WorldWideScience

Sample records for shown family symmetry

  1. Origin of family symmetries

    International Nuclear Information System (INIS)

    Nilles, Hans Peter

    2012-04-01

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  2. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  3. Neutrino masses and family symmetry

    International Nuclear Information System (INIS)

    Grinstein, B.; Preskill, J.; Wise, M.B.

    1985-01-01

    Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)

  4. Axions from chiral family symmetry

    International Nuclear Information System (INIS)

    Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.

    1985-01-01

    We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)

  5. Family gauge symmetry from a composite model

    International Nuclear Information System (INIS)

    Zhou, B.R.; Chang, C.H.; Princeton Univ., NJ

    1983-01-01

    A family gauge symmetry SUsup(F)(2) could emerge from a composite model of quarks and leptons under some assumptions of chiral hyperflavor symmetry-breaking pattern. Possible dynamical mechanisms which break the family and electroweak gauge group and produce quark-lepton masses are indicated and their phenomenologies are discussed qualitatively. (orig.)

  6. Family symmetries in F-theory GUTs

    CERN Document Server

    King, S F; Ross, G G

    2010-01-01

    We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.

  7. Cosmoparticle physics of family symmetry breaking

    International Nuclear Information System (INIS)

    Khlopov, M.Yu.

    1993-07-01

    The foundations of both particle theory and cosmology are hidden at super energy scale and can not be tested by direct laboratory means. Cosmoparticle physics is developed to probe these foundations by the proper combination of their indirect effects, thus providing definite conclusions on their reliability. Cosmological and astrophysical tests turn to be complementary to laboratory searches of rare processes, induced by new physics, as it can be seen in the case of gauge theory of broken symmetry of quark and lepton families, ascribing to the hierarchy of the horizontal symmetry breaking the observed hierarchy of masses and the mixing between quark and lepton families. 36 refs

  8. Consequences of an Abelian family symmetry

    International Nuclear Information System (INIS)

    Ramond, P.

    1996-01-01

    The addition of an Abelian family symmetry to the Minimal Super-symmetric Standard Model reproduces the observed hierarchies of quark and lepton masses and quark mixing angles, only if it is anomalous. Green-Schwarz compensation of its anomalies requires the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, without any assumed GUT structure, suggesting a superstring origin for the standard model. The analysis is extended to neutrino masses and the lepton mixing matrix

  9. Quark and lepton mass matrices with $A_4$ family symmetry

    OpenAIRE

    Sawanaka, H.

    2007-01-01

    Realistic quark masses and mixing angles are obtained applying the successful $A_4$ family symmetry for leptons, motivated by the quark-lepton assignments of SU(5). The $A_4$ symmetry is suitable to give tri-bimaximal neutrino mixing matrix which is consistent with current experimental data. We study new scenario for the quark sector with the $A_4$ symmetry.

  10. Renormalisation group improved leptogenesis in family symmetry models

    International Nuclear Information System (INIS)

    Cooper, Iain K.; King, Stephen F.; Luhn, Christoph

    2012-01-01

    We study renormalisation group (RG) corrections relevant for leptogenesis in the case of family symmetry models such as the Altarelli-Feruglio A 4 model of tri-bimaximal lepton mixing or its extension to tri-maximal mixing. Such corrections are particularly relevant since in large classes of family symmetry models, to leading order, the CP violating parameters of leptogenesis would be identically zero at the family symmetry breaking scale, due to the form dominance property. We find that RG corrections violate form dominance and enable such models to yield viable leptogenesis at the scale of right-handed neutrino masses. More generally, the results of this paper show that RG corrections to leptogenesis cannot be ignored for any family symmetry model involving sizeable neutrino and τ Yukawa couplings.

  11. Lepton family symmetries for neutrino masses and mixing

    Indian Academy of Sciences (India)

    Abstract. I review some of the recent progress (up to December 2005) in applying non-Abelian discrete symmetries to the family structure of leptons, with particular emphasis on the tribimaximal mixing ansatz of Harrison, Perkins and Scott.

  12. Quasi-degenerate neutrinos from an abelian family symmetry

    International Nuclear Information System (INIS)

    Binetruy, P.; Lavignac, S.; Petcov, S.; Ist. Nazionale di Fisica Nucleare, Trieste; Ramond, P.

    1996-01-01

    The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are constrained. The authors discuss their phenomenological implications for present and foreseen neutrino experiments

  13. A new family symmetry for SO(10) GUTs

    International Nuclear Information System (INIS)

    King, Stephen F.; Luhn, Christoph

    2009-01-01

    We argue that the projective special linear group PSL 2 (7), also known as Σ(168), has unique features which make it the most suitable discrete family symmetry for describing quark and lepton masses and mixing in the framework of SO(10) type unified models. In such models flavon fields in the sextet representation of PSL 2 (7) play a crucial role both in obtaining tri-bimaximal neutrino mixing as well as in generating the third family charged fermion Yukawa couplings. In preparation for physical applications, we derive the triplet representation of PSL 2 (7) in the basis S,T,U,V where S,T,U are the familiar triplet generators of S 4 in the diagonal charged lepton basis where T is diagonal. We also derive an analogous basis for the real sextet representation and identify the vacuum alignments which lead to tri-bimaximal neutrino mixing and large third family charged fermion Yukawa couplings.

  14. Search for composite models with family gauge symmetries

    International Nuclear Information System (INIS)

    Zhou, B.R.; Huerta, R.

    1985-01-01

    We have analyzed a class of three-preon models based on a strategy expected to lead to family gauge symmetry SUsup(F)(n) and found that, in order to obey the assumption of asymptotic freedom and infrared confinement for the hypercolor group SUsub(H)(N), 't Hooft anomaly consistency conditions, especially the requirement of dynamical generation of quark-lepton masses by means of color condensates of exotic fermions, the only possible model is the three-fermion model with the hypercolor group SUsub(H)(4) and the family gauge group SUsup(F)(2). All the models considered which contain scalar-preons are excluded from being realistic models unless some new mechanism of quark-lepton mass generation is worked out. (orig.)

  15. Lepton family symmetries for neutrino masses and mixing

    Indian Academy of Sciences (India)

    I then focus on the tetrahedral group A4 and show how the charged-lepton and neutrino mass matrices may be constrained, followed by a catalog of recent models, with one detailed example. I will also discuss the symmetry S4 with another example and mention briefly the symmetry B4. These examples show how exact ...

  16. Lepton family symmetries for neutrino masses and mixing

    Indian Academy of Sciences (India)

    on the tribimaximal mixing ansatz of Harrison, Perkins and Scott. Keywords. Neutrino mixing; discrete symmetry. PACS Nos 14.60.Pq; 11.30.Hv. 1. Some basics. Using present data from neutrino oscillations, the 3 × 3 neutrino mixing matrix is largely determined, together with the two mass-squared differences [1]. In the Stan-.

  17. Hierarchies of R-violating interactions from Family Symmetries

    CERN Document Server

    Ellis, Jonathan Richard; Ross, Graham G; Ellis, John; Lola, Smaragda; Ross, Graham G.

    1998-01-01

    We investigate the possibility of constructing models of R-violating LQD Yukawa couplings using a single U(1) flavour-symmetry group and supermultiplet charge assignments that are compatible with the known hierarchies of quark and lepton masses. The mismatch of mass and current eigenstates inferred from the known charged-current mixing induces the propagation of strong phenomenological constraints on some R-violating couplings to many others. Applying these constraints, we look for flavour-symmetry models that are consistent with different squark-production hypotheses devised to explain the possible HERA large-Q^2 anomaly. The e^+ d -> stop interpretation of the HERA data is accommodated relatively easily, at the price of postulating an extra parity. The e^+ s -> stop interpretation of the events requires models to have only small (2,3) mixing in the down quark sector. The e^+ d -> scharm mechanism cannot be accommodated without large violations of squark-mass universality, due to the very strong experimental...

  18. Insights from three flavors for three families based on compositeness and symmetry

    International Nuclear Information System (INIS)

    Wu Yueliang

    2012-01-01

    The concepts of compositeness and symmetry on the microstructure of matter have had a significant influence on the quest for the origin of particles and the universe. The studies on the property and phenomenology of hadrons as composite particles have led many insights and discoveries in particle physics, such as flavor symmetry, chiral symmetry, PCAC, strong interaction, dynamical symmetry breaking, indirect and direct CP violations, quark model from three flavors to three families, chiral dynamical model, quantum chromodynamics, quark confinement. I briefly present some interesting progresses and insights made in our group based on compositeness and symmetry. It can be seen that both the indirect and direct CP symmetry violation in kaon decays as well as the isospin ΔI=1/2 selection rule can simultaneously be explained in the standard model with the Kobayashi-Maskawa CP-violating phase and the chiral dynamic loop effect. We present a brief description on the symmetry-preserving loop regularization (LORE) method which is realized in four dimensional space-time. The LORE method introduces two energy scales and maintains the initial divergence behavior, which overcomes some shortages in other regularization schemes. A chiral dynamical model of QCD can be derived by using the LORE method to understand the spontaneous chiral symmetry breaking via the dynamically generated composite Higgs potential, which can provide a consistent prediction for the mass spectra of both the nonet scalar and pseudoscalar ground state mesons. By extending such a model to a chiral thermodynamic model with the closed-time-path Green function approach, it enables us to characterize the critical behavior of QCD and the restoration of chiral symmetry breaking. (author)

  19. Deviation from bimaximal mixing and leptonic CP phases in S4 family symmetry and generalized CP

    International Nuclear Information System (INIS)

    Li, Cai-Chang; Ding, Gui-Jun

    2015-01-01

    The lepton flavor mixing matrix having one row or one column in common with the bimaximal mixing up to permutations is still compatible with the present neutrino oscillation data. We provide a thorough exploration of generating such a mixing matrix from S 4 family symmetry and generalized CP symmetry H CP . Supposing that S 4 ⋊H CP is broken down to Z 2 ST 2 SU ×H CP ν in the neutrino sector and Z 4 TST 2 U ⋊H CP l in the charged lepton sector, one column of the PMNS matrix would be of the form (1/2,1/√2,1/2) T up to permutations, both Dirac CP phase and Majorana CP phases are trivial to accommodate the observed lepton mixing angles. The phenomenological implications of the remnant symmetry K 4 (TST 2 ,T 2 U) ×H CP ν in the neutrino sector and Z 2 SU ×H CP l in the charged lepton sector are studied. One row of PMNS matrix is determined to be (1/2,1/2,−i/√2), and all the three leptonic CP phases can only be trivial to fit the measured values of the mixing angles. Two models based on S 4 family symmetry and generalized CP are constructed to implement these model independent predictions enforced by remnant symmetry. The correct mass hierarchy among the charged leptons is achieved. The vacuum alignment and higher order corrections are discussed.

  20. Split-Family SUSY, U(2)^5 Flavour Symmetry and Neutrino Physics

    CERN Document Server

    Jones-Pérez, Joel

    2014-01-01

    In split-family SUSY, one can use a U(2)^3 symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous U(2)^5 symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the U(2)^2 symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a $\\mu\\to e\\gamma$ branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.

  1. Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.

    Science.gov (United States)

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J

    2015-02-27

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s(±) wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface "hot-spots" in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s(±) wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.

  2. Study of theory and phenomenology of some classes of family symmetry and unification models

    International Nuclear Information System (INIS)

    Kane, Gordon L.; King, Steve F.; Peddie, Iain N.R.; Velasco-Sevilla, Liliana

    2005-01-01

    We review and compare theoretically and phenomenologically a number of possible family symmetries, which when combined with unification, could be important in explaining quark, lepton and neutrino masses and mixings, providing new results in several cases. Theoretical possibilities include abelian or non-abelian, symmetric or non symmetric Yukawa matrices, Grand Unification or not. Our main focus is on anomaly-free U(1) family symmetry combined with SU(5) unification, although we also discuss other possibilities. We provide a detailed phenomenological fit of the fermion masses and mixings for several examples, and discuss the supersymmetric flavour issues in such theories, including a detailed analysis of lepton flavour violation. We show that it is not possible to quantitatively and decisively discriminate between these different theoretical possibilities at the present time

  3. Frameworks with crystallographic symmetry.

    Science.gov (United States)

    Borcea, Ciprian S; Streinu, Ileana

    2014-02-13

    Periodic frameworks with crystallographic symmetry are investigated from the perspective of a general deformation theory of periodic bar-and-joint structures in Euclidean spaces of arbitrary dimension. It is shown that natural parametrizations provide affine section descriptions for families of frameworks with a specified graph and symmetry. A simple geometrical setting for displacive phase transitions is obtained. Upper bounds are derived for the number of realizations of minimally rigid periodic graphs.

  4. A differential-difference Kadomtsev-Petviashvili family possesses a common Kac-Moody-Virasoro symmetry algebra

    International Nuclear Information System (INIS)

    Tang Xiaoyan; Qian Xianmin; Ding Wei

    2005-01-01

    Starting from the Kac-Moody-Virasoro symmetry algebra of the differential-difference Kadomtsev-Petviashvili equation, a differential-difference Kadomtsev-Petviashvili family is constructed and the corresponding invariant solutions are obtained

  5. Lengthwise shoot symmetry and its features in plants of Lamiaceae family of Ukrainian flora

    Directory of Open Access Journals (Sweden)

    Yosyp Berko

    2014-04-01

    Full Text Available The features of lengthwise symmetry of monocarpic shoots (on example of changing of the length of internodes in its elementar metamers in more than 60 species of half-shrub and grass plants from the family Lamiaceae were studied. The statistically representative plots of changes of this parameter for the most species appeared to be one-vertex, but very different by shape and specific. Two- and multi-vertex plots characterize limited number of species and appear as a result of quantized growth of shoots.

  6. Topology and symmetry analysis of rare earth borocarbides structural family, analogy to hexaferrites and relation to properties

    International Nuclear Information System (INIS)

    Belokoneva, E.L.; Mori, Takao

    2009-01-01

    The topology and symmetry analysis was applied to a series of rare earth borocarbide compounds, which have been gaining increasing interest due to their magnetic and thermoelectric properties. Using principles of OD theory, the crystal structures were deconvoluted into L(1) (B 12 icosahedra and C-B-C chain) layers and L(2) (rare earth and B 6 octahedral) layers. The arrangement of B 12 icosahedra in the L(1) layer is equal to close packed spheres, however, symmetry of the B 12 block lowers symmetry of the resulting layer from P 6/mmm to P 3m1. Both layers, L(1) and L(2) possess symmetry P 3m1 and the conjugation of L(1) with L(2) layers occurs in accordance with the symmetry elements. No disorder may appear here because of equal symmetry of single layers and layer pairs and it is not a classical OD family. Only the increasing of the amount of one type of layers, namely L(1), provides the structural variations. Close analogy to the hexagonal ferrites family has been found. Topology and symmetry analysis reveals principles in the building up of the structural family, gives an insight into the particular order-disorder formation mechanism/criteria of these homologous borocarbide compounds and as the result relation to the properties (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Meljanac, Daniel [Ruder Boskovic Institute, Division of Materials Physics, Zagreb (Croatia); Meljanac, Stjepan; Pikutic, Danijel [Ruder Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia)

    2017-12-15

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincare-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed. (orig.)

  8. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    International Nuclear Information System (INIS)

    Meljanac, Daniel; Meljanac, Stjepan; Pikutic, Danijel

    2017-01-01

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincare-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed. (orig.)

  9. Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries

    Science.gov (United States)

    Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel

    2017-12-01

    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.

  10. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    Science.gov (United States)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2017-07-01

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaître-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa.

  11. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, N.; Giacomini, Alex [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Paliathanasis, Andronikos [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Durban University of Technology, Institute of Systems Science, Durban (South Africa)

    2017-07-15

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaitre-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa. (orig.)

  12. Pairing symmetries of several iron-based superconductor families and some similarities with cuprates and heavy-fermions

    Directory of Open Access Journals (Sweden)

    Das Tanmoy

    2012-03-01

    Full Text Available We show that, by using the unit-cell transformation between 1 Fe per unit cell to 2 Fe per unit cell, one can qualitatively understand the pairing symmetry of several families of iron-based superconductors. In iron-pnictides and iron-chalcogenides, the nodeless s±-pairing and the resulting magnetic resonance mode transform nicely between the two unit cells, while retaining all physical properties unchanged. However, when the electron-pocket disappears from the Fermi surface with complete doping in KFe2As2, we find that the unit-cell invariant requirement prohibits the occurrence of s±-pairing symmetry (caused by inter-hole-pocket nesting. However, the intra-pocket nesting is compatible here, which leads to a nodal d-wave pairing. The corresponding Fermi surface topology and the pairing symmetry are similar to Ce-based heavy-fermion superconductors. Furthermore, when the Fermi surface hosts only electron-pockets in KyFe2-xSe2, the inter-electron-pocket nesting induces a nodeless and isotropic d-wave pairing. This situation is analogous to the electron-doped cuprates, where the strong antiferromagnetic order creates similar disconnected electron-pocket Fermi surface, and hence nodeless d-wave pairing appears. The unit-cell transformation in KyFe2-xSe2 exhibits that the d-wave pairing breaks the translational symmetry of the 2 Fe unit cell, and thus cannot be realized unless a vacancy ordering forms to compensate for it. These results are consistent with the coexistence picture of a competing order and nodeless d-wave superconductivity in both cuprates and KyFe1.6Se2.

  13. The near-symmetry of proteins.

    Science.gov (United States)

    Bonjack-Shterengartz, Maayan; Avnir, David

    2015-04-01

    The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook. © 2014 Wiley Periodicals, Inc.

  14. Parastatistics and gauge symmetries

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1982-01-01

    A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed

  15. A 3-3-1 model with right-handed neutrinos based on the Δ (27) family symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria and Centro Cienti fico-Tecnologico de Valparaiso, Valparaiso (Chile); Long, H.N. [Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam); Vien, V.V. [Duy Tan University, Institute of Research and Development, Da Nang City (Viet Nam); Tay Nguyen University, Department of Physics, Buon Ma Thuot, DakLak (Viet Nam)

    2016-05-15

    We present the first multiscalar singlet extension of the original 3-3-1 model with right-handed neutrinos, based on the Δ (27) family symmetry, supplemented by the Z{sub 4} x Z{sub 8} x Z{sub 14} flavor group, consistent with current low energy fermion flavor data. In the model under consideration, the light active neutrino masses are generated from a double seesaw mechanism and the observed pattern of charged fermion masses and quark mixing angles is caused by the breaking of the Δ (27) x Z{sub 4} x Z{sub 8} x Z{sub 14} discrete group at very high energy. Our model has only 14 effective free parameters, which are fitted to reproduce the experimental values of the 18 physical observables in the quark and lepton sectors. The obtained physical observables for the quark sector agree with their experimental values, whereas those for the lepton sector also do, only for the inverted neutrino mass hierarchy. The normal neutrino mass hierarchy scenario of the model is disfavored by the neutrino oscillation experimental data. We find an effective Majorana neutrino mass parameter of neutrinoless double beta decay of m{sub ββ} = 22 meV, a leptonic Dirac CP violating phase of 34 {sup circle}, and a Jarlskog invariant of about 10{sup -2} for the inverted neutrino mass spectrum. (orig.)

  16. NMR, symmetry elements, structure and phase transitions in the argyrodite family

    Science.gov (United States)

    Gaudin, E.; Taulelle, F.; Boucher, F.; Evain, M.

    1998-02-01

    Cu7PSe6 belongs to a family of structures known as the argyrodites. It undergoes two phases transitions. The high temperature phase has been determined by X-ray diffraction. It has a Foverline{4}3m space group. Medium temperature phases have been refined using a non-harmonic technique and the space group proposed is P213. The low temperature phase had an apparent space group of Foverline{4}3m also. Use of X-ray diffraction and NMR together has allowed to determine the space groups of all phases as being respectively Foverline{4}3m, P213 and Pmn21. Positioning of disordered coppers in the structure is therefore possible and the structure can be described by connex polyhedra of PSe3-4 and SeCux-2_x. The phase transitions can be understood by an ordered motion of SeCux-2x polyhedra. If these polyhedra set in motion independently two transitions are to be observed, if they are coupled only one is observed. Cu7PSe6 appartient à une famille de composés connus sous le nom d'argyrodites. Cu7PSe6 possède deux transitions de phase. La structure de haute température a été déterminée par diffraction des rayons X. Elle se décrit par le groupe d'espace Foverline{4}3m. La phase de moyenne température a été raffinée en utilisant une technique non-harmonique et le groupe d'espace proposé est P213. La phase de basse température possède également un groupe d'espace apparent Foverline{4}3m. En utilisant ensemble la diffraction des rayons X et la RMN, il a été possible de déterminer les groupes d'espace de toutes les phases comme étant respectivement Foverline{4}3m, P213 et Pmn21. Placer les atomes de cuivre, désordonnés, dans la structure devient alors possible et la structure peut se décrire comme un ensemble de polyèdres connexes de PSe3-4 et SeCux-2_x. Les transitions de phases se décrivent alors comme des mouvements ordonnés des polyèdres SeCux-2_x. Si ces polyèdres se mettent en mouvement indépendamment, deux transitions de phases sont attendues, si

  17. Model for particle masses, flavor mixing, and CP violation, based on spontaneously broken discrete chiral symmetry as the origin of families

    International Nuclear Information System (INIS)

    Adler, S.L.

    1999-01-01

    We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z 6 chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S 3 cyclic permutation symmetry the three-Higgs-doublet model gives a open-quotes democraticclose quotes mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates CP, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. copyright 1998 The American Physical Society

  18. Quantum symmetries in particle interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1983-01-01

    The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields

  19. Partial dynamical symmetry in the symplectic shell model

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. [TRIUMF, Vancouver, British Columbia (Canada); Leviatan, A. [Hebrew Univ., Racah Inst. of Physics, Jerusalem (Israel)

    2000-08-01

    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the interacting boson model are considered. (author)

  20. Partial dynamical symmetry in the symplectic shell model

    International Nuclear Information System (INIS)

    Escher, Jutta; Leviatan, Amiram

    2002-01-01

    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the interacting boson model are considered

  1. Unconventional Superconductivity in La(7)Ir(3) Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry.

    Science.gov (United States)

    Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P

    2015-12-31

    The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25  K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.

  2. The symmetry of large N=4 holography

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Peng, Cheng

    2014-01-01

    For the proposed duality relating a family of N=4 superconformal coset models to a certain supersymmetric higher spin theory on AdS 3 , the asymptotic symmetry algebra of the bulk description is determined. It is shown that, depending on the choice of the boundary charges, one may obtain either the linear or the non-linear superconformal algebra on the boundary. We compare the non-linear version of the asymptotic symmetry algebra with the non-linear coset algebra and find non-trivial agreement in the ’t Hooft limit, thus giving strong support for the proposed duality. As a by-product of our analysis we also show that the W ∞ symmetry of the coset theory is broken under the exactly marginal perturbation that preserves the N=4 superconformal algebra

  3. Dragging Maintaining Symmetry: Can It Generate the Concept of Inclusivity as well as a Family of Shapes?

    Science.gov (United States)

    Forsythe, Susan K.

    2015-01-01

    This article describes a project using Design Based Research methodology to ascertain whether a pedagogical task based on a dynamic figure designed in a Dynamic Geometry Software (DGS) program could be instrumental in developing students' geometrical reasoning. A dragging strategy which I have named "Dragging Maintaining Symmetry" (DMS)…

  4. Dihedral flavor symmetries

    International Nuclear Information System (INIS)

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  5. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  6. Symmetry witnesses

    Science.gov (United States)

    Aniello, Paolo; Chruściński, Dariusz

    2017-07-01

    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.

  7. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  8. Charge symmetry at the partonic level

    Energy Technology Data Exchange (ETDEWEB)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  9. Heavy charged scalars from c\\overline{s} fusion: a generic search strategy applied to a 3HDM with U(1) × U(1) family symmetry

    Science.gov (United States)

    Camargo-Molina, José Eliel; Mandal, Tanumoy; Pasechnik, Roman; Wessén, Jonas

    2018-03-01

    We describe a class of three Higgs doublet models (3HDMs) with a softly broken U(1) × U(1) family symmetry that enforces a Cabibbo-like quark mixing while forbidding tree-level flavour changing neutral currents. The hierarchy in the observed quark masses is partly explained by a softer hierarchy in the vacuum expectation values of the three Higgs doublets. As a consequence, the physical scalar spectrum contains a Standard Model (SM) like Higgs boson h 125 while exotic scalars couple the strongest to the second quark family, leading to rather unconventional discovery channels that could be probed at the Large Hadron Collider. In particular, we describe a search strategy for the lightest charged Higgs boson H ±, through the process c\\overline{s}\\to {H}+\\to {W}+{h}_{125} , using a multivariate analysis that leads to an excellent discriminatory power against the SM background. Although the analysis is applied to the proposed class of 3HDMs, we employ a model-independent formulation such that it can be applied to any other model with the same discovery channel.

  10. Conformal field theory with gauge symmetry

    CERN Document Server

    Ueno, Kenji

    2008-01-01

    This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of

  11. Description of the atomic disorder (local order) in crystals by the mixed-symmetry method

    Science.gov (United States)

    Dudka, A. P.; Novikova, N. E.

    2017-11-01

    An approach to the description of local atomic disorder (short-range order) in single crystals by the mixed-symmetry method based on Bragg scattering data is proposed, and the corresponding software is developed. In defect-containing crystals, each atom in the unit cell can be described by its own symmetry space group. The expression for the calculated structural factor includes summation over different sets of symmetry operations for different atoms. To facilitate the search for new symmetry elements, an "atomic disorder expert" was developed, which estimates the significance of tested models. It is shown that the symmetry lowering for some atoms correlates with the existence of phase transitions (in langasite family crystals) and the anisotropy of physical properties (in rare-earth dodecaborides RB12).

  12. Partial dynamical symmetry and the suppression of chaos

    International Nuclear Information System (INIS)

    Whelan, N.; Alhassid, Y.; Leviatan, A.

    1993-01-01

    Partial dynamical symmetry is a situation in which the Hamiltonian does not have a certain symmetry yet a subset of its eigenstates does. It is shown that partial dynamical symmetry may cause suppression of chaos even in cases where the fraction of states which has the symmetry vanishes in the classical limit. The average entropy associated with the symmetry is a sensitive quantum measure of the partial symmetry and its effect on the chaotic dynamics

  13. Partial dynamical symmetry and the suppression of chaos

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, N.; Alhassid, Y. (Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06511 (United States)); Leviatan, A. (Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel))

    1993-10-04

    Partial dynamical symmetry is a situation in which the Hamiltonian does not have a certain symmetry yet a subset of its eigenstates does. It is shown that partial dynamical symmetry may cause suppression of chaos even in cases where the fraction of states which has the symmetry vanishes in the classical limit. The average entropy associated with the symmetry is a sensitive quantum measure of the partial symmetry and its effect on the chaotic dynamics.

  14. Breaking Symmetries

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2010-11-01

    Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.

  15. Symmetries in geology and geophysics.

    Science.gov (United States)

    Turcotte, D L; Newman, W I

    1996-12-10

    Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth's topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.

  16. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  17. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  18. Scale symmetry and virial theorem

    International Nuclear Information System (INIS)

    Westenholz, C. von

    1978-01-01

    Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework

  19. Gauge origin of discrete flavor symmetries in heterotic orbifolds

    Directory of Open Access Journals (Sweden)

    Florian Beye

    2014-09-01

    Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.

  20. Family unification in five and six dimensions

    International Nuclear Information System (INIS)

    Babu, K.S.; Barr, S.M.; Kyae, Bumseok

    2002-01-01

    In family unification models, all three families of quarks and leptons are grouped together into an irreducible representation of a simple gauge group, thus unifying the standard model gauge symmetries and a gauged family symmetry. Large orthogonal groups, and the exceptional groups E 7 and E 8 , have been much studied for family unification. The main theoretical difficulty of family unification is the existence of mirror families at the weak scale. It is shown here that family unification without mirror families can be realized in simple five-dimensional and six-dimensional orbifold models similar to those recently proposed for SU(5) and SO(10) grand unification. It is noted that a family unification group that survived to near the weak scale and whose coupling extrapolated to high scales unified with those of the standard model would be evidence, accessible in principle at low energy, of the existence of small (Planckian or GUT-scale) extra dimensions

  1. Symmetry gauge theory for paraparticles

    International Nuclear Information System (INIS)

    Kursawe, U.

    1986-01-01

    In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de

  2. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  3. Symmetry in chemistry

    CERN Document Server

    Jaffé, Hans H

    1977-01-01

    This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.

  4. Partial dynamical symmetry in a fermion system

    Science.gov (United States)

    Escher; Leviatan

    2000-02-28

    The relevance of the partial dynamical symmetry concept for an interacting fermion system is demonstrated. Hamiltonians with partial SU(3) symmetry are presented in the framework of the symplectic shell model of nuclei and shown to be closely related to the quadrupole-quadrupole interaction. Implications are discussed for the deformed light nucleus 20Ne.

  5. Symmetry breaking and restoration in gauge theories

    International Nuclear Information System (INIS)

    Natale, A.A.

    A review is made of the utilization of the Higgs mechanism in spontaneous symmetry breaking. It is shown that such as ideas came from an analogy with the superconductivity phenomenological theory based on a Ginzburg-Landau lagrangean. The symmetry restoration through the temperature influence is studied. (L.C.) [pt

  6. From symmetries to number theory

    International Nuclear Information System (INIS)

    Tempesta, P.

    2009-01-01

    It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.

  7. Symmetry in labeled transition systems

    NARCIS (Netherlands)

    I.A. van Langevelde

    2003-01-01

    textabstractSymmetry is defined for labeled transition systems, and it is shown how symmetrical systems can be symmetrically decomposed into components. The central question is under what conditions one such component may represent the whole system, in the sense that one symmetrical system is

  8. Paying Attention to Symmetry

    OpenAIRE

    Kootstra, Gert; Nederveen, Arco; de Boer, Bart

    2008-01-01

    Humans are very sensitive to symmetry in visual patterns. Symmetry is detected and recognized very rapidly. While viewing symmetrical patterns eye fixations are concentrated along the axis of symmetry or the symmetrical center of the patterns. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. These models do not take symmetry into account. In this paper, we discuss local symmet...

  9. Reflection symmetry-integrated image segmentation.

    Science.gov (United States)

    Sun, Yu; Bhanu, Bir

    2012-09-01

    This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.

  10. Scale symmetry of quantum solitons

    International Nuclear Information System (INIS)

    Chepilko, N.M.; Fujii, K.; Kobushkin, A.P.

    1991-01-01

    A collective-coordinate Lagrangian for a rotating and vibrating quantum soliton in the nonlinear σ-model is shown to possess a symmetry under scale transformation of the chiral field. Using this symmetry an integrodifferential equation for the chiral angle is obtained. A consistency condition between this equation and the Schroedinger equation for the quantum soliton is also discussed. At limiting cases (a vibrating, but not rotating soliton; or a rotating, but not vibrating soliton) the integrodifferential ones and the chiral angle becomes independent of the solution of the Schroedinger equation. 7 refs

  11. Symmetry analysis of cellular automata

    International Nuclear Information System (INIS)

    García-Morales, V.

    2013-01-01

    By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.

  12. Symmetry and bifurcations of momentum mappings

    International Nuclear Information System (INIS)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface. (orig.)

  13. Symmetry and bifurcations of momentum mappings

    Science.gov (United States)

    Arms, Judith M.; Marsden, Jerrold E.; Moncrief, Vincent

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.

  14. On additional symmetries of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Orlov, A.Yu.; Shul'man, E.I.; AN SSSR, Moscow. Inst. Teoreticheskoj Fiziki)

    1985-01-01

    Noncommutative algebra of apparently dependent on coordinates (additional) generators of symmetries of one-dimensional nonlinear evolution equations (NEE), solved by the inverse scattering method, is considered. A regular method is suggested to obtain evidently dependent on x and t symmetries of the nonlinear Schroedinger equation and L-A-pairs for them. It is shown that generators of additional symmetries form conformal algebra

  15. Optimal Spatial Harvesting Strategy and Symmetry-Breaking

    International Nuclear Information System (INIS)

    Kurata, Kazuhiro; Shi Junping

    2008-01-01

    A reaction-diffusion model with logistic growth and constant effort harvesting is considered. By minimizing an intrinsic biological energy function, we obtain an optimal spatial harvesting strategy which will benefit the population the most. The symmetry properties of the optimal strategy are also discussed, and related symmetry preserving and symmetry breaking phenomena are shown with several typical examples of habitats

  16. Symmetry and emergence

    Science.gov (United States)

    Witten, Edward

    2018-02-01

    In a modern understanding of particle physics, global symmetries are approximate and gauge symmetries may be emergent. This view, which has echoes in condensed-matter physics, is supported by a variety of arguments from experiment and theory.

  17. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    This article elucidates the important role the no- tion of symmetry has played in physics. It dis- cusses the proof of one of the important theorems of quantum mechanics, viz., Wigner's Symmetry. Representation Theorem. It also shows how the representations of various continuous and dis- crete symmetries follow from the ...

  18. Weak C* Hopf Symmetry

    OpenAIRE

    Rehren, K. -H.

    1996-01-01

    Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.

  19. Symmetry, asymmetry and dissymmetry

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zollner, G.

    1987-01-01

    The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr

  20. Polynomial Graphs and Symmetry

    Science.gov (United States)

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  1. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  2. Symmetries and conservation laws for generalized Hamiltonian systems

    International Nuclear Information System (INIS)

    Cantrijn, F.; Sarlet, W.

    1981-01-01

    A class of dynamical systems which locally correspond to a general first-order system of Euler-Lagrange equations is studied on a contact manifold. These systems, called self-adjoint, can be regarded as generalizations of (time-dependent) Hamiltonian systems. It is shown that each one-parameter family of symmetries of the underlying contact form defines a parameter-dependent constant of the motion and vice versa. Next, an extension of the classical concept of canonical transformations is introduced. One-parameter families of canonical transformations are studied and shown to be generated as solutions of a self-adjoint system. Some of the results are illustrated on the Emden equation. (author)

  3. Dynamical symmetry breakdown in SU(5) and SO(10)

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1983-09-01

    Some restrictions imposed upon Grand Unified Theories by dynamical symmetry breakdown are examined. It is observed in particular, that theories with SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the fermions will acquire mass at the Grand Unified scale. On the other hand, the SO(10) group, with 3 families is free from this problem. (Author) [pt

  4. Baryon spectroscopy: symmetries, symmetry breaking and hadronic loops

    International Nuclear Information System (INIS)

    Zenczykowski, P.

    1985-01-01

    The problem of hadronic loop effects in baryon spectroscopy is thoroughly discussed. It is argued that such effects very likely constitute the dominant contribution to the observed splitting and mixing pattern of the (56,0 + ) and (70,1 - ) baryon multiplets. In particular, this dominance is demonstrated in the original Isgur-Karl-Koniuk model of baryons, in which hadronic loops are shown to provide an explanation for at least 2/3 of the observed size of splittings, both for the ground-state and excited baryons. The unitarity-induced mixing angles in the (70,1 - )-multiplet are also shown to be in good agreement with experiment. For the ground-state baryons the formula relating Σ-Λ and Δ-Ν mass differences - as originally derived by de Rujula, Georgi and Glashow from the single gluon exchange-is obtained from the hadronic loop effects as well. This (and other) results are derived after taking into account a complete set of symmetry-related hadronic loops. Consideration of such a complete set of symmetry-related processes is shown to be crucial in restoring proper symmetry properties of the calculated spectrum. 74 refs., 10 figs., 4 tabs. (author)

  5. Symmetries of nonlinear ordinary differential equations: The ...

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Lie point symmetries; -symmetries; Noether symmetries; contact symmetries; adjoint symmetries; nonlocal symmetries; hidden symmetries; ... 620 024, India; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, India ...

  6. Symmetries in geology and geophysics

    Science.gov (United States)

    Turcotte, Donald L.; Newman, William I.

    1996-01-01

    Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters. PMID:11607719

  7. Symmetries and Geometry

    Science.gov (United States)

    Witten, Edward

    2016-03-01

    In this talk, I will describe global and gauge symmetries and the interplay between them. The meaning of global symmetries is clear: they act on physical observables. Gauge symmetries are more elusive as they typically do not act on physical observables. Gauge symmetries are redundancies in the mathematical description of a physical system rather than properties of the system itself. The existence of nonperturbative dualities makes it clear that this distinction is unavoidable. Yet in our best understanding the gauge symmetries are deeper. The lepton number symmetries that are probed by the wonderful experimental results that will be reported in this session give an excellent illustration. They are regarded in the Standard Model as indirect consequences of gauge symmetries and they are expected to be only approximate. This expectation is supported by the observation of neutrino oscillations.

  8. Generalized global symmetries

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian

    2015-01-01

    A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.

  9. Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach

    Energy Technology Data Exchange (ETDEWEB)

    Cicogna, G. [Dipartimento di Fisica “E.Fermi” dell' Università di Pisa and INFN, Sez. di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Pegoraro, F., E-mail: pegoraro@df.unipi.it [Dipartimento di Fisica “E.Fermi” dell' Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2015-02-15

    We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.

  10. Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy

    International Nuclear Information System (INIS)

    Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.

    2013-01-01

    Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)

  11. Symmetry and symmetry breaking in quantum mechanics

    International Nuclear Information System (INIS)

    Chomaz, Philippe

    1998-01-01

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation

  12. Lie-algebra approach to symmetry breaking

    International Nuclear Information System (INIS)

    Anderson, J.T.

    1981-01-01

    A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian

  13. Discrete symmetries and their stringy origin

    International Nuclear Information System (INIS)

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  14. Superdeformations and fermion dynamical symmetries

    International Nuclear Information System (INIS)

    Wu, Cheng-Li

    1990-01-01

    In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs

  15. Symmetries in nature

    International Nuclear Information System (INIS)

    Mainzer, K.

    1988-01-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs

  16. Exploring Symmetry to Assist Alzheimer's Disease Diagnosis

    Science.gov (United States)

    Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.

  17. Symmetries applied to reactor calculations

    International Nuclear Information System (INIS)

    Makai, M.

    1982-03-01

    Three problems of a reactor-calculational model are discussed with the help of symmetry considerations. 1/ A coarse mesh method applicable to any geometry is derived. It is shown that the coarse mesh solution can be constructed from a few standard boundary value problems. 2/ A second stage homogenization method is given based on the Bloch theorem. This ensures the continuity of the current and the flux at the boundary. 3/ The validity of the micro-macro separation is shown for heterogeneous lattices. A formula for the neutron density is derived for cell homogenization. (author)

  18. A Bootstrap Test for Conditional Symmetry

    OpenAIRE

    Liangjun Su; Sainan Jin

    2005-01-01

    This paper proposes a simple consistent nonparametric test of conditional symmetry based on the principle of characteristic functions. The test statistic is shown to be asymptotically normal under the null hypothesis of conditional symmetry and consistent against any conditional asymmetric distributions. We also study the power against local alternatives, propose a bootstrap version of the test, and conduct a small Monte Carlo simulation to evaluate the finitesample performance of the test.

  19. Discrete symmetries and solar neutrino mixing

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D.; Mayr, P.; Nilles, H.P. (Physik Dept., Technische Univ. Muenchen, Garching (Germany) Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Muenchen (Germany))

    1992-05-21

    We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z{sub N}-symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.).

  20. Discrete symmetries and solar neutrino mixing

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Mayr, P.; Nilles, H.P.

    1992-01-01

    We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z N -symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.)

  1. Partial dynamical symmetry

    International Nuclear Information System (INIS)

    Alhassid, Y.; Leviatan, A.

    1993-01-01

    A novel symmetry structure, partial dynamical symmetry is introduced. The Hamiltonian is not invariant under the transformations of a group G and irreps of G are mixed in its eigenstates. it possesses, however, a partial set of eigenstates which do have good symmetry and can be labeled by irreps of G. A general algorithm to construct such Hamiltonians for a semi-simple group G is presented. (Author) 6 refs

  2. Realization of chiral symmetry in the ERG

    International Nuclear Information System (INIS)

    Echigo, Yoshio; Igarashi, Yuji

    2011-01-01

    We discuss within the framework of the ERG how chiral symmetry is realized in a linear σ model. A generalized Ginsparg-Wilson relation is obtained from the Ward-Takahashi identities for the Wilson action assumed to be bilinear in the Dirac fields. We construct a family of its non-perturbative solutions. The family generates the most general solutions to the Ward-Takahashi identities. Some special solutions are discussed. For each solution in this family, chiral symmetry is realized in such a way that a change in the Wilson action under non-linear symmetry transformation is canceled with a change in the functional measure. We discuss that the family of solutions reduces via a field redefinition to a family of the Wilson actions with some composite object of the scalar fields which has a simple transformation property. For this family, chiral symmetry is linearly realized with a continuum analog of the operator extension of γ 5 used on the lattice. We also show that there exist some appropriate Dirac fields which obey the standard chiral transformations with γ 5 in contrast to the lattice case. Their Yukawa interaction with scalars, however, becomes non-linear. (author)

  3. Nobel Prize for work on broken symmetries

    CERN Multimedia

    2008-01-01

    The 2008 Nobel Prize for Physics goes to three physicists who have worked on broken symmetries in particle physics. The announcement of the 2008 Nobel Prize for physics was transmitted to the Globe of Science and Innovation via webcast on the occasion of the preview of the Nobel Accelerator exhibition.On 7 October it was announced that the Royal Swedish Academy of Sciences had awarded the 2008 Nobel Prize for physics to three particle physicists for their fundamental work on the mechanisms of broken symmetries. Half the prize was awarded to Yoichiro Nambu of Fermilab for "the discovery of the mechanism of spontaneous broken symmetry in subatomic physics". The other half is shared by Makato Kobayashi of Japan’s KEK Institute and Toshihide Maskawa of the Yukawa Institute at the University of Kyoto "for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in Nature". At th...

  4. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  5. Quantum symmetry for pedestrians

    International Nuclear Information System (INIS)

    Mack, G.; Schomerus, V.

    1992-03-01

    Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)

  6. Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1987-01-01

    It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal

  7. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  8. Charged fluids with symmetries

    Indian Academy of Sciences (India)

    metric tensor field and generate constants of the motion along null geodesics for massless particles. Conformal symmetries arise in various physical applications. The existence of conformal symmetries in relativistic cosmological models, with restrictions on the matter content and fluid four-velocity, have been extensively ...

  9. Symmetry structures and conservation laws of Petrov III and Papapetrou metrics

    Science.gov (United States)

    Bokhari, A. H.; Zaman, F. D.; Narain, R.; Kara, A. H.

    2013-07-01

    In this paper, Noether symmetries of some spacetime metrics are studied. Considering invariance of the action integral under one parameter Lie group of transformations, it is shown that a large class of Noether symmetries is found. In particular, it is shown that the isometries form a sub-Lie algebra of Noether symmetries.

  10. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  11. Symmetry Adapted Basis Sets

    DEFF Research Database (Denmark)

    Avery, John Scales; Rettrup, Sten; Avery, James Emil

    In theoretical physics, theoretical chemistry and engineering, one often wishes to solve partial differential equations subject to a set of boundary conditions. This gives rise to eigenvalue problems of which some solutions may be very difficult to find. For example, the problem of finding...... in such problems can be much reduced by making use of symmetry-adapted basis functions. The conventional method for generating symmetry-adapted basis sets is through the application of group theory, but this can be difficult. This book describes an easier method for generating symmetry-adapted basis sets...

  12. Symmetry generators in singular theories

    International Nuclear Information System (INIS)

    Lavrov, P.M.; Tyutin, I.V.

    1989-01-01

    It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)

  13. Neutrino mass and mixing with discrete symmetry

    Science.gov (United States)

    King, Stephen F.; Luhn, Christoph

    2013-05-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).

  14. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  15. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  16. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  17. Symmetries of Trautman retarded radial coordinates

    Science.gov (United States)

    Kolanowski, Maciej; Lewandowski, Jerzy

    2018-02-01

    We consider spacetime described by an observer that uses a Trautman retarded radial coordinate system. Given a metric tensor, we find all the local symmetries of the coordinates. They set a 10D family that can be parametrized by Poincaré algebra. This result is similar to the symmetries of an observer using the Gaussian normal spacetime radial coordinates and experiencing algebra deformation induced by the spacetime Riemann tensor. A new, surprising property of the retarded coordinates is a generic lack of smoothness in the symmetries. We show that, in general, the symmetries are not twice differentiable. In other words, a family of smooth symmetries is smaller than in the Gaussian normal spacetime coordinate case. We demonstrate examples of that non-smoothness and find the necessary conditions for the differentiability to the second order. We also discuss the consequences and relevance of that result for the geometric relational observables program. One can interpret our result by the fact that Trautman coordinates provide gauge conditions stronger than the Gaussian spacetime radial gauge.

  18. Symmetry and bifurcations of momentum mappings

    Energy Technology Data Exchange (ETDEWEB)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1981-01-01

    The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.

  19. Interactions between constituent single symmetries in multiple symmetry

    NARCIS (Netherlands)

    Treder, M.S.; Vloed, G. van der; Helm, P.A. van der

    2011-01-01

    As a rule, the discriminability of multiple symmetries from random patterns increases with the number of symmetry axes, but this number does not seem to be the only determinant. In particular, multiple symmetries with orthogonal axes seem better discriminable than multiple symmetries with

  20. Partial Dynamical Symmetry in a Many-Fermion System

    International Nuclear Information System (INIS)

    Escher, J.; Leviatan, A.

    1999-01-01

    Partial dynamical symmetry (PDS) describes a situation in which some eigenstates exhibit a symmetry which the associated Hamiltonian does not share. We present a family of fermionic Hamiltonians with partial SU(3) symmetry in the framework of the Symplectic Shell Model. We briefly review the symplectic theory and establish a relation between the PDS Hamiltonians and commonly employed symplectic Hamiltonians. Characteristics of the PDS eigenstates are discussed and the resulting spectra are compared to those of real nuclei. We point out similarities and differences between the fermion case and a recently established partial SU(3) symmetry in the Interacting Boson Model

  1. Partially integrable nonlinear equations with one higher symmetry

    International Nuclear Information System (INIS)

    Mikhailov, A V; Novikov, V S; Wang, J P

    2005-01-01

    In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function. (letter to the editor)

  2. Low's subleading soft theorem as a symmetry of QED.

    Science.gov (United States)

    Lysov, Vyacheslav; Pasterski, Sabrina; Strominger, Andrew

    2014-09-12

    It was shown by Low in the 1950s that the subleading terms of soft-photon S-matrix elements obey a universal linear relation. In this Letter, we give a new interpretation to this old relation, for the case of massless QED, as an infinitesimal symmetry of the S matrix. The symmetry is shown to be locally generated by a vector field on the conformal sphere at null infinity. Explicit expressions are constructed for the associated charges as integrals over null infinity and shown to generate the symmetry. These charges are local generalizations of electric and magnetic dipole charges.

  3. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry.

    Science.gov (United States)

    Hilbert, Manuel; Erat, Michèle C; Hachet, Virginie; Guichard, Paul; Blank, Iris D; Flückiger, Isabelle; Slater, Leanne; Lowe, Edward D; Hatzopoulos, Georgios N; Steinmetz, Michel O; Gönczy, Pierre; Vakonakis, Ioannis

    2013-07-09

    Centrioles are evolutionary conserved organelles that give rise to cilia and flagella as well as centrosomes. Centrioles display a characteristic ninefold symmetry imposed by the spindle assembly abnormal protein 6 (SAS-6) family. SAS-6 from Chlamydomonas reinhardtii and Danio rerio was shown to form ninefold symmetric, ring-shaped oligomers in vitro that were similar to the cartwheels observed in vivo during early steps of centriole assembly in most species. Here, we report crystallographic and EM analyses showing that, instead, Caenorhabotis elegans SAS-6 self-assembles into a spiral arrangement. Remarkably, we find that this spiral arrangement is also consistent with ninefold symmetry, suggesting that two distinct SAS-6 oligomerization architectures can direct the same output symmetry. Sequence analysis suggests that SAS-6 spirals are restricted to specific nematodes. This oligomeric arrangement may provide a structural basis for the presence of a central tube instead of a cartwheel during centriole assembly in these species.

  4. Conformal higher-spin symmetries in twistor string theory

    Directory of Open Access Journals (Sweden)

    D.V. Uvarov

    2014-12-01

    Full Text Available It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra contains psl(4|4,R superalgebra. In quantum theory this infinite-dimensional symmetry breaks down to SL(4|4,R one.

  5. Conformal higher-spin symmetries in twistor string theory

    Energy Technology Data Exchange (ETDEWEB)

    Uvarov, D.V., E-mail: d_uvarov@hotmail.com

    2014-12-15

    It is shown that similarly to massless superparticle, classical global symmetry of the Berkovits twistor string action is infinite-dimensional. We identify its superalgebra, whose finite-dimensional subalgebra contains psl(4|4,R) superalgebra. In quantum theory this infinite-dimensional symmetry breaks down to SL(4|4,R) one.

  6. Dynamical symmetry and higher-order interactions

    International Nuclear Information System (INIS)

    Van Isacker, P.

    1999-01-01

    It is shown that the concept of dynamical symmetry is enriched by increasing the order the interactions between the constituent particles of a given many-body-system. The idea is illustrated with an analysis of higher-order interactions in the interacting boson model. (author)

  7. Dynamical symmetry and higher-order interactions

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    1999-07-01

    It is shown that the concept of dynamical symmetry is enriched by increasing the order the interactions between the constituent particles of a given many-body-system. The idea is illustrated with an analysis of higher-order interactions in the interacting boson model. (author)

  8. Chiral symmetry breaking in finite quantum electrodynamics

    International Nuclear Information System (INIS)

    Montero, J.C.; Pleitez, V.

    1987-01-01

    The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt

  9. Spinor Structure and Internal Symmetries

    Science.gov (United States)

    Varlamov, V. V.

    2015-10-01

    Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.

  10. Higher order Lie-Baecklund symmetries of evolution equations

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.

    1983-10-01

    We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)

  11. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  12. Symmetry transforms for ideal magnetohydrodynamics equilibria.

    Science.gov (United States)

    Bogoyavlenskij, Oleg I

    2002-11-01

    A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)ball lightning with dynamics of plasma inside the fireball.

  13. Topological phases with generalized global symmetries

    Science.gov (United States)

    Yoshida, Beni

    2016-04-01

    We present simple lattice realizations of symmetry-protected topological phases with q -form global symmetries where charged excitations have q spatial dimensions. Specifically, we construct d space-dimensional models supported on a (d +1 ) -colorable graph by using a family of unitary phase gates, known as multiqubit control-Z gates in quantum information community. In our construction, charged excitations of different dimensionality may coexist and form a short-range entangled state which is protected by symmetry operators of different dimensionality. Nontriviality of proposed models, in a sense of quantum circuit complexity, is confirmed by studying protected boundary modes, gauged models, and corresponding gapped domain walls. We also comment on applications of our construction to quantum error-correcting codes, and discuss corresponding fault-tolerant logical gates.

  14. Quantum mechanics and hidden superconformal symmetry

    Science.gov (United States)

    Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.

    2017-12-01

    Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp (1 |2 ) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp (1 |2 ) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev-Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible representations of osp (1 |2 ).

  15. Democracy of internal symmetries in supersymmetrical quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lopuszanski, J.T.

    1981-12-01

    The freedom of choice of some discrete and internal symmetries in the supersymmetric, massive, interacting quantum field theory is discussed. It is shown that the discrete symmetry consisting of changing the sign of some (not all) scalar fields is incompatible with the supersymmetric structure of the theory. It is further demonstrated that an internal symmetry which transforms only some of the fields of fixed spin leaving the other fields invariant and which acts nontrivially on the supercharges can not be admitted as a symmetry; although it can be a good internal symmetry in absence of supersymmetric covariance. Moreover, in case of a model consisting of scalar, spinor and vector fields even a symmetry which transforms all of the scalar (vector) fields leaving spinor and vector (scalar) fields unaffected is ruled out provided it acts nontrivially on some of the supercharges.

  16. Newton–Hooke-type symmetry of anisotropic oscillators

    International Nuclear Information System (INIS)

    Zhang, P.M.; Horvathy, P.A.; Andrzejewski, K.; Gonera, J.; Kosiński, P.

    2013-01-01

    Rotation-less Newton–Hooke-type symmetry, found recently in the Hill problem, and instrumental for explaining the center-of-mass decomposition, is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton–Hooke symmetry is recovered in the isotropic case. Star escape from a galaxy is studied as an application. -- Highlights: ► Rotation-less Newton–Hooke (NH) symmetry is generalized to an arbitrary anisotropic oscillator. ► The orbit method is used to find the most general case for rotation-less NH symmetry. ► The NH symmetry is decomposed into Heisenberg algebras based on chiral decomposition

  17. Antiunitary symmetry operators in quantum mechanics

    International Nuclear Information System (INIS)

    Carinena, J.F.; Santander, M.

    1981-01-01

    A criterion to decide that some symmetries of a quantum system must be realized as antiunitary operators is given. It is based on some mathematical theorems about the second cohomology group of the symmetry group when expressed in terms of those of a normal subgroup and the corresponding factor group. It is also shown that this criterion implies that the only possibility for the unitary subgroup in the Galilean case is that generated by the space reflection and the connected component containing the identity; otherwise only massless systems would arise. (author)

  18. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2018-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .

  19. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  20. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  1. SU(N) monopoles and Platonic symmetry

    International Nuclear Information System (INIS)

    Houghton, C.J.; Sutcliffe, P.M.

    1997-01-01

    We discuss the ADHMN construction for SU(N) monopoles and show that a particular simplification arises in studying charge N-1 monopoles with minimal symmetry breaking. Using this we construct families of tetrahedrally symmetric SU(4) and SU(5) monopoles. In the moduli space approximation, the SU(4) one-parameter family describes a novel dynamics where the monopoles never separate, but rather, a tetrahedron deforms to its dual. We find a two-parameter family of SU(5) tetrahedral monopoles and compute some geodesics in this submanifold numerically. The dynamics is rich, with the monopoles scattering either once or twice through octahedrally symmetric configurations. copyright 1997 American Institute of Physics

  2. Measures with symmetry properties

    CERN Document Server

    Schindler, Werner

    2003-01-01

    Symmetries and invariance principles play an important role in various branches of mathematics. This book deals with measures having weak symmetry properties. Even mild conditions ensure that all invariant Borel measures on a second countable locally compact space can be expressed as images of specific product measures under a fixed mapping. The results derived in this book are interesting for their own and, moreover, a number of carefully investigated examples underline and illustrate their usefulness and applicability for integration problems, stochastic simulations and statistical applications.

  3. Symmetry and inflation

    International Nuclear Information System (INIS)

    Chimento, Luis P.

    2002-01-01

    We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology

  4. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  5. Discrete symmetries with neutral mesons

    Science.gov (United States)

    Bernabéu, José

    2018-01-01

    Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.

  6. Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hong-Ru; Chen, Lie-Wen; Li, Bao-An

    2007-01-01

    Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence of the symmetry energy E sym (ρ,T) and symmetry free energy F sym (ρ,T) for hot, isospin asymmetric nuclear matter. It is shown that the symmetry energy E sym (ρ,T) generally decreases with increasing temperature while the symmetry free energy F sym (ρ,T) exhibits opposite temperature dependence. The decrement of the symmetry energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite small around the saturation density of nuclear matter. While at very low densities, they differ significantly from each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from the isotopic scaling analysis of intermediate mass fragments (IMF's) in heavy-ion collisions, the resulting density and temperature dependent symmetry energy E sym (ρ,T) is then used to estimate the average freeze-out density of the IMF's

  7. Supersymmetric defect models and mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Kachru, Shamit; Torroba, Gonzalo

    2013-11-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  8. Test of Relativistic Eigenfunctions for Pseudospin Symmetry

    Science.gov (United States)

    Ginocchio, Joseph N.

    2001-10-01

    Pseudospin symmetry has been shown to be a relativistic symmetry of the Dirac Hamiltonian [1] and the generators of this symmetry have been determined [2]. Although the measured energy splittings between pseudospin doublets are small, the eigenfunctions of the doublets have been examined only recently [3]. We show to what extent the pseudospin partners of realistic relativistic mean field eigenfunctions [4] are themselves eigenfunctions of the same Dirac Hamiltonian. 1) J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997). 2) J. N. Ginocchio and A. Leviatan, Phys. Lett. B 425, 1 (1998). 3) J. N. Ginocchio and A. Leviatan, to be published in Phys. Rev. Lett. (2001). 4) J. N. Ginocchio and D. G. Madland, Phys. Rev. C 57, 1167 (1998).

  9. Global aspects of symmetries in sigma models with torsion

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Imperial Coll. of Science and Technology, London

    1994-07-01

    It is shown that non-trivial topological sectors can prevent the quantum mechanical implementation of the symmetries of the classical field equations of sigma models with torsion. The associated anomaly is computed, and it is shown that it depends on the homotopy class of the topological sector of the theory and the group action on the sigma model manifold that generates the symmetries of the classical field equations. (orig.)

  10. Interactions between constituent single symmetries in multiple symmetry.

    Science.gov (United States)

    Treder, Matthias Sebastian; van der Vloed, Gert; van der Helm, Peter A

    2011-07-01

    As a rule, the discriminability of multiple symmetries from random patterns increases with the number of symmetry axes, but this number does not seem to be the only determinant. In particular, multiple symmetries with orthogonal axes seem better discriminable than multiple symmetries with nonorthogonal axes. In six experiments on imperfect two-fold symmetry, we investigated whether this is due to extra structure in the form of so-called correlation rectangles, which arise only in the case of orthogonal axes, or to the relative orientation of the axes as such. The results suggest that correlation rectangles are not perceptually relevant and that the percept of a multiple symmetry results from an orientation-dependent interaction between the constituent single symmetries. The results can be accounted for by a model involving the analysis of symmetry at all orientations, smoothing (averaging over neighboring orientations), and extraction of peaks.

  11. Molecular symmetry and spectroscopy

    CERN Document Server

    Bunker, Philip; Jensen, Per

    2006-01-01

    The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...

  12. Groups and Symmetry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Testing for central symmetry

    NARCIS (Netherlands)

    Einmahl, John; Gan, Zhuojiong

    Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they

  14. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  15. Charged fluids with symmetries

    Indian Academy of Sciences (India)

    conformal Killing vector on the electromagnetic field tensor and the role of Maxwell's equations. 2. Conformal symmetries. Manifolds with structure may admit groups of transformations which preserve this struc- ture. A conformal motion preserves the metric up to a factor and maps null geodesics conformally. A conformal ...

  16. Horror Vacui Symmetry.

    Science.gov (United States)

    Crumpecker, Cheryl

    2003-01-01

    Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)

  17. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  18. SYMMETRY OF COMPOSITE CRYSTALS

    NARCIS (Netherlands)

    VANSMAALEN, S

    1991-01-01

    Composite crystals are crystals that consist of two or more subsystems, in first approximation each one having its own three-dimensional periodicity. The symmetry of these subsystems is then characterized by an ordinary space group. Due to their mutual interaction the true structure consists of a

  19. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  20. Chiral Symmetry, Heavy Quark Symmetry and Bound States

    OpenAIRE

    Yoshida, Yuhsuke

    1995-01-01

    I investigate the bound state problems of lowest-lying mesons and heavy mesons. Chiral symmetry is essential when one consider lowest-lying mesons. Heavy quark symmetry plays an central role in considering the semi-leptonic form factors of heavy mesons. Various properties based on the symmetries are revealed using Bethe-Salpeter equations.

  1. On Symmetries in Optimal Control

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1986-01-01

    We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.

  2. Integrable systems and lie symmetries in classical mechanics

    International Nuclear Information System (INIS)

    Sen, T.

    1986-01-01

    The interrelationship between integrability and symmetries in classical mechanics is studied. Two-dimensional time- and velocity-independent potentials form the domain of the study. It is shown that, contrary to folklore, existence of a single finite symmetry does not ensure integrability. A method due to Darboux is used to construct potentials that admit a time-independent invariant. All potentials admitting invariants linear or quadratic in the momentum coordinates are constructed. These are the only integrable potentials which can be expressed as arbitrary functions of certain arguments. A complete construction of potentials admitting higher-order invariants does not seem possible. However, the necessary general forms for potentials that admit a particular invariant of arbitrary order are found. These invariants must be spherically symmetric in the leading terms. Two kinds of symmetries are studied: point Lie symmetries of the Newtonian equations of motion for conservative potentials, and point Noether symmetries of the action functionals obtained from the standard Lagrangians associated with these potentials. All conservative potentials which admit these symmetries are constructed. The class of potentials admitting Noether symmetries is shown to be a subclass of those admitting Lie symmetries

  3. Symmetry and topology in evolution

    International Nuclear Information System (INIS)

    Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.

    1991-10-01

    This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)

  4. Applications of Classical Scaling Symmetry

    OpenAIRE

    Bludman, Sidney

    2011-01-01

    Any symmetry reduces a second-order differential equation to a first-order equation: variational symmetries of the action (exemplified by central field dynamics) lead to conservation laws, but symmetries of only the equations of motion (exemplified by scale-invariant hydrostatics), yield first-order {\\em non-conservation laws} between invariants. We obtain these conservation laws by extending Noether's Theorem to non-variational symmetries, and present a variational formulation of spherical a...

  5. Behind the Looking-Glass: A Review on Human Symmetry Perception

    OpenAIRE

    Matthias Sebastian Treder

    2010-01-01

    The human visual system is highly proficient in extracting bilateral symmetry from visual input. This paper reviews empirical and theoretical work on human symmetry perception with a focus on recent issues such as its neural underpinnings. Symmetry detection is shown to be a versatile, ongoing visual process that interacts with other visual processes. Evidence seems to converge towards the idea that  symmetry detection is subserved by a preprocessing stage involving spatial filters followed b...

  6. Broken SU(3) symmetry at low spin in {sup 178-186}Os

    Energy Technology Data Exchange (ETDEWEB)

    Bouldjedri, A [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria); Benabderrahmane, M L [Department of Physics, Faculty of Science, University of Constantine, Route Ain El Bey, 25000 Constantine (Algeria)

    2003-07-01

    The test of the SU(3) symmetry near the neutron number N = 104 is extended to the osmium isotopes. It is shown that the available experimental data point towards a slightly broken SU(3) symmetry. This result is analysed theoretically using three mechanisms of symmetry breaking: the effect of SO(6), the consistent Q-formalism and the parameter symmetry of the interacting boson model.

  7. Emergence of Symmetries from Entanglement

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  8. Group analysis and renormgroup symmetries

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.

    1996-01-01

    An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs

  9. Broken symmetries in field theory

    NARCIS (Netherlands)

    Kok, Mark Okker de

    2008-01-01

    The thesis discusses the role of symmetries in Quantum Field Theory. Quantum Field Theory is the mathematical framework to describe the physics of elementary particles. A symmetry here means a transformation under which the model at hand is invariant. Three types of symmetry are distinguished: 1.

  10. Partial symmetries in nuclear spectroscopy

    International Nuclear Information System (INIS)

    Leviatan, A.

    1996-01-01

    The notions of exact, dynamical and partial symmetries are discussed in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. (Author)

  11. String constraints on discrete symmetries in MSSM type II quivers

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fur Theor. Phys.; Cvetic, Mirjam [Univ. of Pennsylvania, Philadelphia PA (United States). Dept. of Physics and Astronomy; Univ. of Maribor (Slovenia). Center for Applied Mathematics and Theoretical Physics; Richter, Robert [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-11-15

    We study the presence of discrete gauge symmetries in D-brane semirealistic compactifications. After establishing the constraints on the transformation behaviour of the chiral matter for the presence of a discrete gauge symmetry we perform a systematic search for discrete gauge symmetries within semi-realistic D-brane realizations, based on four D-brane stacks, of the MSSM and the MSSM with three right-handed neutrinos. The systematic search reveals that Proton hexality, a discrete symmetry which ensures the absence of R-parity violating terms as well as the absence of dangerous dimension 5 proton decay operators, is only rarely realized. Moreover, none of the semi-realistic local D-brane configurations exhibit any family dependent discrete gauge symmetry.

  12. Symmetry chains for the atomic shell model. I. Classification of symmetry chains for atomic configurations

    International Nuclear Information System (INIS)

    Gruber, B.; Thomas, M.S.

    1980-01-01

    In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)

  13. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    International Nuclear Information System (INIS)

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance

  14. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  15. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  16. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...

  17. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  18. Precursors and BRST symmetry

    Science.gov (United States)

    de Boer, Jan; Freivogel, Ben; Kabir, Laurens; Lokhande, Sagar F.

    2017-07-01

    In the AdS/CFT correspondence, bulk information appears to be encoded in the CFT in a redundant way. A local bulk field corresponds to many different non-local CFT operators (precursors). We recast this ambiguity in the language of BRST symmetry, and propose that in the large N limit, the difference between two precursors is a BRST exact and ghost-free term. This definition of precursor ambiguities has the advantage that it generalizes to any gauge theory. Using the BRST formalism and working in a simple model with global symmetries, we re-derive a precursor ambiguity appearing in earlier work. Finally, we show within this model that the obtained ambiguity has the right number of parameters to explain the freedom to localize precursors within different spatial regions of the boundary order by order in the large N expansion.

  19. Symmetry breaking and chaos

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    1999-01-01

    Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field

  20. Symmetry in music

    International Nuclear Information System (INIS)

    Herrero, O F

    2010-01-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  1. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  2. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  3. Gauge U(1 dark symmetry and radiative light fermion masses

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2016-09-01

    Full Text Available A gauge U(1 family symmetry is proposed, spanning the quarks and leptons as well as particles of the dark sector. The breaking of U(1 to Z2 divides the two sectors and generates one-loop radiative masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the phenomenological implications of this new connection between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle associated with this U(1 breaking may be identified with the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC.

  4. Broken Reflection Symmetry

    Science.gov (United States)

    Rugari, Steven Louis

    1992-01-01

    We have carried out a search for broken reflection symmetry in the exotic nucleus ^{114 }Xe. Evidence for broken reflection symmetry has been previously observed in the actinide region, most notably Ra-Th nuclei, and more recently in the neutron rich nuclei ^{144}Ba, ^{146}Ce, and ^{146,148}Nd. This evidence has been discussed in terms of two conceptually different theoretical frameworks, namely alpha clustering and octupole deformation. The alpha clustering model makes global predictions of the relative strengths of enhanced electric dipole (E1) transitions characteristic of broken reflection symmetry, and predicts a dependence on isospin divided by nuclear mass (N-Z) ^2/A^2 of the reduced transition probability, B(E1), where A is the nuclear mass number and N and Z are, respectively, the neutron and proton number. The nuclei studied previously have approximately the same value of (N-Z)^2/A ^2 between 0.033 and 0.05. In ^ {114}Xe this parameter is much different, (N-Z)^2/A^2 =.0028, allowing for a test of the prediction. On the other hand, the octupole model description is less straightforward. Two terms contributing to the calculation of reduced transition strengths are based on the collective liquid drop model of nuclei and have a global dependence on A^2 Z^2. A third term, however, depends explicitly on the shell model description of the valence nucleons and can be large enough to remove this global dependence. The nucleus ^{114}Xe was produced in the heavy ion fusion evaporation reaction ^{60}Ni(^ {58}Ni,2p2n)^{114 }Xe in two separate measurements at Daresbury Laboratory and at Yale University. The nucleus was identified by means of a recoil mass spectrometer in the first reaction and by detection of evaporated neutrons in the second. Gamma ray spectra were collected in coincidence with these triggers using similar gamma detector setups. Information on the angular distributions of the gamma rays was collected for at least three separate angles in each

  5. Classical dynamical systems with the symmetry of the Kepler problem

    International Nuclear Information System (INIS)

    Karloukovski, V.I.

    1978-01-01

    The Hamiltonian dynamical systems of the form of H=1/2G 1 p 2 +1/2G 2 (xp) 2 +G 3 (xp)+U, where Gsub(j) and U are functions of r= √ x 2 , are investigated. The notion of the strict Kepler symmetry is introduced to single out the cases where there is the Runge-Lenz vector quadratic in the momentum. All dynamical systems with this property are found. They depend on an arbitrary function of the distance to the centrum of symmetry and two arbitrary interaction constants. The equations of motion are solved and it is shown explicitly that the orbits are closed. Cases when the strict Kepler symmetry is related to an underlying E(3) symmetry are noted. The breaking of the strict Kepler symmetry and its relation to the precession of the perihelium are discussed

  6. PREFACE: Symmetries in Science XV

    Science.gov (United States)

    Schuch, Dieter; Ramek, Michael

    2012-08-01

    Logo Bregenz, the peaceful monastery of Mehrerau and the Opera on the Floating Stage again provided the setting for the international symposium 'Symmetries in Science'. The series which has been running for more than 30 years brings together leading theoreticians whose area of research is, in one way or another, related to symmetry. Since 1992 the meeting took place biannually in Brengez until 2003. In 2009, with the endorsement of the founder, Professor Bruno Gruber, we succeeded in re-establishing the series without external funding. The resounding success of that meeting encouraged us to continue in 2011 and, following on the enthusiasm and positive feedback of the participants, we expect to continue in 2013. Yet again, our meeting in 2011 was very international in flavour and brought together some 30 participants representing 12 nationalities, half of them from countries outside the European Union (from New Zealand to Mexico, Russia to Israel). The broad spectrum, a mixture of experienced experts and highly-motivated newcomers, the intensive exchange of ideas in a harmonious and relaxed atmosphere and the resulting joint projects are probably the secrets of why this meeting is considered to be so special to its participants. At the resumption in 2009 some leading experts and younger scientists from economically weak countries were unable to attend due to the lack of financial resources. This time, with the very worthy and unbureaucratic support of the 'Vereinigung von Freunden und Förderern der J W Goethe-Universität Frankfurt am Main' (in short: 'Friends and Supporters of the Frankfurt University'), it was possible for all candidates to participate. In particular some young, inspired scientists had the chance of presenting their work to a very competent, but also friendly, audience. We wish to thank the 'Freunde und Förderer' for supporting Symmetries in Science XV. Almost all participants contributed to the publication of this Conference Proceedings. There

  7. On Consistent Nonparametric Statistical Tests of Symmetry Hypotheses

    Directory of Open Access Journals (Sweden)

    Jean-François Quessy

    2016-05-01

    Full Text Available Being able to formally test for symmetry hypotheses is an important topic in many fields, including environmental and physical sciences. In this paper, one concentrates on a large family of nonparametric tests of symmetry based on Cramér–von Mises statistics computed from empirical distribution and characteristic functions. These tests possess the highly desirable property of being universally consistent in the sense that they detect any kind of departure from symmetry as the sample size becomes large. The asymptotic behaviour of these test statistics under symmetry is deduced from the theory of first-order degenerate V-statistics. The issue of computing valid p-values is tackled using the multiplier bootstrap method suitably adapted to V-statistics, yielding elegant, easy-to-compute and quick procedures for testing symmetry. A special focus is put on tests of univariate symmetry, bivariate exchangeability and reflected symmetry; a simulation study indicates the good sampling properties of these tests. Finally, a framework for testing general symmetry hypotheses is introduced.

  8. Symmetries of nonlinear ordinary differential equations: The ...

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Abstract. Lie symmetry analysis is one of the powerful tools to analyse nonlinear ordinary dif- ferential equations. We review the effectiveness of this method in terms of various symmetries. We present the method of deriving Lie point symmetries, contact symmetries, hidden symmetries, nonlocal symmetries ...

  9. Brown Tumor Shown Flare Phenomenon On Bone Scan After Parathyroidectomy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang Ho; Park, Seol Hoon; Baek, So Ra; Chae, Sun Young; Koh, Jung Min; Kim, Jae Seung; Moon, Dae Hyuk; Ryu, Jin Sook [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2009-10-15

    Brown tumor is the benign bone lesion consists of woven bone and fibrous tissue without matrix, which develop due to chronic excessive osteoclastic activity such as hyperparathyroidism. Usually they appear with normal uptake or occasionally focally increased uptake on bone scan. We present a case with brown tumor shown more increased uptake and more number of lesions on bone scan after parathyroidectomy, and lesser increased uptake on serial bone scans without any other treatment through several months. This finding is thought to be similar to 'flare phenomenon' which is occasionally seen after treatment of metastatic bone lesions of malignant cancer, and may represent curative process of brown tumor with rapid normal bone formation.

  10. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons

  11. Symmetry and perturbation theory

    Science.gov (United States)

    Gaeta, Giuseppe

    A co-chain map for the G invariant De Rham complex -- New examples of trihamiltonian structures linking different Lenard chains -- Wave propagation in an elastic medium: GDS equations -- Parametric excitation in nonlinear dynamics -- Collisionless action-minimizing trajectories for the equivariant 3-body problem in R2 -- The Lagrangian and Hamiltonian formulations for a special class of non-conservative systems -- Shadowing chains of collision orbits for the elliptic 3-body problem -- Similarity reductions of an optical model -- Fold, transcritical and pitchfork singularities for time-reversible systems -- Homographic three-body motions with positive and negative masses -- Remarks on conformal Killing tensors and separation of variables -- A regularity theory for optimal partition problems -- Lambda and mu-symmetries -- Potential symmetries and linearization of some evolution equations -- Periodic solutions for zero mass nonlinear wave equations -- Fundamental covariants in the invariant theory of Killing tensors -- Global geometry of 3-body trajectories with vanishing angular momentum -- The relation between the topological structure of the set of controllable affine systems and topological structures of the set of controllable homogenuous systems in low dimension -- On preservation of action variables for satellite librations in elliptic orbits with account of solar light pressure -- An explicit solution of the (quantum) elliptic Calogero-Sutherland model -- An application of the Melnikov integral to a restricted three body problem -- Reductions of integrable equations and automorphic Lie algebras -- Geometric reduction of Poisson operators -- Closed manifolds admitting metrics with the same geodesics -- A transcritical-flip bifurcation in a model for a robot-arm -- Alignment and the classification of Lorentz-signature tensors -- Renormalization group symmetry and gas dynamics -- Refined computation of hypernormal forms -- New order reductions for Euler

  12. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  13. Symmetries leading to inflation

    International Nuclear Information System (INIS)

    Aguirregabiria, Juan M.; Lazkoz, Ruth; Chimento, Luis P.; Jakubi, Alejandro S.

    2003-01-01

    We present here the general transformation that leaves unchanged the form of the field equations for perfect fluid Friedmann-Robertson-Walker and Bianchi type V cosmologies. The symmetries found can be used as algorithms for generating new cosmological models from existing ones. A particular case of the general transformation is used to illustrate the crucial role played by the number of scalar fields in the occurrence of inflation. Related to this, we also study the existence and stability of Bianchi type V power law solutions

  14. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  15. Nonlocal symmetry breaking in Kaluza-Klein theories.

    Science.gov (United States)

    Masiero, A; Serone, M; Scrucca, C A; Silvestrini, L

    2001-12-17

    Scherk-Schwarz gauge symmetry breaking of a D-dimensional field theory model compactified on a circle is analyzed. It is explicitly shown that forbidden couplings in the unbroken theory appear in the one-loop effective action only in a nonlocal way, implying that they are finite at all orders in perturbation theory. This result can be understood as a consequence of the local gauge symmetry, but it holds true also in the global limit.

  16. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  17. 4D Pyritohedral Symmetry

    Directory of Open Access Journals (Sweden)

    Nazife O. Koca

    2016-12-01

    Full Text Available We describe an extension of the pyritohedral symmetry in 3D to 4-dimensional Euclidean space and construct the group elements of the 4D pyritohedral group of order 576 in terms of quaternions. It turns out that it is a maximal subgroup of both the rank-4 Coxeter groups W (F4 and W (H4, implying that it is a group relevant to the crystallographic as well as quasicrystallographic structures in 4-dimensions. We derive the vertices of the 24 pseudoicosahedra, 24 tetrahedra and the 96 triangular pyramids forming the facets of the pseudo snub 24-cell. It turns out that the relevant lattice is the root lattice of W (D4. The vertices of the dual polytope of the pseudo snub 24-cell consists of the union of three sets: 24-cell, another 24-cell and a new pseudo snub 24-cell. We also derive a new representation for the symmetry group of the pseudo snub 24-cell and the corresponding vertices of the polytopes.

  18. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  19. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  20. Exact dynamical and partial symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2011-03-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  1. Exact dynamical and partial symmetries

    International Nuclear Information System (INIS)

    Leviatan, A

    2011-01-01

    We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.

  2. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  3. An introduction to Yangian symmetries

    International Nuclear Information System (INIS)

    Bernard, D.

    1992-01-01

    Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs

  4. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  5. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  6. Dynamical symmetry as a tool to understanding properties of supersymmetric partner potentials. Example of so(2,1) symmetry

    International Nuclear Information System (INIS)

    Wehrhahn, R.F.; Cooper, I.L.

    1992-05-01

    Analysis of the dynamical symmetry of a system is used to predict properties arising from its supersymmetric quantum mechanical treatment. Two applications of the so(2,1) algebra, the Coulomb potential and Morse oscillator potential which display different structure with respect to the dynamical symmetry, are studied. This difference is shown to be responsible for the behaviour of the respective supersymmetric partner potentials. (orig.)

  7. The role of Weyl symmetry in hydrodynamics

    Science.gov (United States)

    Diles, Saulo

    2018-04-01

    This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. Here is discussed how this symmetry is properly implemented using the prescription of minimal coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it gives the correct expressions for the commutator of covariant derivatives. In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined and the notion of local charge is analyzed generating the conservation law for the Weyl charge.

  8. A cyclic symmetry principle in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Many areas of modern physics are illuminated by the application of a symmetry principle, requiring the invariance of the relevant laws of physics under a group of transformations. This paper examines the implications and some of the applications of the principle of cyclic symmetry, especially in the areas of statistical mechanics and quantum mechanics, including quantized field theory. This principle requires invariance under the transformations of a finite group, which may be a Sylow π-group, a group of Lie type, or a symmetric group. The utility of the principle of cyclic invariance is demonstrated in finding solutions of the Yang-Baxter equation that include and generalize known solutions. It is shown that the Sylow π-groups have other uses, in providing a basis for a type of generalized quantum statistics, and in parametrising a new generalization of Lie groups, with associated algebras that include quantized algebras. 31 refs

  9. Spontaneous spherical symmetry breaking in atomic confinement

    Science.gov (United States)

    Sveshnikov, Konstantin; Tolokonnikov, Andrey

    2017-07-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.

  10. Holography without translational symmetry

    CERN Document Server

    Vegh, David

    2013-01-01

    We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.

  11. Spectral distributions and symmetries

    International Nuclear Information System (INIS)

    Quesne, C.

    1980-01-01

    As it is now well known, the spectral distribution method has both statistical and group theoretical aspects which make for great simplifications in many-Fermion system calculations with respect to more conventional ones. Although both aspects intertwine and are equally essential to understand what is going on, we are only going to discuss some of the group theoretical aspects, namely those connected with the propagation of information, in view of their fundamental importance for the actual calculations of spectral distributions. To be more precise, let us recall that the spectral distribution method may be applied in principle to many-Fermion spaces which have a direct-product structure, i.e., are obtained by distributing a certain number n of Fermions over N single-particle states (O less than or equal to n less than or equal to N), as it is the case for instance for the nuclear shell model spaces. For such systems, the operation of a central limit theorem is known to provide us with a simplifying principle which, when used in conjunction with exact or broken symmetries, enables us to make definite predictions in those cases which are not amendable to exact shell model diagonalizations. The distribution (in energy) of the states corresponding to a fixed symmetry is then defined by a small number of low-order energy moments. Since the Hamiltonian is defined in few-particle subspaces embedded in the n-particlespace, the low-order moments, we are interested in, can be expressed in terms of simpler quantities defined in those few-particle subspaces: the information is said to propagate from the simple subspaces to the more complicated ones. The possibility of actually calculating spectral distributions depends upon the finding of simple ways to propagate the information

  12. Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation

    International Nuclear Information System (INIS)

    Bokhari, Ashfaque H.; Zaman, F. D.; Mahomed, F. M.

    2010-01-01

    The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.

  13. Horizontal symmetries for the supersymmetric flavor problem

    CERN Document Server

    Pomarol, A; Pomarol, Alex; Tommasini, Daniele

    1996-01-01

    The heaviness of the third family fermions and the experimental absence of large flavor violating processes suggest, in supersymmetric theories, that the three families belong to a 2+1 representation of a horizontal symmetry G_H. In this framework, we discuss a class of models based on the group U(2) that describe the fermion flavor structure and are compatible with an underlying GUT. We study the phenomenology of these models and focus on two interesting scenarios: In the first one, the first and second family scalars are assumed to be heavier than the weak scale allowing for complex soft supersymmetry breaking terms. In the second one, all the CP-violating phases are assumed to be small. Both scenarios present a rich phenomenology in agreement with constraints from flavor violating processes and electric dipole moments.

  14. Symmetry chains and adaptation coefficients

    International Nuclear Information System (INIS)

    Fritzer, H.P.; Gruber, B.

    1985-01-01

    Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains

  15. Characterization of Partial Intrinsic Symmetries

    NARCIS (Netherlands)

    Shehu, Aurela; Brunton, Alan; Wuhrer, Stefanie; Wand, Michael

    2014-01-01

    We present a mathematical framework and algorithm for characterizing and extracting partial intrinsic symmetries of surfaces, which is a fundamental building block for many modern geometry processing algorithms. Our goal is to compute all “significant” symmetry information of the shape, which we

  16. Symmetry preservation during radiation damage

    International Nuclear Information System (INIS)

    Bhat, S.V.; Abdel-Gawad, M.M.H.

    1991-01-01

    An examination of radiation-damage processes consequent to high-energy irradiation in certain ammonium salts studied using ESR of free radicals together with the structural information available from neutron diffraction studies shows that, other factors being equal/nearly equal, symmetry-related bonds are preserved in preference to those unrelated to one another by any symmetry. (author). 23 refs., 3 tabs

  17. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  18. Symmetry guide to ferroaxial transitions

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav

    2016-01-01

    Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  19. Givental Graphs and Inversion Symmetry

    NARCIS (Netherlands)

    Dunin-Barkovskiy, P.; Shadrin, S.; Spitz, L.

    2013-01-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in

  20. Collective states and crossing symmetry

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1977-01-01

    Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out

  1. Nuclear symmetries at low isospin

    International Nuclear Information System (INIS)

    Juillet, Olivier

    1999-01-01

    With the development of radioactive beams, an area of intense research in nuclear physics concerns the structure of exotic systems with roughly equal numbers of protons and neutrons. These nuclei might in fact develop a proton-neutron superfluidity whose importance compared to pairing correlations between like nucleons is currently investigated. The work presented in this thesis suggests to look at such a competition in an algebraic framework based on a Wigner SU(4) symmetry that combines the pseudo-spin and isospin degrees of freedom. After a detailed review of group theory in quantum mechanics, the validity of the pseudo-SU(4) classification is shown via a direct analysis of realistic shell model states. Its consequences on binding energies and β decay are also studied. Moreover, a simplified boson realisation with zero orbital angular momentum is used to find some physical features of N=Z nuclei such as the condensation of α-like structures or the destruction of isoscalar superfluid correlations by the spin-orbit potential. Finally, another bosonization scheme that includes quadrupole degrees of freedom (IBM-4 model) is tested for the first time by diagonalization of a full Hamiltonian deduced from a realistic shell model interaction. The quality of the results, especially for odd-odd nuclei, allows one to consider this boson approximation as an alternative to standard fermionic approaches for the collective structure of the exotic line N∼Z=28-50. (author) [fr

  2. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  3. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  4. Discrete Flavour Symmetries from the Heisenberg Group

    CERN Document Server

    Floratos, E.G.

    2016-01-01

    Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular in the $PSL_2(p)$ groups which contain the phenomenologically interesting cases.

  5. Spin and pseudospin symmetries in the antinucleon spectrum of nuclei

    International Nuclear Information System (INIS)

    Lisboa, R.; Malheiro, M.; Alberto, P.; Fiolhais, M.; Castro, A. S. de

    2010-01-01

    Spin and pseudospin symmetries in the spectra of nucleons and antinucleons are studied in a relativistic mean-field theory with scalar and vector Woods-Saxon potentials, in which the strength of the latter is allowed to change. We observe that, for nucleons and antinucleons, the spin symmetry is of perturbative nature and it is almost an exact symmetry in the physical region for antinucleons. The opposite situation is found in the pseudospin symmetry case, which is better realized for nucleons than for antinucleons, but is of dynamical nature and cannot be viewed in a perturbative way for either nucleons or antinucleons. This is shown by computation of the spin-orbit and pseudospin-orbit couplings for selected spin and pseudospin partners in both spectra.

  6. Hourglass semimetals with nonsymmorphic symmetries in three dimensions

    Science.gov (United States)

    Wang, Luyang; Jian, Shao-Kai; Yao, Hong

    2017-08-01

    It was recently shown that nonsymmorphic space-group symmetries can protect novel surface states with hourglasslike dispersions. In this paper, we show that such dispersions can also appear in the bulk of three-dimensional (3D) systems which respect nonsymmorphic symmetries. Specifically, we construct 3D lattice models featuring hourglasslike dispersions in the bulk, which are protected by nonsymmorphic and time-reversal symmetries. We call such systems hourglass semimetals, as they have point or line nodes associated with hourglasslike dispersions. Hourglass nodal lines appear in glide-invariant planes, while hourglass Weyl points can occur on screw-invariant axes. The Weyl points and surface Fermi arcs in hourglass Weyl semimetals are stable against weak perturbations breaking those nonsymmorphic symmetries. Our results may shed light on searching for exotic Weyl semimetals in nonsymmorphic materials.

  7. Test of SU(3) Symmetry in Hyperon Semileptonic Decays

    Science.gov (United States)

    Pham, T. N.

    2015-01-01

    Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann-Okubo (GMO) baryon mass formula which is satisfied to a few percents, showing evidence for a small SU(3) symmetry breaking effect in the GMO mass formula. In this talk, I would like to present a similar GMO relation obtained in a recent work for hyperon semileptonic decay axial vector current matrix elements. Using these generalized GMO relations for the measured axial vector current to vector current form factor ratios, it is shown that SU(3) symmetry breaking in hyperon semileptonic decays is of 5-11% and confirms the validity of the Cabibbo model for hyperon semi-leptonic decays.

  8. PREFACE: Symmetries in Science XVI

    Science.gov (United States)

    2014-10-01

    -session, topics ranging from theoretical chemistry and molecular physics via fundamental problems in quantum theory to thermodynamics, nonlinear dynamics, soliton theory and finally cosmology, were examined and lively discussed. Nearly all the talks can also be viewed on the conference website. The majority of participants contributed to these Proceedings but some were unable to do so as their results were either previously submitted or published elsewhere. We refer to: · Quesne C 2013, J. Math. Phys. 54, 102102. · Spera M 2013, (Nankai Series in Pure, Applied Mathematics and Theoretical Physics): 11 Symmetries and Groups in Contemporary Physics: pp. 593-598 Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics Tianjin, China, 20 - 26 August 2012 (World Scientific, Singapore) · Snobl L and Winternitz P 2014, Classification and Identification of Lie Algebras, CRM Monograph Series 33 (Montreal) ISBN-10: 0-8218-4355-9, ISBN-13: 978-0-8218-4355-0 (http://www.ams.org/bookstore?fn=20&arg1=crmmseries&ikey=CRMM-33). Our personal thanks to Daniel and family! Endless support from the Schenk Family who, among other things, sponsored (yet again) the entire conference dinner (including wines and banquet hall) meant that some costs could be alleviated. We could therefore assist various colleagues from economically-weak countries, despite the lack of external funding. A financial deficit meant we would have had to forego the Conference Proceedings, published in previous years by IOP. After long deliberations, and with donations from Gerhard Berssenbrügge, Dr. Dr. Stephan Hauk and Dr. Volker Weisswange, this could be facilitated. We are very grateful to these private donors for their generous and wholehearted support. The staff of Collegium Mehrerau is also to be thanked for their hospitality. Finally, our sincere thanks to Yvette not only for her preparatory work and support during the conference, but also for her persistent interest and help in producing

  9. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  10. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  11. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    and evaluate the method. The method uses deformable registration on computed tomography(CT) to find anatomical symmetry deviations of Head & Neck squamous cell carcinoma and combining it with positron emission tomography (PET) images. The method allows the use anatomical and symmetrical information of CT scans...... segmentations on manual contours was evaluated using concordance index and sensitivity for the hypopharyngeal patients. The resulting concordance index and sensitivity was compared with the result of using a threshold of 3 SUV using a paired t-test. Results: The anatomical and symmetrical atlas was constructed...... and sensitivity of respectively 0.43±0.15 and 0.56±0.18 was acquired. It was compared to the concordance index of segmentation using absolute threshold of 3 SUV giving respectively 0.41±0.16 and 0.51±0.19 for concordance index and sensitivity yielding p-values of 0.33 and 0.01 for a paired t-test respectively....

  12. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  13. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  14. Quark diquark symmetry breaking

    International Nuclear Information System (INIS)

    Souza, M.M. de

    1980-01-01

    Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt

  15. Nonlinear electromagnetic fields and symmetries

    Science.gov (United States)

    Barjašić, Irena; Gulin, Luka; Smolić, Ivica

    2017-06-01

    We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.

  16. Noncommutative geometry and twisted conformal symmetry

    International Nuclear Information System (INIS)

    Matlock, Peter

    2005-01-01

    The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra

  17. Chiral symmetry constraints on resonant amplitudes

    Science.gov (United States)

    Bruns, Peter C.; Mai, Maxim

    2018-03-01

    We discuss the impact of chiral symmetry constraints on the quark-mass dependence of meson resonance pole positions, which are encoded in non-perturbative parametrizations of meson scattering amplitudes. Model-independent conditions on such parametrizations are derived, which are shown to guarantee the correct functional form of the leading quark-mass corrections to the resonance pole positions. Some model amplitudes for ππ scattering, widely used for the determination of ρ and σ resonance properties from results of lattice simulations, are tested explicitly with respect to these conditions.

  18. The applicative construction and object symmetry as a parameter of ...

    African Journals Online (AJOL)

    This paper is therefore a largely descriptive comparative study, which investigates the applicative construction and object symmetry in two Bantu languages from different families, Kiswahili (Nairobi dialect) from Bantu (G40) and Maragoli from Bantu (J30). Based on the results of several syntactic tests which reveal object ...

  19. Symmetry analysis and conservation laws for a coupled (2 + 1)-dimensional hyperbolic system

    Science.gov (United States)

    Muatjetjeja, Ben; Khalique, Chaudry Masood

    2015-05-01

    This paper aims to perform Lie symmetry analysis and Noether symmetry classification of a coupled (2 + 1)-dimensional hyperbolic system. In the Lie analysis, the principal Lie algebra which is six dimensional extends in thirteen cases. It is further shown that four main cases arise in the Noether classification with respect to the standard Lagrangian. Moreover, conservation laws are established for the cases which admit Noether point symmetries.

  20. Strings, Branes and Symmetries

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs

  1. A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Alexis D. J. Makin

    2016-03-01

    Full Text Available Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation–symmetry, DS gene and orientation (0° to 90°, orientation, ORI gene. An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference.

  2. Mixed symmetry tensors in the worldline formalism

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università degli Studi di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Edwards, James P. [Department of Mathematical Sciences, University of Bath,Claverton Down, Bath BA2 7AY (United Kingdom)

    2016-05-10

    We consider the first quantised approach to quantum field theory coupled to a non-Abelian gauge field. Representing the colour degrees of freedom with a single family of auxiliary variables the matter field transforms in a reducible representation of the gauge group which — by adding a suitable Chern-Simons term to the particle action — can be projected onto a chosen fully (anti-)symmetric representation. By considering F families of auxiliary variables, we describe how to extend the model to arbitrary tensor products of F reducible representations, which realises a U(F) “flavour” symmetry on the worldline particle model. Gauging this symmetry allows the introduction of constraints on the Hilbert space of the colour fields which can be used to project onto an arbitrary irreducible representation, specified by a certain Young tableau. In particular the occupation numbers of the wavefunction — i.e. the lengths of the columns (rows) of the Young tableau — are fixed through the introduction of Chern-Simons terms. We verify this projection by calculating the number of colour degrees of freedom associated to the matter field. We suggest that, using the worldline approach to quantum field theory, this mechanism will allow the calculation of one-loop scattering amplitudes with the virtual particle in an arbitrary representation of the gauge group.

  3. Symmetries in the Lagrangean formalism

    International Nuclear Information System (INIS)

    Grigore, D.R.

    1987-09-01

    We generalize the analysis of Levy-Leblond for lagrangean systems with symmetry. We prove that this analysis goes through practically unchanged and after that we analyse in detail some examples.(author)

  4. Renormgroup symmetry for solution functionals

    International Nuclear Information System (INIS)

    Shirkov, D.V.; Kovalev, V.F.

    2004-01-01

    The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)

  5. PREFACE: Symmetries in Science XIV

    Science.gov (United States)

    Schuch, Dieter; Ramek, Michael

    2010-04-01

    also included in these Proceedings. It was especially rewarding and greatly appreciated that symposium-founder Bruno Gruber attended all the sessions and that Dr. Hubert Regner, a distinguished official of the provincial administration and ardent supporter of the symposia for over twenty years, honoured us with a visit and an encouraging address to the participants. We wish to express our sincere gratitude to the local community, particularly the Schenk Family and the staff of Collegium Mehrerau for the selfless friendship, generosity and kind hospitality they offered our gathering. It made a lasting impression on participants and guests alike and provided an excellent basis for fruitful scientific discussions and personal interactions. This and the positive resonance from participants have encouraged us to take the experiment a step further to "Symmetries in Science 2011"! Thanks also to Yvette for continuous and reliable support. The conference and proceedings would probably not have materialized without her. Frankfurt am Main and Graz, June 2010 Dieter Schuch Michael Ramek Conference photograph

  6. Classical symmetries of some two-dimensional models

    International Nuclear Information System (INIS)

    Schwarz, J.H.

    1995-01-01

    It is well-known that principal chiral models and symmetric space models in two-dimensional Minkowski space have an infinite-dimensional algebra of hidden symmetries. Because of the relevance of symmetric space models to duality symmetries in string theory, the hidden symmetries of these models are explored in some detail. The string theory application requires including coupling to gravity, supersymmetrization, and quantum effects. However, as a first step, this paper only considers classical bosonic theories in flat space-time. Even though the algebra of hidden symmetries of principal chiral models is confirmed to include a Kac-Moody algebra (or a current algebra on a circle), it is argued that a better interpretation is provided by a doubled current algebra on a semi-circle (or line segment). Neither the circle nor the semi-circle bears any apparent relationship to the physical space. For symmetric space models the line segment viewpoint is shown to be essential, and special boundary conditions need to be imposed at the ends. The algebra of hidden symmetries also includes Virasoro-like generators. For both principal chiral models and symmetric space models, the hidden symmetry stress tensor is singular at the ends of the line segment. (orig.)

  7. Test of Pseudospin Symmetry in Deformed Nuclei

    OpenAIRE

    Ginocchio, J. N.; Leviatan, A.; Meng, J.; Zhou, Shan-Gui

    2003-01-01

    Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints.

  8. Symmetry and group theory in chemistry

    CERN Document Server

    Ladd, M

    1998-01-01

    A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions

  9. Test of pseudospin symmetry in deformed nuclei

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Leviatan, A.; Meng, J.; Zhou Shangui

    2004-01-01

    Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints

  10. Kac-Moody algebra is not hidden symmetry of chiral models

    International Nuclear Information System (INIS)

    Devchand, C.; Schiff, J.

    1997-01-01

    A detailed examination of the infinite dimensional loop algebra of hidden symmetry transformations of the Principal Chiral Model reveals it to have a structure differing from a standard centreless Kac-Moody algebra. A new infinite dimensional Abelian symmetry algebra is shown to preserve a symplectic form on the space of solutions. (author). 15 refs

  11. arXiv Radiative symmetry breaking from interacting UV fixed points

    CERN Document Server

    Abel, Steven

    2017-09-28

    It is shown that the addition of positive mass-squared terms to asymptotically safe gauge-Yukawa theories with perturbative UV fixed points leads to calculable radiative symmetry breaking in the IR. This phenomenon, and the multiplicative running of the operators that lies behind it, is akin to the radiative symmetry breaking that occurs in the supersymmetric standard model.

  12. Electron correlation effects in the presence of non-symmetry dictated ...

    Indian Academy of Sciences (India)

    To explain this phase shift and the violation of parity effect, we first explain what are symmetry dictated nodes (SDN) and non-symmetry dictated nodes (NSDN) that can arise in a Q1D system. For example let us consider a rectangular quantum billiard or dot connected to leads by quantum mechanical tunneling as shown in ...

  13. Partial dynamical symmetry and odd-even staggering in deformed nuclei

    Directory of Open Access Journals (Sweden)

    Leviatan A.

    2015-01-01

    Full Text Available Partial dynamical symmetry (PDS is shown to be relevant for describing the odd-even staggering in the γ-band of 156Gd while retaining solvability and good SU(3 symmetry for the ground and β bands. Several classes of interacting boson model Hamiltonians with SU(3 PDS are surveyed.

  14. On the symmetry algebra of the discrete states in d<2 closed string theory

    International Nuclear Information System (INIS)

    Panda, S.; Roy, S.

    1993-01-01

    The symmetry charges associated with the Lian-Zuckerman states for d<2 closed string theory are constructed. Unlike in the open string case, it is shown here that the symmetry charges commute among themselves and act trivially on all the physical states. (author). 19 refs

  15. Theory of pairing symmetry in the vortex states

    NARCIS (Netherlands)

    Yokoyama, Takehito; Ichioka, Yukio; Yanaka, Yukio; Golubov, Alexandre Avraamovitch

    2010-01-01

    We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity

  16. Radiative symmetry breaking from interacting UV fixed points

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    It is shown that the addition of positive mass-squared terms to asymptotically safe gauge-Yukawa theories with perturbative UV fixed points leads to calculable radiative symmetry breaking in the IR. This phenomenon, and the multiplicative running of the operators that lies behind it, is akin...

  17. OO (12) limit and complete classification of symmetry schemes in ...

    Indian Academy of Sciences (India)

    It is shown that the proton–neutron interacting boson model (pnIBM) admits new symmetry limits with (12) algebra which break spin but preserves the quantum number . The generators of (12) are derived and the quantum number of (12) for a given boson number is determined by identifying the ...

  18. Model for dynamical chiral symmetry breaking and quark condensate

    International Nuclear Information System (INIS)

    Nekrasov, M.L.; Rochev, V.E.

    1986-01-01

    In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one

  19. Chiral Symmetry Breaking in QCD : II. Running Coupling Constant

    NARCIS (Netherlands)

    Atkinson, D.; Johnson, P. W.

    1988-01-01

    The quark-propagator Dyson-Schwinger equation, with a running coupling constant to provide an ultraviolet regulator, with no infrared cutoff, is calculated numerically in the Landau gauge. It is shown that, for one or more generations of quarks, the chiral symmetry of the bare QCD Lagrangian is

  20. Determination of F-spin symmetry in deformed nuclei

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Kuyucak, S.

    1991-01-01

    The purity of a neutron-proton symmetry called F-spin is estimated in collective nuclei. Two simple formulae are shown to provide a quick and accurate estimate for F-spin admixtures in the ground band. Conclusions are also drawn about quadrupole effective charges in collective nuclei. 11 refs., 2 figs

  1. Who ordered the muon. From families to communities

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1985-01-01

    I review the possibility that the underlying theory of weak interactions possesses a family symmetry, either global or local. The spontaneous symmetry breaking of this symmetry leads to important phenomenological implications: the existence of Goldstone bosons, the familons in the case of global symmetry and the existence of mirror fermions, in the case of local symmetry ( in the context of grand unification). Both alternatives will soon be tested. 13 refs

  2. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  3. The symmetries of regular polyhedra in general relativity and contradictions with quantum mechanics

    International Nuclear Information System (INIS)

    Gauthier, C.; Gravel, P.

    2001-01-01

    It is shown that every spacetime determined by a non-spherically symmetric body with the symmetry of any one of the five Platonic solids has a curvature tensor which vanishes in a neighbourhood of the centre of this symmetry. This means that every non-spherically symmetric object, be it a star, a crystal or an atom, with the exact symmetry of one of these polyhedra must have an empty centre of symmetry. This result puts forward contradictions between General Relativity and Quantum Mechanics, when both theories are applied to the atomic scale

  4. Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited

    Science.gov (United States)

    Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.

    The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.

  5. Loss compensation symmetry in dimers made of gain and lossy nanoparticles

    Science.gov (United States)

    Klimov, V. V.; Zabkov, I. V.; Guzatov, D. V.; Vinogradov, A. P.

    2018-03-01

    The eigenmodes in a two-dimensional dimer made of gain and lossy nanoparticles have been investigated within an exact analytical approach. It has been shown that there are eigenmodes for which all Joule losses are exactly compensated by the gain. Among such solutions there are solutions with a new type of symmetry, which we refer to as loss compensation symmetry, as well as well-known parity–time (PT) symmetric solutions. Unlike PT symmetric ones, the modes with loss compensation symmetry allow one to achieve full loss compensation with significantly less gain that in the case of PT symmetry. This effect paves the way to new loss compensation methods in optics.

  6. Behind the Looking-Glass: A Review on Human Symmetry Perception

    Directory of Open Access Journals (Sweden)

    Matthias Sebastian Treder

    2010-07-01

    Full Text Available The human visual system is highly proficient in extracting bilateral symmetry from visual input. This paper reviews empirical and theoretical work on human symmetry perception with a focus on recent issues such as its neural underpinnings. Symmetry detection is shown to be a versatile, ongoing visual process that interacts with other visual processes. Evidence seems to converge towards the idea that  symmetry detection is subserved by a preprocessing stage involving spatial filters followed by information integration across the visual field in higher-tier cortical areas.

  7. Prediction of Human Eye Fixations using Symmetry

    OpenAIRE

    Kootstra, Gert; Schomaker, Lambert R. B.

    2009-01-01

    Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. In this paper, we discuss local symmetry as a measure of saliency. We propose a number of symmetry models and perform an eye-tracking study with human participants viewing photographic i...

  8. Some Remarks on the Symmetry Kernel Test

    OpenAIRE

    Baszczyńska, Aleksandra

    2013-01-01

    The paper presents chosen statistical tests used to verify the hypothesis of the symmetry of random variable’s distribution. Detailed analysis of the symmetry kernel test is made. The properties of the regarded symmetry kernel test are compared with the other symmetry tests using Monte Carlo methods. The symmetry tests are used, as an example, in analysis of the distribution of the Human Development Index (HDI). W pracy przedstawiono wybrane statystyczne testy wykorzystywane w ...

  9. Classical extended conformal symmetries

    International Nuclear Information System (INIS)

    Viswanathan, R.

    1990-02-01

    Extensions of the Virasoro algebra are constructed as Poisson brackets of higher spin fields which appear as coefficient fields in certain covariant derivative operators of order N. These differential operators are constructed so as to be covariant under reparametrizations on fields of definite conformal dimension. Factorization of such an N-th order operator in terms of first order operators, together with the inclusion of a spin one U(1) current, is shown to lead to a two-parameter W-algebra. One of these parameters plays the role of interpolating between W-algebras based on different Lie algebras of the same rank. (author). 11 refs

  10. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  11. Non-Hermitian photonics based on parity-time symmetry

    Science.gov (United States)

    Feng, Liang; El-Ganainy, Ramy; Ge, Li

    2017-12-01

    Nearly one century after the birth of quantum mechanics, parity-time symmetry is revolutionizing and extending quantum theories to include a unique family of non-Hermitian Hamiltonians. While conceptually striking, experimental demonstration of parity-time symmetry remains unexplored in quantum electronic systems. The flexibility of photonics allows for creating and superposing non-Hermitian eigenstates with ease using optical gain and loss, which makes it an ideal platform to explore various non-Hermitian quantum symmetry paradigms for novel device functionalities. Such explorations that employ classical photonic platforms not only deepen our understanding of fundamental quantum physics but also facilitate technological breakthroughs for photonic applications. Research into non-Hermitian photonics therefore advances and benefits both fields simultaneously.

  12. Non-local symmetry breaking in Kaluza-Klein theories

    CERN Document Server

    Masiero, A; Serone, M; Silvestrini, L

    2001-01-01

    Scherk-Schwarz gauge symmetry breaking of a D-dimensional field theory model compactified on a circle is analyzed. It is explicitly shown that forbidden couplings in the unbroken theory appear in the one-loop effective action only in a non-local way, implying that they are finite at all orders in perturbation theory. This result can be understood as a consequence of the local gauge symmetry, but holds true also in the global limit. Similar results for Scherk-Schwarz supersymmetry breaking are expected to hold.

  13. Symmetry Perspectives on Some Auxetic Body-Bar Frameworks

    Directory of Open Access Journals (Sweden)

    Patrick W. Fowler

    2014-05-01

    Full Text Available Scalar mobility counting rules and their symmetry extensions are reviewed for finite frameworks and also for infinite periodic frameworks of the bar-and-joint, body-joint and body-bar types. A recently published symmetry criterion for the existence of equiauxetic character of an infinite framework is applied to two long known but apparently little studied hinged-hexagon frameworks, and is shown to detect auxetic behaviour in both. In contrast, for double-link frameworks based on triangular and square tessellations, other affine deformations can mix with the isotropic expansion mode.

  14. Centrally extended symmetry algebra of asymptotically Goedel spacetimes

    International Nuclear Information System (INIS)

    Compere, Geoffrey; Detournay, Stephane

    2007-01-01

    We define an asymptotic symmetry algebra for three-dimensional Goedel spacetimes supported by a gauge field which turns out to be the semi-direct sum of the diffeomorphisms on the circle with two loop algebras. A class of fields admitting this asymptotic symmetry algebra and leading to well-defined conserved charges is found. The covariant Poisson bracket of the conserved charges is then shown to be centrally extended to the semi-direct sum of a Virasoro algebra and two affine algebras. The subsequent analysis of three-dimensional Goedel black holes indicates that the Virasoro central charge is negative

  15. Soft theorems from anomalous symmetries

    Science.gov (United States)

    Huang, Yu-tin; Wen, Congkao

    2015-12-01

    We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α' expansion of string theory amplitudes, we study the matrix elements of operator R 4 with half maximal supersymmetry. We construct the non-linear completion of R 4 that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R 4.

  16. Soft theorems from anomalous symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, ROC (China); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-12-22

    We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α{sup ′} expansion of string theory amplitudes, we study the matrix elements of operator R{sup 4} with half maximal supersymmetry. We construct the non-linear completion of R{sup 4} that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R{sup 4}.

  17. Hidden Symmetries of Stochastic Models

    Directory of Open Access Journals (Sweden)

    Boyka Aneva

    2007-05-01

    Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.

  18. Stability of certain families of ideal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Nunez, Manuel

    2003-01-01

    The equations of ideal magnetohydrodynamic equilibria posses a number of symmetries that may be used to generate a family of hitherto unknown equilibria if there exists a foliation of the original one by magnetic surfaces. In addition to the possibility of producing analytic equilibria from old ones, this family is studied to find among its members those with minimal energy, those lasting longer under slightly resistive conditions, and those linearly stable. It is shown that in general none of these properties implies any other, thus clarifying the difference among these concepts

  19. Symposium Symmetries in Science XIII

    CERN Document Server

    Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI

    2005-01-01

    This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.

  20. Chiral symmetry on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  1. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  2. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  3. Clifford algebraic symmetries in physics

    International Nuclear Information System (INIS)

    Salingaros, N.

    1986-01-01

    This paper reviews the following appearances of Clifford algebras in theoretical physics: statistical mechanics; general relativity; quantum electrodynamics; internal symmetries; the vee product; classical electrodynamics; charged-particle motion; and the Lorentz group. It is concluded that the power of the Clifford-algebraic description resides in its ability to perform representation-free calculations which are generalizations of the traditional vector algebra and that this considerable computational asset, in combination with the intrinsic symmetry, provides a practical framework for much of theoretical physics. 5 references

  4. Renormalizable models with broken symmetries

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1975-10-01

    The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr

  5. The Broken Symmetry of Time

    Science.gov (United States)

    Kastner, Ruth E.

    2011-11-01

    This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.

  6. The Broken Symmetry of Time

    International Nuclear Information System (INIS)

    Kastner, Ruth E.

    2011-01-01

    This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.

  7. Microscopic basis of collective symmetries

    International Nuclear Information System (INIS)

    Arima, A.

    1983-01-01

    The seniority scheme of SU(2) symmetry in a single closed shell is an interaction to conserve seniority. It is suggested that an interaction simpler than delta interaction can be used to study the level structure of Pb isotopes. The concept of seniority number is introduced. Reduction formulae are then derived for one-body operators. Conservation of seniority in a single closed shell is treated. SU(6) symmetry of nuclear collective motion, or the SU(6) invariance of the boson system, is derived

  8. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  9. Algorithm for research of mathematical physics equations symmetries. Symmetries of the free Schroedinger equation

    International Nuclear Information System (INIS)

    Kotel'nikov, G.A.

    1994-01-01

    An algorithm id proposed for research the symmetries of mathematical physics equation. The application of this algorithm to the Schroedinger equation permitted to establish, that in addition to the known symmetry the Schroedinger equation possesses also the relativistic symmetry

  10. The master symmetry and time dependent symmetries of the differential–difference KP equation

    International Nuclear Information System (INIS)

    Khanizadeh, Farbod

    2014-01-01

    We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)

  11. Molecular Eigensolution Symmetry Analysis and Fine Structure

    Directory of Open Access Journals (Sweden)

    William G. Harter

    2013-01-01

    Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.

  12. Spherical Detector Device Mathematical Modelling with Taking into Account Detector Module Symmetry

    International Nuclear Information System (INIS)

    Batyj, V.G.; Fedorchenko, D.V.; Prokopets, S.I.; Prokopets, I.M.; Kazhmuradov, M.A.

    2005-01-01

    Mathematical Model for spherical detector device accounting to symmetry properties is considered. Exact algorithm for simulation of measurement procedure with multiple radiation sources is developed. Modelling results are shown to have perfect agreement with calibration measurements

  13. Finite-temperature effective potential of a system with spontaneously broken symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E.P. [Yaroslavl State Technical Univ. (Russian Federation)

    1995-12-01

    A quantum-mechanical system with spontaneously broken symmetry is considered the effective potential is determined, and it is shown that with reduction of temperature the system undergoes a phase transition of the first kind.

  14. Measure of departure from marginal point-symmetry for two-way contingency tables

    Directory of Open Access Journals (Sweden)

    Kouji Yamamoto

    2013-05-01

    Full Text Available For two-way contingency tables, Tomizawa (1985 considered the point-symmetry and marginal point-symmetry models, and Tomizawa, Yamamoto and Tahata (2007 proposed a measure to represent the degree of departure from point-symmetry. The present paper proposes a measure to represent the degree of departure from marginal pointsymmetry for two-way tables. The proposed measure is expressed by using Cressie-Read power-divergence or Patil-Taillie diversity index. This measure would be useful for comparing the degrees of departure from marginal point-symmetry in several tables. The relationship between the degree of departure from marginal point-symmetry and the measure is shown when it is reasonable to assume underlying bivariate normal distribution. Examples are shown.

  15. Symmetry and magnetoelectric interactions in BaMnF4

    International Nuclear Information System (INIS)

    Zvezdin, A.K.; Pyatakov, A.P.

    2010-01-01

    Magnetic anisotropy and magnetoelectric interactions in ferroelectric antiferromagnet BaMnF 4 are considered theoretically using the symmetry analysis. It is shown that the symmetry allows the existence of inhomogeneous magnetoelectric (flexoelectric type) interaction possessing a characteristic dependence on value and orientation of external magnetic field. As the field is increased this interaction at critical field leads to the phase transition to the magnetic incommensurate phase accompanied with a jump of electric polarization. The linear and quadratic magnetoelectric effects and the relativistic tilt of the magnetic sublattices caused by the magnetoelectric interaction are considered. The proposed technique is a natural generalization of the symmetry analysis to the class of crystals which undergo the phase transitions followed by a doubling of the unit cell and can be applied not only to the BaMnF 4 .

  16. Quasiaverages, symmetry breaking and irreducible Green functions method

    Directory of Open Access Journals (Sweden)

    A.L.Kuzemsky

    2010-01-01

    Full Text Available The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries in combination with the degeneracy of the system was reanalyzed and essentially clarified within the framework of the method of quasiaverages. The problem of finding the ferromagnetic, antiferromagnetic and superconducting "symmetry broken" solutions of the correlated lattice fermion models was discussed within the irreducible Green functions method. A unified scheme for the construction of generalized mean fields (elastic scattering corrections and self-energy (inelastic scattering in terms of the equations of motion and Dyson equation was generalized in order to include the "source fields". This approach complements previous studies of microscopic theory of antiferromagnetism and clarifies the concepts of Neel sublattices for localized and itinerant antiferromagnetism and "spin-aligning fields" of correlated lattice fermions.

  17. A model of intrinsic symmetry breaking

    International Nuclear Information System (INIS)

    Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin

    2013-01-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry

  18. Orthogonal symmetries and Clifford algebras

    Indian Academy of Sciences (India)

    a universal property of the even Clifford algebra in §3. ..... symmetry if σ2 = id. In the literature, such maps are sometimes also called “orthogonal involutions” (cf. Ch. III, §5 of [4]). We have, however, preferred to use the former ...... [7] Helmstetter J and Micali A, Quadratic mappings and Clifford algebras (Basel: Birkhäuser.

  19. Exploiting symmetry in protocol testing

    NARCIS (Netherlands)

    J.M.T. Romijn (Judi); J.G. Springintveld

    1999-01-01

    textabstractTest generation and execution are often hampered by the large state spaces of the systems involved. In automata (or transition system) based test algorithms, taking advantage of symmetry in the behavior of specification and implementation may substantially reduce the amount of tests. We

  20. Testing for Bivariate Spherical Symmetry

    NARCIS (Netherlands)

    Einmahl, J.H.J.; Gantner, M.

    2010-01-01

    An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the

  1. Symmetry violation in weak decays

    NARCIS (Netherlands)

    Vos, Kimberley Keri

    2016-01-01

    Our current knowledge of particle physics is described by the Standard Model (SM). This model, however, leaves important observations unexplained. To answer these outstanding questions, as of yet, unknown physics is required. In the search for new physics, symmetries and their breaking play a

  2. Second-quantized mirror symmetry

    CERN Document Server

    Ferrara, Sergio; Strominger, A; Vafa, C

    1995-01-01

    We propose and give strong evidence for a duality relating Type II theories on Calabi-Yau spaces and heterotic strings on K3 \\times T^2, both of which have N=2 spacetime supersymmetry. Entries in the dictionary relating the dual theories are derived from an analysis of the soliton string worldsheet in the context of N=2 orbifolds of dual N=4 compactifications of Type II and heterotic strings. In particular we construct a pairing between Type II string theory on a self-mirror Calabi-Yau space X with h^{11}= h^{21}= 11 and a (4, 0) background of heterotic string theory on K3\\times T^2. Under the duality transformation the usual first-quantized mirror symmetry of X becomes a second-quantized mirror symmetry which determines nonperturbative quantum effects. This enables us to compute the exact quantum moduli space. Mirror symmetry of X implies that the low-energy N=2 gauge theory is finite, even at enhanced symmetry points. This prediction is verified by direct computation on the heterotic side. Other branches of...

  3. Lifshitz symmetries and nonrelativistic holography

    NARCIS (Netherlands)

    Sybesma, Z.W.

    2017-01-01

    In this dissertation we cover topics within the main themes of Lifshitz symmetries and nonrelativistic holography. Nonrelativistic theories are typically less constrained than relativistic ones, which makes them often more cumbersome to work with. Via holography one can have acces to domains of a

  4. Symmetry, empirical significance, and identity

    NARCIS (Netherlands)

    Friederich, Simon

    The article proposes a novel approach to the much discussed question of which symmetries have ‘direct empirical significance’ and which do not. The approach is based on a development of a recently proposed framework by Hilary Greaves and David Wallace, who claim that, contrary to the standard

  5. Exploiting Symmetry on Parallel Architectures.

    Science.gov (United States)

    Stiller, Lewis Benjamin

    1995-01-01

    This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.

  6. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and .... the case of neutron stars as a function of chemical potential µ associated with finite baryon number density we ..... work expended to create a bubble and are given by Rc = 2σ Ph(T) Pq(T) and Wc = 4πσR2.

  7. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Spontaneous symmetry breaking is one of the most important concepts of all unified gauge theories. The idea that ... stable configurations of gauge and Higgs fields in the form of domain walls, cosmic strings and monopoles on the ..... pressure to balance the surface tension and the pressure of the hadron phase. The quark.

  8. Experimental tests of fundamental symmetries

    NARCIS (Netherlands)

    Jungmann, K. P.

    2014-01-01

    Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;

  9. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  10. Testing for bivariate spherical symmetry

    NARCIS (Netherlands)

    Einmahl, J.H.J.; Gantner, M.

    2012-01-01

    An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distribution free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the asymptotic

  11. On four dimensional mirror symmetry

    International Nuclear Information System (INIS)

    Losev, A.; Nekrasov, N.; Shatashvili, S.

    2000-01-01

    A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)

  12. Kohn's theorem and Galilean symmetry

    Science.gov (United States)

    Zhang, P.-M.; Horvathy, P. A.

    2011-08-01

    The relation between the separability of a system of charged particles in a uniform magnetic field and Galilean symmetry is revisited using Duval's “Bargmann framework”. If the charge-to-mass ratios of the particles are identical, ea/ma=ɛ for all particles, then the Bargmann space of the magnetic system is isometric to that of an anisotropic harmonic oscillator. Assuming that the particles interact through a potential which only depends on their relative distances, the system splits into one representing the center of mass plus a decoupled internal part, and can be mapped further into an isolated system using Niederer's transformation. Conversely, the manifest Galilean boost symmetry of the isolated system can be “imported” to the oscillator and to the magnetic systems, respectively, to yield the symmetry used by Gibbons and Pope to prove the separability. For vanishing interaction potential the isolated system is free and our procedure endows all our systems with a hidden Schrödinger symmetry, augmented with independent internal rotations. All these properties follow from the cohomological structure of the Galilei group, as explained by Souriau's “décomposition barycentrique”.

  13. Chiral symmetry breakings in supersymmetric QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shinmura, Mamoru; Yamawaki, Koichi (Nagoya Univ. (Japan). Dept. of Physics)

    1984-05-01

    It is argued that spontaneous chiral symmetry breaking in supersymmetric QCD is due to the boson pair condensation instead of the fermion pair condensation in sharp contrast to the ordinary QCD. We further construct a low energy effective Lagrangian for supersymmetric QCD, which realizes the symmetry breaking, SU(N) sub(L) x SU(N) sub(R) x U(1) sub(V) x U(1) sub(X) down to SU(N) sub(V) x U(1) sub(V), in the massless limit. Our Lagrangian has no singular behaviour in the massless limit, supersymmetry being preserved independently of the quark mass m. It is shown that linear masses (instead of quadratic masses) of the pseudo-Nambu-Goldstone bosons are proportional to the quark mass and supersymmetric variants of Dashen's formulae are all saturated by the condensations -- O(m..lambda../sup 2/) and -- O (..lambda../sup 2/) for m -- 0.

  14. Entanglement entropy and nonabelian gauge symmetry

    International Nuclear Information System (INIS)

    Donnelly, William

    2014-01-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)

  15. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Iachello, F.

    2009-01-01

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  16. Breaking of electroweak symmetry: origin and effects

    International Nuclear Information System (INIS)

    Delaunay, C.

    2008-10-01

    The Higgs boson appears as the corner stone of high energy physics, it might be the cause of the excess of matter that led to the formation of the structures of the universe and it seems that it drives the breaking of the electroweak symmetry. Moreover, when the stability at low energies of the Higgs boson is assured by an extra space dimension, it appears that this extra dimension can explain most issues in the flavor physics that are not understood by the standard model. The first chapter presents the main tools of effective field theories, the role of experimental data in the construction of theories valid beyond the standard model is discussed. The second chapter focuses on the electroweak baryogenesis that allows the testing of new physics via the electroweak phase transition. We detail the calculation of a Higgs potential at finite temperature. We follow the dynamics of the phase transition including nucleation an supercooling. Finally we investigate the prospects of gravity wave detection to see the effects of a strong electroweak phase transition. The 2 last chapters are dedicated to the physics of extra-dimension. The properties of the dynamics of scalar, vector fields with a 1/2 spin plunged in a 5 d. Anti de Sitter geometry are reviewed. We present a model of lepton masses and mixings based on the A 4 non-Abelian discrete symmetry. It is shown that this model does not contradict the tests of electroweak precision. (A.C.)

  17. Entanglement entropy and nonabelian gauge symmetry

    Science.gov (United States)

    Donnelly, William

    2014-11-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.

  18. Magnetic Quantum Tunneling and Symmetry in Single Molecule Magnets

    Science.gov (United States)

    Kent, Andrew D.

    2003-03-01

    We have studied the symmetry of magnetic quantum tunneling (MQT) in single molecule magnets (SMMs) using a micro-Hall effect magnetometer and high field vector superconducting magnet system. In the most widely studied SMM, Mn12-acetate, an average crystal 4-fold symmetry in the magnetic response is shown to be due to local molecular environments of 2-fold symmetry that are rotated by 90 degrees with respect to one another. We attribute this to ligand disorder that leads to local rhombic distortions, a model first proposed by Cornia et al. based on x-ray diffraction data [1]. We have magnetically distilled a Mn12-acetate crystal to study a subset of these lower (2-fold) site symmetry molecules and present evidence for a spin-parity effect consistent with a local 2-fold symmetry [2]. These results highlight the importance of subtle changes in molecule environment in modulating magnetic anisotropy and MQT. [1] Cornia et al. Phys. Rev. Lett. 89, 257201 (2002) [2] E. del Barco, A. D. Kent, E. Rumberger, D. H. Hendrickson, G. Christou, submitted for publication (2002) and Europhys. Lett. 60, 768 (2002)

  19. First-order symmetries of the Dirac equation in a curved background: a unified dynamical symmetry condition

    International Nuclear Information System (INIS)

    Acik, Oe; Ertem, Ue; Vercin, A; Oender, M

    2009-01-01

    It has been shown that, for all dimensions and signatures, the most general first-order linear symmetry operators for the Dirac equation including interaction with Maxwell field in a curved background are given in terms of Killing-Yano (KY) forms. As a general gauge invariant condition it is found that among all KY forms of the underlying (pseudo) Riemannian manifold, only those which Clifford commute with the Maxwell field take part in the symmetry operator. It is also proved that associated with each KY form taking part in the symmetry operator, one can define a quadratic function of velocities which is a geodesic invariant as well as a constant of motion for the classical trajectory. Some geometrical and physical implications of the existence of KY forms are also elucidated.

  20. On the Incompleteness of Ibragimov’s Conservation Law Theorem and Its Equivalence to a Standard Formula Using Symmetries and Adjoint-Symmetries

    Directory of Open Access Journals (Sweden)

    Stephen C. Anco

    2017-02-01

    Full Text Available A conservation law theorem stated by N. Ibragimov along with its subsequent extensions are shown to be a special case of a standard formula that uses a pair consisting of a symmetry and an adjoint-symmetry to produce a conservation law through a well-known Fréchet derivative identity. Furthermore, the connection of this formula (and of Ibragimov’s theorem to the standard action of symmetries on conservation laws is explained, which accounts for a number of major drawbacks that have appeared in recent work using the formula to generate conservation laws. In particular, the formula can generate trivial conservation laws and does not always yield all non-trivial conservation laws unless the symmetry action on the set of these conservation laws is transitive. It is emphasized that all local conservation laws for any given system of differential equations can be found instead by a general method using adjoint-symmetries. This general method is a kind of adjoint version of the standard Lie method to find all local symmetries and is completely algorithmic. The relationship between this method, Noether’s theorem and the symmetry/adjoint-symmetry formula is discussed.

  1. Type-II Symmetry-Protected Topological Dirac Semimetals

    Science.gov (United States)

    Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S.; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A.; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M. Zahid

    2017-07-01

    The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, M A3 (M =V , Nb, Ta; A =Al , Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl3 is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.

  2. Gender symmetry, sexism, and intimate partner violence.

    Science.gov (United States)

    Allen, Christopher T; Swan, Suzanne C; Raghavan, Chitra

    2009-11-01

    This study of a predominantly Hispanic sample of 92 male and 140 female college students examines both gender symmetry in intimate partner violence (IPV) and inconsistent relationships found in previous studies between sexist attitudes and IPV. Results indicate that although comparable numbers of men and women perpetrate and are victimized in their relationships with intimate partners, the path models suggest that women's violence tends to be in reaction to male violence, whereas men tend to initiate violence and then their partners respond with violence. Benevolent sexism was shown to have a protective effect against men's violence toward partners. Findings highlight the importance of studying women's violence not only in the context of men's violence but also within a broader sociocultural context.

  3. Gauged diffeomorphisms and hidden symmetries in Kaluza-Klein theories

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, Olaf [Spinoza Institute and Institute for Theoretical Physics, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2007-06-07

    We analyse the symmetries that are realized on the massive Kaluza-Klein modes in generic D-dimensional backgrounds with three non-compact directions. For this, we construct the unbroken phase given by the decompactification limit, in which the higher Kaluza-Klein modes are massless. The latter admits an infinite-dimensional extension of the three-dimensional diffeomorphism group as local symmetry and, moreover, a current algebra associated with SL(D-2,R) together with the diffeomorphism algebra of the internal manifold as global symmetries. It is shown that the 'broken phase' can be reconstructed by gauging a certain subgroup of the global symmetries. This deforms the three-dimensional diffeomorphisms to a gauged version, and it is shown that they can be governed by a Chern-Simons theory, which unifies the spin-2 modes with the Kaluza-Klein vectors. This provides a reformulation of D-dimensional Einstein gravity, in which the physical degrees of freedom are described by the scalars of a gauged nonlinear {sigma}-model based on SL(D-2,R)/SO(D-2), while the metric appears in a purely topological Chern-Simons form.

  4. Assessing symmetry of financial returns series

    OpenAIRE

    H. F. Coronel-Brizio; A. R. Hernandez-Montoya; Huerta-Quintanilla; M. Rodriguez-Achach; .

    2007-01-01

    Testing symmetry of a probability distribution is a common question arising from applications in several fields. Particularly, in the study of observables used in the analysis of stock market index variations, the question of symmetry has not been fully investigated by means of statistical procedures. In this work a distribution-free test statistic Tn for testing symmetry, derived by Einmahl and McKeague, based on the empirical likelihood approach, is used to address the study of symmetry of ...

  5. Scaling Symmetry and Integrable Spherical Hydrostatics

    OpenAIRE

    Bludman, Sidney; Kennedy, Dallas C.

    2011-01-01

    Any symmetry reduces a second-order differential equation to a first integral: variational symmetries of the action (exemplified by central field dynamics) lead to conservation laws, but symmetries of only the equations of motion (exemplified by scale-invariant hydrostatics) yield first-order {\\em non-conservation laws} between invariants. We obtain these non-conservation laws by extending Noether's Theorem to non-variational symmetries and present an innovative variational formulation of sph...

  6. Symmetry of the Pyritohedron and Lattices

    Directory of Open Access Journals (Sweden)

    Nazife O. Koca

    2016-12-01

    Full Text Available The pyritohedron consisting of twelve identical but non regular pentagonal faces and its dual pseudoicosahedron that possess the pyritohedral (Th symmetry play an essential role in understanding the crystallographic structures with the pyritohedral symmetry. The pyritohedral symmetry takes a simpler form in terms of quaternionic representation. We discuss the 3D crystals with the pyritohedral symmetry which can be derived from the Coxeter-Dynkin diagram  of D3.

  7. Prediction of human eye fixations using symmetry

    NARCIS (Netherlands)

    Kootstra, Gert; Schomaker, Lambert

    2009-01-01

    Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of

  8. Symmetry and electromagnetism. Simetria y electromagnetismo

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.

  9. Generalized partial dynamical symmetry in nuclei.

    Science.gov (United States)

    Leviatan, A; Isacker, P Van

    2002-11-25

    We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in 162Dy.

  10. Partial Dynamical Symmetry in Deformed Nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. copyright 1996 The American Physical Society

  11. Simultaneous occurrence of distinct symmetries in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    2016-01-01

    We show that distinct emergent symmetries, such as partial dynamical symmetry and quasi dynamical symmetry, can occur simultaneously in the same or different eigenstates of the Hamiltonian. Implications for nuclear spectroscopy in the rare-earth region and for first-order quantum phase transitions between spherical and deformed shapes, are considered. (paper)

  12. Generalized partial dynamical symmetry in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.; Isacker, P. van

    2002-01-01

    We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in Dy 162

  13. Partial Dynamical Symmetry in Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-07-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}

  14. Involution symmetries and the PMNS matrix

    Indian Academy of Sciences (India)

    Palash B Pal

    2017-10-09

    Oct 9, 2017 ... approach, advocated first by Lam [1], one starts by look- ing at the symmetries of the low-energy Lagrangian, and tries to see which group can contain these symmetries. The bigger symmetry might then determine the PMNS matrix, or at least some information about its elements. In this paper, we are going ...

  15. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)

    2016-11-15

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.

  16. Symmetry realization of texture zeros

    International Nuclear Information System (INIS)

    Grimus, W.; Joshipura, A.S.; Lavoura, L.; Tanimoto, M.

    2004-01-01

    We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)

  17. Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem.

    Science.gov (United States)

    Frost, J James; Pienta, Kenneth J; Coffey, Donald S

    2018-02-20

    Symmetry and symmetry breaking concepts from physics and biology are applied to the problem of cancer. Three categories of symmetry breaking in cancer are examined: combinatorial, geometric, and functional. Within these categories, symmetry breaking is examined for relevant cancer features, including epithelial-mesenchymal transition (EMT); tumor heterogeneity; tensegrity; fractal geometric and information structure; functional interaction networks; and network stabilizability and attack tolerance. The new cancer symmetry concepts are relevant to homeostasis loss in cancer and to its origin, spread, treatment and resistance. Symmetry and symmetry breaking could provide a new way of thinking and a pathway to a solution of the cancer problem.

  18. Testing for bivariate spherical symmetry

    OpenAIRE

    Einmahl, J.H.J.; Gantner, M.

    2012-01-01

    An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the asymptotic ones, are presented. In a simulation study, the good perfor- mance of the test is demonstrated. Furthermore, a real data example is presented.

  19. Symmetries of the dual metrics

    International Nuclear Information System (INIS)

    Baleanu, D.

    1998-01-01

    The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric

  20. Dual Symmetry in Gauge Theories

    OpenAIRE

    Koshkarov, A. L.

    1997-01-01

    Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative in...

  1. Chiral symmetry and nucleon structure

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, B.R. (Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astromony Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory)

    1992-01-01

    Recently it has been realized that significant tests of the validity of QCD are available in low energy experiments (E < 500 MeV) by exploiting the property of (broken) chiral symmetry. This technique has been highly developed in The Goldstone boson sector by the work of Gasser and Leutwyler. Application to the nucleon system is much more difficult and is now being carefully developed.

  2. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  3. Superconformal Symmetry, Supergravity and Cosmology

    CERN Document Server

    Kallosh, Renata E; Linde, Andrei D; Van Proeyen, A; Kallosh, Renata; Kofman, Lev; Linde, Andrei; Proeyen, Antoine Van

    2000-01-01

    We introduce the general N=1 gauge theory superconformally coupled to supergravity. The theory has local SU(2,2|1) symmetry and no dimensional parameters. The superconformal origin of the Fayet-Iliopoulos terms is clarified. The phase of this theory with spontaneously broken conformal symmetry gives various formulations of N=1 supergravity interacting with matter, depending on the choice of the R-symmetry fixing. We have found that the locally superconformal theory is useful for describing the physics of the early universe with a conformally flat FRW metric. Few applications of superconformal theory to cosmology include the study of i) particle production after inflation, particularly the non-conformal helicity 1/2 states of gravitino, ii) the super-Higgs effect in cosmology and the derivation of the equations for the gravitino interacting with any number of chiral and vector multiplets in the gravitational background with varying scalar fields, iii) the weak coupling limit of supergravity and gravitino-golds...

  4. Dark matter and global symmetries

    Directory of Open Access Journals (Sweden)

    Yann Mambrini

    2016-09-01

    Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.

  5. Warm unstable asymmetric nuclear matter: Critical properties and the density dependence of the symmetry energy

    Science.gov (United States)

    Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.

    2017-05-01

    The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.

  6. The Symmetry of Optical Field in Photonic Crystal Fibre with Trigonal Symmetry

    Directory of Open Access Journals (Sweden)

    Ivan Turek

    2006-01-01

    Full Text Available Some photographs of intensity of optical field of a photonic crystal fibre are presented in the contribution. Presented photographs document that the symmetry of photonic crystal creating the cladding of fibre is manifested in the symmetry of distribution of the optical field intensity. In case when more modes are excited in the fibre the symmetry of the generated field can be different as the symmetry of the eventual modes. How the symmetry may be changed is illustrated by amodel example.

  7. Molecular symmetry, super-rotation, and semiclassical motion new ideas for solving old problems

    CERN Document Server

    Schmiedt, Hanno

    2017-01-01

    This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions.  The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts. The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited. The central part of the book is the discussio...

  8. Dynamical study of symmetries: breaking and restauration

    International Nuclear Information System (INIS)

    Schuck, P.

    1986-09-01

    First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr

  9. Proton-neutron deformations and F -spin symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Ginocchio, J.N. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (USA)); Kirson, M.W. (Nuclear Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel))

    1990-12-03

    The purity of intrinsic states of nuclei with respect to a proton-neutron boson symmetry ({ital F} spin) is shown to be largely determined by the difference between proton and neutron deformations and not by whether the Hamiltonian is an {ital F}-spin scalar. Upper and lower bounds on {ital F}-spin mixing in the ground-state band of {sup 165}Ho are estimated using recent pion single-charge-exchange data.

  10. Statistical symmetries of the Lundgren-Monin-Novikov hierarchy.

    Science.gov (United States)

    Wacławczyk, Marta; Staffolani, Nicola; Oberlack, Martin; Rosteck, Andreas; Wilczek, Michael; Friedrich, Rudolf

    2014-07-01

    It was shown by Oberlack and Rosteck [Discr. Cont. Dyn. Sys. S, 3, 451 2010] that the infinite set of multipoint correlation (MPC) equations of turbulence admits a considerable extended set of Lie point symmetries compared to the Galilean group, which is implied by the original set of equations of fluid mechanics. Specifically, a new scaling group and an infinite set of translational groups of all multipoint correlation tensors have been discovered. These new statistical groups have important consequences for our understanding of turbulent scaling laws as they are essential ingredients of, e.g., the logarithmic law of the wall and other scaling laws, which in turn are exact solutions of the MPC equations. In this paper we first show that the infinite set of translational groups of all multipoint correlation tensors corresponds to an infinite dimensional set of translations under which the Lundgren-Monin-Novikov (LMN) hierarchy of equations for the probability density functions (PDF) are left invariant. Second, we derive a symmetry for the LMN hierarchy which is analogous to the scaling group of the MPC equations. Most importantly, we show that this symmetry is a measure of the intermittency of the velocity signal and the transformed functions represent PDFs of an intermittent (i.e., turbulent or nonturbulent) flow. Interesting enough, the positivity of the PDF puts a constraint on the group parameters of both shape and intermittency symmetry, leading to two conclusions. First, the latter symmetries may no longer be Lie group as under certain conditions group properties are violated, but still they are symmetries of the LMN equations. Second, as the latter two symmetries in its MPC versions are ingredients of many scaling laws such as the log law, the above constraints implicitly put weak conditions on the scaling parameter such as von Karman constant κ as they are functions of the group parameters. Finally, let us note that these kind of statistical symmetries are

  11. Hexagonal response matrix using symmetries

    International Nuclear Information System (INIS)

    Gotoh, Y.

    1991-01-01

    A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)

  12. Crossing symmetry in Alpha space

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The conformal bootstrap program aims to catalog all conformal field theories (second-order phase transitions) in D dimensions. Despite its ambitious scope much progress has been made over the past decade, e.g. in computing critical exponents for the 3D O(N) models to high precision. At this stage, analytic methods to explore the CFT landscape are not as well developed. In this talk I will describe a new mathematical framework for the bootstrap known as "alpha space", which reduces crossing symmetry to a set of integral equations. Based on arXiv:1702.08471 (with Balt van Rees) and arXiv:1703.08159.

  13. Effective operators and extended symmetry

    CERN Document Server

    Frère, J M; Moreno, J M; Orloff, J

    1994-01-01

    In this note we expand on our previous study of the implications of LEP1 results for future colliders. We extend the effective operator-based analysis of De R\\'ujula et al. to a larger symmetry group, and show at which cost their expectations can be relaxed. Of particular interest to experiment is a rephrasing of our previous results in terms of the Renard et al. parametrization for the gauge boson self-couplings (slightly extended to include $\\delta g_{\\gamma}$). We suggest the use of a ($\\delta g_{\\gamma}$, $\\delta g_{Z}$) plot to confront the expectations of various models.

  14. Renormalization Method and Mirror Symmetry

    Directory of Open Access Journals (Sweden)

    Si Li

    2012-12-01

    Full Text Available This is a brief summary of our works [arXiv:1112.4063, arXiv:1201.4501] on constructing higher genus B-model from perturbative quantization of BCOV theory. We analyze Givental's symplectic loop space formalism in the context of B-model geometry on Calabi-Yau manifolds, and explain the Fock space construction via the renormalization techniques of gauge theory. We also give a physics interpretation of the Virasoro constraints as the symmetry of the classical BCOV action functional, and discuss the Virasoro constraints in the quantum theory.

  15. New Insights into Viral Architecture via Affine Extended Symmetry Groups

    Directory of Open Access Journals (Sweden)

    T. Keef

    2008-01-01

    Full Text Available Since the seminal work of Caspar and Klug on the structure of the protein containers that encapsulate and hence protect the viral genome, it has been recognized that icosahedral symmetry is crucial for the structural organization of viruses. In particular, icosahedral symmetry has been invoked in order to predict the surface structures of viral capsids in terms of tessellations or tilings that schematically encode the locations of the protein subunits in the capsids. Whilst this approach is capable of predicting the relative locations of the proteins in the capsids, a prediction on the relative sizes of different virus particles in a family cannot be made. Moreover, information on the full 3D structure of viral particles, including the tertiary structures of the capsid proteins and the organization of the viral genome within the capsid are inaccessible with their approach. We develop here a mathematical framework based on affine extensions of the icosahedral group that allows us to address these issues. In particular, we show that the relative radii of viruses in the family of Polyomaviridae and the material boundaries in simple RNA viruses can be determined with our approach. The results complement Caspar and Klug's theory of quasi-equivalence and provide details on virus structure that have not been accessible with previous methods, implying that icosahedral symmetry is more important for virus architecture than previously appreciated.

  16. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  17. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    International Nuclear Information System (INIS)

    Borges, L.H.C.; Barone, F.A.

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  18. Symmetry Reductions and Group-Invariant Radial Solutions to the n-Dimensional Wave Equation

    Science.gov (United States)

    Feng, Wei; Zhao, Songlin

    2018-01-01

    In this paper, we derive explicit group-invariant radial solutions to a class of wave equation via symmetry group method. The optimal systems of one-dimensional subalgebras for the corresponding radial wave equation are presented in terms of the known point symmetries. The reductions of the radial wave equation into second-order ordinary differential equations (ODEs) with respect to each symmetry in the optimal systems are shown. Then we solve the corresponding reduced ODEs explicitly in order to write out the group-invariant radial solutions for the wave equation. Finally, several analytical behaviours and smoothness of the resulting solutions are discussed.

  19. Pseudospin Symmetry and Forbidden Magnetic Dipole and Gamow-Teller Transitions

    Science.gov (United States)

    Ginocchio, Joseph

    1999-10-01

    Recently it has been shown that pseudospin symmetry has its origins in a relativistic symmetry of the Dirac Hamiltonian[1]. Using this symmetry we relate single - nucleon relativistic magnetic moments of states in a pseudospin doublet to the relativistic magnetic dipole transitions between the states in the doublet, and we relate single - nucleon relativistic Gamow - Teller transitions within states in the doublet. We apply these relationships to the Gamow - Teller transitions from ^39Ca to its mirror nucleus ^39K [2] and to the systematics of forbidden magnetic dipole transitions. 1. J. N. Ginocchio and A. Leviatan Phys. Lett. B 425, 1 (1998). 2. J. N. Ginocchio Phys. Rev. C 59, 2487 (1999).

  20. Mirror symmetry in the presence of branes

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Adrian

    2011-10-11

    This work deals with mirror symmetry for N=1 compactifications on compact Calabi-Yau threefolds with branes. The mayor tool is a combined deformation space for the Calabi-Yau and a hypersurface within it. Periods of this deformation space contain information about B-type branes within the hypersurface in addition to the usual closed string data. To study these periods we generalize techniques used in closed string mirror symmetry. We derive the Picard-Fuchs system and encode the information in extended toric polytopes. Solutions of the Picard-Fuchs equations give superpotentials for certain brane configurations. This is an efficient way to calculate superpotentials. The deformations we consider are massive for all branes with non trivial superpotential. Depending on a choice of a family of hypersurfaces, the superpotential of the effective low energy theory depends on different massive fields. A priori there is no reason for these fields to be lighter then other fields that are not included. We find however examples where the superpotential is nearly at. In these examples we use the Gauss-Manin connection on the combined deformation space to define an open string mirror map. We find instanton generated superpotentials of A-type branes. This gives predictions for Ooguri-Vafa invariants counting holomorphic disks that end on a Lagrangian brane on the Quintic. A second class of examples does not have preferred nearly massless deformations and different families of hypersurfaces can be used to calculate the same on-shell superpotential. We calculate examples of superpotentials for branes in Calabi-Yau manifolds with several moduli. The on-shell superpotentials are mapped to the mirror A-model to study the instanton expansion and to obtain predictions for disk invariants. The combined deformation spaces are equivalent to the quantum corrected Kaehler deformation spaces of certain non compact Calabi-Yau fourfolds. These fourfolds are fibrations of Calabi-Yau threefolds

  1. Mirror symmetry in the presence of branes

    International Nuclear Information System (INIS)

    Mertens, Adrian

    2011-01-01

    This work deals with mirror symmetry for N=1 compactifications on compact Calabi-Yau threefolds with branes. The mayor tool is a combined deformation space for the Calabi-Yau and a hypersurface within it. Periods of this deformation space contain information about B-type branes within the hypersurface in addition to the usual closed string data. To study these periods we generalize techniques used in closed string mirror symmetry. We derive the Picard-Fuchs system and encode the information in extended toric polytopes. Solutions of the Picard-Fuchs equations give superpotentials for certain brane configurations. This is an efficient way to calculate superpotentials. The deformations we consider are massive for all branes with non trivial superpotential. Depending on a choice of a family of hypersurfaces, the superpotential of the effective low energy theory depends on different massive fields. A priori there is no reason for these fields to be lighter then other fields that are not included. We find however examples where the superpotential is nearly at. In these examples we use the Gauss-Manin connection on the combined deformation space to define an open string mirror map. We find instanton generated superpotentials of A-type branes. This gives predictions for Ooguri-Vafa invariants counting holomorphic disks that end on a Lagrangian brane on the Quintic. A second class of examples does not have preferred nearly massless deformations and different families of hypersurfaces can be used to calculate the same on-shell superpotential. We calculate examples of superpotentials for branes in Calabi-Yau manifolds with several moduli. The on-shell superpotentials are mapped to the mirror A-model to study the instanton expansion and to obtain predictions for disk invariants. The combined deformation spaces are equivalent to the quantum corrected Kaehler deformation spaces of certain non compact Calabi-Yau fourfolds. These fourfolds are fibrations of Calabi-Yau threefolds

  2. Translation symmetry of the Fraunhofer diffraction pattern from a polygonal aperture

    International Nuclear Information System (INIS)

    Vinogradov, I.R.; Tarlykov, V.A.

    1995-01-01

    The problem of observing the translation symmetry in the Fraunhofer diffraction pattern is treated. The objective of this study is to show that translation symmetry can be observed in the Fraunhofer diffraction pattern if the diffraction aperture can be represented in the form of a set of parallelogram apertures. It is shown that the diffraction field produced by such an aperture can be represented as a system of point sources modulated with an amplitude factor. 10 refs., 2 figs

  3. Nearest-Neighbour Interaction from an Abelian Symmetry and Deviations from Hermiticity

    CERN Document Server

    Branco, G C; Simoes, C

    2010-01-01

    We show that Nearest-Neighbour Interaction (NNI) textures for the quark mass matrices can be obtained through the introduction of an Abelian flavour symmetry. The minimal realisation requires a Z_4 symmetry in the context of a two Higgs doublet model. It is further shown that the NNI textures can be in agreement with all present experimental data on quark masses and mixings, provided one allows for deviations of Hermiticity in the quark mass matrices at the 20% level.

  4. Diffeomorphism-type symmetries of the self-dual Yang-Mills equations

    International Nuclear Information System (INIS)

    Ivanova, T.A.

    1998-01-01

    The infinite-dimensional algebra of diffeomorphism-type symmetries of the self-dual Yang-Mills equations is described as the algebra of 0-cochains with values in a sheaf of germs of holomorphic sections of the (1,0) tangent bundle over the twistor space. It is shown that the extended conformal symmetries are obtained as particular cases of the aforementioned algebra

  5. Dual symmetry in gauge theories

    International Nuclear Information System (INIS)

    Koshkarov, A.L.

    1997-01-01

    Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory

  6. Extreme lattices: symmetries and decorrelation

    Science.gov (United States)

    Andreanov, A.; Scardicchio, A.; Torquato, S.

    2016-11-01

    We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.

  7. Vertex algebras and mirror symmetry

    International Nuclear Information System (INIS)

    Borisov, L.A.

    2001-01-01

    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  8. Gauge symmetries, topology, and quantisation

    International Nuclear Information System (INIS)

    Balachandran, A.P.

    1994-01-01

    The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem

  9. Flavor symmetries and fermion masses

    International Nuclear Information System (INIS)

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model

  10. Unidirectional zero reflection as gauged parity-time symmetry

    Science.gov (United States)

    Gear, James; Sun, Yong; Xiao, Shiyi; Zhang, Liwen; Fitzgerald, Richard; Rotter, Stefan; Chen, Hong; Li, Jensen

    2017-12-01

    We introduce here the concept of establishing parity-time (PT)-symmetry through a gauge transformation involving a shift of the mirror plane for the parity operation. The corresponding unitary transformation on the system’s constitutive matrix allows us to generate and explore a family of equivalent PT-symmetric systems. We further derive that unidirectional zero reflection for a reciprocal two-port system can always be associated with a passively gauged PT-symmetry. We demonstrate this experimentally using a microstrip transmission-line with magnetoelectric coupling. This study allows us to use bianisotropy as a practical route to realise and explore exceptional point behaviour of PT-symmetric or generally non-Hermitian systems.

  11. Lorentz Symmetry Breaking in Quantum Electrodynamics

    OpenAIRE

    Oliveira, D. M.

    2010-01-01

    In this dissertation, we study the implications generated by the Lorentz breaking symmetry in quantum electrodynamics. We analyze fermions interacting with an electromagnetic field in the contexts of quantum mechanics and make radiative corrections. In quantum mechanics, the terms of the Lorentz breaking symmetry were treated as perturbations to the Dirac equation, and their expected values were obtained in a vacuum. In the radiative corrections, the Lorentz breaking symmetry was introduced i...

  12. Symmetries in geology and geophysics

    OpenAIRE

    Turcotte, Donald L.; Newman, William I.

    1996-01-01

    Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A unive...

  13. Discrete symmetries and coset space dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1989-01-01

    We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)

  14. R Symmetry and the Mu Problem

    OpenAIRE

    Hall, Lawrence J.; Nomura, Yasunori; Pierce, Aaron

    2002-01-01

    A natural origin for the mu and B parameters of weak scale supersymmetric theories is proposed, applicable to any supersymmetry breaking messenger scale between the weak and Planck scales. Although quite general, it requires supersymmetric interactions to respect an R symmetry with definite quantum numbers, and it requires some new scale of symmetry breaking. The required R symmetry distinguishes the Higgs boson from the sneutrino, preserves baryon number in operators of dimension four and fi...

  15. Bodily symmetry increases across human childhood.

    Science.gov (United States)

    Hope, David; Bates, Timothy C; Dykiert, Dominika; Der, Geoff; Deary, Ian J

    2013-08-01

    Although bodily symmetry is widely used in studies of fitness and individual differences, little is known about how symmetry changes across development, especially in childhood. To test how, if at all, bodily symmetry changes across childhood. We measured bodily symmetry via digital images of the hands. Participants provided information on their age. We ran polynomial regression models testing for associations between age and symmetry. 887 children attending a public science event aged between 4 and 15 years old. Mean asymmetry for the eight traits (an average of the asymmetry scores for the lengths and widths of digits 2 to 5). Symmetry increases in childhood and we found that this period of development is best described by a nonlinear function. Symmetry may be under active control, increasing with time as the organism approaches an optimal state, prior to a subsequent decline in symmetry during senescence. The causes and consequences of this contrasting pattern of developmental improvement in symmetry and reversal in old age should be studied in more detail. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Topology and symmetries in gyroscopic lattices

    Science.gov (United States)

    Nash, Lisa M.; Mitchell, Noah P.; Turner, Ari M.; Irvine, William T. M.

    Mechanical metamaterials - including static frames, coupled pendula, and gyroscopic lattices - can support topologically protected vibrational behavior. In particular, fast-spinning gyroscopes pinned on a honeycomb lattice break time-reversal symmetry and exhibit topologically protected, one-way edge modes. As in electronic systems, symmetries play an important role in determining the topological properties of the material. Here we present the roles of inversion symmetry, local coordination number, and time reversal symmetry on the band topology of gyroscopic metamaterials with several lattice geometries.

  17. Imagery of symmetry in current physics

    Science.gov (United States)

    Shirkov, D. V.

    2012-02-01

    We consider a remarkable symmetry duality that is broken under a phase transition permitting the appearance of superconductivity and superfluidity. This is a wine-bottle rotation symmetry in a semiphenomenological description in the spirit of Ginzburg and Landau, while it is a phase symmetry responsible for the conservation of the number of particles (helium atoms, Cooper electron pairs) in Bogoliubov's quantum theory. This duality is interesting in the context of the contraposition of logic and intuition or Science and Art. We also briefly discuss another aspect of distorted symmetry connected with varying the geometry of space-time and with dimensional reduction in particular.

  18. A κ-symmetry calculus for superparticles

    International Nuclear Information System (INIS)

    Gauntlett, J.P.

    1991-01-01

    We develop a κ-symmetry calculus for the d=2 and d=3, N=2 massive superparticles, which enables us to construct higher order κ-invariant actions. The method relies on a reformulation of these models as supersymmetric sigma models that are invariant under local worldline superconformal transformations. We show that the κ-symmetry is embedded in the superconformal symmetry so that a calculus for the κ-symmetry is equivalent to a tensor calculus for the latter. We develop such a calculus without the introduction of a wordline supergravity multiplet. (orig.)

  19. Massive Kaluza-Klein theories and their spontaneously broken symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, O.

    2006-07-15

    In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS{sub 3} x S{sup 3} x S{sup 3} a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS{sub 3} x S{sup 3} x S{sup 3} and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)

  20. Accurate powder patterns and new spectral shape in orthorrombic symmetry

    International Nuclear Information System (INIS)

    Gonzalez-Tovany, L.

    1991-01-01

    The shape of the powder pattern of the center resonance line (M= 1/2 ↔ -1/2) for electron paramagnetic resonance (EPR) in orthorhombic symmetry, or nuclear magnetic resonance (NMR) with quadrupole interaction, is determined for all values of the crystal field symmetry parameter N by means of a general analytical method developed by Beltran-Lopez and Castro-Tello. Analytical functions in terms of elliptical integrals are obtained which are good approximations to the true powder pattern except in a narrow region around the field value corresponding to E=-2n 2 /3. numerical gaussian quadrature of the powder pattern from the single-variable integral arising in the analytical method is shown to be a very efficient semianalytical method of calculation for computer work, being much smoother and requiring only a few seconds of CPU time versus the several minutes needed with the grid of the Monte Carlo methods. The semianalytical powder patterns reveal the existence of a previous unknown EPR spectral feature in orthorhombic symmetry resembling a divergence. This feature which should appear at E=-2n 2 /3 for asymmetry parameter values near N=√ of 2/3, is hidden in the experimental spectra by the broadening effect of the linewidth of the individual crystallites. Comparison of experimental and simulated spectra obtained by convoluting powder patterns with first-derivate lorentzian lineshapes of convenient width are also shown. Semianalytical spectra are much smoother than Monte Carlo simulated spectra, revealing finer spectral features. (Author)

  1. Hamiltonian formalisms and symmetries of the Pais–Uhlenbeck oscillator

    Directory of Open Access Journals (Sweden)

    Krzysztof Andrzejewski

    2014-12-01

    Full Text Available The study of the symmetry of Pais–Uhlenbeck oscillator initiated in Andrzejewski et al. (2014 [24] is continued with special emphasis put on the Hamiltonian formalism. The symmetry generators within the original Pais and Uhlenbeck Hamiltonian approach as well as the canonical transformation to the Ostrogradski Hamiltonian framework are derived. The resulting algebra of generators appears to be the central extension of the one obtained on the Lagrangian level; in particular, in the case of odd frequencies one obtains the centrally extended l-conformal Newton–Hooke algebra. In this important case the canonical transformation to an alternative Hamiltonian formalism (related to the free higher derivatives theory is constructed. It is shown that all generators can be expressed in terms of the ones for the free theory and the result agrees with that obtained by the orbit method.

  2. Results on the symmetries of integrable fermionic models on chains

    International Nuclear Information System (INIS)

    Dolcini, F.; Montorsi, A.

    2001-01-01

    We investigate integrable fermionic models within the scheme of the graded quantum inverse scattering method, and prove that any symmetry imposed on the solution of the Yang-Baxter equation reflects on the constants of motion of the model; generalizations with respect to known results are discussed. This theorem is shown to be very effective when combined with the polynomial R-matrix technique (PRT): we apply both of them to the study of the extended Hubbard models, for which we find all the subcases enjoying several kinds of (super)symmetries. In particular, we derive a geometrical construction expressing any gl(2,1)-invariant model as a linear combination of EKS and U-supersymmetric models. Further, we use the PRT to obtain 32 integrable so(4)-invariant models. By joint use of the Sutherland's species technique and η-pairs construction we propose a general method to derive their physical features, and we provide some explicit results

  3. Model dependence in the density content of nuclear symmetry energy

    International Nuclear Information System (INIS)

    Mondal, C.; Agrawal, B.K.; Singh, S.K.; Patra, S.K.; Centelles, M.; Viñas, X.; Colò, G.; Roca-Maza, X.; Paar, N.

    2014-01-01

    Apart from very few light nuclei, all nuclear systems in nature, starting from tiny finite nuclei to huge astrophysical objects like neutron stars, are asymmetric. Densities of these systems vary over a wide range. So, accurate knowledge of symmetry energy over a wide range of density is very essential to understand several phenomena in finite nuclei as well as in neutron stars. We have shown using a representative set of systematically varied mean models that the correlation of symmetry energy slope parameter with the neutron skin thickness in 208 Pb nucleus has a noticeable amount of model dependence. The investigations in order to unveil the source of the model dependence in such correlations are underway

  4. Nuclear probes of fundamental symmetries

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1983-01-01

    Nuclear experiments which probe the parity (P) and time-reversal (T) symmetries and lepton-number conservation are reviewed. The P-violating NN interaction, studied in the NN system and in light nuclei, provides an unique window on ΔS=0 hadronic weak processes. Results are in accord with expectations. Sensitive searches for T-violation via detailed balance, T-odd correlations in γ and β-decay, and a possible neutron electric dipole moment (EDM) are discussed. No T-violation is observed. The EDM limit is almost good enough to eliminate one of the leading theoretical explanations for CP violation. Experimental studies of double β-decay are reviewed. Although ββ nu nu decay has been convincingly detected in geochemical experiments there is no evidence for the lepton number violating ββ decay mode

  5. Flavor symmetries and fermion masses

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, Andrija [Univ. of California, Berkeley, CA (United States)

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, Vub/Vcb = √mu/mc and Vtd/Vts = √md/ms, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanβ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.

  6. Neutrino properties and fundamental symmetries

    International Nuclear Information System (INIS)

    Bowles, T.J.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using 3 He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs

  7. Disaster Impacts on Human Capital Accumulation Shown in the Typhoon Haiyan Case

    Science.gov (United States)

    Özceylan Aubrecht, Dilek; Aubrecht, Christoph

    2014-05-01

    School children and their school environment are increasingly exposed to all kinds of hazards. Many disaster events have shown the extent of disaster impacts on the education sector which this study also highlights in the Typhoon Haiyan Case. Disasters do not only cause loss of lives or damage to educational facilities, they also entail significant economic and social consequences on human capital development in the short and long-run. While the trend of short term disaster impact can easily be analyzed in rapid post disaster assessments taking destroyed assets as proxy, usually analyses of medium and long-term effects of disasters include large inherent uncertainties and are of less tangible nature, require more time and complex methods and can often not give comprehensive results. The consequences of disasters especially in developing countries are therefore to a certain extent often left unknown. Generally, economic and social effects of disasters on human capital seem to be ambiguous and to some degree these effects are related to economic, social and institutional well-being. Thus, clear understanding is crucial to interpret its complex effects on human capital accumulation. This essential nature of medium and long-term effects has not been reflected in many analyses. Focus has mostly been given on the extent of physical damage, displacements, lives and assets lost instead of targeting resilience of social and economic characteristics of communities in terms of preventing human capital accumulation disruption. Main objective of this study is to provide a conceptual framework illustrating the impacts of disasters on schooling which might help in assessing such effects, as one of the fundamental components of human capital accumulation (Ozceylan Aubrecht, 2013). The dimensions of human capital building and its relationship to disasters under the light of past disaster events are discussed with a special focus on the recent Typhoon Haiyan that struck the

  8. Spontaneous symmetry breakdown in gauge theories

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1982-01-01

    The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)

  9. Symmetry breaking signaling mechanisms during cell polarization

    NARCIS (Netherlands)

    Bruurs, LJM

    2017-01-01

    Breaking of cellular symmetry in order to establish an apico-basal polarity axis initiates de novo formation of cell polarity. However, symmetry breaking provides a formidable challenge from a signaling perspective, because by definition no spatial cues are present to instruct axis establishment.

  10. Order in the Universe: The Symmetry Principle.

    Science.gov (United States)

    Foundation for Integrative Education, Inc., New York, NY.

    The first two papers in this booklet provide a review of the pervasiveness of symmetry in nature and art, discussing how symmetry can be traced through every domain open to our understanding, from all aspects of nature to the special provinces of man; the checks and balances of government, the concept of equal justice, and the aesthetic ordering…

  11. Symmetry aspects of nonholonomic field theories

    Energy Technology Data Exchange (ETDEWEB)

    Vankerschaver, Joris [Control and Dynamical Systems, California Institute of Technology, MC 107-81, Pasadena, CA 91125 (United States); Diego, David MartIn de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain)

    2008-01-25

    The developments in this paper are concerned with nonholonomic field theories in the presence of symmetries. Having previously treated the case of vertical symmetries, we now deal with the case where the symmetry action can also have a horizontal component. As a first step in this direction, we derive a new and convenient form of the field equations of a nonholonomic field theory. Nonholonomic symmetries are then introduced as symmetry generators whose virtual work is zero along the constraint submanifold, and we show that for every such symmetry, there exists a so-called momentum equation, describing the evolution of the associated component of the momentum map. Keeping up with the underlying geometric philosophy, a small modification of the derivation of the momentum lemma allows us to also treat generalized nonholonomic symmetries, which are vector fields along a projection. Such symmetries arise for example in practical examples of nonholonomic field theories such as the Cosserat rod, for which we recover both energy conservation (a previously known result) and a modified conservation law associated with spatial translations.

  12. Symmetries of Taub-NUT dual metrics

    International Nuclear Information System (INIS)

    Baleanu, D.; Codoban, S.

    1998-01-01

    Recently geometric duality was analyzed for a metric which admits Killing tensors. An interesting example arises when the manifold has Killing-Yano tensors. The symmetries of the dual metrics in the case of Taub-NUT metric are investigated. Generic and non-generic symmetries of dual Taub-NUT metric are analyzed

  13. Space-time and Local Gauge Symmetries

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Broken color symmetry and weak currents

    International Nuclear Information System (INIS)

    Stech, B.

    1976-01-01

    Broken colour symmetry predicts a very rich spectrum of new particles. If broken colour is relevant at all, charged psi-particles should be found in particular at the 4 GeV region. For the weak hadronic currents no completely satisfactory suggestion exists. Broken colour symmetry describes qualitatively several of the new effects observed recently. (BJ) [de

  15. Nuclear symmetry energy: An experimental overview

    Indian Academy of Sciences (India)

    Abstract. The nuclear symmetry energy is a fundamental quantity important for study- ing the structure of systems as diverse as the atomic nucleus and the neutron star. Con- siderable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article ...

  16. Scalar symmetry of the massless Dirac equation

    International Nuclear Information System (INIS)

    Clerk, G.J.; McKellar, B.H.J.

    1992-01-01

    The existence of a symmetry of the Dirac equation for a massless particle in a scalar field is demonstrated, and its effect on the band structure of certain arrays of scalar δ-function potentials is investigated. The implications of the symmetry for more general scalar potentials are also discussed. 10 refs

  17. Molecular symmetry in ab initio calculations

    International Nuclear Information System (INIS)

    Madhavan, P.V.; Whitten, J.L.

    1987-01-01

    A scheme is presented for the construction of the Fock matrix in LCAO-SCF calculations and for the transformation of basis integrals to LCAO-MO integrals that can utilize several symmetry unique lists of integrals corresponding to different symmetry groups. The algorithm is fully compatible with vector processing machines and is especially suited for parallel processing machines. copyright 1987 Academic Press, Inc

  18. Nuclear symmetry energy: An experimental overview

    Indian Academy of Sciences (India)

    The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article, the ...

  19. Generalized global symmetries and dissipative magnetohydrodynamics

    NARCIS (Netherlands)

    Grozdanov, S.; Hofman, D.M.; Iqbal, N.

    2017-01-01

    The conserved magnetic flux of U(1) electrodynamics coupled to matter in four dimensions is associated with a generalized global symmetry. We study the realization of such a symmetry at finite temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current

  20. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...

  1. The golden ratio in facial symmetry

    NARCIS (Netherlands)

    Prokopakis, E. P.; Vlastos, I. M.; Picavet, V. A.; Nolst Trenite, G.; Thomas, R.; Cingi, C.; Hellings, P. W.

    2013-01-01

    Symmetry is believed to be a hallmark of appealing faces. However, this does not imply that the most aesthetically pleasing proportions are necessary those that arise from the simple division of the face into thirds or fifths. Based on the etymology of the word symmetry, as well as on specific

  2. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics

    Science.gov (United States)

    Webb, G. M.; Zank, G. P.

    2007-01-01

    We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated.

  3. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2007-01-01

    We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated

  4. arXiv 6d SCFTs and U(1) Flavour Symmetries

    CERN Document Server

    Lee, Seung-Joo; Weigand, Timo

    We study the behaviour of abelian gauge symmetries in six-dimensional N=(1,0) theories upon decoupling gravity and investigate abelian flavour symmetries in the context of 6d N=(1,0) SCFTs. From a supergravity perspective, the anomaly cancellation mechanism implies that abelian gauge symmetries can only survive as global symmetries as gravity is decoupled. The flavour symmetries obtained in this way are shown to be free of ABJ anomalies, and their 't Hooft anomaly polynomial in the decoupling limit is obtained explicitly. In an F-theory realisation the decoupling of abelian gauge symmetries implies that a mathematical object known as the height pairing of a rational section is not contractible as a curve on the base of an elliptic Calabi-Yau threefold. We prove this prediction from supergravity by making use of the properties of the Mordell-Weil group of rational sections. In the second part of this paper we study the appearance of abelian flavour symmetries in 6d N=(1,0) SCFTs. We elucidate both the geometri...

  5. Braided quantum field theories and their symmetries

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2007-01-01

    Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)

  6. Chiral symmetries associated with angular momentum

    International Nuclear Information System (INIS)

    Bhattacharya, M; Kleinert, M

    2014-01-01

    In quantum mechanics courses, symmetries of a physical system are usually introduced as operators which commute with the Hamiltonian. In this paper we will consider chiral symmetries which anticommute with the Hamiltonian. Typically, introductory courses at the (under)graduate level do not discuss these simple, useful and beautiful symmetries at all. The first time a student encounters them is when the Dirac equation is discussed in a course on relativistic quantum mechanics, or when particle–hole symmetry is studied in the context of superconductivity. In this paper, we will show how chiral symmetries can be simply elucidated using the theory of angular momentum, which is taught in virtually all introductory quantum mechanics courses. (paper)

  7. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Directory of Open Access Journals (Sweden)

    P.G.L. Leach

    2005-11-01

    Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  8. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Science.gov (United States)

    Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.

    2005-11-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  9. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  10. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth

    Science.gov (United States)

    Konstantinov, Konstantin K.; Konstantinova, Alisa F.

    2018-03-01

    Chiral symmetry breaking in complex chemical systems with a large number of amino acids and a large number of similar reactions was considered. It was shown that effective averaging over similar reaction channels may result in very weak effective enantioselectivity of forward reactions, which does not allow most of the known models to result in chiral symmetry breaking during formation of life on Earth. Models with simple and catalytic synthesis of a single amino acid, formation of peptides up to length five, and sedimentation of insoluble pair of substances were considered. It was shown that depending on the model and the values of the parameters, chiral symmetry breaking may occur in up to about 10% out of all possible unique insoluble pair combinations even in the absence of any catalytic synthesis and that minimum total number of amino acids in the pair is 5. If weak enantioselective forward catalytic synthesis of amino acids is present, then the number of possible variants, in which chiral symmetry breaking may occur, increases substantially. It was shown that that the most interesting catalysts have zero or one amino acid of "incorrect" chirality. If the parameters of the model are adjusted in such a way to result in an increase of concentration of longer peptides, then catalysts with two amino acids of incorrect chirality start to appear at peptides of length five. Models of chiral symmetry breaking in the presence of epimerization were considered for peptides up to length three. It was shown that the range of parameters in which chiral symmetry breaking could occur significantly shrinks in comparison to previously considered models with peptides up to length two. An experiment of chiral symmetry breaking was proposed. The experiment consists of a three-step cycle: reversible catalytic synthesis of amino acids, reversible synthesis of peptides, and irreversible sedimentation of insoluble substances.

  11. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Directory of Open Access Journals (Sweden)

    Meng Cheng

    2016-12-01

    Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  12. Particle-hole symmetry for composite fermions: An emergent symmetry in the fractional quantum Hall effect

    DEFF Research Database (Denmark)

    Coimbatore Balram, Ajit; Jain, Jainendra

    2017-01-01

    The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry in the fractio......The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry...... in the fractional quantum Hall effect, namely the PH symmetry of {\\em composite fermions}, which relates states at composite fermion filling factors $\

  13. Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Directory of Open Access Journals (Sweden)

    Christian Appold

    2010-06-01

    Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.

  14. The strong-weak coupling symmetry in 2D Φ4 field models

    Directory of Open Access Journals (Sweden)

    B.N.Shalaev

    2005-01-01

    Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.

  15. Ten dimensional SO(10) G.U.T. models with dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Hanlon, B.E.; Joshi, G.C.

    1993-01-01

    To date, considerations on SO (10) models within Coset Space Dimensional Reduction (CSDR) have been diagonalized to the standard model or rely upon imaginative applications of Wilson lines so as to avoid the problem of the nonexistence of an intermediate Higgs mechanism. However, there is an alternative approach involving four fermion condensates, breaking symmetries by a dynamical mechanism. Indeed, dynamical symmetry breaking has been the direction taken in some SU(5) models within this framework in order to avoid the problems of electroweak symmetry breaking at the compactification scale. This paper presents realistic models which utilize this mechanism. It is shown that the appropriate fermionic representations can emerge from CSDR and the construction of such condensates within the constraints of this scheme is presented. By introducing discrete symmetries onto the internal manifold a strong breaking of the SO(10) G.U.T. is produced and, more importantly, eliminate Higgs fields of geometrical origin. 31 refs

  16. Group symmetries and information propagation

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1980-01-01

    Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observed so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other. Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, What propagates and how. We begin with some examples, using both scalar and isospin geometries to illustrate simple propagation. Examples of matrix propagation are studied; contact with standard tensor algebra is established and an algorithm put forward for the expansion of any operator in terms of another set, complete or not; shell-model results for 20 Ne using a realistic interaction and two trace-equivalent forms are presented; and some further challenges are mentioned

  17. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  18. PREFACE: Workshop on Higher Symmetries in Physics

    Science.gov (United States)

    Campoamor-Stursberg, Rutwig; María Ancochea, José; Castrillón, Marco

    2009-07-01

    , and the construction of the Killing superalgebra of 11-dimensional supergravity backgrounds. Criteria ensuring local homogeneity were described in terms of supersymmetry. Finally, the course of Professor M Rausch de Traubenberg (IPHC, Université de Strasbourg) reviewed the present status of higher order extensions of the Poincaré algebra. In this lecture, basing on some features of the Wess-Zumino model, additional algebraic structures are added in order to obtain a hierarchy of non-trivial extensions of the Poincaré algebra. Two different types, with interesting applications in the corresponding context, are presented. The first type corresponds to finite dimensional cubic extension in D-dimensional space-time. The latter induces a symmetry on generalized gauge fields, and the corresponding invariant Lagrangians are constructed explicitly. The remaining possibility is shown to be an infinite dimensional higher order extension inducing a symmetry that allows to connect relativistic anyons. This procedure presents some analogies with supersymmetry. All papers published in this volume of Journal of Physics: Conference Series contains have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. This meeting was possible thanks to the financial and infrastructural assistance of the following Spanish institutions and projects: Universidad Complutense de Madrid (UCM) Instituto de Matemática Interdisciplinar (I.M.I.) of the UCM The Geometry, Mechanics and Control Network (GMC) CCG07/ESP-2922 of the UCM/Comunidad Autónoma de Madrid MTM2005-00173 of the Ministerio de Educación y Ciencia (MEC) MTM2006-09152 of the Ministerio de Educación y Ciencia (MEC) Consolider-Ingenio 2010 ''Programa de Investigación Intensiva sobre Mecánica Geométrica y Teoría de Control'' Finally, on behalf of the Organizing

  19. Automatic Affective Evaluation of Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Alexis Makin

    2012-05-01

    Full Text Available It is possible that the neural mechanisms that detect symmetry are linked to those that produce positive affect. We conducted a set of behavioural and electrophysiological studies designed to investigate the nature of this putative connection. First, we used the Implicit Association Test (IAT to measure implicit preference for visual regularity. On some trials, participants saw symmetrical or random dot patterns. On interleaved trials, they saw positive or negative words. When the same button was used to report symmetrical patterns and positive words, response times were faster than when the same button was used to report symmetrical patterns and negative words. This classic IAT effect demonstrated an implicit preference for symmetry. In further experiments, the same procedure was used to record implicit preference for reflection over other types of regularity, such as translation or rotational symmetry. Second, we simultaneously recorded EEG and EMG from the same participants while they observed reflection or random dot patterns. Contrary to previous findings, we found that early visual components (P1 and N1 were modulated by symmetry. Moreover, there was increased activity in the Zygomaticus Major (the muscle responsible for smiling when participants viewed reflectional symmetry, indicating a positive affective response. Rotational symmetry produced different ERPs, and no affective response. Together, our data suggest that, once the patterns are attended, most participants spontaneously form a preference for reflectional symmetry, even in the absence of any explicit instruction to engage in aesthetic evaluation.

  20. Application of symmetry operation measures in structural inorganic chemistry.

    Science.gov (United States)

    Echeverría, Jorge; Alvarez, Santiago

    2008-12-01

    This paper presents an application of the recently proposed symmetry operation measures to the determination of the effective symmetry point group of coordination polyhedra in inorganic solids. Several structure types based on octahedra are found to present distinct distortion patterns each, not strictly attached to the crystallographic site symmetry. These include the (NH4)2[CuCl4], CdI2 (brucite), FeS2 (pyrite), TiO2 (rutile), CaCl2, GdFeO3, PbTiO3,LiNbO3, BiI3, CrCl3, Al2O3, and NiWO4 structures. It is shown that a similar analysis can be applied to the Bailar and tetragonal Jahn-Teller distortions of molecular transition metal complexes, as well as to solids based on tetrahedra, such as the ZnCl2, FeS, BeCl2, SiS2, and KFeS2 structure types.

  1. A note on asymptotic symmetries and soft-photon theorem

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Arif [SISSA - International School for Advanced Studies, via Bonomea, 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Trieste (Italy)

    2015-02-10

    We use the asymptotic data at conformal null-infinity ∋ to formulate Weinberg’s soft-photon theorem for Abelian gauge theories with massless charged particles. We show that the angle-dependent gauge transformations at ∋ are not merely a gauge redundancy, instead they are genuine symmetries of the radiative phase space. In the presence of these symmetries, Poisson bracket between gauge potentials is not well-defined. This does not pose an obstacle for the quantization of the radiative phase space, which proceeds by treating the conjugate electric field as the fundamental variable. Denoting by G{sub +} and G{sub −} as the group of gauge transformations at I{sup +} and I{sup −} respectively, Strominger has shown that a certain diagonal subgroup G{sub diag}⊂G{sub +}×G{sub −} is the symmetry of the S-matrix and Weinberg’s soft-photon theorem is the corresponding Ward identity. We give a systematic derivation of this result for Abelian gauge theories with massless charged particles. Our derivation is a slight generalization of the existing derivations since it is applicable even when the bulk spacetime is not exactly flat, but is only “almost” Minkowskian.

  2. Symmetry breaking due to quantum fluctuations in massless field theories

    International Nuclear Information System (INIS)

    Ghose, P.; Datta, A.

    1977-10-01

    It is shown that quantum fluctuations can act as the driving mechanism for the spontaneous breakdown of both scale and the discrete phi→-phi symmetries in a lamdaphi 4 theory which is massless and scale invariant in the tree approximation. Consequently dimensional transformation occurs and the dimensionless and only parameter lambda in the theory is fixed and replaced by the vacuum expectation value of the field. These results are shown to be consistent with the appropriate renormalization group equation for the theory. A scalar electrodynamics which is massless and scale invariant in the tree approximation is also considered, and it is shown that the Higgs meson in such a theory is much heavier than the vector meson for small values of the gauge coupling constant e. Another interesting consequence of such a theory is that it possesses vortex-line solutions only when quantum fluctuations are taken into account

  3. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    OpenAIRE

    Leach, P. G. L.; Karasu, A.; Nucci, M. C.; Andriopoulos, K.

    2005-01-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representat...

  4. Interdependence of different symmetry energy elements

    Science.gov (United States)

    Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2017-08-01

    Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.

  5. Appreciation of symmetry in natural product synthesis.

    Science.gov (United States)

    Bai, Wen-Ju; Wang, Xiqing

    2017-12-13

    Covering: 2012 to June 2017This review aims to show that complex natural product synthesis can be streamlined by taking advantage of molecular symmetry. Various strategies to construct molecules with either evident or hidden symmetry are illustrated. Insights regarding the origins and adjustments of these strategies as well as inspiring new methodological developments are deliberated. When a symmetric strategy fails, the corresponding reason is analysed and an alternative approach is briefly provided. Finally, the importance of exploiting molecular symmetry and future research directions are discussed.

  6. Electromagnetic radiation under explicit symmetry breaking.

    Science.gov (United States)

    Sinha, Dhiraj; Amaratunga, Gehan A J

    2015-04-10

    We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna.

  7. Particle production from symmetry breaking after inflation

    CERN Document Server

    García-Bellido, J; Garcia-Bellido, Juan; Morales, Ester Ruiz

    2002-01-01

    Recent studies suggest that the process of symmetry breaking after inflation typically occurs very fast, within a single oscillation of the symmetry-breaking field, due to the spinodal growth of its long-wave modes, otherwise known as `tachyonic preheating'. In this letter we show how this sudden transition from the false to the true vacuum can induce a significant production of particles, bosons and fermions, coupled to the symmetry-breaking field. We find that this new mechanism of particle production in the early Universe may have interesting consequences for the origin of dark matter and the generation of the observed baryon asymmetry through leptogenesis.

  8. Hairs of discrete symmetries and gravity

    Directory of Open Access Journals (Sweden)

    Kang Sin Choi

    2017-06-01

    Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  9. Hairs of discrete symmetries and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)

    2017-06-10

    Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  10. The zonal satellite problem. III Symmetries

    Directory of Open Access Journals (Sweden)

    Mioc V.

    2002-01-01

    Full Text Available The two-body problem associated with a force field described by a potential of the form U =Sum(k=1,n ak/rk (r = distance between particles, ak = real parameters is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form diffeomorphic commutative groups endowed with a Boolean structure. Expressed in Levi-Civita’s coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting a Boolean structure.

  11. An automated full-symmetry Patterson search method

    International Nuclear Information System (INIS)

    Rius, J.; Miravitlles, C.

    1987-01-01

    A full-symmetry Patterson search method is presented that performs a molecular coarse rotation search in vector space and orientation refinement using the σ function. The oriented molecule is positioned using the fast translation function τ 0 , which is based on the automated interpretation of τ projections using the sum function. This strategy reduces the number of Patterson-function values to be stored in the rotation search, and the use of the τ 0 function minimizes the required time for the development of all probable rotation search solutions. The application of this method to five representative test examples is shown. (orig.)

  12. PT-symmetry and Non-Central Potentials

    Directory of Open Access Journals (Sweden)

    G. Lévai

    2007-01-01

    Full Text Available We present a general procedure by which solvable non-central potentials can be obtained in 2 and 3 dimensions by the separation of the angular and radial variables. The method is applied to generate solvable non-central PT-symmetric potentials in polar coordinates. General considerations are presented concerning the PT transformation properties of the eigenfunctions, their pseudo-norm and the nature of the energy eigenvalues. It is shown that within the present framework the spontaneous breakdown of PT symmetry can be implemented only in two dimensions. 

  13. Power plant instrumentation and control. Innovations shown at the Interkama '99 trade fair

    International Nuclear Information System (INIS)

    Ullemeyer, M.; Fritz, P.

    2000-01-01

    At the Interkama '99 trade fair, innovative software and hardware solutions for the power industry 'from power plant to the plug' were shown. The report mentions the companies and explains their new developments and systems. (orig./CB) [de

  14. Families from spinors

    International Nuclear Information System (INIS)

    Wilczek, F.; Zee, A.

    1982-01-01

    The possible utility of spinor representations of large orthogonal internal-symmetry groups is explored. The repetitive structure of families is incorporated quite naturally, but there is a difficulty with extra ''conjugate'' families having V+A weak currents. Possible methods for removing these conjugate families from the low-energy spectrum are discussed. An SO(18) example is discussed in some detail. An occurrence of spinors as a classification of composite particles is discussed. A long appendix discusses useful techniques for practical calculations involving spinors

  15. Mirror Symmetry, Hitchin's Equations, And Langlands Duality

    Science.gov (United States)

    Witten, Edward

    This chapter begins with a discussion of the A-model and B-model. It then describes mirror symmetry and Hitchin's equations, Hitchin fibration, ramification, wild ramification, and four-dimensional gauge theory and stacks.

  16. Conformal correlators of mixed-symmetry tensors

    CERN Document Server

    Costa, Miguel S

    2015-01-01

    We generalize the embedding formalism for conformal field theories to the case of general operators with mixed symmetry. The index-free notation encoding symmetric tensors as polynomials in an auxiliary polarization vector is extended to mixed-symmetry tensors by introducing a new commuting or anticommuting polarization vector for each row or column in the Young diagram that describes the index symmetries of the tensor. We determine the tensor structures that are allowed in n-point conformal correlation functions and give an algorithm for counting them in terms of tensor product coefficients. We show, with an example, how the new formalism can be used to compute conformal blocks of arbitrary external fields for the exchange of any conformal primary and its descendants. The matching between the number of tensor structures in conformal field theory correlators of operators in d dimensions and massive scattering amplitudes in d+1 dimensions is also seen to carry over to mixed-symmetry tensors.

  17. Symmetries and statistical behavior in fermion systems

    International Nuclear Information System (INIS)

    French, J.B.; Draayer, J.P.

    1978-01-01

    The interplay between statistical behavior and symmetries in nuclei, as revealed, for example, by spectra and by distributions for various kinds of excitations is considered. Methods and general results, rather than specific applications, are given. 16 references

  18. Gapless Symmetry-Protected Topological Order

    Directory of Open Access Journals (Sweden)

    Thomas Scaffidi

    2017-11-01

    Full Text Available We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d-1 SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.

  19. Symmetries and statistical behavior in fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    French, J.B.; Draayer, J.P.

    1978-01-01

    The interplay between statistical behavior and symmetries in nuclei, as revealed, for example, by spectra and by distributions for various kinds of excitations is considered. Methods and general results, rather than specific applications, are given. 16 references. (JFP)

  20. Symmetry and group theory throughout physics

    Directory of Open Access Journals (Sweden)

    Villain J.

    2012-03-01

    Full Text Available As noticed in 1884 by Pierre Curie [1], physical properties of matter are tightly related to the kind of symmetry of the medium. Group theory is a systematic tool, though not always easy to handle, to exploit symmetry properties, for instance to find the eigenvectors and eigenvalues of an operator. Certain properties (optical activity, piezoelectricity are forbidden in molecules or crystals of high symmetry. A few theorems (Noether, Goldstone establish general relations between physical properties and symmetry. Applications of group theory to condensed matter physics, elementary particle physics, quantum mechanics, electromagnetism are reviewed. Group theory is not only a tool, but also a beautiful construction which casts insight into natural phenomena.

  1. Nonlinear (super)symmetries and amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata [Physics Department, Stanford University,382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)

    2017-03-07

    There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E{sub 7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N≥5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.

  2. The problem of symmetry breaking hierarchy

    International Nuclear Information System (INIS)

    Natale, A.A.

    1983-01-01

    The problem of symmetry breaking hierarchy in grand unified theories is discussed, proving the impossibility to get a big hierarchy of interactions, in a natural way within the framework of perturbation theory. (L.C.) [pt

  3. Phil Anderson and Gauge Symmetry Breaking

    Science.gov (United States)

    Witten, Edward

    In this article, I describe the celebrated paper that Phil Anderson wrote in 1962 with early contributions to the idea of gauge symmetry breaking in particle physics. To set the stage, I describe the work of Julian Schwinger to which Anderson was responding, and also some of Anderson's own work on superconductivity that provided part of the context. After describing Anderson's work I describe the later work of others, leading to the modern understanding of gauge symmetry breaking in weak interactions...

  4. Extended nonabelian symmetries for free fermionic model

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1993-08-01

    The higher spin symmetry for both Dirac and Majorana massless free fermionic field models are considered. An infinite Lie algebra which is a linear realization of the higher spin extension of the cross products of the Virasoro and affine Kac-Moody algebras is obtained. The corresponding current algebra is closed which is not the case of analogous current algebra in the WZNW model. The gauging procedure for the higher spin symmetry is also given. (author). 12 refs

  5. Inextendibility of expanding cosmological models with symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dafermos, Mihalis [University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Rendall, Alan D [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Golm (Germany)

    2005-12-07

    A new criterion for inextendibility of expanding cosmological models with symmetry is presented. It is applied to derive a number of new results and to simplify the proofs of existing ones. In particular, it shows that the solutions of the Einstein-Vlasov system with T{sup 2} symmetry, including the vacuum solutions, are inextendible in the future. The technique introduced adds a qualitatively new element to the available tool-kit for studying strong cosmic censorship. (letter to the editor)

  6. Relabeling symmetries in hydrodynamics and magnetohydrodynamics

    International Nuclear Information System (INIS)

    Padhye, N.; Morrison, P.J.

    1996-04-01

    Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism

  7. Symmetry processing in Nafsat al-Masdur

    Directory of Open Access Journals (Sweden)

    Aliakbar Samkhaniani

    2016-06-01

    B: Co-ornament: the second kind of rhetorical symmetry processing is co-ornament and co-ornament is so that the author or poet applies similar ornaments in two phrases or two hemistich or two verses. If co-ornament is particularly well balanced formed, i.e. every ornament is in a well-balanced status with its symmetry, shows the capabilities and skills of its creator.

  8. Partial dynamical symmetries in quantum systems

    International Nuclear Information System (INIS)

    Leviatan, A

    2012-01-01

    We discuss the the notion of a partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by only a subset of solvable eigenstates, while other eigenstates are strongly mixed. We present an explicit construction of Hamiltonians with this property, including higher-order terms, and portray their significance for spectroscopy and shape-phase transitions in nuclei. The occurrence of both a single PDS, relevant to stable structures, and of several PDSs, relevant to coexistence phenomena, are considered.

  9. Bag model with broken chiral symmetry

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1986-01-01

    A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed

  10. Symmetry-protected topological insulator and its symmetry-enriched topologically ordered boundary

    Science.gov (United States)

    Wang, Juven; Wen, Xiao-Gang; Witten, Edward

    We propose a mechanism for achieving symmetry-enriched topologically ordered boundaries for symmetry-protected topological states, including those of topological insulators. Several different boundary phases and their phase transitions are considered, including confined phases, deconfined phases, symmetry-breaking, gapped and gapless phases. National Science Foundation PHY-1606531, Corning Glass Works Foundation Fellowship, NSF Grant DMR- 1506475 and NSFC 11274192, the BMO Financial Group and the John Templeton Foundation No. 39901.

  11. Microscopic Symmetry Imposed by Rotational Symmetry Boundary Conditions in Molecular Dynamics Simulation

    Science.gov (United States)

    Roy, Amitava; Post, Carol Beth

    2011-01-01

    A large number of viral capsids, as well as other macromolecular assemblies, have icosahedral structure or structures with other rotational symmetries. This symmetry can be exploited during molecular dynamics (MD) to model in effect the full viral capsid using only a subset of primary atoms plus copies of image atoms generated from rotational symmetry boundary conditions (RSBC). A pure rotational symmetry operation results in both primary and image atoms at short range, and within nonbonded interaction distance of each other, so that nonbonded interactions can not be specified by the minimum image convention and explicit treatment of image atoms is required. As such an unavoidable consequence of RSBC is that the enumeration of nonbonded interactions in regions surrounding certain rotational axes must include both a primary atom and its copied image atom, thereby imposing microscopic symmetry for some forces. We examined the possibility of artifacts arising from this imposed microscopic symmetry of RSBC using two simulation systems: a water shell and human rhinovirus 14 (HRV14) capsid with explicit water. The primary unit was a pentamer of the icosahedron, which has the advantage of direct comparison of icosahedrally equivalent spatial regions, for example regions near a 2-fold symmetry axis with imposed symmetry and a 2-fold axis without imposed symmetry. Analysis of structural and dynamic properties of water molecules and protein atoms found similar behavior near symmetry axes with imposed symmetry and where the minimum image convention fails compared with that in other regions in the simulation system, even though an excluded volume effect was detected for water molecules near the axes with imposed symmetry. These results validate the use of RSBC for icosahedral viral capsids or other rotationally symmetric systems. PMID:22096451

  12. Symmetries and variation of spectra

    OpenAIRE

    Bhatia, Rajendra; Elsner, Ludwig

    1992-01-01

    An interesting class of matrices is shown to have the property that the spectrum of each of its elements is invariant under multiplication by p-th roots of unity. For this class and tor a class of Hamiltonian matrices improved spectral variation bounds are obtained.

  13. Optical chirality in gyrotropic media: symmetry approach

    International Nuclear Information System (INIS)

    Proskurin, Igor; Ovchinnikov, Alexander S; Nosov, Pavel; Kishine, Jun-ichiro

    2017-01-01

    We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell’s equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined. (paper)

  14. Symmetries in the world of elementary particles

    International Nuclear Information System (INIS)

    Horvath, D.; Hungarian Academy of Sciences, Debrecen

    2003-01-01

    Symmetries are leading to conservation laws and these are important features of interactions. Elementary particles are classified according to their spin into fermions and bosons with accordingly different symmetry features. Each particle has its corresponding antiparticle that is leading to the CPT symmetry. Particles can also be classified according to the type of interaction they take part in. Leptons are not taking part in the strong interaction, while the quark model can describe all particles. The model has been made complete with the introduction of a new quantum number, the colour. The next theoretical stage has been that of the GIM mechanism leading to the Standard Model, according to which all interactions are rooted in local symmetries. The carriers of the three basic interactions are: the photon for the electromagnetic one, the weak bosons for the weak interaction, and the gluons for the strong one. The Standard Model has been brought to its actual form by the Higgs mechanism, the spontaneous symmetry breaking. Further development of the model is envisaged. One direction might be that of super symmetry, which created the Minimal Supersymmetric Standard Model. (Gy.M.)

  15. PT-symmetry breaking in complex nonlinear wave equations and their deformations

    International Nuclear Information System (INIS)

    Cavaglia, Andrea; Fring, Andreas; Bagchi, Bijan

    2011-01-01

    We investigate complex versions of the Korteweg-deVries equations and an Ito-type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic and elliptic solutions for these models including those which are physically feasible in an obvious sense, that is those with real energies, but also those with complex energy spectra. The reality of the energy is usually attributed to different realizations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly, the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples, some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.

  16. Affine Geometry, Visual Sensation, and Preference for Symmetry of Things in a Thing

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2016-11-01

    Full Text Available Evolution and geometry generate complexity in similar ways. Evolution drives natural selection while geometry may capture the logic of this selection and express it visually, in terms of specific generic properties representing some kind of advantage. Geometry is ideally suited for expressing the logic of evolutionary selection for symmetry, which is found in the shape curves of vein systems and other natural objects such as leaves, cell membranes, or tunnel systems built by ants. The topology and geometry of symmetry is controlled by numerical parameters, which act in analogy with a biological organism’s DNA. The introductory part of this paper reviews findings from experiments illustrating the critical role of two-dimensional (2D design parameters, affine geometry and shape symmetry for visual or tactile shape sensation and perception-based decision making in populations of experts and non-experts. It will be shown that 2D fractal symmetry, referred to herein as the “symmetry of things in a thing”, results from principles very similar to those of affine projection. Results from experiments on aesthetic and visual preference judgments in response to 2D fractal trees with varying degrees of asymmetry are presented. In a first experiment (psychophysical scaling procedure, non-expert observers had to rate (on a scale from 0 to 10 the perceived beauty of a random series of 2D fractal trees with varying degrees of fractal symmetry. In a second experiment (two-alternative forced choice procedure, they had to express their preference for one of two shapes from the series. The shape pairs were presented successively in random order. Results show that the smallest possible fractal deviation from “symmetry of things in a thing” significantly reduces the perceived attractiveness of such shapes. The potential of future studies where different levels of complexity of fractal patterns are weighed against different degrees of symmetry is pointed out

  17. The Parallel Implementation of Algorithms for Finding the Reflection Symmetry of the Binary Images

    Science.gov (United States)

    Fedotova, S.; Seredin, O.; Kushnir, O.

    2017-05-01

    In this paper, we investigate the exact method of searching an axis of binary image symmetry, based on brute-force search among all potential symmetry axes. As a measure of symmetry, we use the set-theoretic Jaccard similarity applied to two subsets of pixels of the image which is divided by some axis. Brute-force search algorithm definitely finds the axis of approximate symmetry which could be considered as ground-truth, but it requires quite a lot of time to process each image. As a first step of our contribution we develop the parallel version of the brute-force algorithm. It allows us to process large image databases and obtain the desired axis of approximate symmetry for each shape in database. Experimental studies implemented on "Butterflies" and "Flavia" datasets have shown that the proposed algorithm takes several minutes per image to find a symmetry axis. However, in case of real-world applications we need computational efficiency which allows solving the task of symmetry axis search in real or quasi-real time. So, for the task of fast shape symmetry calculation on the common multicore PC we elaborated another parallel program, which based on the procedure suggested before in (Fedotova, 2016). That method takes as an initial axis the axis obtained by superfast comparison of two skeleton primitive sub-chains. This process takes about 0.5 sec on the common PC, it is considerably faster than any of the optimized brute-force methods including ones implemented in supercomputer. In our experiments for 70 percent of cases the found axis coincides with the ground-truth one absolutely, and for the rest of cases it is very close to the ground-truth.

  18. Perception of Mirror Symmetry in Autism Spectrum Disorders

    Science.gov (United States)

    Falter, Christine M.; Bailey, Anthony J.

    2012-01-01

    Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…

  19. Hidden symmetries of the Principal Chiral Model unveiled

    International Nuclear Information System (INIS)

    Devchand, C.; Schiff, J.

    1996-12-01

    By relating the two-dimensional U(N) Principal Chiral Model to a Simple linear system we obtain a free-field parametrization of solutions. Obvious symmetry transformations on the free-field data give symmetries of the model. In this way all known 'hidden symmetries' and Baecklund transformations, as well as a host of new symmetries, arise. (author). 21 refs

  20. 38 CFR 3.370 - Pulmonary tuberculosis shown by X-ray in active service.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Pulmonary tuberculosis... Rating Considerations Relative to Specific Diseases § 3.370 Pulmonary tuberculosis shown by X-ray in... connection for pulmonary tuberculosis. When under consideration, all available service department films and...

  1. Aspects of semilocal BPS vortex in systems with Lorentz symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, C.H.C.; Silva, J.M.H. da; Hott, M.B. [UNESP, Univ Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Belich, H. [Universidade Federal do Espi rito Santo (UFES), Departamento de Fisica e Quimica, Vitoria, ES (Brazil)

    2014-03-15

    The existence is shown of a static self-dual semilocal vortex configuration for the Maxwell-Higgs system with a Lorentz-violating CPT-even term. The dependence of the vorticity upper limit on the Lorentz-symmetry-breaking term is also investigated. (orig.)

  2. The energy-momentum spectrum in local field theories with broken Lorentz-symmetry

    International Nuclear Information System (INIS)

    Borchers, H.J.; Buchholz, D.

    1984-05-01

    Assuming locality of the observables and positivity of the energy it is shown that the joint spectrum of the energy-momentum operators has a Lorentz-invariant lower boundary in all superselection sectors. This result is of interest if the Lorentz-symmetry is (spontaneously) broken, such as in the charged sectors of quantum electrodynamics. (orig.)

  3. Complete real Dirac theory and its discrete P, C, T-symmetries

    International Nuclear Information System (INIS)

    Collier, R.

    1987-01-01

    It is shown that a full real Dirac theory can operate only with at least 8-dimensional real-valued matrices. The most general form of these Dirac theory consists of three independent Dirac equations for three lepton fields Ψ (α) connected only by the algebra of their discrete PCT-symmetries. (author)

  4. A possible generalization of the concept of symmetry in analytical mechanics

    International Nuclear Information System (INIS)

    Grigore, D.R.

    1987-09-01

    A theorem of Lee Hwa Chung suggests a possible generalization of the symmetry concept in classical mechanics. It is shown that the theory of Konstant-Souriau-Kirillov can be adapted to this more general case. The theory is illustrated with a number of exaples.(author)

  5. SU(2,R)q symmetries of non-Abelian Toda theories

    International Nuclear Information System (INIS)

    Gomes, J.F.; Zimerman, A.H.; Sotkov, G.M.

    1998-03-01

    The classical and quantum algebras of a class of conformal NA-Toda models are studied. It is shown that the SL (2,R) q . Poisson brackets algebra generated by certain chiral and antichiral charges of the nonlocal currents and the global U(1) charge appears as an algebra of the symmetries of these models. (author)

  6. Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1983-01-01

    A system theoretic framework is given for the description of Hamiltonian systems with external forces and partial observations of the state. It is shown how symmetries and conservation laws can be defined within this framework. A generalization of Noether's theorem is obtained. Finally a precise

  7. sl (6,r) as the group of symmetries for non relativistic quantum systems

    African Journals Online (AJOL)

    It is shown that the 13 one parameter generators of the Lie group SL(6, R) are the maximal group of symmetries for nonrelativistic quantum systems. The group action on the set of states S Ĥ (H complex Hilbert space) preserves transition probabilities as well as the dynamics of the system. By considering a prolongation of ...

  8. What Are We Drinking? Beverages Shown in Adolescents' Favorite Television Shows.

    Science.gov (United States)

    Eisenberg, Marla E; Larson, Nicole I; Gollust, Sarah E; Neumark-Sztainer, Dianne

    2017-05-01

    Media use has been shown to contribute to poor dietary intake; however, little attention has been paid to programming content. The portrayal of health behaviors in television (TV) programming contributes to social norms among viewers, which have been shown to influence adolescent behavior. This study reports on a content analysis of beverages shown in a sample of TV shows popular with a large, diverse group of adolescents, with attention to the types of beverages and differences across shows and characters. Favorite TV shows were assessed in an in-school survey in 2010. Three episodes of each of the top 25 shows were analyzed, using a detailed coding instrument. Beverage incidents (ie, beverage shown or described) were recorded. Beverage types included milk, sugar-sweetened beverages (SSBs), diet beverages, juice, water, alcoholic drinks, and coffee. Characters were coded with regard to gender, age group, race, and weight status. Shows were rated for a youth, general, or adult audience. χ 2 tests were used to compare the prevalence of each type of beverage across show ratings (youth, general, adult), and to compare characteristics of those involved in each type of beverage incident. Beverage incidents were common (mean=7.4 incidents/episode, range=0 to 25). Alcohol was the most commonly shown (38.8%); milk (5.8%) and juice (5.8%) were least common; 11.0% of incidents included SSBs. Significant differences in all types of beverage were found across characters' age groups. Almost half of young adults' (49.2%) or adults' (42.0%) beverage incidents included alcohol. Beverages are often portrayed on TV shows viewed by adolescents, and common beverages (alcohol, SSBs) may have adverse consequences for health. The portrayal of these beverages likely contributes to social norms regarding their desirability; nutrition and health professionals should talk with youth about TV portrayals to prevent the adoption of unhealthy beverage behaviors. Copyright © 2017 Academy of

  9. Approximate Noether symmetries and collineations for regular perturbative Lagrangians

    Science.gov (United States)

    Paliathanasis, Andronikos; Jamal, Sameerah

    2018-01-01

    Regular perturbative Lagrangians that admit approximate Noether symmetries and approximate conservation laws are studied. Specifically, we investigate the connection between approximate Noether symmetries and collineations of the underlying manifold. In particular we determine the generic Noether symmetry conditions for the approximate point symmetries and we find that for a class of perturbed Lagrangians, Noether symmetries are related to the elements of the Homothetic algebra of the metric which is defined by the unperturbed Lagrangian. Moreover, we discuss how exact symmetries become approximate symmetries. Finally, some applications are presented.

  10. Pseudospin Symmetry as a Bridge between Hadrons and Nuclei

    Directory of Open Access Journals (Sweden)

    Joseph N. Ginocchio

    2016-03-01

    Full Text Available Atomic nuclei exhibit approximate pseudospin symmetry. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from the insight that pseudospin symmetry has relativistic origins . We show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei. Since QCD sum rules predict that the sum of the scalar and vector potentials is small, we discuss the quark origins of pseudospin symmetry in nuclei and spin symmetry in hadrons.

  11. Impact parameter dependence of pion ratio in probing the nuclear symmetry energy using heavy-ion collisions

    OpenAIRE

    Wei, Gao-Feng; He, Guo-Qiang; Cao, Xin-Wei; Lu, Yi-Xin

    2016-01-01

    The impact parameter dependence of \\rpi ratio is examined in heavy-ion collisions at 400MeV/nucleon within a transport model. It is shown that the sensitivity of \\rpi ratio on symmetry energy shows a transition from central to peripheral collisions, i.e., the stiffer symmetry energy leads to a larger \\rpi ratio in peripheral collisions while the softer symmetry energy always leads this ratio to be larger in central collisions. After checking the kinematic energy distribution of \\rpi ratio, we...

  12. Stability and symmetry of ion-induced surface patterning

    Science.gov (United States)

    Matthes, Christopher S. R.; Ghoniem, Nasr M.; Walgraef, Daniel

    2017-12-01

    We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.

  13. Global symmetries and flat potentials in the compactified superstring

    International Nuclear Information System (INIS)

    Li, S.P.; Peschanski, R.; Savoy, C.A.

    1986-01-01

    Global symmetries of the D=4 supergravity effective theory consistent with the compactification of the superstring are shown to form an SU(1.1) x U(1) group of transformations acting on the dilaton, axion and matter fields. These are exact invariances of the Kaehler potential if they are preserved by integration over Kaluza-Klein massive states. A key role is played by the cubic superpotential which is also essential in implementing flatness of the scalar potential, a vanishing cosmological constant and thus effective global supersymmetry in the matter sector, at the classical level. This is shown by an explicit computation of the scalar potential. If only an axion-like non-compact subgroup is left unbroken by the superpotential, the cosmological constant turns out to be negative in some cases

  14. Covalent bond symmetry breaking and protein secondary structure

    OpenAIRE

    Lundgren, Martin; Niemi, Antti J.

    2011-01-01

    Both symmetry and organized breaking of symmetry have a pivotal r\\^ole in our understanding of structure and pattern formation in physical systems, including the origin of mass in the Universe and the chiral structure of biological macromolecules. Here we report on a new symmetry breaking phenomenon that takes place in all biologically active proteins, thus this symmetry breaking relates to the inception of life. The unbroken symmetry determines the covalent bond geometry of a sp3 hybridized ...

  15. Nuclear symmetry energy in density dependent hadronic models

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-12-01

    The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)

  16. A notion of symmetry witness related to Wigner’s theorem on symmetry transformations

    Science.gov (United States)

    Aniello, Paolo

    2018-02-01

    A symmetry witness is a subset of the space of selfadjoint trace class operators that allows one to ascertain whether a linear map acting in that space is a symmetry transformation. This notion arises from a certain type of linear preserver problems. Precisely, a symmetry witness is a suitable set which is invariant with respect to an injective linear map in the Banach space of selfadjoint trace class operators where the quantum states live if and only if this map acts as a symmetry transformation. In particular, by a linear version of Wigner’s classical theorem, the set of pure states — the rank-one projections — is a symmetry witness. Linearity entails that the usual assumption of preservation of the transition probability between pure states becomes superfluous. This result extends to every set of projections of a fixed (finite) rank, with some suitable constraint on this rank. One then obtains a classification of the sets of projections of a fixed rank that are symmetry witnesses. These symmetry witnesses are projectable. Namely, formulating the mentioned result in terms of quantum states, the sets of ‘uniform’ density operators of a suitable fixed rank are symmetry witnesses as well.

  17. Time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Ti

    Science.gov (United States)

    Singh, D.; K. P., Sajilesh; Barker, J. A. T.; Paul, D. McK.; Hillier, A. D.; Singh, R. P.

    2018-03-01

    We have investigated the superconducting state of the noncentrosymmetric superconductor Re6Ti (Tc=6.0 K) using a muon-spin rotation/relaxation technique. The zero-field muon experiment shows the presence of spontaneous magnetic fields in the superconducting state, indicating time-reversal symmetry breaking (TRSB). However, the low-temperature transverse-field muon measurements suggest nodeless s -wave superconductivity. Similar results were also observed for Re6X (X =Zr , Hf) family of materials which indicates that the pairing symmetry does not depend on the spin-orbital coupling. Altogether, these studies suggest an unconventional nature (TRSB) of superconductivity is intrinsic to the Re6X family of compounds and paves the way for further studies of this family of materials.

  18. Adult education as information and help in forming opinions shown from the example of nuclear power

    International Nuclear Information System (INIS)

    Wild, W.; Markus, B.; Dietrich, T.; Schmitt Glaeser, W.

    1977-01-01

    The lectures printed here, partly in revised form, were given at a University meeting for teachers in adult education on July 9th and 10th 1976 in Bayreuth, with the main theme of 'Adult education as information and help in forming opinions shown from the subject of nuclear power'. It should be shown by examples related to this problem, which urgently requires more objectivity, and which will be freed of emotional opinions with extraordinary difficulty, how complex such objects can be and how many different aspects have to be taken into account. The grouping of scientific referees, a teacher, a nuclear physicist, a radiation biologist and a lawyer, makes the plurality of the aspects quite clear. Themes: 1) The contribution of adult education to de-idealogising the population, 2) The scientific and technical basis of generation and use of nuclear power, 3)Radiation stresses of living organismus, particularly human being. 4) Smug authorities, protesting citizens, overload judges. (GL) [de

  19. Legal drug content in music video programs shown on Australian television on saturday mornings.

    Science.gov (United States)

    Johnson, Rebecca; Croager, Emma; Pratt, Iain S; Khoo, Natalie

    2013-01-01

    To examine the extent to which legal drug references (alcohol and tobacco) are present in the music video clips shown on two music video programs broadcast in Australia on Saturday mornings. Further, to examine the music genres in which the references appeared and the dominant messages associated with the references. Music video clips shown on the music video programs 'Rage' (ABC TV) and [V] 'Music Video Chart' (Channel [V]) were viewed over 8 weeks from August 2011 to October 2011 and the number of clips containing verbal and/or visual drug references in each program was counted. The songs were classified by genre and the dominant messages associated with drug references were also classified and analysed. A considerable proportion of music videos (approximately one-third) contained drug references. Alcohol featured in 95% of the music videos that contained drug references. References to alcohol generally associated it with fun and humour, and alcohol and tobacco were both overwhelmingly presented in contexts that encouraged, rather than discouraged, their use. In Australia, Saturday morning is generally considered a children's television viewing timeslot, and several broadcaster Codes of Practice dictate that programs shown on Saturday mornings must be appropriate for viewing by audiences of all ages. Despite this, our findings show that music video programs aired on Saturday mornings contain a considerable level of drug-related content.

  20. Violation of Particle Anti-particle Symmetry

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...

  1. Weyl-gauge symmetry of graphene

    International Nuclear Information System (INIS)

    Iorio, Alfredo

    2011-01-01

    Research highlights: → Graphene action's Weyl symmetry identifies shapes for which the DOS is invariant. → Electrons on graphene might experience a general-relativistic-like spacetime. → Rich mathematical structures, such as the Liouville's equation, naturally arise. - Abstract: The conformal invariance of the low energy limit theory governing the electronic properties of graphene is explored. In particular, it is noted that the massless Dirac theory in point enjoys local Weyl symmetry, a very large symmetry. Exploiting this symmetry in the two spatial dimensions and in the associated three dimensional spacetime, we find the geometric constraints that correspond to specific shapes of the graphene sheet for which the electronic density of states is the same as that for planar graphene, provided the measurements are made in accordance to the inner reference frame of the electronic system. These results rely on the (surprising) general relativistic-like behavior of the graphene system arising from the combination of its well known special relativistic-like behavior with the less explored Weyl symmetry. Mathematical structures, such as the Virasoro algebra and the Liouville equation, naturally arise in this three-dimensional context and can be related to specific profiles of the graphene sheet. Speculations on possible applications of three-dimensional gravity are also proposed.

  2. Bilateral symmetry analysis of breast MRI

    International Nuclear Information System (INIS)

    Alterson, Robert; Plewes, Donald B

    2003-01-01

    Mammographic interpretation often uses symmetry between left and right breasts to indicate the site of potential tumour masses. This approach has not been applied to breast images obtained from MRI. We present an automatic technique for breast symmetry detection based on feature extraction techniques which does not require any efforts to co-register breast MRI data. The approach applies computer-vision techniques to detect natural biological symmetries in breast MR scans based on three objective measures of similarity: multiresolution non-orthogonal wavelet representation, three-dimensional intensity distributions and co-occurrence matrices. Statistical distributions that are invariant to feature localization are computed for each of the extracted image features. These distributions are later compared against each other to account for perceptual similarity. Studies based on 51 normal MRI scans of randomly selected patients showed that the sensitivity of symmetry detection rate approached 94%. The symmetry analysis procedure presented in this paper can be applied as an aid in detecting breast tissue changes arising from disease

  3. Reflections on the concept of symmetry

    Science.gov (United States)

    Lorenz, Kuno

    2005-10-01

    The concept of symmetry is omnipresent, although originally, in Greek antiquity, distinctly different from the modern logical notion. In logic a binary relation R is called symmetric if xRy implies yRx. In Greek, "being symmetric" in general usage is synonymous with "being harmonious", and in technical usage, as in Euclid's Elements, it is synonymous with "commensurable". Due to the second meaning, which is close to the etymology of συ´μμɛτρoς, "with measure" has likewise to be read as "being [in] rational [ratios]" and displays the origin of the concept of rationality of establishing a proportion. Heraclitus can be read as a master of such connections. Exercising rationality is a case of simultaneously finding and inventing symmetries. On that basis a proposal is made of how to relate the modern logical notion of symmetry, a second-order concept, on the one hand with modern first-order usages of the term symmetric in geometry and other fields, and on the other hand with the notion of balance that derives from the ancient usage of symmetric. It is argued that symmetries as states of balance exist only in theory, in practice they function as norms vis-à-vis broken symmetries.

  4. Symmetries, dimensional reduction, and topological quantum order

    Science.gov (United States)

    Nussinov, Zohar; Ortiz, Gerardo

    2009-12-01

    We prove sufficient conditions for Topological Quantum Order at zero and finite temperatures. The crux of the proof hinges on the existence of low-dimensional Gauge-Like Symmetries, thus providing a unifying framework based on a symmetry principle. All known examples of Topological Quantum Order display Gauge-Like Symmetries. Other systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. We analyze the physical consequences of Gauge-Like Symmetries (including topological terms and charges) and, most importantly, show the insufficiency of the energy spectrum, (recently defined) entanglement entropy, maximal string correlators, and fractionalization in establishing Topological Quantum Order. Duality mappings illustrate that not withstanding the existence of spectral gaps, thermal fluctuations may impose restrictions on suggested topological quantum computing schemes. Our results allow us to go beyond standard topological field theories and engineer new systems with Topological Quantum Order.

  5. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  6. Spontaneous symmetry breaking, quantization of the electric charge and the anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Afsar (Manchester Univ. (United Kingdom). Dept. of Theoretical Physics)

    1990-09-01

    Cancellation of anomalies and on ensuring that fermions are massive, one obtains quantization of the electric charge, which is shown to be independent of the hypercharge quantum number of the Higgs doublet in the Standard Model. Ignorance of this fact can lead to pitfalls. It is shown that contrary to the popular belief, charge quantization is not a consequence of the anomalies but that in addition spontaneous symmetry breaking is essential. (author).

  7. A geometrical interpretation for the symmetries of the free Green-Schwarz heterotic superstring

    Energy Technology Data Exchange (ETDEWEB)

    Berkovits, N. (Rutgers - the State Univ., Piscataway, NJ (USA). Dept. of Physics)

    1990-05-24

    By using twistor-like fields similar to those of Sorokin, Tkach, Volkov and Zheltukin, it is shown that the local symmetry transformations of the free covariant spacetime-supersymmetric Green-Schwarz heterotic superstring can be interpreted geometrically as superconformal reparameterizations of an N=(8,0) superworldsheet. The structure constants of the resulting N=(8,0) super-Virasoro algebra are field-dependent, and for certain values of the fields, the symmetry transformations form a superversion of the non-associative Kac-Moody-Malcev algebra recently studied by Osipov. (orig.).

  8. A geometrical interpretation for the symmetries of the free Green-Schwarz heterotic superstring

    Science.gov (United States)

    Berkovits, Nathan

    1990-05-01

    By using twistor-like fields similar to those of Sorokin, Tkach, Volkov and Zheltukin, it is shown that the local symmetry transformations of the free covariant spacetime-supersymmetric Green-Schwarz heterotic superstring can be interpreted geometrically as superconformal reparameterizations of an N = (8, 0) superworldsheet. The structure constants of the resulting N = (8, 0) super-Virasoro algebra are field-dependent, and for certain values of the fields, the symmetry transformations form a superversion of the non-associative Kac-Moody-Malcev algebra recently studied by Osipov.

  9. On the gauge dependence of spontaneous symmetry breaking in gauge theories

    International Nuclear Information System (INIS)

    Nielsen, N.K.

    1975-01-01

    The Ward-Takahashi identities for scalar electrodynamics in Fermi gauges are shown to imply a homogeneous first-order partial differential equation for the effective potential involving only the gauge parameter and the external scalar field. Spontaneous symmetry breaking is consequently a gauge-invariant phenomenon. Also observable quantities, including masses, physical coupling constants, and S-matrix elements, of a theory with spontaneous symmetry breaking are found to be invariant, if a change in the gauge parameter is accompanied by a suitable change in the ground-state expectation value of the scalar field. The generalization to a non-Abelian gauge theory is briefly indicated. (Auth.)

  10. Symmetry analysis for hyperbolic equilibria using a TB/dengue fever model

    Science.gov (United States)

    Massoukou, R. Y. M.'Pika; Govinder, K. S.

    2016-08-01

    We investigate the interplay between Lie symmetry analysis and dynamical systems analysis. As an example, we take a toy model describing the spread of TB and dengue fever. We first undertake a comprehensive dynamical systems analysis including a discussion about local stability. For those regions in which such analyzes cannot be translated to global behavior, we undertake a Lie symmetry analysis. It is shown that the Lie analysis can be useful in providing information for systems where the (local) dynamical systems analysis breaks down.

  11. Workshop on electroweak symmetry breaking: proceedings

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented

  12. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  13. Arithmetic crystal classes of magnetic symmetries

    International Nuclear Information System (INIS)

    Angelova, M.N.; Boyle, L.L.

    1993-01-01

    The symmetries and properties of a broad class of magnetic crystals are described by magnetic space groups which contain both (unitary) spatial symmetry operations and their combinations with the (anti-unitary operation of) time inversion, 0. The spatial symmetry operations form a halving, non-magnetic, space group H of the magnetic group M such that M=H+aH. As an abstract group the magnetic group M is isomorphic to a non-magnetic group G. The anti-unitary operator a is simply the time inversion 0 when M is a grey group but a product of time inversion with some spatial operation belonging to the coset G-H when M is a black-and-white group. (Author)

  14. Higgsless approach to electroweak symmetry breaking

    CERN Document Server

    Grojean, Christophe

    2007-01-01

    Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left–right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models.

  15. Symmetry issues in Directly Irradiated Targets

    Science.gov (United States)

    Ramis, R.; Temporal, M.; Canaud, B.; Brandon, V.

    2013-11-01

    In direct drive Inertial Confinement Fusion (ICF), the typical laser beam to laser beam angle is around 30°. This fact makes the study of the irradiation symmetry a genuine 3D problem. In this paper we use the three dimensional version of the MULTI hydrocode to assess the symmetry of such ICF implosions. More specifically, we study a shock-ignition proposal for the Laser-Mégajoule facility (LMJ) in which two of the equatorial beam cones are used to implode and precompress a spherical capsule (the "reference" capsule of HiPER project) made of 0.59 mg of pure Deuterium-Tritium mixture. The symmetry of this scheme is analysed and optimized to get a design inside the operating limits of LMJ. The studied configuration has been found essentially axial-symmetric, so that the use of 2D hydrocodes would be appropriate for this specific situation.

  16. Crystallography and the world of symmetry

    CERN Document Server

    Chatterjee, Sanat K

    2008-01-01

    Symmetry exists in realms from crystals to patterns, in external shapes of living or non-living objects, as well as in the fundamental particles and the physical laws that govern them. In fact, the search for this symmetry is the driving force for the discovery of many fundamental particles and the formulation of many physical laws. While one can not imagine a world which is absolutely symmetrical nor can one a world which is absolutely asymmetrical. These two aspects of nature are intermingled with each other inseparably. This is the basis of the existence of aperiodicity manifested in the liquid crystals and also quasi-crystals also discussed in Crystallography and the World of Symmetry.

  17. Gauged discrete symmetries and proton stability

    International Nuclear Information System (INIS)

    Mohapatra, Rabindra N.; Ratz, Michael

    2007-01-01

    We discuss the results of a search for anomaly-free Abelian Z N discrete symmetries that lead to automatic R-parity conservation and prevent dangerous higher-dimensional proton decay operators in simple extensions of minimal supersymmetric extension of the standard model based on the left-right symmetric group, the Pati-Salam group and SO(10). We require that the superpotential for the models have enough structures to be able to give correct symmetry breaking to minimal supersymmetric extension of the standard model and potentially realistic fermion masses. We find viable models in each of the extensions, and for all the cases, anomaly freedom of the discrete symmetry restricts the number of generations

  18. Operational symmetries basic operations in physics

    CERN Document Server

    Saller, Heinrich

    2017-01-01

    This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato’s and Kepler’s symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups an...

  19. Facial aesthetics: babies prefer attractiveness to symmetry.

    Science.gov (United States)

    Samuels, Curtis A; Butterworth, George; Roberts, Tony; Graupner, Lida; Hole, Graham

    2013-01-01

    The visual preferences of human infants for faces that varied in their attractiveness and in their symmetry about the midline were explored. The aim was to establish whether infants' visual preference for attractive faces may be mediated by the vertical symmetry of the face. Chimeric faces, made from photographs of attractive and unattractive female faces, were produced by computer graphics. Babies looked longer at normal and at chimeric attractive faces than at normal and at chimeric unattractive faces. There were no developmental differences between the younger and older infants: all preferred to look at the attractive faces. Infants as young as 4 months showed similarity with adults in the 'aesthetic perception' of attractiveness and this preference was not based on the vertical symmetry of the face.

  20. Homological mirror symmetry and tropical geometry

    CERN Document Server

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...