 cells inhibited by β-CNP was detected in a dose-dependent manner. The inhibitory concentration of β-CNP was 30μg/ml. Various biochemical parameters such as TBARS and lipid hydroperoxides, enzymatic and non-enzymatic antioxidant (SOD, CAT, GPx and GSH) studies proved the anticancer property of β-CNP in HepG2 cells. This study suggests that β-CNP should be a promising drug for treating hepatocellular carcinoma in future. Copyright © 2016. Published by Elsevier B.V.

  3. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    International Nuclear Information System (INIS)

    Feng, Xue; Li, Ling; Jiang, Hong; Jiang, Keping; Jin, Ye; Zheng, Jianhua

    2014-01-01

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells

  4. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xue [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Ling [Department of Brain Cognition Computing Lab, University of Kent, Kent CT2 7NZ (United Kingdom); Jiang, Hong; Jiang, Keping; Jin, Ye [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zheng, Jianhua, E-mail: zhengjianhua1115@126.com [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2014-02-14

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.

  5. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Thujone-Rich Fraction of Thuja occidentalis Demonstrates Major Anti-Cancer Potentials: Evidences from In Vitro Studies on A375 Cells

    OpenAIRE

    Biswas, Raktim; Mandal, Sushil Kumar; Dutta, Suman; Bhattacharyya, Soumya Sundar; Boujedaini, Naoual; Khuda-Bukhsh, Anisur Rahman

    2011-01-01

    Crude ethanolic extract of Thuja occidentalis (Fam: Cupressaceae) is used as homeopathic mother tincture (TOΦ) to treat various ailments, particularly moles and tumors, and also used in various other systems of traditional medicine. Anti-proliferative and apoptosis-inducing properties of TOΦ and the thujone-rich fraction (TRF) separated from it have been evaluated for their possible anti-cancer potentials in the malignant melanoma cell line A375. On initial trial by S-diphenyltetrazolium brom...

  7. Microwave-Assisted Synthesis of 3,5-Dibenzyl-4-amino-1,2,4-triazole and its Diazo Ligand, Metal Complexes Along with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Anjali Jha

    2010-01-01

    Full Text Available Synthesis of 3,5-dibenzyl-4-amino-1,2,4-triazole was accomplished via a conventional method as well as microwave irradiation method, followed by diazotization and coupling with 2,4-pentanedione. The dinucleating ligand was isolated and complexed with Ni(II, Cu(II and Ru(III chlorides. These complexes were screened on Jurkat, Raji & PBMC cell lines for anticancer activity. Ruthenium complexes showed potential anticancer activities.

  8. Ethnobotany and ethnopharmacy--their role for anti-cancer drug development.

    Science.gov (United States)

    Heinrich, Michael; Bremner, Paul

    2006-03-01

    Local and traditional knowledge has been the starting point for many successful drug development projects over the last decades. Here we discuss some examples of anti-cancer drugs which have had enormous impact as anti-cancer agents (camptothecan, taxol and derivatives) and a few examples of drugs currently under various stages of preclinical development. Ethnobotanists investigate the relationship between humans and plants in all its complexity, and such research is generally based on a detailed observation and study of the use a society makes of plants. The requirements of modern research on natural products as, for example, outlined in the Convention on Biological Diversity (Rio Convention) and the overall approach in ethnobotanical research are also discussed. Selected phytochemical-pharmacological studies based on traditional plant use are used to highlight the potential of ethnobotany driven anti-cancer research. The link between traditionally used plants and targets of the NF-kappaB pathway is discussed using on an EU-funded, multidisciplinary project as an example. Lastly the potential of chemopreventive agents derived from traditional food plants is briefly addressed.

  9. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii.

    Science.gov (United States)

    Bhandari, Jaya; Muhammad, BushraTaj; Thapa, Pratiksha; Shrestha, Bhupal Govinda

    2017-02-08

    There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC 50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC 50 value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.

  10. The Spectroscopic and Conductive Properties of Ru(II Complexes with Potential Anticancer Properties

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2014-01-01

    Full Text Available Different density functional methods (DFT have been used to optimize and study the chemistry of five potential anticancer complexes in terms of their electronic, conductive, and spectroscopic properties. Many of the computed properties in addition to the IR and QTAIM analysis of the NMR are dipole moment vector (μi, linear polarizability tensor (αij, first hyperpolarizability tensors (βijk, polarizability exaltation index (Γ, and chemical hardness (η of the complexes. Stable low energy geometries are obtained using basis set with effective core potential (ECP approximation but, in the computation of atomic or molecular properties, the metal Ru atom is better treated with higher all electron basis set like DGDZVP. The spectroscopic features like the IR of the metal-ligand bonds and the isotropic NMR shielding tensor of the coordinated atoms are significantly influenced by the chemical environment of the participating atoms. The carboxylic and pyrazole units are found to significantly enhance the polarizabilities and hyperpolarizabilities of the complexes while the chloride only improves the polarity of the complexes. Fermi contacts (FC have the highest effect followed by the PSO among all the four Ramsey terms which defined the total spin-spin coupling constant J (HZ of these complexes.

  11. Anticancer activity of a novel small molecule tubulin inhibitor STK899704.

    Directory of Open Access Journals (Sweden)

    Krisada Sakchaisri

    Full Text Available We have identified the small molecule STK899704 as a structurally novel tubulin inhibitor. STK899704 suppressed the proliferation of cancer cell lines from various origins with IC50 values ranging from 0.2 to 1.0 μM. STK899704 prevented the polymerization of purified tubulin in vitro and also depolymerized microtubule in cultured cells leading to mitotic arrest, associated with increased Cdc25C phosphorylation and the accumulation of both cyclin B1 and polo-like kinase 1 (Plk1, and apoptosis. Unlike many anticancer drugs such as Taxol and doxorubicin, STK899704 effectively displayed antiproliferative activity against multidrug-resistant cancer cell lines. The proposed binding mode of STK899704 is at the interface between αβ-tubulin heterodimer overlapping with the colchicine-binding site. Our in vivo carcinogenesis model further showed that STK 899704 is potent in both the prevention and regression of tumors, remarkably reducing the number and volume of skin tumor by STK899704 treatment. Moreover, it was significant to note that the efficacy of STK899704 was surprisingly comparable to 5-fluorouracil, a widely used anticancer therapeutic. Thus, our results demonstrate the potential of STK899704 to be developed as an anticancer chemotherapeutic and an alternative candidate for existing therapies.

  12. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-11-01

    Full Text Available In addition to its well-known abortifacient effect, mifepristone (MIF has been used as an anticancer drug for various cancers in many studies with an in-depth understanding of the mechanism of action. However, application of MIF is limited by its poor water solubility and low oral bioavailability. In this work, we developed a drug delivery system based on chitosan nanoparticles (CNs to improve its bioavailability and anticancer activity. The MIF-loaded chitosan nanoparticles (MCNs were prepared by convenient ionic gelation techniques between chitosan (Cs and tripolyphosphate (TPP. The preparation conditions, including Cs concentration, TPP concentration, Cs/MIF mass ratio, and pH value of the TPP solution, were optimized to gain better encapsulation efficiency (EE and drug loading capacity (DL. MCNs prepared with the optimum conditions resulted in spherical particles with an average size of 200 nm. FTIR and XRD spectra verified that MIF was successfully encapsulated in CNs. The EE and DL of MCNs determined by HPLC were 86.6% and 43.3%, respectively. The in vitro release kinetics demonstrated that MIF was released from CNs in a sustained-release manner. Compared with free MIF, MCNs demonstrated increased anticancer activity in several cancer cell lines. Pharmacokinetic studies in male rats that were orally administered MCNs showed a 3.2-fold increase in the area under the curve from 0 to 24 h compared with free MIF. These results demonstrated that MCNs could be developed as a potential delivery system for MIF to improve its anticancer activity and bioavailability.

  13. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    Science.gov (United States)

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  14. Anticancer Effect of AntiMalarial Artemisinin Compounds

    African Journals Online (AJOL)

    Artemisinin is a naturally occurring antimalarial showing anticancer properties. ..... Artemisinins usually promote apoptosis rather than necrosis in most cases ... artemisinin-mediated inhibition of vascular endothelial growth factor C (VEGF-C).

  15. Anticancer and cytotoxic compounds from seashells of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2009-12-01

    Full Text Available Background: Pre-clinical studies for isolation and purification of marine compounds continued at an active pace since the last decade. Today, more than 60% of the anticancer drugs commercially available are of naturally origin thus the sea is a very favorable bed for the discovery of novel anticancer agents. Methods: A total of known 611 seashells species in the Persian Gulf were investigated for synonymy in OBIS database. Then, all the species, including their synonymy were searched in PubMed databse to find their isolated bioactive agents. Results: From 611 known seashells in the Persian Gulf, 172 genera/species had bioactive compounds. Anticancer agents were isolated and purified for 8 genera. These compounds had various structures they were polypeptide, polysaccharide, glycoprotein, alkaloid, cerebroside, and cembranoid which had different mechanism of actions including induction of apoptosis, destroying the skeletal structures of the cells, immune bioactivity and inhibition of topoisomerase I. Spisulosine is the only anticancer agent which is currently under clinical trial. Conclusions: Although, the known seashells from the Persian Gulf have potential anticancer and cytotoxic compounds but a very few investigations had been reported. Further investigations for isolation and purification on bioactive compounds from seashells of the Persian Gulf is recommended.

  16. Aspirin disrupts the mTOR-Raptor complex and potentiates the anti-cancer activities of sorafenib via mTORC1 inhibition.

    Science.gov (United States)

    Sun, Danni; Liu, Hongchun; Dai, Xiaoyang; Zheng, Xingling; Yan, Juan; Wei, Rongrui; Fu, Xuhong; Huang, Min; Shen, Aijun; Huang, Xun; Ding, Jian; Geng, Meiyu

    2017-10-10

    Aspirin is associated with a reduced risk of cancer and delayed progression of malignant disease. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-mTOR signaling is believed to partially contribute to these anticancer effects, although the mechanism is unclear. In this study, we revealed the mechanism underlying the effects of aspirin on AMPK-mTOR signaling, and described a mechanism-based rationale for the use of aspirin in cancer therapy. We found that aspirin inhibited mTORC1 signaling through AMPK-dependent and -independent manners. Aspirin inhibited the AMPK-TSC pathway, thus resulting in the suppression of mTORC1 activity. In parallel, it directly disrupted the mTOR-raptor interaction. Additionally, the combination of aspirin and sorafenib showed synergetic effects via inhibiting mTORC1 signaling and the PI3K/AKT, MAPK/ERK pathways. Aspirin and sorafenib showed synergetic anticancer efficacy in the SMMC-7721 model. Our study provides mechanistic insights and a mechanism-based rationale for the roles of aspirin in cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum).

    Science.gov (United States)

    Majdalawieh, Amin F; Carr, Ronald I

    2010-04-01

    Although the immunomodulatory effects of many herbs have been extensively studied, research related to possible immunomodulatory effects of various spices is relatively scarce. Here, the potential immunomodulatory effects of black pepper and cardamom are investigated. Our data show that black pepper and cardamom aqueous extracts significantly enhance splenocyte proliferation in a dose-dependent, synergistic fashion. Enzyme-linked immunosorbent assay experiments reveal that black pepper and cardamom significantly enhance and suppress, respectively, T helper (Th)1 cytokine release by splenocytes. Conversely, Th2 cytokine release by splenocytes is significantly suppressed and enhanced by black pepper and cardamom, respectively. Experimental evidence suggests that black pepper and cardamom extracts exert pro-inflammatory and anti-inflammatory roles, respectively. Consistently, nitric oxide production by macrophages is significantly augmented and reduced by black pepper and cardamom, respectively. Remarkably, it is evident that black pepper and cardamom extracts significantly enhance the cytotoxic activity of natural killer cells, indicating their potential anti-cancer effects. Our findings strongly suggest that black pepper and cardamom exert immunomodulatory roles and antitumor activities, and hence they manifest themselves as natural agents that can promote the maintenance of a healthy immune system. We anticipate that black pepper and cardamom constituents can be used as potential therapeutic tools to regulate inflammatory responses and prevent/attenuate carcinogenesis.

  18. Library construction and biological evaluation of enmein-type diterpenoid analogues as potential anticancer agents.

    Science.gov (United States)

    Li, Dahong; Xu, Shengtao; Cai, Hao; Pei, Lingling; Wang, Lei; Wu, Xiaoming; Yao, Hequan; Jiang, Jieyun; Sun, Yijun; Xu, Jinyi

    2013-05-01

    A library of promising enmein-type 14-O-diterpenoid derivatives was constructed from a commercially available kaurene-type oridonin by practical and efficient synthetic methods. These synthetic derivatives were evaluated for their antiproliferative activities against a set of four human cancer cell lines. The IC50 values are similar to or improved over those of the parent molecule and paclitaxel, the latter of which was used as a positive control. Compound 29 was further investigated for its apoptotic properties against human hepatocarcinoma Bel-7402 cells to better understand its mode of action. Moreover, compound 29 was shown to have potent antitumor activity in vivo in studies with a murine model of gastric cancer (MGC-803 mice). These results warrant further preclinical investigations of these diterpenoid-based analogues as potential novel anticancer chemotherapeutics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Trial Watch: Anticancer radioimmunotherapy.

    Science.gov (United States)

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-09-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in

  20. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.; Bajic, Vladimir B.

    2010-01-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  1. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil

    2010-09-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  2. Anticancer activity and apoptosis inducing effect of methanolic extract of Cordia dichotoma against human cancer cell line

    Directory of Open Access Journals (Sweden)

    Md. Azizur Rahman

    2015-03-01

    Full Text Available MTT assay and DAPI staining test were performed to evaluate anticancer potential and to assess apoptosis inducing effect of methanolic extract of Cordia dichotoma leaves (MECD against human cervical cancer cell line (HeLa. Changes in MMP and intracellular ROS level were also assessed by JC-1 and DCFH-DA staining. Total phenolic contents were determined by colorimetric principle. Levels of statistical significance were determined by one-way analysis of variance followed by Dunnett’s posttest. Results showed that MECD with obtained IC50 of 202 µg/mL inhibited in vitro proliferation of human cervical cancer cells and induced apoptosis indicating its promising anticancer activity as compared to the standard tamoxifen with obtained IC50 of 48 µg/mL. Total phenolic contents was found to be 176.5 mg GAE/g dried extract. It was concluded that MECD possess promising anticancer activity and induce apoptosis.

  3. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.

    Science.gov (United States)

    Cai, Yanbin; Shen, Haosheng; Zhan, Jie; Lin, Mingliang; Dai, Liuhan; Ren, Chunhua; Shi, Yang; Liu, Jianfeng; Gao, Jie; Yang, Zhimou

    2017-03-01

    Nuclear delivery and accumulation are very important for many anticancer drugs that interact with DNA or its associated enzymes in the nucleus. However, it is very difficult for neutrally and negatively charged anticancer drugs such as 10-hydroxycamptothecine (HCPT). Here we report a simple strategy to construct supramolecular nanomedicines for nuclear delivery of dual synergistic anticancer drugs. Our strategy utilizes the coassembly of a negatively charged HCPT-peptide amphiphile and the positively charged cisplatin. The resulting nanomaterials behave as the "Trojan Horse" that transported soldiers (anticancer drugs) across the walls of the castle (cell and nucleus membranes). Therefore, they show improved inhibition capacity to cancer cells including the drug resistant cancer cell and promote the synergistic tumor suppression property in vivo. We envision that our strategy of constructing nanomaterials by metal chelation would offer new opportunities to develop nanomedicines for combination chemotherapy.

  4. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  5. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    Science.gov (United States)

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications.

    Science.gov (United States)

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary

    2016-01-01

    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects. © 2016 S. Karger AG, Basel.

  7. Isolation of eugenyl β-primeveroside from Camellia sasanqua and its anticancer activity in PC3 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Chun-Chieh Wang

    2016-01-01

    Full Text Available Most studies of tea trees have focused on their ornamental properties, there are fewer published studies on their medical values. The purpose of this study was to compare the chemical constituents and the biological potential of the water extract of leaves in eight species of Camellia including Camellia sinensis. Among eight Camellia species, Camellia sasanqua showed potent anticancer activities in prostate cancer PC3 cells. In addition to catechins, the major component, eugenyl β-primeveroside was detected in C. sasanqua. Eugenyl β-primeveroside blocked the progression of cell cycle at G1 phase by inducing p53 expression and further upregulating p21 expression. Moreover, eugenyl β-primeveroside induced apoptosis in PC3 prostate cancer cells. Our results suggest that C. sasanqua may have anticancer potential.

  8. uPAR as anti-cancer target

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Thurison, Tine

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u...... using mouse monoclonal antibodies (mAbs) against mouse uPA or uPAR. These reagents will target uPA and uPAR in both stromal cells and cancer cells, and their therapeutic potential can now be assessed in syngenic mouse cancer models....

  9. Ultrasound-Assisted Extraction, Antioxidant and Anticancer Activities of the Polysaccharides from Rhynchosia minima Root

    Directory of Open Access Journals (Sweden)

    Xuejing Jia

    2015-11-01

    Full Text Available Box-Behnken design (BBD, one of the most common response surface methodology (RSM methods, was used to optimize the experimental conditions for ultrasound-assisted extraction of polysaccharides from Rhynchosia minima root (PRM. The antioxidant abilities and anticancer activity of purified polysaccharide fractions were also measured. The results showed that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g; ultrasound extraction temperature, 63 °C. Under these conditions, the maximum yield of PRM was 16.95% ± 0.07%. Furthermore, the main monosaccharides of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima root have the potential to be developed as natural antioxidants and anticancer ingredients for the food and pharmaceutical industries.

  10. Ultrasound-Assisted Extraction, Antioxidant and Anticancer Activities of the Polysaccharides from Rhynchosia minima Root.

    Science.gov (United States)

    Jia, Xuejing; Zhang, Chao; Hu, Jie; He, Muxue; Bao, Jiaolin; Wang, Kai; Li, Peng; Chen, Meiwan; Wan, Jianbo; Su, Huanxing; Zhang, Qingwen; He, Chengwei

    2015-11-23

    Box-Behnken design (BBD), one of the most common response surface methodology (RSM) methods, was used to optimize the experimental conditions for ultrasound-assisted extraction of polysaccharides from Rhynchosia minima root (PRM). The antioxidant abilities and anticancer activity of purified polysaccharide fractions were also measured. The results showed that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g; ultrasound extraction temperature, 63 °C. Under these conditions, the maximum yield of PRM was 16.95%±0.07%. Furthermore, the main monosaccharides of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima root have the potential to be developed as natural antioxidants and anticancer ingredients for the food and pharmaceutical industries.

  11. Novel walnut peptide–selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity

    Directory of Open Access Journals (Sweden)

    Liao W

    2016-04-01

    Full Text Available Wenzhen Liao,1 Rong Zhang,1 Chenbo Dong,2 Zhiqiang Yu,3 Jiaoyan Ren11College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China; 2Civil and Environmental Engineering, Rice University, Houston, TX, USA; 3School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, Guangdong, People’s Republic of ChinaAbstract: This contribution reports a facile synthesis of degreased walnut peptides (WP1-functionalized selenium nanoparticles (SeNPs hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7 was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly

  12. African medicinal plants and their derivatives: Current efforts towards potential anti-cancer drugs.

    Science.gov (United States)

    Mbele, Mzwandile; Hull, Rodney; Dlamini, Zodwa

    2017-10-01

    Cancer is a leading cause of mortality and morbidity worldwide and second only to cardiovascular diseases. Cancer is a challenge in African countries because generally there is limited funding available to deal with the cancer epidemic and awareness and this should be prioritised and all possible resources should be utilized to prevent and treat cancer. The current review reports on the role of African medicinal plants in the treatment of cancer, and also outlines methodologies that can also be used to achieve better outcomes for cancer treatment. This review outlines African medicinal plants, isolated compounds and technologies that can be used to advance cancer research. Chemical structures of isolated compounds have an important role in anti-cancer treatments; new technologies and methods may assist to identify more properties of African medicinal plants and the treatment of cancer. In conclusion, African medicinal plants have shown their potential as enormous resources for novel cytotoxicity compounds. Finally it has been noted that the cytotoxicity depends on the chemical structural arrangements of African medicinal plants compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    Science.gov (United States)

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  14. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Estonian folk traditional experiences on natural anticancer remedies: from past to the future.

    Science.gov (United States)

    Sak, Katrin; Jürisoo, Kadi; Raal, Ain

    2014-07-01

    Despite diagnostic and therapeutic advancements, the burden of cancer is still increasing worldwide. Toxicity of current chemotherapeutics to normal cells and their resistance to tumor cells highlights the urgent need for new drugs with minimal adverse side effects. The use of natural anticancer agents has entered into the area of cancer research and increased efforts are being made to isolate bioactive products from medicinal plants. To lead the search for plants with potential cytotoxic activity, ethnopharmacological knowledge can give a great contribution. Therefore, the attention of this review is devoted to the natural remedies traditionally used for the cancer treatment by Estonian people over a period of almost 150 years. Two massive databases, the first one stored in the Estonian Folklore Archives and the second one in the electronic database HERBA ( http://herba.folklore.ee/ ), containing altogether more than 30 000 ethnomedicinal texts were systematically reviewed to compile data about the Estonian folk traditional experiences on natural anticancer remedies. As a result, 44 different plants with potential anticancer properties were elicited, 5 of which [Angelica sylvestris L. (Apiaceae), Anthemis tinctoria L. (Asteraceae), Pinus sylvestris L. (Pinaceae), Sorbus aucuparia L. (Rosaceae), and Prunus padus L. (Rosaceae)] have not been previously described with respect to their tumoricidal activities in the scientific literature, suggesting thus the potential herbal materials for further investigations of natural anticancer compounds.

  16. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-02-01

    Full Text Available A total of forty novel glycyrrhetinic acid (GA derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231 in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively and merits further exploration as a new anticancer agent.

  17. [Vitamin D anti-cancer activities: observations, doubts and certainties].

    Science.gov (United States)

    Castronovo, C; Castronovo, V; Nikkels, A; Peulen, O

    2015-10-01

    The importance of vitamin D in bone and phosphocalcic status is well recognized by the scientific and medical communities; however, recently identified properties of this cholesterol derived molecule, such as immunomodulator and anticancer activities, are yet discussed. Actually, the debate is not so much about the new vitamin D properties, but rather about the optimal concentration required to reach these properties. The difficulty in determining the norms is rendered even more complex by the existence of a vitamin D receptor gene polymorphism. The body pool of this vitamin depends essentially on its endogenous synthesis, but also on its dietary intakes. Many epidemiological studies interested in Vitamin D serum level and cancer suggest a relation between low Vitamin D level and cancer risk, especially in breast and colon adenocarcinomas. In vitro, many studies showed, in different human and animal malignant cell lines, that this molecule exerts anticancer activities: it induces apoptosis and cell differentiation as well as it inhibits proliferation and angiogenesis. This review tries to update the current knowledge on vitamin D and, more particularly, the potential interest of this molecule in cancer prevention and management.

  18. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  19. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    Science.gov (United States)

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  20. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    Science.gov (United States)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  1. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Florian Rothweiler

    2010-12-01

    Full Text Available The human immunodeficiency virus (HIV protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC transporters P-glycoprotein (P-gp, multidrug resistance-associated protein 1 (MRP1, and breast cancer resistance protein 1 (BCRP1 in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors.

  2. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Science.gov (United States)

    Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  3. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Directory of Open Access Journals (Sweden)

    Vartika Rai

    2014-01-01

    Full Text Available Catharanthus roseus (L. G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr level in order to investigate the plant’s protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress.

  4. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Wenqi

    2008-04-01

    Full Text Available Abstract Background It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU loaded block copolymers, with poly(γ-benzyl-L-glutamate (PBLG as the hydrophobic block and poly(ethylene glycol (PEG as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. Methods 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC. To study in vivo effects, LoVo cells (human colon cancer cell line or Tca8113 cells (human oral squamous cell carcinoma cell line were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. Results 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t1/2, 33.3 h vs. 5 min, lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L, and greater distribution volume (VD, 0.114 L vs. 0.069 L. Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p 0.05. Conclusion In our model system, 5-FU/PEG-PBLG nanoparticles

  5. 1-[2-(2-Methoxyphenylaminoethylamino]-3-(naphthalene-1- yloxypropan-2-ol May Be a Promising Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nishizaki

    2014-12-01

    Full Text Available We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylaminoethylamino]-3-(naphthalene-1-yloxypropan-2-ol (HUHS 1015 as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy.

  6. Anticancer drugs during pregnancy.

    Science.gov (United States)

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Synthesis and evaluation of cardiac glycoside mimics as potential anticancer drugs

    DEFF Research Database (Denmark)

    Jensen, Marie; Schmidt, Steffen; Fedosova, Natalya

    2011-01-01

    recent years cardiac glycosides have furthermore been suggested to possess valuable anticancer activity. To mimic the labile trisaccharide of digitoxin with a stabile carbohydrate surrogate, we have used sulfur linked ethylene glycol moieties of varying length (mono-, di-, tri- or tetra-ethylene glycol...... the shortest mimics were found to have highest efficacy, with the best ligand having a monoethylene glycol unit (IC(50) 0.24 μM), which was slightly better than digitoxigenin (IC(50) 0.64 μM), while none of the novel cardiac glycoside mimics display an in vitro effect as high as digitoxin (IC(50) 0.02 μM)....

  8. A rapid in vitro screening system for the identification and evaluation of anticancer drugs

    International Nuclear Information System (INIS)

    Kao, J.W.; Collins, J.L.

    1989-01-01

    We report the development of an in vitro screening system that can be used to identify new anticancer drugs that are specifically cytotoxic for dividing cells. The screening system takes advantage of the potential of many cell lines, including tumor cells, to stop dividing when they are plated at high cell density. The cytotoxic effects of anticancer drugs on dividing (i.e., cells plated at low cell density) and nondividing cells (i.e., cells plated at high cell density) is measured by the incorporation of 51Cr. This in vitro system was evaluated by measuring the cytotoxic effects of the anticancer drugs cisplatin, thiotepa, doxorubicin, methotrexate, and vinblastine on the cell lines B/C-N, ME-180, and MCF-7. In this in vitro system the concentrations of the anticancer drugs that produced significant cytotoxicity on only dividing cells are similar to the concentrations that are used clinically. The fact that this in vitro system is rapid, simple, applicable to many cell types, and able to predict effective concentrations of anticancer drugs should make it useful for the screening of new anticancer drugs and for the design of preclinical studies

  9. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  10. Synthesis and antimicrobial activity of guanylhydrazones. Synthesis of 2-(2-methylthio-2-aminovinyl)-1-methylpyridinium iodides and 2-(2-methylthio-2-aminovinyl)-1-methylquinolinium iodides as potential radioprotective and anticancer agents

    International Nuclear Information System (INIS)

    Almassian, B.

    1985-01-01

    The finding of appreciable antileukemic activity in a series of 2-(2-methylthio-2-amino)vinyl-1-methylquinolinium iodides (Foye et al., 1980, 1983) suggested that greater basicity, as compared with the corresponding dithioacetic acids, was contributing to the increase in activity. The addition of a greater degree of basicity in the design of anticancer possibilities in this series was considered worth investigation, particularly in view of the activity of a series of bis(quanylhydrazones) synthesized at Lederle Laboratories. Accordingly, a series of guanylhydrazones of 4-pyridine-,2-pyridine- and 4-quinolinecarboxyaldehydes was synthesized for anticancer as well as antibacterial screening. Also, substitution of additional basic functions in the 2-(2-methylthio-2-amino) vinyl-1-methylquinolinium and pyridinium iodide series has been made. Appreciable antimicrobial activities have been found with both 2-pyridine and 4-quinolinealdehyde guanylhydrazones, as well as with 2-(2-methylthio-2-amino)vinyl-1-methyl-pyridinium iodides. The overall approach to the synthesis of potential anticancer agents in this project is thus to observe the effect of increasing basicity of these compounds on DNA binding and anticancer activity

  11. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    Science.gov (United States)

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz; Sęczyk, Łukasz; Złotek, Urszula; Różyło, Renata; Kaszuba, Kinga; Ryszawy, Damian; Czyż, Jarosław

    2014-01-01

    This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention. PMID:25050366

  12. Anticancer and Antioxidant Activity of Bread Enriched with Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Urszula Gawlik-Dziki

    2014-01-01

    Full Text Available This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities; however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention.

  13. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  14. Developments in platinum anticancer drugs

    Science.gov (United States)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  15. Exploratory studies of the potential anti-cancer effects of creatine.

    Science.gov (United States)

    Campos-Ferraz, P L; Gualano, B; das Neves, W; Andrade, I T; Hangai, I; Pereira, R T S; Bezerra, R N; Deminice, R; Seelaender, M; Lancha, A H

    2016-08-01

    Two experiments were performed, in which male Wistar Walker 256 tumor-bearing rats were inoculated with 4 × 10(7) tumor cells subcutaneously and received either creatine (300 mg/kg body weight/day; CR) or placebo (water; PL) supplementation via intragastric gavage. In experiment 1, 50 rats were given PL (n = 22) or CR (n = 22) and a non-supplemented, non-inoculated group served as control CT (n = 6), for 40 days, and the survival rate and tumor mass were assessed. In experiment 2, 25 rats were given CR or PL for 15 days and sacrificed for biochemical analysis. Again, a non-supplemented, non-inoculated group served as control (CT; n = 6). Tumor and muscle creatine kinase (CK) activity and total creatine content, acidosis, inflammatory cytokines, and antioxidant capacity were assessed. Tumor growth was significantly reduced by approximately 30 % in CR when compared with PL (p = 0.03), although the survival rate was not significantly different between CR and PL (p = 0.65). Tumor creatine content tended to be higher in CR than PL (p = 0.096). Tumor CK activity in the cytosolic fraction was higher in CR than PL (p Creatine supplementation was able to slow tumor growth without affecting the overall survival rate, probably due to the re-establishment of the CK-creatine system in cancer cells, leading to attenuation in acidosis, inflammation, and oxidative stress. These findings support the role of creatine as a putative anti-cancer agent as well as help in expanding our knowledge on its potential mechanisms of action in malignancies.

  16. Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system

    Science.gov (United States)

    Oh, Jae-Min; Park, Man; Kim, Sang-Tae; Jung, Jin-Young; Kang, Yong-Gu; Choy, Jin-Ho

    2006-05-01

    We have been successful to intercalate anticancer drug, methotrexate (MTX), into layered double hydroxides (LDHs), Mg2Al(OH)6(NO3)·0.1H2O, through conventional co-precipitation method. Layered double hydroxides (LDHs) are endowed with great potential for delivery vector, since their cationic layers lead to safe reservation of biofunctional molecules such as drug molecules or genes. And their ion exchangeability and solubility in acidic media (pHosteosarcoma cell culture lines (Saos-2 and MG-63) and the normal one (human fibroblast) were used for in vitro test. The anticancer efficacy of MTX intercalated LDHs (MTX-LDH nanohybrids) was also estimated in vitro by the bioassay such as MTT and BrdU (5-bromo-2-deoxyuridine) with the bone cancer cell culture lines (Saos-2 and MG-63). According to the toxicity test results, LDHs do not harm to both the normal and cancer cells upto the concentration of 500 ug/mL. The anticancer efficacy test for the MTX-LDH nanohybrids turn out to be much more effective in cell suppression compared to the MTX itself. According to the cell-line tests, the MTX-LDH shows same drug efficacy to the MTX itself in spite of the low concentration by ˜5000 times. Such a high cancer suppression effect of MTX-LDH hybrid is surely due to the excellent delivery efficiency of inorganic delivery vector, LDHs.

  17. Thieno[3,2-c]pyran-4-one based novel small molecules: their synthesis, crystal structure analysis and in vitro evaluation as potential anticancer agents.

    Science.gov (United States)

    Nakhi, Ali; Adepu, Raju; Rambabu, D; Kishore, Ravada; Vanaja, G R; Kalle, Arunasree M; Pal, Manojit

    2012-07-01

    Novel thieno[3,2-c]pyran-4-one based small molecules were designed as potential anticancer agents. Expeditious synthesis of these compounds was carried out via a multi-step sequence consisting of few steps such as Gewald reaction, Sandmeyer type iodination, Sonogashira type coupling followed by iodocyclization and then Pd-mediated various C-C bond forming reactions. The overall strategy involved the construction of thiophene ring followed by the fused pyranone moiety and then functionalization at C-7 position of the resultant thieno[3,2-c]pyran-4-one framework. Some of the compounds synthesized showed selective growth inhibition of cancer cells in vitro among which two compounds for example, 5d and 6c showed IC(50) values in the range of 2.0-2.5 μM. The crystal structure analysis of an active compound along with hydrogen bonding patterns and molecular arrangement present within the molecule is described. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells12

    Science.gov (United States)

    Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich

    2010-01-01

    The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266

  19. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.

    Science.gov (United States)

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold

    2018-04-13

    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  20. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties

    Directory of Open Access Journals (Sweden)

    YiingYng Chow

    2015-11-01

    Full Text Available Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition to pink (alkaline condition. The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40, followed by O. diffusa (25, C. citratus (14 and M. koenigii (10. Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL−1 min−1. l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.

  1. Current situation and future usage of anticancer drug databases.

    Science.gov (United States)

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  2. In vitro and in vivo anti-cancer effects of tillandsia recurvata (ball moss) from Jamaica.

    Science.gov (United States)

    Lowe, H I C; Toyang, N J; Bryant, J

    2013-03-01

    Tillandsia recurvata, also commonly known as Ball Moss, is endemic to Jamaica and some parts of the Caribbean and South America. The plant, despite being reported to be used in folk medicine, had not previously been evaluated for its anti-cancer potential. The aim of this study was to evaluate the anti-cancer activity ofBall Moss. The anti-proliferation activity of the crude methanolic extract of the T recurvata was evaluated in vitro in five different histogenic cancer cell lines (prostate cancer - PC-3, breast cancer Kaposi sarcoma, B-16 melanoma and a B-cell lymphoma from a transgenic mouse strain) using the trypan blue assay. The crude extract was also evaluated in vivo in tumour-bearing mice. Immunohistochemistry staining with Apoptag was used for histology and determination of apoptosis. The crude methanolic extract of T recurvata demonstrated anti-proliferation activity against all the cell lines, killing > 50% of the cells at a concentration of 2.5 microg/ml. Kaposi sarcoma xenograft tumours were inhibited by up to 75% compared to control in the in vivo study (p < 0.05). There was evidence of DNA fragmentation and a decrease in cell viability on histological studies. The methanolic extract showed no toxic effect in the mice at a dose of 200 mg/kg. Our data suggest that T recurvata has great potential as an anti-cancer agent and that one of its mechanisms of cell kill and tumour inhibition is by the induction of apoptosis.

  3. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties

    Directory of Open Access Journals (Sweden)

    Al-Said Mansour S

    2012-07-01

    Full Text Available Abstract Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3–19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7 comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  4. Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents.

    Science.gov (United States)

    Waseem, Durdana; Butt, Arshad Farooq; Haq, Ihsan-Ul; Bhatti, Moazzam Hussain; Khan, Gul Majid

    2017-04-04

    Tributyltin (IV) compounds are promising candidates for drug development. In the current study, we evaluated in-vitro and in-silico profile of carboxylate derivatives of tributyltin (IV) complexes. ADMET and drug-likeliness properties were predicted using MetaPrint2D React, preADMET, SwissADME and Molsoft tools. SwissTargetPrediction predicted molecular targets for compounds. In-vitro bioactivity was evaluated by quantifying cytotoxicity against HepG2, THP-1 cell lines, isolated lymphocytes and leishmania promastigotes as well as measuring protein kinase (PK) inhibition activity. Results indicate partial compliance of compounds with drug-likeliness rules. Ch-409 complies with WDI and Lipinski rules. ADMET profile prediction shows strong plasma protein binding except for Ch-409, low to high GI absorption and BBB penetration (C brain /C blood  = 0.942-11; caco-2 cells permeability 20.13-26.75 nm/sec), potential efflux by P-glycoprotein, metabolism by CYP3A4, medium inhibition of hERG, mutagenicity and capacity to be detoxified by glutathionation and glucuronidation. Molecular targets include proteases, enzymes, membrane receptors, transporters and ion channels where Ch-409 targets membrane receptors only. Compounds are significantly (p tributyltin (IV) complexes possess significant antileishmanial and cytotoxic potential. These are promising compounds for the development of antileishmanial and anticancer drugs. Graphical Abstract Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents.

  5. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Daisy Pitchai

    2014-01-01

    Full Text Available Lupeol is a triterpenoid, present in most of the medicinally effective plants and possess a wide range of biological activity against human diseases. The present study aims at evaluating the anticancer potentials of lupeol, isolated from the leaves of Elephantopus scaber L. and thereby explores its action on key cancer marker, Bcl-2. The effect of lupeol on the cell viability of MCF-7 was determined by MTT and lactate dehydrogenase assays at different concentrations. The efficacy of the compound to induce cell death was analyzed using AO/EtBr staining. Phase contrast microscopic analysis provided the changes in cell morphology of the compound treated normal breast cells (MCF-10A and MCF-7 cells. The expression of Bcl-2 and Bcl-xL proteins in the normal, cancer and lupeol treated cancer cell was analyzed by western blotting. Lupeol induced an effective change in the cell viability of MCF-7 cells with IC 50 concentration as 80 μM. Induction of cell death, change in cell morphology and population of the cancer cells was observed in the lupeol treated cells, but the normal cells were not affected. The compound effectively downregulated Bcl-2 and Bcl-xL protein expressions, which directly contribute for the induction of MCF-7 cell apoptosis. Conclusion: Thus, lupeol acts as an anticancer agent against MCF-7 cells and is a potent phytodrug to be explored further for its cytotoxic mechanism.

  6. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    Science.gov (United States)

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  7. TIPdb: A Database of Anticancer, Antiplatelet, and Antituberculosis Phytochemicals from Indigenous Plants in Taiwan

    Directory of Open Access Journals (Sweden)

    Ying-Chi Lin

    2013-01-01

    Full Text Available The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.

  8. TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan.

    Science.gov (United States)

    Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei

    2013-01-01

    The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.

  9. Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-06-01

    Full Text Available For enhanced anti-cancer performance, human serum albumin fragments (HSAFs nanoparticles (NPs were developed as paclitaxel (PTX carrier in this paper. Human albumins were broken into fragments via degradation and crosslinked by genipin to form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs showed relative smaller particle size, higher drug loading, and improved sustained release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs have shown good anti-cancer performance. And the anticancer results confirmed that NPs with fast cellular internalization showed better tumor inhibition. These findings will not only provide a safe and robust drug delivery NP platform for cancer therapy, but also offer fundamental information for the optimal design of albumin based NPs.

  10. Review of pharmacological interactions of oral anticancer drugs provided at pharmacy department

    Directory of Open Access Journals (Sweden)

    E. Sánchez Gómez

    2014-07-01

    Full Text Available Abstract: Objective: To identify the pharmacologic interactions of oral anti-cancer drugs provided at an outpatient clinic. Material and methods: Anti-cancer drugs included in the Phamacotherapeutic Guideline of the Hospital were identified. A literature search was carried out on the pharmacologic interactions in MEDLINE® and EMBASE® (with the filer language English or Spanish, and the descriptors: “name of the anti-cancer drug” AND (“drug interactions” OR “pharmacokinetic”, Up-to-date®, MICROMEDEX® and the drug information sheet for the EMA and the FDA. Information was also gathered from the abstract presented to European and Spanish scientific meetings for the last 4 years. When an interaction was analyzed and had clinical relevance, the best pharmacotherapeutic interaction-free alternative was sought. Results: Twenty-three drugs were identified, of which Chlorambucil, Fludarabine, Lenalidomide, Melphalan, and Thalidomide were the active compounds with the lowest likelihood of producing a pharmacologic interaction. Tyrosine kinase inhibitors (particularly Erlotinib, Imatinib, Lapatinib, and Pazopanib are the drugs with highest number of pharmacologic interactions described, many of them with severe clinical consequences, with increases and decreases of the plasma levels of anti-cancer drugs. The active compounds identified that may have pharmacologic interactions with anticancer drugs were mainly: Allopurinol, Amiodarone, Carbamazepine, Dabigatran, Digoxin, Spironolactone, Phenytoin, Itraconazol, Repaglinide, Silodosin, Tamoxifen, Verapamil, and Warfarin. Pharmacologic interactions through the cytochrome P450 1A2, 2D6, 2C8, 2C9, 3A4 were the most important for tyrosine kinase inhibitors. Other non-pharmacologic compounds, with an important potential of producing relevant pharmacologic interaction were immunomodulators (Echinacea extracts and Hypericum perforatum. Conclusions: Oral anticancer drugs have numerous pharmacologic

  11. A QSAR, Pharmacokinetic and Toxicological Study of New Artemisinin Compounds with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Josinete B. Vieira

    2014-07-01

    Full Text Available The Density Functional Theory (DFT method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with different degrees of cytotoxicity against the human hepatocellular carcinoma HepG2 line. Principal component analysis (PCA and hierarchical cluster analysis (HCA were employed to select the most important descriptors related to anticancer activity. The significant molecular descriptors related to the compounds with anticancer activity were the ALOGPS_log, Mor29m, IC5 and GAP energy. The Pearson correlation between activity and most important descriptors were used for the regression partial least squares (PLS and principal component regression (PCR models built. The regression PLS and PCR were very close, with variation between PLS and PCR of R2 = ±0.0106, R2ajust = ±0.0125, s = ±0.0234, F(4,11 = ±12.7802, Q2 = ±0.0088, SEV = ±0.0132, PRESS = ±0.4808 and SPRESS = ±0.0057. These models were used to predict the anticancer activity of eight new artemisinin compounds (test set with unknown activity, and for these new compounds were predicted pharmacokinetic properties: human intestinal absorption (HIA, cellular permeability (PCaCO2, cell permeability Maden Darby Canine Kidney (PMDCK, skin permeability (PSkin, plasma protein binding (PPB and penetration of the blood-brain barrier (CBrain/Blood, and toxicological: mutagenicity and carcinogenicity. The test set showed for two new artemisinin compounds satisfactory results for anticancer activity and pharmacokinetic and toxicological properties. Consequently, further studies need be done to evaluate the different proposals as well as their actions, toxicity, and potential use for treatment of cancers.

  12. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark.

    Directory of Open Access Journals (Sweden)

    Tripti Mishra

    Full Text Available Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB, in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA, oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A. Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer.

  13. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    International Nuclear Information System (INIS)

    Li, Su; Wang, Anxun; Jiang, Wenqi; Guan, Zhongzhen

    2008-01-01

    It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(γ-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t 1/2 , 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L), and greater distribution volume (V D , 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05). In our

  14. Anticancer potential of Conium maculatum extract against cancer cells in vitro: Drug-DNA interaction and its ability to induce apoptosis through ROS generation

    OpenAIRE

    Jesmin Mondal; Ashis Kumar Panigrahi; Anisur Rahman Khuda-Bukhsh

    2014-01-01

    Objective: Conium maculatum extract is used as a traditional medicine for cervix carcinoma including homeopathy. However, no systematic work has so far been carried out to test its anti-cancer potential against cervix cancer cells in vitro. Thus, in this study, we investigated whether ethanolic extract of conium is capable of inducing cytotoxicity in different normal and cancer cell lines including an elaborate study in HeLa cells. Materials and Methods: Conium's effects on cell cycle, reacti...

  15. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses

    Directory of Open Access Journals (Sweden)

    Arodola OA

    2015-11-01

    Full Text Available Olayide A Arodola, Mahmoud ES SolimanMolecular Modelling and Drug Design Lab, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South AfricaAbstract: Based on experimental data, the anticancer activity of nelfinavir (NFV, a US Food and Drug Administration (FDA-approved HIV-1 protease inhibitor (PI, was reported. Nevertheless, the mechanism of action of NFV is yet to be verified. It was hypothesized that the anticancer activity of NFV is due to its inhibitory effect on heat shock protein 90 (Hsp90, a promising target for anticancer therapy. Such findings prompted us to investigate the potential anticancer activity of all other FDA-approved HIV-1 PIs against human Hsp90. To accomplish this, “loop docking” – an enhanced in-house developed molecular docking approach – followed by molecular dynamic simulations and postdynamic analyses were performed to elaborate on the binding mechanism and relative binding affinities of nine FDA-approved HIV-1 PIs against human Hsp90. Due to the lack of the X-ray crystal structure of human Hsp90, homology modeling was performed to create its 3D structure for subsequent simulations. Results showed that NFV has better binding affinity (ΔG =−9.2 kcal/mol when compared with other PIs: this is in a reasonable accordance with the experimental data (IC50 3.1 µM. Indinavir, saquinavir, and ritonavir have close binding affinity to NFV (ΔG =−9.0, −8.6, and −8.5 kcal/mol, respectively. Per-residue interaction energy decomposition analysis showed that hydrophobic interaction (most importantly with Val534 and Met602 played the most predominant role in drug binding. To further validate the docking outcome, 5 ns molecular dynamic simulations were performed in order to assess the stability of the docked complexes. To our knowledge, this is the first account of detailed computational investigations aimed to investigate the potential anticancer activity and the binding

  16. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  17. Antioxidant and Anticancer Activities of Wampee (Clausena lansium (Lour. Skeels Peel

    Directory of Open Access Journals (Sweden)

    K. Nagendra Prasad

    2009-01-01

    Full Text Available Antioxidant activities of wampee peel extracts using five different solvents (ethanol, hexane, ethyl acetate, butanol and water were determined by using in-vitro antioxidant models including total antioxidant capability, 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging activity, reducing power, and superoxide scavenging activity. Ethyl acetate fraction (EAF exhibited the highest antioxidant activity compared to other fractions, even higher than synthetic antioxidant butylated hydroxyl toluene (BHT. In addition, the EAF exhibited strong anticancer activities against human gastric carcinoma (SGC-7901, human hepatocellular liver carcinoma (HepG-2 and human lung adenocarcinoma (A-549 cancer cell lines, higher than cisplatin, a conventional anticancer drug. The total phenolic content of wampee fraction was positively correlated with the antioxidant activity. This is the first report on the antioxidant and anticancer activities of the wampee peel extract. Thus, wampee peel can be used potentially as a readily accessible source of natural antioxidants and a possible pharmaceutical supplement.

  18. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  19. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities.

    Science.gov (United States)

    Mishra, Amita; Sharma, Amit Kumar; Kumar, Shashank; Saxena, Ajit K; Pandey, Abhay K

    2013-01-01

    The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11-222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC) values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL) was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10-40 μg/mL). Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90-99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.

  20. Bauhinia variegata Leaf Extracts Exhibit Considerable Antibacterial, Antioxidant, and Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Amita Mishra

    2013-01-01

    Full Text Available The present study reports the phytochemical profiling, antimicrobial, antioxidant, and anticancer activities of Bauhinia variegata leaf extracts. The reducing sugar, anthraquinone, and saponins were observed in polar extracts, while terpenoids and alkaloids were present in nonpolar and ethanol extracts. Total flavonoid contents in various extracts were found in the range of 11–222.67 mg QE/g. In disc diffusion assays, petroleum ether and chloroform fractions exhibited considerable inhibition against Klebsiella pneumoniae. Several other extracts also showed antibacterial activity against pathogenic strains of E. coli, Proteus spp. and Pseudomonas spp. Minimum bactericidal concentration (MBC values of potential extracts were found between 3.5 and 28.40 mg/mL. The lowest MBC (3.5 mg/mL was recorded for ethanol extract against Pseudomonas spp. The antioxidant activity of the extracts was compared with standard antioxidants. Dose dependent response was observed in reducing power of extracts. Polar extracts demonstrated appreciable metal ion chelating activity at lower concentrations (10–40 μg/mL. Many extracts showed significant antioxidant response in beta carotene bleaching assay. AQ fraction of B. variegata showed pronounced cytotoxic effect against DU-145, HOP-62, IGR-OV-1, MCF-7, and THP-1 human cancer cell lines with 90–99% cell growth inhibitory activity. Ethyl acetate fraction also produced considerable cytotoxicity against MCF-7 and THP-1 cell lines. The study demonstrates notable antibacterial, antioxidant, and anticancer activities in B. variegata leaf extracts.

  1. Characterization and in vitro studies on anticancer activity of ...

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... The exopolymer produced by B. thuringiensis S13, showed potent ... Polysaccharides derived from a microorganism have specific broad .... polymer and cisplatin (an anticancer drug as standard) separately in triplicates to ...

  2. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity

    Science.gov (United States)

    Yugandhar, Pulicherla; Vasavi, Thirumalanadhuni; Uma Maheswari Devi, Palempalli; Savithramma, Nataru

    2017-10-01

    In recent times, nanoparticles are attributed to green nanotechnology methods to know the synergistic biological activities. To accomplish this phenomenon, present study was aimed to synthesize copper oxide nanoparticles (CuO NPs) by using Syzygium alternifolium stem bark, characterized those NPs using expository tools and to elucidate high prioritized antimicrobial and anticancer activities. Synthesized particles exhibited a color change pattern upon synthesis and affirmed its respective broad peak at 285 nm which was analyzed through UV-vis spectroscopy. FT-IR study confirmed that phenols and primary amines were mainly involved in capping and stabilization of nanoparticles. DLS and Zeta potential studies revealed narrow size of particles with greater stability. XRD studies revealed the crystallographic nature of particles with 17.2 nm average size. Microscopic analysis by using TEM revealed that particle size range from 5-13 nm and most of them were spherical in shape, non-agglomerated and poly-dispersed in condition. Antimicrobial studies of particles showed highest inhibitory activity against E. coli and T. harzianum among bacterial and fungal strains, respectively. The scope of this study is extended by examining anticancer activity of CuO NPs. This study exhibited potential anticancer activity towards MDA-MB-231 human breast cancer lines. Overall, these examinations relate that the S. alternifolium is described as efficient well-being plant and probabilistically for the design and synthesis of nanoparticles for human health. This study paves a way to better understand antimicrobial and anticancer therapeutic drug potentials of nanoparticles to design and analysis of pharmaceuticals by in vivo and in vitro approaches.

  3. Assessment of Olea europaea L. fruit extracts: Phytochemical characterization and anticancer pathway investigation.

    Science.gov (United States)

    Maalej, Amina; Bouallagui, Zouhaier; Hadrich, Fatma; Isoda, Hiroko; Sayadi, Sami

    2017-06-01

    Olea europaea L. has been widely used as an advantageous rich source of bioactive compounds of high economic value leading to its use in pharmaceutical, cosmetic, and agriculture industries. Ethanolic extracts of olive fruits from three different cultivars (OFE) were studied for their phytochemical contents and were investigated for antioxidant activities and anticancer potential. Major polyphenols detected in these extracts were tyrosol, hydroxytyrosol, oleuropein, rutin, quercetin and glucoside forms of luteolin and apigenin. All these compounds have shown to significantly contribute to the antioxidant activity of OFE, which was evaluated by DPPH and ABTS assays. Proliferation of hepatic and colon cancer cells, HepG2 and Caco-2, were shown to be sensitive to OFE with IC 50 less than 1.6mg/ml for all tested extracts. Moreover, flow cytometry analysis showed that OFE induced cell cycle arrest in the S-phase within both HepG2 and Caco-2 cells. This has triggered a cell death mechanism as shown by DNA fragmentation, expression of p53 and phosphorylation level of Akt and Erk proteins. Interestingly, these extracts could be further used as a potential source of natural compounds with both antioxidant and anticancer effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C

    International Nuclear Information System (INIS)

    Kim, Kyu Kwang; Lange, Thilo S; Singh, Rakesh K; Brard, Laurent; Moore, Richard G

    2012-01-01

    Our recent study showed that tetrathiomolybdate (TM), a drug to treat copper overload disorders, can sensitize drug-resistant endometrial cancer cells to reactive oxygen species (ROS)-generating anticancer drug doxorubicin. To expand these findings in the present study we explore TM efficacy in combination with a spectrum of ROS-generating anticancer drugs including mitomycin C, fenretinide, 5-fluorouracil and doxorubicin in ovarian cancer cells as a model system. The effects of TM alone or in combination with doxorubicin, mitomycin C, fenretinide, or 5-fluorouracil were evaluated using a sulforhodamine B assay. Flow cytometry was used to detect the induction of apoptosis and ROS generation. Immunoblot analysis was carried out to investigate changes in signaling pathways. TM potentiated doxorubicin-induced cytotoxicity and modulated key regulators of apoptosis (PARP, caspases, JNK and p38 MAPK) in SKOV-3 and A2780 ovarian cancer cell lines. These effects were linked to the increased production of ROS, as shown in SKOV-3 cells. ROS scavenging by ascorbic acid blocked the sensitization of cells by TM. TM also sensitized SKOV-3 to mitomycin C, fenretinide, and 5-fluorouracil. The increased cytotoxicity of these drugs in combination with TM was correlated with the activity of ROS, loss of a pro-survival factor (e.g. XIAP) and the appearance of a pro-apoptotic marker (e.g. PARP cleavage). Our data show that TM increases the efficacy of various anticancer drugs in ovarian cancer cells in a ROS-dependent manner

  5. Two-Step Hydrothermal Synthesis of Bifunctional Hematite-Silver Heterodimer Nanoparticles for Potential Antibacterial and Anticancer Applications

    Science.gov (United States)

    Trang, Vu Thi; Tam, Le Thi; Phan, Vu Ngoc; Van Quy, Nguyen; Huy, Tran Quang; Le, Anh-Tuan

    2017-06-01

    In recent years, the development of composite nanostructures containing noble metal and magnetic nanocrystals has attracted much interest because they offer a promising avenue for multifunctional applications in nanomedicine and pharmacotherapy. In this work, we present a facile two-step hydrothermal approach for the synthesis of bifunctional heterodimer nanoparticles (HDNPs) composed of hematite nanocubes (α-Fe2O3 NCs) and silver nanoparticles (Ag-NPs). The formation and magnetic property of α-Fe2O3-Ag HDNPs was analyzed by transmission electron microscopy, x-ray diffraction and vibrating sample magnetometer. Interestingly, the hydrothermal-synthesized α-Fe2O3-Ag HDNPs were found to display significant antibacterial activity against three types of infectious bacteria. The cytotoxicity of α-Fe2O3-Ag nanocomposite against lung cancer A549 cell line was investigated and compared with that of pure α-Fe2O3 NCs and Ag-NPs. The obtained results reveal that the α-Fe2O3-Ag nanocomposite exhibited higher anticancer performance than that of pure Ag-NPs, whereas pure α-Fe2O3 NCs were not cytotoxic to the tested cells. The inhibitory concentration (IC50) of the α-Fe2O3-Ag nanocomposite was found at 20.94 μg/mL. With the aforementioned properties, α-Fe2O3-Ag HDNPs showed a high potential as a multifunctional material for advanced biomedicine and nanotherapy applications.

  6. Anticancer potential of Conium maculatum extract against cancer cells in vitro: Drug-DNA interaction and its ability to induce apoptosis through ROS generation.

    Science.gov (United States)

    Mondal, Jesmin; Panigrahi, Ashis Kumar; Khuda-Bukhsh, Anisur Rahman

    2014-08-01

    Conium maculatum extract is used as a traditional medicine for cervix carcinoma including homeopathy. However, no systematic work has so far been carried out to test its anti-cancer potential against cervix cancer cells in vitro. Thus, in this study, we investigated whether ethanolic extract of conium is capable of inducing cytotoxicity in different normal and cancer cell lines including an elaborate study in HeLa cells. Conium's effects on cell cycle, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential (MMP) and apoptosis, if any, were analyzed through flow cytometry. Whether Conium could damage DNA and induce morphological changes were also determined microscopically. Expression of different proteins related to cell death and survival was critically studied by western blotting and ELISA methods. If Conium could interact directly with DNA was also determined by circular dichroism (CD) spectroscopy. Conium treatment reduced cell viability and colony formation at 48 h and inhibited cell proliferation, arresting cell cycle at sub-G stage. Conium treatment lead to increased generation of reactive oxygen species (ROS) at 24 h, increase in MMP depolarization, morphological changes and DNA damage in HeLa cells along with externalization of phosphatidyl serine at 48 hours. While cytochrome c release and caspase-3 activation led HeLa cells toward apoptosis, down-regulation of Akt and NFkB inhibited cellular proliferation, indicating the signaling pathway to be mediated via the mitochondria-mediated caspase-3-dependent pathway. CD-spectroscopy revealed that Conium interacted with DNA molecule. Overall results validate anti-cancer potential of Conium and provide support for its use in traditional systems of medicine.

  7. Anticancer Activity of Amauroderma rude

    Science.gov (United States)

    Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B.

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  8. Anticancer activity of Amauroderma rude.

    Directory of Open Access Journals (Sweden)

    Chunwei Jiao

    Full Text Available More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities.

  9. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents

    Science.gov (United States)

    Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa

    2018-04-01

    In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.

  10. Anticancer Activity of Extracts from some Endemic Tanzanian Plants ...

    African Journals Online (AJOL)

    Of the 52 extracts from 26 plants of different families tested, 5 demonstrated potential activity on the cells. Extract X13 had an exceptionally high activity on both cell lines while extract X29 was highly active on HeLa cells. Fractionation and isolation of constituents from the extracts that have shown anticancer activity in these ...

  11. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    Science.gov (United States)

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  12. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  13. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  14. Peptide-based proteasome inhibitors in anticancer drug design.

    Science.gov (United States)

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents. © 2014 Wiley Periodicals, Inc.

  15. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2010-12-01

    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  16. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    International Nuclear Information System (INIS)

    Yang, Danbo; Yu, Lei; Van, Sang

    2010-01-01

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic

  17. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Danbo [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Yu, Lei, E-mail: yu-lei@gg.nitto.co.jp [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States); Van, Sang [Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2010-12-23

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  18. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Science.gov (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    International Nuclear Information System (INIS)

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-01-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ("1H NMR and "1"3C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL"−"1. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity

  20. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Venil, Chidambaram Kulandaisamy, E-mail: ckvenil@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sathishkumar, Palanivel [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Malathi, Mahalingam [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu (India); Usha, Rajamanickam [Department of Microbiology, Karpagam University, Coimbatore 641 023, Tamil Nadu (India); Jayakumar, Rajarajeswaran [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusoff, Abdull Rahim Mohd [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ahmad, Wan Azlina, E-mail: azlina@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ({sup 1}H NMR and {sup 13}C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL{sup −1}. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity.

  1. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    Science.gov (United States)

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Anti-cancer effect of HIV-1 viral protein R on doxorubicin resistant neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Richard Y Zhao

    Full Text Available Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX. To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working.

  3. Anticancer Properties of Distinct Antimalarial Drug Classes

    Science.gov (United States)

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  4. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  5. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    Science.gov (United States)

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Anti-cancer potential of banana flower extract: An in vitro study

    Directory of Open Access Journals (Sweden)

    Varalakshmi Kilingar Nadumane

    2014-12-01

    Full Text Available Banana (Musa paradisiaca flower is rich in phytochemicals (vitamins, flavonoids, proteins and has antioxidant properties. The anti-cancer activity of banana flower extract has been evaluated on the cervical cancer cell line HeLa. The antiproliferative effects were evaluated by MTT assay. The extract was further purified by TLC and characterized by LC-MS method. The ethanol extract had significant cytotoxicity to HeLa cells with an IC50 of 20 µg/mL. By thin layer chromatography we could isolate three fractions out of which fraction 2 had exhibited maximum anti-proliferative effects with an IC50 value of <10 µg/mL. By LC-MS analysis, bioactive fraction was found to have an m/z value of 224.2 indicating it as a novel one.

  7. Role of Dopamine Receptors in the Anticancer Activity of ONC201.

    Science.gov (United States)

    Kline, Christina Leah B; Ralff, Marie D; Lulla, Amriti R; Wagner, Jessica M; Abbosh, Phillip H; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S

    2018-01-01

    ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201's interaction with DRD2 plays a role in ONC201's anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type-specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201's anticancer effects. Although ONC201's anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201's anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201's ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity. Copyright © 2018 The Authors

  8. Role of Dopamine Receptors in the Anticancer Activity of ONC201

    Directory of Open Access Journals (Sweden)

    Christina Leah B. Kline

    2018-01-01

    Full Text Available ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201’s interaction with DRD2 plays a role in ONC201’s anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type–specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201’s anticancer effects. Although ONC201’s anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201’s anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201’s ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity.

  9. Efficacy of multiple anticancer therapies may depend on host immune response

    Directory of Open Access Journals (Sweden)

    Kritika Karri

    2017-06-01

    Full Text Available The host immune system is a key player in anticancer therapy response and resistance. Although the impact of host immune response in the ‘war against cancer’ has been studied and it has been the basis for immunotherapy, understanding of its role in attenuating the action of conventional anticancer therapies is an area that has not been fully explored. In spite of advances in systemic therapy, the 5-year survival rate for adenocarcinoma is still a mere 13% and the primary reason for treatment failure is believed to be due to acquired resistance to therapy. Hence, there is a need for identifying reliable biomarkers for guided treatment of lung and colon adenocarcinoma and to better predict the outcomes of specific anticancer therapies. In this work, gene expression data were analyzed using public resources and this study shows how host immune competence underscores the efficacy of various anticancer therapies. Additionally, the result provides insight on the regulation of certain biochemical pathways relating to the immune system, and suggests that smart chemotherapeutic intervention strategies could be based on a patient’s immune profile.

  10. Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles.

    Science.gov (United States)

    Xu, Rong; Wang, QuanQiu

    2015-06-01

    Targeted anticancer drugs such as imatinib, trastuzumab and erlotinib dramatically improved treatment outcomes in cancer patients, however, these innovative agents are often associated with unexpected side effects. The pathophysiological mechanisms underlying these side effects are not well understood. The availability of a comprehensive knowledge base of side effects associated with targeted anticancer drugs has the potential to illuminate complex pathways underlying toxicities induced by these innovative drugs. While side effect association knowledge for targeted drugs exists in multiple heterogeneous data sources, published full-text oncological articles represent an important source of pivotal, investigational, and even failed trials in a variety of patient populations. In this study, we present an automatic process to extract targeted anticancer drug-associated side effects (drug-SE pairs) from a large number of high profile full-text oncological articles. We downloaded 13,855 full-text articles from the Journal of Oncology (JCO) published between 1983 and 2013. We developed text classification, relationship extraction, signaling filtering, and signal prioritization algorithms to extract drug-SE pairs from downloaded articles. We extracted a total of 26,264 drug-SE pairs with an average precision of 0.405, a recall of 0.899, and an F1 score of 0.465. We show that side effect knowledge from JCO articles is largely complementary to that from the US Food and Drug Administration (FDA) drug labels. Through integrative correlation analysis, we show that targeted drug-associated side effects positively correlate with their gene targets and disease indications. In conclusion, this unique database that we built from a large number of high-profile oncological articles could facilitate the development of computational models to understand toxic effects associated with targeted anticancer drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Pectenotoxin-2 from Marine Sponges: A Potential Anti-Cancer Agent—A Review

    Directory of Open Access Journals (Sweden)

    Wun-Jae Kim

    2011-11-01

    Full Text Available Pectenotoxin-2 (PTX-2, which was first identified as a cytotoxic entity in marine sponges, has been reported to display significant cytotoxicity to human cancer cells where it inhibits mitotic separation and cytokinesis through the depolymerization of actin filaments. In the late stage of endoreduplication, the effects of PTX-2 on different cancer cells involves: (i down-regulation of anti-apoptotic Bcl-2 members and IAP family proteins; (ii up-regulation of pro-apoptotic Bax protein and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-receptor 1/receptor 2 (DR4/DR5; and (iii mitochondrial dysfunction. In addition, PTX-2 induces apoptotic effects through suppression of the nuclear factor κB (NF-κB signaling pathway in several cancer cells. Analysis of cell cycle regulatory proteins showed that PTX-2 increases phosphorylation of Cdc25c and decreases protein levels of Cdc2 and cyclin B1. Cyclin-dependent kinase (Cdk inhibitor p21 and Cdk2, which are associated with the induction of endoreduplication, were upregulated. Furthermore, it was found that PTX-2 suppressed telomerase activity through the transcriptional and post-translational suppression of hTERT. The purpose of this review was to provide an update regarding the anti-cancer mechanism of PTX-2, with a special focus on its effects on different cellular signaling cascades.

  12. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Xi-Nan Shi

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related deaths worldwide. Surgical resection and conventional chemotherapy and radiotherapy ultimately fail due to tumor recurrence and HCC's resistance. The development of novel therapies against HCC is thus urgently required. The cyclin-dependent kinase (CDK pathways are important and well-established targets for cancer treatment. In particular, CDK2 is a key factor regulating the cell cycle G1 to S transition and a hallmark for cancers. In this study, we utilized our free and open-source protein-ligand docking software, idock, prospectively to identify potential CDK2 inhibitors from 4,311 FDA-approved small molecule drugs using a repurposing strategy and an ensemble docking methodology. Sorted by average idock score, nine compounds were purchased and tested in vitro. Among them, the anti-psychotic drug fluspirilene exhibited the highest anti-proliferative effect in human hepatocellular carcinoma HepG2 and Huh7 cells. We demonstrated for the first time that fluspirilene treatment significantly increased the percentage of cells in G1 phase, and decreased the expressions of CDK2, cyclin E and Rb, as well as the phosphorylations of CDK2 on Thr160 and Rb on Ser795. We also examined the anti-cancer effect of fluspirilene in vivo in BALB/C nude mice subcutaneously xenografted with human hepatocellular carcinoma Huh7 cells. Our results showed that oral fluspirilene treatment significantly inhibited tumor growth. Fluspirilene (15 mg/kg exhibited strong anti-tumor activity, comparable to that of the leading cancer drug 5-fluorouracil (10 mg/kg. Moreover, the cocktail treatment with fluspirilene and 5-fluorouracil exhibited the highest therapeutic effect. These results suggested for the first time that fluspirilene is a potential CDK2 inhibitor and a candidate anti-cancer drug for the treatment of human hepatocellular carcinoma. In view of the fact that fluspirilene has a long history

  13. Clinical pharmacology of novel anticancer drug formulations

    NARCIS (Netherlands)

    Stuurman, F.E.

    2013-01-01

    Studies outlined in this thesis describe the impact of drug formulations on pharmacology of anticancer drugs. It consists of four parts and starts with a review describing the mechanisms of low oral bioavailability of anti-cancer drugs and strategies for improvement of the bioavailability. The

  14. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2016-01-01

    Full Text Available A convenient synthesis of 2′-(2″,4″-dinitrophenyl-5α-cholestano [5,7-c d] pyrazolines 4–6 from cholest-5-en-7-one 1–3 was performed and structural assignment of the products was confirmed on the basis of IR, 1H NMR, 13C NMR, MS and analytical data. The synthesized compounds were screened for in vitro antimicrobial activity against different strains during which compound 6 showed potent antimicrobial behaviour against Corynebacterium xerosis and Staphylococcus epidermidis. The synthesized compounds were also screened for in vitro anticancer activity against human cancer cell lines during which compound 5 exhibited significant anticancer activity.

  15. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Directory of Open Access Journals (Sweden)

    Jiaolin Bao

    Full Text Available Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX. The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  16. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  17. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and

  18. Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential

    DEFF Research Database (Denmark)

    Trojel-Hansen, Christina; Erichsen, Kamille Dumong; Christensen, Mette Knak

    2011-01-01

    oxyphenisatine analogs TOP001 and TOP216 exert their anti-cancer effect by affecting tumor cell metabolism and inducing intracellular amino acid deprivation, leading to a block of cell proliferation. GCN2-mediated phosphorylation of eIF2a as well as mTOR pathway inhibition supports the above notion. In addition...

  19. Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential

    DEFF Research Database (Denmark)

    Trojel-Hansen, Christina; Erichsen, Kamille Dumong; Christensen, Mette Knak

    2011-01-01

    oxyphenisatine analogs TOP001 and TOP216 exert their anti-cancer effect by affecting tumor cell metabolism and inducing intracellular amino acid deprivation, leading to a block of cell proliferation. GCN2-mediated phosphorylation of eIF2α as well as mTOR pathway inhibition supports the above notion. In addition...

  20. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration.

    Science.gov (United States)

    Varan, Cem; Wickström, Henrika; Sandler, Niklas; Aktaş, Yeşim; Bilensoy, Erem

    2017-10-15

    Personalized medicine is an important treatment approach for diseases like cancer with high intrasubject variability. In this framework, printing is one of the most promising methods since it permits dose and geometry adjustment of the final product. With this study, a combination product consisting of anticancer (paclitaxel) and antiviral (cidofovir) drugs was manufactured by inkjet printing onto adhesive film for local treatment of cervical cancers as a result of HPV infection. Furthermore, solubility problem of paclitaxel was overcome by maintaining this poorly soluble drug in a cyclodextrin inclusion complex and release of cidofovir was controlled by encapsulation in polycaprolactone nanoparticles. In vitro characterization studies of printed film formulations were performed and cell culture studies showed that drug loaded film formulation was effective on human cervical adenocarcinoma cells. Our study suggests that inkjet printing technology can be utilized in the development of antiviral/anticancer combination dosage forms for mucosal application. The drug amount in the delivery system can be accurately controlled and modified. Moreover, prolonged drug release time can be obtained. Printing of anticancer and antiviral drugs on film seem to be a potential approach for HPV-related cervical cancer treatment and a good candidate for further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Roles of Reactive Oxygen Species in Anticancer Therapy with Salvia miltiorrhiza Bunge

    Directory of Open Access Journals (Sweden)

    Yu-Chiang Hung

    2016-01-01

    Full Text Available Cancer is a leading cause of death worldwide. We aim to provide a systematic review about the roles of reactive oxygen species (ROS in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen. Danshen, including its lipophilic and hydrophilic constituents, is potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending on the specific type of cancer cells involved. Danshen may enhance TNF-α-induced apoptosis, upregulate caspase-3, caspase-8, caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK, mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshen may downregulate human telomerase reverse transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31, NF-κB, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways. Therefore, Danshen may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS generation on tumor progression, tumor promotion, and tumor metastasis. Based on the available evidence regarding its anticancer properties, this review provides new insights for further anticancer research or clinical trials with Danshen.

  3. Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels.

    Science.gov (United States)

    Poorgholy, Nahid; Massoumi, Bakhshali; Ghorbani, Marjan; Jaymand, Mehdi; Hamishehkar, Hamed

    2018-08-01

    This article evaluates the anticancer drug delivery performances of two nanohydrogels composed of poly(N-isopropylacrylamide-co-itaconic anhydride) [P(NIPAAm-co-IA)], poly(ethylene glycol) (PEG), and Fe 3 O 4 nanoparticles. For this purpose, the magnetite nanohydrogels (MNHGs) were loaded with doxorubicin hydrochloride (DOX) as a universal anticancer drug. The morphologies and magnetic properties of the DOX-loaded MNHGs were investigated using transmission electron microscopy (TEM) and vibrating-sample magnetometer (VSM), respectively. The sizes and zeta potentials (ξ) of the MNHGs and their corresponding DOX-loaded nanosystems were also investigated. The DOX-loaded MNHGs showed the highest drug release values at condition of 41 °C and pH 5.3. The drug-loaded MNHGs at physiological condition (pH 7.4 and 37 °C) exhibited negligible drug release values. In vitro cytotoxic effects of the DOX-loaded MNHGs were extensively evaluated through the assessing survival rate of HeLa cells using the MTT assay, and there in vitro cellular uptake into the mentioned cell line were examined using fluorescent microscopy and fluorescence-activated cell sorting (FACS) flow cytometry analyses. As the results, the DOX-loaded MNHG1 exhibited higher anticancer drug delivery performance in the terms of cytotoxic effect and in vitro cellular uptake. Thus, the developed MNHG1 can be considered as a promising de novo drug delivery system, in part due to its pH and thermal responsive drug release behavior as well as proper magnetite character toward targeted drug delivery.

  4. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    International Nuclear Information System (INIS)

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.; Chiou, Robin Y.; Kan, L.-S.; Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y.; Lin, S.-B.

    2008-01-01

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo IIα activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC 50 of 0.9 μM, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC 50 of 9.6 μM, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 μM. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC 50 about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design

  5. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan.

    Science.gov (United States)

    Gupta, Umesh; Sharma, Saurabh; Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok K; Singh, Yuvraj; Chourasia, Manish K; Kumar, Vipin

    2017-05-01

    Taxanes have established and proven effectivity against different types of cancers; in particular breast cancers. However, the high hemolytic toxicity and hydrophobic nature of paclitaxel and docetaxel have always posed challenges to achieve safe and effective delivery. Use of bio-degradable materials with an added advantage of nanotechnology could possibly improve the condition so as to achieve better and safe delivery. In the present study paclitaxel loaded chitosan nanoparticles were formulated and optimized using simple w/o nanoemulsion technique. The observed average size, pdi, zeta potential, entrapment efficiency and drug loading for the optimized paclitaxel loaded chitosan nanoparticle formulation (PTX-CS-NP-10) was 226.7±0.70nm, 0.345±0.039, 37.4±0.77mV, 79.24±2.95% and 11.57±0.81%; respectively. Nanoparticles were characterized further for size by Transmission Electron Microscopy (TEM). In vitro release studies exhibited sustained release pattern and more than 60% release was observed within 24h. Enhanced in vitro anticancer activity was observed as a result of MTT assay against triple negative MDA-MB-231 breast cancer cell lines. The observed IC 50 values obtained for PTX-CS-NP-10 was 9.36±1.13μM and was almost 1.6 folds (psafe as observed for haemolytic toxicity which was almost 4 folds less (psafe nanoformulation of paclitaxel was developed, characterized and evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Holotransferrin enhances selective anticancer activity of artemisinin against human hepatocellular carcinoma cells.

    Science.gov (United States)

    Deng, Xiao-rong; Liu, Zhao-xia; Liu, Feng; Pan, Lei; Yu, He-ping; Jiang, Jin-ping; Zhang, Jian-jun; Liu, Li; Yu, Jun

    2013-12-01

    Artemisinin, also termed qinghaosu, is extracted from the traditional Chinese medicine artemesia annua L. (the blue-green herb) in the early 1970s, which has been confirmed for effectively treating malaria. Additionally, emerging data prove that artemisinin exhibits anti-cancer effects against many types of cancers such as leukemia, melanoma, etc. Artemisinin becomes cytotoxic in the presence of ferrous iron. Since iron influx is high in cancer cells, artemisinin and its analogs selectively kill cancer cells with increased intracellular iron concentrations. This study is aimed to investigate the selective inhibitory effects of artemisinin on SMMC-7721 cells in vitro and determine the effect of holotransferrin, which increases the concentration of ferrous iron in cancer cells, combined with artemisinin on the anticancer activity. MTT assay was used for assessing the proliferation of SMMC-7721 cells treated with artemisinin. The induction of apoptosis and inhibition of colony formation in SMMC-7721 cells treated with artemisinin were determined by TdT-mediated dUTP nick end labeling (TUNEL) and colony formation assay, respectively. The results showed that artemisinin at various concentrations significantly inhibited growth, colony formation and cell viability of SMMC-7721 cells (P<0.05), likely due to induction of apoptosis of SMMC-7721 cells. Of interest, it was found that incubation of artemisinin combined with holotransferrin sensitized the growth inhibitory effect of artemisinin on SMMC-7721 cells (P<0.01). Our data suggest that treatment with artemisinin leads to inhibition of viability and proliferation, and apoptosis of SMMC-7721 cells. Furthermore, we observed that holotransferrin significantly enhanced the anti-cancer activity of artemisinin. This study may provide a potential therapeutic choice for liver cancer.

  7. Ionic Liquid-Catalyzed Green Protocol for Multi-Component Synthesis of Dihydropyrano[2,3-c]pyrazoles as Potential Anticancer Scaffolds

    Directory of Open Access Journals (Sweden)

    Urja D. Nimbalkar

    2017-09-01

    Full Text Available A series of 6-amino-4-substituted-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles 5a–j were synthesized via one-pot, four-component condensation reactions of aryl aldehydes 1a–j, propanedinitrile (2, hydrazine hydrate (3 and ethyl acetoacetate (4 under solvent-free conditions. We report herein the use of the Brønsted acid ionic liquid (BAIL triethylammonium hydrogen sulphate [Et3NH][HSO4] as catalyst for this multi-component synthesis. Compared with the available reaction methodology, this new method has consistent advantages, including excellent yields, a short reaction time, mild reaction conditions and catalyst reusability. Selected synthesized derivatives were evaluated for in vitro anticancer activity against four human cancer cell lines viz. melanoma cancer cell line (SK-MEL-2, breast cancer cell line(MDA-MB-231, leukemia cancer cell line (K-562 and cervical cancer cell line (HeLa. Compounds 5b, 5d, 5g, 5h and 5j exhibited promising anticancer activity against all selected human cancer cell lines, except HeLa. Molecular docking studies also confirmed 5b and 5d as good lead molecules. An in silico ADMET study of the synthesized anticancer agents indicated good oral drug-like behavior and non-toxic nature.

  8. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...... is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential −56 ± 5.......6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...

  9. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    Science.gov (United States)

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-04-30

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy.

  10. Study of Malformin C, a Fungal Source Cyclic Pentapeptide, as an Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Malformin C, a fungal cyclic pentapeptide, has been claimed to have anti-cancer potential, but no in vivo study was available to substantiate this property. Therefore, we conducted in vitro and in vivo experiments to investigate its anti-cancer effects and toxicity. Our studies showed Malformin C inhibited Colon 38 and HCT 116 cell growth dose-dependently with an IC50 of 0.27±0.07μM and 0.18±0.023μM respectively. This inhibition was explicated by Malformin C's effect on G2/M arrest. Moreover, we observed up-regulated expression of phospho-histone H2A.X, p53, cleaved CASPASE 3 and LC3 after Malformin C treatment, while the apoptosis assay indicated an increased population of necrotic and late apoptotic cells. In vivo, the pathological study exhibited the acute toxicity of Malformin C at lethal dosage in BDF1 mice might be caused by an acute yet subtle inflammatory response, consistent with elevated IL-6 in the plasma cytokine assay. Further anti-tumor and toxicity experiments proved that 0.3mg/kg injected weekly was the best therapeutic dosage of Malformin C in Colon 38 xenografted BDF1 mice, whereas 0.1mg/kg every other day showed no effect with higher resistance, and 0.9mg/kg per week either led to fatal toxicity in seven-week old mice or displayed no advantage over 0.3mg/kg group in nine-week old mice. Overall, we conclude that Malformin C arrests Colon 38 cells in G2/M phase and induces multiple forms of cell death through necrosis, apoptosis and autophagy. Malformin C has potent cell growth inhibition activity, but the therapeutic index is too low to be an anti-cancer drug.

  11. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  12. GC-MS analysis, Antibacterial, Antioxidant and Anticancer activity of essential oil of Pinus roxburghii from Kashmir, India

    Directory of Open Access Journals (Sweden)

    Wajaht A. Shah

    2014-05-01

    Full Text Available This work was carried out to evaluate chemical composition, antibacterial, antioxidant and anticancer activity of Pinus roxburghii essential oil. The oil was extracted by hydro-distillation which was analysed through GC-MS. The antibacterial activity was evaluated by agar well diffusion method and antioxidant activity was evaluated through DPPH assay while as anticancer activity was evaluated through MTT method. Alpha-pinene and beta-pinene were the major constituents present in the oil. This oil showed significant antibacterial and anticancer activity. 

  13. Anticancer Effects of Different Seaweeds on Human Colon and Breast Cancers

    Directory of Open Access Journals (Sweden)

    Ghislain Moussavou

    2014-09-01

    Full Text Available Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.

  14. Anticancer Properties of Lamellarins

    Directory of Open Access Journals (Sweden)

    Christian Bailly

    2015-02-01

    Full Text Available In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.

  15. Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools

    Science.gov (United States)

    El-Said, Waleed A.; Yoon, Jinho; Choi, Jeong-Woo

    2018-04-01

    Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.

  16. Enhanced Anticancer Activity of PF-04691502, a Dual PI3K/mTOR Inhibitor, in Combination With VEGF siRNA Against Non–small-cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Laura Espana-Serrano

    2016-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths in both men and women in the United States accounting for about 27% of all cancer deceases. In our effort to develop newer therapy for lung cancer, we evaluated the combinatory antitumor effect of siRNA targeting VEGF and the PI3K/mTOR dual inhibitor PF-04691502. We analyzed the anticancer effect of siRNA VEGF and PF-04691502 combination on proliferation, colony formation and migration of A549 and H460 lung cancer cells. Additionally, we assessed the combination treatment antiangiogenic effect on human umbilical vein endothelial cells. Here, we show for the first time that the antiangiogenic siRNA VEGF potentiates the PF-04691502 anticancer activity against non–small-cell lung cancer. We observed a significant (P < 0.05 decrease in cell viability, colony formation, and migration for the combination comparing with the single drug treatment. We also showed a significant (P < 0.05 enhanced effect of the combination treatment inhibiting angiogenesis progression and tube formation organization compared to the single drug treatment groups. Our findings demonstrated an enhanced synergistic anticancer effect of siRNA VEGF and PF-04691502 combination therapy by targeting two main pathways involved in lung cancer cell survival and angiogenesis which will be useful for future preclinical studies and potentially for lung cancer patient management.

  17. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Esau, Luke E.

    2014-01-01

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  18. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  19. The anticancer effect of Ocimum tenuiflorum leaves

    Directory of Open Access Journals (Sweden)

    Lam, S.N.

    2017-11-01

    Full Text Available Breast cancer is the leading cause of cancer deaths among females in Malaysia. Ocimum tenuiflorum L., (O. tenuiflorum commonly known as ruku in Malaysia, is usually cultivated as a garden ornamental plant because of its small purplish and some yellowish flower. The specific objective of this research is to investigate the anticancer of O. tenuiflorum against human breast cancer cell lines (MCF-7 and MDA-MB-231 and human fibroblast cell line (HS-27. In addition, another objective is to determine the mineral and heavy metal determination of O. tenuiflorum. O. tenuiflorum exhibited anticancer activity against MCF-7 (a hormone-dependent breast cancer cell line. The viability of MCF-7 cells decreased significantly after treatment with various concentrations of methanolic plant extracts (25 and 100 μg/mL, as shown via 3-(4,5-dimethylthiazol-2-yl2,5-diphenyltetrazolium bromide (MTT assay. The crude extracts show the lower IC50 (less than 100 μg/mL value against the cancer cell lines and show no effect on HS-27. The high content of calcium in the leaves of O. tenuiflorum may play a role in decreasing the risk of certain cancer. The concentrations of heavy metals (Pb and As detected in O. tenuiflorum are safe for consumption.

  20. Geranylated 4-Phenylcoumarins Exhibit Anticancer Effects against Human Prostate Cancer Cells through Caspase-Independent Mechanism.

    Directory of Open Access Journals (Sweden)

    Noor Shahirah Suparji

    Full Text Available Geranylated 4-phenylcoumarins, DMDP-1 & -2 isolated from Mesua elegans were investigated for anticancer potential against human prostate cancer cells. Treatment with DMDP-1 & -2 resulted in cell death in a time and dose dependent manner in an MTT assay on all cancer cell lines tested with the exception of lung adenocarcinoma cells. DMDP-1 showed highest cytotoxic efficacy in PC-3 cells while DMDP-2 was most potent in DU 145 cells. Flow cytometry indicated that both coumarins were successful to induce programmed cell death after 24 h treatment. Elucidation on the mode-of-action via protein arrays and western blotting demonstrated death induced without any significant expressions of caspases, Bcl-2 family proteins and cleaved PARP, thus suggesting the involvement of caspase-independent pathways. In identifying autophagy, analysis of GFP-LC3 showed increased punctate in PC-3 cells pre-treated with CQ and treated with DMDP-1. In these cells decreased expression of autophagosome protein, p62 and cathepsin B further confirmed autophagy. In contrary, the DU 145 cells pre-treated with CQ and treated with DMDP-2 has reduced GFP-LC3 punctate although the number of cells with obvious GFP-LC3 puncta was significantly increased in the inhibitor-treated cells. The increase level of p62 suggested leakage of cathepsin B into the cytosol to trigger potential downstream death mediators. This correlated with increased expression of cathepsin B and reduced expression after treatment with its inhibitor, CA074. Also auto-degradation of calpain-2 upon treatment with DMDP-1 &-2 and its inhibitor alone, calpeptin compared with the combination treatment, further confirmed involvement of calpain-2 in PC-3 and DU 145 cells. Treatment with DMDP-1 & -2 also showed up-regulation of total and phosphorylated p53 levels in a time dependent manner. Hence, DMDP-1 & -2 showed ability to activate multiple death pathways involving autophagy, lysosomal and endoplasmic reticulum death

  1. Antimicrobial and anticancer activities of extracts from Urginea ...

    African Journals Online (AJOL)

    Background: Increasing antibiotic resistance among human pathogenic microorganisms and the failure of conventional cancer therapies attracting great attention among scientists in the field of herbal medicine to develop natural antimicrobial and anticancer drugs. Thus, the antimicrobial and anticancer activities from fruits ...

  2. Anticancer Effect of AntiMalarial Artemisinin Compounds | Das ...

    African Journals Online (AJOL)

    A PubMed search of about 127 papers on anti‑cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. ... Keywords: Anticancer agents, Antimalarials, Antitumor activity, Artemisinins, Novel chemotherapy ...

  3. Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma Cell Line SCC-9 in Vitro.

    Science.gov (United States)

    Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama

    2016-01-01

    Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

  4. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents.

    Science.gov (United States)

    Azad, Iqbal; Nasibullah, Malik; Khan, Tahmeena; Hassan, Firoj; Akhter, Yusuf

    2018-05-01

    This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect

  5. Observation and Analysis of Anti-cancer Drug Use and Dose ...

    African Journals Online (AJOL)

    As all anti-cancer drugs are of narrow therapeutic window so dose individualization is required to be done. A study was conducted to check the use of anti-cancer drugs in the local anti-cancer facility of Bahawalpur i.e. Bahawalpur Institute of Nuclear Medicine and Oncology (BINO). In this study, the dose individualization ...

  6. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests.

    Science.gov (United States)

    Lefranc, Florence; Tabanca, Nurhayat; Kiss, Robert

    2017-10-01

    This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Bioactivity-Guided Isolation of Anticancer Agents from Bauhinia ...

    African Journals Online (AJOL)

    Background: Flowers of Bauhinia kockiana were investigated for their anticancer properties. Methods: Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was ...

  8. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyun, E-mail: wangjingyun67@dlut.edu.cn [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Cui, Shuang [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Bao, Yongming, E-mail: biosci@dlut.edu.cn [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Xing, Jishuang [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Hao, Wenbo [Department of Physics and Chemistry, Heihe University, Heihe 164300 (China)

    2014-10-01

    Amphiphilic α-tocopherol pullulan polymers (PUTC1, PUTC2, and PUTC3) with different degrees of substitution were synthesized as new carriers for anticancer drugs. The polymers easily self-assembled into nanomicelles through dialysis method. The critical micelle concentrations (CMCs) were 38.0, 8.0, and 4.3 mg/L for PUTC1, PUTC2, and PUTC3, respectively. 10-Hydroxycamptothecin (HCPT) used as a model drug was successfully loaded into the PUTC nanomicelles. Transmission electron microscopy images demonstrated that HCPT-loaded PUTC nanomicelles were almost spherical and had sizes ranging within 171.5–257.8 nm that increased with increased HCPT-loading content, as determined by dynamic laser scattering. The highest encapsulation efficiency of HCPT in PUTC nanomicelles reached 98.3%. The in vitro release of HCPT from PUTC micelles demonstrated sustained release for over 80 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays showed that blank PUTC micelles were nontoxic to normal cells and that the HCPT-loaded PUTC2 nanomicelles showed higher cytotoxicity than the free drug, which was attributed to the enhanced cellular uptake of drug-loaded nanomicelles. Biodistribution experiments showed that PUTC micelles provided an excellent approach to rapid drug transport into cell nuclei. Moreover, the cellular uptake of micelles was found to be an energy-dependent and actin polymerization-associated endocytic process by endocytosis inhibition experiments. These results suggested that PUTC nanomicelles had considerable potential as a drug carrier for drug intracellular delivery in cancer therapy. - Highlights: • Tocopheryl pullulan-based (PUTC) self-assembling nanomicelles were fabricated. • These micelles showed low CMC and dispersed uniformly with regular spherical shape. • High entrapment efficiency and in vitro sustained release of HCPT in PUTC micelles • HCPT–PUTC micelles accumulated in cell nuclei and showed higher anticancer activity.

  9. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery

    International Nuclear Information System (INIS)

    Wang, Jingyun; Cui, Shuang; Bao, Yongming; Xing, Jishuang; Hao, Wenbo

    2014-01-01

    Amphiphilic α-tocopherol pullulan polymers (PUTC1, PUTC2, and PUTC3) with different degrees of substitution were synthesized as new carriers for anticancer drugs. The polymers easily self-assembled into nanomicelles through dialysis method. The critical micelle concentrations (CMCs) were 38.0, 8.0, and 4.3 mg/L for PUTC1, PUTC2, and PUTC3, respectively. 10-Hydroxycamptothecin (HCPT) used as a model drug was successfully loaded into the PUTC nanomicelles. Transmission electron microscopy images demonstrated that HCPT-loaded PUTC nanomicelles were almost spherical and had sizes ranging within 171.5–257.8 nm that increased with increased HCPT-loading content, as determined by dynamic laser scattering. The highest encapsulation efficiency of HCPT in PUTC nanomicelles reached 98.3%. The in vitro release of HCPT from PUTC micelles demonstrated sustained release for over 80 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays showed that blank PUTC micelles were nontoxic to normal cells and that the HCPT-loaded PUTC2 nanomicelles showed higher cytotoxicity than the free drug, which was attributed to the enhanced cellular uptake of drug-loaded nanomicelles. Biodistribution experiments showed that PUTC micelles provided an excellent approach to rapid drug transport into cell nuclei. Moreover, the cellular uptake of micelles was found to be an energy-dependent and actin polymerization-associated endocytic process by endocytosis inhibition experiments. These results suggested that PUTC nanomicelles had considerable potential as a drug carrier for drug intracellular delivery in cancer therapy. - Highlights: • Tocopheryl pullulan-based (PUTC) self-assembling nanomicelles were fabricated. • These micelles showed low CMC and dispersed uniformly with regular spherical shape. • High entrapment efficiency and in vitro sustained release of HCPT in PUTC micelles • HCPT–PUTC micelles accumulated in cell nuclei and showed higher anticancer activity.

  10. Newly engineered magnetic erythrocytes for sustained and targeted delivery of anti-cancer therapeutic compounds.

    Directory of Open Access Journals (Sweden)

    Caterina Cinti

    Full Text Available Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy.

  11. Newly Engineered Magnetic Erythrocytes for Sustained and Targeted Delivery of Anti-Cancer Therapeutic Compounds

    Science.gov (United States)

    Taranta, Monia; Naldi, Ilaria

    2011-01-01

    Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy. PMID:21373641

  12. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    Science.gov (United States)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  13. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Milind K. Choudhari

    2013-01-01

    Full Text Available Indian stingless bee propolis has a complex chemical nature and is reported to possess various medicinal properties. In the present study, anticancer activity of the ethanolic extract of propolis (EEP was explored by testing the cytotoxic and apoptotic effect in four different cancer cell lines, namely, MCF-7 (human breast cancer, HT-29 (human colon adenocarcinoma, Caco-2 (human epithelial colorectal adenocarcinoma, and B16F1 (murine melanoma, at different concentrations. Cytotoxicity was evaluated by MTT assay and Trypan blue dye exclusion assay. EEP at a concentration of 250 g/mL exhibited ≥50% mortality in all cell lines tested (i.e., IC50 value. EEP revealed a concentration and time dependent cytotoxic effect. Apoptosis was estimated by differential staining (ethidium bromide/acridine orange and TUNEL (deoxynucleotidyl transferase-dUTP nick end labeling assay. Light microscopy and atomic force microscopy demonstrated morphological features of apoptosis in all the cell lines after treatment with 250 g/mL EEP for 24 h. Thus, early onset of apoptosis is the reason for anticancer activity of Indian stingless bee propolis. Further, the antioxidant potential of Indian stingless bee propolis was demonstrated to substantiate its anticancer activity.

  14. Prediction of anticancer activity of aliphatic nitrosoureas using ...

    African Journals Online (AJOL)

    Design and development of new anticancer drugs with low toxicity is a very challenging task and computer aided methods are being increasingly used to solve this problem. In this study, we investigated the anticancer activity of aliphatic nitrosoureas using quantum chemical quantitative structure activity relation (QSAR) ...

  15. In Silico Molecular Docking Analysis of Natural Pyridoacridines as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Vikas Sharma

    2016-01-01

    Full Text Available Docking studies are proved to be an essential tool that facilitates the structural diversity of natural products to be harnessed in an organized manner. In this study, pyridoacridines containing natural anticancer pigments were subjected to docking studies using Glide (Schrodinger. Investigations were carried out to find out the potential molecular targets for these selected pigments. The docking was carried out on different cancer macromolecules involved in different cell cycle pathways, that is, CDK-2, CDK-6, Bcl-2, VEGFR-2, IGF-1R kinase, and G-Quadruplexes. CDK-6 was found to be the most suitable anticancer target for the pyridoacridines. In addition, effectiveness of the study was further evaluated by performing docking of known inhibitors against their respective selected macromolecules. However, the results are preliminary and experimental evaluation will be carried out in near future.

  16. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Butt AM

    2015-02-01

    Full Text Available Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX, an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407 and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer

  17. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  18. Application of mass spectrometric techniques to delineate the modes-of-action of anticancer metallodrugs

    NARCIS (Netherlands)

    Hartinger, Christian G.; Groessl, Michael; Meier, Samuel M.; Casini, Angela; Dyson, Paul J.

    2013-01-01

    Mass spectrometry (MS) has emerged as an important tool for studying anticancer metallodrugs in complex biological samples and for characterising their interactions with biomolecules and potential targets on a molecular level. The exact modes-of-action of these coordination compounds and especially

  19. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse

    Science.gov (United States)

    Nowakowski, Adam; Drela, Katarzyna; Rozycka, Justyna; Janowski, Miroslaw

    2016-01-01

    Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials. PMID:27460260

  20. Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells

    Science.gov (United States)

    Sarkar, Sonia; Kotteeswaran, Venkatesan

    2018-06-01

    Plants contain different important phytochemicals that can be used as a potential treatment for various ailments including cancer. The green synthesis of silver nanoparticles from the extract of different plant parts has gained a wide range of engrossment among the researchers due to its unique optical and structural property. The aim of this study is green synthesis of silver nanoparticles from the aqueous leaf extract of pomegranate (Punica granatum) and to investigate its anticancer activity on human cervical cancer cells (HeLa). The synthesis of silver nanoparticle was depicted by the colour change from golden yellowish to dark brownish, UV-visible spectral analysis gave a characteristic surface plasmon absorption peak at . Further morphological characterization was done by Zeta potential where the size analysis was depicted to be 46.1 nm and zeta potential as . Fourier transform infrared spectroscopy (FTIR) inferred 3 intense sharp peaks at , , , confirmed the presence of flavonoids and polyphenols. The scanning electron microscopy (SEM) analysis with energy diffraction spectroscopy (EDS) confirmed the presence of silver nanoparticles with size ranged from to . X-ray diffraction (XRD) confirmed the crystallographic nature of silver. The cell proliferation activity of nanoparticles was tested by 3, ‑4, 5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay where the inhibitory concentration () was found at inhibiting of HeLa cell line. The anticancer activity of nanoparticles was determined by lactate dehydrogenase (LDH) assay where showed of cytotoxicity. Furthermore, the anticancer property of nanoparticles was confirmed by the DNA fragmentation assay.

  1. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions.

    Science.gov (United States)

    E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2016-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  2. In vitro investigating of anticancer activity of focuxanthin from marine brown seaweed species

    Directory of Open Access Journals (Sweden)

    M. Karkhane Yousefi

    2018-01-01

    Full Text Available Breast cancer is the most common cancer type among women all over the world. Chemotherapy is the use of anticancer medicines for treating cancer but it has many side effects and cells may become resistant to these chemical medicines. Therefore, finding new compounds of natural origin could be a promising solution to this problem. The aim of the current study was to evaluate anticancer activity of fucoxanthin which is the most important carotenoid found in the marine brown seaweeds and diatoms. fucoxanthin has many properties (antioxidant, antibacterial, anticancer, antiobesity, anti-inflammatory and etc. due to its unique structure. Samples with different concentrations (10, 25 and 50 µg/ml and at various incubation times were collected (6, 24 and 48 hours from four different species (Padina tenuis, Colpomenia sinuosa, Iyengaria stellate and Dictyota indica of brown seaweeds from Qeshm Island, Persian Gulf. Moreover, the anticancer activity of fucoxanthin-containing extracts on breast cancer cells line and normal human skin fibroblast cells line was assessed by MTT [3-(4,5-dimethylthiazolyl-2,5-diphenyl-tetrazolium bromide] assay to specify the cytotoxic effects. The results showed that fucoxanthin extract from Dictyota. indica at 24-hour treatment and 50 µg/ml concentration has the most effective anticancer activity on the breast cancer cells line, without toxic effects to the normal cells. According to the obtained results, it seems that Dictyota. Indica is a good candidate for further analysis and can be introduced to the food and pharmaceutical industries.

  3. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.

    Science.gov (United States)

    Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail

    2009-04-21

    The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.

  4. HLBT-100: a highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L.

    Science.gov (United States)

    Lowe, Henry I C; Toyang, Ngeh J; Watson, Charah T; Ayeah, Kenneth N; Bryant, Joseph

    2017-01-01

    The incidence and mortalities from cancers remain on the rise worldwide. Despite significant efforts to discover and develop novel anticancer agents, many cancers remain in the unmet need category. As such, efforts to discover and develop new and more effective and less toxic agents against cancer remain a top global priority. Our drug discovery approach is natural products based with a focus on plants. Tillandsia recurvata (L.) L. is one of the plants selected by our research team for further studies based on previous bioactivity findings on the anticancer activity of this plant. The plant biomass was extracted using supercritical fluid extraction technology with CO 2 as the mobile phase. Bioactivity guided isolation was achieved by use of chromatographic technics combined with anti-proliferative assays to determine the active fraction and subsequently the pure compound. Following in house screening, the identified molecule was submitted to the US National Cancer Institute for screening on the NCI60 cell line panel using standard protocols. Effect of HLBT-100 on apoptosis, caspase 3/7, cell cycle and DNA fragmentation were assessed using standard protocols. Antiangiogenic activity was carried out using the ex vivo rat aortic ring assay. A flavonoid of the flavanone class was isolated from T. recurvata (L.) L. with potent anticancer activity. The molecule was code named as HLBT-100 (also referred to as HLBT-001). The compound inhibited brain cancer (U87 MG), breast cancer (MDA-MB231), leukemia (MV4-11), melanoma (A375), and neuroblastoma (IMR-32) with IC 50 concentrations of 0.054, 0.030, 0.024, 0.003 and 0.05 µM, respectively. The molecule also exhibited broad anticancer activity in the NCI60 panel inhibiting especially hematological, colon, CNS, melanoma, ovarian, breast and prostate cancers. Twenty-three of the NCI60 cell lines were inhibited with GI 50 values <0.100 µM. In terms of potential mechanisms of action, the molecule demonstrated effect on the

  5. T-oligo as an anticancer agent in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wojdyla, Luke; Stone, Amanda L. [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States); Sethakorn, Nan [Department of Medicine, University of Chicago, Chicago, IL (United States); Uppada, Srijayaprakash B.; Devito, Joseph T. [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States); Bissonnette, Marc [Department of Medicine, University of Chicago, Chicago, IL (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States)

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  6. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    and retention (EPR) effect. The liposomes consists of sPLA2 IIA sensitive phospholipids having anticancer drugs covalently attached to the sn-2 position of the glycerol backbone in the phospholipids, hence drug leakage is avoided from the carrier system. Various known anticancer agents, like chlorambucil, all......) based strategy using a limited number of reaction types. Upon coupling of unsaturated building blocks ring closing metathesis cascades were used to “reprogram” the molecular scaffold and highly diverse structures were obtained. In total 20 novel compounds with a broad structural diversity were prepared...

  7. Ethnomedicine Claim Directed in Silico Prediction of Anticancer ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... 0.70, MACCS fingerprint), and the top 346 compounds it identified were identical to compounds with proven anticancer activity on 60 cell lines (23). Given such performance of. CDRUG, our finding can be taken as a preliminary evidence of anticancer activity by many of the medicinal plants used for treating.

  8. Induction of oxidative DNA damage by mesalamine in the presence of copper: A potential mechanism for mesalamine anticancer activity

    International Nuclear Information System (INIS)

    Zimmerman, Ryan P.; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P.; Wang, Jianmin; Li, Yunbo

    2011-01-01

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis.

  9. Robust prediction of anti-cancer drug sensitivity and sensitivity-specific biomarker.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis. Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc. and the outliers may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space. Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of our method.

  10. Chrysin-piperazine conjugates as antioxidant and anticancer agents.

    Science.gov (United States)

    Patel, Rahul V; Mistry, Bhupendra; Syed, Riyaz; Rathi, Anuj K; Lee, Yoo-Jung; Sung, Jung-Suk; Shinf, Han-Seung; Keum, Young-Soo

    2016-06-10

    Synthesis of 7-(4-bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one intermediate treating chrysin with 1,4-dibromobutane facilitated combination of chrysin with a wide range of piperazine moieties which were equipped via reacting the corresponding amines with bis(2-chloroethyl)amine hydrochloride in diethylene glycol monomethyl ether solvent. Free radical scavenging potential of prepared products was analyzed in vitro adopting DPPH and ABTS bioassay in addition to the evaluation of in vitro anticancer efficacies against cervical cancer cell lines (HeLa and CaSki) and an ovarian cancer cell line SK-OV-3 using SRB assay. Bearable toxicity of 7a-w was examined employing Madin-Darby canine kidney (MDCK) cell line. In addition, cytotoxic nature of the presented compounds was inspected utilizing Human bone marrow derived mesenchymal stem cells (hBM-MSCs). Overall, 7a-w indicated remarkable antioxidant power in scavenging DPPH(·) and ABTS(·+), particularly analogs 7f, 7j, 7k, 7l, 7n, 7q, 7v, 7w have shown promising free radical scavenging activity. Analogs 7j and 7o are identified to be highly active candidates against HeLa and CaSki cell lines, whereas 7h and 7l along with 7j proved to be very sensitive towards ovarian cancer cell line SKOV-3. None of the newly prepared scaffolds showed cytotoxic nature toward hBM-MSCs cells. From the structure-activity point of view, nature and position of the electron withdrawing and electron donating functional groups on the piperazine core may contribute to the anticipated antioxidant and anticancer action. Different spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, Mass) and elemental analysis (CHN) were utilized to confirm the desired structure of final compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Novel α, β-Unsaturated Sophoridinic Derivatives: Design, Synthesis, Molecular Docking and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Yiming Xu

    2017-11-01

    Full Text Available Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound.

  12. Acupuncture as anticancer treatment?

    Directory of Open Access Journals (Sweden)

    Paulina Frączek

    2017-01-01

    Full Text Available The mystery of Traditional Chinese Medicine has been attracting people for years. Acupuncture, ranked among the most common services of Complementary and Alternative Medicine, has recently gained a lot of interest in the scientific world. Contemporary researchers have been continuously trying to shed light on its possible mechanism of action in human organism. Numerous studies pertaining to acupuncture’s application in cancer symptoms or treatment-related side effects management have already been published. Moreover, since the modern idea of acupuncture’s immunomodulating effect seems to be promising, scientists have propounded a concept of its potential application as part of direct anti-tumor therapy. In our previous study we summarized possible use of acupuncture in management of cancer symptoms and treatment-related ailments, such as chemotherapy-induced nausea and vomiting, pain, xerostomia, vasomotor symptoms, neutropenia, fatigue, anxiety, insomnia, lymphoedema after mastectomy and peripheral neuropathy. This article reviews the studies concerning acupuncture as a possible tool in modern anticancer treatment.

  13. Bi-Functionalized Clay Nanotubes for Anti-Cancer Therapy

    Directory of Open Access Journals (Sweden)

    William R. Grimes

    2018-02-01

    Full Text Available Systemic toxicity is an undesired consequence of the majority of chemotherapeutic drugs. Multifunctional nanoparticles with combined diagnostic and therapeutic functions show great promise towards personalized nanomedicine. Halloysite clay nanotubes (HNTs have shown potential as a drug delivery vehicle, and its surface can be modified and tailored as a targeted drug delivery system. In this short report, we modified the HNT surface by covalently bonding folic acid (FA and fluorescein isothiocyanate (FITC. The modification of HNTs with folic acid imparts the potential to target tumor cells selectively. The addition of FITC offers a method for quantifying the effectiveness of the FA tagged HNTs ability to target tumor cells. We documented cell uptake of our bi-functionalized HNT (bHNT through phase contrast and epi-fluorescent microscopy. bHNTs showed no signs of cytotoxicity up to a concentration of 150 µg/mL. The increase in cell death with increased bHNT concentration may be due to induced cytotoxicity resulting from intracellular bHNT accumulation that disrupts cellular function leading to cell death. With HNTs recognized as having the ability to serve as both a nanocontainer and nanocarrier, we envision our construct as a potential modular platform for potential use in cancer therapeutics. The HNT interior can be loaded with a variety of anti-cancer drugs (or other chemotherapeutics and serve as a “death cargo” designed to kill cancer cells while providing feedback imaging data on drug efficacy. The surface of the HNT can be modified with gold or silver nanoparticles and used in photothermal therapy by converting light to heat inside tumors. Our HNT-based drug delivery system has the potential to provide localized and targeted therapies that limit or reduce side effects, reduce patient costs and length of hospital stays, and improve quality of life. However, further research is needed to validate the potential of this new

  14. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    Science.gov (United States)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  15. Anticancer Activity from Active Fraction of Sea Cucumber

    Directory of Open Access Journals (Sweden)

    Nurul Mutia Putram

    2017-05-01

    Full Text Available Sea Cucumber Holothuria atra is one of marine organisms has been used as a new source of novel bioactive compounds. Many of them have been used as the lead compounds in discovery of new anticancer drugs. The objective of this study was to determine the active fractions of sea cucumber (H. atra which have anticancer activity. H. atra was macerated using ethanol and the extract was freezedried using a freeze dryer. The crude extract was partitioned using n-hexane, ethyl acetate, and methanol-water (3:1:1:1. Cytotoxicity test was performed using HeLa (cervic cancer cell line and MCF-7 (breast cancer cell line based on the MTT assay. The crude extract of H. atra showed the best cytotoxic activity against HeLa cells (IC50 = 12.48 µg/mL and MCF-7 cells (IC50 = 17.90 µg/mL. The toxicity tests showed the IC50 value of the n-hexane fraction, ethyl acetate fraction, and methanol-water fraction against HeLa cells HeLa (IC50 = 76.45 µg/mL; 77.95 µg/mL;  14.27 µg/mL and MCF-7 cells (IC50 = 58.50 µg/mL; 59.59 µg/mL; 14.33 µg/mL.

  16. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions

    Directory of Open Access Journals (Sweden)

    Teerasak E-kobon

    2016-01-01

    Full Text Available Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5 showed in vitro cytotoxicity against the breast cancer cell line (MCF-7 and normal epithelium cell line (Vero. According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  18. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yoo, Young-Choon [Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, International University of Korea, Jinju 660-759 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-{alpha} and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  19. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    International Nuclear Information System (INIS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-01-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX (P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  20. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    International Nuclear Information System (INIS)

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.; Trush, Michael A.; Li, Y. Robert; Zhu, Hong; Jia, Zhenquan

    2014-01-01

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  1. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jason Z. [Virginia Tech CRC, Blacksburg, VA (United States); Ke, Yuebin [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Misra, Hara P. [Virginia Tech CRC, Blacksburg, VA (United States); Trush, Michael A. [Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Li, Y. Robert [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Virginia Tech-Wake Forest University SBES, Blacksburg, VA (United States); Department of Biology, University of North Carolina at Greensboro, NC (United States); Zhu, Hong, E-mail: zhu@campbell.edu [Campbell University School of Osteopathic Medicine, Buies Creek, NC (United States); Jia, Zhenquan, E-mail: z_jia@uncg.edu [Department of Biology, University of North Carolina at Greensboro, NC (United States)

    2014-12-15

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with

  2. Investigations into the Mechanisms of Cell Death: The Common Link between Anticancer Nanotherapeutics and Nanotoxicology

    Science.gov (United States)

    Minocha, Shalini

    Nanotoxicology and anticancer nanotherapeutics are essentially two sides of the same coin. The nanotoxicology discipline deals with the nanoparticle (NP)-induced toxicity and mechanisms of cell death in healthy cells, whereas anticancer agents delivered via nano-based approaches aim to induce cell death in abnormally proliferating cancer cells. The objectives of the studies presented herein were two-fold; to (a) systematically study the physico-chemical properties and cell death mechanisms of model NPs and (b) utilize the knowledge gained from cell death-nanotoxicity studies in developing a potentially novel anticancer nanotherapeutic agent. For the first objective, the effect of a distinguishing characteristic, i.e., surface carbon coating on the matched pairs of carbon-coated and non-coated copper and nickel NPs (Cu, C-Cu, Ni and C-Ni) on the physico-chemical properties and toxicity in A549 alveolar epithelial cells were evaluated. The effect of carbon coating on particle size, zeta potential, oxidation state, cellular uptake, release of soluble metal and concentration dependent toxicity of Cu and Ni NPs was systematically evaluated. A significant effect of carbon coating was observed on the physico-chemical properties, interaction with cellular membranes, and overall toxicity of the NPs. C-Cu NPs, compared to Cu NPs, showed four-fold lower release of soluble copper, ten-fold higher cellular uptake and protection against surface oxidation. In toxicity assays, C-Cu NPs induced higher mitochondrial damage than Cu NPs whereas Cu NPs were associated with a significant damage to plasma membrane integrity. Nickel and carbon coated nickel NPs were less toxic compared to Cu and C-Cu NPs. Thus, by studying the effect of carbon coating, correlations between physico-chemical properties and toxicity of NPs were established. The second objective was focused on utilizing nano-based approaches for the intracellular delivery of an anticancer agent, Cytochrome c (Cyt c), to

  3. Anti-cancer, pharmacokinetic and biodistribution studies of cremophor el free alternative paclitaxel formulation.

    Science.gov (United States)

    Jain, Subheet K; Utreja, Puneet; Tiwary, Ashok K; Mahajan, Mohit; Kumar, Nikhil; Roy, Partha

    2014-01-01

    The aim of the present investigation is to determine the in vivo potential of previously developed and optimized Cremophor EL free paclitaxel (CF-PTX) formulation consisting of soya phosphatidylcholine and biosurfactant sodium deoxycholate. CF-PTX was found to have drug loading of 6 mg/ml similar to Cremophor EL based marketed paclitaxel formulation. In the present study, intracellular uptake, repeated dose 28 days sub-acute toxicity, anti-cancer activity, biodistribution and pharmacokinetic studies were conducted to determine in vivo performance of CF-PTX formulation in comparison to marketed paclitaxel formulation. Intracellular uptake of CF-PTX was studied using A549 cells by fluorescence activated cell sorting assay (FACS) and fluorescence microscopy. In vivo anti-cancer activity of CF-PTX was evaluated using Ehrlich ascites carcinoma (EAC) model in mice followed by biodistribution and pharmacokinetic studies. FACS investigation showed that fluorescence marker acridine orange (AO) solution showed only 19.8±1.1% intracellular uptake where as significantly higher uptake was observed in the case of AO loaded CF-PTX formulation (85.4±2.3%). The percentage reduction in tumor volume for CF-PTX (72.5±2.3%) in EAC bearing mice was found to be significantly (p<0.05) higher than marketed formulation (58.6±2.8%) on 14th day of treatment. Pharmacokinetic and biodistribution studies showed sustained plasma concentration of paclitaxel depicted by higher mean residence time (MRT; 18.2±1.8 h) and elimination half life (12.8±0.6 h) with CF-PTX formulation as compared to marketed formulation which showed 4.4±0.2 h MRT and 3.6±0.4 h half life. The results of the present study demonstrated better in vivo performance of CF-PTX and this formulation appears to be a promising carrier for sustained and targeted delivery of paclitaxel.

  4. Medicinal plants combating against cancer--a green anticancer approach.

    Science.gov (United States)

    Sultana, Sabira; Asif, Hafiz Muhammad; Nazar, Hafiz Muhammad Irfan; Akhtar, Naveed; Rehman, Jalil Ur; Rehman, Riaz Ur

    2014-01-01

    Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.

  5. Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications.

    Science.gov (United States)

    Camorani, Simona; Crescenzi, Elvira; Fedele, Monica; Cerchia, Laura

    2018-04-01

    Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic. However, some of these drugs show limited efficacy and give rise to acquired resistance. Emerging highly selective compounds for anticancer therapy are oligonucleotide aptamers that interact with their targets by recognizing a specific three-dimensional structure. Because of their nucleic acid nature, the rational design of advanced strategies to manipulate aptamers for both diagnostic and therapeutic applications is greatly simplified over antibodies. In this manuscript, we will provide a comprehensive overview of oligonucleotide aptamers as next generation strategies to efficiently target RTKs in human cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Synthesis, structure, computational and in-silico anticancer studies of N,N-diethyl-N‧-palmitoylthiourea

    Science.gov (United States)

    Asegbeloyin, Jonnie Niyi; Oyeka, Ebube Evaristus; Okpareke, Obinna; Ibezim, Akachukwu

    2018-02-01

    A new potential ONS donor ligand N,N-diethyl-N‧-palmitoylthiourea (PACDEA) with the molecular formular C21H42N2OS has been synthesized and characterized by ESI-MS, UV, FTIR 1H and 13C NMR spectroscopy and single X-ray crystallography. The asymmetric molecules crystallized in the centrosymmetric structure of monoclinic crystal system with space group P21/c. In the crystal structure of the compound, molecules are linked in a continuous chain by intermolecular Nsbnd H⋯Odbnd C hydrogen bonds, which stabilized the crystal structure. The palmitoyl moiety and N (2)-ethyl group lie on a plane, while the thiocarbonyl moiety is twisted and lying othorgonal to the plane. Non-covalent interaction (NCI) analysis on the hydrogen bonded solid state structure of the molecule revealed the presence of a significant number of non-covalent interactions including intermolecular hydrogen bonding interactions, Csbnd Hsbnd -lone pair interactions, weak Van der Waals interactions, and steric/ring closure interactions. The NCI analysis also showed the presence of intramolecular stabilizing Csbnd H⋯Odbnd C and Csbnd H⋯Sdbnd C interactions. Docking simulation revealed that the compound interacted favourably with ten selected validated anticancer drug targets, which is an indication that the compound could possess some anticancer properties.

  7. Anticancer properties of brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Swaczynová, Jana; Malíková, J.; Hoffmannová, L.; Kohout, Ladislav; Strnad, Miroslav

    2007-01-01

    Roč. 72, č. 11 (2007), - ISSN 0032-0943. [Annual Congress on Medicinal Plant Research /54./. 29.08.2006-02.09.2006, Helsinki] Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : brassinosteroids * anticancer activity * proliferation * apoptosis Subject RIV: CC - Organic Chemistry

  8. Research Progress in the Modification of Quercetin Leading to Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Alessandro Massi

    2017-07-01

    Full Text Available The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016.

  9. Phytosterols as a natural anticancer agent: Current status and future perspective.

    Science.gov (United States)

    Shahzad, Naiyer; Khan, Wajahatullah; Md, Shadab; Ali, Asgar; Saluja, Sundeep Singh; Sharma, Sadhana; Al-Allaf, Faisal A; Abduljaleel, Zainularifeen; Ibrahim, Ibrahim Abdel Aziz; Abdel-Wahab, Ali Fathi; Afify, Mohamed Abdelaziz; Al-Ghamdi, Saeed Saeed

    2017-04-01

    Phytosterols are naturally occurring compounds in plants, structurally similar to cholesterol. The human diet is quite abundant in sitosterol and campesterol. Phytosterols are known to have various bioactive properties including reducing intestinal cholesterol absorption which alleviates blood LDL-cholesterol and cardiovascular problems. It is indicated that phytosterol rich diets may reduce cancer risk by 20%. Phytosterols may also affect host systems, enabling antitumor responses by improving immune response recognition of cancer, affecting the hormone dependent endocrine tumor growth, and by sterol biosynthesis modulation. Moreover, phytosterols have also exhibited properties that directly inhibit tumor growth, including reduced cell cycle progression, apoptosis induction, and tumor metastasis inhibition. The objective of this review is to summarize the current knowledge on occurrences, chemistry, pharmacokinetics and potential anticancer properties of phytosterols in vitro and in vivo. In conclusion, anticancer effects of phytosterols have strongly been suggested and support their dietary inclusion to prevent and treat cancers. Copyright © 2017. Published by Elsevier Masson SAS.

  10. In vitro assessment of a computer-designed potential anticancer agent in cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Michelle Helen Visagie

    cost effective and time consuming. This study evaluated the anticancer potential of ESE-15-ol, an in silico-designed compound in vitro. Research demonstrated that ESE-15-ol exerts antiproliferative activity accompanied with apoptosis induction at a nanomolar concentration compared to the micromolar range required by 2ME2. This study is the first study to demonstrate the influence of ESE-15-ol on morphology, cell cycle progression and apoptosis induction in HeLa cells. In silico-design by means of receptor- and ligand molecular modeling is thus effective in improving compound bioavailability while preserving apoptotic activity in vitro.

  11. Oral anticancer agent medication adherence by outpatients.

    Science.gov (United States)

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence.

  12. Melatonin Anticancer Effects: Review

    Directory of Open Access Journals (Sweden)

    Luigi Di Bella

    2013-01-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine, MLT, the main hormone produced by the pineal gland, not only regulates circadian rhythm, but also has antioxidant, anti-ageing and immunomodulatory properties. MLT plays an important role in blood composition, medullary dynamics, platelet genesis, vessel endothelia, and in platelet aggregation, leukocyte formula regulation and hemoglobin synthesis. Its significant atoxic, apoptotic, oncostatic, angiogenetic, differentiating and antiproliferative properties against all solid and liquid tumors have also been documented. Thanks, in fact, to its considerable functional versatility, MLT can exert both direct and indirect anticancer effects in factorial synergy with other differentiating, antiproliferative, immunomodulating and trophic molecules that form part of the anticancer treatment formulated by Luigi Di Bella (Di Bella Method, DBM: somatostatin, retinoids, ascorbic acid, vitamin D3, prolactin inhibitors, chondroitin-sulfate. The interaction between MLT and the DBM molecules counters the multiple processes that characterize the neoplastic phenotype (induction, promotion, progression and/or dissemination, tumoral mutation. All these particular characteristics suggest the use of MLT in oncological diseases.

  13. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    Science.gov (United States)

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells.

    Science.gov (United States)

    Cheng, Wan-Li; Huang, Chien-Yu; Tai, Cheng-Jeng; Chang, Yu-Jia; Hung, Chin-Sheng

    2018-02-01

    Androgen deprivation therapy remains the principal treatment for patients with advanced prostate cancer, though, most patients will eventually develop hormone-refractory prostate cancer (HRPC). Androgen ablation mediated maspin-induction has been identified in cancer patients. However, the role of maspin on the anticancer activity of curcumin derived from turmeric (Curcuma longa) in HRPC cells has not been elucidated. The anticancer action of curcumin in hormone-independent prostate cancer cells (DU145, and PC-3) was determined by measures of cell survival rate. The cause of maspin silencing on the anti-tumor abilities of curcumin in PC-3 cells was evaluated by measures of cell survival rate, cell-cycle distribution, and apoptosis signaling analysis. Our present study showed that PC-3 cells (with higher maspin expression) were more sensitive than DU145 cells to curcumin treatment (with lower maspin expression). RNA interference-mediated maspin silencing reduced curcumin sensitivity of PC-3 cells, as evidenced by reduced apoptotic cell death. After exposure to curcumin, maspin-knockdown cells showed lower expression levels of pro-apoptotic proteins, Bad and Bax, as compared with control cells. Maspin can enhance the sensitivity of HRPC cells to curcumin treatment. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Anticancer drugs from marine flora: an overview.

    Science.gov (United States)

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  16. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  17. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    International Nuclear Information System (INIS)

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs

  18. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available Three-dimensional (3D in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening.Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100-300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin and nanoparticle (NLC were done using spheroids.IC(50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro.The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.

  19. Anticancer Activity of Chloroform Extract and Sub-fractions of Nepeta deflersiana on Human Breast and Lung Cancer Cells: An In vitro Cytotoxicity Assessment.

    Science.gov (United States)

    Al-Oqail, Mai M; Al-Sheddi, Ebtesam S; Siddiqui, Maqsood A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N

    2015-10-01

    Cancer is one of the major causes of death worldwide. The plant-derived natural products have received considerable attention in recent years due to their diverse pharmacological properties including anticancer effects. Nepeta deflersiana (ND) is used in the folk medicine as antiseptic, carminative, antimicrobial, antioxidant, and for treating rheumatic disorders. However, the anticancer activity of ND chloroform extract has not been explored so far. The present study was aimed to investigate the anticancer activities of chloroform Nepeta deflersiana extract and various sub-fractions (ND-1-ND-15) of ND against human breast cancer cells (MCF-7) and human lung cancer cells (A-549). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays, and cellular morphological alterations using phase contrast light microscope were studied. Cells were exposed with 10-1000 μg/ml of sub-fractions of ND for 24 h. Results showed that selected sub-fractions of the chloroform extract significantly reduced the cell viability of MCF-7 and A-549 cells, and altered the cellular morphology in a concentration-dependent manner. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity compared to other fractions whereas, ND-1 did not cause any cytotoxicity even at higher concentrations. The A-549 cells were found to be more sensitive to growth inhibition by all the extracts as compared to the MCF-7 cells. The present study provides preliminary screening of anticancer activities of chloroform extract and sub-fractions of ND, which can be further used for the development of a potential therapeutic anticancer agent. Nepeta deflersiana extract exhibit cytotoxicity and altered the cellular morphology. Sub-fractions of the chloroform extract of Nepeta deflersiana reduced the cell viability of MCF-7 and A-549 cells. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity. The A-549 cells were found to be more sensitive

  20. Recent Advances in the Synthesis and Anticancer Activity of Some Molecules Other Than Nitrogen Containing Heterocyclic Moeities.

    Science.gov (United States)

    Akhtar, Md Jawaid; Yar, M Shahar; Khan, Ahsan Ahmed; Ali, Zulphikar; Haider, Md Rafi

    2017-01-01

    The present review article presented a detailed account of the design strategies and the structure activity relationship of different derivatives apart from the nitrogen containing ring. These scaffolds play an important part in the drug discovery which showed anticancer activity against different human cancer cell lines through apoptosis, cell cycle arrest, inhibiting kinases, angiogenesis, disruption of cell migration, modulation of nuclear receptor responsiveness and others. Naphthalenes amides/amidines, furan, podophyllotoxin, platinum compounds, steroids, and urea, which forms the core part or along with other N-heterocyclic rings are enclosed. Some of these compounds e.g. podophyllotoxin and platinum based drugs displayed anticancer activity at nanomolar range. Various substitutions from the earlier and latest information are prerequisite in the drug synthesis process. The review focused on the recent development of these derivatives, design and anticancer properties, thus providing with the most profound knowledge for the development of targeted based anticancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    Science.gov (United States)

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  2. Anticancer Activity of Cobra Venom Polypeptide, Cytotoxin-II, against Human Breast Adenocarcinoma Cell Line (MCF-7) via the Induction of Apoptosis

    OpenAIRE

    Ebrahim, Karim; Shirazi, Farshad H.; Vatanpour, Hosein; zare, Abas; Kobarfard, Farzad; Rabiei, Hadi

    2014-01-01

    Purpose Breast cancer is a significant health problem worldwide, accounting for a quarter of all cancer diagnoses in women. Current strategies for breast cancer treatment are not fully effective, and there is substantial interest in the identification of novel anticancer agents especially from natural products including toxins. Cytotoxins are polypeptides found in the venom of cobras and have various physiological effects. In the present study, the anticancer potential of cytotoxin-II against...

  3. Potential Therapeutic Roles of Tanshinone IIA in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sheng-Chun Chiu

    2014-09-01

    Full Text Available Tanshinone IIA (Tan-IIA, one of the major lipophilic components isolated from the root of Salviae Miltiorrhizae, has been found to exhibit anticancer activity in various cancer cells. We have demonstrated that Tan-IIA induces apoptosis in several human cancer cells through caspase- and mitochondria-dependent pathways. Here we explored the anticancer effect of Tan-IIA in human bladder cancer cell lines. Our results showed that Tan-IIA caused bladder cancer cell death in a time- and dose-dependent manner. Tan-IIA induced apoptosis through the mitochondria-dependent pathway in these bladder cancer cells. Tan-IIA also suppressed the migration of bladder cancer cells as revealed by the wound healing and transwell assays. Finally, combination therapy of Tan-IIA with a lower dose of cisplatin successfully killed bladder cancer cells, suggesting that Tan-IIA can serve as a potential anti-cancer agent in bladder cancer.

  4. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides

    Directory of Open Access Journals (Sweden)

    Sun J

    2017-02-01

    Full Text Available Jiawei Sun,1 Lei Jiang,2 Yi Lin,3 Ethan Michael Gerhard,4 Xuehua Jiang,1 Li Li,3 Jian Yang,4 Zhongwei Gu3 1West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 2Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, 3National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 4Department of Biomedical Engineering Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA, USA Abstract: Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips. Compared with Taxol (free PTX, RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50 value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs. An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6% and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage

  5. Anticancer Activity of Toxins from Bee and Snake Venom-An Overview on Ovarian Cancer.

    Science.gov (United States)

    Moga, Marius Alexandru; Dimienescu, Oana Gabriela; Arvătescu, Cristian Andrei; Ifteni, Petru; Pleş, Liana

    2018-03-19

    Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways are being used as targets for new anticancer treatments. Various venoms and their toxins have shown possible anticancer effects on human cancer cell lines, providing new perspectives in drug development. In this review, we observed the effects of natural toxins from bee and snake venom and the mechanisms through which they can inhibit the growth and proliferation of cancer cells. We also researched how several types of natural molecules from venom can sensitize ovarian cancer cells to conventional chemotherapy, with many toxins being helpful for developing new anticancer drugs. This approach could improve the efficiency of standard therapies and could allow the administration of decreased doses of chemotherapy. Natural toxins from bee and snake venom could become potential candidates for the future treatment of different types of cancer. It is important to continue these studies concerning therapeutic drugs from natural resource and, more importantly, to investigate their mechanism of action on cancer cells.

  6. Potential anti-cancer activity of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), a histone deacetylase inhibitor, against breast cancer both in vitro and in vivo

    International Nuclear Information System (INIS)

    Park, Ki-Cheong; Kim, Seung-Won; Park, Ji-Hyun

    2011-01-01

    Histone deacetylase (HDAC) is an attractive target for cancer therapy because it plays a key role in gene expression and carcinogenesis. N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA) is a novel synthetic HDAC inhibitor (HDACI) that shows better pharmacological properties than a known HDACI present in the human fibrosarcoma cell: suberoylanilide hydroxamic acid (SAHA). Here, we investigate the anti-cancer activity of HNHA against breast cancer both in vitro and in vivo. HNHA arrested the cell cycle at the G 1 /S phase via p21 induction, which led to profound inhibition of cancer cell growth in vitro. In addition, HNHA-treated cells showed markedly decreased levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α than SAHA and fumagillin (FUMA) when accompanied by increased histone acetylation. HNHA significantly inhibited tumor growth in an in vivo mouse xenograft model. HNHA-treated mice survived significantly longer than SAHA- and FUMA-treated mice. Dynamic MRI showed significantly decreased blood flow in the HNHA-treated mice, implying that HNHA inhibits tumor neovascularization. This finding was accompanied by marked reductions of proangiogenic factors and significant induction of angiogenesis inhibitors in tumor tissues. We have shown that HNHA is an effective anti-tumor agent in breast cancer cells in vitro and in breast cancer xenografts in vivo. Collectively, these findings indicate that HNHA may be a potent anti-cancer agent against breast cancer due to its multi-faceted inhibition of HDAC activity, as well as anti-angiogenesis activity. (author)

  7. Analysis of the Anticancer Phytochemicals in Andrographis paniculata Nees. under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Daryush Talei

    2013-01-01

    Full Text Available Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm−1 on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG, neoandrographolide (NAG, and 14-deoxy-11,12-didehydroandrographolide (DDAG, were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P≤0.01. Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm−1 led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions.

  8. Analysis of the Anticancer Phytochemicals in Andrographis paniculata Nees. under Salinity Stress

    Science.gov (United States)

    Valdiani, Alireza; Maziah, Mahmood; Saad, Mohd Said

    2013-01-01

    Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm−1) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P ≤ 0.01). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm−1 led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions. PMID:24371819

  9. Synthesis and anticancer structure activity relationship investigation of cationic anthraquinone analogs.

    Science.gov (United States)

    Shrestha, Jaya P; Fosso, Marina Y; Bearss, Jeremiah; Chang, Cheng-Wei Tom

    2014-04-22

    We have synthesized a series of novel 4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium salts, which can be viewed as analogs of cationic anthraquinones. Unlike the similar analogs that we have reported previously, these compounds show relatively weak antibacterial activities but exert strong anticancer activities (low μM to nM GI50), in particular, against melanoma, colon cancer, non-small cell lung cancer and central nervous system (CNS) cancer. These compounds are structurally different from their predecessors by having the aromatic group, instead of alkyl chains, directly attached to the cationic anthraquinone scaffold. Further investigation in the structure-activity relationship (SAR) reveals the significant role of electron donating substituents on the aromatic ring in enhancing the anticancer activities via resonance effect. Steric hindrance of these groups is disadvantageous but is less influential than the resonance effect. The difference in the attached groups at N-1 position of the cationic anthraquinone analog is the main structural factor for the switching of biological activity from antibacterial to anticancer. The discovery of these compounds may lead to the development of novel cancer chemotherapeutics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Mechanistic Study of the sPLA2 Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid

    DEFF Research Database (Denmark)

    Linderoth, Lars; Fristrup, Peter; Hansen, Martin

    2009-01-01

    Secretory phospholipase A2 (sPLA2) is an interesting enzyme for triggered liposomal drug delivery to tumor tissue due the overexpression of sPLA2 in cancerous tissue. A drug delivery system based on the triggered release of therapeutics from sPLA2-sensitive liposomes constituted of pro anticancer...... ether lipids, which become cytotoxic upon sPLA2-catalyzed hydrolysis has previously been established. To optimize the hydrolysis rate of the lipids and thereby optimizing the release profile of the drugs from the liposomes, we have synthesized a thio-ester pro anticancer ether lipid. Liposomes...... constituted of this lipid showed an altered rate of hydrolysis by sPLA2. We have tested the cytotoxicity of the thio-ester pro anticancer ether lipids toward cancer cells, and the results showed that the cytotoxicity is indeed maintained upon sPLA2 exposure. To further understand the origin for the observed...

  11. A Laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity

    CSIR Research Space (South Africa)

    Wellington, Kevin W

    2012-05-01

    Full Text Available of the primary amine and 1,4-naphthohydroquinone in succinate-lactate buffer and a co-solvent, dimethylformamide, under mild reaction conditions in a vessel open to air at pH 4.5 and pH 6.0. Anticancer screening showed that the aminonaphthoquinones exhibited...

  12. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs

    International Nuclear Information System (INIS)

    Maeda, Noriyuki; Miyazawa, Souichiro; Shimizu, Kosuke; Asai, Tomohiro; Yonezawa, Sei; Oku, Naoto; Kitazawa, Sadaya; Namba, Yukihiro; Tsukada, Hideo

    2006-01-01

    We previously observed the enhanced anticancer efficacy of anticancer drugs encapsulated in Ala-Pro-Arg-Pro-Gly-polyethyleneglycol-modified liposome (APRPG-PEG-Lip) in tumor-bearing mice, since APRPG peptide was used as an active targeting tool to angiogenic endothelium. This modality, antineovascular therapy (ANET), aims to eradicate tumor cells indirectly through damaging angiogenic vessels. In the present study, we examined the in vivo trafficking of APRPG-PEG-Lip labeled with [2- 18 F]2-fluoro-2-deoxy- D -glucose ([2- 18 F]FDG) by use of positron emission tomography (PET), and observed that the trafficking of this liposome was quite similar to that of non-targeted long-circulating liposome (PEG-Lip). Then, histochemical analysis of intratumoral distribution of both liposomes was performed by use of fluorescence-labeled liposomes. In contrast to in vivo trafficking, intratumoral distribution of both types of liposomes was quite different: APRPG-PEG-Lip was colocalized with angiogenic endothelial cells that were immunohistochemically stained for CD31, although PEG-Lip was localized around the angiogenic vessels. These results strongly suggest that intratumoral distribution of drug carrier is much more important for therapeutic efficacy than the total accumulation of the anticancer drug in the tumor, and that active delivery of anticancer drugs to angiogenic vessels is useful for cancer treatment. (author)

  13. Kefir: a powerful probiotics with anticancer properties.

    Science.gov (United States)

    Sharifi, Mohammadreza; Moridnia, Abbas; Mortazavi, Deniz; Salehi, Mahsa; Bagheri, Marzieh; Sheikhi, Abdolkarim

    2017-09-27

    Probiotics and fermented milk products have attracted the attention of scientists from various fields, such as health care, industry and pharmacy. In recent years, reports have shown that dietary probiotics such as kefir have a great potential for cancer prevention and treatment. Kefir is fermented milk with Caucasian and Tibet origin, made from the incubation of kefir grains with raw milk or water. Kefir grains are a mixture of yeast and bacteria, living in a symbiotic association. Antibacterial, antifungal, anti-allergic and anti-inflammatory effects are some of the health beneficial properties of kefir grains. Furthermore, it is suggested that some of the bioactive compounds of kefir such as polysaccharides and peptides have great potential for inhibition of proliferation and induction of apoptosis in tumor cells. Many studies revealed that kefir acts on different cancers such as colorectal cancer, malignant T lymphocytes, breast cancer and lung carcinoma. In this review, we have focused on anticancer properties of kefir.

  14. TIGER NUT (CYPERUS ESCULENTUS: SOURCE OF NATURAL ANTICANCER DRUG? BRIEF REVIEW OF EXISTING LITERATURE.

    Directory of Open Access Journals (Sweden)

    Elom Seyram Achoribo

    2017-07-01

    Full Text Available In some parts of the world, Cyperus esculentus L. is widely used as a healthy food for both humans and animals due to their nutritional and functional properties. Current research and reviews on this plant have focused mainly on organoleptic properties, phytochemical compositions, oil content, biochemical activities, and nutritional values. The medicinal properties of Tiger nut are seldom discussed, although its medicinal use is well known in folklore activities. To explore the medicinal properties of Tiger nut, This review tries to investigate the potential anticancer properties of components issued from Tiger nut by reviewing the existing literature in the field. Based on the evidence from the review, it is recommended that there is a need for further investigation into the proposed anticancer properties of Tiger nut.

  15. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  16. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  17. Exploring the influence of culture conditions on kefir's anticancer properties.

    Science.gov (United States)

    Hatmal, Ma'mon M; Nuirat, Abeer; Zihlif, Malek A; Taha, Mutasem O

    2018-05-01

    Cancer is a major health problem in many parts of the world. Conventional anticancer treatments are painful, expensive, and unsafe. Therefore, demand is increasing for cancer treatments preferentially in the form of functional foods or nutritional supplements. Kefir, a traditional fermented milk dairy product, has significant antimutagenic and antitumor properties. This research addresses the hypothesis that kefir's anticancer properties are affected by fermentation conditions. Initially, kefir extracts prepared under standard conditions were screened against 7 cancer cell lines using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Colon cancer and chronic myelogenous leukemia cells were found to be most susceptible to kefir extracts. Subsequently, a factorial design was implemented to assess the effects of 3 fermentation times (24, 48, and 72 h), 3 kefir-to-milk ratios (2, 5, and 10% wt/vol), and 3 fermentation temperatures (4, 25, and 40°C) on kefir's anticancer properties. Remarkably, exploration of the fermentation conditions allowed the anticancer properties of kefir to be enhanced by 5- to 8-fold against susceptible cell lines. Overall, these results demonstrate the possibility of optimizing the anticancer properties of kefir as a functional food in cancer therapy. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways.

    Science.gov (United States)

    Rengarajan, Thamaraiselvan; Yaacob, Nik Soriani

    2016-10-15

    Epidemiological studies show that consumption of diets rich in fruits and vegetables is associated with lower risks of cancer. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds is fisetin (3,7,3,4-tetrahydroxyflavone), a flavonol that is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. Fisetin has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. Fisetin targets many components of intracellular signaling pathways including regulators of cell survival and apoptosis, tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. Current evidence supports the idea that fisetin is a promising agent for cancer treatment. This review summarizes reported anticancer effects of fisetin, and re-emphasizes its potential therapeutic role in the treatment of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [The Necessity and the Current Status of Safe Handling of Anticancer Drugs].

    Science.gov (United States)

    Kanda, Kiyoko

    2017-07-01

    Number of people who handle anticancer drugs in their profession is increasing. Anticancer drugs, which are hazardous drugs(HD), exert cytocidal effects on cancer cells, but many have also been shown to have mutagenicity, teratogenicity and carcinogenicity; therefore, safe handling of anticancer drugs is necessary. In July 2015, the first Japanese guidelines for exposure control measures, namely, the "Joint Guidelines for Safe Handling of Cancer Chemotherapy Drugs", were published jointly by 3 societies. Our guideline is the creation of the Japanese Society of Cancer Nursing(JSCN), Japanese Society of Medical Oncology(JSMO)and Japanese Society of Pharmaceutical Oncology(JASPO)and has a historical significance. This paper states the necessity of safe handling of anticancer drugs, Japan's recent movement of safe handling, the introduction of joint guidelines of safe handling of anticancer drugs, and new movement of safe handling of USP chapter 800 in the United States.

  20. In vitro antioxidant and anticancer activity of young Zingiber officinale against human breast carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Iqbal Asif

    2011-09-01

    Full Text Available Abstract Background Ginger is one of the most important spice crops and traditionally has been used as medicinal plant in Bangladesh. The present work is aimed to find out antioxidant and anticancer activities of two Bangladeshi ginger varieties (Fulbaria and Syedpuri at young age grown under ambient (400 μmol/mol and elevated (800 μmol/mol CO2 concentrations against two human breast cancer cell lines (MCF-7 and MDA-MB-231. Methods The effects of ginger on MCF-7 and MDA-MB-231 cell lines were determined using TBA (thiobarbituric acid and MTT [3-(4,5-dimethylthiazolyl-2,5-diphenyl-tetrazolium bromide] assays. Reversed-phase HPLC was used to assay flavonoids composition among Fulbaria and Syedpuri ginger varieties grown under increasing CO2 concentration from 400 to 800 μmol/mol. Results Antioxidant activities in both varieties found increased significantly (P ≤ 0.05 with increasing CO2 concentration from 400 to 800 μmol/mol. High antioxidant activities were observed in the rhizomes of Syedpuri grown under elevated CO2 concentration. The results showed that enriched ginger extract (rhizomes exhibited the highest anticancer activity on MCF-7 cancer cells with IC50 values of 34.8 and 25.7 μg/ml for Fulbaria and Syedpuri respectively. IC50 values for MDA-MB-231 exhibition were 32.53 and 30.20 μg/ml for rhizomes extract of Fulbaria and Syedpuri accordingly. Conclusions Fulbaria and Syedpuri possess antioxidant and anticancer properties especially when grown under elevated CO2 concentration. The use of ginger grown under elevated CO2 concentration may have potential in the treatment and prevention of cancer.

  1. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999

    Directory of Open Access Journals (Sweden)

    Shahnaz Majeed

    2016-07-01

    Full Text Available Among the most promising nanomaterials, metallic nanoparticles with antibacterial and antitumor properties are expected to open new avenues to fight and prevent various tumours and infectious diseases. The study of bactericidal nanomaterial is particularly timely considering the recent increase in new resistant strains of bacteria to the most potent antibiotics and the potential role of bactericidal nanomaterial as anticancer agents. This has promoted the research of the well-known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work is the study of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999. The colour of the cell filtrate changes to dark brown upon addition of 1 mM AgNO3, suggesting the formation of silver nanoparticles. These silver nanoparticles (AgNPs were characterized and analyzed by UV–vis spectrophotometric analysis, which showed a peak of absorbance at 420 nm. Fourier transform infrared (FTIR analysis showed amines and amides that are responsible for the stabilization of AgNPs. To determine the particle size, atomic force microscopy (AFM analysis was used, which showed that the nanoparticles are spherical and are 30–50 nm in size. High-resolution transmission electron microscopy (HRTEM showed that AgNPs were well dispersed, spherical, and well within the range of 40–50 nm. These nanoparticles displayed good antibacterial activity and also increased the antibiotic activity of gatifloxacin, tetracycline, and vancomycin. These nanoparticles were further studied for their anticancer activity and showed high toxicity towards the MCF-7 breast cancer cell line.

  2. Erlotinib augmentation with dapsone for rash mitigation and increased anti-cancer effectiveness.

    Science.gov (United States)

    Kast, R E

    2015-01-01

    The epidermal growth factor receptor tyrosine kinase inhibitor erlotinib has failed in many ways to be as potent in the anti-cancer role as pre-clinical studies would have suggested. This paper traces some aspects of this failure to a compensatory erlotinib-mediated increase in interleukin-8. Many other-but not all- cancer chemotherapeutic cytotoxic drugs also provoke a compensatory increase in a malignant clone's interleukin-8 synthesis. Untreated glioblastoma and other cancer cells themselves natively synthesize interleukin-8. Interleukin-8 has tumor growth promoting, mobility and metastasis formation enhancing, effects as well as pro-angiogenesis effects. The old sulfone antibiotic dapsone- one of the very first antibiotics in clinical use- has demonstrated several interleukin-8 system inhibiting actions. Review of these indicates dapsone has potential to augment erlotinib effectiveness. Erlotinib typically gives a rash that has recently been proven to come about via an erlotinib triggered up-regulated keratinocyte interleukin-8 synthesis. The erlotinib rash shares histological features reminiscent of typical neutrophilic dermatoses. Dapsone has an established therapeutic role in current treatment of other neutrophilic dermatoses. Thus, dapsone has potential to both improve the quality of life in erlotinib treated patients by amelioration of rash as well as to short-circuit a growth-enhancing aspect of erlotinib when used in the anti-cancer role.

  3. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility.

    Science.gov (United States)

    Muhammad, Zarmina; Raza, Abida; Ghafoor, Sana; Naeem, Ayesha; Naz, Syeda Sohaila; Riaz, Sundus; Ahmed, Wajiha; Rana, Nosheen Fatima

    2016-08-25

    Nanocarriers endow tremendous benefits to the drug delivery systems depending upon the specific properties of either component. These benefits include, increase in the drug blood retention time, reduced efflux, additional toxicity and targeted delivery. Methotrexate (MTX) is clinically used for cancer treatment. Higher dosage of MTX results in hepatic and renal toxicity. In this study methotrexate silver nanoparticles (Ag-MTX) coated with polyethylene glycol (PEG) are synthesized and characterized. Their anticancer activity and biocompatibility is also evaluated. Ag-MTX nanoparticles are synthesized by chemical reduction method. They are characterized by Ultraviolet-Visible Spectroscopy and Fourier Transform Infrared Spectroscopy. Average size of PEG coated Ag-MTX nanoparticles (PEG-Ag-MTX nanoparticles) is 12nm. These particles exhibited improved anticancer activity against MCF-7 cell line. Hemolytic activity of these particles was significantly less than MTX. PEG-Ag-MTX nanoparticles are potential nanocarrier of methotrexate which may offer MTX based cancer treatment with reduced side effects. In-vivo investigations should be carried out to explore them in detail. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    Science.gov (United States)

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  5. Silibinin inhibits translation initiation: implications for anticancer therapy.

    Science.gov (United States)

    Lin, Chen-Ju; Sukarieh, Rami; Pelletier, Jerry

    2009-06-01

    Silibinin is a nontoxic flavonoid reported to have anticancer properties. In this study, we show that silibinin exhibits antiproliferative activity on MCF-7 breast cancer cells. Exposure to silibinin leads to a concentration-dependent decrease in global protein synthesis associated with reduced levels of eukaryotic initiation factor 4F complex. Moreover, polysome profile analysis of silibinin-treated cells shows a decrease in polysome content and translation of cyclin D1 mRNA. Silibinin exerts its effects on translation initiation by inhibiting the mammalian target of rapamycin signaling pathway by acting upstream of TSC2. Our results show that silibinin blocks mammalian target of rapamycin signaling with a concomitant reduction in translation initiation, thus providing a possible molecular mechanism of how silibinin can inhibit growth of transformed cells.

  6. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu

    2010-01-01

    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  7. Using Electrochemical SERS to Measure the Redox Potential of Drug Molecules Bound to dsDNA—a Study of Mitoxantrone

    International Nuclear Information System (INIS)

    Meneghello, Marta; Papadopoulou, Evanthia; Ugo, Paolo; Bartlett, Philip N.

    2016-01-01

    Interaction with DNA plays an important role in the biological activity of some anticancer drug molecules. In this paper we show that electrochemical surface enhanced Raman spectroscopy at sphere segment void gold electrodes can be used as a highly sensitive technique to measure the redox potential of the anticancer drug mitoxantrone bound to dsDNA. For this system we show that we can follow the redox reaction of the bound molecule and can extract the redox potential for the molecule bound to dsDNA by deconvolution of the SER spectra recorded as a function of electrode potential. We find that mitoxantrone bound to dsDNA undergoes a 2 electron, 1 proton reduction and that the redox potential (-0.87 V vs. Ag/AgCl at pH 7.2) is shifted approximately 0.12 V cathodic of the corresponding value at a glassy carbon electrode. Our results also show that the reduced form of mitoxantrone remains bound to dsDNA and we are able to use the deconvoluted SER spectra of the reduced mitoxantrone as a function of electrode potential to follow the electrochemically driven melting of the dsDNA at more negative potentials.

  8. Thermodynamical study of interaction of histone H1 chromosomal protein and mitoxantrone anticancer drug

    International Nuclear Information System (INIS)

    Jafargholizadeh, Naser; Zargar, Seyed Jalal; Safarian, Shahrokh; Habibi-Rezaei, Mehran

    2012-01-01

    Highlights: ► For the first time, our results show mitoxantrone anticancer drug binds to histone H1, via hydrophobic, hydrogen, van der Waals and electrostatic interactions. ► Binding of mitoxantrone molecules to histone H1 is positive cooperative. ► Histone H1 may be considered as a new target for mitoxantrone at the chromatin level. - Using ultraviolet spectroscopy technique, we have investigated the interaction of anticancer drug, mitoxantrone with calf thymus histone H1 chromosomal protein in 100 mM phosphate buffer, pH 7.0, at temperatures 300 and 310 K. UV spectroscopy results show interactions between mitoxantrone and histone H1 with a positive cooperative binding process which was confirmed by Scatchard plot. According to the obtained results, it is concluded that histone H1 can be considered as a target for mitoxantrone binding at the chromatin level.

  9. Sensitivity test of tumor cell to anticancer drug using diffusion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Soejima, S [Hirosaki Univ., Aomori (Japan). School of Medicine

    1978-11-01

    The diffusion chamber method and xenogeneic transplantation of human cancer cells in rats were studied clinically to test the sensitivity of these cells to anticancer drugs. The growth of Hirosaki sarcoma in a diffusion chamber inserted in to Wistar rats was influenced by the difference in tumor cell counts in the chamber. The growth rate in the chamber inserted in to the subcutaneous tissue was more constant than in the abdominal cavity, but the degree of proliferation of tumor cells in the abdominal cavity was more than in the subcutaneous tissue. Sarcoma and solid type sarcoma were affected by mitomycin C (MMC). The effect was greater in dd-mice than in Donryu rats. Solid type Yoshida sarcoma inserted in to the subcutaneous tissue of Donryu rat was not affected by MMC. The degree of sensitivity of methylcholanthrene induced tumor cells, inserted in to the subcutaneous tissue of Donryu rats, to MMC differed according to various conditions of the hosts. Clinically, the influences of anticancer drugs on human cancer cells inserted in to the subcutaneous tissue of /sup 60/Co-irradiated Donryu rats were observed. There were various grades of sensitivity of gastric cancer cells to anticancer drugs. MMC was effective in 53% of the cases, Cyclophosphamide in 40%, 5-FU in 54%, cytosine arabinoside in 32%, and FT-207 in 57%. Twenty-seven percent were not affected by anticancer drugs. On histological examination, tubular adenocarcinoma cells had a high sensitivity to anticancer drugs, while poorly differentiated adenocarcinoma cells had a low sensitive. Anticancer drugs selected according to the sensitivity of human cancer cells had a marked effective on advanced cancer cells. The diffusion chamber method was useful in determining the degree of bone marrow toxicity of anticancer drugs.

  10. Laser assisted anticancer activity of benzimidazole based metal organic nanoparticles.

    Science.gov (United States)

    Praveen, P A; Ramesh Babu, R; Balaji, P; Murugadas, A; Akbarsha, M A

    2018-03-01

    Recent studies showed that the photothermal therapy can be effectively used for the targeted cancerous cells destruction. Hence, in the present study, benzimidazole based metal organic complex nanoparticles, dichloro cobalt(II) bis-benzimidazole (Co-BMZ) and dichloro copper(II) bis-benzimidazole (Cu-BMZ), were synthesized by reprecipitation method and their anti-cancer activity by means of photothermal effect has been studied. Transmission electron microscopy analysis shows that the particle size of Cu-BMZ is ∼100 nm and Co-BMZ is in the range between 100 and 400 nm. Zeta potential analysis ensures the stability of the synthesized nanoparticles. It is found that the nonlinear absorption of the nanoparticles increases with increase in laser power intensity. Phototoxicity of human lung cancer (A549) and the normal mouse embryonic fibroblast (NIH-3T3) cells was studied using a 650 nm laser. Even though both the cell lines were affected by laser irradiation, A549 cells show higher cell destruction and lower IC 50 values than the normal cells. Docking studies were used to analyse the interaction site and the results showed that the Cu-BMZ molecules have higher dock score than the Co-BMZ molecules. The obtained results indicate that Cu-BMZ samples have lesser particle size, higher nonlinear absorption and higher interaction energy than the Co-BMZ samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Anticancer Efficacy of Polyphenols and Their Combinations

    Directory of Open Access Journals (Sweden)

    Aleksandra Niedzwiecki

    2016-09-01

    Full Text Available Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract with vitamin C, amino acids and other micronutrients (EPQ demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion

  12. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent.

    Science.gov (United States)

    Arjunan, Nithya; Kumari, Henry Linda Jeeva; Singaravelu, Chandra Mohan; Kandasamy, Ruckmani; Kandasamy, Jothivenkatachalam

    2016-11-01

    Chitosan (CS), a seaweed polysaccharide is a natural macromolecule which is widely being used in medical applications because of its distinctive antimicrobial and anticancer properties. Silver, a noble metal, is also receiving wide attention for its potential usage in antimicrobial and anticancer therapeutics. In this study, an effective way of reduction of silver using chitosan at varying reaction temperatures and an optimised concentration of silver were performed. The optical, structural, spectral, morphological and elemental studies of the biosynthesized chitosan-silver (CS-Ag) nanocomposites were characterized by several techniques. The synthesized CS-Ag nanocomposites exhibit particle size around 20nm and were further exploited for potent biological applications in nanomedicine due to their nanometric sizes and biocompatibility of chitosan. The antimicrobial activity of the biosynthesized CS-Ag nanocomposites exhibits zone of inhibition ranged between 09.666±0.577 and 19.000±1.000 (mm). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were from 8 to 128μgmL -1 and 16 to 256μgmL -1 respectively, with the highest antimicrobial activity shown against Gram-negative Salmonella sp. The synergistic effect of chitosan and silver as a composite in nanometric size revealed significant IC 50 value of 29.35μgmL -1 and a maximum of 95.56% inhibition at 100μgmL -1 against A549 lung cancer cell line, resulting in potent anticancer effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Koneracka, M; Zavisova, V; Tomasovicova, N; Kopcansky, P; Timko, M; JurIkova, A; Csach, K; Kavecansky, V; Lancz, G [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Muckova, M [Hameln rds a.s., Horna 36, Modra (Slovakia)], E-mail: konerack@saske.sk

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  14. Anticancer potency of black sea cucumber (Holothuria atra) from Mentawai Islands, Indonesia

    OpenAIRE

    Mieke Hemiawati Satari; Utmi Arma; Syafruddin Ilyas; Dian Handayani

    2017-01-01

    ABSTRACT Introduction: The source of bioactive compounds believed to have strong anticancer potency is derived from sea cucumber. Black sea cucumber (Holothuria atra) is a dominant species in Mentawai Islands, West Sumatera, Indonesia. Key factor compound that acts as anticancer in sea cucumber extract is tritepenoid also known as Frondoside A. The purpose of this study was to determine the effectiveness of the active compound taken from black sea cucumber as anticancer. Methods: Methods u...

  15. Potential anticancer activity of curcumin analogs containing sulfone on human cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang Qiuyan

    2016-01-01

    Full Text Available Three curcumin analogs(S1-S3 containing sulfone were investigated for their effects on human prostate cancer PC-3, colon cancer HT-29, lung cancer H1299 and pancreatic cancer BxPC-3 cells. The three compounds were approximately 16-to 96-fold more active than curcumin in these cell lines as determined by the MTT assay. The effects of these compounds on cell growth were further studied in prostate cancer PC-3 cells in both two dimensional (2D and three dimensional (3D cultures. S1-S3strongly inhibited the growth and induced cell death in PC-3 cells, and the effects of these compounds were associated with suppression of nuclear factor kappa B (NF-κB transcriptional activity. Moreover, treatment of PC-3 cells with all three compounds caused a decrease in the level of phosphorylated signal transducer and activator of transcription-3 (p-STAT3 (Tyr705,but not p-STAT3(Ser727. Only S1and S2decreased the presence of phosphorylated Akt (p-Akt in PC-3 cells. These curcumin analogs warrant further in vivo studies for anticancer activities in suitable animal models.

  16. Recent discoveries of anticancer flavonoids.

    Science.gov (United States)

    Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe

    2017-12-15

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Transportan 10 improves the anticancer activity of cisplatin.

    Science.gov (United States)

    Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić

    2016-05-01

    The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a

  18. Insights into the Intramolecular Properties of η6-Arene-Ru-Based Anticancer Complexes Using Quantum Calculations

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-01-01

    Full Text Available The factors that determine the stability and the effects of noncovalent interaction on the η6-arene ruthenium anticancer complexes are determined using DFT method. The intramolecular and intra-atomic properties were computed for two models of these half-sandwich ruthenium anticancer complexes and their respective hydrated forms. The results showed that the stability of these complexes depends largely on the network of hydrogen bonds (HB, strong nature of charge transfer, polarizability, and electrostatic energies that exist within the complexes. The hydrogen bonds strength was found to be related to the reported anticancer activities and the activation of the complexes by hydration. The metal–ligand bonds were found to be closed shell systems that are characterised by high positive Laplacian values of electron density. Two of the complexes are found to be predominantly characterised by LMCT while the other two are predominately characterised by MLCT.

  19. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal

    2018-02-09

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  20. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal; Choudhry, Hani; Razvi, Syed Shoeb; Moselhy, Said Salama; Kumosani, Taha Abduallah; Zamzami, Mazin A.; Omran, Ziad; Halwani, Majed A.; Al-Babili, Salim; Abualnaja, Khalid Omer; Al-Malki, Abdulrahman Labeed; Alhosin, Mahmoud; Asami, Tadao

    2018-01-01

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  1. Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) R.M.Sm grown in different locations of Malaysia.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah; Ashkani, Sadegh

    2015-09-23

    Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties. E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed

  2. Secondary Leukemia Associated with the Anti-Cancer Agent, Etoposide, a Topoisomerase II Inhibitor

    OpenAIRE

    Sachiko Ezoe

    2012-01-01

    Etoposide is an anticancer agent, which is successfully and extensively used in treatments for various types of cancers in children and adults. However, due to the increases in survival and overall cure rate of cancer patients, interest has arisen on the potential risk of this agent for therapy-related secondary leukemia. Topoisomerase II inhibitors, including etoposide and teniposide, frequently cause rearrangements involving the mixed lineage leukemia (MLL<...

  3. Shatavarins (containing Shatavarin IV) with anticancer activity from the roots of Asparagus racemosus

    Science.gov (United States)

    Mitra, Shankar K.; Prakash, Neswi S.; Sundaram, Ramachandran

    2012-01-01

    Objectives: The anticancer activity of shatavarins (containing shatavarin IV) isolated from the roots of Asparagus racemosus (Wild) was evaluated using in vitro and in vivo experimental models. Material and Methods: The shatavarin IV was isolated from ethyl acetate insoluble fraction (AR-2B) of chloroform:methanol (2:1) (AR-2) extract of A. racemosus roots. The cytotoxicity (in vitro) of shatavarin IV and other shatavarins rich fraction was carried out using of MTT assay using MCF-7 (human breast cancer), HT-29 (human colon adenocarcinoma), and A-498 (human kidney carcinoma) cell lines. The in vivo anticancer activity of shatavarins (containing shatavarin IV) was evaluated against Ehrlich ascites carcinoma (EAC) tumor bearing mice. Results: The isolated shatavarin IV (84.69 %) along with shatavarins rich fraction, coded AR-2B containing 5.05% shatavarin IV showed potent cytotoxicity. Oral administration of AR-2B to tumor bearing mice at doses of 250 and 500 mg/kg body weight for 10 days, showed significant reduction in percent increase in body weight, tumor volume, packed cell volume, viable tumor cell count, and increased non-viable cell count when compared to the untreated mice of the EAC control group. The restoration of hematological parameters towards normalcy was also observed. Conclusion: The result suggests that the shatavarins (containing shatavarin IV) rich fraction (AR-2B) exhibits significant anticancer activity in both in vitro and in vivo experimental models. PMID:23248403

  4. Sildenafil citrate improves the delivery and anticancer activity of doxorubicin formulations in a mouse model of breast cancer.

    Science.gov (United States)

    Greish, Khaled; Fateel, Maryam; Abdelghany, Sara; Rachel, Nanitha; Alimoradi, Houman; Bakhiet, Moiz; Alsaie, Ahmed

    2017-11-21

    Sildenafil is an approved drug for the treatment of erectile dysfunction. The drug exerts its action through the relaxation of smooth muscles and the modulation of vascular endothelial permeability. In this work, we tested whether the aforementioned effects of sildenafil on tumour vasculatures could result in an improvement of anticancer drug concentration in tumour tissues and hence improves its anticancer effect. Sildenafil when added to doxorubicin showed synergistic anticancer activity against 4T1 breast cancer cells in vitro. Adding 1, 30 and 100 μM of Viagra to 1 μM of doxorubicin resulted in 1.8-fold, 6.2-fold and 21-fold statistically significant increases in its cytotoxic effect, respectively. As a result, 4T1 tumour-bearing mice showed up to 2.7-fold increase in drug concentrations of the fluorescent Dye DiI and doxorubicin in tumour tissues, as well as their nanoformulations. Animals treated with the combinations of both Sildenafil citrate and doxorubicin showed a statistically significant 4.7-fold reduction in tumour size compared to doxorubicin alone. This work highlights the effect of Sildenafil on tumour vasculatures and provides a rational for further testing the combination on breast cancer patients.

  5. Nitric oxide: cancer target or anticancer agent?

    Science.gov (United States)

    Mocellin, Simone

    2009-03-01

    Despite the improved understanding of nitric oxide (NO) biology and the large amount of preclinical experiments testing its role in cancer development and progression, it is still debated whether NO should be considered a potential anticancer agent or instead a carcinogen. The complexity of NO effects within a cell and the variability of the final biological outcome depending upon NO levels makes it highly challenging to determine the therapeutic value of interfering with the activity of this intriguing gaseous messenger. This uncertainty has so far halted the clinical implementation of NO-based therapeutics in the field of oncology. Accordingly, only an in depth knowledge of the mechanisms leading to experimental tumor regression or progression in response to NO will allow us to exploit this molecule to fight cancer.

  6. Synthesis and in vitro anti-cancer evaluation of luteinizing hormone-releasing hormone-conjugated peptide.

    Science.gov (United States)

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Huang, Wenlong; Qian, Hai

    2015-11-01

    Luteinizing hormone-releasing hormone (LHRH) is a decapeptide hormone released from the hypothalamus and shows high affinity binding to the LHRH receptors. It is reported that several cancer cells also express LHRH receptors such as breast, ovarian, prostatic, bladder and others. In this study, we linked B1, an anti-cancer peptide, to LHRH and its analogs to improve the activity against cancer cells with LHRH receptor. Biological evaluation revealed that TB1, the peptide contains triptorelin sequence, present favorable anti-cancer activity as well as plasma stability. Further investigations disclosed that TB1 trigger apoptosis by activating the mitochondria-cytochrome c-caspase apoptotic pathway, it also exhibited the anti-migratory effect on cancer cells.

  7. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy.

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b + CD13 + myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b + CD13 + myeloid cells could become a non-malignant target for the development of novel anticancer regimens.

  8. A one-pot laccase-catalysed synthesis of coumestan derivatives and their anticancer activity

    CSIR Research Space (South Africa)

    Qwebani-Ogunleye, Tozama

    2016-12-01

    Full Text Available screened against renal TK10, melanoma UACC62 and breast MCF7 cancer cell-lines and the GI50, TGI and LC50 values determined. Anticancer screening showed that the cytostatic effects of the coumestans were most effective against the melanoma UACC62 and breast...

  9. When ubiquitin meets NF-κB: a trove for anti-cancer drug development.

    Science.gov (United States)

    Wu, Zhao-Hui; Shi, Yuling

    2013-01-01

    During the last two decades, the studies on ubiquitination in regulating transcription factor NF-κB activation have elucidated the expanding role of ubiquitination in modulating cellular events by non-proteolytic mechanisms, as well as by proteasomal degradation. The significance of ubiquitination has also been recognized in regulating gene transcription, epigenetic modifications, kinase activation, DNA repair and subcellular translocation. This progress has been translated into novel strategies for developing anti-cancer therapeutics, exemplified by the success of the first FDA-approved proteasome inhibitor drug Bortezomib. Here we discuss the current understanding of the ubiquitin-proteasome system and how it is involved in regulating NF-κB signaling pathways in response to a variety of stimuli. We also focus on the recent progress of anti-cancer drug development targeting various steps of ubiquitination process, and the potential of these drugs in cancer treatment as related to their impact on NF-κB activation.

  10. Pharmacokinetic-Pharmacodynamic Modelling & Simulation for Anticancer Drugs with Complex Absorption Characteristics

    NARCIS (Netherlands)

    Yu, Huixin

    2016-01-01

    Cancer is still one of the leading causes of death in the world. In recent years, targeted anticancer agents have shown to be a major breakthrough in the battle against cancer. These targeted anticancer agents, mostly administered orally, specifically target molecular defects of tumour cells

  11. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  12. A new anticancer agent--131I BGTP

    International Nuclear Information System (INIS)

    He Jiaheng; Jiang Shubin; Wang Guanquan

    2007-12-01

    A new anticancer precursor, di-peptide[p-Boc-Gly-Tyr-NH(CH 2 ) 2 NH-PO (ONH 4 )-O-PhI*], was synthesized and labelled with 131 I using enveloped-tube technique, the labelling yield could reach 85%. Using cell coalescent method, the biological activity in vitro of the labelled compounds was evaluated, showing that the primary appetency was kept and not damaged obviously during labelling. Results on judgement of their stability, lipophilicity and toxicity demonstrated lower toxicity, higher lipophilicity and lower iodium disassociation percentage (<12% after 72 h); furthermore, a tumour-bearing animal model, was establishd successfully, on which, the biological properties of the labelled agent was studied. (authors)

  13. Unique characteristics of regulatory approval and pivotal studies of orphan anticancer drugs in Japan.

    Science.gov (United States)

    Nakayama, Hiroki; Tsukamoto, Katsura

    2018-04-17

    The approval of orphan anticancer drugs has increased, with the number exceeding that of non-orphan drugs in Japan in recent years. Although orphan anticancer drugs may have unique characteristics due to their rarity, these have not been fully characterized. We investigated anticancer drugs approved in Japan between April 2004 and November 2017 to reveal the characteristics of regulatory approval and pivotal studies on orphan anticancer drugs compared to non-orphan drugs. The median regulatory review time and number of patients in pivotal studies on orphan anticancer drugs (281.0 days [interquartile range, 263.3-336.0]; 222.5 patients [66.0-454.3]) were significantly lower than those on non-orphan drugs (353.0 days [277.0-535.5]; 521.0 patients [303.5-814.5], respectively) (P < 0.001). Phase II, non-randomized and non-controlled designs were more frequently used in pivotal studies on orphan anticancer drugs (45.9%, 41.9% and 43.2%) than non-orphan drugs (17.2%, 14.1% and 14.1%, respectively). Response rate was more commonly used as a primary endpoint in pivotal studies on orphan anticancer drugs (48.6%) than non-orphan drugs (17.2%). Indications limited by molecular features, second or later treatment line, and accelerated approval in the United States were associated with the use of response rate in orphan anticancer drug studies. In conclusion, we demonstrated that orphan anticancer drugs in Japan have unique characteristics compared to non-orphan drugs: shorter regulatory review and pivotal studies frequently using phase II, non-randomized, or non-controlled designs and response rate as a primary endpoint, with fewer patients.

  14. In Silico Screening, Synthesis and In Vitro Evaluation of Some Quinazolinone and Pyridine Derivatives as Dihydrofolate Reductase Inhibitors for Anticancer Activity

    Directory of Open Access Journals (Sweden)

    A. G. Nerkar

    2009-01-01

    Full Text Available Dihydrofolate reductase (DHFR is the important target for anticancer drugs belonging to the class of antimetabolites as the enzyme plays important role in the de novo purine synthesis. We here report the in silico screening to obtain best fit molecules as DHFR inhibitors, synthesis of some ʻbest fitʼ quinazolinone from 2-phenyl-3-(substituted-benzilidine-amino quinazolinones (Quinazolinone Shiff's bases QSB1-5 and pyridine-4-carbohydrazide Shiff's bases (ISB1-5 derivatives and their in vitro anticancer assay. Synthesis of the molecules was performed using microwave assisted synthesis. The structures of these molecules were elucidated by IR and 1H-NMR. These compounds were then subjected for in vitro anticancer evaluation against five human cancer cell-lines for anticancer cyto-toxicity assay. Methotrexate (MTX was used as standard for this evaluation to give a comparable inhibition of the cell proliferation by DHFR inhibition. Placlitaxel, adriamycin and 5-fluoro-uracil were also used as standard to give a comparable activity of these compounds with other mechanism of anticancer activity. ISB3 (4-(N, N-dimethyl-amino-phenyl Schiff''s base derivative of pyridine carbohydrazide showed equipotent activity with the standards used in in vitro anticancer assay as per the NCI (National Cancer Institute guidelines.

  15. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells.

    Science.gov (United States)

    Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida

    2018-02-02

    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.

  16. Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Rajkuberan

    2017-12-01

    Full Text Available This study reveals the rapid biosynthesis of silver nanoparticles (EAAgNPs using aqueous latex extract of Euphorbia antiquorum L as a potential bioreductant. Synthesized EAAgNPs generate the surface plasmonic resonance peak at 438 nm in UV–Vis spectrophotometer. Size and shape of EAAgNPs were further characterized through transmission electron microscope (TEM which shows well-dispersed spherical nanoparticles with size ranging from 10 to 50 nm. Energy dispersive X-ray spectroscopic analysis (EDAX confirms the presence of silver (Ag as the major constituent element. X-ray diffraction (XRD pattern of EAAgNPs corresponding to (111, (200, (220 and (311 planes, reveals that the generated nanoparticles were face centered cubic crystalline in nature. Interestingly, fourier-transform infrared spectroscopy (FTIR analysis shows the major role of active phenolic constituents in reduction and stabilization of EAAgNPs. Phyto-fabricated EAAgNPs exhibits significant antimicrobial and larvicidal activity against bacterial human pathogens as well as disease transmitting blood sucking parasites such as Culex quinquefasciatus and Aedes aegypti (IIIrd instar larvae. On the other hand, in vitro cytotoxicity assessment of bioformulated EAAgNPs has shown potential anticancer activity against human cervical carcinoma cells (HeLa. The preliminary biochemical (MTT assay and microscopic studies depict that the synthesized EAAgNPs at minimal dosage (IC50 = 28 μg triggers cellular toxicity response. Hence, the EAAgNPs can be considered as an environmentally benign and non-toxic nanobiomaterial for biomedical applications. Keywords: Crystal structure, Euphorbia antiquorum L., Silver nanoparticles, Anticancer, Human pathogens

  17. Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications.

    Science.gov (United States)

    Sharma, Bhavana; Deswal, Renu

    2018-04-04

    A facile one-pot green synthesis of gold nanoparticles (AuNPs) with different geometries was achieved using an underutilized Himalayan bioresource Hippophae rhamnoides. Aqueous leaf (LE) and berry extracts (BE) showed rapid synthesis of monodispersed spherical LEAuNPs (27 ± 3.2 nm) and anisotropic BEAuNPs (55 ± 4.5 nm) within 2 and 15 min, respectively. The Fourier-transform infrared (FTIR) spectroscopy showed involvement of polyphenolics/flavonoids in AuNPs reduction. LE AuNPs (IC 50 49 µg) exhibited higher antioxidant potential than BE AuNPs (IC 50 57 µg). Both BE nanotriangles and LE nanospheres exhibited cytotoxicity against Jurkat cell lines. These nanocatalysts also exhibited effective (80-99%) reductive degradation of structurally different carcinogenic azo dyes. Kinetic studies revealed that BE nanotriangles exhibited higher catalytic efficiency (14-67%) than LE nanospheres suggesting shape-dependent regulation of biological activities. The gas chromatography-mass spectrometry (GC-MS) analysis confirmed conversion of toxic methyl orange dye to non-toxic intermediates. Probable degradation mechanism involving adsorption and catalytic reduction of azo bonds was proposed. The present synthesis protocol provided a facile and energy saving procedure for rapid synthesis of highly stable nanoparticles with significant antioxidant and anticancer potential. This is the first report of H. rhamnoides-mediated green synthesis of multipurpose AuNPs as antioxidant, anticancer and nanocatalytic agents for treatment of dye contaminated waste water and future therapeutic applications.

  18. Synthesis, characterization and anticancer studies of new steroidal oxadiazole, pyrrole and pyrazole derivatives

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2015-07-01

    Full Text Available In the present study steroidal derivatives, 3β-[5′-mercapto-1′,3′,4′-oxadiazole-2-yl]methoxy cholest-5-ene 2, 3β-[2′,5′-dimethylpyrrole-1-yl]aminocarbonylmethoxycholest-5-ene 3 and 3β-[3′,5′-dimethyl pyrazole-1-yl]carbonylmethoxycholest-5-ene 4 have been synthesized from cholest-5-en-3β-O-acetyl hydrazide 1 using CS2/KOH, acetonyl acetone and acetyl acetone, respectively as reagents and are characterized by IR, 1H NMR,13C NMR, MS and elemental analysis. Compounds 2–4 were also evaluated for anticancer activity against human leukemia cell line (HL-60 by MTT assay and compound 4 displayed the promising behavior by showing better anticancer activity.

  19. Inner conflict in patients receiving oral anticancer agents: a qualitative study.

    Science.gov (United States)

    Yagasaki, Kaori; Komatsu, Hiroko; Takahashi, Tsunehiro

    2015-04-14

    To explore the experiences of patients receiving oral anticancer agents. A qualitative study using semistructured interviews with a grounded theory approach. A university hospital in Japan. 14 patients with gastric cancer who managed their cancer with oral anticancer agents. Patients with cancer experienced inner conflict between rational belief and emotional resistance to taking medication due to confrontation with cancer, doubt regarding efficacy and concerns over potential harm attached to use of the agent. Although they perceived themselves as being adherent to medication, they reported partial non-adherent behaviours. The patients reassessed their lives through the experience of inner conflict and, ultimately, they recognised their role in medication therapy. Patients with cancer experienced inner conflict, in which considerable emotional resistance to taking their medication affected their occasional non-adherent behaviours. In patient-centred care, it is imperative that healthcare providers understand patients' inner conflict and inconsistency between their subjective view and behaviour to support patient adherence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The purpose of the present study was to determine the in vitro and in vivo anti-cancer activity and pharmacological properties of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-ylmethyl]-N-phenylbenzenesulfonamide, KCN1. In the present study, we investigated the in vitro activity of KCN1 on cell proliferation and cell cycle distribution of pancreatic cancer cells, using the MTT and BrdUrd assays, and flow cytometry. The in vivo anti-cancer effects of KCN1 were evaluated in two distinct xenograft models of pancreatic cancer. We also developed an HPLC method for the quantitation of the compound, and examined its stability in mouse plasma, plasma protein binding, and degradation by mouse S9 microsomal enzymes. Furthermore, we examined the pharmacokinetics of KCN1 following intravenous or intraperitoneal injection in mice. Results showed that, in a dose-dependent manner, KCN1 inhibited cell growth and induced cell cycle arrest in human pancreatic cancer cells in vitro, and showed in vivo anticancer efficacy in mice bearing Panc-1 or Mia Paca-2 tumor xenografts. The HPLC method provided linear detection of KCN1 in all of the matrices in the range from 0.1 to 100 µM, and had a lower limit of detection of 0.085 µM in mouse plasma. KCN1 was very stable in mouse plasma, extensively plasma bound, and metabolized by S9 microsomal enzymes. The pharmacokinetic studies indicated that KCN1 could be detected in all of the tissues examined, most for at least 24 h. In conclusion, our preclinical data indicate that KCN1 is a potential therapeutic agent for pancreatic cancer, providing a basis for its future development.

  1. Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets

    Directory of Open Access Journals (Sweden)

    Arun Bahadur Gurung

    Full Text Available Plants are vital source of compounds offering plethora of therapeutic effects against various ailments without much side effects. Due to wide spread prevalence and drug resistance in cancer; there is an urgent need for discovery of new anti-cancer drugs. In the present study, selected novel anti-cancer plants derived compounds (cmpd1 to cmpd15 from Himalayan region were docked with defined molecular targets that regulate cell proliferation and apoptosis. The binding energies of best docked compounds ranged between −8.0 kcal/mol and −11.71 kcal/mol. Further analysis revealed critical hydrogen bonds and hydrophobic interactions between compounds and targets. The best docked compounds viz., cmpd15 against cyclin-dependent kinase-2 (CDK-2, cmpd8 against CDK-6 and cmpd9 against Topoisomerase I and II showed higher binding affinities than the native co-crystal ligands. The root mean square deviation (RMSD and potential energy plot clearly indicates the stability of the complexes during 20 ns molecular dynamics (MD simulation. The Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA binding energy analysis revealed Van der Waals energy component which is the principal stabilizing energy for their interactions except CDK-2/cmpd15 complex. The polar solvation energy did not have favorable contribution to their stabilization. The binding energy decomposition analysis revealed per residue contribution for each docked complexes. Physicochemical profile studies showed that majority of the compounds conform to Lipinski's rule of five (ROF having low to high blood brain barrier (BBB penetration, human intestinal absorption, plasma binding protein inhibition and P glycoprotein inhibition. Keywords: ADMET, Anticancer, MM/PBSA, Molecular docking, Molecular dynamics simulation and plant derived compounds

  2. NBM-HD-1: A Novel Histone Deacetylase Inhibitor with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Wei-Jan Huang

    2012-01-01

    Full Text Available HDAC inhibitors (HDACis have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP, and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231 and rat glioma cells (C6, with an IC50 ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1, gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1, p21(Waf1/Cip1 gene expression had markedly increased while cyclin B1 and D1 gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor gene p53 in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activity in vitro and in vivo.

  3. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S. (Keio Univ., Tokyo (Japan). School of Medicine)

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  4. Studies on anticancer activities of lactoferrin and lactoferricin.

    Science.gov (United States)

    Yin, Cui Ming; Wong, Jack Ho; Xia, Jiang; Ng, Tzi Bun

    2013-09-01

    This review mainly summarizes results of recent studies on the anticancer activity of the multifunctional protein lactoferrin (Lf) and its derived peptide lactoferricin (Lfcin). The basic information on Lf and Lfcin, such as their sources, structures, and biological properties which favor their antitumor activity is introduced. The major anticancer mechanisms of Lf and Lfcin including cell cycle arrest, apoptosis, anti-angiogenesis, antimetastasis, immune modulation and necrosis are discussed. Other information from in vivo studies employing a mouse model is also provided. In addition, the roles of talatoferrin and delta lactoferrin, as well as improvement in drug delivery will be covered.

  5. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S [Keio Univ., Tokyo (Japan). School of Medicine

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  6. Anticancer Principles from Medicinal Piper (胡椒 Hú Jiāo Plants

    Directory of Open Access Journals (Sweden)

    Yue-Hu Wang

    2014-01-01

    Full Text Available The ethnomedical uses of Piper (胡椒 Hú Jiāo plants as anticancer agents, in vitro cytotoxic activity of both extracts and compounds from Piper plants, and in vivo antitumor activity and mechanism of action of selected compounds are reviewed in the present paper. The genus Piper (Piperaceae contains approximately 2000 species, of which 10 species have been used in traditional medicines to treat cancer or cancer-like symptoms. Studies have shown that 35 extracts from 24 Piper species and 32 compounds from Piper plants possess cytotoxic activity. Amide alkaloids account for 53% of the major active principles. Among them, piplartine (piperlongumine shows the most promise, being toxic to dozens of cancer cell lines and having excellent in vivo activity. It is worthwhile to conduct further anticancer studies both in vitro and in vivo on Piper plants and their active principles.

  7. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil.

    Science.gov (United States)

    Mericli, Filiz; Becer, Eda; Kabadayı, Hilal; Hanoglu, Azmi; Yigit Hanoglu, Duygu; Ozkum Yavuz, Dudu; Ozek, Temel; Vatansever, Seda

    2017-12-01

    Almond oil is used in traditional and complementary therapies for its numerous health benefits due to high unsaturated fatty acids content. This study investigated the composition and in vitro anticancer activity of almond oil from Northern Cyprus and compared with almond oil from Turkey. Almond oil from Northern Cyprus was obtained by supercritical CO 2 extraction and analyzed by GC-MS. Almond oil of Turkey was provided from Turkish pharmacies. Different concentrations of almond oils were incubated for 24 and 48 h with Colo-320 and Colo-741 cells. Cell growth and cytotoxicity were measured by MTT assays. Anticancer and antiprolifetarive activities of almond oils were investigated by immunocytochemistry using antibodies directed against to BMP-2, β-catenin, Ki-67, LGR-5 and Jagged 1. Oleic acid (77.8%; 75.3%), linoleic acid (13.5%; 15.8%), palmitic acid (7.4%; 6.3%), were determined as the major compounds of almond oil from Northern Cyprus and Turkey, respectively. In the MTT assay, both almond oils were found to be active against Colo-320 and Colo-741 cells with 1:1 dilution for both 24 h and 48 h. As a result of immunohistochemical staining, while both almond oils exhibited significant antiproliferative and anticancer activity, these activities were more similar in Colo-320 cells which were treated with Northern Cyprus almond oil. Almond oil from Northern Cyprus and Turkey may have anticancer and antiproliferative effects on colon cancer cells through molecular signalling pathways and, thus, they could be potential novel therapeutic agents.

  8. Concurrent administration of anticancer chemotherapy drug and herbal medicine on the perspective of pharmacokinetics

    OpenAIRE

    Yung-Yi Cheng; Chen-Hsi Hsieh; Tung-Hu Tsai

    2018-01-01

    With an increasing number of cancer patients seeking an improved quality of life, complementary and alternative therapies are becoming more common ways to achieve such improvements. The potential risks of concurrent administration are serious and must be addressed. However, comprehensive evidence for the risks and benefits of combining anticancer drugs with traditional herbs is rare. Pharmacokinetic investigations are an efficient way to understand the influence of concomitant remedies. There...

  9. Antioxidant, antifungal and anticancer activities of se-enriched Pleurotus spp. mycelium extracts

    Directory of Open Access Journals (Sweden)

    Milovanović Ivan

    2014-01-01

    Full Text Available The goal of this study was the evaluation of antifungal, antioxidant and anticancer potentials of Pleurotus eryngii, P. ostreatus and P. pulmonarius mycelial extracts, and the influence of mycelium enrichment with selenium on these activities. Both Se-amended and non-amended extracts showed the same or similar minimal inhibitory concentration for 14 studied micromycetes, while a fungicidal effect was not noted, contrary to ketoconazole, which had inhibitory and fungicidal effects at very low concentrations. Se-non-amended extracts exhibited antioxidant activity, especially at higher concentrations. Selenium enrichment influenced activity, its effects decreasing in P. eryngii and P. pulmonarius, while in P. ostreatus no effect was noted. The DPPH• radical scavenging capacity of the extracts was in direct correlation with their phenol and flavonoid contents. Cytotoxic activity against both HeLa and LS174 cell lines was very low compared with cis-DDP. These features suggest that mycelium should be an object of intensive studies. [Projekat Ministarstva nauke Republike Srbije, br. 173032

  10. Metabolic immune restraints: implications for anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone

    2010-01-01

    Metabolic immune restraints belong to a highly complex network of molecular mechanisms underlying the failure of naturally occurring and therapeutically induced immune responses against cancer. In the light of the disappointing results yielded so far with anticancer vaccines in the clinical setting, the dissection of the cascade of molecular events leading to tumor immune escape appears the most promising way to develop more effective immunotherapeutic strategies. Here we review the significant advances recently made in the understanding of the tumor-specific metabolic features that contribute to keep malignant cells from being recognized and destroyed by immune effectors. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits and thus to enhance the effectiveness of anticancer vaccines.

  11. Proteomics of anti-cancer drugs

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Hana; Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Hajdůch, M.; Gadher, S. J.

    2009-01-01

    Roč. 276, Supplement 1 (2009), s. 84-84 E-ISSN 1742-4658. [34th FEBS Congress. 04.07.2009-09.07.2009, Praha] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : proteomics * anti-cancer drugs * biomarkers Subject RIV: FD - Oncology ; Hematology

  12. Isocorydine Derivatives and Their Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Mei Zhong

    2014-08-01

    Full Text Available In order to improve the anticancer activity of isocorydine (ICD, ten isocorydine derivatives were prepared through chemical structure modifications, and their in vitro and in vivo activities were experimentally investigated. 8-Amino-isocorydine (8 and 6a,7-dihydrogen-isocorydione (10 could inhibit the growth of human lung (A549, gastric (SGC7901 and liver (HepG2 cancer cell lines in vitro. Isocorydione (2 could inhibit the tumor growth of murine sarcoma S180-bearing mice, and 8-acetamino-isocorydine (11, a pro-drug of 8-amino-isocorydine (8, which is instable in water solution at room temperature, had a good inhibitory effect on murine hepatoma H22-induced tumors. The results suggested that the isocorydine structural modifications at C-8 could significantly improve the biological activity of this alkaloid, indicating its suitability as a lead compound in the development of an effective anticancer agent.

  13. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S

    2016-09-01

    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  14. Consensus-based evaluation of clinical significance and management of anticancer drug interactions

    NARCIS (Netherlands)

    Jansman, F.G.A.; Reyners, A.K.L.; van Roon, E.N.; Smorenburg, C.H.; Helgason, H.H.; le Comte, M.; Wensveen, B.M.; van den Tweel, A.M.A.; de Blois, M.; Kwee, W.; Kerremans, A.L.; Brouwers, J.R.B.J.

    Background: Anticancer drug interactions can affect the efficacy and toxicity of anticancer treatment and that of the interacting drugs. However, information on the significance, prevention, and management of these interactions is currently lacking. Objective: The purpose of this study was to assess

  15. Anticancer Effects of 1,3-Dihydroxy-2-Methylanthraquinone and the Ethyl Acetate Fraction of Hedyotis Diffusa Willd against HepG2 Carcinoma Cells Mediated via Apoptosis.

    Directory of Open Access Journals (Sweden)

    Yun-Lan Li

    Full Text Available Hedyotis Diffusa Willd, used in Traditional Chinese Medicine, is a treatment for various diseases including cancer, owing to its mild effectiveness and low toxicity. The aim of this study was to identify the main anticancer components in Hedyotis Diffusa Willd, and explore mechanisms underlying their activity. Hedyotis Diffusa Willd was extracted and fractionated using ethyl acetate to obtain the H-Ethyl acetate fraction, which showed higher anticancer activity than the other fractions obtained against HepG2 cells with sulforhodamine B assays. The active component of the H-Ethyl acetate fraction was identified to be 1,3-dihydroxy-2-methylanthraquinone (DMQ with much high inhibitory rate up to 48.9 ± 3.3% and selectivity rate up to 9.4 ± 4.5 folds (p<0.01 at 125 μmol/L. HepG2 cells treated with the fraction and DMQ visualized morphologically using light and fluorescence microscopy. Annexin V--fluorescein isothiocyanate / propidium iodide staining flow cytometry, DNA ladder and cell cycle distribution assays. Mechanistic studies showed up-regulation of caspase-3, -8, and -9 proteases activities (p<0.001, indicating involvement of mitochondrial apoptotic and death receptor pathways. Further studies revealed that reactive oxygen species in DMQ and the fraction treated HepG2 cells increased (p<0.01 while mitochondrial membrane potential reduced significantly (p<0.001 compared to the control by flow cytometry assays. Western blot analysis showed that Bax, p53, Fas, FasL, p21 and cytoplasmic cytochrome C were up-regulated (p<0.01, while Bcl-2, mitochondrial cytochrome C, cyclin E and CDK 2 were down-regulated dose-dependently (p<0.01. The reverse transcriptase-polymerase chain reaction showed that mRNA expressions of p53 and Bax increased (p<0.001 while that of Bcl-2 decreased (p<0.001. Pre-treatment with caspase-8 inhibitor Z-IETD-FMK, or caspase-9 inhibitor Z-LEHD-FMK, attenuated the growth-inhibitory and apoptosis-inducing effects of DMQ and the

  16. Anticancer Gold N-Heterocyclic Carbene Complexes: A Comparative in vitro and ex vivo Study.

    Science.gov (United States)

    Estrada-Ortiz, Natalia; Guarra, Federica; de Graaf, Inge A M; Marchetti, Lorella; de Jager, Marina H; Groothuis, Geny M M; Gabbiani, Chiara; Casini, Angela

    2017-09-07

    A series of organometallic Au I N-heterocyclic carbene (NHC) complexes was synthesized and characterized for anticancer activity in four human cancer cell lines. The compounds' toxicity in healthy tissue was determined using precision-cut kidney slices (PCKS) as a tool to determine the potential selectivity of the gold complexes ex vivo. All evaluated compounds presented cytotoxic activity toward the cancer cells in the nano- or low micromolar range. The mixed Au I NHC complex, (tert-butylethynyl)-1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I), bearing an alkynyl moiety as ancillary ligand, showed high cytotoxicity in cancer cells in vitro, while being barely toxic in healthy rat kidney tissues. The obtained results open new perspectives toward the design of mixed NHC-alkynyl gold complexes for cancer therapy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents.

    Science.gov (United States)

    Galluzzi, Lorenzo; Buqué, Aitziber; Kepp, Oliver; Zitvogel, Laurence; Kroemer, Guido

    2015-12-14

    The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  19. Phylogenetic Tree Analysis of the Cold-Hot Nature of Traditional Chinese Marine Medicine for Possible Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Xianjun Fu

    2017-01-01

    Full Text Available Traditional Chinese Marine Medicine (TCMM represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1 Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2 Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3 Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources.

  20. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent.

    Directory of Open Access Journals (Sweden)

    Masako Yokoo

    Full Text Available 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML, acute lymphoblastic leukemia and chronic myeloid leukemia (CML. HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors, and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.

  1. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.

    Science.gov (United States)

    Akhtar, Jawaid; Khan, Ahsan Ahmed; Ali, Zulphikar; Haider, Rafi; Shahar Yar, M

    2017-01-05

    The present review article offers a detailed account of the design strategies employed for the synthesis of nitrogen-containing anticancer agents. The results of different studies describe the N-heterocyclic ring system is a core structure in many synthetic compounds exhibiting a broad range of biological activities. Benzimidazole, benzothiazole, indole, acridine, oxadiazole, imidazole, isoxazole, pyrazole, triazoles, quinolines and quinazolines including others drugs containing pyridazine, pyridine and pyrimidines are covered. The following studies of these compounds suggested that these compounds showed their antitumor activities through multiple mechanisms including inhibiting protein kinase (CDK, MK-2, PLK1, kinesin-like protein Eg5 and IKK), topoisomerase I and II, microtubule inhibition, and many others. Our concise representation exploits the design and anticancer potency of these compounds. The direct comparison of anticancer activities with the standard enables a systematic analysis of the structure-activity relationship among the series. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Chiara eLauritano

    2016-05-01

    Full Text Available Marine microalgae are considered a potentially new and valuable source of biologically active molecules for applications in the food industry as well as in the pharmaceutical, nutraceutical and cosmetic sectors. They can be easily cultured, have short generation times and enable an environmentally-friendly approach to drug discovery by overcoming problems associated with the over-utilization of marine resources and the use of destructive collection practices. In this study, 21 diatoms, 7 dinoflagellates and 4 flagellate species were grown in three different culturing conditions and the corresponding extracts were tested for possible antioxidant, anti-inflammatory, anticancer, anti-diabetes, antibacterial and anti-biofilm activities. In addition, for two diatoms we also tested two different clones to disclose diversity in clone bioactivity. Six diatom species displayed specific anti-inflammatory, anticancer (blocking human melanoma cell proliferation and anti-biofilm (against the bacteria Staphylococcus epidermidis activities whereas, none of the other microalgae were bioactive against the conditions tested for. Furthermore, none of the 6 diatom species tested were toxic on normal human cells. Culturing conditions (i.e. nutrient starvation conditions greatly influenced bioactivity of the majority of the clones/species tested. This study denotes the potential of diatoms as sources of promising bioactives for the treatment of human pathologies.

  3. Isoflavones from Calpurnia Aurea subsp. Aurea and their anticancer activity

    CSIR Research Space (South Africa)

    Korir, E

    2014-01-01

    Full Text Available the renal, melanoma and breast cancer cell lines tested against, with the isoflavones 2 and 5 showing the best activity of the compounds tested. These isoflavones may have a synergistic effect with other anticancer drugs. ... activity against breast (MCF7), renal (TK10) and melanoma (UACC62) human cell lines using an in house method developed at the CSIR, South Africa. Results: The isoflavones, 4′,5,7-trihydroxyisoflavone (1), 7,3′- dihydroxy-5′-methoxyisoflavone (2), 7...

  4. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    OpenAIRE

    Chi H.J. Kao; Amalini C. Jesuthasan; Karen S. Bishop; Marcus P. Glucina; Lynnette R. Ferguson

    2013-01-01

    ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides bei...

  5. Covalent Organic Framework Material bearing Phloroglucinol Building Units as a Potent Anticancer Agent

    KAUST Repository

    Bhanja, Piyali; Mishra, Snehasis; Manna, Krishnendu; Mallick, Arijit; Das Saha, Krishna; Bhaumik, Asim

    2017-01-01

    Covalent organic frameworks (COFs) having periodicity in pores of nanoscale dimensions can be suitably designed for the organic building units bearing reactive functional groups at their surfaces. Thus, they are an attractive option as an anticancer agent to overcome the limitations of chemotherapy. Herein, we first report a new porous biodegradable nitrogen containing COF material, EDTFP-1 (ethylenedianiline-triformyl phloroglucinol), synthesized using 4,4'-ethylenedianiline and 2,4,6-triformylphloroglucinol via Schiff base condensation reaction. EDTFP-1 exhibited 3D-hexagonal porous structure with average pores of ca. 1.5 nm dimension. Here, we have explored the anti-cancer potentiality of EDTFP-1. Result demonstrated an enhanced cytotoxicity was observed against four cancer cells HCT 116, HepG2, A549, and MIA-Paca2 with significant lower IC50 on HCT116 cells. Additionally, EDTFP-1-induced cell death was associated with the characteristic apoptotic changes like cell membrane blebbing, nuclear DNA fragmentation, externalization of phosphatidylserine from the cell membrane followed by a loss of mitochondrial membrane potential as well as modulation of pro and anti-apoptotic proteins. Further, the result depicted a direct correlation between the generations of ROS with mitochondrial-dependant apoptosis through the involvement of p53 phosphorylation upon EDTFP-1 induction, suggesting this COF material is a novel chemotherapeutic agent for cancer treatment.

  6. Covalent Organic Framework Material bearing Phloroglucinol Building Units as a Potent Anticancer Agent

    KAUST Repository

    Bhanja, Piyali

    2017-08-23

    Covalent organic frameworks (COFs) having periodicity in pores of nanoscale dimensions can be suitably designed for the organic building units bearing reactive functional groups at their surfaces. Thus, they are an attractive option as an anticancer agent to overcome the limitations of chemotherapy. Herein, we first report a new porous biodegradable nitrogen containing COF material, EDTFP-1 (ethylenedianiline-triformyl phloroglucinol), synthesized using 4,4\\'-ethylenedianiline and 2,4,6-triformylphloroglucinol via Schiff base condensation reaction. EDTFP-1 exhibited 3D-hexagonal porous structure with average pores of ca. 1.5 nm dimension. Here, we have explored the anti-cancer potentiality of EDTFP-1. Result demonstrated an enhanced cytotoxicity was observed against four cancer cells HCT 116, HepG2, A549, and MIA-Paca2 with significant lower IC50 on HCT116 cells. Additionally, EDTFP-1-induced cell death was associated with the characteristic apoptotic changes like cell membrane blebbing, nuclear DNA fragmentation, externalization of phosphatidylserine from the cell membrane followed by a loss of mitochondrial membrane potential as well as modulation of pro and anti-apoptotic proteins. Further, the result depicted a direct correlation between the generations of ROS with mitochondrial-dependant apoptosis through the involvement of p53 phosphorylation upon EDTFP-1 induction, suggesting this COF material is a novel chemotherapeutic agent for cancer treatment.

  7. Novel quinolines carrying pyridine, thienopyridine, isoquinoline, thiazolidine, thiazole and thiophene moieties as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Ghorab Mostafa M.

    2016-06-01

    Full Text Available As a part of ongoing studies in developing new anticancer agents, novel 1,2-dihydropyridine 4, thienopyridine 5, isoquinolines 6–20, acrylamide 21, thiazolidine 22, thiazoles 23–29 and thiophenes 33–35 bearing a biologically active quinoline nucleus were synthesized. The structure of newly synthesized compounds was confirmed on the basis of elemental analyses and spectral data. All the newly synthesized compounds were evaluated for their cytotoxic activity against the breast cancer cell line MCF7. 2,3-Dihydrothiazole-5-carboxamides 27, 25, 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (34, 1,2-dihydroisoquinoline-7-carbonitrile (7, 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (35, 1,2-dihydroisoquinoline-7-carbonitrile (6, 2-cyano-3-(dimethylamino-N-(quinolin-3-ylacrylamide (21, 1,2-dihydroisoquinoline-7-carbonitriles (11 and (8 exhibited higher activity (IC50 values of 27–45 μmol L–1 compared to doxorubicin (IC50 47.9 μmol L–1. LQ quinolin-3-yl-1,2-dihydroisoquinoline-7-carbonitrile (12, 2-thioxo-2,3-dihydrothiazole-5-carboxamide (28 and quinolin-3-yl-1,2-dihydroisoquinoline-7-carbonitrile (15 show activity comparable to doxorubicin, while (quinolin-3-yl-1,2-dihydroisoquinoline-7-carbonitrile (9, 2,3-dihydrothiazole-5-carboxamide (24, thieno [3,4-c] pyridine-4(5H-one (5, cyclopenta[b]thiophene-3-carboxamide (33 and (quinolin-3-yl-6-stryl-1,2-dihydroisoquinoline-7-carbonitrile (10 exhibited moderate activity, lower than doxorubicin.

  8. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean

    2016-09-01

    The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

  9. Cdt1 is differentially targeted for degradation by anticancer chemotherapeutic drugs.

    Directory of Open Access Journals (Sweden)

    Athanasia Stathopoulou

    Full Text Available BACKGROUND: Maintenance of genome integrity is crucial for the propagation of the genetic information. Cdt1 is a major component of the pre-replicative complex, which controls once per cell cycle DNA replication. Upon DNA damage, Cdt1 is rapidly targeted for degradation. This targeting has been suggested to safeguard genomic integrity and prevent re-replication while DNA repair is in progress. Cdt1 is deregulated in tumor specimens, while its aberrant expression is linked with aneuploidy and promotes tumorigenesis in animal models. The induction of lesions in DNA is a common mechanism by which many cytotoxic anticancer agents operate, leading to cell cycle arrest and apoptosis. METHODOLOGY/PRINCIPAL FINDING: In the present study we examine the ability of several anticancer drugs to target Cdt1 for degradation. We show that treatment of HeLa and HepG2 cells with MMS, Cisplatin and Doxorubicin lead to rapid proteolysis of Cdt1, whereas treatment with 5-Fluorouracil and Tamoxifen leave Cdt1 expression unaffected. Etoposide affects Cdt1 stability in HepG2 cells and not in HeLa cells. RNAi experiments suggest that Cdt1 proteolysis in response to MMS depends on the presence of the sliding clamp PCNA. CONCLUSION/SIGNIFICANCE: Our data suggest that treatment of tumor cells with commonly used chemotherapeutic agents induces differential responses with respect to Cdt1 proteolysis. Information on specific cellular targets in response to distinct anticancer chemotherapeutic drugs in different cancer cell types may contribute to the optimization of the efficacy of chemotherapy.

  10. A unique highly hydrophobic anticancer prodrug self-assembled nanomedicine for cancer therapy.

    Science.gov (United States)

    Ren, Guolian; Jiang, Mengjuan; Xue, Peng; Wang, Jing; Wang, Yongjun; Chen, Bo; He, Zhonggui

    2016-11-01

    In contrast with common thought, we generated highly hydrophobic anticancer prodrug self-assembled nanoparticles without the aid of surface active substances, based on the conjugation of docetaxel to d-α-tocopherol succinate. The reduction-sensitive prodrug was synthesized with a disulfide bond inserted into the linker and was compared with a control reduction-insensitive prodrug. The morphology and stability of self-assembled nanoparticles were investigated. Cytotoxicity and apoptosis assays showed that the reduction-sensitive nanoparticles had higher anticancer activity than the reduction-insensitive nanoparticles. The reduction-sensitive nanoparticles exhibited favorable in vivo antitumor activity and tolerance compared with docetaxel Tween80-containing formulation and the reduction-insensitive nanoparticles. Taken together, the unique nanomedicine demonstrated a number of advantages: (i) ease and reproducibility of preparation, (ii) high drug payload, (iii) superior stability, (iv) prolonged circulation, and (v) improved therapeutic effect. This highly reproducible molecular assembly strategy should motivate the development of new nanomedicines. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. “Click” Synthesis of Dextran Macrostructures for Combinatorial-Designed Self-Assembled Nanoparticles Encapsulating Diverse Anticancer Therapeutics

    Science.gov (United States)

    Abeylath, Sampath C.; Amiji, Mansoor

    2011-01-01

    With the non-specific toxicity of anticancer drugs to healthy tissues upon systemic administration, formulations capable of enhanced selectivity in delivery to the tumor mass and cells are highly desirable. Based on the diversity of the drug payloads, we have investigated a combinatorial-designed strategy where the nano-sized formulations are tailored based on the physicochemical properties of the drug and the delivery needs. Individually functionalized C2 to C12 lipid-, thiol-, and poly(ethylene glycol) (PEG)-modified dextran derivatives were synthesized via “click” chemistry from O-pentynyl dextran and relevant azides. These functionalized dextrans in combination with anticancer drugs form nanoparticles by self-assembling in aqueous medium having PEG surface functionalization and intermolecular disulfide bonds. Using anticancer drugs with logP values ranging from −0.5 to 3.0, the optimized nanoparticles formulations were evaluated for preliminary cellular delivery and cytotoxic effects in SKOV3 human ovarian adenocarcinoma cells. The results show that with the appropriate selection of lipid-modified dextran, one can effectively tailor the self-assembled nano-formulation for intended therapeutic payload. PMID:21978947

  12. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    Science.gov (United States)

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  13. Optimization of gefitinib analogues with potent anticancer activity.

    Science.gov (United States)

    Yin, Kai-Hao; Hsieh, Yi-Han; Sulake, Rohidas S; Wang, Su-Pei; Chao, Jui-I; Chen, Chinpiao

    2014-11-15

    The interactions of gefitinib (Iressa) in EGFR are hydrogen bonding and van der Waals forces through quinazoline and aniline rings. However the morpholino group of gefitinib is poorly ordered due to its weak electron density. A series of novel piperazino analogues of gefitinib where morpholino group substituted with various piperazino groups were designed and synthesized. Most of them indicated significant anti-cancer activities against human cancer cell lines. In particular, compounds 52-54 showed excellent potency against cancer cells. Convergent synthetic approach has been developed for the synthesis of gefitinib intermediate which can lead to gefitinib as well as numerous analogues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Poly(allyl methacrylate) functionalized hydroxyapatite nanocrystals via the combination of surface-initiated RAFT polymerization and thiol-ene protocol: a potential anticancer drug nanocarrier.

    Science.gov (United States)

    Bach, Long Giang; Islam, Md Rafiqul; Vo, Thanh-Sang; Kim, Se-Kwon; Lim, Kwon Taek

    2013-03-15

    Hydroxyapatite nanocrystals (HAP NCs) were encapsulated by poly(allyl methacrylate) (PolyAMA) employing controlled surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization of allyl methacrylate to afford HAP-PolyAMA nanohybrids. The subsequent thiol-ene coupling of nanohybrids with 2-mercaptosuccinic acid resulted HAP-Poly(AMA-COOH) possessing multicarboxyl group. The formation of the nanohybrids was confirmed by FT-IR and EDS analyses. The TGA and FE-SEM investigation were further suggested the grafting of PolyAMA onto HAP NCs. The utility of the HAP-PolyAMA nanohybrid as drug carrier was also explored. The pendant carboxyl groups on the external layers of nanohybrids were conjugated with anticancer drug cisplatin to afford HAP-Poly(AMA-COOH)/Pt complex. The formation of the complex was confirmed by FT-IR, XPS, and FE-SEM. In vitro evaluation of the synthesized complex as nanomedicine revealed its potential chemotherapeutic efficacy against cancer cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Anti-Cancer Effect of Angelica Sinensis on Women’s Reproductive Cancer

    Directory of Open Access Journals (Sweden)

    Hong-Hong Zhu

    2012-06-01

    Full Text Available Objective: Danggui, the root of Angelica Sinensis, has traditionally been used for the treatment of women’s reproductive disorders in China for thousands of years. This study was to determine whether Danggui have potential anti-cancer effect on women’s cancer and its potential mechanism. Methods: Danggui was extracted by ethanol. The Cell Titer 96® Aqueous Non-Radioactive Cell Proliferation Assay was used to compare the effects of Danggui on human breast (MCF-7 and 7368 and cervical (CaSki and SiHa cancer cells with its effects on normal fibroblasts (HTB-125. A revised Ames test was used to test for antimutagenicity. The standard strains of Salmonella typhimarium (TA 100 and 102 were used in the test. Methyl methane sulfonate (MMS and UV light were used as positive mutagen controls and ethanol and double distilled water (DDW as controls. The SAS statistical software was used to analyze the data. Results: Danggui was found to be much more toxic to all cancer cell lines tested than to normal fibroblasts. There was a significant negative dose-effect relationship between Danggui and cancer cell viability. Average viability of MCF-7 was 69.5%, 18.4%, 5.7%, 5.7%, and 5.0% of control for Danggui doses 0.07, 0.14, 0.21, 0.32, and 0.64 ug/ul, respectively, with a Ptrend < 0.0001. Half maximal inhibitory dose (ID50 of Danggui for cancer cell lines MCF-7, CaSki, SiHa and CRL-7368 was 0.10, 0.09, 0.10 and 0.07 ug/ul, Functional Foods in Health and Disease 2012, 2(6:242-250respectively. For the normal fibroblasts, ID50 was 0.58 ug/ul. At a dose of 0.32 ug/ul, Danggui killed over 90% of the cells in each cancer cell line, but at the same dose, only 12.3 % of the normal HTB-125 cells were killed. Revertants per plate of TA 100 decreased with the introduction of increasing doses of Danggui extracts with a Ptrend < 0.0001 when UV light was used as a mutagen. There was no difference in revertants per plate between ethanol and DDW control groups. Conclusions

  16. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    Science.gov (United States)

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  17. Anticancer activity of drug conjugates in head and neck cancer cells.

    Science.gov (United States)

    Majumdar, Debatosh; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Shin, Dong M

    2016-06-01

    Sexually transmitted oral cancer/head and neck cancer is increasing rapidly. Human papilloma virus (HPV) is playing a role in the pathogenesis of a subset of squamous cell carcinoma of head and neck (SCCHN). Paclitaxel is a widely used anticancer drug for breast, ovarian, testicular, cervical, non-small cell lung, head and neck cancer. However, it is water insoluble and orally inactive. We report the synthesis of water soluble nanosize conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide by employing native chemical ligation. We performed a native chemical ligation between the N-hydroxy succinimide (NHS) ester of paclitaxel succinate and cysteine at pH 6.5 to give the cysteine-conjugated paclitaxel derivative. The thiol functionality of cysteine was activated and subsequently conjugated to multiarm thiol-PEG to obtain the paclitaxel branched PEG conjugate. Finally, we conjugated an EGFR-targeting peptide to obtain conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide. These conjugates show anticancer activity against squamous cell carcinoma of head and neck cells (SCCHN, Tu212).

  18. Anticancer and antiproliferative activity of natural brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Malíková, J.; Swaczynová, Jana; Kolář, Z.; Strnad, Miroslav

    2008-01-01

    Roč. 69, č. 2 (2008), s. 418-426 ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassinosteroids * Anticancer activity * Cell cycle Subject RIV: CE - Biochemistry Impact factor: 2.946, year: 2008

  19. Artemisinin–Second Career as Anticancer Drug?

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2015-10-01

    Full Text Available Artemisinin represents a showcase example not only for the activity of medicinal herbs deriving from traditional chinese medicine, but for phytotherapy in general. Its isolation from Sweet Wormwood (qinhao, Artemisia annua L. represents the starting point for an unprecedent success story in the treatment of malaria worldwide. Beyond the therapeutic value against Plasmodium parasites, it turned out in recent years that the bioactivity of artemisinin is not restricted to malaria. We and others found that this sesquiterpenoid also exerts profound anticancer activity in vitro and in vivo. Artemisinin-type drugs exert multi-factorial cellular and molecular actions in cancer cells. Ferrous iron reacts with artemisinin, which leads to the formation of reactive oxygen species and ultimately to a plethora anticancer effects of artemisinins, e.g. expression of antioxidant response genes, cell cycle arrest (G1 as well as G2 phase arrests, DNA damage that is repaird by base excision repair, homogous recombination and non-homologous end-joining, as well as different modes of cell death (intrinsic and extrinsic apoptosis, autophagy, necrosis, necroptosis, oncosis, and ferroptosis. Furthermore, artemisinins inhibit neoangiogenesis in tumors. The signaling of major transcription factors (NF-κB, MYC/MAX, AP-1, CREBP, mTOR etc. and signaling pathways are affected by artemisinins (e.g. Wnt/β-catenin pathway, AMPK pathway, metastatic pathways, nitric oxide signaling, and others. Several case reports on the compassionate use of artemisinins as well as clinical Phase I/II pilot studies indicate the clinical activity of artemisinins in veterinary and human cancer patients. Larger scale of Phase II and III clinical studies are required now to further develop artemisinin-type compounds as novel anticancer drugs.

  20. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Manchukonda

    Full Text Available Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol than the parent compound, noscapine (-5.505 kCal/mol and its existing derivatives (-5.563 to -6.412 kCal/mol. Free energy (ΔG bind calculations based on the linear interaction energy (LIE empirical equation utilizing Surface Generalized Born (SGB continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol. Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol. The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl noscapine (6f binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM, which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM. All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  1. Theoretical investigation of inclusion complex formation of Gold (III – Dimethyldithiocarbamate anticancer agents with cucurbit[n = 5,6]urils

    Directory of Open Access Journals (Sweden)

    Zabiollah Mahdavifar

    2014-09-01

    Full Text Available Gold (III-N,N-dimethyldithiocarbamate [DMDT(AuX2] complexes have recently gained increasing attention as potential anticancer agents because of their strong tumor cell growth–inhibitory effects, generally achieved by exploiting non-cisplatin-like mechanisms of action. The goal of our research work is to encapsulate the gold(III dimethyldithiocarbamate complexes as anticancer with cucurbit[n]urils (CB[n = 5, 6] by accurate calculations, to predict the inclusion complex formation of gold(III species with cucurbiturils (CB[n = 5, 6]. The calculations were carried out just for the 1:1 stoichiometric complexes. Upon encapsulation, binding energy, thermodynamic parameters, structural parameters and electronic structures of complexes are investigated. The results of the thermodynamic calculations and the binding energy show that the inclusion process is exothermic and the CB[6]/[DMDT(AuBr2] complex is more stable than other complexes. The final geometry of CB[n]/drugs indicates that the drugs were expelled from the cavity of CB[n]. NBO calculations reveal that the hydrogen bonding between CB[n] and drugs and electrostatic interactions are the major factors contributing to the overall stabilities of the complexes.

  2. Genetic tests for predicting the toxicity and efficacy of anticancer chemotherapy.

    Science.gov (United States)

    Mladosievicova, B; Carter, A; Kristova, V

    2007-01-01

    The standard anticancer therapy based "on one size fits all" modality has been determined to be ineffective or to be the cause of adverse drug reactions in many oncologic patients. Most pharmacogenetic and pharmacogenomic studies so far have been focused on toxicity of anticancer drugs such as 6-mercaptopurine, thioguanine, irinotecan, methotrexate, 5-fluorouracil (5-FU). Variation in genes are known to influence not only toxicity, but also efficacy of chemotherapeutics such as platinum analogues, 5-FU and irinotecan. The majority of current pharmacogenetic studies focus on single enzyme deficiencies as predictors of drug effects; however effects of most anticancer drugs are determined by the interplay of several gene products. These effects are polygenic in nature. This review briefly describes genetic variations that may impact efficacy and toxicity of drugs used in cancer chemotherapy.

  3. In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells

    International Nuclear Information System (INIS)

    Preetam, Raj J. P.; Purushothaman, M; Khusro, Ameer; Panicker, Shirly George

    2016-01-01

    Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields

  4. In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Preetam, Raj J. P.; Purushothaman, M; Khusro, Ameer; Panicker, Shirly George [PG Biotechnology, Tamil Nadu (India)

    2016-02-15

    Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields.

  5. Immune mechanisms regulating pharmacokinetics and pharmacodynamics of PEGylated liposomal anticancer agents

    Science.gov (United States)

    Song, Gina

    integrated approaches, we were able to identify the immunological mechanisms at the molecular, tissue, and clinical levels that may contribute to inter-individual variability in PK and PD of PLD. This dissertation research has a potential to make an impact on development of future NP-based anticancer therapeutics as well as on clinical use of PLD (DoxilRTM) and other PEGylated liposomal anticancer agents.

  6. Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme

    Directory of Open Access Journals (Sweden)

    Yasuhiko Onishi

    2014-12-01

    Full Text Available The anticancer efficacy of a supramolecular complex that was used as an artificial enzyme against multi-drug-resistant cancer cells was confirmed. A complex of diethylaminoethyl–dextran–methacrylic acid methylester copolymer (DDMC/paclitaxel (PTX, obtained with PTX as the guest and DDMC as the host, formed a nanoparticle 50–300 nm in size. This complex is considered to be useful as a drug delivery system (DDS for anticancer compounds since it formed a stable polymeric micelle in water. The resistance of B16F10 melanoma cells to PTX was shown clearly through a maximum survival curve. Conversely, the DDMC/PTX complex showed a superior anticancer efficacy and cell killing rate, as determined through a Michaelis–Menten-type equation, which may promote an allosteric supramolecular reaction to tubulin, in the same manner as an enzymatic reaction. The DDMC/PTX complex showed significantly higher anticancer activity compared to PTX alone in mouse skin in vivo. The median survival times of the saline, PTX, DDMC/PTX4 (particle size 50 nm, and DDMC/PTX5 (particle size 290 nm groups were 120 h (treatment (T/control (C, 1.0, 176 h (T/C, 1.46, 328 h (T/C, 2.73, and 280 h (T/C, 2.33, respectively. The supramolecular DDMC/PTX complex showed twice the effectiveness of PTX alone (p < 0.036. Above all, the DDMC/PTX complex is not degraded in cells and acts as an intact supramolecular assembly, which adds a new species to the range of DDS.

  7. Fluorescence optical imaging in anticancer drug delivery.

    Science.gov (United States)

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A new anticancer agent--{sup 131}I BGTP

    Energy Technology Data Exchange (ETDEWEB)

    Jiaheng, He; Shubin, Jiang; Guanquan, Wang [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2007-12-15

    A new anticancer precursor, di-peptide[p-Boc-Gly-Tyr-NH(CH{sub 2}){sub 2} NH-PO (ONH{sub 4})-O-PhI*], was synthesized and labelled with {sup 131}I using enveloped-tube technique, the labelling yield could reach 85%. Using cell coalescent method, the biological activity in vitro of the labelled compounds was evaluated, showing that the primary appetency was kept and not damaged obviously during labelling. Results on judgement of their stability, lipophilicity and toxicity demonstrated lower toxicity, higher lipophilicity and lower iodium disassociation percentage (<12% after 72 h); furthermore, a tumour-bearing animal model, was establishd successfully, on which, the biological properties of the labelled agent was studied. (authors)

  9. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma.

    Science.gov (United States)

    Sales, Leilane; Pezuk, Julia Alejandra; Borges, Kleiton Silva; Brassesco, María Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; dos Santos, Marcelo Henrique; Ionta, Marisa; de Oliveira, Jaqueline Carvalho

    2015-10-30

    Glioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG). Cell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells. Viability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells. The present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.

  10. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  11. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    Mittal, Amit Kumar; Tripathy, Debabrata; Choudhary, Alka; Aili, Pavan Kumar; Chatterjee, Anupam; Singh, Inder Pal; Banerjee, Uttam Chand

    2015-01-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag + to Ag 0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC 50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of

  12. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: ucbanerjee@niper.ac.in [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  13. Randomized anticancer and cytotoxicity activities of Guibourtia ...

    African Journals Online (AJOL)

    Materials and Methods: The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, ...

  14. Discovery of Novel Bromophenol Hybrids as Potential Anticancer Agents through the Ros-Mediated Apoptotic Pathway: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2017-11-01

    Full Text Available A series of bromophenol hybrids with N-containing heterocyclic moieties were designed, and their anticancer activities against a panel of five human cancer cell lines (A549, Bel7402, HepG2, HCT116 and Caco2 using MTT assay in vitro were explored. Among them, thirteen compounds (17a, 17b, 18a, 19a, 19b, 20a, 20b, 21a, 21b, 22a, 22b, 23a, and 23b exhibited significant inhibitory activity against the tested cancer cell lines. The structure-activity relationships (SARs of bromophenol derivatives were discussed. The promising candidate compound 17a could induce cell cycle arrest at G0/G1 phase and induce apoptosis in A549 cells, as well as caused DNA fragmentations, morphological changes and ROS generation by the mechanism studies. Furthermore, compound 17a suppression of Bcl-2 levels (decrease in the expression of the anti-apoptotic proteins Bcl-2 and down-regulation in the expression levels of Bcl-2 in A549 cells were observed, along with activation caspase-3 and PARP, which indicated that compound 17a induced A549 cells apoptosis in vitro through the ROS-mediated apoptotic pathway. These results might be useful for bromophenol derivatives to be explored and developed as novel anticancer drugs.

  15. The application of click chemistry in the synthesis of agents with anticancer activity

    Directory of Open Access Journals (Sweden)

    Ma N

    2015-03-01

    Full Text Available Nan Ma,1–3 Ying Wang,3 Bing-Xin Zhao,3 Wen-Cai Ye,1,3 Sheng Jiang2 1Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 2Laboratory of Medicinal Chemistry, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 3Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China Abstract: The copper(I-catalyzed 1,3-dipolar cycloaddition between alkynes and azides (click chemistry to form 1,2,3-triazoles is the most popular reaction due to its reliability, specificity, and biocompatibility. This reaction has the potential to shorten procedures, and render more efficient lead identification and optimization procedures in medicinal chemistry, which is a powerful modular synthetic approach toward the assembly of new molecular entities and has been applied in anticancer drugs discovery increasingly. The present review focuses mainly on the applications of this reaction in the field of synthesis of agents with anticancer activity, which are divided into four groups: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, and antimicrotubule agents. Keywords: topoisomerase II inhibitors, histone deacetylase inhibitors, protein tyrosine kinase inhibitors, antimicrotubule agents

  16. Isolation and identification of flavonoids from anticancer and ...

    African Journals Online (AJOL)

    Isolation and identification of flavonoids from anticancer and neuroprotective extracts of Trigonella foenum graecum. Shabina Ishtiaq Ahmed, Muhammad Qasim Hayat, Saadia Zahid, Muhammad Tahir, Qaisar Mansoor, Muhammad Ismail, Kristen Keck, Robert Bates ...

  17. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs

    Directory of Open Access Journals (Sweden)

    Tabassum Khan

    2018-02-01

    Full Text Available Natural resources continue to be an invaluable source of new, novel chemical entities of therapeutic utility due to the vast structural diversity observed in them. The quest for new and better drugs has witnessed an upsurge in exploring and harnessing nature especially for discovery of antimicrobial, antidiabetic, and anticancer agents. Nature has historically provide us with potent anticancer agents which include vinca alkaloids [vincristine (VCR, vinblastine, vindesine, vinorelbine], taxanes [paclitaxel (PTX, docetaxel], podophyllotoxin and its derivatives [etoposide (ETP, teniposide], camptothecin (CPT and its derivatives (topotecan, irinotecan, anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin, and others. In fact, half of all the anti-cancer drugs approved internationally are either natural products or their derivatives and were developed on the basis of knowledge gained from small molecules or macromolecules that exist in nature. Three new anti-cancer drugs introduced in 2007, viz. trabectedin, epothilone derivative ixabepilone, and temsirolimus were obtained from microbial sources. Selective drug targeting is the need of the current therapeutic regimens for increased activity on cancer cells and reduced toxicity to normal cells. Nanotechnology driven modified drugs and drug delivery systems are being developed and introduced in the market for better cancer treatment and management with good results. The use of nanoparticulate drug carriers can resolve many challenges in drug delivery to the cancer cells that includes: improving drug solubility and stability, extending drug half-lives in the blood, reducing adverse effects in non-target organs, and concentrating drugs at the disease site. This review discusses the scientific ventures and explorations involving application of nanotechnology to some selected plant derived molecules. It presents a comprehensive review of formulation strategies of phytoconstituents in

  18. Molecular Biological Study of Anti-cancer Effects of Bee Venom Aqua-acupuncture

    Directory of Open Access Journals (Sweden)

    Park Chan-Yol

    2000-07-01

    Full Text Available To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability and apoptosis were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, and activity of caspase-3 protease activity assay. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [3H]thymidine release assay, and flow cytometric analysis of sub G1 fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and Bcl-XL were down-regulated whereas Bax was up-regulated by bee venom treatment.

  19. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture

    Directory of Open Access Journals (Sweden)

    Tatsuya Usui

    2018-04-01

    Full Text Available Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61 decreases the cell viability of organoids compared with Notch (YO-01027, DAPT and Wnt (WAV939, Wnt-C59 signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.

  20. Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property

    Directory of Open Access Journals (Sweden)

    Chang-Hao Cui

    2017-05-01

    Full Text Available Minor ginsenosides, such as compound K, Rg3(S, which can be produced by deglycosylation of ginsenosides Rb1, showed strong anti-cancer effects. However, the anticancer effects of gypenoside LXXV, which is one of the deglycosylated shapes of ginsenoside Rb1, is still unknown due to the rarity of its content in plants. Here, we cloned and characterized a novel ginsenoside-transforming β-glucosidase (BglG167b derived from Microbacterium sp. Gsoil 167 which can efficiently hydrolyze gypenoside XVII into gypenoside LXXV, and applied it to the production of gypenoside LXXV at the gram-scale with high specificity. In addition, the anti-cancer activity of gypenoside LXXV was investigated against three cancer cell lines (HeLa, B16, and MDA-MB231 in vitro. Gypenoside LXXV significantly reduced cell viability, displaying an enhanced anti-cancer effect compared to gypenoside XVII and Rb1. Taken together, this enzymatic method would be useful in the preparation of gypenoside LXXV for the functional food and pharmaceutical industries.

  1. Water extract of Ashwagandha leaves has anticancer activity: identification of an active component and its mechanism of action.

    Directory of Open Access Journals (Sweden)

    Renu Wadhwa

    Full Text Available BACKGROUND: Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX. METHODOLOGY/PRINCIPAL FINDINGS: Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX was detected by in vitro and in vivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s. Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression in vivo. Its active anticancer component was identified as triethylene glycol (TEG. Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest, normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression. We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. CONCLUSION: We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine.

  2. Unraveling the Anticancer Effect of Curcumin and Resveratrol

    Science.gov (United States)

    Pavan, Aline Renata; da Silva, Gabriel Dalio Bernardes; Jornada, Daniela Hartmann; Chiba, Diego Eidy; Fernandes, Guilherme Felipe dos Santos; Man Chin, Chung; dos Santos, Jean Leandro

    2016-01-01

    Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs. PMID:27834913

  3. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    Science.gov (United States)

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  4. Actual versus recommended storage temperatures of oral anticancer medicines at patients' homes.

    Science.gov (United States)

    Vlieland, N D; van den Bemt, Bjf; van Riet-Nales, D A; Bouvy, M L; Egberts, Acg; Gardarsdottir, H

    2017-01-01

    Background Substantial quantities of unused medicines are returned by patients to the pharmacy each year. Redispensing these medicines would reduce medicinal waste and health care costs. However, it is not known if medicines are stored by patients as recommended in the product label. Inadequate storage may negatively affect the medicine and reduce clinical efficacy whilst increasing the risk for side effects. Objective To investigate the proportion of patients storing oral anticancer medicines according to the temperature instructions in the product label. Methods Consenting adult patients from six Dutch outpatient hospital pharmacies were included in this study if they used an oral anticancer medicine during February 2014 - January 2015. Home storage temperatures were assessed by inclusion of a temperature logger in the original cancer medicines packaging. The primary outcome was the proportion of patients storing oral anticancer medicines as specified in the Summary of Product Characteristics, either by recalculating the observed temperature fluctuations to a single mean kinetic temperature or by following the temperature instructions taking into account a consecutive 24-h tolerance period. Results Ninety (81.1%) of the 111 included patients (47.8% female, mean age 65.2 (SD: 11.1)) returned their temperature loggers to the pharmacy. None of the patients stored oral anticancer medicines at a mean kinetic temperature above 25℃, one patient stored a medicine requiring storage below 25℃ longer than 24 h above 25℃. None of the patients using medicines requiring storage below 30℃ kept their medicine above 30℃ for a consecutive period of 24 h or longer. Conclusion The majority of patients using oral anticancer medicines store their medicines according to the temperature requirements on the product label claim. Based on our results, most oral anticancer medicines will not be negatively affected by temperature conditions at patients' homes for a maximum of

  5. Plant derived substances with anti-cancer activity: from folklore to practice

    Directory of Open Access Journals (Sweden)

    Marcelo eFridlender

    2015-10-01

    Full Text Available Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early 19th century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next 2 decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.

  6. Podophyllotoxin: a novel potential natural anticancer agent

    Directory of Open Access Journals (Sweden)

    Hamidreza Ardalani

    2017-06-01

    Full Text Available Objective: The aim of the present review is to give an overview about the role, biosynthesis, and characteristics of Podophyllotoxin (PTOX as a potential antitumor agent with particular emphasis on key biosynthesis processes, function of related enzymes and characterization of genes encoding the enzymes. Materials and Methods: Google scholar, PubMed and Scopus were searched for literatures which have studied identification, characterization, fermentation and therapeutic effects of PTOX and published in English language until end of 2016. Results: PTOX is an important plant-derived natural product, has derivatives such as etoposide and teniposide, which have been used as therapies for cancers and venereal wart. PTOX structure is closely related to the aryltetralin lactone lignans that have antineoplastic and antiviral activities. Podophyllum emodi Wall. (syn. P. hexandrum and Podophyllum peltatum L. (Berberidaceae are the major sources of PTOX. It has been shown that ferulic acid and methylenedioxy substituted cinnamic acid are the enzymes involved in PTOX synthesis. PTOX prevents cell growth via polymerization of tubulin, leading to cell cycle arrest and suppression of the formation of the mitotic-spindles microtubules.   Conclusion: Several investigations have been performed in biosynthesis of PTOX such as cultivation of these plants, though they were unsuccessful. Thus, it is important to find alternative sources to satisfy the pharmaceutical demand for PTOX. Moreover, further preclinical studies are warranted to explore the molecular mechanisms of these agents in treatment of cancer and their possible potential to overcome chemoresistance of tumor cells.

  7. Podophyllotoxin: a novel potential natural anticancer agent

    Science.gov (United States)

    Ardalani, Hamidreza; Avan, Amir; Ghayour-Mobarhan, Majid

    2017-01-01

    Objective: The aim of the present review is to give an overview about the role, biosynthesis, and characteristics of Podophyllotoxin (PTOX) as a potential antitumor agent with particular emphasis on key biosynthesis processes, function of related enzymes and characterization of genes encoding the enzymes. Materials and Methods: Google scholar, PubMed and Scopus were searched for literatures which have studied identification, characterization, fermentation and therapeutic effects of PTOX and published in English language until end of 2016. Results: PTOX is an important plant-derived natural product, has derivatives such as etoposide and teniposide, which have been used as therapies for cancers and venereal wart. PTOX structure is closely related to the aryltetralin lactone lignans that have antineoplastic and antiviral activities. Podophyllum emodi Wall. (syn. P. hexandrum) and Podophyllum peltatum L. (Berberidaceae) are the major sources of PTOX. It has been shown that ferulic acid and methylenedioxy substituted cinnamic acid are the enzymes involved in PTOX synthesis. PTOX prevents cell growth via polymerization of tubulin, leading to cell cycle arrest and suppression of the formation of the mitotic-spindles microtubules. Conclusion: Several investigations have been performed in biosynthesis of PTOX such as cultivation of these plants, though they were unsuccessful. Thus, it is important to find alternative sources to satisfy the pharmaceutical demand for PTOX. Moreover, further preclinical studies are warranted to explore the molecular mechanisms of these agents in treatment of cancer and their possible potential to overcome chemoresistance of tumor cells. PMID:28884079

  8. Anticancer Properties of Psidium guajava - a Mini-Review.

    Science.gov (United States)

    Correa, Mariana Goncalves; Couto, Jessica Soldani; Teodoro, Anderson Junger

    2016-01-01

    Cancer is a complex disease caused by a progressive accumulation of multiple genetic mutations. Consumption of fruits is associated with lower risk of several cancers, which is mainly associated to their phytochemical content. The use of functional foods and chemopreventive compounds seems to contribute in this process, acting by mechanisms of antioxidant, anti-inflammatory, anti-angiogenic and hormonal. The Psidium Guajava has high potential functional related to pigments who are involved in the process of cancer prevention by having antioxidant activity. The aim of the present review is to expose some chemical compounds from P. Guajava fractions and their association with anti-carcinogenic function. The evidences supports the theory of anticancer properties of P. Guajava, although the mechanisms are still not fully elucidated, but may include scavenging free radicals, regulation of gene expression, modulation of cellular signalling pathways including those involved in DNA damage repair, cell proliferation and apoptosis.

  9. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    Science.gov (United States)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  10. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells.

    Science.gov (United States)

    Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen

    2014-01-01

    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.

  11. Antithrombotic/anticoagulant and anticancer activities of selected ...

    African Journals Online (AJOL)

    Antithrombotic/anticoagulant and anticancer activities of selected medicinal plants from South Africa. NLA Kee, N Mnonopi, H Davids, RJ Naudé, CL Frost. Abstract. Nine plants available in the Eastern Cape Province of South Africa were tested for antithrombotic and/or anticoagulant activity. Organic (methanol) and aqueous ...

  12. Anticancer activities of self-assembled molecular bowls containing a phenanthrene-based donor and Ru(II acceptors

    Directory of Open Access Journals (Sweden)

    Kim I

    2015-08-01

    Full Text Available Inhye Kim,1,* Young Ho Song,2,* Nem Singh,2 Yong Joon Jeong,3 Jung Eun Kwon,3 Hyunuk Kim,4 Young Mi Cho,3 Se Chan Kang,3 Ki-Whan Chi2 1Laboratory of Bio-Resources, Yongin-si, Gyeonggi-Do, 2Department of Chemistry, University of Ulsan, Ulsan, 3Department of Life Science, Gachon University, Seongnam, 4Energy Materials Lab, Korea Institute of Energy Research, Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: Nano-sized multinuclear ruthenium complexes have rapidly emerged as promising therapeutic candidates with unique anticancer activities. Here, we describe the coordination-driven self-assembly and anticancer activities of a set of three organometallic tetranuclear Ru(II molecular bowls. [2+2] Coordination-driven self-assembly of 3,6-bis(pyridin-3-ylethynylphenanthrene (bpep (1 and one of the three dinuclear arene ruthenium clips, [(ƞ6-p-iPrC6H4Me2Ru2-(OO\\OO][OTf]2 (OO\\OO =2,5-dioxido-1,4-benzoquinonato, OTf = triflate (2, 5,8-dioxido-1,4-naphthoquinonato (3, or 6,11-dioxido-5,12-naphthacenediona (4, resulted in three molecular bowls 5–7 of general formula [{(ƞ6-p-iPrC6H4Me2Ru2-(OO\\OO}2(bpep2][OTf]4. All molecular bowls were obtained as triflate salts in very good yields (>90% and were fully characterized using multinuclear nuclear magnetic resonance (NMR, electrospray ionization–mass spectrometry (ESI-MS, and elemental analysis. The structure of the representative molecular bowl 5 was confirmed by single-crystal X-ray diffraction analysis. The anticancer activities of molecular bowls 5–7 were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, autophagy, and Western blot analysis. Bowl 6 showed the strongest cytotoxicity in AGS human gastric carcinoma cells and was more cytotoxic than doxorubicin. In addition, autophagic activity and the ratio of apoptotic cell death increased in AGS cells by treatment with bowl 6. Bowl 6 also induced autophagosome formation via upregulation

  13. Synthesis, docking and anticancer activity studies of D-proline ...

    Indian Academy of Sciences (India)

    D-proline-incorporated wainunuamide — a cyclic octapeptide was synthesized and characterized ... Cyclic octapeptide; molecular docking; solution phase synthesis; anticancer activity ..... dynamics and their binding affinities, using free energy.

  14. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    -treated group showed a more sustained release, a longer circulation time, increased delivery to tissue, and an enhanced anticancer effect. HCPT-loaded nanoparticles appear to change the pharmacokinetic behavior of HCPT in vivo.

  15. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  16. Efficacy, safety and anticancer activity of protein nanoparticle-based delivery of doxorubicin through intravenous administration in rats.

    Directory of Open Access Journals (Sweden)

    Kishore Golla

    Full Text Available Doxorubicin is a potent anticancer drug and a major limiting factor that hinders therapeutic use as its high levels of systemic circulation often associated with various off-target effects, particularly cardiotoxicity. The present study focuses on evaluation of the efficacy of doxorubicin when it is loaded into the protein nanoparticles and delivered intravenously in rats bearing Hepatocellular carcinoma (HCC. The proteins selected as carrier were Apotransferrin and Lactoferrin, since the receptors for these two proteins are known to be over expressed on cancer cells due to their iron transport capacity.Doxorubicin loaded apotransferrin (Apodoxonano and lactoferrin nanoparticles (Lactodoxonano were prepared by sol-oil chemistry. HCC in the rats was induced by 100 mg/l of diethylnitrosamine (DENA in drinking water for 8 weeks. Rats received 5 doses of 2 mg/kg drug equivalent nanoparticles through intravenous administration. Pharmacokinetics and toxicity of nanoformulations was evaluated in healthy rats and anticancer activity was studied in DENA treated rats. The anticancer activity was evaluated through counting of the liver nodules, H & E analysis and by estimating the expression levels of angiogenic and antitumor markers.In rats treated with nanoformulations, the numbers of liver nodules were found to be significantly reduced. They showed highest drug accumulation in liver (22.4 and 19.5 µg/g. Both nanoformulations showed higher localization compared to doxorubicin (Doxo when delivered in the absence of a carrier. Higher amounts of Doxo (195 µg/g were removed through kidney, while Apodoxonano and Lactodoxonano showed only a minimal amount of removal (<40 µg/g, suggesting the extended bioavailability of Doxo when delivered through nanoformulation. Safety analysis shows minimal cardiotoxicity due to lower drug accumulation in heart in the case of nanoformulation.Drug delivery through nanoformulations not only minimizes the cardiotoxicity of

  17. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol-b-PEG-b-(PAE-g-cholesterol for anticancer drug delivery and controlled release

    Directory of Open Access Journals (Sweden)

    Huang X

    2017-03-01

    Full Text Available Xiangxuan Huang,1 Wenbo Liao,1 Gang Zhang,1 Shimin Kang,1 Can Yang Zhang2 1School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA Abstract: A novel amphiphilic pH-sensitive triblock polymer brush (poly(β-amino esters-g-cholesterol-b-poly(ethylene glycol-b-(poly(β-amino esters-g-cholesterol ((PAE-g-Chol-b-PEG-b-(PAE-g-Chol was designed and synthesized successfully through a three-step reaction, and their self-assembled polymeric micelles were used as hydrophobic anticancer drug delivery carriers to realize effectively controlled release. The critical micelle concentrations were 6.8 µg/mL, 12.6 µg/mL, 17.4 µg/mL, and 26.6 µg/mL at pH values of 7.4, 6.5, 6.0, and 5.0, respectively. The trend of critical micelle concentrations indicated that the polymer had high stability that could prolong the circulation time in the body. The hydrodynamic diameter and zeta potential of the polymeric micelles were influenced significantly by the pH values. As pH decreased from 7.4 to 5.0, the particle size and zeta potential increased from 205.4 nm to 285.7 nm and from +12.7 mV to +47.0 mV, respectively. The pKb of the polymer was confirmed to be approximately 6.5 by the acid–base titration method. The results showed that the polymer had sharp pH-sensitivity because of the protonation of the amino groups, resulting in transformation of the PAE segment from hydrophobic to hydrophilic. Doxorubicin-loaded polymeric micelles were prepared with a high loading content (20% and entrapment efficiency (60% using the dialysis method. The in vitro results demonstrated that drug release rate and cumulative release were obviously dependent on pH values. Furthermore, the drug release mechanism was also controlled by the pH values. The polymer had barely any cytotoxicity, whereas the

  18. In Vitro Anticancer Activity of a Nonpolar Fraction from Gynostemma pentaphyllum (Thunb. Makino

    Directory of Open Access Journals (Sweden)

    Yantao Li

    2016-01-01

    Full Text Available Gynostemma pentaphyllum (Thunb. Makino (GpM has been widely used in traditional Chinese medicine (TCM for the treatment of various diseases including cancer. Most previous studies have focused primarily on polar fractions of GpM for anticancer activities. In this study, a nonpolar fraction EA1.3A from GpM showed potent growth inhibitory activities against four cancer cell lines with IC50 ranging from 31.62 μg/mL to 38.02 μg/mL. Furthermore, EA1.3A also inhibited the growth of breast cancer cell MDA-MB-453 time-dependently, as well as its colony formation ability. EA1.3A induced apoptosis on MDA-MB-453 cells both dose-dependently and time-dependently as analyzed by flow cytometry and verified by western blotting analysis of apoptosis marker cleaved nuclear poly(ADP-ribose polymerase (cPARP. Additionally, EA1.3A induced cell cycle arrest in G0/G1 phase. Chemical components analysis of EA1.3A by GC-MS revealed that this nonpolar fraction from GpM contains 10 compounds including four alkaloids, three organic esters, two terpenes, and one catechol substance, and all these compounds have not been reported in GpM. In summary, the nonpolar fraction EA1.3A from GpM inhibited cancer cell growth through induction of apoptosis and regulation of cell cycle progression. Our study shed light on new chemical bases for the anticancer activities of GpM and feasibilities to develop new anticancer agents from this widely used medicinal plant.

  19. A novel submicron emulsion system loaded with vincristine–oleic acid ion-pair complex with improved anticancer effect: in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Zhang T

    2013-03-01

    Full Text Available Ting Zhang,1 Yong Zheng,2 iang Peng,3 Xi Cao,1 Tao Gong,1 Zhirong Zhang11Key Laboratory of Drug Targeting and Drug Delivery Systems, Sichuan University, Chengdu, People’s Republic of China; 2Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China; 3State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, People’s Republic of ChinaBackground: Vincristine (VCR, which is a widely used antineoplastic drug, was integrated with a submicron-emulsion drug-delivery system to enhance the anticancer effect.Methods: After the formation of a VCR–oleic acid ion-pair complex (VCR-OA, the VCR-OA-loaded submicron emulsion (VCR-OA-SME, prepared by classical high-pressure homogenization, was characterized and its in vitro anticancer effects were evaluated.Results: The submicron-emulsion formulation exhibited a homogeneous round shape. The mean particle size, zeta potential, and encapsulation efficiency were 157.6 ± 12.6 nm, −26.5 ± 5.0 mV and 78.64% ± 3.44%, respectively. An in vitro release study of the VCR-OA-SME revealed that 12.4% of the VCR was released within the first 2 hours (initial burst-release phase and the rest of the drug was detected in the subsequent sustained-release phase. Compared with VCR solution, the pharmacokinetic study of VCR-OA-SME showed relatively longer mean residence time (mean residence time [0–∞] increased from 187.19 to 227.56 minutes, higher maximum concentration (from 252.13 ng/mL to 533.34 ng/mL, and greater area under the curve (area under the curve [0–∞] from 11,417.77 µg/L/minute to 17,164.34 µg/L/minute. Moreover, the VCR-OA-SME exhibited higher cytotoxicity (P < 0.05 on tumor cells by inducing cell arrest in the G2/M phase or even apoptosis (P < 0.05.Conclusion: The VCR-OA-SME formulation in our study displayed great potential for an anticancer effect for VCR.Keywords: ion-pair complex, submicron emulsion, cytotoxicity, apoptosis, cell uptake

  20. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    Science.gov (United States)

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Lichen-derived compounds show potential for central nervous system therapeutics.

    Science.gov (United States)

    Reddy, R Gajendra; Veeraval, Lenin; Maitra, Swati; Chollet-Krugler, Marylène; Tomasi, Sophie; Dévéhat, Françoise Lohézic-Le; Boustie, Joël; Chakravarty, Sumana

    2016-11-15

    Natural products from lichens are widely investigated for their biological properties, yet their potential as central nervous system (CNS) therapeutic agents is less explored. The present study investigated the neuroactive properties of selected lichen compounds (atranorin, perlatolic acid, physodic acid and usnic acid), for their neurotrophic, neurogenic and acetylcholine esterase (AChE) activities. Neurotrophic activity (neurite outgrowth) was determined using murine neuroblastoma Neuro2A cells. A MTT assay was performed to assess the cytotoxicity of compounds at optimum neurotrophic activity. Neuro2A cells treated with neurotrophic lichen compounds were used for RT-PCR to evaluate the induction of genes that code for the neurotrophic markers BDNF and NGF. Immunoblotting was used to assess acetyl H3 and H4 levels, the epigenetic markers associated with neurotrophic and/or neurogenic activity. The neurogenic property of the compounds was determined using murine hippocampal primary cultures. AChE inhibition activity was performed using a modified Ellman's esterase method. Lichen compounds atranorin, perlatolic acid, physodic acid and (+)-usnic acid showed neurotrophic activity in a preliminary cell-based screening based on Neuro2A neurite outgrowth. Except for usnic acid, no cytotoxic effects were observed for the two depsides (atranorin and perlatolic acid) and the alkyl depsidone (physodic acid). Perlatolic acid appears to be promising, as it also exhibited AChE inhibition activity and potent proneurogenic activity. The neurotrophic lichen compounds (atranorin, perlatolic acid, physodic acid) modulated the gene expression of BDNF and NGF. In addition, perlatolic acid showed increased protein levels of acetyl H3 and H4 in Neuro2A cells. These lichen depsides and depsidones showed neuroactive properties in vitro (Neuro2A cells) and ex vivo (primary neural stem or progenitor cells), suggesting their potential to treat CNS disorders. Copyright © 2016 Elsevier Gmb

  2. Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation.

    Directory of Open Access Journals (Sweden)

    Emma M Brown

    Full Text Available Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0-50 µg/ml gallic acid equivalents, the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer.

  3. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens.

    Science.gov (United States)

    Saratale, Rijuta G; Benelli, Giovanni; Kumar, Gopalakrishnan; Kim, Dong Su; Saratale, Ganesh D

    2018-04-01

    In recent years, the use of nanoparticle-based antimicrobials has been increased due to many advantages over conventional agrochemicals. This study investigates the utilization of common medicinal plant dandelion, Taraxacum officinale, for the synthesis of silver nanoparticles (TOL-AgNPs). AgNPs were evaluated for antimicrobial activity against two important phytopathogens, Xanthomonas axonopodis and Pseudomonas syringae. The morphology, size, and structure of TOL-AgNPs were characterized using UV-visible spectroscopy and X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FT-IR) showed the presence of phytochemicals involved during synthesis of NPs. High-resolution transmission electron microscopy (HR-TEM) analysis shed light on the size of monodispersed spherical AgNPs ranging between 5 and 30 nm, with an average particle size of about 15 nm. The TOL-AgNPs (at 20 μg/mL concentration) showed significant antibacterial activity with significant growth inhibition of phytopathogens X. axonopodis (22.0 ± 0.84 mm) and P. syringae (19.5 ± 0.66 mm). The synthesized AgNPs had higher antibacterial activity in comparison with commercial AgNPs. Synergistic assays with standard antibiotics revealed that nanoformulations with tetracycline showed better broad-spectrum efficiency to control phytopathogens. They also possessed significant antioxidant potential in terms of ABTS (IC 50  = 45.6 μg/mL), DPPH (IC 50  = 56.1 μg/mL), and NO (IC 50  = 55.2 μg/mL) free radical scavenging activity. The TOL-AgNPs showed high cytotoxic effect against human liver cancer cells (HepG2). Overall, dandelion-mediated AgNPs synthesis can represent a novel approach to develop effective antimicrobial and anticancer drugs with a cheap and eco-friendly nature.

  4. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    Science.gov (United States)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  5. Priming anticancer active specific immunotherapy with dendritic cells.

    Science.gov (United States)

    Mocellin, Simone

    2005-06-01

    Dendritic cells (DCs) probably represent the most powerful naturally occurring immunological adjuvant for anticancer vaccines. However, the initial enthusiasm for DC-based vaccines is being tempered by clinical results not meeting expectations. The partial failure of current vaccine formulations is explained by the extraordinary complexity of the immune system, which makes the task of exploiting the potential of such a biotherapeutic approach highly challenging. Clinical findings obtained in humans so far indicate that the immune system can be actively polarized against malignant cells by means of DC-based active specific immunotherapy, and that in some cases this is associated with tumor regression. This implies that under some unique circumstances, the naturally 'dormant' immune effectors can actually be employed as endogenous weapons against malignant cells. Only the thorough understanding of DC biology and tumor-host immune system interactions will allow researchers to reproduce, in a larger set of patients, the cellular/molecular conditions leading to an effective immune-mediated eradication of cancer.

  6. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Pasupuleti Visweswara Rao

    2016-01-01

    Full Text Available Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities.

  7. An Insight into the Anticancer Activities of Ru(II-Based Metallocompounds Using Docking Methods

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2013-09-01

    Full Text Available Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.

  8. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial

    Science.gov (United States)

    Ebrahiminezhad, Alireza; Bagheri, Mahboobeh; Taghizadeh, Seyedeh-Masoumeh; Berenjian, Aydin; Ghasemi, Younes

    2016-03-01

    Secreted carbohydrates by Chlorella vulgaris cells were used for reducing and capping Silver nanoparticles (AgNPs). Oxygen-bearing functional groups on the carbohydrates found to be the main biochemical groups responsible for anchoring the metal nanoparticles. Transmission electron microscopy (TEM) micrographs showed that isotropic small particles with mean particles size of 7 nm were synthesized. Comparing the TEM results with DLS analysis revealed that the thickness of carbohydrate capping was about 2 nm. A zeta potential of +26 mV made the particles colloidally stable and desirable for anticancer and antimicrobial applications. The MIC against gram positive (Staphylococcus aureus) and gram negative bacteria (Escherichia coli) were determined to be 37.5 μg ml-1 and 9.4 μg ml-1, respectively. Treatment of Hep-G2 cells with 4.7 μg ml-1 AgNPs for 24 h reduced the cell viability to 61%. This concentration was also reduced the cell viability to 37% after 48 h of exposure.

  9. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial

    International Nuclear Information System (INIS)

    Ebrahiminezhad, Alireza; Bagheri, Mahboobeh; Taghizadeh, Seyedeh-Masoumeh; Ghasemi, Younes; Berenjian, Aydin

    2016-01-01

    Secreted carbohydrates by Chlorella vulgaris cells were used for reducing and capping Silver nanoparticles (AgNPs). Oxygen-bearing functional groups on the carbohydrates found to be the main biochemical groups responsible for anchoring the metal nanoparticles. Transmission electron microscopy (TEM) micrographs showed that isotropic small particles with mean particles size of 7 nm were synthesized. Comparing the TEM results with DLS analysis revealed that the thickness of carbohydrate capping was about 2 nm. A zeta potential of +26 mV made the particles colloidally stable and desirable for anticancer and antimicrobial applications. The MIC against gram positive (Staphylococcus aureus) and gram negative bacteria (Escherichia coli) were determined to be 37.5 μg ml −1 and 9.4 μg ml −1 , respectively. Treatment of Hep-G2 cells with 4.7 μg ml −1 AgNPs for 24 h reduced the cell viability to 61%. This concentration was also reduced the cell viability to 37% after 48 h of exposure. (paper)

  10. Synthesis, Characterization, and Anti-Cancer Activity of Some New N′-(2-Oxoindolin-3-ylidene-2-propylpentane hydrazide-hydrazones Derivatives

    Directory of Open Access Journals (Sweden)

    Ayman El-Faham

    2015-08-01

    Full Text Available Eight novel N′-(2-oxoindolin-3-ylidene-2-propylpentane hydrazide-hydrazone derivatives 4a–h were synthesized and fully characterized by IR, NMR (1H-NMR and 13C-NMR, elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2 and leukaemia (Jurkat, as well as in normal cell lines derived from human embryonic kidney (HEK293 using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32–50 μM. Among the tested compounds, 4a showed specificity against leukaemia (Jurkat cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.

  11. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Zabol University of Medical Sciences, Zabol (Iran, Islamic Republic of); Saifullah, Bullo [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Dorniani, Dena [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Chemistry Department, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF (United Kingdom); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Karthivashan, Govindarajan [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@upm.edu.my [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia UPM, 43400 Serdang, Selangor (Malaysia); Elfghi, Fawzi M. [Department of Chemical and Petrochemical Engineering, The College of Engineering & Architecture, Initial Campus, Birkat Al Mouz Nizwa (Oman)

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV–vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π–π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV–vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of > 80% even at higher concentration of 50 μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. - Highlights: • Graphene oxide is synthesized using improved Hummer's method • The suppression of cancer cell growth was higher for chlorogenic acid/graphene oxide nanocomposite than for pure chlorogenic acid • Chlorogenic acid/graphene oxide nanocomposite has the potential to be used as a sustained release formulation.

  12. Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and ...

    African Journals Online (AJOL)

    Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and Cell Cycle Arrest in ... of linalool on cell morphology and apoptotic body formation in DU145 cells ... It was observed that 4.36, 11.54, 21.88 and 15.54 % of the cells underwent ...

  13. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  14. PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug.

    Science.gov (United States)

    He, Tiantian; Hatem, Elie; Vernis, Laurence; Lei, Ming; Huang, Meng-Er

    2015-12-21

    Many promising anticancer molecules are abandoned during the course from bench to bedside due to lack of clear-cut efficiency and/or severe side effects. Vitamin K3 (vitK3) is a synthetic naphthoquinone exhibiting significant in vitro and in vivo anticancer activity against multiple human cancers, and has therapeutic potential when combined with other anticancer molecules. The major mechanism for the anticancer activity of vitK3 is the generation of cytotoxic reactive oxygen species (ROS). We thus reasoned that a rational redox modulation of cancer cells could enhance vitK3 anticancer efficiency. Cancer cell lines with peroxiredoxin 1 (PRX1) gene transiently or stably knocked-down and corresponding controls were exposed to vitK3 as well as a set of anticancer molecules, including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D and 5-fluorouracil. Cytotoxic effects and cell death events were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based assay, cell clonogenic assay, measurement of mitochondrial membrane potential and annexin V/propidium iodide double staining. Global ROS accumulation and compartment-specific H2O2 generation were determined respectively by a redox-sensitive chemical probe and H2O2-sensitive sensor HyPer. Oxidation of endogenous antioxidant proteins including TRX1, TRX2 and PRX3 was monitored by redox western blot. We observed that the PRX1 knockdown in HeLa and A549 cells conferred enhanced sensitivity to vitK3, reducing substantially the necessary doses to kill cancer cells. The same conditions (combination of vitK3 and PRX1 knockdown) caused little cytotoxicity in non-cancerous cells, suggesting a cancer-cell-selective property. Increased ROS accumulation had a crucial role in vitK3-induced cell death in PRX1 knockdown cells. The use of H2O2-specific sensors HyPer revealed that vitK3 lead to immediate accumulation of H2O2 in the cytosol, nucleus, and mitochondrial matrix. PRX1 silencing

  15. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina.

    Science.gov (United States)

    Hwang, Yu-Jin; Lee, Eun-Ju; Kim, Haeng-Ran; Hwang, Kyung-A

    2013-11-09

    Recently, considerable attention has been focused on exploring the potential antioxidant properties of plant extracts or isolated products of plant origin. Prunella vulgaris var. lilacina is widely distributed in Korea, Japan, China, and Europe, and it continues to be used to treat inflammation, eye pain, headache, and dizziness. However, reports on the antioxidant activities of P. vulgaris var. lilacina are limited, particularly concerning the relationship between its phenolic content and antioxidant capacity. In this study, we investigated the antioxidant and anticancer activities of an ethanol extract from P. vulgaris var. lilacina and its fractions. Dried powder of P. vulgaris var. lilacina was extracted with ethanol, and the extract was fractionated to produce the hexane fraction, butanol fraction, chloroform fraction and residual water fraction. The phenolic content was assayed using the Folin-Ciocalteu colorimetric method. Subsequently, the antioxidant activities of the ethanol extract and its fractions were analyzed employing various antioxidant assay methods including DPPH, FRAP, ABTS, SOD activity and production of reactive oxygen species. Additionally, the extract and fractions were assayed for their ability to exert cytotoxic activities on various cancer cells using the MTT assay. We also investigated the expression of genes associated with apoptotic cell death by RT-PCR. The total phenolic contents of the ethanol extract and water fraction of P. vulgaris var. lilacina were 303.66 and 322.80 mg GAE/g dry weight (or fractions), respectively. The results showed that the ethanol extract and the water fraction of P. vulgaris var. lilacina had higher antioxidant content than other solvent fractions, similar to their total phenolic content. Anticancer activity was also tested using the HepG2, HT29, A549, MKN45 and HeLa cancer cell lines. The results clearly demonstrated that the P. vulgaris var. lilacina ethanol extract induced significant cytotoxic effects

  16. A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2008-10-01

    Full Text Available Junko H Ohyashiki1, Ryoko Hamamura2, Chiaki Kobayashi2, Yu Zhang2, Kazuma Ohyashiki21Intractable Immune System Disease Research Center, Tokyo Medical University, Tokyo, Japan; 2First Department of Internal Medicine, Tokyo Medical University, Tokyo, JapanAbstract: There is a need to identify the regulatory gene interaction of anticancer drugs on target cancer cells. Whole genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by hundreds to thousands of genes that induce changes in expression. A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treating adult T-cell leukemia (ATL patients, however, the underlying mechanism by which bortezomib induces cell death in ATL cells via gene regulatory network has not been fully elucidated. Here we show that a Bayesian statistical framework by VoyaGene® identified a secreted protein acidic and rich in cysteine (SPARC gene, a tumor-invasiveness related gene, as a possible modulator of bortezomib-induced cell death in ATL cells. Functional analysis using RNAi experiments revealed that inhibition of the expression SPARC by siRNA enhanced the apoptotic effect of bortezomib on ATL cells in accordance with an increase of cleaved caspase 3. Targeting SPARC may help to treat ATL patients in combination with bortezomib. This work shows that a network biology approach can be used advantageously to identify the genetic interaction related to anticancer effects.Keywords: network biology, adult T cell leukemia, bortezomib, SPARC

  17. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

    Science.gov (United States)

    Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Potentiating effect of ecofriendly synthesis of copper oxide ...

    Indian Academy of Sciences (India)

    diseases, however, it necessitates clinical studies to ascertain their potential as antimicrobial and anticancer agents. ... erties would result in interesting new applications of metal .... [13] South G R and Whittick A 1987 Introduction to psychology.

  19. Proapoptotic and Antiproliferative Effects of Thymus caramanicus on Human Breast Cancer Cell Line (MCF-7 and Its Interaction with Anticancer Drug Vincristine

    Directory of Open Access Journals (Sweden)

    Saeed Esmaeili-Mahani

    2014-01-01

    Full Text Available Thymus caramanicus Jalas is one of the species of thymus that grows in the wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis, and cancerous situation. Therefore, the present study was designed to investigate the selective cytotoxic and antiproliferative properties of Thymus caramanicus extract (TCE. MCF-7 human breast cancer cells were used in this study. Cytotoxicity of the extract was determined using MTT and neutral red assays. Biochemical markers of apoptosis (caspase 3, Bax, and Bcl-2 and cell proliferation (cyclin D1 were evaluated by immunoblotting. Vincristine was used as anticancer control drug in extract combination therapy. The data showed that incubation of cells with TCE (200 and 250 μg/mL significantly increased cell damage, activated caspase 3 and Bax/Bcl2 ratio. In addition, cyclin D1 was significantly decreased in TCE-treated cells. Furthermore, concomitant treatment of cells with extract and anticancer drug produced a significant cytotoxic effect as compared to extract or drugs alone. In conclusion, thymus extract has a potential proapoptotic/antiproliferative property against human breast cancer cells and its combination with chemotherapeutic agent vincristine may induce cell death effectively and be a potent modality to treat this type of cancer.

  20. Sphingolipid metabolism enzymes as targets for anticancer therapy

    NARCIS (Netherlands)

    Kok, JW; Sietsma, H

    Treatment with anti-cancer agents in most cases ultimately results in apoptotic cell death of the target tumour cells. Unfortunately, tumour cells can develop multidrug resistance, e.g., by a reduced propensity to engage in apoptosis by which they become insensitive to multiple chemotherapeutics.

  1. Monitoring of anti-cancer therapies and chemoresistance

    Czech Academy of Sciences Publication Activity Database

    Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Džubák, P.; Hajdúch, M.; Gadher, S. J.; Kovářová, Hana

    2009-01-01

    Roč. 6, č. 1 (2009), s. 63-63 ISSN 1109-6535. [International Conference of the Hellenic Proteomic Society /3./. 30.03.2009-01.04.2009, Nafplio] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : anti-cancer therapies Subject RIV: CE - Biochemistry

  2. Coevolution between human's anticancer activities and functional foods from crop origin center in the world.

    Science.gov (United States)

    Zeng, Ya-Wen; Du, Juan; Pu, Xiao-Ying; Yang, Jia-Zhen; Yang, Tao; Yang, Shu-Ming; Yang, Xiao-Meng

    2015-01-01

    Cancer is the leading cause of death around the world. Anticancer activities from many functional food sources have been reported in years, but correlation between cancer prevalence and types of food with anticancer activities from crop origin center in the world as well as food source with human migration are unclear. Hunger from food shortage is the cause of early human evolution from Africa to Asia and later into Eurasia. The richest functional foods are found in crop origin centers, housing about 70% in the world populations. Crop origin centers have lower cancer incidence and mortality in the world, especially Central Asia, Middle East, Southwest China, India and Ethiopia. Asia and Africa with the richest anticancer crops is not only the most important evolution base of humans and origin center of anticancer functional crop, but also is the lowest mortality and incidence of cancers in the world. Cancer prevention of early human migrations was associated with functional foods from crop origin centers, especially Asia with four centers and one subcenter of crop origin, accounting for 58% of the world population. These results reveal that coevolution between human's anticancer activities associated with functional foods for crop origin centers, especially in Asia and Africa.

  3. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  4. Identification of novel anticancer terpenoids from Prosopis juliflora ...

    African Journals Online (AJOL)

    Purpose: To identify a novel source of terpenoid anticancer compounds from P. juliflora (Sw.) DC. (Leguminosae) pods as a medicinal substitute for cancer medicines. Methods: The pods were collected, dried and pulverized. The ethanol extract was prepared by maceration. Various phyto-constituents were detected in the ...

  5. Preclinical and clinical pharmacology of oral anticancer drugs

    NARCIS (Netherlands)

    Oostendorp, R.L.

    2009-01-01

    Nowadays, more than 25% of all anticancer drugs are developed as oral formulations. Oral administration of drugs has several advantages over intravenous (i.v.) administration. It will on average be more convenient for patients, because they can take oral medication themselves, there is no need for

  6. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin

    Science.gov (United States)

    Mohamed, Elham Abdelmonem; Abu Hashim, Irhan Ibrahim; Yusif, Rehab Mohammad; Shaaban, Ahmed Abdel Aziz; El-Sheakh, Ahmed Ramadan; Hamed, Mohammed Fawzy; Badria, Farid Abd Elreheem

    2018-01-01

    Naringin is one of the most interesting phytopharmaceuticals that has been widely investigated for various biological actions. Yet, its low water solubility, limited permeability, and suboptimal bioavailability limited its use. Therefore, in this study, polymeric micelles of naringin based on pluronic F68 (PF68) were developed, fully characterized, and optimized. The optimized formula was investigated regarding in vitro release, storage stability, and in vitro cytotoxicity vs different cell lines. Also, cytoprotection against ethanol-induced ulcer in rats and antitumor activity against Ehrlich ascites carcinoma in mice were investigated. Nanoscopic and nearly spherical 1:50 micelles with the mean diameter of 74.80±6.56 nm and narrow size distribution were obtained. These micelles showed the highest entrapment efficiency (EE%; 96.14±2.29). The micelles exhibited prolonged release up to 48 vs 10 h for free naringin. The stability of micelles was confirmed by insignificant changes in drug entrapment, particle size, and retention (%) (91.99±3.24). At lower dose than free naringin, effective cytoprotection of 1:50 micelles against ethanol-induced ulcer in rat model has been indicated by significant reduction in mucosal damage, gastric level of malondialdehyde, gastric expression of tumor necrosis factor-alpha, caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, and interleukin-6 with the elevation of gastric reduced glutathione and superoxide dismutase when compared with the positive control group. As well, these micelles provoked pronounced antitumor activity assessed by potentiated in vitro cytotoxicity particularly against colorectal carcinoma cells and tumor growth inhibition when compared with free naringin. In conclusion, 1:50 naringin–PF68 micelles can be represented as a potential stable nanodrug delivery system with prolonged release and enhanced antiulcer as well as antitumor activities. PMID:29497294

  7. Anticancer Properties and Phenolic Contents of Sequentially Prepared Extracts from Different Parts of Selected Medicinal Plants Indigenous to Malaysia

    Directory of Open Access Journals (Sweden)

    Hadiza Altine Adamu

    2012-05-01

    Full Text Available Different parts of four edible medicinal plants (Casearia capitellata, Baccaurea motleyana, Phyllanthus pulcher and Strobilanthus crispus, indigenous to Malaysia, were extracted in different solvents, sequentially. The obtained 28 extracts were evaluated for their in vitro anticancer properties, using the MTS assay, on four human cancer cell lines: colon (HT-29, breast (MCF-7, prostate (DU-145 and lung (H460 cancers. The best anticancer activity was observed for the ethyl acetate (EA extract of Casearia capitellata leaves on MCF-7 cell lines with IC50 2.0 μg/mL and its methanolic (MeOH extract showed an outstanding activity against lung cancer cell lines. Dichloromethane (DCM extract of Phyllanthus pulcher aerial parts showed the highest anticancer activity against DU-145 cell lines, while significant activity was exhibited by DCM extract of Phyllanthus pulcher roots on colon cancer cell lines with IC50 value of 8.1 μg/mL. Total phenolic content (TPC ranged over 1–40 mg gallic acid equivalents (GAE/g. For all the samples, highest yields of phenolics were obtained for MeOH extracts. Among all the extracts analyzed, the MeOH extracts of Strobilanthus crispus leaves exhibited the highest TPC than other samples (p < 0.05. This study shows that the nature of phenol determines its anticaner activity and not the number of phenols present.

  8. Synthesis of some new heterocyclic compounds bearing a sulfonamide moiety and studying their combined anticancer effect with γ-radiation

    International Nuclear Information System (INIS)

    El-Hossary, E.M.M.

    2010-01-01

    In search for new cytotoxic agents with improved anticancer profile, some new halogen-containing quinoline and pyrimido[4,5-b]quinoline derivatives bearing a free sulfonamide moiety were synthesized. All the newly synthesized target compounds were subjected to in vitro anticancer screening against human breast cancer cell line (MCF7). The most potent compounds, as concluded from the in vitro anticancer screening, were selected to be evaluated again for their in vitro anticancer activity in combination with radiation. Also, the newly synthesized compounds were docked in the active site of the carbonic anhydrase enzyme

  9. Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy.

    Science.gov (United States)

    Li, Ying-Ying; Feun, Lynn G; Thongkum, Angkana; Tu, Chiao-Hui; Chen, Shu-Mei; Wangpaichitr, Medhi; Wu, Chunjing; Kuo, Macus T; Savaraj, Niramol

    2017-06-19

    Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial. Accumulated studies have demonstrated that triggering autophagy is able to facilitate anticancer immunity due to an increase in immunogenicity, whereas other studies suggested that autophagy is likely to disarm anticancer immunity mediated by cytotoxic T cells and nature killer (NK) cells. Hence, this contradiction needs to be elucidated. In this review, we discuss the role of autophagy in cancer cells per se and in cancer microenvironment as well as its dual regulatory roles in immune surveillance through modulating presentation of tumor antigens, development of immune cells, and expression of immune checkpoints. We further focus on emerging roles of autophagy induced by current treatments and its impact on anticancer immune response, and illustrate the pros and cons of utilizing autophagy in cancer immunotherapy based on preclinical references.

  10. Synthesis and Computational Studies Demonstrate the Utility of an Intramolecular Styryl Diels-Alder Reaction and Di-t-butylhydroxytoluene Assisted [1,3]-Shift to Construct Anticancer dl-Deoxypodophyllotoxin.

    Science.gov (United States)

    Saavedra, Diana I; Rencher, Benjamin D; Kwon, Doo-Hyun; Smith, Stacey J; Ess, Daniel H; Andrus, Merritt B

    2018-02-16

    Deoxypodophyllotoxin is a secondary metabolite lignan possessing potent anticancer activity with potential as a precursor for known anticancer drugs, but its use is limited by scarcity from natural sources. We here report the total synthesis of racemic deoxypodophyllotoxin in seven steps using an intramolecular styryl Diels-Alder reaction strategy uniquely suited to assemble the deoxypodophyllotoxin core. Density functional theory was used to analyze concerted, polar, and singlet-open-shell diradical reaction pathways, which identified a low-energy concerted [4 + 2] Diels-Alder pathway followed by a faster di-t-butylhydroxytoluene assisted [1,3]-formal hydrogen shift.

  11. Investigating CSI: portrayals of DNA testing on a forensic crime show and their potential effects.

    Science.gov (United States)

    Ley, Barbara L; Jankowski, Natalie; Brewer, Paul R

    2012-01-01

    The popularity of forensic crime shows such as CSI has fueled debate about their potential social impact. This study considers CSI's potential effects on public understandings regarding DNA testing in the context of judicial processes, the policy debates surrounding crime laboratory procedures, and the forensic science profession, as well as an effect not discussed in previous accounts: namely, the show's potential impact on public understandings of DNA and genetics more generally. To develop a theoretical foundation for research on the "CSI effect," it draws on cultivation theory, social cognitive theory, and audience reception studies. It then uses content analysis and textual analysis to illuminate how the show depicts DNA testing. The results demonstrate that CSI tends to depict DNA testing as routine, swift, useful, and reliable and that it echoes broader discourses about genetics. At times, however, the show suggests more complex ways of thinking about DNA testing and genetics.

  12. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  13. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells

    OpenAIRE

    S. Rajeshkumar

    2016-01-01

    Gold nanoparticles have many applications in biomedical field. Improving delivery of anticancer agents to tumors using nanoparticles is one of the most promising research arenas in the field of nanotechnology. Eco-friendly gold nanoparticles synthesis was studied using marine bacteria Enterococcus sp. The nanoparticle synthesis started at 2 h of incubation time was identified by the formation of ruby red in the reaction mixture and SPR band centered at 545 nm. XRD shows that the strong four i...

  14. Azide derivatized anticancer agents of Vitamin K 3: X-ray structural, DSC, resonance spectral and API studies

    Science.gov (United States)

    Badave, Kirti; Patil, Yogesh; Gonnade, Rajesh; Srinivas, Darbha; Dasgupta, Rajan; Khan, Ayesha; Rane, Sandhya

    2011-12-01

    Compound 1 [1-imino (acetyl hydrazino)-Vitamin K 3], displays valence tautomerically related electronic isomers as Form I and Form II. Form I exhibits 2D packing fragment with 1D ribbon chains of N-H⋯O hydrogen bonds and shows EPR silent features. While Form II is EPR active and exhibits biradical nature with double quantum transitions at g = 2.0040. 1H NMR of compound 2, [1-imino (hydrazino carboxylate)-Vitamin K 3] and Form II exhibit π delocalization via resonance assisted H-bonding [RAHB] effect compared to Form I. Molecular interactions in Form I and II are visualized by DSC. The electronic structures of compounds 1 and 2 have been correlated to their API values by measuring anticancer activities, mitochondrial potentials and DNA shearing patterns. Form II and compound 2 indicate mitochondria mediated apoptosis (˜75% cell death) while Form I causes 35% cell death.

  15. Anticancer activity and apoptosis inducing effect of methanolic extract of Cordia dichotoma against human cancer cell line

    OpenAIRE

    Md. Azizur Rahman; Arshad Hussain

    2015-01-01

    MTT assay and DAPI staining test were performed to evaluate anticancer potential and to assess apoptosis inducing effect of methanolic extract of Cordia dichotoma leaves (MECD) against human cervical cancer cell line (HeLa). Changes in MMP and intracellular ROS level were also assessed by JC-1 and DCFH-DA staining. Total phenolic contents were determined by colorimetric principle. Levels of statistical significance were determined by one-way analysis of variance followed by Dunnett’s posttest...

  16. Nanomaterials potentiating standard chemotherapy drugs' effect

    Science.gov (United States)

    Kazantsev, S. O.; Korovin, M. S.

    2017-09-01

    Application of antitumor chemotherapeutic drugs is hindered by a number of barriers, multidrug resistance that makes effective drug deposition inside cancer cells difficult is among them. Recent research shows that potential efficiency of anticancer drugs can be increased with nanoparticles. This review is devoted to the application of nanoparticles for cancer treatment. Various types of nanoparticles currently used in medicine are reviewed. The nanoparticles that have been used for cancer therapy and targeted drug delivery to damaged sites of organism are described. Also, the possibility of nanoparticles application for cancer diagnosis that could help early detection of tumors is discussed. Our investigations of antitumor activity of low-dimensional nanostructures based on aluminum oxides and hydroxides are briefly reviewed.

  17. Investigation of Degradation Properties of Poly(lactide-co-glycolide) Matrix for Anticancer Agent Delivery

    International Nuclear Information System (INIS)

    Ghani, S. M.; Mohamed, M. S. W.; Yahya, A. F.; Noorsal, K.

    2010-01-01

    Poly(lactide-co-glycolide)(PLA 50 GA 50 ) is a biodegradable and biocompatible polymer. It offers tremendous potential as a basis for drug delivery, either as drug delivery system alone or in conjugate with a medical device. The PLA 50 GA 50 is the material of choice for relatively shorter-duration applications, while the homopolymer PLA (poly-L-lactide) and PGA (polyglycolide) are preferred for longer term delivery of drugs. This paper discusses the degradation properties of poly(lactide-co-glycolide)(PLA 50 GA 50 ) at inherent viscosity of 0.89 dL/g as preliminary studies for anticancer agent delivery.

  18. Carnosol: a promising anti-cancer and anti-inflammatory agent.

    Science.gov (United States)

    Johnson, Jeremy J

    2011-06-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicinal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Classification of mitocans, anti-cancer drugs acting on mitochondria

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L. F.; Rohlena, Jakub; Truksa, Jaroslav; Ralph, S. J.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 199-208 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * Anti-cancer therapeutics * Classification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.524, year: 2013

  20. Exploring the Cytotoxic Potential of Triterpenoids-enriched Fraction of Bacopa monnieri by Implementing In vitro, In vivo, and In silico Approaches.

    Science.gov (United States)

    Mallick, Md Nasar; Khan, Washim; Parveen, Rabea; Ahmad, Sayeed; Sadaf; Najm, Mohammad Zeeshan; Ahmad, Istaq; Husain, Syed Akhtar

    2017-10-01

    Bacopa monnieri (BM) is a herbaceous plant traditionally used from time immemorial in Ayurvedic and folklore medicines. We hypothesized that the extract of the whole plant might contain numerous molecules with having antitumor activities that could be very effective in killing of human cancer cells. This work investigated anticancer activity of bioactive fraction of BM. The hydroalcoholic extract of BM was fractionated with different solvent, namely, hexane, dichloromethane (DCM), acetone, methanol, and water. The in vitro anticancer activity was performed against various Human Cancer Cell lines, namely, Colon (HT29, Colo320, and Caco2), Lung (A549), Cervix (HeLa, SiHa), and Breast (MCF-7, MDAMB-231). Further, DCM fraction was evaluated in vivo for anticancer activity against Ehrlich ascites carcinoma (EAC) tumor-bearing mice since it showed the best cytotoxicity at 72 h (IC 50 41.0-60.0 µg/mL). The metabolic fingerprinting of these extract were carried out using high-performance thin-layer chromatography along with quantification of bacoside A, bacoside B, cucurbitacin B, cucurbitacin E, and bittulinic acid. Oral administration of DCM fraction at a dose of 40 mg/kg rendered prominent reduction of tumor regression parameters such as tumor weight, packed cell volume, tumor volume and viable tumor cell count as compared to the untreated mice of the EAC control group. The anticancer activity of DCM fraction may be due to the presence of large amount of bacoside A, B and cucurbitacins. The molecular docking studies of major metabolites with targeted proteins predicted the anticancer activity of DCM fraction which was in support of in vivo activity. The in vitro , in vivo , analytical and in silico studies on DCM fraction of Bacopa monieri has proved its great potential for development of anticancer phytopharmaceuticals. A new HPTLC method has been developed and validated for the qualitative and quantitative analysis of bacoside A, B, cucurbitacin B, D, E and