WorldWideScience

Sample records for showed moderate cytotoxicity

  1. Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus.

    Science.gov (United States)

    Ding, Chengli; Zhang, Wu; Li, Jie; Lei, Jiachuan; Yu, Jianqing

    2013-01-01

    The ethyl acetate fraction (EE-DS) from Dianthus superbus was found to possess the cytotoxic activity against cancer cells in previous study. To investigate cytotoxic constituents, the bioassay-guided isolation of compounds from EE-DS was performed. Two dianthramides (1 and 2), three flavonoids (3-5), two coumarins (6 and 7) and three other compounds (8-10) were obtained. Structures of isolated compounds were identified by spectroscopic analysis. Cytotoxicity of the compounds against HepG2 cells was evaluated. Compound 1 showed the strongest cytotoxicity, compounds 10, 4, 3 and 5 had moderate cytotoxicity.

  2. In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata

    Directory of Open Access Journals (Sweden)

    Mahmuda Nasrin

    2015-02-01

    Full Text Available Objectives: Grewia paniculata (Family: Malvaceae has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. Materials and Methods: The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina lethality bioassay. Results: In disc diffusion method, all the natural products (400 μg/disc showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB and ethanol fraction of bark (EFB (400 μg/disc exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and  23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. Conclusions: The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.

  3. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  4. The evaluation of selected ghanaian medicinal plants for cytotoxic ...

    African Journals Online (AJOL)

    Extracts of Adenia lobata root, Clerodendrum capitatum leaves, Garcinia kola stem bark, Plumbago zeylanica leaves and Vernonia conferta root, showed relatively low cytotoxic activities while extracts of Ficus asperifolia leaves, Paullinia pinnata root and Thonningia sanguinea root exhibited moderate activity (IC50 values ...

  5. Physico-chemical characterization and cytotoxicity studies of seed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... saponification values were 88.40 and 195.58, respectively. The peroxide and acid values were 4.6 and. 2.69, respectively. Brine shrimp lethality bioassay of petroleum ether and methanol extracts of the seeds showed that the extracts were moderately cytotoxic at high concentration. The LC50 values using.

  6. Antimicrobial and cytotoxic potentials of Buddleja polystachya extracts

    Directory of Open Access Journals (Sweden)

    Ghada Ahmed Fawzy

    2013-06-01

    Full Text Available Most of the species of Buddleja have found applications in folk medicine. This study aimed to evaluate the in vitro antimicrobial and cytotoxic potentials of B. polystachya extracts. Four extracts were prepared A-D (dichloromethane, ethyl acetate, n-butanol, and aqueous extracts, respectively. The antimicrobial activity was evaluated using the broth micro-dilution assay for minimum inhibitory concentrations (MIC. The crystal violet staining method (CVS was used for the evaluation of the cytotoxic activity on HepG-2, MCF-7 and HCT-116 human cell lines. Results showed that the highest antimicrobial activity was given by the ethyl acetate extract followed by the dichloromethane extract, while the n-butanol revealed moderate activity against gram positive bacteria only with no activity against the rest of tested microorganisms. The aqueous extract was totally ineffective against all tested microorganisms at 20 mg/ml. Among the four extracts tested, dichloromethane and ethyl acetate extracts showed the highest cytotoxic activity on all three human cell lines.

  7. Cytotoxicity potentials of eleven Bangladeshi medicinal plants.

    Science.gov (United States)

    Khatun, Amina; Rahman, Mahmudur; Haque, Tania; Rahman, Md Mahfizur; Akter, Mahfuja; Akter, Subarna; Jhumur, Afrin

    2014-01-01

    Various forms of cancer are rising all over the world, requiring newer therapy. The quest of anticancer drugs both from natural and synthetic sources is the demand of time. In this study, fourteen extracts of different parts of eleven Bangladeshi medicinal plants which have been traditionally used for the treatment of different types of carcinoma, tumor, leprosy, and diseases associated with cancer were evaluated for their cytotoxicity for the first time. Extraction was conceded using methanol. Phytochemical groups like reducing sugars, tannins, saponins, steroids, gums, flavonoids, and alkaloids were tested using standard chromogenic reagents. Plants were evaluated for cytotoxicity by brine shrimp lethality bioassay using Artemia salina comparing with standard anticancer drug vincristine sulphate. All the extracts showed potent to moderate cytotoxicity ranging from LC50 2 to 115 µg/mL. The highest toxicity was shown by Hygrophila spinosa seeds (LC50 = 2.93 µg/mL) and the lowest by Litsea glutinosa leaves (LC50 = 114.71 µg/mL) in comparison with standard vincristine sulphate (LC50 = 2.04 µg/mL). Among the plants, the plants traditionally used in different cancer and microbial treatments showed highest cytotoxicity. The results support their ethnomedicinal uses and require advanced investigation to elucidate responsible compounds as well as their mode of action.

  8. Extracellular thiol-assisted selenium uptake dependent on the x(c)(-) cystine transporter explains the cancer-specific cytotoxicity of selenite

    DEFF Research Database (Denmark)

    Olm, E.; Fernandes, A. P.; Hebert, C.

    2009-01-01

    The selenium salt selenite (SeO32-) is cytotoxic in low to moderate concentrations, with a remarkable specificity for cancer cells resistant to conventional chemotherapy. Our data show that selenium uptake and accumulation, rather than intracellular events, are crucial to the specific selenite...... cytotoxicity observed in resistant cancer cells. We show that selenium uptake depends on extracellular reduction, and that the extracellular environment is a key factor specific to selenite cytotoxicity. The extracellular reduction is mediated by cysteine, and the efficacy is determined by the uptake...

  9. Cytotoxicity Potentials of Eleven Bangladeshi Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Amina Khatun

    2014-01-01

    Full Text Available Various forms of cancer are rising all over the world, requiring newer therapy. The quest of anticancer drugs both from natural and synthetic sources is the demand of time. In this study, fourteen extracts of different parts of eleven Bangladeshi medicinal plants which have been traditionally used for the treatment of different types of carcinoma, tumor, leprosy, and diseases associated with cancer were evaluated for their cytotoxicity for the first time. Extraction was conceded using methanol. Phytochemical groups like reducing sugars, tannins, saponins, steroids, gums, flavonoids, and alkaloids were tested using standard chromogenic reagents. Plants were evaluated for cytotoxicity by brine shrimp lethality bioassay using Artemia salina comparing with standard anticancer drug vincristine sulphate. All the extracts showed potent to moderate cytotoxicity ranging from LC50 2 to 115 µg/mL. The highest toxicity was shown by Hygrophila spinosa seeds (LC50=2.93 µg/mL and the lowest by Litsea glutinosa leaves (LC50=114.71 µg/mL in comparison with standard vincristine sulphate (LC50=2.04 µg/mL. Among the plants, the plants traditionally used in different cancer and microbial treatments showed highest cytotoxicity. The results support their ethnomedicinal uses and require advanced investigation to elucidate responsible compounds as well as their mode of action.

  10. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  12. Antioxidant, Anti-Inflammatory, and Cytotoxic Activities of Garcinia nervosa (Clusiaceae

    Directory of Open Access Journals (Sweden)

    N. M. U. Seruji

    2013-01-01

    Full Text Available In our continuing interest on Sarawak Garcinia species, we carried out the evaluation of antioxidant, anti-inflammatory and cytotoxic activities on the methanolic extracts of Garcinia nervosa. The extracts were prepared from its air-dried grounded leaves and barks. The evaluation of antioxidant activities was done using the (2,2-diphenyl-1-picrylhydrazyl DPPH radical scavenging assay and the result showed high radical scavenging activities. Meanwhile, the anti-inflammatory evaluation was performed using the lipoxygenase assay, hyaluronidase assay, and xanthine oxidase assay which showed, both of these extracts exhibited high anti-inflammatory properties. The lipoxygenase assay showed a high inhibition of enzyme activity for the barks extracts and a moderate enzyme activity for the leaves extracts. However, there were low inhibitions for both extracts in the hyaluronidase assay and only the barks extracts exhibited moderate antigout properties in the xanthine oxidase assay. For the cytotoxic assay, the extracts exhibited positive responses against the three cancer cell lines, the HeLa cell lines, MCF-7 cell lines, and HT-29 cell lines. Thus, Garcinia nervosa contains high antioxidativeand anti-inflammation properties, which have great potential in the development of pharmaceutical and dermatological products.

  13. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  14. New steroidal saponins from the rhizomes of Paris delavayi and their cytotoxicity.

    Science.gov (United States)

    Liu, Yang; Tian, Xiangrong; Hua, Dong; Cheng, Guang; Wang, Kaixing; Zhang, Lihan; Tang, Haifeng; Wang, Minchang

    2016-06-01

    Four new furostanol saponins, named padelaosides C-F (1-4), together with four known spirostanol saponins 5-8 were isolated from the rhizomes of Paris delavayi Franchet. Their structures were elucidated on the basis of extensive spectroscopic analysis and chemical evidences. The discovery of the new compounds 1-4 extended the diversity and complexity of this furostanol saponin family. The cytotoxicity of all the saponins was evaluated for their cytotoxicity against human glioblastoma U87MG and human hepatocellular carcinoma Hep-G2 cell lines. The known spirostanol saponins 7 and 8 exhibited notable cytotoxicity against the two tumor cell lines with IC50 values of 1.13 and 3.42μM, respectively, while the new furostanol saponins 3 and 4 showed moderate cytotoxicity with IC50 values of 15.28 to 16.98μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Phytochemical screening, antioxidant and cytotoxic activity of fruit extracts of Calamus tenuis Roxb

    Directory of Open Access Journals (Sweden)

    Zaki Uddin Ahmed

    2014-08-01

    Full Text Available Objective: To investigate the antioxidant and cytotoxic activity of the fruits of Calamus tenuis Roxb. Methods: The preliminary phytochemical group tests were done, which revealed the presence of alkaloid, tannin, flavonoid and steroid. The dried fruit was extracted in soxhlet apparatus using petroleum ether, ethyl acetate and methanol. Antioxidant potential of each extract was evaluated using total phenol content, total flavonoid content, cupric reducing antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and total antioxidant capacity determinations. Results: The extracts were found to possess moderate to high amounts of phenolic and flavonoid contents. In cupric reducing antioxidant capacity assay the extracts showed moderate reducing power which increases with concentration. Scavenging of 1,1-diphenyl-2-picrylhydrazyl radical was found to rise with concentration with lowest IC50 value for methanol extract, which was confirmed by total antioxidant activity test that shows highest (95 mg/g of extract in ascorbic acid equivalent for methanol extract. In Brine shrimp lethality bioassay the methanol and petroleum ether extracts were found to be toxic to Brine shrimp nauplii, with LC50 of 25.53 µg/mL and 28.07 µg/mL respectively while the LC50 of the reference vincristine sulphate was 1.32 µg/mL. Ethyl acetate extract was found to be moderately cytotoxic showing LC50 of 47.79 µg/mL. Conclusions: The results of the present study suggest that the fruits of Calamus tenuis Roxb possess antioxidant and cytotoxic potential. Moreover, phytochemical screening reveals the presence of alkaloid, tannin, flavonoid and steroid, which may be responsible for the observed bioactivities.

  16. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Rashda [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Efferth, Thomas [Institute of Pharmacy und Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Kuhmann, Christine [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Opatz, Till [Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz (Germany); Hao, Xiaojiang [Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 (China); Popanda, Odilia, E-mail: o.popanda@dkfz.de [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy

  17. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    International Nuclear Information System (INIS)

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine; Opatz, Till; Hao, Xiaojiang; Popanda, Odilia; Schmezer, Peter

    2012-01-01

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC 50 values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC 50 values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy options in

  18. Studies on ADCC (antibody-dependent cell-mediated cytotoxicity) using sheep red blood cells as target cells, 2

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    A non-specific cytotoxic mediator from effector cells (human peripheral blood leukocytes) was investigated in the ADCC (antibody-dependent cell-mediated cytotoxicity) system using antibody-coated sheep red blood cells (SRBC) as target cells. 51 Cr-labelled homologous (sheep) or heterologous (human) red blood cells were used as adjacent cells. Either crude lymphocyte fraction, phagocyte depleted fraction or granulocyte rich fraction separated from human peripheral leukocytes showed moderate cytotoxic effect on homologous adjacent cells, however no cytotoxic activity on heterologous adjacent cells was demonstrated in any leukocyte fraction. This suggests that the cytotoxic effects on homologous adjacent cells were resulted from the translocation of antibody molecules to adjacent cells from antibody-coated target cells. We concluded that the cytotoxic mechanism in this ADCC system was not mediated by non-specific soluble factors released from either human peripheral lymphocytes, monocytes or granulocytes. (author)

  19. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Directory of Open Access Journals (Sweden)

    Ana O. de Souza

    2007-01-01

    Full Text Available Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

  20. Chemical constituents from Piper hainanense and their cytotoxicities.

    Science.gov (United States)

    Shi, Yan-Ni; Xin, Ying; Ling, Yi; Li, Xing-Cong; Hao, Chao-Yun; Zhu, Hong-Tao; Wang, Dong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2016-08-01

    Two new compounds, (Z,R)-1-phenylethylcinnamate (1) and (1R,2R,3R,6S)-pipoxide (2) were isolated from the aerial part of Piper hainanense, along with 12 known compounds, including nine benzene derivatives (4-11), one isobutylamide (12), and two polyoxygenated cyclohexene derivatives (13-14). Their structures were elucidated on the basis of the HRESIMS, 1D and 2D NMR spectroscopic analyses, and ECD in cases of 2 and 3. The absolute configuration of ellipeiopsol B (3) was determined for the first time. All these compounds 1-14 were reported from the titled plant for the first time. Most of the isolates were tested for their cytotoxicities against five human cancer cell lines. Four of which, 2, 3, 9, 14 showed moderate bioactivities. Among them, the new compound 2 showed potential cytotoxicity against SMMC-7721, MCF-7, and SW-480 with IC50 values of 9.7, 15.0, and 13.2 μM, respectively.

  1. A NEW CYTOTOXIC DOLABELLANE FROM THE INDONESIAN SOFT CORAL Anthelia sp.

    Directory of Open Access Journals (Sweden)

    Anggia Murni

    2013-12-01

    Full Text Available One new dolabellane (1 and two known diterpenoids stolonidiol (2 and clavinflol B (3 have been isolated from the ethyl acetate extract of the Indonesian soft coral Anthelia sp. A new compound 1 exhibited a moderate cytotoxicity against NBT-T2 cells at 10 µg/mL, while known compounds 2 and 3 showed cytotoxicity at 1 and 0.5 µg/mL, respectively. Structure of the new compound 1 was elucidated by interpretation of NMR spectroscopic data (1D and 2D NMR data and mass spectrometry (ESIMS data as well as comparison with those of related ones. This finding should be useful for anti cancer drug development of the promising dolabellane-types compound.

  2. Quantitative structure-cytotoxicity relationship of piperic acid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Miyashiro, Takaki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-09-01

    A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperoyldopamine ( 8: ) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Cytotoxic Flavones from the Stem Bark of Bougainvillea spectabilis Willd.

    Science.gov (United States)

    Do, Lien T M; Aree, Thammarat; Siripong, Pongpun; Vo, Nga T; Nguyen, Tuyet T A; Nguyen, Phung K P; Tip-Pyang, Santi

    2018-01-01

    Five new flavones possessing a fully substituted A-ring with C-6 and C-8 methyl groups, bougainvinones I - M (1: -5: ), along with three known congeners, 2'-hydroxydemethoxymatteucinol (6: ), 5,7,3',4'-tetrahydroxy-3-methoxy-6,8-dimethylflavone (7: ) and 5,7,4'-trihydroxy-3-methoxy-6,8-dimethylflavone (8: ), were isolated from the EtOAc extract of the stem bark of Bougainvillea spectabilis . Their structures were established by means of spectroscopic data (ultraviolet, infrared, high-resolution electrospray ionization mass spectrometry, and one-dimensional and two-dimensional nuclear magnetic resonance) and single-crystal X-ray crystallographic analysis. The in vitro cytotoxicity of all isolated compounds against five cancer cell lines (KB, HeLa S-3, MCF-7, HT-29, and HepG2) was evaluated. Compound 5: showed promising cytotoxic activity against the KB and HeLa S-3 cell lines, with IC 50 values of 7.44 and 6.68 µM. The other compounds exhibited moderate cytotoxicity against the KB cell line. Georg Thieme Verlag KG Stuttgart · New York.

  4. Cytotoxicity, Antioxidant and Apoptosis Studies of Quercetin-3-O Glucoside and 4-(β-D-Glucopyranosyl-1→4-α-L-Rhamnopyranosyloxy)-Benzyl Isothiocyanate from Moringa oleifera.

    Science.gov (United States)

    Maiyo, Fiona C; Moodley, Roshila; Singh, Moganavelli

    2016-01-01

    Moringa oleifera, from the family Moringaceae, is used as a source of vegetable and herbal medicine and in the treatment of various cancers in many African countries, including Kenya. The present study involved the phytochemical analyses of the crude extracts of M.oleifera and biological activities (antioxidant, cytotoxicity and induction of apoptosis in-vitro) of selected isolated compounds. The compounds isolated from the leaves and seeds of the plant were quercetin-3-O-glucoside (1), 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate (2), lutein (3), and sitosterol (4). Antioxidant activity of compound 1 was significant when compared to that of the control, while compound 2 showed moderate activity. The cytotoxicity of compounds 1 and 2 were tested in three cell lines, viz. liver hepatocellular carcinoma (HepG2), colon carcinoma (Caco-2) and a non-cancer cell line Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, 5-fluorouracil. Apoptosis studies were carried out using the acridine orange/ethidium bromide dual staining method. The isolated compounds showed selective in vitro cytotoxic and apoptotic activity against human cancer and non-cancer cell lines, respectively. Compound 1 showed significant cytotoxicity against the Caco-2 cell line with an IC50 of 79 μg mL(-1) and moderate cytotoxicity against the HepG2 cell line with an IC50 of 150 μg mL(-1), while compound 2 showed significant cytotoxicity against the Caco- 2 and HepG2 cell lines with an IC50 of 45 μg mL(-1) and 60 μg mL(-1), respectively. Comparatively both compounds showed much lower cytotoxicity against the HEK293 cell line with IC50 values of 186 μg mL(-1) and 224 μg mL(-1), respectively.

  5. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  6. Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    Directory of Open Access Journals (Sweden)

    C. M. Mattana

    2014-01-01

    Full Text Available Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE and ethanolic extract (EE of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings.

  7. Cytotoxic, antioxidant and phytochemical analysis of Gracilaria species from Persian Gulf

    Directory of Open Access Journals (Sweden)

    Alireza Ghannadi

    2016-01-01

    Conclusion: Considerable phytochemicals, high antioxidant potential, and moderate cytotoxic activity of G. salicornia and G. corticata make them appropriate candidates for further studies and identification of their bioactive principles.

  8. Spectral, optical and cytotoxicity studies on 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide(H3L) and some of its metal complexes

    Science.gov (United States)

    Hosny, Nasser M.; Hassan, Nader Y.; Mahmoud, Heba M.; Abdel-Rhman, Mohamed H.

    2018-03-01

    The ligand 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide (H3L) and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) acetates have been synthesized. The isolated compounds have been characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, ESR, mass, electronic spectra, electrical conductivity, effective magnetic moments and thermal analyses. The free organic ligand exists in the keto form, but in the metal complexes, it coordinates in the enol form. Four coordinated species were suggested for all the isolated metal complexes. The measured optical band gap values confirmed the presence of direct electronic transition and the semi-conductivity of the compounds. The ligand and its Zn(II) complex were examined as cytotoxic agent against HCT-116 and HePG-2. The ligand showed very strong cytotoxic effect against HePG-2, but moderate cytotoxicity against HCT-116. Zn(II) complex showed weak cytotoxicity against the two cell lines.

  9. Evaluation of the analgesic, sedative-anxiolytic, cytotoxic and thrombolytic potentials of the different extracts of Kalanchoe pinnata leaves

    Directory of Open Access Journals (Sweden)

    Md. Razibul Habib

    2015-12-01

    Full Text Available Objective: To evaluate the analgesic, neuropharmacological, cytotoxic and thrombolytic potentials of the aqueous, ethanol and ethyl acetate extracts of Kalanchoe pinnata leaves. Methods: At the dose of 400 mg/kg body weight, the analgesic activity of the extracts were evaluated by the acetic acid-induced writhing and formalin-induced persistent pain tests while neuropharmacological activity was evaluated by the open field, hole cross and elevated plus maze tests. The cytotoxic potential was observed by brine shrimp lethality bioassay and the thrombolytic potential was investigated by clot lysis test. Results: The aqueous extract significantly suppressed the number of writhing (96.78% as well as the formalin-induced persistent pain on the early phase (46.92% and on the late phase (40.98%. Again in case of hole cross and open field tests, the locomotor activity was decreased significantly (P < 0.001 mostly by the ethyl acetate extract. Furthermore, the sedative-anxiolytic activity was supported by the increased percent (P < 0.01 of frequency into the open arm on elevated plus maze test. Besides, the extracts showed moderate lethality and thrombolytic activity. Conclusions: The findings showed that activities are comparable to the standards and in some cases are stronger than the standards. Therefore, based on the results, it is evident that it has great analgesic and sedative-anxiolytic activity with moderate cytotoxic and thrombolytic potential.

  10. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso

    Directory of Open Access Journals (Sweden)

    Souleymane Sanon

    2013-03-01

    Methods: Crude dichloromethane, methanol, water-methanol, aqueous and alkaloids extracts were prepared for 12 parts of 10 plants. Chloroquine-resistant malaria strain K1 was used for the in vitro sensibility assay. The Plasmodium lactacte dehydrogenase technique was used to determine the 50% inhibitory concentration of parasites activity (IC50. The cytotoxic effects were determined with HepG2 cells, using the tetrazolium-based colorimetric technique, and the selectivity index (SI was calculated. Results: Sixty crude extracts were prepared. Seven extracts from Terminalia avicenoides showed IC50  1. The other plants have mostly moderate or no antimalarial effects. Some extracts from Cordia myxa, Ficus capraefolia and Opilia celtidifolia showed cytotoxicity, with an SI ranging between 0.4 and 0.9. Conclusion: Our study showed a good antiplasmodial in vitro activity of Terminalia avicenoides, Combretum collinum and Ficus capraefolia. These three plants may contain antiplasmodial molecules that could be isolated by bio-guided phytochemical studies.

  11. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  12. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting.

    Science.gov (United States)

    Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María

    2018-03-25

    Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso.

    Science.gov (United States)

    Sanon, Souleymane; Gansane, Adama; Ouattara, Lamoussa P; Traore, Abdoulaye; Ouedraogo, Issa N; Tiono, Alfred; Taramelli, Donatella; Basilico, Nicoletta; Sirima, Sodiomon B

    2013-01-01

    Resistance of malaria parasites to existing drugs complicates treatment, but an antimalarial vaccine that could protect against this disease is not yet available. It is therefore necessary to find new effective and affordable medicines. Medicinal plants could be a potential source of antimalarial agents. Some medicinal plants from Burkina Faso were evaluated for their antiplasmodial and cytotoxic properties in vitro . Crude dichloromethane, methanol, water-methanol, aqueous and alkaloids extracts were prepared for 12 parts of 10 plants. Chloroquine-resistant malaria strain K1 was used for the in vitro sensibility assay. The Plasmodium lactacte dehydrogenase technique was used to determine the 50% inhibitory concentration of parasites activity (IC 50 ). The cytotoxic effects were determined with HepG2 cells, using the tetrazolium-based colorimetric technique, and the selectivity index (SI) was calculated. Sixty crude extracts were prepared. Seven extracts from Terminalia avicenoides showed IC 50 effect, with SI > 1. The other plants have mostly moderate or no antimalarial effects. Some extracts from Cordia myxa , Ficus capraefolia and Opilia celtidifolia showed cytotoxicity, with an SI ranging between 0.4 and 0.9. Our study showed a good antiplasmodial in vitro activity of Terminalia avicenoides, Combretum collinum and Ficus capraefolia . These three plants may contain antiplasmodial molecules that could be isolated by bio-guided phytochemical studies.

  14. Synthesis and cytotoxicity of boronated fatty esters for BNCT of cervix cancer

    International Nuclear Information System (INIS)

    Tambunchong, C.; Prachayasittikul, S.; Picha, P.; Tumpum, C.

    2000-01-01

    Esterification reactions of o-carboranic acid with six fatty alcohols, palmitoleyl, stearyl, oleyl, elaidyl, linoleyl and linoelaidyl alcohols, proceeded smoothly under nitrogen atmosphere with dimethylamino pyrimidine as a catalyst. The reaction gave the corresponding esters in moderate yields. Most of the synthetic esters are stable at room temperature except the linoleyl carboranate and linoelaidyl carboranate which decomposed within two weeks. The in vitro studies on Hela cells showed relatively low cytotoxic. The IC 50 of boronated esters were in range of 36-83 micrograms/cm 3 . (author)

  15. Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip

    International Nuclear Information System (INIS)

    Zheng Xiannuo; Weng Lixing; Tian Jing; Wang Lianhui; Wu Lei; Jin Qinghui; Zhao Jianlong

    2012-01-01

    There is a lack of reliable nanotoxicity assays available for monitoring and quantifying multiple cellular events in cultured cells. In this study, we used a microfluidic chip to systematically investigate the cytotoxicity of three kinds of well-characterized cadmium-containing quantum dots (QDs) with the same core but different shell structures, including CdTe core QDs, CdTe/CdS core–shell QDs, and CdTe/CdS/ZnS core–shell–shell QDs, in HEK293 cells. Using the microfluidic chip combined with fluorescence microscopy, multiple QD-induced cellular events including cell morphology, viability, proliferation, and QD uptake were simultaneously analysed. The three kinds of QDs showed significantly different cytotoxicities. The CdTe QDs, which are highly toxic to HEK293 cells, resulted in remarkable cellular and nuclear morphological changes, a dose-dependent decrease in cell viability, and strong inhibition of cell proliferation; the CdTe/CdS QDs were moderately toxic but did not significantly affect the proliferation of HEK293 cells; while the CdTe/CdS/ZnS QDs had no detectable influence on cytotoxicity with respect to cell morphology, viability, and proliferation. Our data indicated that QD cytotoxicity was closely related to their surface structures and specific physicochemical properties. This study also demonstrated that the microfluidic chip could serve as a powerful tool to systematically evaluate the cytotoxicity of nanoparticles in multiple cellular events. (paper)

  16. Cytotoxicity of cadmium-containing quantum dots based on a study using a microfluidic chip

    Science.gov (United States)

    Zheng, Xiannuo; Tian, Jing; Weng, Lixing; Wu, Lei; Jin, Qinghui; Zhao, Jianlong; Wang, Lianhui

    2012-02-01

    There is a lack of reliable nanotoxicity assays available for monitoring and quantifying multiple cellular events in cultured cells. In this study, we used a microfluidic chip to systematically investigate the cytotoxicity of three kinds of well-characterized cadmium-containing quantum dots (QDs) with the same core but different shell structures, including CdTe core QDs, CdTe/CdS core-shell QDs, and CdTe/CdS/ZnS core-shell-shell QDs, in HEK293 cells. Using the microfluidic chip combined with fluorescence microscopy, multiple QD-induced cellular events including cell morphology, viability, proliferation, and QD uptake were simultaneously analysed. The three kinds of QDs showed significantly different cytotoxicities. The CdTe QDs, which are highly toxic to HEK293 cells, resulted in remarkable cellular and nuclear morphological changes, a dose-dependent decrease in cell viability, and strong inhibition of cell proliferation; the CdTe/CdS QDs were moderately toxic but did not significantly affect the proliferation of HEK293 cells; while the CdTe/CdS/ZnS QDs had no detectable influence on cytotoxicity with respect to cell morphology, viability, and proliferation. Our data indicated that QD cytotoxicity was closely related to their surface structures and specific physicochemical properties. This study also demonstrated that the microfluidic chip could serve as a powerful tool to systematically evaluate the cytotoxicity of nanoparticles in multiple cellular events.

  17. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    Science.gov (United States)

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  18. Chemical Composition and Cytotoxic and Antibacterial Activities of the Essential Oil of Aloysia citriodora Palau Grown in Morocco

    Directory of Open Access Journals (Sweden)

    Moulay Ali Oukerrou

    2017-01-01

    Full Text Available The aim of this work is to investigate the in vitro cytotoxic and antibacterial effects of the essential oils of Aloysia citriodora Palau, harvested in different regions of Morocco. The chemical profile was established using gas chromatography-mass spectrometry analysis. The cytotoxic activity against P815, MCF7, and VERO cell lines as well as the normal human peripheral blood mononuclear cells (PBMCs was evaluated using the MTT assay. Standard, ATCC, strains of bacteria (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were cultivated in Muller Hinton media. Then, agar disc diffusion, minimum inhibitory concentrations (MICs, and minimal bactericidal concentrations (MBCs were determined using microdilution method. The essential oils obtained were predominantly composed of β-spathulenol (15.61%, Ar-curcumene (14.15%, trans-caryophyllene oxide (14.14%, and neral (10.02%. The results of the assays showed that the cytotoxic effect of the essential oil of A. citriodora was high on P815 and moderate on MCF7 and on VERO cell lines. However, no cytotoxic effect was observed on PBMCs. On the other hand, essential oils showed a significant antimicrobial activity against both Gram-negative and Gram-positive bacteria. MICs ranged between 2.84 and 8.37 mg/ml. Essential oil of A. citriodora leaves possesses significant antibacterial effect and cytotoxic activity against tumor cell lines.

  19. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Víctor A. Solarte

    2015-01-01

    Full Text Available Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–254, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90% in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  20. Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis.

    Science.gov (United States)

    Aronsson, Per; Munissi, Joan J E; Gruhonjic, Amra; Fitzpatrick, Paul A; Landberg, Göran; Nyandoro, Stephen S; Erdelyi, Mate

    2016-01-15

    As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae), a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8'-oxo-biplumbagin ( 1 ) was isolated along with the known tetralones trans -isoshinanolone ( 2 ) and cis -isoshinanolone ( 3 ), and the naphthoquinones plumbagin ( 4 ) and 3,3'-biplumbagin ( 5 ). Compounds 2 , 4 , and 5 showed cytotoxicity (IC 50 520-82.1 μM) against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC 50 16.1, 29.7 and > 100 μg/mL, respectively), and for the methanol extract of the stem bark (IC 50 59.6 μg/mL). The radical scavenging activity of the isolated constituents ( 1 - 5 ) was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.

  1. Cytotoxic, antioxidant and antimicrobial properties of red sweet pepper (Capsicum annuum L. var. Llanerón extracts: In vitro study

    Directory of Open Access Journals (Sweden)

    Rosa Raybaudi-Massilia

    2017-10-01

    Full Text Available Alcoholic and aqueous extracts were obtained from red sweet pepper (Capsicum annuum L. by different methodologies to evaluate their cytotoxic, antioxidant and antimicrobial properties. Alcoholic extracts (MFP, MSd, SFP, SDP, SSd from fresh red sweet pepper (FP and dry pulp (DP and seed (Sd were obtained by maceration (M and Soxhlet (S equipment using methanol as extraction solvent; whereas aqueous extracts (LFP, LSd were obtained by decoction followed by lyophilization (L. Human tumoral cell lines from breast (MCF-7 and SKBr3, prostate (PC3 and cervix (HeLa, and fibroblasts (as control were used to determine the cytotoxic properties by the MTT assay. Antioxidant and antimicrobial properties were determined by DPPH and disc diffusion method, respectively. The extracts SDP and SFP showed the higher cytotoxic activity. The SDP extract had a significant (P < 0.05 in-vitro effect on HeLa (1.9 ± 1.4 µg/mL and PC3 (< 1 µg/mL cells with a moderated impact on fibroblasts (26.1 ± 1.2 µg/mL; whereas, SFP had a significant (p < 0.05 effect on MCF-7 cell line (2.1 ± 1.2 µg/mL with a moderated impact on fibroblasts (25.9 ± 1.0 µg/mL. The higher antioxidant activity was found for MFP (80.3 ± 0.2% and SFP extracts (75.5 ± 0.5%. Mild antimicrobial activity was only observed for alcoholic extracts. The results showed the potential of red sweet pepper (C. annuum L. as a source of antioxidant and cytotoxic compounds, and suggest the need of further studies to isolate and characterize the bioactive compounds that impart those properties.

  2. Cytotoxic Effects of Bangladeshi Medicinal Plant Extracts

    Directory of Open Access Journals (Sweden)

    Shaikh J. Uddin

    2011-01-01

    Full Text Available To investigate the cytotoxic effect of some Bangladeshi medicinal plant extracts, 16 Bangladeshi medicinal plants were successively extracted with n-hexane, dichloromethane, methanol and water. The methanolic and aqueous extracts were screened for cytotoxic activity against healthy mouse fibroblasts (NIH3T3 and three human cancer-cell lines (gastric: AGS; colon: HT-29; and breast: MDA-MB-435S using the MTT assay. Two methanolic extracts (Hygrophila auriculata and Hibiscus tiliaceous and one aqueous extract (Limnophila indica showed no toxicity against healthy mouse fibroblasts, but selective cytotoxicity against breast cancer cells (IC50 1.1–1.6 mg mL−1. Seven methanolic extracts from L. indica, Clerodendron inerme, Cynometra ramiflora, Xylocarpus moluccensis, Argemone mexicana, Ammannia baccifera and Acrostichum aureum and four aqueous extracts from Hygrophila auriculata, Bruguiera gymnorrhiza, X. moluccensis and Aegiceras corniculatum showed low toxicity (IC50 > 2.5 mg mL−1 against mouse fibroblasts but selective cytotoxicity (IC50 0.2–2.3 mg mL−1 against different cancer cell lines. The methanolic extract of Blumea lacera showed the highest cytotoxicity (IC50 0.01–0.08 mg mL−1 against all tested cell lines among all extracts tested in this study. For some of the plants their traditional use as anticancer treatments correlates with the cytotoxic results, whereas for others so far unknown cytotoxic activities were identified.

  3. Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L929 cell lines.

    Science.gov (United States)

    Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong

    2014-03-01

    To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p adhesives showed mild to moderate cytotoxicity to primary HOKs (p  0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  4. Trypanocide, cytotoxic, and antifungal activities of Momordica charantia.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Sobral-Souza, Celestina E; Tintino, Saulo R; Morais-Braga, Maria F B; Guedes, Glaucia M M; Santos, Francisco A V; Sousa, Ana Carla A; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M

    2012-02-01

    Chagas disease, caused by Trypanosoma cruzi, is a public health problem. Currently, chemotherapy is the only available treatment for this disease, and the drugs used, nifurtimox and benzonidazol, present high toxicity levels. An alternative for replacing these drugs are natural extracts from Momordica charantia L. (Cucurbitaceae) used in traditional medicine because of their antimicrobial and biological activities. In this study, we evaluated the extract of M. charantia for its antiepimastigote, antifungal, and cytotoxic activities. An ethanol extract of leaves from M. charantia was prepared. To research in vitro antiepimastigote activity, T. cruzi CL-B5 clone was used. Epimastigotes were inoculated at a concentration of 1 × 10(5) cells/mL in 200 µl tryptose-liver infusion. For the cytotoxicity assay, J774 macrophages were used. The antifungal activity was evaluated by microdilution using strains of Candida albicans, Candida tropicalis, and Candida krusei. The effective concentration capable of killing 50% of parasites (IC(50)) was 46.06 µg/mL. The minimum inhibitory concentration (MIC) was ≤ 1024 µg/mL. Metronidazole showed a potentiation of its antifungal effect when combined with an extract of M. charantia. Our results indicate that M. charantia could be a source of plant-derived natural products with antiepimastigote and antifungal-modifying activity with moderate toxicity.

  5. Cytotoxic effect of Alpinia scabra (Blume) Náves extracts on human breast and ovarian cancer cells.

    Science.gov (United States)

    Reddy, Annushuya Subba; Abd Malek, Sri Nurestri; Ibrahim, Halijah; Sim, Kae Shin

    2013-11-12

    Alpinia scabra, locally known as 'Lengkuas raya', is an aromatic, perennial and rhizomatous herb from the family Zingiberaceae. It is a wild species which grows largely on mountains at moderate elevations in Peninsular Malaysia, but it can also survive in the lowlands like in the states of Terengganu and Northern Johor. The present study reports the cytotoxic potential of A. scabra extracts from different parts of the plant. The experimental approach in the present study was based on a bioassay-guided fractionation. The crude methanol and fractionated extracts (hexane, chloroform and water) from different parts of A. scabra (leaves, rhizomes, roots and pseudo stems) were prepared prior to the cytotoxicity evaluation against human ovarian (SKOV-3) and hormone-dependent breast (MCF7) carcinoma cells. The identified cytotoxic extracts were then subjected to chemical investigations in order to identify the active ingredients. A normal human lung fibroblast cell line (MRC-5) was used to determine the specificity for cancerous cells. The cytotoxic extracts and fractions were also subjected to morphological assessment, DNA fragmentation analysis and DAPI nuclear staining. The leaf (hexane and chloroform) and rhizome (chloroform) extracts showed high inhibitory effect against the tested cells. Ten fractions (LC1-LC10) were yielded after purification of the leaf chloroform extract. Fraction LC4 which showed excellent cytotoxic activity was further purified and resulted in 17 sub-fractions (VLC1-VLC17). Sub-fraction VLC9 showed excellent cytotoxicity against MCF7 and SKOV-3 cells but not toxic against normal MRC-5 cells. Meanwhile, eighteen fractions (RC1-RC18) were obtained after purification of the rhizome chloroform extract, of which fraction RC5 showed cytotoxicity against SKOV-3 cells with high selectivity index. There were marked morphological changes when observed using phase-contrast inverted microscope, DAPI nuclear staining and also DNA fragmentations in MCF7 and

  6. Blainvillea rhomboidea: chemical constituents and cytotoxic activity; Blainvillea rhomboidea: constituintes quimicos e atividade citotoxica

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Regina Ferreira; Santos, Helcio Silva dos; Albuquerque, Maria Rose Jane R., E-mail: rjane_7@hotmail.co [Universidade Estadual Vale do Acarau, Sobral, CE (Brazil). Centro de Ciencias Exatas e Tecnologia. Coord. de Quimica; Pessoa, Otilia Deusdenia L. [Universidade Federal do Ceara (DQOI/UFC), Fortaleza (Brazil). Dept. de Quimica Organica e Inorganica; Lotufo, Leticia V. Costa; Pessoa, Claudia do O; Moraes, Manoel Odorico de; Rodrigues, Felipe A. R. [Universidade Federal do Ceara (UFC), Fortaleza (Brazil). Dept. de Fisiologia e Farmacologia

    2010-07-01

    The phytochemical investigation of the ethanol extract from the aerial parts of Blainvillea rhomboidea (Asteraceae) resulted in the isolation and characterization of 8-tigloyloxy-grazielia acid, together with the flavonoids derrone, acacetin, luteolin and luteolin 7-methyl ether, and p-(1-methyl-ethan-1-ol)-phenol. The structures of all compounds were determined by spectroscopic methods ({sup '}H and {sup 13}C NMR and HREIMS) and comparison with published spectral data. The flavonoids luteolin and 7-O-metyl-luteolin, isolated from the active dichloromethane fraction, showed moderate cytotoxic activity. (author)

  7. Antimicrobial, Cytotoxic, Phytotoxic and Antioxidant Potential of Heliotropium strigosum Willd.

    Science.gov (United States)

    Khurm, Muhammad; Chaudhry, Bashir A; Uzair, Muhammad; Janbaz, Khalid H

    2016-07-28

    Background: Heliotropium strigosum Willd. (Chitiphal) is a medicinally important herb that belongs to the Boraginaceae family. Traditionally, this plant was used in the medication therapy of various ailments in different populations of the world. The aim of the study is to probe the therapeutic aspects of H. strigosum described in the traditional folklore history of medicines. Methods: In the present study, the dichloromethane crude extract of this plant was screened to explore the antimicrobial, cytotoxic, phytotoxic and antioxidant potential of H. strigosum . For antibacterial, antifungal and antioxidant activities, microplate alamar blue assay (MABA), agar tube dilution method and diphenyl picryl hydrazine (DPPH) radical-scavenging assay were used, respectively. The cytotoxic and phytotoxic potential were demonstrated by using brine shrimp lethality bioassay and Lemna minor assay. Results: The crude extract displayed positive cytotoxic activity in the brine shrimp lethality assay, with 23 of 30 shrimps dying at the concentration of 1000 µg/mL. It also showed moderate phytotoxic potential with percent inhibition of 50% at the concentration of 1000 µg/mL. The crude extract exhibited no significant antibacterial activity against Staphylococcus aureus , Shigella flexneri , Escherichia coli and Pseudomonas aeruginosa . Non-significant antifungal and radical scavenging activity was also shown by the dichloromethane crude extract. Conclusion: It is recommended that scientists focus on the identification and isolation of beneficial bioactive constituents with the help of advanced scientific methodologies that seems to be helpful in the synthesis of new therapeutic agents of desired interest.

  8. Isolation, Synthesis and Structures of Cytotoxic Ginsenoside Derivatives

    Directory of Open Access Journals (Sweden)

    Yi-nan Zheng

    2007-09-01

    Full Text Available Four known ginsenosides: ginsenoside-Rb1 (1, Rb3 (2, Rd (3 and Re (4 were isolated from the methanolic extract of the traditional Chinese medicine Panax ginseng C. A. Meyer. Further enzyme reactions and chemical modifications led us to obtain ginsenoside-M1 (5 and synthesize three novel mono-esters of ginsenoside-M1, ginsenoside-DM1 (6, PM1 (7 and SM1 (8 30 - 50% of yield via a facile and green synthetic strategy. The structures were elucidated on the basis of extensive 1D- and 2DNMR, as well as high resolution ESI-TOF mass spectroscopic analyses. The isolated and synthetic compounds were tested in an anti-tumor bioassay, and compounds 5-8 showed considerable cytotoxicity (SRB against several human cancer cell lines (breast cancer MCF-7, skin melanoma SK-MEL-2 and human ovarian carcinoma B16, but moderate effects on lung carcinoma COR-L23. The other ginsenosides showed no effects.

  9. Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis

    Directory of Open Access Journals (Sweden)

    Per Aronsson

    2016-01-01

    Full Text Available As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae, a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8′-oxo-biplumbagin (1 was isolated along with the known tetralones trans-isoshinanolone (2 and cis-isoshinanolone (3, and the naphthoquinones plumbagin (4 and 3,3′-biplumbagin (5. Compounds 2, 4, and 5 showed cytotoxicity (IC50 520–82.1 μM against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC50 16.1, 29.7 and > 100 μg/mL, respectively, and for the methanol extract of the stem bark (IC50 59.6 μg/mL. The radical scavenging activity of the isolated constituents (1–5 was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.

  10. Cytotoxic activity of carotenoid rich fractions from Haematococcus pluvialis and Dunaliella salina microalgae and the identification of the phytoconstituents using LC-DAD/ESI-MS.

    Science.gov (United States)

    El-Baz, Farouk K; Hussein, Rehab A; Mahmoud, Khaled; Abdo, Sayeda M

    2018-02-01

    Microalgae represent a rich source that satisfies the growing need for novel ingredients of nutriceuticals, pharmaceuticals, and food supplements. Haematococcus pluvialis and Dunaliella salina microalgae are isolated from the Egyptian hydro-flora and are reported for their potent antioxidant activities. The cytotoxic activity of different fractions of both microalgae was investigated on 4 cell lines HePG2, MCF7, HCT116, and A549. The carotenoid rich fraction of H. pluvialis showed potent cytotoxic activity against colon cancer cell line and moderate activity against both liver and breast cancer cell lines. On the other hand, the carotenoid rich fraction of D. salina showed mild cytotoxic activity on breast and liver cancer cell lines. The carotenoid rich fraction of H. pluvialis was analysed using LC-DAD/ESI-MS and the major carotenoids were identified either free as well as bounded to fatty acids. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Anti-inflammatory and cytotoxic activities of five Veronica species.

    Science.gov (United States)

    Harput, U Sebnem; Saracoglu, Iclal; Inoue, Makoto; Ogihara, Yukio

    2002-04-01

    Biological activities of five Veronica species (Scrophulariaceae), V. cymbalaria, V. hederifolia, V. pectinata var. glandulosa, V. persica and V. polita were studied for their anti-inflammatory and cytotoxic activities. Their methanol extracts showed both the inhibitory activity of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated macrophages and cytotoxic activity against KB epidermoid carcinoma and B16 melanoma. When the methanol extracts were fractionated between water and chloroform, water fractions significantly inhibited NO production without any cytotoxicity, while chloroform fractions showed cytotoxicity dose-dependently. When the radical scavenging activity was determined using 2,2-diphenyl-1-picryl-hydrazyl (DPPH), water fractions of the five Veronica species scavenged free radicals effectively, suggesting that the inhibitory effect of this species on NO production was due to their radical scavenging activity. On the other hand, chloroform fractions of Veronica species except for V. cymbalaria showed similar cytotoxic activity against KB and B16 melanoma cells.

  12. Cytotoxic activity of abietane diterpenoids from roots of Salvia sahendica by HPLC-based activity profiling

    Directory of Open Access Journals (Sweden)

    Fahimeh Moradi-Afrapoli

    Full Text Available ABSTRACT Screening of medicinal plants from Iranian flora against human cancer cell-lines have shown that an hexane extract from roots of Salvia sahendica Boiss. & Buhse, Lamiaceae, is active against human cervical cancer (HeLa and colorectal adenocarcinoma (Caco-2 cell-lines at the test concentration of 100 µg/ml (100% inhibition. Cytotoxicity of the extract was localized with the aid of HPLC-time-based activity profiling adapted to the tetrazolium colorimetric bioassay. Four abietane-type diterpenoids in active time-windows were identified as cytotoxic compounds namely: sahandone (1, sahandol (2, 12-deoxy-salvipisone (3 and sahandinone (4. Compound 1 showed the highest toxicity against HeLa cells (IC50 = 5.6 ± 0.1 µg/ml, which was comparable with betulinic acid (IC50 = 4.3 ± 1.2 µg/ml, the positive control. Compound 2 was active against the HeLa cells (IC50 = 8.9 ± 0.7 µg/ml but not the Caco-2 cell-line. Compounds 1, 3 and 4 exhibited moderate activity (IC50 = 22.9–41.4 µg/ml against the Caco-2 cells. This study reveals that the HeLa cells are more sensitive to all tested compounds than the Caco-2 cells. In silico molecular docking study showed a rigid binding of the compounds to tyrosine kinase pp60src, and proved their cytotoxic activity.

  13. Metabolites from roots of Colubrina greggii var. yucatanensis and evaluation of their antiprotozoan, cytotoxic and antiproliferative activities

    International Nuclear Information System (INIS)

    Dominguez-Carmona, Dafne B.; Escalante-Erosa, Fabiola; Garcia-Sosa, Karlina; Pena-Rodriguez, Luis M.

    2011-01-01

    Purification of the root extract of Colubrina greggii var. yucatanensis resulted in the isolation and identification of 3-O-acetyl ceanothic acid as a new natural ceanothane triterpene, together with the known metabolites ceanothic acid, cenothenic acid, betulinic acid, discarine B and chrysophanein. The natural products and the semisynthetic esters acetyl dimethyl ceanothate, dimethyl ceanothate and chrysophanein peracetate showed moderate to low leishmanicidal and trypanocidal activities. None of the metabolites showed cytotoxic or antiproliferative effects. The results also suggested that betulinic acid contributes to the antiplasmodial activity originally detected in the crude root extract of C. greggii var. yucatanensis. (author)

  14. Metabolites from roots of Colubrina greggii var. yucatanensis and evaluation of their antiprotozoan, cytotoxic and antiproliferative activities

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Carmona, Dafne B.; Escalante-Erosa, Fabiola; Garcia-Sosa, Karlina; Pena-Rodriguez, Luis M., E-mail: lmanuel@cicy.m [Centro de Investigacion Cientifica de Yucatan (Mexico). Unidad de Biotecnologia; Ruiz-Pinell, Grace; Gutierrez-Yapu, David; Gimenez-Turba, Alberto [Universidad Mayor de San Andres, La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Farmaco-Bioquimicas; Chan-Bacab, Manuel J. [Universidad Autonoma de Campeche (Mexico). Dept. de Microbiologia Ambiental y Biotecnologia; Moo-Puc, Rosa E. [Centro Medico Ignacio Garcia Tellez, Col. Industrial, Merida, Yucatan (Mexico). Unidad de Investigacion Medica Yucatan y Unidad Medica de Alta Especialidad; Veitch, Nigel C. [Jodrell Laboratory, Richmond, Surrey (United Kingdom)

    2011-07-01

    Purification of the root extract of Colubrina greggii var. yucatanensis resulted in the isolation and identification of 3-O-acetyl ceanothic acid as a new natural ceanothane triterpene, together with the known metabolites ceanothic acid, cenothenic acid, betulinic acid, discarine B and chrysophanein. The natural products and the semisynthetic esters acetyl dimethyl ceanothate, dimethyl ceanothate and chrysophanein peracetate showed moderate to low leishmanicidal and trypanocidal activities. None of the metabolites showed cytotoxic or antiproliferative effects. The results also suggested that betulinic acid contributes to the antiplasmodial activity originally detected in the crude root extract of C. greggii var. yucatanensis. (author)

  15. Penifupyrone, a new cytotoxic funicone derivative from the endophytic fungus Penicillium sp. HSZ-43.

    Science.gov (United States)

    Chen, Ming-Jun; Fu, Yang-Wu; Zhou, Qun-Ying

    2014-01-01

    Penifupyrone (1), a new funicone derivative, has been isolated from the endophytic fungus Penicillium sp. HSZ-43, along with three known analogues, funicone (2), deoxyfunicone (3) and 3-O-methylfunicone (4). These structures were identified by using spectroscopic methods, including UV, MS, 1D and 2D NMR experiments. The structure of 1 was confirmed by single-crystal X-ray diffraction analysis. All the isolated compounds were evaluated for cytotoxicity against human oral epidermoid carcinoma KB cells, and compound 1 exhibited moderate cytotoxic activity with IC50 value of 4.7 μM.

  16. New cytotoxic and anti-inflammatory compounds isolated from Morus alba L.

    Science.gov (United States)

    Qin, Jing; Fan, Min; He, Juan; Wu, Xing-De; Peng, Li-Yan; Su, Jia; Cheng, Xiao; Li, Yan; Kong, Ling-Mei; Li, Rong-Tao; Zhao, Qin-Shi

    2015-01-01

    Six Diels-Alder adducts (1-6) and nine prenylated flavanones (7-15) were isolated from the root bark of Morus alba L. Among them, soroceal B (1) and sanggenol Q (7) were new compounds. Their structures were elucidated on the basis of extensive spectroscopic methods, including 1D and 2D NMR techniques. Compounds 1-3, 9, 10, 12, 13 and 15 exhibited cytotoxic activity against five human tumour lines and compound 2 inhibited significantly selective cytotoxic activities towards HL-60 and AGS cells with IC50 of 3.4 and 3.6 μM. Compounds 3, 5, 9 and 12 exhibited moderate inhibitory activity against nitric oxide production in LPS-activated RAW264.7.

  17. Ficusonic acid: a new cytotoxic triterpene isolated from Maytenus royleanus (Wall. ex M. A. Lawson) cufodontis

    Energy Technology Data Exchange (ETDEWEB)

    Din, Ala Ud; Uddin, Ghias [Center for Phytomedicine and Medicinal Organic Chemistry, Institute of Chemical Sciences, University of Peshawar(Pakistan); Hussain, Nusrat; Choudary, Mohammad Iqbal, E-mail: allauddin77@yahoo.com [International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi (Pakistan)

    2013-04-15

    Phytochemical investigation of the roots of Maytenus royleanus resulted into the isolation of a new cytotoxic triterpene ficusonic acid, 3{beta},21{beta}-dihydroxyolean-12-en-29-oic acid, together with three known compounds, 3{alpha},22{beta}-dihydroxyolean-12-en-29-oic acid, salaspermic acid and orthosphenic acid, reported for the first time from this source. Their structures were established on the basis of extensive spectroscopic techniques. The cytotoxic activity of compound 3{beta},21{beta}-dihydroxyolean-12-en-29-oic acid was evaluated against two cancer cell lines, PC-3 prostate and HeLa cervical cancer lines. 3{beta},21{beta}-dihydroxyolean-12-en-29-oic acid showed weak activity against PC-3 (IC{sub 50} = 35.42 Greek-Small-Letter-Mu mol L{sup -1}) however against HeLa (IC{sub 50} = 20.47 Greek-Small-Letter-Mu mol L{sup -1}), its activity was moderate. (author)

  18. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  19. Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen

    International Nuclear Information System (INIS)

    Hulette, Ben C.; Ryan, Cindy A.; Gildea, Lucy A.; Gerberick, G. Frank

    2005-01-01

    Human peripheral blood-derived dendritic cells (DC) respond to a variety of chemical allergens by up-regulating expression of the co-stimulatory molecule CD86. It has been postulated that this measure might provide the basis for an in vitro alternative approach for the identification of skin sensitizing chemicals. We recently reported that DC, exposed in culture to the highest non-cytotoxic concentrations of various chemical allergens, displayed marginal up-regulation of membrane CD86 expression; the interpretation being that such changes were insufficiently sensitive for the purposes of hazard identification. For the work presented here, immature DC were derived from human monocytes and treated with the chemical allergens 2,4-dinitrobenzenesulfonic acid (DNBS), nickel sulfate (NiSO 4 ), p-phenylenediamine (PPD), Bandrowski's base (BB), hydroquinone (HQ) and propyl gallate (PG) for 48 h at concentrations which induced both no to slight to moderate cytotoxicity. For comparison, DC were treated with the irritants sodium dodecyl sulfate (SDS), benzoic acid (BA), and benzalkonium chloride (BZC) at concentrations resulting in comparable levels of cytotoxicity. CD86 expression, as measured by flow cytometry, was consistently up-regulated (ranging from 162 to 386% control) on DC treated with concentrations of chemical allergens that induced approximately 10-15% cytotoxicity. The irritants BA and BZC did not induce up-regulation of CD86 expression when tested at concentrations that induced similar levels of cytotoxicity. SDS, however, up-regulated CD86 expression to 125-138% of control in 2/4 preparations when tested at concentrations which induced similar toxicity. Our results confirm that chemical allergens up-regulate CD86 expression on blood-derived DC and illustrate further that up-regulation of CD86 surface marker expression is more robust when DC are treated with concentrations of chemical allergen that induce slight to moderate cytotoxicity

  20. Cytotoxic activity of erypogein d from erythrina poeppigiana (leguminosae) against cervical cancer (HeLa), breast cancer (MCF-7) and ovarian cancer (SKOV-3) cells

    Science.gov (United States)

    Herlina, T.; Gaffar, S.; Widowati, W.

    2018-05-01

    Cancer is the uncontrolled growth of abnormal cells and continues to divide rapidly in the body. Current anticancer treatment usually causes many side effects. Natural products are then explored to be new alternatives for cancer treatment. Flavonoids have been known to possess medicinal properties, including anticancer. This study was performed to observe the cytotoxic activity of isoflavanone compound, erypogein D from Erythrina poeppigiana, toward cervical cancer (HeLa), breast cancer (MCF-7) and ovarian cancer (SKOV-3) cells. The cytotoxic activity of erypogein D was tested using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxyme-thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. The percentage of cell mortality was calculated and the IC50 was analyzed using probit analysis. The result showed that cytotoxic activity of the erypogein D against HeLa, SKOV-3, and MCF-7 cells had an IC50 value 225, 70.74, and 30.12 μM, respectively. Based on IC50 value can be concluded that erypogein D is the most cytotoxic to breast cancer MCF-7 cell. However the cytotoxic activity of erypogein D toward MCF7 is moderate.

  1. Cytotoxicity study of pyrazole derivatives

    Directory of Open Access Journals (Sweden)

    Nusrat Binta Ahasan

    2007-06-01

    Full Text Available Pyrazolone heterocyclic compound, 3-methyl-1-phenyl-2-pyrazoline-5-one 2(a was synthesized by condensation reaction between ethyl acetoacetate and phenyl hydrazine and was converted into their corresponding heterocyclic derivatives 2(b to 2(f2 . Their cytotoxicity effects were measured by brine shrimp lethality bioassay. Among them the compounds 2(b , 2(f1 , and 2(f2 were highly active according to IC50 values 19.50, 19.50 and 20 ppm respectively. The rest of compounds 2(a , 2(c , 2(d1 , and 2(d2 having IC50 values 38, 33.50, 37.50, 36, 37.50 and 36 ppm in that order, were moderately active.

  2. Cytotoxicity study of pyrazole derivatives

    Directory of Open Access Journals (Sweden)

    Nusrat Binta Ahasan and Md. Rabiul Islam

    2007-12-01

    Full Text Available Pyrazolone heterocyclic compound, 3-methyl-1-phenyl-2-pyrazoline-5-one 2(a was synthesized by condensation reaction between ethyl acetoacetate and phenyl hydrazine and was converted into their corresponding heterocyclic derivatives 2(b to 2(f2. Their cytotoxicity effects were measured by brine shrimp lethality bioassay. Among them the compounds 2(b, 2(f1, and 2(f2 were highly active according to IC50 values 19.50, 19.50 and 20 ppm respectively. The rest of compounds 2(a, 2(c, 2(d1, and 2(d2 having IC50 values 38, 33.50, 37.50, 36, 37.50 and 36 ppm in that order, were moderately active.

  3. Cytotoxic glucosphingolipid from Celtis Africana.

    Science.gov (United States)

    Perveen, Shagufta; Al-Taweel, Areej Mohammad; Fawzy, Ghada Ahmed; El-Shafae, Azza Muhammed; Khan, Afsar; Proksch, Peter

    2015-05-01

    Literature survey proved the use of the powdered sun-dried bark and roots of Celtis africana for the treatment of cancer in South Africa. The aim of this study was to do further isolation work on the ethyl acetate fraction and to investigate the cytotoxic activities of the various fractions and isolated compound. Cytotoxicity of petroleum ether, chloroform, ethyl acetate, n-butanol fractions and compound 1 were tested on mouse lymphoma cell line L5178Y using the microculture tetrazolium assay. One new glucosphingolipid 1 was isolated from the aerial parts of C. africana. The structure of the new compound was determined by extensive analysis by one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry. The ethyl acetate fraction and compound 1 showed strong cytotoxic activity with an EC50 value of 8.3 μg/mL and 7.8 μg/mL, respectively, compared with Kahalalide F positive control (6.3 μg/mL). This is the first report of the occurrence of a cytotoxic glucosphingolipid in family Ulmaceae.

  4. Synthesis and Cytotoxic Activity of Some New 2,6-Substituted Purines

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Kode

    2011-07-01

    Full Text Available A seriesof twenty four acyclic unsaturated 2,6-substututed purines 5a-20b were synthesized. These compounds were evaluated for cytotoxic activity against NCI-60 DTP human tumor cell line screen at 10µMconcentration. N9-[(Z-4'-chloro-2'-butenyl-1'-yl]-2,6-dichloropurine(5a, N9-[4'-chloro-2'-butynyl-1'-yl]-2,6-dichloropurine(10a, N9-[(E-2',3'-dibromo-4'-chloro-2'-butenyl-1'-yl]-6-methoxypurine(14and N9-[4'-chloro-2'-butynyl-1'-yl]-6-(4-methoxyphenyl-purine(19exhibited highly potent cytotoxic activity with GI50 values in the 1–5 µM range for most human tumor cell lines. Other compounds exhibited moderate activity.

  5. Design, Synthesis and Cytotoxic Activities of Novel Aliphatic Amino-Substituted Flavonoids

    Directory of Open Access Journals (Sweden)

    Guannan Liu

    2013-11-01

    Full Text Available A series of flavonoids 9a–f, 13b, 13d, 13e and 14a–f bearing diverse aliphatic amino moieties were designed, synthesized and evaluated for their cytotoxic activities against the ECA-109, A-549, HL-60, and PC-3 cancer cell lines. Most of the compounds exhibited moderate to good activities. The structure-activity relationships were studied, revealing that the chalcone skeleton is the most preferable for cytotoxic activities. Chalcone 9d was the most promising compound due to its high potency against the examined cancer cell lines (its IC50 values against ECA-109, A549, HL-60 and PC-3 cells were 1.0, 1.5, 0.96 and 3.9 μM, respectively.

  6. Antibacterial and Cytotoxic Activities of Acacia nilotica Lam ...

    African Journals Online (AJOL)

    Erah

    that had maximum bactericidal activity against all the tested isolates, but showed < 30 % host cell cytotoxicity. Conclusion: The lysate of Acacia nilotica ... cytotoxic effects on human cells. EXPERIMENTAL. Plant material. Acacia nilotica Lam .... a detergent that permeabilizes eukaryotic cells and results in HBMEC damage.

  7. Cytotoxic Meroterpenoids with Rare Skeletons from Psidium guajava Cultivated in Temperate Zone

    Science.gov (United States)

    Qin, Xu-Jie; Yan, Huan; Ni, Wei; Yu, Mu-Yuan; Khan, Afsar; Liu, Hui; Zhang, Hong-Xia; He, Li; Hao, Xiao-Jiang; di, Ying-Tong; Liu, Hai-Yang

    2016-09-01

    Three new meroterpenoids, guajavadials A-C (1-3), were isolated from Psidium guajava cultivated in temperate zone. Their structures were established by extensive spectroscopic evidence and electronic circular dichroism (ECD) calculations. Guajavadial A (1) represents a novel skeleton of the 3,5-diformylbenzyl phloroglucinol-coupled monoterpenoid, while guajavadials B (2) and C (3) are new adducts of the 3,5-diformylbenzyl phloroglucinol and a sesquiterpene with different coupling models. The plausible biosynthetic pathways as well as antimicrobial and cytotoxic activities of these meroterpenoids are also discussed. All these isolates exhibited moderate cytotoxicities against five human cancer cell lines, with 3 being most effective with an IC50 value of 3.54 μM toward SMMC-7721 cell lines.

  8. Benzimidazole condensed ring systems 10 (1). Synthesis and cytotoxic activity of some pyrido[1,2-a]benzimidazoles.

    Science.gov (United States)

    Badawey, E S; Kappe, T

    1995-01-01

    As a part of research project on the synthesis of a number of pyrido[1,2-a]benzimidazole derivatives with possible antineoplastic activity and as a result of the interesting antineoplastic activity recorded for one such compounds (NSC 649900), some new pyrido[1,2-a]benzimidazoles were prepared and evaluated for such activity. Compound (11, NSC 660334) exhibited a moderate in vitro antineoplastic activity especially against most of the leukemia cell lines, while compound (10, VM30309) showed a good cytotoxic activity against Artina salina larvae (IC50 = 1.75 micrograms/ml).

  9. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts.

    Science.gov (United States)

    Bigović, Dubravka; Savikin, Katarina; Janković, Teodora; Menković, Nebojsa; Zdunić, Gordana; Stanojković, Tatjana; Djurić, Zorica

    2011-06-01

    Flowers of Helichrysum plicatum were extracted under different experimental conditions, and their antioxidant activity was determined by DPPH radical scavenging assay. Extracts obtained with higher concentration of ethyl acetate (90% or 100%) were found to contain the greatest amount of total phenolics (> 250 mg gallic acid equivalents/g of dried extract), and high correlation between total phenolic content and antiradical activity was observed (r = -0.79). Based on the total phenolic content and antiradical activity, some extracts were selected for investigation of cytotoxic activity toward PC3, HeLa and K562 human cancer cell lines in vitro. All tested extracts exhibited moderate activity against HeLa cells (41.9-42.1 microg/mL), whereas the extract obtained with 100% ethyl acetate was the most active against K562 and PC3 cell lines (25.9 and 39.2 microg/mL, respectively). Statistical analysis revealed significant correlation between total phenolic content and cytotoxic activity against PC3 and K562 cells. HPLC identification of phenolic compounds from the extracts indicated the presence of apigenin, naringenin and kaempferol as free aglycones, and glycosides of apigenin, naringenin, quercetin and kaempferol. Among aglycones, kaempferol displayed moderate cytostatic activity against all cell lines (24.8-64.7 microM).

  10. Cytotoxic Effect of Ethanolic Extract of Sarang Semut (Myrmecodia pendens on HeLa Cervix Cancer Cell Line In Vitro Experimental Study

    Directory of Open Access Journals (Sweden)

    Dina Fatmawati

    2011-12-01

    Design and Method: The method was quasi experimental with post test only non equivalent control group design. HeLa cell was divided into two groups. The first group as positive control with doxorubicin, second group as treatment with ethanolic extract of sarang semut at various concentrations. Ethanolic extract of sarang semut concentrations used were 3,91 μg/ml; 7,81 μg/ml; 15,63 μg/ml; 31,25 μg/ml; 62,50 μg/ml; 125 μg/ml; 250 μg/ml; 500 μg/ml; 1000 μg/ml. Cytotoxic effect was evaluated by direct counting method with tryphan blue dye then using probit regression analysis to find IC50 value. Result: Inhibitory concentration 50 (IC50 value ethanol extract of sarang semut was 33,28 μg/ml. Ethanol extract of sarang semut had a cytotoxicity effect categorized as the moderately active (20 ìg/ml< IC50< 100ìg/ ml. Inhibitory concentration 50 (IC50 value doxorubicin was 5,56 μg/ml. Cytotoxicity effect of doxorubisin higher than cytotoxicity effect of ethanolic extract of sarang semut. Conclusion: Ethanolic extract of sarang semut (Myrmecodia pendens had a cytotoxic effect categorized as the moderately active on HeLa cell (Sains Medika, 3(2:112-120.

  11. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves.

    Science.gov (United States)

    Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, Sm Anisul; Mia, Akbar Ali

    2013-05-12

    showed maximum cytotoxicity, whereas minimum cytotoxicity was observed for the chloroform fraction. The present study revealed that the ethyl acetate fraction of the C. bonducella leaves has significant antidiarrhoeal properties. The methanol extract and other three fractions of the C. bonducella leaves possess potent antibacterial activities along with moderate cytotoxicities that may lead to new drug development.

  12. IgM-mediated opsonization and cytotoxicity in the shark.

    Science.gov (United States)

    McKinney, E C; Flajnik, M F

    1997-02-01

    Two types of cytotoxic reactions have been observed using cells from the nurse shark: spontaneous cytotoxicity mediated by cells of the macrophage lineage and antibody-dependent killing carried out by a different effector cell population. Previous data showed that removal of phagocytic cells using iron particles abolished macrophage-mediated killing, but not antibody-dependent reactions. The current study used single cell assays and showed that the effector of antibody-driven reactions was the neutrophil. Surprisingly, the mechanism of killing was shown to be phagocytosis mediated by both 7S and 19S immunoglobulin M (IgM). Reactions proceeded with as little as 0.01 microg of purified 19S or 7S IgM and were complete within 4-6 h. In contrast, purified immunoglobulin did not adsorb to macrophages and had no effect on target cell binding or cytotoxicity. Pretreatment of cells with cytochalasin D abolished the phagocytic reaction, but not spontaneous cytotoxicity. These data show that antibody-mediated killing results from opsonization and phagocytosis; the mechanism of macrophage killing is currently unknown. In addition, these data show that the shark neutrophil, not the macrophage lineage, carries a receptor for Fc mu.

  13. Chemical composition, antimicrobial, antioxidant and cytotoxic activity of the essential oil from the leaves of Acanthopanax leucorrhizus (Oliv.) Harms.

    Science.gov (United States)

    Hu, Haobin; Zheng, Xudong; Hu, Huaisheng

    2012-09-01

    The leaf essential oil of Acanthopanax leucorrhizus, a widely used medicinal plant, was obtained by hydrodistillation and analyzed by using combination of capillary GC-FID, GC-MS and RI. Fifty-nine components, representing 93.1% of the total oil, were identified in the essential oil and the main components of the oil were β-pinene (7.3%), linalool (6.5%), p-cymene (6.3%), β-elemene (3.8%), γ-terpinene (3.7%), spathulenol (3.2%) and cis-sabinene hydrate (3.1%). Furthermore, the in vitro antimicrobial, antioxidant and cytotoxic activities of the essential oil were examined. The test results showed that the essential oil exhibited a broad spectrum of anti-microbial activity against all microorganisms tested. Gram-positive bacteria were more sensitive to the oil than gram-negative bacteria and yeasts. The oil possessed moderate cytotoxicity on human tumor cells with lower IC(50) values of 25.65μg/ml (Hep G2), 28.71μg/ml (Hela), 30.15μg/ml (Bel-7402) and 37.55μg/ml (A-549). The moderate antioxidant activity of the oil was also evaluated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cytotoxicity evaluation of extracts and fractions of five marine sponges from the Persian Gulf and HPLC fingerprint analysis of cytotoxic extracts

    Institute of Scientific and Technical Information of China (English)

    Davood; Mahdian; Milad; Iranshahy; Abolfazl; Shakeri; Azar; Hoseini; Hoda; Yavari; Melika; Nazemi; Mehrdad; Iranshahi

    2015-01-01

    Objective: To screen the cytotoxic effects of some marine sponges extracts on HeLa and PC12 cells.Methods: Five marine sponges including Ircinia echinata(I. echinata), Dysidea avara,Axinella sinoxea, Haliclona tubifera and Haliclona violacea were collected from the Persian Gulf(Hengam Island). The cytotoxic effect of these sponges was evaluated by using MTT assay. The metabolic high performance liquid chromatography fingerprint of I. echinata was also carried out at two wavelengths(254 and 280 nm).Results: Among the sponges tested in this study, the extracts of I. echinata and Dysidea avara possessed the cytotoxic effect on HeLa and PC12 cells. The obtained fractions from high performance liquid chromatography were evaluated for their cytotoxic properties against the cell lines. The isolated fractions did not show significant cytotoxic properties.Conclusions: I. echinata could be considered as a potential extract for chemotherapy.Further investigation is needed to determine the accuracy of mechanism.

  15. Cytotoxicity evaluation of extracts and fractions of ifve marine sponges from the Persian Gulf and HPLC ifngerprint analysis of cytotoxic extracts

    Institute of Scientific and Technical Information of China (English)

    Davood Mahdian; Milad Iranshahy; Abolfazl Shakeri; Azar Hoseini; Hoda Yavari; Melika Nazemi; Mehrdad Iranshahi

    2015-01-01

    Objective:To screen the cytotoxic effects of some marine sponges extracts on HeLa and PC12 cells. Methods: Five marine sponges including Ircinia echinata (I. echinata), Dysidea avara, Axinella sinoxea, Haliclona tubifera and Haliclona violacea were collected from the Persian Gulf (Hengam Island). The cytotoxic effect of these sponges was evaluated by using MTT assay. The metabolic high performance liquid chromatography fingerprint of I. echinata was also carried out at two wavelengths (254 and 280 nm). Results:Among the sponges tested in this study, the extracts of I. echinata and Dysidea avara possessed the cytotoxic effect on HeLa and PC12 cells. The obtained fractions from high performance liquid chromatography were evaluated for their cytotoxic properties against the cell lines. The isolated fractions did not show significant cytotoxic properties. Conclusions:I. echinata could be considered as a potential extract for chemotherapy. Further investigation is needed to determine the accuracy of mechanism.

  16. Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

    International Nuclear Information System (INIS)

    Gan, Lin Ling; Fang, Bo; Zhou, Cheng He

    2010-01-01

    A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1- yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to 25 μg/mL, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)- 1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: 25 μM, 50 μM and 100 μM in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole

  17. Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lin Ling; Fang, Bo; Zhou, Cheng He [Southwest University, Chongqing (China)

    2010-12-15

    A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1- yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to 25 μg/mL, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)- 1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: 25 μM, 50 μM and 100 μM in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole.

  18. Cytotoxic chemotherapy in the treatment of advanced renal cell carcinoma in the era of targeted therapy.

    Science.gov (United States)

    Diamond, E; Molina, A M; Carbonaro, M; Akhtar, N H; Giannakakou, P; Tagawa, S T; Nanus, D M

    2015-12-01

    Renal cell carcinoma (RCC) is a heterogeneous disease with regards to histology, progression, and response to treatment. Cytotoxic chemotherapy has been extensively studied in metastatic RCC (mRCC). Responses in most studies are modest and the mechanisms of resistance remain poorly understood. Targeted therapies have significantly improved outcomes in mRCC; however, most patients eventually relapse and die of their disease. Early clinical data suggest that combinations of chemotherapy and targeted agents are clinically active and are well tolerated. We reviewed the available literature for published clinical trials incorporating traditional chemotherapeutic agents in the treatment of mRCC. These papers were identified through a Medline search and were included if they employed at least one chemotherapeutic agent in the treatment of mRCC. The literature was also reviewed for information regarding mechanisms of chemotherapy resistance. The data regarding the use of cytotoxic chemotherapy in mRCC consist of small, non-randomized phase I and II studies. The major response proportions with single agent chemotherapies are low but combination regimens either with other cytotoxic agents, cytokines, or targeted agents have demonstrated moderate activity. Disparate trial designs and lack of head to head clinical trials make it difficult to compare the efficacy of chemotherapy with that of immunotherapy or targeted agents. Chemotherapy is particularly useful in patients with collecting duct histology and predominantly sarcomatoid differentiation. Chemotherapy resistance may be mediated by overexpression of p-glycoprotein efflux pumps and the dysregulation of the microtubule-hypoxia inducible factor signaling axis. The role of cytotoxic chemotherapy in the treatment for clear cell RCC remains poorly defined. Cytotoxic chemotherapy is considered a standard of care in patients with mRCC with predominantly sarcomatoid differentiation and collecting duct RCC variants (Motzer et al

  19. Cytotoxic diterpenoids from Jatropha curcas cv. nigroviensrugosus CY Yang Roots.

    Science.gov (United States)

    Liu, JieQing; Yang, YuanFeng; Xia, JianJun; Li, XuYang; Li, ZhongRong; Zhou, Lin; Qiu, MingHua

    2015-09-01

    An investigation of phytochemicals from the roots of Jatropha curcas cv. nigroviensrugosus resulted in the isolation of twenty diterpenoids, including lathyranlactone, an unusual diterpenoid lactone possessing a 5/13/3 tricyclic skeleton, jatrocurcasenones A-E and jatrophodiones B-E, as well as 10 known analogues. All isolates were evaluated for cytotoxicity against the HL-60, SMMC-772, A-549, MCF-7 and SW480 human tumor cell lines using the MTS viability assay. Four of the known analogues showed cytotoxic activity in these cell lines, with IC50 values ranging from 2.0 to 23.0 μM. Moreover, the assessment of their cytotoxic structure-activity relationships showed the epoxy ring between C-5 and C-6 and the hydroxyl group at C-2 were the key functionalities for cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cytotoxic Metabolites from the Soil-Derived Fungus Exophiala Pisciphila

    Directory of Open Access Journals (Sweden)

    Xiu-Kun Lin

    2011-03-01

    Full Text Available A new polyketide compound 1 and a new naturally occurring chromone derivative 2, along with two known indole alkaloids 3–4 were characterized from the ethyl acetate extract of a soil-derived fungal strain, Exophiala pisciphila PHF-9. The structures of compounds 1–4 were established by detailed spectroscopic analysis and comparison with literature data. The absolute configuration of 1 was determined by a modified Mosher’s method. Compound 1 exhibited moderate cytotoxicity against A-549, Hela, PANC-28 and BEL-7402 cell lines.

  1. Evaluation of morning glory (Jacquemontia tamnifolia (L.) Griseb) leaves for antioxidant, antinociceptive, anticoagulant and cytotoxic activities.

    Science.gov (United States)

    Hossain, Mohammad Shahadat; Reza, A S M Ali; Rahaman, Md Masudur; Nasrin, Mst Samima; Rahat, Mohammed Rasib Uddin; Islam, Md Rabiul; Uddin, Md Josim; Rahman, Md Atiar

    2018-01-05

    The present study was planned to investigate the phytochemical, antioxidant, antinociceptive, anticoagulant and cytotoxic activities of the Jacquemontia tamnifolia (L.) Griseb leaf methanol extract (MExJT) in the laboratory using both in vitro and in vivo methods. Phytochemical values, namely, total phenolic and flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect and FeCl3 reducing power effects, were studied by established methods. In vivo antinociceptive activity was performed by acidic acid-induced writhing test and formalin-induced pain test on Swiss albino mice at doses of 125, 250 and 500 mg/kg body weight. The clot lysis and brine shrimp lethality bioassay in vitro were used to evaluate the thrombolytic and cytotoxic activities of the plant extract, respectively. Phytochemical screening illustrates the presence of tannins, saponins, flavonoids, gums and carbohydrates, steroids, alkaloids and reducing sugars in the extract. The results showed the total phenolic content (146.33 g gallic acid equivalents/100 g extract) and total flavonoid content (133.33 g quercetin/100 g). Significant (pacetic acid-induced writhing test and formalin-induced pain models in Swiss albino mice with doses of 125, 250 and 500 mg/kg body weight. Significant (panalgesic activity. The results also demonstrate that MExJT has moderate thrombolytic and lower cytotoxic properties that may warrant further exploration.

  2. Evaluation of the Cytotoxicity of Structurally Correlated p-Menthane Derivatives

    Directory of Open Access Journals (Sweden)

    Luciana Nalone Andrade

    2015-07-01

    Full Text Available Compounds isolated from essential oils play an important role in the prevention and treatment of cancer. Monoterpenes are natural products, and the principal constituents of many essential oils. The aim of this study was to investigate the cytotoxic potential of p-menthane derivatives. Additionally, analogues of perillyl alcohol, a monoterpene with known anticancer activity, were evaluated to identify the molecular characteristics which contribute to their cytotoxicity, which was tested against OVCAR-8, HCT-116, and SF-295 human tumor cell lines, using the MTT assay. The results of this study showed that (−-perillaldehyde 8,9-epoxide exhibited the highest percentage inhibition of cell proliferation (GI = 96.32%–99.89%. Perillyl alcohol exhibited high cytotoxic activity (90.92%–95.82%, while (+-limonene 1,2-epoxide (GI = 58.48%–93.10%, (−-perillaldehyde (GI = 59.28%–83.03%, and (−-8-hydroxycarvotanacetone (GI = 61.59%–94.01% showed intermediate activity. All of the compounds tested were less cytotoxic than perillyl alcohol, except (−-perillaldehyde 8,9-epoxide (IC50 = 1.75–1.03 µL/mg. In general, replacement of C-C double bonds by epoxide groups in addition to the aldehyde group increases cytotoxicity. Furthermore, stereochemistry seems to play an important role in cytotoxicity. We have demonstrated the cytotoxic influence of chemical substituents on the p-menthane structure, and analogues of perillyl alcohol.

  3. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are cytotoxic...

  4. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.

    2015-12-22

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  5. Cytotoxicity and intracellular dissolution of nickel nanowires.

    Science.gov (United States)

    Perez, Jose E; Contreras, Maria F; Vilanova, Enrique; Felix, Laura P; Margineanu, Michael B; Luongo, Giovanni; Porter, Alexandra E; Dunlop, Iain E; Ravasi, Timothy; Kosel, Jürgen

    2016-09-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis, and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage, and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 μm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  6. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.; Contreras, Maria F.; Vidal, Enrique Vilanova; Felix Servin, Laura P.; Margineanu, Michael B.; Luongo, Giovanni; Porter, Alexandra E.; Dunlop, Iain E.; Ravasi, Timothy; Kosel, Jü rgen

    2015-01-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  7. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin.

    Science.gov (United States)

    Bach, Sandra M; Fortuna, Mario A; Attarian, Rodgoun; de Trimarco, Juliana T; Catalán, César A N; Av-Gay, Yossef; Bach, Horacio

    2011-02-01

    The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.

  8. Cytotoxic Triterpenoids from the Stalks of Microtropis triflora.

    Science.gov (United States)

    Zhang, Xiao-Wei; Wang, Kui-Wu; Zhou, Man-Qing

    2017-07-01

    Bioassay-guided phytochemical investigation of the stalks of Microtropis triflora Merr. & F.L. Freeman led to the isolation of ten triterpenes 1 - 10, including one novel compound 3,24-epoxy-2α,24-dihydroxyfriedelan-29-oic acid (1). Their chemical structures were identified on the basis of spectroscopic analysis, including HR-ESI mass spectrometry, 1D- and 2D-NMR ( 1 H, 13 C, 1 H, 1 H-COSY, HSQC, HMBC, and NOESY), and by comparison with the data reported. The cytotoxicities of compounds 1 - 10 against a panel of cultured human tumor cell lines (Bcap37, SMMC7721, HeLa, CNE) were evaluated. The new compound 1 showed moderate anti-tumor activities with IC 50 values of 39.22, 29.24, 23.28, and 68.81 μm/ml, respectively. These results might be helpful for explaining the use of M. triflora in traditional medicine. Triterpenes are characteristic of Microtropis genus and could be useful as potential chemotaxonomic markers. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. Cytotoxic triterpenoid saponins from Clematis tangutica.

    Science.gov (United States)

    Zhao, Min; Da-Wa, Zhuo-Ma; Guo, Da-Le; Fang, Dong-Mei; Chen, Xiao-Zhen; Xu, Hong-Xi; Gu, Yu-Cheng; Xia, Bing; Chen, Lei; Ding, Li-Sheng; Zhou, Yan

    2016-10-01

    Eight previously undescribed oleanane-type triterpenoid saponins, clematangoticosides A-H, together with eight known saponins, were isolated from the whole plants of Clematis tangutica (Maxim.) Korsh. Their structures were elucidated by extensive spectroscopic analysis, in combination with chemical methods (acid hydrolysis and mild alkaline hydrolysis). Clematangoticosides D-G were found to be unusual 23, 28-bidesmosidic glycosides. The cytotoxic activities of all of the isolated saponins were evaluated against the four human cancer cell lines SGC-7901, HepG2, HL-60 and U251MG. Clematoside S, sapindoside B, kalopanax saponin A, and koelreuteria saponin A exhibited cytotoxicity against all of the test cancer cell lines with IC50 values in the range of 1.88-27.20 μM, while clematangoticoside D and F showed selective cytotoxicity against SGC-7901 with IC50 values of 24.22 and 21.35 μM, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China.

    Science.gov (United States)

    Sun, Zhenliang; Wang, Huiyan; Wang, Jing; Zhou, Lianming; Yang, Peiming

    2014-01-01

    The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oil-induced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 µg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources.

  11. Analysis of the Effects of Cell Stress and Cytotoxicity on In ...

    Science.gov (United States)

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a diverse battery of 821 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to better distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress / cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least two viability/cytotoxicity assays within the concentration range tested (typically up to 100 M) activated a median of 12% of assay endpoints while those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (e.g., receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering of specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a g

  12. Evaluation of selected Indian traditional folk medicinal plants against Mycobacterium tuberculosis with antioxidant and cytotoxicity study.

    Directory of Open Access Journals (Sweden)

    Tawde K. V

    2012-10-01

    Full Text Available Objective: To evaluate different solvent extracts of selected Indian traditional medicinal plant against Mycobacterium tuberculosis, its antioxidant potential and cytotoxicity. Methods: Acacia catechu (L. Willd (Root extract and Ailanthus excelsa Roxb., leaf extracts of Aegle marmelos Corr., Andrographis paniculata Nees. and Datura metel L. were sequentially extracted in water, ethanol, chloroform and hexane and evaluated for their anti-tuberculosis (TB activity against Mycobacterium tuberculosis using agar diffusion assay. The zone of inhibition ( at 20 and 40 mg/ ml was measured and MIC were calculated. The results were compared with Rifampicin as a standard anti TB drug. The extracts were also evaluated for DPPH and OH radical scavenging activities to understand their antioxidant potential. MTT based cytotoxicity assay was used for evaluating cytotoxicity of the selected samples against Chang liver cells. Results: The selected botanicals were sequentially extracted in water, ethanol, chloroform and hexane and tested for growth inhibition of M. tuberculosi. The hexane extract of A. catechu root and ethanol extract of A. paniculata leaf showed promising activity against M. tuberculosis while remaining extracts showed moderate anti TB activity. The samples were found to possess considerable DPPH and OH radical scavenging activities with no demonstrable cytotoxicity against Chang liver cells. Conclusions: Five traditional medicinal plants were selected for the present study. The selection of medicinal plants was based on their traditional usage for the treatment of tuberculosis, asthma and chronic respiratory diseases. Herein we report for the first time, the anti TB activity of root extracts of Acacia catechu and Ailanthus excelsa while leaf extract of Andrographis paniculata, Aegle marmelos and Datura metel. The study holds importance in the midst of multi drug resistance (MDR crisis in the TB management, since it unravels the scientific basis

  13. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  14. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr

    2005-05-15

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  15. Structure-cytotoxicity relationships for dietary flavonoids

    DEFF Research Database (Denmark)

    Breinholt, V.; Dragsted, L.O.

    1998-01-01

    The cytotoxicity of a large series of dietary flavonoids was tested in a non-tumorigenic mouse and two human cancer cell lines, using the neutral red dye exclusion assay. All compounds tested exhibited a concentration-dependent cytotoxic action in the employed cell lines. The relative cytotoxicity...... of the flavonoids, however, Tvas found to vary greatly among the different cell Lines. With a few exceptions, the investigated flavonoids were more cytotoxic to the human cancer cell lines, than the mouse cell line. The differences in cytotoxicity were accounted for in part by differences in cellular uptake...... and metabolic capacity among the different cell types. In 3T3 cells fairly consistent structure-cytotoxicity relationships were found. The most cytotoxic structures tested in 3T3 cells were flavonoids with adjacent 3',4' hydroxy groups on the B-ring, such as luteolin, quercetin, myricetin, fisetin, eriodictyol...

  16. In vitro antileishmanial and cytotoxicity activities of essential oils from Haplophyllum tuberculatum A. Juss leaves, stems and aerial parts.

    Science.gov (United States)

    Hamdi, Assia; Bero, Joanne; Beaufay, Claire; Flamini, Guido; Marzouk, Zohra; Vander Heyden, Yvan; Quetin-Leclercq, Joelle

    2018-02-14

    Plants used for traditional medicine produce diverse and complex secondary metabolites exhibiting various medicinal properties. The medicinal plant Haplophyllum tuberculatum is used by native people against malaria and parasitic infections. In this study and in order to contribute for the search of new natural drugs for leishmaniasis, the essential oils of H. tuberculatum leaves, stems and aerial parts (leaves+stems) collected in two different periods, 2013 and 2015, and their components by GC/FID and GC/MS analyses were investigated. Those collected in 2013 were also re-analyzed two years later. The extracted oils were screened in vitro for anti-leishmanial activity on Leishmania mexicana mexicana (L.m.m.) promastigotes and cytotoxicity on the Chinese Hamster Ovary (CHO) cell line. Limonene (1.5 - 8%), its isomers (R- (+)-limonene and S-(-)-limonene), linalool and octanol were also tested. Results showed that the chemical composition varied according to the year of collection. Though major compounds remain almost the same, qualitative and quantitative variations in the composition of the EOs can be observed between the two years of collection, with some minor compounds identified only in one type of samples. Variation in the composition were also observed in the re-analyzed volatile oils, showing stability concerns. The essential oils and R-(+)-limonene showed moderate anti-leishmanial activity. Their IC 50 range from 6.48 to 50.28 μg/ml. Cytotoxicity assays for theses volatile extracts, R- (+)-limonene and S- (-)-limonene on CHO cells showed relatively potent cytotoxicity with a selectivity index <10. Their CC 50 range from 27.79 to 82.56 μg/ml. The findings of the present study demonstrated that H. tuberculatum might not be considered as a natural source for production of new anti-leishmanial agents without further analyzing its eventual in vivo toxicity as well as that of major pure compounds.

  17. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders.

    Science.gov (United States)

    Johnson, Tyler A; Sohn, Johann; Inman, Wayne D; Bjeldanes, Leonard F; Rayburn, Keith

    2013-01-15

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects greater than or equal to 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of stinging nettle may be more effective than traditional tinctures (water, methanol, ethanol) in clinical evaluations for the treatment of inflammatory disorders especially arthritis. A chemical investigation into the lipophilic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. Published by Elsevier GmbH.

  18. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders

    Science.gov (United States)

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith

    2012-01-01

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  19. Synthesis of Chromonylthiazolidines and Their Cytotoxicity to Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Hoang Le Tuan Anh

    2015-01-01

    Full Text Available Nine new chromonylthiazolidine derivatives were successfully semi-synthesized from paeonol. All of the compounds, including starting materials, the intermediate compound and products, were evaluated for their cytotoxic effects toward eight human cancer cell lines. The synthesized chromonylthiazolidines displayed weak cytotoxic effects against the tested cancer cell lines, but selective cytotoxic effects were observed. Compounds 3a and 3b showed the most selective cytotoxic effects against human epidermoid carcinoma (IC50 44.1 ± 3.6 μg/mL and breast cancer (IC50 32.8 ± 1.4 μg/mL cell lines, respectively. The results suggest that chromoylthiazolidines are potential low-cost, and selective anticancer agents.

  20. Theoretical cytotoxicity models for combined exposure of cells to different radiations

    International Nuclear Information System (INIS)

    Scott, B.R.

    1981-01-01

    Theoretical cytotoxicity models for predicting cell survival after sequential or simultaneous exposure of cells to high and low linear energy transfer (LET) radiation are discussed. Major findings are that (1) ordering of sequential exposures can influence the level of cell killing achieved; (2) synergism is unimportant at low doses; (3) effects at very low doses should be additive; (4) use of the conventional relative biological effectiveness approach for predicting combined effects of different radiations is unnecessary at very low doses and can lead to overestimation of risk at moderate and high doses

  1. Microwave assisted synthesis of some novel acetazolamide cyclocondensed 1,2,3,4-tetrahydropyrimidines as a potent antimicrobial and cytotoxic agents

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elumalai

    2014-03-01

    Full Text Available A new series of some novel acetazolamide cyclocondensed 1,2,3,4-tetrahydropyrimidines was prepared by reacting of N-{[5-(acetylamino-1,3,4-thiadiazol-2-yl]sulfonyl}-3-oxobutanamide with urea/thiourea and appropriate aldehyde in the presence of catalytic amount of laboratory made p-toluenesulfonic acid as an efficient catalyst. Confirmation of the chemical structure of the synthesized compounds (12a–n was substantiated by TLC, different spectral data IR, 1H NMR, Mass spectra and elemental analysis were done. The synthesized compounds were evaluated for in-vitro antimicrobial and cytotoxicity against Bacillus subtilis, Escherichia coli and Vero cells. The titled compounds exhibited weak, moderate, or high in-vitro antimicrobial and cytotoxicity. Compounds 12c, 12d, 12g and 12h, exhibited potential antimicrobial and in-vitro cytotoxicity.

  2. In vitro determination of cytotoxic drug response in ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Csóka, K; Tholander, B; Gerdin, E; de la Torre, M; Larsson, R; Nygren, P

    1997-09-17

    The fluorometric microculture cytotoxicity assay (FMCA), a short-term in vitro assay based on the concept of total tumor cell kill, was used for testing the cytotoxic drug sensitivity of tumor cells from patients with ovarian carcinoma. A total of 125 fresh specimens was obtained, 98 (78%) of which were analyzed successfully. Data from 45 patients were available for clinical correlations. The FMCA appeared to yield clinically relevant cytotoxic drug sensitivity data for ovarian carcinoma as indicated by a comparison with tumor samples obtained from patients with non-Hodgkin's lymphoma or kidney carcinoma. Considering the most active single agent in vitro actually given in vivo, and using the median drug activity among all ovarian carcinoma samples as a cut-off, the sensitivity of the assay and its specificity were 75 and 52%, respectively. Cross-resistance in vitro was frequently observed between standard drugs but not between standard drugs and Taxol. Ten percent of the specimens showed an extreme resistance for at least 4 of 6 of the drugs investigated.

  3. Suppression of cytotoxic T lymphocytes by carrageenan-activated macrophage-like cells

    International Nuclear Information System (INIS)

    Yung, Y.P.; Cudkowicz, G.

    1978-01-01

    In the presence of 100 μg/ml of carrageenans (CAR), B6D2F 1 responder spleen cells failed to generate antiparent or anti-allogeneic cytotoxic T lymphocytes in vitro, but instead generated suppressor cells. Cultured CAR-treated cells added to mixtures of B6D2F 1 anti-B6 or B6D2F 1 anti-C3H cytotoxic effectors (induced in vitro) and the appropriate 51 Cr-labeled lymphoma targets reduced or abolished cytolysis (measured as 51 Cr release) depending on the ratio of suppressor to effector cells. Cultured spleen cells not exposed to CAR failed to inhibit both types of cytotoxicity. Presuppressor cells were associated with a splenic subpopulation independent of the thymus (i.e., present in spleens of athymic nude mice), were moderately adherent to Sephadex G-10 columns, but were not phagocytic or ''sticky'' to carbonyl iron particles. Activation of such cells by CAR was not prevented by in vitro exposure to 2000 rads of γ-rays before culture, nor facilitated by antigenic stimulation. The matured suppressor cells remained radioresistant and became strongly adherent to Sephadex G-10. The suppressors lacked surface Thy-1 alloantigen detectable by antibody and rabbit complement. Suppressor cell activity was not restricted by the immunologic specificity and major histocompatibility type of effectors

  4. Bioassay-Guided Isolation of Cytotoxic Isocryptoporic Acids from Cryptoporus volvatus

    Directory of Open Access Journals (Sweden)

    Ling-Yun Zhou

    2016-12-01

    Full Text Available The present work constitutes a contribution to the phytochemical investigation of Cryptoporus volvatus aiming to search for effective cytotoxic constituents against tumor cell lines in vivo. Bioassay-guided separation of the ethylacetate extract of C. volvatus afforded four new isocryptoporic acid (ICA derivatives, ICA-B trimethyl ester (1, ICA-E (2, ICA-E pentamethyl ester (3, and ICA-G (4, together with nine known cryptoporic acids. These isocryptoporic acids are isomers of the cryptoporic acids with drimenol instead of albicanol as the terpenoid fragment; their structures were elucidated on the basis of spectroscopic evidences (UV, IR, HRMS, and NMR and comparison with literature values. All isolates show certain cytotoxic activities against five tumor cell lines. Among them, compound 4 showed an comparable activity to that of the positive control cis-platin, while other compounds exhibited weak cytotoxic activities.

  5. Cytotoxic Constituents from the Leaves of Zanthoxylum schinifolium

    International Nuclear Information System (INIS)

    Fang, Zhe; Min, Byung Sun; Kim, Ae Kyong; Woo, Mi Hee; Jun, Do Youn; Kim, Young Ho

    2010-01-01

    The roots, stems, pericarps, and seeds of Z. schinifolium were each extracted with MeOH, and the leaves were extracted with 80% MeOH and concentrated. These extracts were examined on MTT for cytotoxicity against Jurkat T cell clone E6.1. The results showed that the leaves extract had the strongest MTT cytotoxicity. The MeOH extract of Z. schinifolium leaves was subsequently fractionated into four parts: methylene chloride, ethyl acetate, n-butanol and water. These fractions were examined on MTT for cytotoxicity. The results showed that the methylene chloride fraction exhibited the strongest MTT cytotoxicity. Chromatographic separation of the methylene chloride and butanol fractions had yielded a quinolin (1), three phenylpropanoids (2, 3, 12), four coumarins (4 ∼ 7), three triterpenoids (8 ∼ 10), an alkaloid (11), an alcohol glucoside (13) and three monoterpene glucosides (14, 15, 16). One of these compounds were identified as new threo-6-amino-5-hydroxy-5-methyl-1,3-oxazinan-4-one (11) together with fifteen known, 3-heptyl-2-methylisoquinolin-1(2H)-one (1), integrifoliodiol (2), cuspidiol (3), bergapten (4), aurapten (5), 8-hydroxy-7-methoxy-chromen-2-one (6), 6,7-dimethoxy-2H-naphthalen-1-one (7), lupeol (8), lupeone (9), β-sitosterol (10), syringin (12), 2-propyl alchol β-D-glucopyranoside (13), vomifoliol-9-O-β-D-glucopyranoside (14), betulalbuside A (15) and cnidioside C (16) on the basis of spectroscopic and chemical evidences. All of the compounds were isolated for the first time from this plant except 5 and 7. In the MTT cytotoxicity assay against Jurkat T cell clone E6.1, IC 50 values of cuspidiol (3) and auraptene (5) were obtained at 7.3 μg/mL and 16.5 μg/mL, respectively

  6. Cytotoxic Constituents from the Leaves of Zanthoxylum schinifolium

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhe; Min, Byung Sun; Kim, Ae Kyong; Woo, Mi Hee [Catholic Univ. of Daegu, Gyeongsan (Korea, Republic of); Jun, Do Youn; Kim, Young Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2010-04-15

    The roots, stems, pericarps, and seeds of Z. schinifolium were each extracted with MeOH, and the leaves were extracted with 80% MeOH and concentrated. These extracts were examined on MTT for cytotoxicity against Jurkat T cell clone E6.1. The results showed that the leaves extract had the strongest MTT cytotoxicity. The MeOH extract of Z. schinifolium leaves was subsequently fractionated into four parts: methylene chloride, ethyl acetate, n-butanol and water. These fractions were examined on MTT for cytotoxicity. The results showed that the methylene chloride fraction exhibited the strongest MTT cytotoxicity. Chromatographic separation of the methylene chloride and butanol fractions had yielded a quinolin (1), three phenylpropanoids (2, 3, 12), four coumarins (4 ∼ 7), three triterpenoids (8 ∼ 10), an alkaloid (11), an alcohol glucoside (13) and three monoterpene glucosides (14, 15, 16). One of these compounds were identified as new threo-6-amino-5-hydroxy-5-methyl-1,3-oxazinan-4-one (11) together with fifteen known, 3-heptyl-2-methylisoquinolin-1(2H)-one (1), integrifoliodiol (2), cuspidiol (3), bergapten (4), aurapten (5), 8-hydroxy-7-methoxy-chromen-2-one (6), 6,7-dimethoxy-2H-naphthalen-1-one (7), lupeol (8), lupeone (9), β-sitosterol (10), syringin (12), 2-propyl alchol β-D-glucopyranoside (13), vomifoliol-9-O-β-D-glucopyranoside (14), betulalbuside A (15) and cnidioside C (16) on the basis of spectroscopic and chemical evidences. All of the compounds were isolated for the first time from this plant except 5 and 7. In the MTT cytotoxicity assay against Jurkat T cell clone E6.1, IC{sub 50} values of cuspidiol (3) and auraptene (5) were obtained at 7.3 μg/mL and 16.5 μg/mL, respectively.

  7. Cytotoxic active constituents of essential oils of Curcuma longa and Curcuma zanthorrhiza.

    Science.gov (United States)

    Schmidt, Erich; Ryabchenko, Boris; Wanner, Juergen; Jäger, Walter; Jirovetz, Leopold

    2015-01-01

    The polar and apolar fractions of Curcuma longa and C. zanthorriza enriched by ar-turmerone, ar-curcumene and xanthorrizol were screened for cytotoxic activity against the HeLa cell line. Actinomycin D and curcumin were used as reference samples, both known for their cytotoxic properties. Amongst all fractions tested, the xanthorrizol fraction (CC50: 26.1 ± 1.9 μM) showed the strongest cytotoxic properties similar to those of curcumin (CC50: 8.1 ± 1.7 μM). Further studies also revealed that the cytotoxic effects of the extracts and pure compounds are caused by apoptosis induction identified by the cleaved form of PARP protein.

  8. A Novel Preparation Method of Two Polymer Dyes with Low Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dongjun Lv

    2017-02-01

    Full Text Available A new preparation method of polymer dyes was developed to improve both the grafting degree of the azo dyes onto O-carboxymethyl chitosan (OMCS and the water solubility of prepared polymer dyes. Firstly, the coupling compound of two azo edible colorants, sunset yellow (SY and allura red (AR, was grafted onto OMCS, and then coupled with their diazonium salt. The chemical structure of prepared polymer dyes was determined by Fourier transform-infrared spectroscopy and 1H-NMR, and the results showed that the two azo dyes were successfully grafted onto OMCS. The grafting degree onto OMCS and the water solubility of polymer dyes were tested, and the results showed that they were both improved as expected. The UV-vis spectra analysis results showed that the prepared polymer dyes showed similar color performance with the original azo dyes. Eventually, the cytotoxicity of prepared polymer dyes was tested and compared with the original azo dyes by a cytotoxicity test on human liver cell lines LO2, and the results showed that their grafting onto OMCS significantly reduced the cytotoxicity.

  9. Conventional and improved cytotoxicity test methods of newly developed biodegradable magnesium alloys

    Science.gov (United States)

    Han, Hyung-Seop; Kim, Hee-Kyoung; Kim, Yu-Chan; Seok, Hyun-Kwang; Kim, Young-Yul

    2015-11-01

    Unique biodegradable property of magnesium has spawned countless studies to develop ideal biodegradable orthopedic implant materials in the last decade. However, due to the rapid pH change and extensive amount of hydrogen gas generated during biocorrosion, it is extremely difficult to determine the accurate cytotoxicity of newly developed magnesium alloys using the existing methods. Herein, we report a new method to accurately determine the cytotoxicity of magnesium alloys with varying corrosion rate while taking in-vivo condition into the consideration. For conventional method, extract quantities of each metal ion were determined using ICP-MS and the result showed that the cytotoxicity due to pH change caused by corrosion affected the cell viability rather than the intrinsic cytotoxicity of magnesium alloy. In physiological environment, pH is regulated and adjusted within normal pH (˜7.4) range by homeostasis. Two new methods using pH buffered extracts were proposed and performed to show that environmental buffering effect of pH, dilution of the extract, and the regulation of eluate surface area must be taken into consideration for accurate cytotoxicity measurement of biodegradable magnesium alloys.

  10. Cytotoxicity of accelerated white MTA and Malaysian white Portland cement on stem cells from human exfoliated deciduous teeth (SHED): An in vitro study.

    Science.gov (United States)

    Ong, Ren Ming; Luddin, Norhayati; Ahmed, Hany Mohamed Aly; Omar, Nor Shamsuria

    2012-12-01

    The aim of this study was to compare the cytotoxicity of accelerated-set white MTA (AWMTA) and accelerated-set Malaysian white PC (AMWPC) on stem cells from human exfoliated deciduous teeth (SHED). The test materials were introduced into paraffin wax moulds after mixing with calcium chloride dihydrate and sterile distilled water. Subsequently, the set cement specimens were sterilized, incubated in a prepared Dulbecco's modified Eagle medium (DMEM) for seven days. The biomarker CD166 was used for characterization of SHED using flow cytometry. The material extracts were diluted at five different concentrations and incubated for 72h with SHED. The cell viability was evaluated using Dimethylthiazol diphenyltetrazolium bromide (MTT) assay, and the data was analysed using Mann-Whitney test (P<0.05). The results showed that AWMTA revealed significantly greater cell viability at 25 and 12.5mg/ml concentrations (P<0.05). Concomitantly, AMWPC exhibited greater cell viability at concentrations <12.5mg/ml and the results were significant at 1.563mg/ml (P<0.05). Both materials demonstrated moderate cytotoxicity at 25mg/ml and slight cytotoxicity at 6.25 and 3.125mg/ml. At 1.563mg/ml, no cytotoxic activity was merely observed with AMWPC. In conclusion, AMWPC exhibited favourable and comparable cell viability to that of AWMTA, and has the potential to be used as an alternative and less costly material in dental applications. Copyright © 2012. Published by Elsevier B.V.

  11. Annona muricata leaves have strongest cytotoxic activity against breast cancer cells

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2014-12-01

    Full Text Available Background Plant-derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. Plants have been the basis of traditional medicine throughout the world for thousands of years and are providing mankind with new remedies. The objective of this study was to determine the cytotoxicity of soursop (Anona muricata Linn leaves and pearl grass (Hedyotis corymbosa (L. Lam. on the hormone-dependent human breast carcinoma Michigan Cancer Foundation-7 (MCF-7 cell line. Methods This study used two types of solvents (water and ethanol in the extraction process and two incubation times (24 hours and 48 hours in the MTT assays to analyze the cytotoxic effects of both plants. Results Preliminary results showed that the ethanolic extract of soursop leaves (SE displayed cytotoxic effects against MCF-7 on 24- and 48-hour incubation times with IC50 values of 88.788 ìg/ml and 14.678 mg/ml, respectively. Ethanolic pearl grass extract (PE showed similar results, with IC50 values of 65.011 mg/ml on 24-hour incubation time and 52.329 mg/ml on 48-hour incubation time against MCF-7 cell line. However, the water extract of both plants displayed lower cytotoxic effect against MCF-7 cell line. Conclusion The ethanolic extract of both plants displayed cytotoxic effect against MCF-7. Soursop (Anona muricata Linn leaves have the strongest cytotoxic activity against MCF-7 breast cancer cell line.

  12. Annona muricata leaves have strongest cytotoxic activity against breast cancer cells

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-12-01

    Full Text Available BACKGROUND Plant-derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. Plants have been the basis of traditional medicine throughout the world for thousands of years and are providing mankind with new remedies. The objective of this study was to determine the cytotoxicity of soursop (Anona muricata Linn leaves and pearl grass (Hedyotis corymbosa (L. Lam. on the hormone-dependent human breast carcinoma Michigan Cancer Foundation-7 (MCF-7 cell line. METHODS This study used two types of solvents (water and ethanol in the extraction process and two incubation times (24 hours and 48 hours in the MTT assays to analyze the cytotoxic effects of both plants. RESULTS Preliminary results showed that the ethanolic extract of soursop leaves (SE displayed cytotoxic effects against MCF-7 on 24- and 48-hour incubation times with IC50 values of 88.788 μg/ml and 14.678 μg/ml, respectively. Ethanolic pearl grass extract (PE showed similar results, with IC50 values of 65.011 μg/ ml on 24-hour incubation time and 52.329 μg/ml on 48-hour incubation time against MCF-7 cell line. However, the water extract of both plants displayed lower cytotoxic effect against MCF-7 cell line. CONCLUSION The ethanolic extract of both plants displayed cytotoxic effect against MCF-7. Soursop (Anona muricata Linn leaves have the strongest cytotoxic activity against MCF-7 breast cancer cell line.

  13. Oxidative Mechanisms of Monocyte-Mediated Cytotoxicity

    Science.gov (United States)

    Weiss, Stephen J.; Lobuglio, Albert F.; Kessler, Howard B.

    1980-01-01

    Human monocytes stimulated with phorbol myristate acetate were able to rapidly destroy autologous erythrocyte targets. Monocyte-mediated cytotoxicity was related to phorbol myristate acetate concentration and monocyte number. Purified preparations of lymphocytes were incapable of mediating erythrocyte lysis in this system. The ability of phorbol myristate acetate-stimulated monocytes to lyse erythrocyte targets was markedly impaired by catalase or superoxide dismutase but not by heat-inactivated enzymes or albumin. Despite a simultaneous requirement for superoxide anion and hydrogen peroxide in the cytotoxic event, a variety of hydroxyl radical and singlet oxygen scavengers did not effect cytolysis. However, tryptophan significantly inhibited cytotoxicity. The myeloperoxidase inhibitor cyanide enhanced erythrocyte destruction, whereas azide reduced it modestly. The inability of cyanide to reduce cytotoxicity coupled with the protective effect of superoxide dismutase suggests that cytotoxicity is independent of the classic myeloperoxidase system. We conclude that monocytes, stimulated with phorbol myristate acetate, generate superoxide anion and hydrogen peroxide, which together play an integral role in this cytotoxic mechanism.

  14. Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale

    Directory of Open Access Journals (Sweden)

    Sanjib Bhakta

    2012-04-01

    Full Text Available Phenolic compounds are widely distributed in Nature and act as pharmacologically active constituents in many herbal medicines. They have multiple biological properties, most notably antioxidant, antibacterial and cytotoxic activities. In the present study an attempt to correlate the phenolic composition of leaf, flower and wood extracts of Piper imperiale, with antioxidant, antitubercular and cytotoxic activities was undertaken. The total phenol content ranged from 1.98 to 6.94 mg GAE/gDW among ethanolic extracts, and gallic acid, catechin, epicatechin, ferulic acid, resveratrol and quercetin were identified and quantified by HPLC. DPPH and ABTS assays showed high antioxidant activity of the leaf extract (EC50ABTS = 15.6 µg/mL, EC50DPPH = 27.3 µg/mL with EC50 in the same order of magnitude as the hydroxyquinone (EC50ABTS = 10.2 µg/mL, EC50DPPH = 15.7 µg/mL. The flower extract showed strong antimicrobial activity against Mycobacterium tuberculosis H37Rv. All the extracts exhibited dose-dependent cytotoxic effects against MCF-7 cancer cells. This is the first time that a Piper extract has been found to be highly active against M. tuberculosis. This study shows the biological potential of Piper imperiale extracts and gives way to bio-guided studies with well-defined biological activities.

  15. Tumor specific cytotoxicity of arctigenin isolated from herbal plant Arctium lappa L.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Itokazu, Yukiyoshi; Nago, Mariko; Taira, Naoyuki; Saitoh, Seikoh; Oku, Hirosuke

    2012-10-01

    The effectiveness of cancer chemotherapy is often limited by the toxicity to other tissues in the body. Therefore, the identification of non-toxic chemotherapeutics from herbal medicines remains to be an attractive goal to advance cancer treatments. This study evaluated the cytotoxicity profiles of 364 herbal plant extracts, using various cancer and normal cell lines. The screening found occurrence of A549 (human lung adenocarcinoma) specific cytotoxicity in nine species of herbal plants, especially in the extract of Arctium lappa L. Moreover, purification of the selective cytotoxicity in the extract of Arctium lappa L. resulted in the identification of arctigenin as tumor specific agent that showed cytotoxicity to lung cancer (A549), liver cancer (HepG2) and stomach cancer (KATO III) cells, while no cytotoxicity to several normal cell lines. Arctigenin specifically inhibited the proliferation of cancer cells, which might consequently lead to the induction of apoptosis. In conclusion, this study found that arctigenin was one of cancer specific phytochemicals, and in part responsible for the tumor selective cytotoxicity of the herbal medicine.

  16. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity.

    Science.gov (United States)

    Noya, Yoichi; Seki, Koh-Ichi; Asano, Hiroshi; Mai, Yosuke; Horinouchi, Takahiro; Higashi, Tsunehito; Terada, Koji; Hatate, Chizuru; Hoshi, Akimasa; Nepal, Prabha; Horiguchi, Mika; Kuge, Yuji; Miwa, Soichi

    2013-12-06

    -dependent cytotoxicity with an EC50 value of 264.0±16.9μM (n=3). The concentrations of acrolein, MVK and CPO in the CSE were 3368±334, 2429±123 and 392.9±31.8μM (n=4), respectively, which were higher than the cytotoxic concentrations. The cytotoxicity of acrolein and MVK consisted of plasma membrane damage and decreased cell viability: the plasma membrane damage was totally prevented by treatment with an inhibitor of PKC or NOX, whereas the decreased cell viability was only partially prevented by these inhibitors. The cytotoxicity of CPO consisted only of decreased cell viability, which was totally resistant to these inhibitors. These results show that acrolein and MVK are responsible for the acute cytotoxicity of the CSE through PKC/NOX-dependent and -independent mechanisms, whereas CPO is responsible for the delayed cytotoxicity of the CSE through a PKC/NOX-independent mechanism. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, Maria Aparecida M. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Quimica; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Esteves-Souza, Andressa; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica]. E-mail: echevarr@ufrrj.br

    2007-03-15

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC{sub 50} = 166 {mu}M (1), 164 {mu}M (2), 65 {mu}M (6) and 10 {mu}M (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC{sub 50} = 38 {mu}M (3), 33 {mu}M (5), 36 {mu}M (6) and 43 {mu}M (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  18. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    International Nuclear Information System (INIS)

    Maciel, Maria Aparecida M.; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R.; Esteves-Souza, Andressa; Echevarria, Aurea

    2007-01-01

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC 50 = 166 μM (1), 164 μM (2), 65 μM (6) and 10 μM (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC 50 = 38 μM (3), 33 μM (5), 36 μM (6) and 43 μM (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  19. Antidiabetic, cytotoxic, antioxidant and antitrematodal medicinal efficacy of polar and non-polar phytochemicals of Balanites aegyptiaca Del.

    Directory of Open Access Journals (Sweden)

    Hanan Abd Al-Hay Saied Al-Ashaal

    2017-11-01

    Full Text Available Objective: To investigate the biological activities of polar and non-polar extracts of Balanites aegyptiaca fruits. Methods: Antihyperglycemic activity using alloxan induced diabetic rats was evaluated. In vitro cytotoxicity against human carcinoma cell lines activity in addition to antioxidant and antitrematodal effects were investigated. Phytochemicals were determined using chromatographic and spectral analyses including TLC, GC and LC/MS/MS methods. Results: The reduction in blood glucose level reached 64.13%, 69.07% and 77.01% for hexane, chloroform and methanol extract, respectively. Isolated organs and histopathological examination illustrated improvement in treated animal's pancreas which is the master gland in controlling glucose level. The highest in vitro free radical scavenging capacity was achieved by chloroform extract (75.72%. Meanwhile, hexane and methanol extracts exhibited 44.01% and 41.77% scavenging capacity, respectively. Cytotoxic activity against human carcinoma cell lines illustrated efficacious influence against brain, liver, lung, breast and lymphoblastic leukemia cell lines. Brain cell line was the most susceptible cell line by both chloroform and methanol extracts. In vitro antitrematodal effectiveness showed that 100% mortality of Schistosoma worms was induced at the 3rd and 5th days for methanol and chloroform extracts. Meanwhile, both extracts exhibited antifasciolosis activity with LC50 of 63.19 and 55.15 mg/L, respectively. Conclusions: The current results illustrated that Balanites aegyptiaca phytochemicals induced potent hypoglycemic activity and potent to moderate antioxidant and cytotoxic effects. Chloroform and methanol extracts were found to have antitrematodal efficacy against Schistosoma mansoni and Fasciola gigantica hepatic worms.

  20. Cytotoxicity of Phenol Red in Toxicity Assays for Carbon Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2012-09-01

    Full Text Available To explore the novel properties of carbon nanoparticles (CNPs in nanotoxicity assays, the adsorption of phenol red (a pH indicator for culture medium by multi-walled carbon nanotubes (MWNTs and three kinds of carbon blacks (CBs with nanosize, and its effects on cytotoxicity were studied. Results indicated that the phenol red adsorbed and delivered into cells by CBs was responsible for the toxicity to Hela cells in the medium without serum. The cellular uptake of phenol red was verified using 125I-labeling techniques. The size-dependent cytotoxicity of CBs was found to closely correlate to adsorption of phenol red, cellular uptake of phenol red-CB complexes and the amount of phenol red delivered into the cells by CBs. Although the CBs were either nontoxic or slightly toxic, as vehicles of phenol red, they played an essential role in the cytotoxicity induced by phenol red. However, MWNTs showed an intrinsic cytotoxicity independent of phenol red. The implications associated with these findings are discussed.

  1. Cytotoxicity of the dicarboximide fungicides, vinclozolin and iprodione, in rat hepatoma-derived Fa32 cells.

    Science.gov (United States)

    Dierickx, Paul J

    2004-10-01

    Dicarboximide fungicides are widely used to control various fungal species. Their primary action is not known, due to a lack of knowledge concerning the mechanism of action of the dicarboximide group. The cytotoxicities of vinclozolin and iprodione in rat hepatoma-derived Fa32 cells were investigated. Cytotoxicity was measured by neutral red uptake inhibition after treatment for 24 hours. Iprodione was more toxic than vinclozolin. Vinclozolin was less toxic in glutathione-depleted cells than in control cells. This was also true for iprodione at lower concentrations, but iprodione became more toxic at higher concentrations. Both the fungicides increased the endogenous glutathione content by 20% after 1 hour. After 24 hours, the glutathione content was doubled by vinclozolin, but was not affected by iprodione. No effect on glutathione S-transferase activity or reactive oxygen species formation could be observed. Cytochrome P450-dependent ethoxyresorufin-O-deethylase and pentoxyresorufin-O-depentylase activities were moderately activated by iprodione and strongly activated by vinclozolin. A glutathione-related cytochrome P450-dependent metabolic attack of vinclozolin and iprodione could be responsible for their cytotoxicity in Fa32 cells. Further research is needed to fully elucidate these (or other) mechanisms.

  2. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity.

    Science.gov (United States)

    Sadashiva, Maralinganadoddi P; Gowda, Raghavendra; Wu, Xianzhu; Inamdar, Gajanan S; Kuzu, Omer F; Rangappa, Kanchugarakoppal S; Robertson, Gavin P; Gowda, D Channe

    2015-08-01

    Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  4. Subtypes of familial hemophagocytic lymphohistiocytosis in Japan based on genetic and functional analyses of cytotoxic T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Kozo Nagai

    Full Text Available BACKGROUND: Familial hemophagocytic lymphohistiocytosis (FHL is a rare disease of infancy or early childhood. To clarify the incidence and subtypes of FHL in Japan, we performed genetic and functional analyses of cytotoxic T lymphocytes (CTLs in Japanese patients with FHL. DESIGN AND METHODS: Among the Japanese children with hemophagocytic lymphohistiocytosis (HLH registered at our laboratory, those with more than one of the following findings were eligible for study entry under a diagnosis of FHL: positive for known genetic mutations, a family history of HLH, and impaired CTL-mediated cytotoxicity. Mutations of the newly identified causative gene for FHL5, STXBP2, and the cytotoxicity and degranulation activity of CTLs in FHL patients, were analyzed. RESULTS: Among 31 FHL patients who satisfied the above criteria, PRF1 mutation was detected in 17 (FHL2 and UNC13D mutation was in 10 (FHL3. In 2 other patients, 3 novel mutations of STXBP2 gene were confirmed (FHL5. Finally, the remaining 2 were classified as having FHL with unknown genetic mutations. In all FHL patients, CTL-mediated cytotoxicity was low or deficient, and degranulation activity was also low or absent except FHL2 patients. In 2 patients with unknown genetic mutations, the cytotoxicity and degranulation activity of CTLs appeared to be deficient in one patient and moderately impaired in the other. CONCLUSIONS: FHL can be diagnosed and classified on the basis of CTL-mediated cytotoxicity, degranulation activity, and genetic analysis. Based on the data obtained from functional analysis of CTLs, other unknown gene(s responsible for FHL remain to be identified.

  5. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae).

    Science.gov (United States)

    Katoch, Meenu; Singh, Gurpreet; Sharma, Sadhna; Gupta, Nidhi; Sangwan, Payare Lal; Saxena, Ajit Kumar

    2014-02-11

    Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10-100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.

  6. Cytotoxic diterpenes from Scoparia dulcis.

    Science.gov (United States)

    Ahsan, Monira; Islam, S K N; Gray, Alexander I; Stimson, William H

    2003-07-01

    Four new labdane-derived diterpenes, iso-dulcinol (1), 4-epi-scopadulcic acid B (2), dulcidiol (4), and scopanolal (5), together with two known diterpenes, dulcinol/scopadulciol (3) and scopadiol (6), were isolated from the aerial parts of Scoparia dulcis. The structures were determined by extensive NMR studies. The crude extracts as well as the pure diterpenes showed cytotoxicity against a panel of six human stomach cancer cell lines.

  7. Supplementary Material for: Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.; Contreras, Maria F.; Vidal, Enrique Vilanova; Felix Servin, Laura P.; Margineanu, Michael B.; Luongo, Giovanni; Porter, Alexandra E.; Dunlop, Iain E.; Ravasi, Timothy; Kosel, Jü rgen

    2016-01-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis, and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage, and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 μm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  8. In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles ...

    African Journals Online (AJOL)

    The FT-IR spectrum of C. tamala leaf extract showed that the biomolecules were potentially involved in reduction processes. The negative zeta potential of -14 mV indicated that the NPs were stable and discrete while their crystalline nature was confirmed by XRD. Cytotoxicity analysis showed that the TiO2 NPs exhibit a ...

  9. Cytotoxicity of Cerastes cerastes snake venom: Involvement of imbalanced redox status.

    Science.gov (United States)

    Kebir-Chelghoum, Hayet; Laraba-Djebari, Fatima

    2017-09-01

    Envenomation caused by Cerastes cerastes snake venom is characterized by a local and a systemic tissue damage due to myonecrosis, hemorrhage, edema and acute muscle damage. The present study aimed to evaluate the relationship between the pro/anti-oxidants status and the cytotoxicity of C. cerastes snake venom. The in vivo cytotoxicity analysis was undertaken by the injection of C. cerastes venom (48μg/20g body weight) by i.p. route, mice were then sacrificed at 3, 24 and 48h post injection, organs were collected for further analysis. In vitro cytotoxicity analysis was investigated on cultured PBMC, hepatocytes and isolated liver. The obtained results showed a significant cell infiltration characterized by a significant increase of myeloperoxidase (MPO) and eosinoperoxidase (EPO) activities. These results showed also a potent oxidative activity of C. cerastes venom characterized by increased levels of residual nitrites and lipid peroxidation associated with a significant decrease of glutathione and catalase activity in sera and tissues (heart, lungs, liver and kidneys). The in vitro cytotoxicity of C. cerastes venom on PBMC seems to be dose-dependent (IC50 of 21μg/ml/10 6 cells) and correlated with an imbalanced redox status at high doses of venom. However, in the case of cultured hepatocytes, the LDH release and oxidative stress were observed only at high doses of the venom. The obtained results of in vivo study were confirmed by the culture of isolated liver. Therefore, these results suggest that the venom induces a direct cytotoxic effect which alters the membrane integrity causing a leakage of the cellular contents. This cytotoxic effect can lead indirectly to inflammatory response and oxidative stress. These data suggest that an early anti-inflammatory and antioxidant treatment could be useful in the management of envenomed victims. Copyright © 2017. Published by Elsevier B.V.

  10. 7-Chloroquinolinotriazoles: synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies.

    Science.gov (United States)

    Pereira, Guilherme R; Brandão, Geraldo Célio; Arantes, Lucas M; de Oliveira, Háliton A; de Paula, Renata Cristina; do Nascimento, Maria Fernanda A; dos Santos, Fábio M; da Rocha, Ramon K; Lopes, Júlio César D; de Oliveira, Alaíde Braga

    2014-02-12

    Twenty-seven 7-chloroquinolinotriazole derivatives with different substituents in the triazole moiety were synthesized via copper-catalyzed cycloaddition (CuAAC) click chemistry between 4-azido-7-chloroquinoline and several alkynes. All the synthetic compounds were evaluated for their in vitro activity against Plasmodium falciparum (W2) and cytotoxicity to Hep G2A16 cells. All the products disclosed low cytotoxicity (CC50 > 100 μM) and five of them have shown moderate antimalarial activity (IC50 from 9.6 to 40.9 μM). As chloroquine analogs it was expected that these compounds might inhibit the heme polymerization and SAR studies were performed aiming to explain their antimalarial profile. New structural variations can be designed on the basis of the results obtained. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Cytotoxic and phytotoxic actions of Heliotropium strigosum.

    Science.gov (United States)

    Shah, Syed Majid; Hussain, Sajid; Khan, Arif-Ullah; Shah, Azhar-Ul-Haq Ali; Khan, Haroon; Ullah, Farhat; Barkatullah

    2015-05-01

    This study describes the cytotoxic and phytotoxic activities of the crude extract of Heliotropium strigosum and its resultant fractions. In brine shrimp toxicology assays, profound cytotoxicity was displayed by ethyl acetate (LD50 8.3 μg/ml) and chloroform (LD50 8.8 μg/ml) fractions, followed by relatively weak crude methanolic extract of H. strigosum (LD50 909 μg/ml) and n-hexane fraction (LD50 1000 μg/ml). In case of phytotoxicity activity against Lemna acquinoctialis, highest phytotoxic effect was showed by ethyl acetate fraction (LD50 91.0 μg/ml), while chloroform fraction, plant crude extract and n-hexane, respectively, caused 50%, 30.76 ± 1.1% and 30.7 ± 1.1% inhibitory action at maximum concentration used, that is, 1000 μg/ml. These data indicates that H. strigosum exhibits cytotoxic and phytotoxic potential, which explore its use as anticancer and herbicidal medicine. The ethyl acetate and chloroform fractions were more potent for the evaluated toxicity effects, thus recommended for isolation and identification of the active compounds. © The Author(s) 2012.

  12. Identification of a cytotoxic molecule in heat-modified citrus pectin.

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cambier, Pierre; El Bkassiny, Sandy; Tikad, Abdellatif; Dieu, Marc; Vincent, Stéphane P; Van Cutsem, Pierre; Michiels, Carine

    2016-02-10

    Modified forms of citrus pectin possess anticancer properties. However, their mechanism of action and the structural features involved remain unclear. Here, we showed that citrus pectin modified by heat treatment displayed cytotoxic effects in cancer cells. A fractionation approach was used aiming to identify active molecules. Dialysis and ethanol precipitation followed by HPLC analysis evidenced that most of the activity was related to molecules with molecular weight corresponding to low degree of polymerization oligogalacturonic acid. Heat-treatment of galacturonic acid also generated cytotoxic molecules. Furthermore, heat-modified galacturonic acid and heat-fragmented pectin contained the same molecule that induced cell death when isolated by HPLC separation. Mass spectrometry analyses revealed that 4,5-dihydroxy-2-cyclopenten-1-one was one cytotoxic molecule present in heat-treated pectin. Finally, we synthesized the enantiopure (4R,5R)-4,5-dihydroxy-2-cyclopenten-1-one and demonstrated that this molecule was cytotoxic and induced a similar pattern of apoptotic-like features than heat-modified pectin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  14. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.

    Science.gov (United States)

    Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A

    1992-02-01

    In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines

  15. Antimycobacterial, antioxidant and cytotoxic activities of essential oil ...

    African Journals Online (AJOL)

    mL and 495.6 - >2000μg/mL for DPPH and ABTS assay respectively. The cytotoxicity assay showed LC50 ranged between 26.47 to 93.64 μg/mL against Vero cells and 74.29 to 225.40 μg/mL against C3A. The results of this study show that the ...

  16. Cytotoxic Effect and Antioxidant Activity of Bioassay- guided ...

    African Journals Online (AJOL)

    ... were investigated for their in vitro cytotoxic effect against various cancer cell lines using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- ... In MTT assay, fractions 1, 2 and 4 from methanol extract showed the ... plant is used as antitumourigenic, antioxidant,.

  17. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity.

    Science.gov (United States)

    Herter, Sylvia; Birk, Martina C; Klein, Christian; Gerdes, Christian; Umana, Pablo; Bacac, Marina

    2014-03-01

    Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the mechanism of action of therapeutic Abs, we analyzed FcγR receptor-dependent effector functions of monocytes and macrophages triggered by glycoengineered (GE) Abs (having enhanced FcγRIIIa [CD16a] binding affinity) versus their wild-type (WT) counterparts under different experimental conditions. We first defined the precise FcγR repertoire on classical and nonclassical intermediate monocytes--M1 and M2c macrophage populations. We further show that WT and GE Abs display comparable binding and induce similar effector functions (ADCC and ADCP) in the absence of nonspecific, endogenous IgGs. However, in the presence of these IgGs (i.e., in a situation that more closely mimics physiologic conditions), GE Abs display significantly superior binding and promote stronger monocyte and macrophage activity. These data show that in addition to enhancing CD16a-dependent NK cell cytotoxicity, glycoengineering also enhances monocyte and macrophage phagocytic and cytotoxic activities through enhanced binding to CD16a under conditions that more closely resemble the physiologic setting.

  18. Tretinoin-loaded lipid-core nanocapsules overcome the triple-negative breast cancer cell resistance to tretinoin and show synergistic effect on cytotoxicity induced by doxorubicin and 5-fluororacil.

    Science.gov (United States)

    Schultze, Eduarda; Buss, Julieti; Coradini, Karine; Begnini, Karine Rech; Guterres, Silvia S; Collares, Tiago; Beck, Ruy Carlos Ruver; Pohlmann, Adriana R; Seixas, Fabiana Kömmling

    2017-12-01

    Nanostructured drug delivery systems have been extensively studied, mainly for applications in cancer therapy. The advantages of these materials include protection against drug degradation and improvement in both the relative solubility of poorly water soluble drugs as in targeting of therapy, due to the enhanced permeability and retention effect on tumor sites. In this work, we evaluate the antitumor activity of tretinoin-loaded lipid core nanocapsules (TT-LNC) in a tretinoin-resistant breast cancer cell-line, MDA-MB- 231, as well as the synergistic effect of combination of this treatment with 5-FU or DOXO. The inhibition of cell growth was assayed by MTT reduction. Live/Dead assay and DAPI staining evaluated cytotoxicity. Apoptosis was evaluated by Annexin V-PE/7AAD and the effect of chronic exposure was evaluated by colony formation assay. TT-LNC reduced the cell viability even at lower concentrations (1μM) and displayed synergistic effect with 5-FU or DOXO on cytotoxicity and colony formation inhibition. Our work shows a possibility of using nanocapsules to improve the antitumoral activity of TT for its use either alone or in combination with other chemotherapeutic drugs, especially considering the chronic effect. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Sned (Tunisia).

    Science.gov (United States)

    Ahmed, S Ben Hadj; Sghaier, R M; Guesmi, F; Kaabi, B; Mejri, M; Attia, H; Laouini, D; Smaali, I

    2011-07-01

    In this study, we tested 10 essential oils (EOs) extracted from 10 plants issued from Sned region (Tunisia) to evaluate both their leishmanicidal effects against Leishmania major and L. infantum, and their cytotoxicity against murine macrophage cell line RAW 264.7 (ATCC, TIB-71). The antioxidant activity was also monitored by the DDPH method, while the chemical composition of active EO was assessed by GC-MS analysis. The results showed that the EOs obtained from Thymus hirtus sp. algeriensis (rich on monoterpenoids, especially linalool at 17.62% and camphor at 13.82%) is significantly active against both L. major and L. infantum, whereas Ruta chalepensis EO (rich on 2-undecanone at 84.28%) is only active against L. infantum. Both oil extracts showed low cytotoxicity towards murine macrophages. The characteristic ratios (IC₈₀ Raw264.7 cells/IC₅₀ L. infantum and IC₈₀ Raw264.7 cells/IC₅₀ L. major) were, respectively, 2.7 and 1.57 for T. hirtus sp. algeriensis, and 1.34 and 0.19 for R. chalepensis. However, when measuring the antioxidant effects (DDPH method), the two latter EOs presented a moderate 2,2-diphenyl-2-picrylhydrazyl hydrate scavenging effects compared to EOs from Eucaliptus globulus, Pinus halepensis, Pituranthos tortuosus, Rosmarinus officinalis, Tetraclinis articulata or to BHT.

  20. An in vitro based investigation of the cytotoxic effect of water extracts of the Chinese herbal remedy LD on cancer cells

    Directory of Open Access Journals (Sweden)

    Jones Lucy A

    2009-09-01

    Full Text Available Abstract Background Long Dan Xie Gan Wan (LD, a Chinese herbal remedy formulation, is traditionally used to treat a range of conditions, including gall bladder diseases, hepatitis, hyperthyroidism, migraines but it is not used for the management or treatment of cancer. However some of its herbal constituents, specifically Radix bupleuri, Radix scutellariae and Rhizoma alismatis have been shown to inhibit the growth of cancer cells. Thus, the aim of the study was to investigate the impact of LD on cancer cells in vitro. Methods HL60 and HT29 cancer cell lines were exposed to water extracts of LD (1:10, 1:50, 1:100 and/or 1:1000 prepared from a 3 mg/30 ml stock and for both cell lines growth, apoptotic induction, alterations in cell cycle characteristics and genotoxicity were investigated. The specificity of the action of LD on these cancer cell lines was also investigated by determining its effect on human peripheral blood lymphocytes. Preliminary chemical analysis was carried out to identify cytotoxic constituents of LD using HPLC and LCMS. Results LD was significantly cytotoxic to, and induced apoptosis in, both cell lines. Apoptotic induction appeared to be cell cycle independent at all concentrations of LD used (1:10, 1:50 and 1:100 for the HL60 cell lines and at 1:10 for the HT29 cell line. At 1:50 and 1:100 apoptotic induction by LD appeared to be cell cycle dependent. LD caused significant genotoxic damage to both cell lines compared to their respective controls. The specificity study showed that LD exerted a moderate cytotoxic action against non-proliferating and proliferating blood lymphocytes but not apoptosis. Chemical analysis showed that a number of fractions were found to exert a significant growth inhibitory effect. However, the molecular weights of compounds within these fractions did not correspond to those from the herbal constituents of LD. Conclusion It is possible that LD may have some chemotherapeutic potential. However

  1. Chromatogram Profiles and Cytotoxic Activity of Irradiated Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl) Leaves

    International Nuclear Information System (INIS)

    Katrin, E.; Winarno, H.; Selvie

    2011-01-01

    Gamma irradiation has been used by the industries for preservation of herbal medicine, but it has not been studied the effect of gamma irradiation on their efficacy, especially their bioactivity as anticancer substances. The purpose of this research was to study the effect of gamma irradiation on the mahkota dewa leaves which has been claimed to contain potent anticancer substances. Maceration of dried mahkota dewa leaves successively with n-hexane, ethyl acetate, and ethanol gave crude extracts which the ethyl acetate was the most cytotoxic extract against leukemia L1210 cells with an inhibition concentration fifty (IC 50 ) value of 10.3 μg/ml. Further separation of ethyl acetate extract by column chromatograph gave 7 fractions, and fraction 2 showed the most cytotoxic fraction exhibited the most cytotoxic extract against leukemia L1210 cells with an IC 50 value of 1.9 μg/ml. Since, the fraction 2 of ethyl acetate extract was the most potent fraction, the irradiated samples were treated with the same procedure as treatment of fraction 2 from control sample. Cytotoxic activity test of fractions 2 from irradiated samples showed that the cytotoxic activity decreased depending on increasing of irradiation dose. Gamma irradiation dose up to 7.5 kGy on mahkota dewa leaves could decreased the cytotoxic activity of fraction 2 as the most cytotoxic-potential fraction against leukemia L1210 cells, but decreasing the cytotoxic activity has not exceeded the limit of the fraction declared inactive. So that the irradiation dose up to 7.5 kGy can be used for decontamination of bacteria and fungus/yeast without eliminating the cytotoxic activity. Gamma irradiation also caused changes in the thin layer chromatograph (TLC) spots and HPLC chromatograms profiles of fraction 2 which was the most cytotoxic fraction in ethyl acetate extract of mahkota dewa leaves against leukemia L1210 cells. One of the main peaks (peak 1) on HPLC chromatograms decreased with increasing the

  2. Chromatogram Profiles and Cytotoxic Activity of Irradiated Mahkota Dewa (Phaleria Macrocarpa Scheff. Boerl Leaves

    Directory of Open Access Journals (Sweden)

    E. Katrin1

    2011-04-01

    Full Text Available Gamma irradiation has been used by the industries for preservation of herbal medicine, but it has not been studied the effect of gamma irradiation on their efficacy, especially their bioactivity as anticancer substances. The purpose of this research was to study the effect of gamma irradiation on the mahkota dewa leaves which has been claimed to contain potent anticancer substances. Maceration of dried mahkota dewa leaves successively with n-hexane, ethyl acetate, and ethanol gave crude extracts which the ethyl acetate was the most cytotoxic extract against leukemia L1210 cells with an inhibition concentration fifty (IC50 value of 10.3 µg/ml. Further separation of ethyl acetate extract by column chromatograph gave 7 fractions, and fraction 2 showed the most cytotoxic fraction exhibited the most cytotoxic extract against leukemia L1210 cells with an IC50 value of 1.9 µg/ml. Since, the fraction 2 of ethyl acetate extract was the most potent fraction, the irradiated samples were treated with the same procedure as treatment of fraction 2 from control sample. Cytotoxic activity test of fractions 2 from irradiated samples showed that the cytotoxic activity decreased depending on increasing of irradiation dose. Gamma irradiation dose up to 7.5 kGy on mahkota dewa leaves could decreased the cytotoxic activity of fraction 2 as the most cytotoxic-potential fraction against leukemia L1210 cells, but decreasing the cytotoxic activity has not exceeded the limit of the fraction declared inactive. So that the irradiation dose up to 7.5 kGy can be used for decontamination of bacteria and fungus/yeast without eliminating the cytotoxic activity. Gamma irradiation also caused changes in the thin layer chromatograph (TLC spots and HPLC chromatograms profiles of fraction 2 which was the most cytotoxic fraction in ethyl acetate extract of mahkota dewa leaves against leukemia L1210 cells. One of the main peaks (peak 1 on HPLC chromatograms decreased with increasing

  3. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Hammami

    2015-11-01

    Full Text Available The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID and gas chromatography coupled with mass spectrometry (GC/MS. Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1% followed by caryophyllene oxide (6.3%, myristicin (4.9% and α-cubebene (3.9%. The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH. The IC50 value of the oil was evaluated as 0.77 mg·mL−1. In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50 = 653.6 µg·mL−1. The potential antiviral effect was tested against Coxsackievirus B (CV-B, a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE reduction assay.

  4. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity

    DEFF Research Database (Denmark)

    Jiang, Xiumei; Miclaus, Teodora; Wang, Liming

    2015-01-01

    . Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-l-cysteine, an efficient antioxidant and Ag+ chelator, diminished the cytotoxicity caused by Ag NPs or Ag+ exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs...

  5. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp.

    Directory of Open Access Journals (Sweden)

    Md. Imdadul Huque Khan

    Full Text Available Objective: Endophytes have the potential to synthesize various bioactive secondary metabolites. The aim of the study was to find new cytotoxic and antibacterial metabolites from endophytic fungus, Cladosporium sp. isolated from the leaves of Rauwolfia serpentina (L. Benth. ex Kurz. (Fam: Apocyanaceae. Materials and methods: The endophytic fungus was grown on potato dextrose agar medium and extracted using ethyl acetate. Secondary metabolites were isolated by chromatographic separation and re-crystallization, and structures were confirmed by 1H NMR, 13C NMR and mass spectroscopic data. The cytotoxicity was determined by WST-1 assay and brine shrimp lethality bioassay, while antibacterial activity was assessed by disc diffusion method. Results: Two naphthoquinones, namely anhydrofusarubin (1 and methyl ether of fusarubin (2, were isolated from Cladosporium sp. The isolated compounds 1 and 2, by WST-1 assay against human leukemia cells (K-562 showed potential cytotoxicity with IC50 values of 3.97 μg/mL and 3.58 μg/mL, respectively. Initial screening of crude ethyl acetate extract and column fractions F-8 and F-10 exhibited noticeable cytotoxicity to brine shimp nauplii with LC50 values of 42.8, 1.2 and 2.1 μg/mL, respectively. Moreover, the isolated compound 2 (40 μg/disc showed prominent activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus megaterium with an average zone of inhibition of 27 mm, 25 mm, 24 mm and 22 mm, respectively and the activities were compared with kanamycin (30 μg/disc. Conclusion: Our findings indicate that anhydrofusarubin (1 and methyl ether of fusarubin (2 might be useful lead compounds to develop potential cytotoxic and antimicrobial drugs. Keywords: Endophytic fungi, Cladosporium species, Fusarubin, Cytoxicity, Antibacterial activity

  6. Cytotoxicity of extracts of spices to cultured cells.

    Science.gov (United States)

    Unnikrishnan, M C; Kuttan, R

    1988-01-01

    The cytotoxicity of the extracts from eight different spices used in the Indian diet was determined using Dalton's lymphoma ascites tumor cells and human lymphocytes in vitro and Chinese Hamster Ovary cells and Vero cells in tissue culture. Alcoholic extracts of the spices were found to be more cytotoxic to these cells than their aqueous extracts. Alcoholic extracts of several spices inhibited cell growth at concentrations of 0.2-1 mg/ml in vitro and 0.12-0.3 mg/ml in tissue culture. Ginger, pippali (native to India; also called dried catkins), pepper, and garlic showed the highest activity followed by asafetida, mustard, and horse-gram (native to India). These extracts also inhibited the thymidine uptake into DNA.

  7. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica.

    Science.gov (United States)

    Li, Jun-Zhu; Qing, Chen; Chen, Chang-Xiang; Hao, Xiao-Jiang; Liu, Hai-Yang

    2009-04-01

    A new cardenolide, 12beta,14beta-dihydroxy-3beta,19-epoxy-3alpha-methoxy-5alpha-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12beta-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12beta-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6'-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16alpha-hydroxyasclepin (10), 16alpha-acetoxycalotropin (11), and 16alpha-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC(50) value of 0.02 microM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC(50) values of 0.69 and 1.46 microM, respectively.

  8. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    Science.gov (United States)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  9. Effects of the Absorption Behaviour of ZnO Nanoparticles on Cytotoxicity Measurements

    Directory of Open Access Journals (Sweden)

    Nigar Najim

    2014-01-01

    Full Text Available ZnO absorbs certain wavelengths of light and this behavior is more pronounced for nanoparticles of ZnO. As many toxicity measurements rely on measuring light transmission in cell lines, it is essential to determine how far this light absorption influences experimental toxicity measurements. The main objective was to study the ZnO absorption and how this influenced the cytotoxicity measurements. The cytotoxicity of differently sized ZnO nanoparticles in normal and cancer cell lines derived from lung tissue (Hs888Lu, neuron-phenotypic cells (SH-SY5Y, neuroblastoma (SH-SY5Y, human histiocytic lymphoma (U937, and lung cancer (A549 was investigated. Our results demonstrate that the presence of ZnO affected the cytotoxicity measurements due to the absorption characteristic of ZnO nanoparticles. The data revealed that the ZnO nanoparticles with an average particle size of around 85.7 nm and 190 nm showed cytotoxicity towards U937, SH-SY5Y, differentiated SH-SY5Y, and Hs888Lu cell lines. No effect on the A549 cells was observed. It was also found that the cytotoxicity of ZnO was particle size, concentration, and time dependent. These studies are the first to quantify the influence of ZnO nanoparticles on cytotoxicity assays. Corrections for absorption effects were carried out which gave an accurate estimation of the concentrations that produce the cytotoxic effects.

  10. Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca2+ homeostasis

    International Nuclear Information System (INIS)

    Kleszczynski, Konrad; Skladanowski, Andrzej C.

    2011-01-01

    The global distribution of perfluorinated acids (PFAs) in industry and in household is well known. Their increasing environmental occurrence and biomagnification in the living organisms have drawn growing interests in efforts to describe precisely the mechanisms of action in vitro and in vivo. Our previous investigations widely described lipophilicity-dependent cytotoxicity of PFAs as well as the effect of perfluorination of carbon chain on depolarization of plasma membrane potential, acidification or mitochondrial dysfunctions. In this study we presented in dose- and time-dependent manner the impact of PFAs on calcium homeostasis in HCT116 cells. Comparative analysis of cytosolic [Ca 2+ ] c and mitochondrial calcium [Ca 2+ ] m carried out by flow cytometry revealed distinct uptake of calcium into mitochondria in correlation to increasing lipophilicity of PFAs. Massive accumulation of [Ca 2+ ] m was not accompanied by equivalent loss of [Ca 2+ ] c . Indeed, moderate changes of [Ca 2+ ] c were observed after incubation with 400 μM PFDoDA reaching 29.83% and 49.17% decrease at 4th and 72nd hour, respectively. At the same time, mitochondrial calcium uptake increased from 2- to more than 4-fold comparing with non-treated cells. Incubation with non-fluorinated decanoic acid (DA) did not cause any changes in calcium homeostasis. Presented data show that PFAs-induced perturbations in calcium distribution seem to be a missing link related to mitochondria dysfunction playing a crucial role in determination of apoptotic cell death. Complete scheme for the mechanism of cytotoxic action of PFAs has been included.

  11. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    Science.gov (United States)

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  12. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells.

    Science.gov (United States)

    Oghalaie, Akbar; Kazemi-Lomedasht, Fatemeh; Zareinejad, Mohammad Reza; Shahbazzadeh, Delavar

    2017-01-01

    Cancer is one of the major health problems worldwide. Hence, finding potent therapeutics from natural sources seems necessary. Snake venom of Vipera lebetina contains potential component with anticancer activities such as antiproliferation, migration, invasion, adhesion, and angiogenesis effect. Evaluation of cytotoxic and antiadhesive effect of V. lebetina venom on lung epithelial cancer tumor cell (TC-1) was the main aim of this study. Here, we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC) using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity and antiadhesive effect of crude venom and fractions on TC-1 cells were demonstrated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and adhesion assay, respectively. Our results showed six fractions in FPLC diagram. V. lebetina crude venom and fractions showed dose-dependent cytotoxic effect on TC-1 cells. Fractions 2 and 5 showed high cytotoxic effect with high IC50 value (IC50 = 6 μg/ml for fraction 2 and IC50 = 7.3 μg/ml for fraction 5). Fractions 2 and 5 selected for analysis antiadhesive effect on TC-1 cells. Furthermore, our results showed that both fractions 2 and 5 had antiadhesive effect on TC-1 cells. Because of potent cytotoxic and antiadhesive effect of V. lebetina fractions on lung epithelial cancer cell line, it could be promising tools for further analysis as anticancer therapeutic development.

  13. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells

    Directory of Open Access Journals (Sweden)

    Akbar Oghalaie

    2017-01-01

    Full Text Available Background: Cancer is one of the major health problems worldwide. Hence, finding potent therapeutics from natural sources seems necessary. Snake venom of Vipera lebetina contains potential component with anticancer activities such as antiproliferation, migration, invasion, adhesion, and angiogenesis effect. Evaluation of cytotoxic and antiadhesive effect of V. lebetina venom on lung epithelial cancer tumor cell (TC-1 was the main aim of this study. Materials and Methods: Here, we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity and antiadhesive effect of crude venom and fractions on TC-1 cells were demonstrated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and adhesion assay, respectively. Results: Our results showed six fractions in FPLC diagram. V. lebetina crude venom and fractions showed dose-dependent cytotoxic effect on TC-1 cells. Fractions 2 and 5 showed high cytotoxic effect with high IC50 value (IC50 = 6 μg/ml for fraction 2 and IC50 = 7.3 μg/ml for fraction 5. Fractions 2 and 5 selected for analysis antiadhesive effect on TC-1 cells. Furthermore, our results showed that both fractions 2 and 5 had antiadhesive effect on TC-1 cells. Conclusion: Because of potent cytotoxic and antiadhesive effect of V. lebetina fractions on lung epithelial cancer cell line, it could be promising tools for further analysis as anticancer therapeutic development.

  14. Cytotoxic and genotoxic studies of essential oil from Rosa damascene Mill., Kashan, Iran.

    Science.gov (United States)

    Shokrzadeh, Mohammad; Habibi, Emran; Modanloo, Mona

    2017-08-01

    Aim Rosa damascene Mill. belongs to the family of Roseaceae and its essential oil is produced in large amounts in Iran. The wide application of rose oil has raised questions about potential adverse health effects. We have investigated cytotoxic activity and genotoxic effects of Rosa oil from Kashan, Iran. Methods The cytotoxic effect and IC50 of the essential oil on the cell lines was studied followed by MTT assay. In this assay mitochondrial oxidoreductase enzymes with reducing the tetrazolium dye MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) reflect the number of viable cells. Genotoxic effect of the oil was evaluated by micronucleus assay by evaluating produced micronuclei due to cytogenetic damage in binucleated lymphocytes. Results The results showed that essential oil significantly had cytotoxic and genotoxic effects at doses over 10µg/mL (pessential oil of Rose showed lower IC50 in cancer cell line (A549) in comparison with the normal cell line (NIH3T3). Conclusion Cytotoxic and genotoxic properties of essential oil of Rose in Kashan, Iran, are safe at a dose of 10µg/mL. Also, a good cytotoxic effect was shown and could be introduced as an anticancer compound. Further studies are needed with regard to anti-cancer effects of Rose essential oil. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  15. In vitro cytotoxicity testing of Ubiquicidin 29-41-99mTc

    International Nuclear Information System (INIS)

    Ocampo, Ivette Z.; Okazaki, Kayo; Dias, Luis Alberto Pereira; Higa, Olga Z.; Silva, Fabiana M. da; Vieira, Daniel P.; Passos, Priscila; Esteves-Pedro, Natalia M.

    2015-01-01

    The work carried out cytotoxicity tests using a radiopharmaceutical compound produced at IPEN/CNEN-SP to certify its safety through in vitro cytotoxicity tests. Since 2009, the Brazilian regulatory agency (ANVISA) requires that such tests have to be carried out following good laboratory practices (GLP) and in according to the OECD (Organisation for Economic Co-operation and Development) guidelines in order to certify its safety for medical use. Those guidelines comprises series of technical recommendations performed to assure quality of experiments. The study chose Ubiquicidin 29-41, an antimicrobial peptide used to discriminate bacterial infection foci from inflammatory sites. Amounts of UBI 29-41 were conjugated or not to 99m Tc and diluted to equivalent concentrations of 10, 100 and 1000% of the maximum dose (or activity) administered in adults. Possible cytotoxic effects were evaluated in comparison to untreated controls as well as positive and negative damage controls. Both full (radioactive) radiopharmaceuticals, as their precursors (only molecules without conjugation to isotopes) showed no significant cytotoxic effect (cytotoxicity ≤ 10%). The study was conducted for the first time in the country comprising preclinical testing of this radiopharmaceutical in accordance with internationally accepted quality parameters, ensuring the safety of its use and enabling inclusion in the pharmaceutical regulatory agenda. (author)

  16. Cytotoxic acyl amides from the soil fungus Gymnascella dankaliensis.

    Science.gov (United States)

    Hammerschmidt, Lena; Aly, Amal H; Abdel-Aziz, Mohammed; Müller, Werner E G; Lin, Wenhan; Daletos, Georgios; Proksch, Peter

    2015-02-15

    The soil fungus Gymnascella dankaliensis was collected in the vicinity of the Giza pyramids, Egypt. When grown on solid rice medium the fungus yielded four new compounds including 11'-carboxygymnastatin N (1), gymnastatin S (2), dankamide (3), and aranorosin-2-methylether (4), the latter having been reported previously only as a semisynthetic compound. In addition, six known metabolites (5-10) were isolated. Addition of NaCl or KBr to the rice medium resulted in the accumulation of chlorinated or brominated compounds as indicated by LC-MS analysis due to the characteristic isotope patterns observed. From the rice medium spiked with 3.5% NaCl the known chlorinated compounds gymnastatin A (11) and gymnastatin B (12) were obtained. All isolated compounds were unambiguously structurally elucidated on the basis of comprehensive spectral analysis (1D and 2D NMR, and mass spectrometry), as well as by comparison with the literature. Compounds 4, 7 and 11 showed potent cytotoxicity against the murine lymphoma cell line L5178Y (IC50 values 0.44, 0.58 and 0.64μM, respectively), whereas 12 exhibited moderate activity with an IC50 value of 5.80μM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    Science.gov (United States)

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  18. Adenosine, but not guanosine, protects vaginal epithelial cells from Trichomonas vaginalis cytotoxicity.

    Science.gov (United States)

    Menezes, Camila Braz; Frasson, Amanda Piccoli; Meirelles, Lucia Collares; Tasca, Tiana

    2017-02-01

    Trichomonas vaginalis causes the most common non-viral sexually transmitted disease worldwide. The cytoadherence and cytotoxicity upon the vaginal epithelial cells are crucial for the infection. Extracellular nucleotides are released during cell damage and, along with their nucleosides, can activate purinoceptors. The opposing effects of nucleotides versus nucleosides are regulated by ectonucleotidases. Herein we evaluated the hemolysis and cytolysis induced by T. vaginalis, as well as the extracellular nucleotide hydrolysis along with the effects mediated by nucleotides and nucleosides on cytotoxicity. In addition, the gene expression of purinoceptors in host cells was determined. The hemolysis and cytolysis exerted by all T. vaginalis isolates presented positive Pearson correlation. All T. vaginalis isolates were able to hydrolyze nucleotides, showing higher NTPDase than ecto-5'-nucleotidase activity. The most cytotoxic isolate, TV-LACM6, hydrolyzes ATP, GTP with more efficiency than AMP and GMP. The vaginal epithelial cell line (HMVII) expressed the genes for all subtypes of P1, P2X and P2Y receptors. Finally, when nucleotides and nucleosides were tested, the cytotoxic effect elicited by TV-LACM6 was increased with nucleotides. In contrast, the cytotoxicity was reversed by adenosine in presence of EHNA, but not by guanosine, contributing to the understanding of the purinergic signaling role on T. vaginalis cytotoxicity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. In vitro Antimicrobial, Cytotoxic and Radical Scavenging Activities and Chemical Constituents of the Endemic Thymus laevigatus (Vahl

    Directory of Open Access Journals (Sweden)

    Mohamed Al-Fatimi

    2010-01-01

    Full Text Available The leaves of Thymus laevigatus (Vahl, Lamiaceae (Labiatae, an endemic species of Yemen, are traditionally used in the treatment of various disorders including stomach and respiratory system. In a first biological and chemical study of this endemic species we investigated antimicrobial, cytotoxic and antioxidant activities of different extracts of the leaves of this plant. The preliminary phytochemical screening of extracts composition was performed by TLC while the composition of the essential oil was determined by GC-MS. Twelve constituents were detected from the essential oil, which constituted 99.6 % of the total amount. The major constituents of the oil were: carvacrol (84.3 %, p-cymene (4.1 % p-mentha-1, 4-diene (4.0 % and trans-anethole (3.6%. The main active components were identified by TLC as carvacrol and anethole for dichloromethane extract and as non-volatile phenols and flavonoids for the methanol extract. The methanol, dichloromethane and aqueous extracts were tested for their antimicrobial activities against five bacteria strains and six human pathogenic fungi. Both methanol and dichloromethane showed strong activities against most human pathogenic strains. In the contrast, methanol extract showed broader and stronger antibacterial activities than the dichloromethane extract, especially against the Gram-negative bacterium Pseudomonas aeruginosa. The methanol extract showed the same strong radical scavenging activity in the DPPH assay (14.9mg/ml, when compared to the standard antioxidant, ascorbic acid. In contrast, the cytotoxic activity of the methanol against FL cells, a human amniotic epithelial cell line, was only moderate (IC50 298, 8 mg/ml. On the contrary, the water extract did not show any biological activity. Results presented here suggest that the essential oil and extracts of Thymus laevigatus possess strong antimicrobial and antioxidant properties, and therefore, they can be used as a natural preservative ingredient

  20. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    Science.gov (United States)

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  1. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations.

    Science.gov (United States)

    Sommerwerk, Sven; Heller, Lucie; Kerzig, Christoph; Kramell, Annemarie E; Csuk, René

    2017-02-15

    Triterpenoic acids 1-6 exhibited very low or no cytotoxicity at all, but their corresponding 2,3-di-O-acetyl-piperazinyl amides 13-18 showed low EC 50 values for several human tumor cell lines. Their cytotoxicity, however, was also high for the non-malignant mouse fibroblasts NIH 3T3. A significant improvement was achieved by preparing the rhodamine B derivatives 19-24. While rhodamine B is not cytotoxic (up to a concentration of 30μM - cut-off of the assay), the triterpenoid piperazine-spacered rhodamine B derivatives were cytotoxic in nano-molar concentration. Compound 24 (a diacetylated maslinic acid derivative) was most toxic for several human tumor cell lines but less toxic for mouse fibroblasts NIH 3T3. Staining and double-staining experiments revealed 24 to act as a mitocan. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Cytotoxic and Antibacterial Cembranoids from a South China Sea Soft Coral, Lobophytum sp.

    Directory of Open Access Journals (Sweden)

    Kexin Huang

    2013-04-01

    Full Text Available Chemical examination of a South China Sea soft coral Lobophytum sp. led to the isolation of three new α-methylene-γ-lactone-containing cembranoids, (1R*,3R*, 4R*,14R*,7E,11E-3,4-epoxycembra-7,11,15(17-trien-16,14-olide (1, (1R*,7S*,14S*,3E, 11E-7-hydroperoxycembra-3,8(19,11,15(17-tetraen-16,14-olide (2, and (1R*,7S*,14S*, 3E,11E-18-acetoxy-7-hydroperoxycembra-3,8(19,11,15(17-tetraen-16,14-olide (3, along with eleven known analogues 4–14. The structures of the new compounds were elucidated through extensive spectroscopic analysis, including 1D and 2D NMR data. Compounds 1–3 exhibited moderate cytotoxic activity against the selected tumor cell lines. Moreover, 2 and 3 were found to be moderate inhibitors against the bacteria S. aureus and S. pneumoniae.

  3. Cytotoxic diterpenoids from the roots of Salvia lachnocalyx

    Directory of Open Access Journals (Sweden)

    Hossein Hadavand Mirzaei

    Full Text Available ABSTRACT Salvia lachnocalyx Hedge, Lamiaceae, is an endemic sage which grows naturally in the Fars Province of Iran. The phytochemical analyses of the roots of S. lachnocalyx led to the isolation of five known diterpenoids: ferruginol (1, taxodione (2, sahandinone (3, 4-dehydrosalvilimbinol (4 and labda-7,14-dien-13-ol (5. Their chemical structures were elucidated using one (1H and 13C and two dimensional (COSY, HSQC and HMBC NMR spectroscopic data as well as electron impact mass spectra. The cytotoxicity of the purified compounds was evaluated against three human cancer cell lines; MOLT-4 (acute lymphoblastic leukemia, HT-29 (colorectal adenocarcinoma and MCF7 (breast adenocarcinoma and all of the isolated compounds showed considerable cytotoxic activity against these cell lines. Compounds 2 and 3 (IC50 range: 0.41–3.87 µg/ml with endocyclic α,β-unsaturated carbonyl functional group, exhibited the highest cytotoxic activities compared to the other compounds (IC50 range: 6.85–17.23 µg/ml. In conclusion, compounds 2 and 3 are presented as compounds that deserve further investigation of their biological activities.

  4. Biotransformation of sclareolide by filamentous fungi: cytotoxic evaluations of the derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Arturo [Universidad Nacional Autonoma de Mexico, D.F. (Mexico). Facultad de Estudios Superiores Zaragoza; Ramirez-Apan, Maria Teresa; Delgado, Guillermo, E-mail: delgado@unam.m [Universidad Nacional Autonoma de Mexico, D.F. (Mexico)

    2011-07-01

    Sclareolide (1) was incubated with eight different species of filamentous fungi conventionally used for bio-oxidations. Compound 1 was metabolized with Aspergillus niger in medium A to yield 3-ketosclareolide (2) and 3b-hydroxysclareolide (4), while in medium B (containing major number of nutrients with respect to medium A), compounds 2, 4, 3{alpha},6{beta}-dihydroxysclareolide (16), 1-ketosclareolide (17), 3-keto-15-hydroxysclareolide (18) and 3{beta},15-dihydroxysclareolide (19) were obtained. The biotransformation products 16-19 were found to be new substances. Fermentation of 1 with Cunninghamella blackesleeana using medium A afforded 2 and 4, while using medium B yielded 2, 4, 16 and 17. Compounds 2, 4 and 17 were also obtained with Curvularia lunata. Biotransformation of 1 with Beauveria bassiana yielded 4 in satisfactory yield, with Rhizopus oligosporus and Mucor miehei afforded 2 and 4, while with R. nigricans and Fusarium moliniforme yielded 2, 4 and 16. Cytotoxic evaluation of 1 and the obtained products against selected human cancer cell lines (U251, PC-3, K562, HCT-15, MCF-7 and SKUL-1) indicated that 16 (3{alpha},6{beta}-dihydroxysclareolide) displayed moderate cytotoxic (IC{sub 50} < 100 {mu}M) against U251, PC-3, HCT-15 and MCF-7. (author)

  5. Biotransformation of sclareolide by filamentous fungi: cytotoxic evaluations of the derivatives

    International Nuclear Information System (INIS)

    Cano, Arturo

    2011-01-01

    Sclareolide (1) was incubated with eight different species of filamentous fungi conventionally used for bio-oxidations. Compound 1 was metabolized with Aspergillus niger in medium A to yield 3-ketosclareolide (2) and 3b-hydroxysclareolide (4), while in medium B (containing major number of nutrients with respect to medium A), compounds 2, 4, 3α,6β-dihydroxysclareolide (16), 1-ketosclareolide (17), 3-keto-15-hydroxysclareolide (18) and 3β,15-dihydroxysclareolide (19) were obtained. The biotransformation products 16-19 were found to be new substances. Fermentation of 1 with Cunninghamella blackesleeana using medium A afforded 2 and 4, while using medium B yielded 2, 4, 16 and 17. Compounds 2, 4 and 17 were also obtained with Curvularia lunata. Biotransformation of 1 with Beauveria bassiana yielded 4 in satisfactory yield, with Rhizopus oligosporus and Mucor miehei afforded 2 and 4, while with R. nigricans and Fusarium moliniforme yielded 2, 4 and 16. Cytotoxic evaluation of 1 and the obtained products against selected human cancer cell lines (U251, PC-3, K562, HCT-15, MCF-7 and SKUL-1) indicated that 16 (3α,6β-dihydroxysclareolide) displayed moderate cytotoxic (IC 50 < 100 μM) against U251, PC-3, HCT-15 and MCF-7. (author)

  6. In vitro Cytotoxic and Antioxidant Activity of Leaf Extracts of ...

    African Journals Online (AJOL)

    plant were tested for cytotoxicity against four cancer cells, viz, MCF-7 (oestrogen ... Results: The methanol extract showed the highest antioxidant activity (DPPH, half maximal inhibitory .... Total flavonoid content was determined using the.

  7. Efficient Cryosolid Positron Moderators

    Science.gov (United States)

    2012-08-01

    table layout Figure 21 shows the integration of the IR spectroscopy optics with the positron Moderation and Annihilation vacuum chambers on the...Characterization of Cryogenic Moderators The application of Matrix Isolation Spectroscopy (MIS) to characterizing cryogenic solid positron ...Matrix Isolation Spectroscopy capability into our Positron Moderation apparatus, which enables spectroscopic characterization of the cryogenic

  8. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents.

    Science.gov (United States)

    Coté, Héloïse; Boucher, Marie-Anne; Pichette, André; Legault, Jean

    2017-05-25

    Background: Tanacetum vulgare L. (Asteraceae) is a perennial herb that has been used to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the complete chemical composition of the T. vulgare essential oil and its constituents in relation to their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean), Canada. Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID. Biological activities of essential oil and its main constituents were evaluated in vitro. Results: We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide. Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting biological properties.

  9. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents

    Directory of Open Access Journals (Sweden)

    Héloïse Coté

    2017-05-01

    Full Text Available Background: Tanacetum vulgare L. (Asteraceae is a perennial herb that has been used to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the complete chemical composition of the T. vulgare essential oil and its constituents in relation to their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean, Canada. Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID. Biological activities of essential oil and its main constituents were evaluated in vitro. Results: We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide. Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting biological properties.

  10. Cytotoxicity detection of poly(lactic-co-glycolic acid/tricalcium phosphate

    Directory of Open Access Journals (Sweden)

    Meng SUN

    2011-12-01

    Full Text Available Objective To detecte the cytotoxicity of the PLGA/TCP(poly(lactic-co-glycolic acid/Tricalcium phosphate composite that based on the precedent experiments conducted in Tsinghua University.Methods Compared with the PLGA scaffold material,observated the surface and interior structure of the PLGA/TCP scaffold material by SEM(scanning electron microscope,the surface and interior of PLGA/TCP scaffold material appeared to be homogeneous porous under SEM,with fairly even porosity distribution.The pore diameter was approximately 400μm.The interpenetrative micro-pores were scattered over bigger pores’ periphery with approximately circular contour and 3~5 μm in diameter.These pores were interpenetrative,the average factor of porosity was 89.6%.And which selected rat L929 cell strain,and detected the cytotoxicity of the PLGA/TCP composite in vitro by MTT method.Results The surface and interior of PLGA/TCP scaffold material appeared to be homogeneous porous under SEM,with fairly even porosity distribution.The pore diameter was approximately 400μm.The interpenetrative micro-pores were scattered over bigger pores’ periphery with approximately circular contour and 3~5 μm in diameter.These pores were interpenetrative,the average factor of porosity was 89.6%.On rat L929 cell strain,used MTT Method to detect the cytotoxicity of the composite PLGA/ TCP in vitro,the result showed that the cytotoxicity of the PLGA/TCP composite was level I,according to the criterion,it can be considered as non cytotoxic.Conclusion This research has proved that the PLGA/TCP compound scaffold material has a more homogeneous structure,with the vesicular interior and the structure of PLGA/TCP composite is similar to natural bone trabecula,PLGA/TCP is non cytotoxicity,which satisfy the basic requirement of biological material application and provides a good experimental foundation for repairing autologous bone defect in the near future.

  11. Cytotoxic activity of water extracts of Trichilia hirta leaves on human tumor cells

    International Nuclear Information System (INIS)

    Hernandez Sosa, Edgar; Mora Gonzalez, Nestor; Morris Quevedo, Humberto J

    2013-01-01

    Trichilia hirta L. (Meliaceae) is traditionally used by patients suffering from cancer as an antitumoral resource. Therefore, the objectives of this study were to evaluate the cytotoxic activity of water extracts of Trichilia hirta leaves on tumour cells and identify through a phytochemical screening the principal families of phytocomponents contained in these extracts. The cytotoxic activity of these extracts was also evaluated on human melanoma cells (SK-mel-3) and human breast carcinoma (T-47D). The African green monkey kidney (AGMK) cells Cercopithecus aethiops (Vero) were used as a non-tumour cells control. The results showed the presence of triterpenes/steroids, saponins, coumarins, reductor sugars, phenols and tannins, flavonoids and carbohydrates/glycosides in the extracts. The water leaf extracts showed cytotoxic activity mainly on tumour cells, which contributes to explain the referred recovery by patients suffering form cancer that traditionally consume these extracts

  12. Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Abbasi Atiya

    2010-09-01

    Full Text Available Abstract Background There has been a long standing interest in the identification of medicinal plants and derived natural products for developing cancer therapeutics. Our study focuses upon pancreatic cancer, due to its high mortality rate, that is attributed in part to the lack of an effective chemotherapeutic agent. Previous reports on the use of medicinal plant extracts either alone or alongside conventional anticancer agents in the treatment of this cancer have shown promising results. This work aims to investigate the therapeutic properties of a library of medicinal plants from Bangladesh. Methods 56 extracts of 44 unique medicinal plants were studied. The extracts were screened for cytotoxicity against the pancreatic adenocarcinoma cell line Panc-1, using a label-free biosensor assay. The top cytotoxic extracts identified in this screen were tested on two additional pancreatic cancer cell lines (Mia-Paca2 and Capan-1 and a fibroblast cell line (Hs68 using an MTT proliferation assay. Finally, one of the most promising extracts was studied using a caspase-3 colorimetric assay to identify induction of apoptosis. Results Crude extracts of Petunia punctata, Alternanthera sessilis, and Amoora chittagonga showed cytotoxicity to three cancer cell lines with IC50 values ranging between 20.3 - 31.4 μg/mL, 13.08 - 34.9 μg/mL, and 42.8 - 49.8 μg/mL, respectively. Furthermore, treatment of Panc-1 cells with Petunia punctata was shown to increase caspase-3 activity, indicating that the observed cytotoxicity was mediated via apoptosis. Only Amoora chittagonga showed low cytotoxicity to fibroblast cells with an IC50 value > 100 μg/mL. Conclusion Based upon the initial screening work reported here, further studies aimed at the identification of active components of these three extracts and the elucidation of their mechanisms as cancer therapeutics are warranted.

  13. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    Science.gov (United States)

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  14. Syntheses of cytotoxic novel arctigenin derivatives bearing halogen and alkyl groups on aromatic rings.

    Science.gov (United States)

    Yamauchi, Satoshi; Wukirsari, Tuti; Ochi, Yoshiaki; Nishiwaki, Hisashi; Nishi, Kosuke; Sugahara, Takuya; Akiyama, Koichi; Kishida, Taro

    2017-09-01

    The new lignano-9,9'-lactones (α,β-dibenzyl-γ-butyrolactone lignans), which showed the higher cytotoxicity than arctigenin, were synthesized. The well-known cytotoxic arctigenin showed activity against HL-60 cells (EC 50 =12μM), however, it was inactive against HeLa cells (EC 50 >100μM). The synthesized (3,4-dichloro, 2'-butoxy)-derivative 55 and (3,4-dichloro, 4'-butyl)-derivative 66 bearing the lignano-9,9'-lactone structures showed the EC 50 values of 10μM and 9.4μM against HL-60 cells, respectively. Against HeLa cells, the EC 50 value of the derivative 66 was 27μM. By comparing the activities with the corresponding 9,9'-epoxy structure (tetrahydrofuran compounds), the importance of the lactone structure of 55 and 66 for the higher activities was shown. The substituents on the aromatic ring of the lignano-9,9'-lactones affected the cytotoxicity level, observing more than 10-fold difference. Copyright © 2017. Published by Elsevier Ltd.

  15. Synthesization, Characterization, and in Vitro Evaluation of Cytotoxicity of Biomaterials Based on Halloysite Nanotubes.

    Science.gov (United States)

    Sánchez-Fernández, Antonio; Peña-Parás, Laura; Vidaltamayo, Román; Cué-Sampedro, Rodrigo; Mendoza-Martínez, Ana; Zomosa-Signoret, Viviana C; Rivas-Estilla, Ana M; Riojas, Paulina

    2014-12-04

    Halloysite is an aluminosilicate clay that has been widely used for controlled drug delivery, immobilization of enzymes, and for the capture of circulating tumor cells (CTCs). Surface modification of halloysite by organosilanes has been explored to improve their properties. In this study halloysite clay nanotubes (HNTs) were functionalized by two different organosilanes: Trimethoxy(propyl)silane (TMPS), and Triethoxy(octyl)silane (EOS). Untreated and modified samples were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), thermogravimetrical analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). Results showed a strong interaction of organosilanes with the chemical groups present in HNTs. Biocompatibility and cytotoxicity of these nanomaterials were determined using C6 rat glioblastoma cells. Our results indicate that prior to functionalization, HNTs show a high biocompatibility and low cytotoxicity. However, HNTs functionalized with EOS and TMPS showed high cytotoxicity by inducing apoptosis. These results allow the identification of potential applications in biomedical areas for HNTs.

  16. Synthesization, Characterization, and in Vitro Evaluation of Cytotoxicity of Biomaterials Based on Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Antonio Sánchez-Fernández

    2014-12-01

    Full Text Available Halloysite is an aluminosilicate clay that has been widely used for controlled drug delivery, immobilization of enzymes, and for the capture of circulating tumor cells (CTCs. Surface modification of halloysite by organosilanes has been explored to improve their properties. In this study halloysite clay nanotubes (HNTs were functionalized by two different organosilanes: Trimethoxy(propylsilane (TMPS, and Triethoxy(octylsilane (EOS. Untreated and modified samples were characterized by scanning electron microscopy (SEM, X-ray diffractometry (XRD, thermogravimetrical analysis (TGA, and Fourier transform infrared spectroscopy (FTIR. Results showed a strong interaction of organosilanes with the chemical groups present in HNTs. Biocompatibility and cytotoxicity of these nanomaterials were determined using C6 rat glioblastoma cells. Our results indicate that prior to functionalization, HNTs show a high biocompatibility and low cytotoxicity. However, HNTs functionalized with EOS and TMPS showed high cytotoxicity by inducing apoptosis. These results allow the identification of potential applications in biomedical areas for HNTs.

  17. Flavonoids and Ellagitannins Characterization, Antioxidant and Cytotoxic Activities of Phyllanthus acuminatus Vahl

    Directory of Open Access Journals (Sweden)

    Mirtha Navarro

    2017-12-01

    Full Text Available The phenolic composition of leaves from Phyllanthus acuminatus L., a plant commonly used in Costa Rica as traditional medicine, was studied using UPLC-ESI-MS on an enriched phenolic extract. A total of 20 phenolic compounds were identified, comprising eight flavonoids (two flavanones—pinocembrin isomers and six derivatives from apigenin, chrysin, quercetin, and kaempferol; seven ellagitannins, two flavan-3-ols (prodelphinidin B dimer and (epigallocatechin; and three phenolic acids (ellagic acid, trimethylellagic acid, and ferulic acid. All of these compounds are reported for the first time in P. acuminatus, while previously reported in the genus Phyllanthus. Antioxidant evaluation was performed for P. acuminatus phenolic extract obtaining DPPH results with a remarkably low IC50 value of 0.15 μg/mL. Also, cytotoxicity on gastric AGS and colon SW20 adenocarcinoma cell lines was evaluated, and highly promising results were obtained, with IC50 values of 11.3 μg/mL and 10.5 μg/mL, respectively. Furthermore, selectivity index values obtained when comparing cytotoxicity on normal Vero cells was SI > 20 for both cancer cell lines, indicating a particularly high selectivity. Additionally, Justicidin B, a metabolite extensively studied for its antitumoral activity, was isolated from a non-polar extract of P. acuminatus, and comparatively evaluated for both bioactivities. The DPPH value obtained for Justicidin B was moderate (IC50 = 14.28 μg/mL, while cytotoxicity values for both AGS (IC50 = 19.5 μg/mL and SW620 (IC50 = 24.8 μg/mL cell lines, as well as selectivity when compared with normal Vero cells (SI = 5.4 and 4.2 respectively, was good, but lower than P. acuminatus extract. These preliminary results suggest that P. acuminatus enriched phenolic extract containing flavonoids, ellagitannins, flavan-3-ols, and phenolic acids, reported for the first time in this plant, could be of interest for further cancer cytotoxicity studies to elucidate

  18. DETECTION OF BACTERIAL CYTOTOXIC ACTIVITIES FROM WATER-DAMAGED CEILING TILE MATERIAL FOLLOWING INCUBATION ON BLOOD AGAR

    Science.gov (United States)

    Samples of ceiling tiles with high levels of bacteria exhibited cytotoxic activities on a HEP-2 tissue culture assay. Ceiling tiles containing low levels of bacterial colonization did not show cytotoxic activities on the HEP-2 tissue culture assay. Using a spread plate procedure ...

  19. Cytocompatibility, cytotoxicity and genotoxicity analysis of dental implants

    Science.gov (United States)

    Reigosa, M.; Labarta, V.; Molinari, G.; Bernales, D.

    2007-11-01

    Several types of materials are frequently used for dental prostheses in dental medicine. Different treatments with titanium are the most used. The aim of the present study was to analyze by means of cytotoxicity and cytocompatibility techniques the capacity of dental implants to integrate to the bone tissue. Cultures of UMR 106 cell line derived from an osteosarcoma were used for bioassays mainly because they show many of the properties of osteoblasts. Dental implant samples provided by B&W company were compared with others of recognized trademarks. The first ones contain ASTM titanium (8348 GR2) with acid printing. Cytotoxicity was analyzed by means of lysosome activity, using the neutral red technique and alkaline phosphatase enzyme activity. Cell variability was determined by means of the acridine ethidium-orange bromide technique. One-way ANOVA and Bonferroni and Duncan post-ANOVA tests were used for the statistical analysis. The assays did not show significant differences among the dental implants analyzed. Our findings show that the dental prostheses studied present high biocompatibility, quantified by the bioassays performed. The techniques employed revealed that they can be a useful tool for the analysis of other materials for dental medicine use.

  20. Cytocompatibility, cytotoxicity and genotoxicity analysis of dental implants

    International Nuclear Information System (INIS)

    M, Reigosa; V, Labarta; G, Molinari; D, Bernales

    2007-01-01

    Several types of materials are frequently used for dental prostheses in dental medicine. Different treatments with titanium are the most used. The aim of the present study was to analyze by means of cytotoxicity and cytocompatibility techniques the capacity of dental implants to integrate to the bone tissue. Cultures of UMR 106 cell line derived from an osteosarcoma were used for bioassays mainly because they show many of the properties of osteoblasts. Dental implant samples provided by B and W company were compared with others of recognized trademarks. The first ones contain ASTM titanium (8348 GR2) with acid printing. Cytotoxicity was analyzed by means of lysosome activity, using the neutral red technique and alkaline phosphatase enzyme activity. Cell variability was determined by means of the acridine ethidium-orange bromide technique. One-way ANOVA and Bonferroni and Duncan post-ANOVA tests were used for the statistical analysis. The assays did not show significant differences among the dental implants analyzed. Our findings show that the dental prostheses studied present high biocompatibility, quantified by the bioassays performed. The techniques employed revealed that they can be a useful tool for the analysis of other materials for dental medicine use

  1. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays.

    Science.gov (United States)

    Fischer, Janine; Prosenc, Marc H; Wolff, Martin; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2010-05-01

    Magnesium (Mg) alloys are promising materials for the development of biodegradable implants. However, the current in vitro test procedures for cytotoxicity, cell viability and proliferation are not always suitable for this class of materials. In this paper we show that tetrazolium-salt-based assays, which are widely used in practice, are influenced by the corrosion products of Mg-based alloys. Corroded Mg converts tetrazolium salts to formazan, leading to a higher background and falsifying the results of cell viability. Tetrazolium-based assays are therefore not a useful tool for testing the cytotoxicity of Mg in static in vitro assays. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Cytotoxicity and Effects on Cell Viability of Nickel Nanowires

    KAUST Repository

    Rodriguez, Jose E.

    2013-05-01

    Recently, magnetic nanoparticles are finding an increased use in biomedical applications and research. Nanobeads are widely used for cell separation, biosensing and cancer therapy, among others. Due to their properties, nanowires (NWs) are gaining ground for similar applications and, as with all biomaterials, their cytotoxicity is an important factor to be considered before conducting biological studies with them. In this work, the cytotoxic effects of nickel NWs (Ni NWs) were investigated in terms of cell viability and damage to the cellular membrane. Ni NWs with an average diameter of 30-34 nm were prepared by electrodeposition in nanoporous alumina templates. The templates were obtained by a two-step anodization process with oxalic acid on an aluminum substrate. Characterization of NWs was done using X-Ray diffraction (XRD) and energy dispersive X-Ray analysis (EDAX), whereas their morphology was observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell viability studies were carried out on human colorectal carcinoma cells HCT 116 by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation colorimetric assay, whereas the lactate dehydrogenase (LDH) homogenous membrane fluorimetric assay was used to measure the degree of cell membrane rupture. The density of cell seeding was calculated to obtain a specific cell number and confluency before treatment with NWs. Optical readings of the cell-reduced MTT products were measured at 570 nm, whereas fluorescent LDH membrane leakage was recorded with an excitation wavelength of 525 nm and an emission wavelength of 580 - 640 nm. The effects of NW length, cell exposure time, as well as NW:cell ratio, were evaluated through both cytotoxic assays. The results show that cell viability due to Ni NWs is affected depending on both exposure time and NW number. On the other hand, membrane rupture and leakage was only significant at later exposure times. Both

  3. Flavonoids of Calligonum polygonoides and their cytotoxicity.

    Science.gov (United States)

    Ahmed, Hayam; Moawad, Abeer; Owis, Asmaa; AbouZid, Sameh; Ahmed, Osama

    2016-10-01

    Context Calligonum polygonoides L. subsp. comosum L' Hér. (Polygonaceae), locally known as "arta", is a slow-growing small leafless desert shrub. Objective Isolation, structure elucidation and evaluation of cytotoxic activity of flavonoids from C. polygonoides aerial parts. Materials and methods Flavonoids in the hydroalcoholic extract of the of C. polygonoides were isolated and purified using column chromatography and preparative HPLC. The structures of the isolated flavonoids were elucidated on the basis of spectroscopic data including 2D NMR techniques. The cytotoxic activity of the isolated flavonoids (6.25, 25, 50 and 100 μg/mL) was evaluated against liver HepG2 and breast MCF-7 cancer cell lines using sulphorhodamine-B assay. Results A new flavonoid, kaempferol-3-O-β-D-(6″-n-butyl glucuronide) (1), and 13 known flavonoids, quercetin 3-O-β-D-(6″-n-butyl glucuronide) (2), kaempferol-3-O-β-D-(6″-methyl glucuronide) (3), quercetin-3-O-β-D-(6″-methyl glucuronide) (4), quercetin-3-O-glucuronide (5), kaempferol-3-O-glucuronide (6), quercetin-3-O-α-rhamnopyranoside (7), astragalin (8), quercetin-3-O-glucopyranoside (9), taxifolin (10), (+)-catechin (11), dehydrodicatechin A (12), quercetin (13), and kaempferol (14), were isolated from the aerial parts of C. polygonoides. Quercetin showed significant cytotoxic activity against HepG2 and MCF-7 cell lines with IC50 values of 4.88 and 0.87 μg/mL, respectively. Structure-activity relationships were analyzed by comparing IC50 values of several pairs of flavonoids differing in one structural element. Discussion and conclusion The activity against breast cancer cell lines decreased by glycosylation at C-3. The presence of 2,3-double bond in ring C, carbonyl group at C-4 and 3',4'-dihydroxy substituents in ring B are essential structural requirements for the cytotoxic activity against breast cancer cells.

  4. In vitro synergistic efficacy of conjugated linoleic acid, oleic acid, safflower oil and taxol cytotoxicity on PC3 cells.

    Science.gov (United States)

    Kızılşahin, Sadi; Nalbantsoy, Ayşe; Yavaşoğlu, N Ülkü Karabay

    2015-01-01

    The aim of this study was to determine in vitro synergistic efficacy of conjugated linoleic acid (CLA), oleic acid (OLA), safflower oil and taxol (Tax) cytotoxicity on human prostate cancer (PC3) cell line. To determine synergistic efficacy of oil combinations, PC3 treated with different doses of compounds alone and combined with 10 μg/mL Tax. The MTT results indicated that OLA-Tax combinations exhibited cytotoxicity against PC3 at doses of 30 nM+10 μg-Tax, 15 nM+5 μg-Tax and 7.5 nM+2.5 μg-Tax. The treatment of OLA or Tax did not show significant inhibition on PC3, while OLA-Tax combinations showed effective cytotoxicity at treated doses. CLA-Tax combinations demonstrated the same effect on PC3 as combined form with 45.72% versus the alone form as 74.51% viability. Cytotoxic synergy between Tax, OLA and CLA shows enhanced cytotoxicity on PC3 which might be used in the therapy of prostate cancer.

  5. Cytogenetic, cytotoxic and GC-MS studies on concrete and absolute oils from Taif rose, Saudi Arabia.

    Science.gov (United States)

    Hagag, Heba A; Bazaid, Salih A; Abdel-Hameed, El-Sayed S; Salman, Mahmood

    2014-12-01

    Taif rose (Rosa damascena trigintipetala Dieck) is a sort of damask rose, which is considered as one of the most important economic products of Taif. In this study, the authors investigated the possible cytotoxic, genotoxic, antimutagenic and anticancer effect of concrete and absolute rose oils. The results showed that both concrete and absolute rose oils were cytotoxically and genotoxically safe at a dose of 10 μg/ml when tested on cultures of normal human blood lymphocytes. Also, the results showed significant antimutagenic activity at p oil at the same dose level when tested on cultures of normal human blood lymphocytes supplemented with 300 ng/ml mitomycin C (MMC). On the other hand, concrete and absolute oils exerted a cytotoxic activity against two kinds of human cancer cell lines: HepG2 and MCF7. Concrete oil showed cytotoxic activity against HepG2 and MCF7 with a half maximal inhibitory concentration (IC50) of 16.28 and 18.09 μg/ml, respectively, whereas absolute rose oil showed its cytotoxic activity against HepG2 and MCF7 with an IC50 of 24.94 and 19.69, respectively. From this study, it is concluded that concrete and absolute rose oils are cytotoxically and genotoxically safe at a dose of 10 μg/ml when tested on cultures of normal human blood lymphocytes. In addition, absolute oil has an antimutagenic activity at the same dose. Further investigations are needed to study the activity of higher doses of both oils in vitro and in vivo in experimental animals in order to evaluate the capability of using these oils as therapeutic for treatment of some kinds of cancers.

  6. In vitro cytotoxicity testing of Ubiquicidin 29-41-{sup 99m}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, Ivette Z.; Okazaki, Kayo; Dias, Luis Alberto Pereira; Higa, Olga Z.; Silva, Fabiana M. da; Vieira, Daniel P., E-mail: dpvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Passos, Priscila; Esteves-Pedro, Natalia M., E-mail: fabiana@biosintesis.com.br [Laboratorio Biosintesis Ltda, Sao Paulo, SP (Brazil)

    2015-07-01

    The work carried out cytotoxicity tests using a radiopharmaceutical compound produced at IPEN/CNEN-SP to certify its safety through in vitro cytotoxicity tests. Since 2009, the Brazilian regulatory agency (ANVISA) requires that such tests have to be carried out following good laboratory practices (GLP) and in according to the OECD (Organisation for Economic Co-operation and Development) guidelines in order to certify its safety for medical use. Those guidelines comprises series of technical recommendations performed to assure quality of experiments. The study chose Ubiquicidin 29-41, an antimicrobial peptide used to discriminate bacterial infection foci from inflammatory sites. Amounts of UBI{sub 29-41} were conjugated or not to {sup 99m}Tc and diluted to equivalent concentrations of 10, 100 and 1000% of the maximum dose (or activity) administered in adults. Possible cytotoxic effects were evaluated in comparison to untreated controls as well as positive and negative damage controls. Both full (radioactive) radiopharmaceuticals, as their precursors (only molecules without conjugation to isotopes) showed no significant cytotoxic effect (cytotoxicity ≤ 10%). The study was conducted for the first time in the country comprising preclinical testing of this radiopharmaceutical in accordance with internationally accepted quality parameters, ensuring the safety of its use and enabling inclusion in the pharmaceutical regulatory agenda. (author)

  7. Immunogenicity moderation effect of interleukin-24 on myelogenous leukemia cells.

    Science.gov (United States)

    Yu, Xin; Miao, Jingcheng; Xia, Wei; Gu, Zong-Jiang

    2018-04-01

    Previous studies have shown that interleukin-24 (IL-24) has tumor-suppressing activity by multiple pathways. However, the immunogenicity moderation effect of IL-24 on malignant cells has not been explored extensively. In this study, we investigated the role of IL-24 in immunogenicity modulation of the myelogenous leukemia cells. Data show that myelogenous leukemia cells express low levels of immunogenicity molecules. Treatment with IL-24 could enhance leukemia cell immunogenicity, predominantly regulate leukemia cells to produce immune-associated cytokines, and improve the cytotoxic sensitivity of these cells to immune effector cells. IL-24 expression could retard transplanted leukemia cell tumor growth in vivo in athymic nude mice. Moreover, IL-24 had marked effects on downregulating the expression of angiogenesis-related proteins vascular endothelial growth factor, cluster of differentiation (CD) 31, CD34, collagen IV and metastasis-related factors CD147, membrane type-1 matrix metalloproteinase (MMP), and MMP-2 and MMP-9 in transplanted tumors. These findings indicated novel functions of this antitumor gene and characterized IL-24 as a promising agent for further clinical trial for hematologic malignancy immunotherapy.

  8. Cytotoxicity of lambda-cyhalothrin on the macrophage cell line RAW 264.7.

    Science.gov (United States)

    Zhang, Quan; Wang, Cui; Sun, Liwei; Li, Ling; Zhao, Meirong

    2010-01-01

    The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.

  9. In vitro Cytotoxic Activity of Four Plants Used in Persian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2013-08-01

    Full Text Available Purpose: The aim of this study was to investigate in vitro cytotoxic activity of four methanolic crude plant extracts against panel cell lines. Methods: Methanolic extracts were tested for their possible antitumor activity and cytotoxicity using the 3-(4,5-dimetylthiazol-2-yl-2,5- diphenyltetrazolium bromide (MTT assay on six cancer cell lines; non-Hodgkin’s B-cell lymphoma (Raji, human leukemic monocyte lymphoma (U937, human acute myelocytic leukemia (KG-1A, human breast carcinoma (MCF-7 cells, human Prostate Cancer (PC3 and mouse fibrosarcoma (WEHI-164 cell lines and one normal cell line; Human Umbilical Vein Endothelial Cells (HUVEC. Results: All species showed dose dependent inhibition of cell proliferation. IC50 values ranging from 25.66±1.2 to 205.11±1.3 μg/ml. The highest cytotoxic activity Chelidonium majus L> Ferulago Angulata DC> Echinophora platyloba DC> Salvia officinalis L, respectively. Conclusion: all extracts demonstrate promising cytotoxicity activity as a natural resource for future bio-guided fractionation and isolation of potential antitumor agents.

  10. The novel oral imatinib microemulsions: physical properties, cytotoxicity activities and improved Caco-2 cell permeability.

    Science.gov (United States)

    Gundogdu, Evren; Karasulu, Hatice Yesim; Koksal, Cinel; Karasulu, Ercüment

    2013-01-01

    The objective of this study was to formulate imatinib (IM) loaded to water-in-oil (w/o) microemulsions as an alternative formulation for cancer therapy and to evaluate the cytotoxic effect of microemulsions Caco-2 and MCF-7. Moreover, permeability studies were also performed with Caco-2 cells. W/o microemulsion systems were developed by using pseudo-ternary phase diagram. According to cytotoxicity studies, all formulations did not exert a cytotoxic effect on Caco-2 cells. Furthermore, all formulations had a significant cytotoxic effect on MCF-7 cells and the cytotoxic effect of M3IM was significantly more than that of other microemulsions and IM solution (p < 0.05). The permeability studies of IM across Caco-2 cells showed that permeability value from apical to basolateral was higher than permeability value of other formulations. In conclusion, the microemulsion formulations as a drug carrier, especially M3IM formulation, may be used as an effective alternative breast cancer therapy for oral delivery of IM.

  11. Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro

    DEFF Research Database (Denmark)

    Labanauskiene, J; Gehl, J; Didziapetriene, J

    2007-01-01

    14, emitted light from 660 nm). The fluence rate at the level of the cells was 3 mW/m(2). Cytotoxic effect on cells viability was evaluated using MTT assay. Our in vitro data showed that the cytotoxicity of PDT in combination with EP increases fourfold on the average. Based on the results we suggest...... tumor therapy (PDT)--the cancer treatment method based on the use of photosensitizers that localize selectively in malignant tumors and become cytotoxic when exposed to light, and EP, with the aim to enhance the delivery of photosensitizers into the tumor and therefore to increase the efficacy of PDT....... Thus, the aim of study was to evaluate the cytotoxic effect of PDT in combination with EP. A Chinese hamster lung fibroblast cell line (DC-3F) was used. The cells were affected by photosensitizers chlorin e(6) (C e(6)) at the dose of 10 mug/ml and aluminium phthalocyanine tetrasulfonate (AlPcS4...

  12. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  13. Three New Cytotoxic ent-Kaurane Diterpenes from Isodon excisoides

    Directory of Open Access Journals (Sweden)

    Li-Ping Dai

    2015-09-01

    Full Text Available Three types of ent-kaurane diterpenoids were isolated from the aerial parts of Isodon excisoides, including three new diterpenoids, 1α,7α,14β-trihydroxy-20-acetoxy-ent-kaur-15-one (1; 1α,7α,14β,18-tetrahydroxy-20-acetoxy-ent-kaur-15-one (2; and 1α-acetoxy-14β-hydroxy-7α,20-epoxy-ent-kaur-16-en-15-one (3; together with six known diterpenes henryin (4; kamebanin (5; reniformin C (6; kamebacetal A (7; kamebacetal B (8; and oridonin (9. The structures of the isolated compounds were elucidated by means of nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry in conjunction with published data for their analogs, as well as their fragmentation patterns. Compounds 5 and 9 were isolated from Isodon excisoides for the first time. To explore the structure-activity relationships of the isolated compounds, they were tested for their cytotoxic effects against five human cancer cell lines: HCT-116, HepG2, A2780, NCI-H1650, and BGC-823. Most of the isolated compounds showed certain cytotoxic activity against the five cancer cell lines with IC50 values ranging from 1.09–8.53 µM. Among the tested compounds, compound 4 exhibited the strongest cytotoxic activity in the tested cell lines, with IC50 values ranging from 1.31–2.07 µM. Compounds 1, 6, and 7 exhibited selective cytotoxic activity.

  14. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... and the nitroblue tetrazolium (NBT) assay. The cytotoxicity ... The antioxidant activity and cytotoxic effect of the extracts increased with increase ... supplements are concoctions of plants and/or plant .... In vitro antioxidant assay.

  15. Cytotoxicity of four denture adhesives on human gingival fibroblast cells.

    Science.gov (United States)

    Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-02-01

    The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.

  16. Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer: Decreased LAK cytotoxicity caused by a low incidence of CD56+ and CD57+ mononuclear blood cells

    International Nuclear Information System (INIS)

    Hermann, G.G.; Petersen, K.R.; Steven, K.; Zeuthen, J.

    1990-01-01

    The cytotoxicity of unstimulated peripheral blood mononuclear cells (US-PBMC), phytohemagglutinin (PHA)-stimulated PBMC (PS-PBMC) and interleukin-2 (IL-2)-activated PBMC (LAK cells) was assessed in patients with noninvasive and invasive transitional-cell bladder cancer and compared with those determined in healthy controls. The differences in the cytotoxicities were correlated with specific changes in the subsets of peripheral blood mononuclear cells (PBMC). PBMC from 37 patients and 13 healthy controls were tested against the bladder cancer cell line T24 in 51 Cr-release assays. The PBMC subsets were analyzed using monoclonal antibodies against T cells, natural killer (NK) -cells, monocytes, and activation markers. The cytotoxicities of US-PBMC, PS-PBMC, and LAK cells were all significantly lower in the cancer patients than in the controls (P less than 0.05). The percentages of PBMC positive for the NK-cell markers CD56 and CD57 were lowest in the patients and were correlated to the decrease in cytotoxicity. Depletion of CD56+ or CD57+ cells from PBMC prior to or after 2 days stimulation with IL-2 demonstrated that these cells are the major source of LAK-cell cytotoxicity and showed that the reduced ability of bladder cancer patient PBMC to develop LAK-cell cytotoxicity is a result of a low incidence of CD56+ and CD57+ cells in the blood. These findings indicate that IL-2 therapy alone might not be a sufficient therapy of bladder cancer patients

  17. Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect.

    Science.gov (United States)

    Panáček, Aleš; Smékalová, Monika; Kilianová, Martina; Prucek, Robert; Bogdanová, Kateřina; Večeřová, Renata; Kolář, Milan; Havrdová, Markéta; Płaza, Grażyna Anna; Chojniak, Joanna; Zbořil, Radek; Kvítek, Libor

    2015-12-28

    The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels.

  18. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    Science.gov (United States)

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of cell cytotoxic effect on herbal extracts mixtures

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Gwon, Hui Jeong; Choi, Bo Ram; Lim, Youn Mook; Nho, Young Chang

    2009-01-01

    Herbal extracts (HE) such as Houttuynia cordata Thunb., Eucommia ulimoides, Plantago asiatica var., Morus alba L., and Ulmus davidiana var., are known to suppress an atopic dermatitis like skin lesions. In this study, to evaluate the cell cytotoxicity effect on L929, HaCaT and HMC-1 cell by the HE, the herbs were extracted with distilled water (at 75 .deg. C) and then the HE mixtures were freeze-dried for 5 days and sterilized with γ-rays. The cytotoxicity was measured by Cell Counting Kit-8 (CCK-8) assay. The result showed that the HE mixtures did not significantly affect cell viability and had no toxicity on the cells. These findings indicate that the HE mixtures can be used as a potential therapeutic agent

  20. Evaluation of cell cytotoxic effect on herbal extracts mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Gwon, Hui Jeong; Choi, Bo Ram; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-12-15

    Herbal extracts (HE) such as Houttuynia cordata Thunb., Eucommia ulimoides, Plantago asiatica var., Morus alba L., and Ulmus davidiana var., are known to suppress an atopic dermatitis like skin lesions. In this study, to evaluate the cell cytotoxicity effect on L929, HaCaT and HMC-1 cell by the HE, the herbs were extracted with distilled water (at 75 .deg. C) and then the HE mixtures were freeze-dried for 5 days and sterilized with {gamma}-rays. The cytotoxicity was measured by Cell Counting Kit-8 (CCK-8) assay. The result showed that the HE mixtures did not significantly affect cell viability and had no toxicity on the cells. These findings indicate that the HE mixtures can be used as a potential therapeutic agent.

  1. Carboplatin- and cisplatin-induced potentiation of moderate-dose radiation cytotoxicity in human lung cancer cell lines

    NARCIS (Netherlands)

    Groen, H. J.; Sleijfer, S.; Meijer, C.; Kampinga, H. H.; Konings, A. W. T.; de Vries, E. G. E.; Mulder, N. H.

    1995-01-01

    The interaction between moderate-dose radiation and cisplatin or carboplatin was studied in a cisplatin-sensitive (GLC(4)) and -resistant (GLC(4)-CDDP) human small-cell lung cancer cell line. Cellular toxicity was analysed under oxic conditions with the microculture tetrazolium assay. For the

  2. Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity from the Edible Mushroom Pleurotus citrinopileatus.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Wang, Wen-Zhao; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-05-01

    One new perhydrobenzannulated 5,5-spiroketal sesquiterpene, pleurospiroketal F (1), as well as six new modified bisabolene sesquiterpenes pleurotins A-F (2-7) were isolated from solid-state fermentation of Pleurotus citrinopileatus. The structures of compounds 1-7 were determined by NMR and MS spectroscopic analysis. The absolute configuration of 1 was determined by X-ray diffraction analysis, while the absolute configurations of 3-7 were assigned using the in situ dimolybdenum circular dichroism method and circular dichroism data comparison. Protein tyrosine phosphatase 1B plays a crucial role as a negative regulator of the insulin-dependent signal cascades. Therefore, the protein tyrosine phosphatase 1B inhibitor can be used for treating type 2 diabetes mellitus and obesity. Compounds 2 and 6 showed moderate inhibitory effects on protein tyrosine phosphatase 1B with IC50 s of 32.1 µM and 30.5 µM, respectively. The kinetic study confirmed compound 2 to be a noncompetitive inhibitor. Compounds 1-7 did not show cytotoxic activity against cancer cell lines (IC50 > 50 µM). Georg Thieme Verlag KG Stuttgart · New York.

  3. Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum.

    Science.gov (United States)

    Lei, Jeremy; Burgess, Elaine J; Richardson, Alistair T B; Hawkins, Bill C; Baird, Sarah K; Smallfield, Bruce M; van Klink, John W; Perry, Nigel B

    2015-08-01

    Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells. Georg Thieme Verlag KG Stuttgart · New York.

  4. Evaluation of the cytotoxicity of dihydroxytryptamines and 5-hydroxytryptamine antagonists as cytotoxic agents in dimethylhydrazine-induced adenocarcinomata.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-01-01

    The cytotoxicity of 5,6-dihydroxytryptamine (5,6-DHT), 5,7-dihydroxytryptamine (5,7-DHT), bromolysergic acid diethylamide (BOL), methysergide, and cyproheptadine, and also of 5,6-DHT together with either BOL, methysergide, or cyproheptadine in dimethylhydrazine-induced (DMH) carcinomata of rat colon was evaluated by estimating the percentage of necrotic cells in histological sections of tissues taken 15 h after injection of each of the drugs. In addition, the influence of methysergide and cyproheptadine on the tumour cell mitotic rate was estimated by means of a stathmokinetic technique. Both 5,6-DHT and 5,7-DHT were cytotoxic at each dose tested and for each of these agents the percentage of necrotic cells was directly correlated with the dose of drug used. BOL was not found to be cytotoxic to the colonic carcinomata, whereas both methysergide and cyproheptadine did cause detectable tumour cell necrosis. Methysergide was also found to accelerate tumour cell proliferation, whereas cyproheptadine did not. BOL competitively inhibited the cytotoxicity of 5,6-DHT and neither methysergide nor cyproheptadine potentiated the effect of 5,6 DHT.

  5. Cytotoxic Activity of Selected Iranian Traditional Medicinal Plants on Colon, Colorectal and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Leila Mohammad Taghizadeh Kashani

    2014-11-01

    Full Text Available Background: Many natural products from plants have been recognized to exert anticancer activity. In this study, ethanolic extracts of selected medicinal herbs from Iranian flora including Alyssum homolocarpum Fisch. (from seeds, Urtica dioica L. (from aerial parts, Cichorium intybus L. (from roots and Solanum nigrum L. (from fruits, were evaluated for their cytotoxic effect on different cell lines.Methods: Cytotoxic effect of these extracts was studied on three different cancer cell lines; colon carcinoma (HT-29, colorectal adenocarcinoma (Caco-2 and breast ductal carcinoma (T47D. In addition, Swiss mouse embryo fibroblasts (NIH 3T3 were used as normal nonmalignant cells. MTT assay (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide was utilized for calculating the cytotoxicity of extracts on cell lines.Results: Results showed the potent cytotoxic activity of U. dioica ethanolic extract against T47D cell line with IC50 value of 46.14±4.55 µg/ml. Other extracts showed poor activity with IC50>100 µg/ml.Conclusions: Cytotoxic activity recorded in the present study revealed high potential antiproliferative activity of U. dioica ethanolic extract against T47D cell line. The real IC50 values of this extract may be considerably lower than the IC50 measured in our study if its pharmacological active compounds become pure. The results emphasize the importance of studies on U. dioica ethanolic extract to characterize potential components as cytotoxic natural medicines.

  6. Model-based optimization of G-CSF treatment during cytotoxic chemotherapy.

    Science.gov (United States)

    Schirm, Sibylle; Engel, Christoph; Loibl, Sibylle; Loeffler, Markus; Scholz, Markus

    2018-02-01

    Although G-CSF is widely used to prevent or ameliorate leukopenia during cytotoxic chemotherapies, its optimal use is still under debate and depends on many therapy parameters such as dosing and timing of cytotoxic drugs and G-CSF, G-CSF pharmaceuticals used and individual risk factors of patients. We integrate available biological knowledge and clinical data regarding cell kinetics of bone marrow granulopoiesis, the cytotoxic effects of chemotherapy and pharmacokinetics and pharmacodynamics of G-CSF applications (filgrastim or pegfilgrastim) into a comprehensive model. The model explains leukocyte time courses of more than 70 therapy scenarios comprising 10 different cytotoxic drugs. It is applied to develop optimized G-CSF schedules for a variety of clinical scenarios. Clinical trial results showed validity of model predictions regarding alternative G-CSF schedules. We propose modifications of G-CSF treatment for the chemotherapies 'BEACOPP escalated' (Hodgkin's disease), 'ETC' (breast cancer), and risk-adapted schedules for 'CHOP-14' (aggressive non-Hodgkin's lymphoma in elderly patients). We conclude that we established a model of human granulopoiesis under chemotherapy which allows predictions of yet untested G-CSF schedules, comparisons between them, and optimization of filgrastim and pegfilgrastim treatment. As a general rule of thumb, G-CSF treatment should not be started too early and patients could profit from filgrastim treatment continued until the end of the chemotherapy cycle.

  7. Cytotoxic Activity of Coagulase-Negative Staphylococci in Bovine Mastitis

    Science.gov (United States)

    Zhang, Songlin; Maddox, Carol W.

    2000-01-01

    Secreted toxins play important roles in the pathogenesis of bacterial infections. In this study, we examined the presence of secreted cytotoxic factors of coagulase-negative staphylococci (CoNS) from bovine clinical and subclinical mastitis. A 34- to 36-kDa protein with cell-rounding cytotoxic activity was found in many CoNS strains, especially in Staphylococcus chromogenes strains. The protein caused cell detachment and cell rounding in several cell lines, including HEp-2, Int 407, CHO-K1, and Y-1 cells. Native protein recovered from nondenatured polyacrylamide gel electrophoresis showed both cytotoxic activity and casein hydrolysis activity. The purified protein had a pH optimal at 7.2 to 7.5 and a pI of 5.1 and was heat labile. The proteolytic activity could be inhibited by zinc and metal specific inhibitors such as 1,10-phenanthroline and EDTA, indicating that it is a metalloprotease. Protein mass analysis and peptide sequencing indicated that the protein is a novel metalloprotease. Different bacterial strains expressed variable levels of 34- to 36-kDa protease, which may provide an indication of strain virulence. PMID:10678913

  8. Fatty Acid Synthase Inhibitor Cytotoxicity: Depletion of the Coenzyme-A Pool

    National Research Council Canada - National Science Library

    Kuhajda, Francis

    2003-01-01

    .... In light of recent data that showed a marked increase in malonyl-CoA following FAS inhibition, this grant was focused on coenzyme-A depletion as a key mechanism of action leading to cytotoxicity...

  9. Chemical composition and in vitro cytotoxic and antileishmanial activities of extract and essential oil from leaves of Piper cernuum.

    Science.gov (United States)

    Capello, Tabata M; Martins, Euder G A; de Farias, Camyla F; Figueiredo, Carlos R; Matsuo, Alisson L; Passero, Luiz Felipe D; Oliveira-Silva, Diogo; Sartorelli, Patricia; Lago, João Henrique G

    2015-02-01

    Fractionation of the MeOH extract from leaves of Piper cernuum Vell. (Piperaceae) afforded six phenylpropanoid derivatives: 3',4'-dimethoxydihydrocinnamic acid (1), piplaroxide (2), methyl 4'-hydroxy-3',5'-dimethoxy cinnamate (3), 3',4',5'-trimethoxydihydrocinnamic acid (3), dihydropiplartine (5), and piplartine (6). The structures of isolated metabolites were characterized by NMR and MS spectral data analysis. The chemical composition of essential oil from the leaves was determined using GC/LREIMS followed by the determination of Kovats indexes. This procedure allowed the identification of nineteen terpenoids, with β-elemene (7), bicyclogermacrene (8), germacrene D (9), and (E)-caryophyllene (10) as the main compounds. Compounds 1 and 3-6 displayed no in vitro cytotoxicity against cancer cell lineages B16F10-Nex2, U87, HeLa, HL-60, HCT, and A2058 while 2 showed moderate activity against B16F10-Nex2 and HL-60 lines. Otherwise, compounds 7-10 displayed high cytotoxic activity. Evaluation against non-tumorigenic HFF cells indicated a reduced selectivity of compounds 7-10 to tumoral cells. No antileishmanial activity on macrophages infected with L. (L.) amnazonensis was found for the crude MeOH extract and compounds 1-6. The crude essential oil and compounds 7-10 reduced parasitism and eliminated the majority of infected and non-infected cells at 50 μg/mL.

  10. Origin of anti-tumor activity of the cysteine-containing GO peptides and further optimization of their cytotoxic properties

    Science.gov (United States)

    Tyuryaeva, Irina I.; Lyublinskaya, Olga G.; Podkorytov, Ivan S.; Skrynnikov, Nikolai R.

    2017-01-01

    Antitumor GO peptides have been designed as dimerization inhibitors of prominent oncoprotein mucin 1. In this study we demonstrate that activity of GO peptides is independent of the level of cellular expression of mucin 1. Furthermore, these peptides prove to be broadly cytotoxic, causing cell death also in normal cells such as dermal fibroblasts and endometrial mesenchymal stem cells. To explore molecular mechanism of their cytotoxicity, we have designed and tested a number of new peptide sequences containing the key CxC or CxxC motifs. Of note, these sequences bear no similarity to mucin 1 except that they also contain a pair of proximal cysteines. Several of the new peptides turned out to be significantly more potent than their GO prototypes. The results suggest that cytotoxicity of these peptides stems from their (moderate) activity as disulfide oxidoreductases. It is expected that such peptides, which we have termed DO peptides, are involved in disulfide-dithiol exchange reaction, resulting in formation of adventitious disulfide bridges in cell proteins. In turn, this leads to a partial loss of protein function and rapid onset of apoptosis. We anticipate that coupling DO sequences with tumor-homing transduction domains can create a potentially valuable new class of tumoricidal peptides.

  11. Cytotoxicity of Portland cement with different radiopacifying agents: a cell death study.

    Science.gov (United States)

    Gomes Cornélio, Ana Lívia; Salles, Loise Pedrosa; Campos da Paz, Mariana; Cirelli, Joni Augusto; Guerreiro-Tanomaru, Juliane Maria; Tanomaru Filho, Mário

    2011-02-01

    The aim of this study was to investigate the cytotoxicity of white Portland cement (PC) alone or associated with bismuth oxide (PCBi), zirconium oxide (PCZir), and calcium tungstate (PCCa) in 2 cell lineages. Murine periodontal ligament cells (mPDL) and rat osteosarcoma cells (ROS 17/2.8) were exposed for 24 hours to specific concentrations of fresh PC and PC associations with radiopacifiers. Zinc oxide-eugenol cement and hydrogen peroxide treatment were applied as cytotoxic positive controls. Cell viability after incubation with the cements was assessed by mitochondrial dehydrogenase enzymatic assay. Cell morphology was microscopically analyzed by cresyl violet staining, and the mechanism of cell death was determined by acridine orange/ethidium bromide methodology. All data were analyzed statistically by analysis of variance and Tukey post hoc test (P cement elutes. PC alone was not cytotoxic, even at 100 mg/mL. Microscopic images showed that none of the PC formulations caused damage to any cell lines. Statistical analysis of apoptosis/necrosis data demonstrated that PC and PC plus radiopacifying agents promoted significant necrosis cell death only at 100 mg/mL. The mPDL cells were more sensitive than ROS17/2.8. The results showed that PC associated with bismuth oxide, zirconium oxide, or calcium tungstate is not cytotoxic to mPDL or ROS17/2.8. Zirconium oxide and calcium tungstate might be good alternatives as radiopacifying agents. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Cytotoxicity, Total Phenolic Contents and Antioxidant Activity of the ...

    African Journals Online (AJOL)

    The leaves of Annona muricata were extracted using ethanol and the extracts were evaluated for cytotoxicity using Brine Shrimp Lethality Assay, total phenolic content (TPC) and antioxidant activity using DPPH radical scavenging assay. The crude extract showed 73.33 % mortality at 1000 μg/mL concentration and its ...

  13. Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract

    Science.gov (United States)

    Izadiyan, Zahra; Shameli, Kamyar; Hara, Hirofumi; Mohd Taib, Siti Husnaa

    2018-01-01

    The unique properties of gold nanoparticles (Au-NPs) produce in plant extract make them attractive for use in medical and industrial applications, it is necessary to develop environmentally friendly methods for their synthesis. This can be accomplished by replacing the traditional chemical compounds for the reduction of the gold ions to Au-NPs during synthesis with natural plant extracts or with plasmas atmospheric pressure. Here, the biosynthesis of Au-NPs using the Juglans regia (J. regia) green husk extract was investigated as the reducing and stabilizing agent. The formation of Au-NPs was initially monitored by visual observation and then characterized with the help of various characterization techniques. UV-vis spectroscopy results showed that Au-NPs synthesized using moderate temperature have a blue shifting, good distribution and smaller size compare with Au-NPs fabricated in room temperature. X-ray diffraction (XRD) results revealed the distinctive formation of the crystalline structure of Au-NPs with a spherical shape. According to transmission electron microscopy (TEM), the mean diameter and standard deviation of Au-NPs at room and moderate temperatures were 19.19 ± 4.7 and 14.32 ± 3.24 nm, respectively. The result of Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) are in good agreement with each other and confirm that by using the moderate temperature compare to the room temperature the yield of reaction increased. Based on the zeta potential result, Au-NPs has sufficient value for the stability of the solution. According to FTIR spectrum, the J. regia would be coated on the gold ions surface in a successful manner. The non-toxic effect of Au-NPs concentration below 250 μg/ml was observed in the studies of in vitro cytotoxicity on normal and cancerous cell lines, respectively. The dose-dependent toxicity made it a suitable candidate for various medical applications.

  14. Synthesis, cytotoxicity, cellular uptake and influence on eicosanoid metabolism of cobalt-alkyne modified fructoses in comparison to auranofin and the cytotoxic COX inhibitor Co-ASS.

    Science.gov (United States)

    Ott, Ingo; Koch, Thao; Shorafa, Hashem; Bai, Zhenlin; Poeckel, Daniel; Steinhilber, Dieter; Gust, Ronald

    2005-06-21

    Propargylhexacarbonyldicobalt complexes with fructopyranose ligands were prepared and investigated for cytotoxicity in the MCF-7 human breast cancer cell line. The antiproliferative effects depended on the presence of isopropylidene protecting groups in the carbohydrate ligand and correlated with the cellular concentration of the complexes. IC(50) values of > 20 microM demonstrated that the fructose derivatives were only moderately active compared to the references auranofin and the aspirin (ASS) derivative [2-acetoxy(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS). In continuation of our studies on the mode of action of cobalt-alkyne complexes we studied the influence of the compounds on the formation of 12-HHT (COX-1 product) and 12-HETE (12-LOX product) by human platelets as an indication of the interference in the eicosanoid metabolism, which is discussed as a target system of cytostatics. Co-ASS was an efficient COX-1 inhibitor without LOX inhibitory activity and auranofin inhibited both COX-1 and 12-LOX eicosanoid production. The missing activity of the fructopyranose complexes at the 12-LOX and the only moderate effects at COX-1 indicate that COX/LOX inhibition may be in part responsible for the pharmacological effects of auranofin and Co-ASS but not for those of the fructopyranose complexes.

  15. Interleukin-2 activation of cytotoxic cells in postmastectomy seroma.

    Science.gov (United States)

    Gercel-Taylor, C; Hoffman, J P; Taylor, D D; Owens, K J; Eisenberg, B L

    1996-02-15

    Lymphocytes were isolated from breast seroma fluids and used to study the mechanism of activation of cytotoxic lymphocytes and possible role of immunological potentiation following surgery in breast cancer patients. Single or serial samples were obtained from patients who had undergone mastectomy or lumpectomy with axillary node dissection. Lymphocytes were activated with rIL-2 (interleukin-2) and their cytotoxic activity was studied against Daudi and K562 cells and against a breast tumor line (SKBr-3). All of the patients (21/21) responded to IL-2 stimulation by significant activation of cytotoxic activity. The unstimulated cytotoxic activity of these cells against NK targets was low with less than 10% specific release in cytotoxicity assays. In simultaneous experiments, autologous seroma fluid was included during activation of lymphocytes to study possible regulatory molecules that may be present. In 17/21 patients, the presence of their seroma fluid, during the activation period, enhanced or did not effect the cytotoxic potential of their lymphocytes; inhibition was observed when seroma fluids from 4/21 patients were included. Analysis of the cytotoxic population derived from combined IL-2 and seroma treatments indicates the presence of cells with increased expression of CD56, and CD2, as well as in some cases CD16 expression. Cytotoxic lymphocytes derived from IL-2 and seroma treatments appeared to be more effective killers. Modulation of CD2 expression with seroma alone appeared to result in the generation of this highly cytotoxic population. This study demonstrates the role of CD2 expression in the effectiveness of LAK cell killing and also potential benefit of an immunotherapeutic approach to the postoperative treatment of carcinoma of the breast.

  16. Degradation of cytotoxic agent in soap and detergent wastewater by advanced oxidation processes

    International Nuclear Information System (INIS)

    Iqbal, M.; Bhatti, I.A.; Nisar, J.

    2017-01-01

    Wastewater from soap and detergent industries is a source of high pollution and contamination for water sheds. In present investigation, cytotoxic profiling was documented from Faisalabad, Sargodha and Gujranwala cities, Pakistan, followed by advanced oxidation processes (AOPs) treatments (UV and gamma radiation). The cytotoxicity was evaluated by Allium cepa, haemolytic and brine shrimp bioassays. Independent variables such as gamma radiation absorbed dose, H2O2, TiO2 concentrations, reaction time, pH and shaking speed were optimized using statistical techniques. The raw soap and detergent wastewater showed cytotoxicity up to high extent. At optimized conditions, > 94% degradation was achieved both in case of UV (exposure time 100 min, TiO2 concentration 5.93 g/L, H2O2 4.39%, pH 6.50 and shaking speed 110 rpm) and gamma radiation (12.69 kGy absorbed dose in the presence of 4.65% H2O2) treated samples and water quality parameters (WQP) also improved significantly. The cytotoxicity reduced sharply as a result of AOPs treatment at optimized conditions. From the results, it is evident that AOPs under investigation could be used for the degradation and cytotoxicity reduction of soap and detergent wastewater. (author)

  17. Waiting times for the appearance of cytotoxic T-lymphocyte escape mutants in chronic HIV-1 infection

    International Nuclear Information System (INIS)

    Liu Yi; Mullins, James I.; Mittler, John E.

    2006-01-01

    The failure of HIV-1 to escape at some cytotoxic T-lymphocyte (CTL) epitopes has generally been explained in terms of viral fitness costs or ineffective or attenuated CTL responses. Relatively little attention has been paid to the evolutionary time required for escape mutants to be detected. This time is significantly affected by selection, mutation rates, the presence of other advantageous mutations, and the effective population size of HIV-1 in vivo (typically estimated to be ∼10 3 in chronically infected patients, though one study has estimated it to be ∼10 5 ). Here, we use a forward simulator with experimentally estimated HIV-1 parameters to show that these delays can be substantial. For an effective population size of 10 3 , even highly advantageous mutants (s = 0.5) may not be detected for a couple of years in chronically infected patients, while moderately advantageous escape mutants (s = 0.1) may not be detected for up to 10 years. Even with an effective population size of 10 5 , a moderately advantageous escape mutant (s = 0.1) may not be detected in the population within 2 years if it has to compete with other selectively advantageous mutants. Stochastic evolutionary forces, therefore, in addition to viral fitness costs and ineffective or attenuated CTL responses, must be taken into account when assessing the selection of CTL escape mutations

  18. Cytotoxic T cells are preferentially activated in the duodenal epithelium from patients with florid coeliac disease.

    Science.gov (United States)

    Buri, Caroline; Burri, Philipp; Bähler, Peter; Straumann, Alex; Müller-Schenker, Beatrice; Birrer, Stefan; Mueller, Christoph

    2005-06-01

    Villous atrophy and increased numbers of intraepithelial T cells in duodenal biopsies represent a hallmark of coeliac disease. In the present study, an attempt has been made to define whether cytotoxic cell subsets are activated in situ in the affected mucosa of susceptible individuals early after ingestion of a gluten-containing diet. Duodenal biopsies from 11 patients with coeliac disease who repeatedly underwent endoscopic biopsy after ingestion of individually dosed amounts of gluten were used for immunohistochemistry and in situ hybridization. To identify the cell subsets expressing perforin mRNA and protein, in situ hybridization and FACS analyses were performed on cells isolated from fresh biopsies. Compared with normal mucosa, the number of intraepithelial lymphocytes containing perforin mRNA and protein increased significantly in tissue samples showing moderate or florid coeliac disease and closely paralleled the severity of morphological alteration, whereas the frequency of perforin-expressing lamina propria lymphocytes increased only moderately. Cells isolated from florid biopsies that expressed perforin mRNA and protein were preferentially T-cell receptor (TCR) alphabeta T cells. The increase in both the absolute number and the percentage of lymphocytes expressing perforin mRNA indicates in situ activation of lymphocytes within the epithelial compartment in florid coeliac disease upon ingestion of a gluten-containing diet in patients predisposed to coeliac disease. Copyright 2005 Pathological Society of Great Britain and Ireland

  19. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  20. Metastatic melanoma: results of 'classical' second-line treatment with cytotoxic chemotherapies.

    Science.gov (United States)

    Perrin, Christophe; Pracht, Marc; Talour, Karen; Adamski, Henri; Cumin, Isabelle; Porneuf, Marc; Talarmin, Marie; Mesbah, Habiba; Audrain, Odile; Moignet, Aline; Lefeuvre-Plesse, Claudia; Lesimple, Thierry

    2014-10-01

    Metastatic melanoma is one of the most aggressive tumours, with a median survival that does not exceed 12 months. None of the cytotoxic first-line therapies have shown survival benefit in randomised clinical trials. To describe clinical benefit of second-line cytotoxic chemotherapy in the second line of treatment for metastatic melanoma. In a retrospective study, we analyse the outcome of patients with metastatic melanoma who had received two lines or more of cytotoxic treatments in four French dermato-oncology departments between 1999 and 2009. We describe the outcomes for 109 patients. Most of these patients received dacarbazine for the first line of chemotherapy and fotemustine for the second line of chemotherapy (67.0 and 64.2%, respectively). A clinical benefit was observed in 24.1% of the patients and overall survival was 4.1 months after the second-line treatment. At least 23.8% of patients suffered from grade 3 or 4 toxicities. The presence of more than two sites of metastasis and an M1c staging according to the AJCC classification represented negative predictive factors of clinical benefit. This study shows the modest benefit of a second line of cytotoxic chemotherapy in a nonselected population. If eligible, these patients should be proposed for ongoing clinical trials or for targeted therapies.

  1. Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves

    Directory of Open Access Journals (Sweden)

    K. Khanra

    2016-01-01

    Full Text Available Objective(s: For the development of reliable, ecofriendly, less expensive process for the synthesis of silver nanoparticles and to evaluate the bactericidal, and cytotoxicity properties of silver nanoparticles synthesized from root extract of Croton bonplandianum, Baill. Materials and Methods: The synthesis of silver nanoparticles by plant part of Croton bonplandianum was carried out.  The formation of nanoparticles was confirmed by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, XRD and UV-Vis spectrophotometric analysis.  The biochemical properties were assayed by antibacterial study, cytotoxicity assay using cancer cell line.  Results: The formation of silver nanoparticles was confirmed by UV-VIS spectroscopic analysis which showed absorbance peak at 425 nm.  X-ray diffraction photograph indicated the face centered cubic structure of the synthesized AgNPs.  TEM has displayed the different dimensional images of biogenic silver nanoparticles with particle size distribution ranging from 15-40 nm with an average size of 32 nm. Silver particles are spherical in shape, clustered.  The EDX analysis was used to identify the elemental composition of synthesized AgNPs. Antibacterial activity of the synthesized AgNPs against three Gram positive and Gram negative bacteria strains like Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa carried out showed significant zones of inhibition. The cytotoxicity study by AgNPS also showed cytotoxicity on ovarian cancer cell line PA-1 and lung epithelial cancer cell line A549.  Conclusion: The present study confirms that the AgNPs have great promise as antibacterial, and anticancer agent.

  2. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    International Nuclear Information System (INIS)

    Lima, R; Feitosa, L O; Ballottin, D; Tasic, L; Durán, N; Marcato, P D

    2013-01-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (− 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  3. In vitro cytotoxicity of biosynthesized titanium dioxide nanoparticles ...

    African Journals Online (AJOL)

    ISSN: 1596-5996 (print); 1596-9827 (electronic) ... dioxide (Ti(OH)2) (80 mL) in aqueous solution with stirring for 2 h at room temperature. The TiO2 NPs ... The TiO2 NPs showed dose-dependent cytotoxicity towards D145 cells. Keywords: .... with ethanol and chloroform, and dried at room ... oxidation state of the TiO2 NPs.

  4. Cytotoxicity Comparison of Harvard Zinc Phosphate Cement Versus Panavia F2 and Rely X Plus Resin Cements on Rat L929-fibroblasts.

    Science.gov (United States)

    Mahasti, Sahabi; Sattari, Mandana; Romoozi, Elham; Akbar-Zadeh Baghban, Alireza

    2011-01-01

    Resin cements, regardless of their biocompatibility, have been widely used in restorative dentistry during the recent years. These cements contain hydroxy ethyl methacrylate (HEMA) molecules which are claimed to penetrate into dentinal tubules and may affect dental pulp. Since tooth preparation for metal ceramic restorations involves a large surface of the tooth, cytotoxicity of these cements would be more important in fixed prosthodontic treatments. The purpose of this study was to compare the cytotoxicity of two resin cements (Panavia F2 and Rely X Plus) versus zinc phosphate cement (Harvard) using rat L929-fibroblasts in vitro. In this experimental study, ninety hollow glass cylinders (internal diameter 5-mm, height 2-mm) were made and divided into three groups. Each group was filled with one of three experimental cements; Harvard Zinc Phosphate cement, Panavia F2 resin cement and Rely X Plus resin cement. L929- Fibroblast were passaged and subsequently cultured in 6-well plates of 5×10(5) cells each. The culture medium was RPMI_ 1640. All samples were incubated in CO2. Using enzyme-linked immune-sorbent assay (ELISA) and (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) assay, the cytotoxicity of the cements was investigated at 1 hour, 24 hours and one week post exposure. Statistical analyses were performed via two-way ANOVA and honestly significant difference (HSD) Tukey tests. This study revealed significant differences between the three cements at the different time intervals. Harvard cement displayed the greatest cytotoxicity at all three intervals. After 1 hour Panavia F2 showed the next greatest cytotoxicity, but after 24-hours and oneweek intervals Rely X Plus showed the next greatest cytotoxicity. The results further showed that cytotoxicity decreased significantly in the Panavia F2 group with time (pHarvard cement group failed to showed no noticeable change in cytotoxicity with time. Although this study has limitations, it provides

  5. Characteristics of medication errors with parenteral cytotoxic drugs

    OpenAIRE

    Fyhr, A; Akselsson, R

    2012-01-01

    Errors involving cytotoxic drugs have the potential of being fatal and should therefore be prevented. The objective of this article is to identify the characteristics of medication errors involving parenteral cytotoxic drugs in Sweden. A total of 60 cases reported to the national error reporting systems from 1996 to 2008 were reviewed. Classification was made to identify cytotoxic drugs involved, type of error, where the error occurred, error detection mechanism, and consequences for the pati...

  6. Study of Cytotoxic Effects of Benzonitrile Pesticides

    OpenAIRE

    Lovecka, Petra; Thimova, Marketa; Grznarova, Petra; Lipov, Jan; Knejzlik, Zdenek; Stiborova, Hana; Nindhia, Tjokorda Gde Tirta; Demnerova, Katerina; Ruml, Tomas

    2015-01-01

    The benzonitrile herbicides bromoxynil, chloroxynil, dichlobenil, and ioxynil have been used actively worldwide to control weeds in agriculture since 1970s. Even though dichlobenil is prohibited in EU since 2008, studies addressing the fate of benzonitrile herbicides in the environment show that some metabolites of these herbicides are very persistent. We tested the cytotoxic effects of benzonitrile herbicides and their microbial metabolites using two human cell lines, Hep G2 and HEK293T, rep...

  7. Cytotoxic activity of four Mexican medicinal plants.

    Science.gov (United States)

    Vega-Avila, Elisa; Espejo-Serna, Adolfo; Alarcón-Aguilar, Francisco; Velasco-Lezama, Rodolfo

    2009-01-01

    Ibervillea sonorae Greene, Cucurbita ficifolia Bouché, Tagetes lucida Cav and Justicia spicigera Scheltdd are Mexican native plants used in the treatment of different illnesses. The ethanolic extract of J. spicigera and T. lucida as well as aqueous extracts from I. sonorae, C. ficifolia, T. lucida and J. spicigera were investigated using sulforhodamine B assay. These extracts were assessed using two cell line: T47D (Human Breast cancer) and HeLa (Human cervix cancer). Colchicine was used as the positive control. Data are presented as the dose that inhibited 50% control growth (ED50). All of the assessed extracts were cytotoxic (ED50 < 20 microg/ml) against T47D cell line, meanwhile only the aqueous extract from T. lucida and the ethanolic extract from J. spicigera were cytotoxic to HeLa cell line. Ethanolic extract from J. spicigera presented the best cytotoxic effect. The cytotoxic activity of J. spicigera correlated with one of the popular uses, the treatment of cancer.

  8. Effect of radiotherapy on lymphocyte cytotoxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, J; Melen, B [Central Microbiological Laboratory, Stockholm County Council (Sweden); Blomgren, H; Glas, U; Perlmann, P

    1975-11-01

    The cytotoxic functions of highly purified blood lymphocytes from patients with breast cancer were studied before and after radiotherapy. Addition of PHA or of rabbit antibodies to target cells (chicken erythrocytes) were chosen as two means of inducing lymphocyte cytotoxicity in vitro. The proportion of T and non-T lymphocytes was determined by means of E and EAC rosette tests. The antibody-induced cytotoxicity of lymphocytes decreased following radiotherapy while that mediated by PHA remained unchanged. There was some reduction in the percentage of EAC rosette-forming cells. These results, as well as earlier observations, suggest that the decrease in the peripheral blood of the proportion of lymphocytes with receptors for activated complement is responsible for changes in the antibody-mediated lymphocyte cytotoxicity.

  9. Essential oils from Schinus terebinthifolius leaves - chemical composition and in vitro cytotoxicity evaluation.

    Science.gov (United States)

    Santana, Jeferson S; Sartorelli, Patricia; Guadagnin, Rafael C; Matsuo, Alisson L; Figueiredo, Carlos R; Soares, Marisi G; da Silva, Adalberto M; Lago, João Henrique G

    2012-10-01

    In folk medicine, Schinus terebinthifolius Raddi (Anacardiaceae), has been used as a remedy for ulcers, respiratory problems, wounds, rheumatism, gout, diarrhea, skin ailments and arthritis, as well as to treat tumors and leprosy. To investigate the chemical composition and cytotoxicity of essential oil from leaves of S. terebinthifolius as well as the identification of active compounds from this oil. Essential oil from S. terebinthifolius leaves, obtained by hydrodistillation using a Clevenger-type apparatus, was characterized in terms of its chemical composition. Also, the crude oil was subjected to chromatographic separation procedures to afford an active fraction composed of α- and β-pinenes. These compounds, including hydrogenation (pinane) and epoxydation (α-pinene oxide) derivatives from α-pinene, were tested in vitro against murine melanoma cell line (B16F10-Nex2) and human melanoma (A2058), breast adenocarcinoma (MCF7), leukemia (human leukemia (HL-60) and cervical carcinoma (HeLa) cell lines. Forty-nine constituents were identified in the oil (97.9% of the total), with germacrene D (23.7%), bicyclogermacrene (15.0%), β-pinene (9.1%) and β-longipinene (8.1%) as the main compounds. The crude essential oil showed cytotoxic effects in several cell lines, mainly on leukemia and human cervical carcinoma. Fractions composed mainly of α- and β-pinenes as well as those composed of individually pinenes showed effective activities against all tested cell lines. Aiming to determinate preliminary structure/activity relationships, α-pinene was subjected to epoxydation and hydrogenation procedures whose obtained α-pinene oxide showed an expressive depression in its cytotoxicity effect, similar as observed to pinane derivative. The obtained results indicated that the monoterpenes α- and β-pinenes could be responsible to the cytotoxic activity detected in the crude oil from leaves of S. terebinthifolius. In addition, it was possibly inferred that the presence

  10. Phytochemical and Cytotoxic Investigations of Alpinia mutica Rhizomes

    Directory of Open Access Journals (Sweden)

    Kae Shin Sim

    2011-01-01

    Full Text Available The methanol and fractionated extracts (hexane, ethyl acetate and water of Alpinia mutica (Zingiberaceae rhizomes were investigated for their cytotoxic effect against six human carcinoma cell lines, namely KB, MCF7, A549, Caski, HCT116, HT29 and non-human fibroblast cell line (MRC 5 using an in vitro cytotoxicity assay. The ethyl acetate extract possessed high inhibitory effect against KB, MCF7 and Caski cells (IC50 values of 9.4, 19.7 and 19.8 µg/mL, respectively. Flavokawin B (1, 5,6-dehydrokawain (2, pinostrobin chalcone (3 and alpinetin (4, isolated from the active ethyl acetate extract were also evaluated for their cytotoxic activity. Of these, pinostrobin chalcone (3 and alpinetin (4 were isolated from this plant for the first time. Pinostrobin chalcone (3 displayed very remarkable cytotoxic activity against the tested human cancer cells, such as KB, MCF7 and Caski cells (IC50 values of 6.2, 7.3 and 7.7 µg/mL, respectively. This is the first report of the cytotoxic activity of Alpinia mutica.

  11. Bioassay-guided in vitro study of the antileishmanial and cytotoxic properties of Bixa orellana seed extract

    Directory of Open Access Journals (Sweden)

    Marley García

    2014-06-01

    Full Text Available Objective: To investigate the leishmanicidal effect of the Bixa orellana crude seed extract and its fractions against Leishmania amazonensis. Methods: Four main fractions (BO-A, BO-B, BO-C and BO-D were obtained by exhaustion with solvent with increased polarity from the Bixa orellana crude seed extract and 28 sub-fractions. The antileishmanial activity was evaluated in intracellular amastigotes and the cytotoxicity was assessed in murine intraperitoneal macrophages. Results: The BO-A and BO-B fractions showed a good antileishmanial activity with IC50 values of (12.9±4.1 and (12.4±0.3 μg/mL, respectively. The sub-fractions BO-B1 (IC50=(11.8±3.8 μg/mL and BO-B3 [IC50=(13.6±4.7 μg/mL] also proved to have a good leishmanicidal effect. In general, the sub-fractions showed a lower toxicity than the crude extract. A selectivity index of 9 indicated a moderate selectivity of the BO-A, BO-B and BO-C fractions and BO-B1 sub-fraction. Conclusions: Potential of this plant against cutaneous leishmaniasis should be further investigated.

  12. Investigation of nepetolide as a novel lead compound: Antioxidant, antimicrobial, cytotoxic, anticancer, anti-inflammatory, analgesic activities and molecular docking evaluation

    Directory of Open Access Journals (Sweden)

    Tanzeel ur Rehman

    2018-03-01

    Full Text Available In the present study, we describe various pharmacological effects and computational analysis of nepetolide, a tricyclic clerodane-type diterpene, isolated from Nepeta suavis. Nepetolide concentration-dependently (1.0–1000 µg/mL exhibited 1,1-diphenyl,2-picrylhydrazyl free radical scavenging activity with maximum effect of 87.01 ± 1.85%, indicating its antioxidant potential, as shown by standard drug, ascorbic acid. It was moderately active against bacterial strain of Staphylococcus aureus. In brine shrimp’s lethality model, nepetolide potently showed cytotoxic effect, with LC50 value of 8.7 µg/mL. When evaluated for antitumor activity in potato disc tumor assay, nepetolide exerted tumor inhibitory effect of 56.5 ± 1.5% at maximum tested concentration of 1000 µg/mL. Nepetolide at 20 mg/kg reduced carrageenan-induced inflammation (P < .001 vs. saline group in rat paw. Nepetolide dose-dependently (100–500 mg/kg decreased acetic acid evoked writhes, as exhibited by diclofenac sodium. In-silico investigation of nepetolide was carried out against cyclooxygenase-2, epidermal growth factor receptor and lipoxygenase-2 targets. Virtual screening through Patchdock online docking server identified primarily hydrophobic interactions between ligand nepetolide and receptors proteins. Enhanced hydrogen bonding was predicted with Autodock showing 6–8 hydrogen bonds per target. These results indicate that nepetolide exhibits antioxidant, antibacterial, cytotoxic, anticancer, anti-inflammatory and analgesic activities and should be considered as a lead compound for developing drugs for the remedy of oxidative stress-induced disorders, microbial infections, cancers, inflammations and pain.

  13. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity

    International Nuclear Information System (INIS)

    Lawrence, T.S.; Davis, M.A.; Chang, E.Y.

    1995-01-01

    It has been proposed that fluoropyrimidine-mediated cytotoxicity and radiosensitization are closely correlated. We have shown that HT29 human colon cancer cells transfected with the E. coli dUTPase gene are resistant to 5-fluorodeoxyuridine (FdUrd)-mediated cytotoxicity, presumably through more effective elimination of dUTP. We used these cells to assess the association between radiosensitization and cytotoxicity produced by FdUrd. The radiation sensitivities of the clones expressing elevated dUTPase activity (dutE clones) were similar to those of untransfected HT29 cells or HT29 cells which has been transfected with only the expression vector for the E. coli gene (con clones). We found that FdUrd produced similar increases in radiation sensitivity regardless of dUTPase activity. Levels of dUTPase in the dutE clones remained elevated during the entire period of FdUrd exposure, demonstrating that the lack of difference between dutE and Con clones was not a reflection of down-regulation of dUTPase activity by FdUrd, Flow cytometry showed that all clones progressed past the G 1 /S-phase boundary and into early S phase during FdUrd treatment. These data suggest that the mechanisms of FdUrd-mediated cytotoxicity and radiosensitization are not closely linked. These findings, combined with our previous investigations, are consistent with the hypothesis that radiosensitization occurs in cells which progress past the G 1 /S-phase boundary in the presence of FdUrd. 24 refs., 2 figs., 2 tabs

  14. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  15. New and cytotoxic anthraquinones from Pleospora sp. IFB-E006, an endophytic fungus in Imperata cylindrical.

    Science.gov (United States)

    Ge, H M; Song, Y C; Shan, C Y; Ye, Y H; Tan, R X

    2005-11-01

    In addition to 7-methoxy-2-methyl-3,4,5-trihydroxyanthraquinone (1), physcion (2), macrosporin (3), deoxybostrycin (4), altersolanol B (5) and dactylariol (6), a new hexahydroanthraquinone named pleospdione (7) was isolated from the culture of Pleospora sp . IFB-E006, an endophytic fungus residing in the normal stem of Imperata cylindrical (Gramineae). Structure determination of pleospdione was accomplished using IR, HR-ESI-MS, 1D and 2D NMR spectral analysis. Compounds 4 - 6 exhibited significant cytotoxic activity against human colon cancer (SW1116) and leukemia (K562) cell lines while compounds 1, 2 and 7 were only weakly or moderately active.

  16. Cytotoxicity of fluorographene

    Czech Academy of Sciences Publication Activity Database

    Teo, W. Z.; Sofer, Z.; Šembera, Filip; Janoušek, Zbyněk; Pumera, M.

    2015-01-01

    Roč. 5, č. 129 (2015), s. 107158-107165 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA15-09001S Institutional support: RVO:61388963 Keywords : fluorinated graphene * viability assays * cytotoxicity Subject RIV: CC - Organic Chemistry Impact factor: 3.289, year: 2015

  17. Chemical composition and cytotoxicity activity of the essential oil of Pterodon emarginatus

    Directory of Open Access Journals (Sweden)

    Rafael C. Dutra

    2012-10-01

    Full Text Available Pterodon emarginatus Vogel, Fabaceae, is a native aromatic tree distributed by central region of Brazil. Hydroalcoholic infusions of the seeds are used in folk medicine for their anti-rheumatic and anti-inflammatory properties. The objective of this work was identified the chemical components and verify the cytotoxic effect of the essential oil (EO from P. emarginatus seeds. Thus, the EO of P. emarginatus seeds was analyzed by GC/MS analysis followed by brine shrimp lethality test and cytotoxic activity against tumor cell lines and human peripheral mononuclear blood cells (PBMC. The cancer cell lines tested were C6 (rat glioma, MeWo (human melanoma, CT26.WT (mouse colon carcinoma, MDA (human breast cancer, A549 (human lung carcinoma, B16-F1 (mouse melanoma, CHO-K1 (hamster ovary cell and BHK-21 (hamster kidney fibroblast. Eleven compounds were identified by GC and CG/MS analyses. The main compounds with concentrations higher than 5% were β-elemene (15.3%, trans-caryophyllene (35.9%, α-humulene (6.8%, germacrene-D (9.8%, bicyclo germacrene (5.5% and spathulenol (5.9%. The EO of P. emarginatus seeds showed toxicity to Artemia salina (LC50 1.63 µg/mL and was active against all the cell lines tested. The potent cytotoxic activity had IC50 values ranging from 24.9 to 47 µg/mL. However, EO (1-100 µg/mL had less cytotoxicity in PBMCs isolated from a healthy subject. In summary, the present study showed the potential antiproliferative of the EO of P. emarginatus seeds.

  18. In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Patrícia Mathias Döll-Boscardin

    2012-01-01

    Full Text Available Eucalyptus L. is traditionally used for many medicinal purposes. In particular, some Eucalyptus species have currently shown cytotoxic properties. Local Brazilian communities have used leaves of E. benthamii as a herbal remedy for various diseases, including cancer. Considering the lack of available data for supporting this cytotoxic effect, the goal of this paper was to study the in vitro cytotoxic potential of the essential oils from young and adult leaves of E. benthamii and some related terpenes (α-pinene, terpinen-4-ol, and γ-terpinene on Jurkat, J774A.1 and HeLa cells lines. Regarding the cytotoxic activity based on MTT assay, the essential oils showed improved results than α-pinene and γ-terpinene, particularly for Jurkat and HeLa cell lines. Terpinen-4-ol revealed a cytotoxic effect against Jurkat cells similar to that observed for volatile oils. The results of LDH activity indicated that cytotoxic activity of samples against Jurkat cells probably involved cell death by apoptosis. The decrease of cell DNA content was demonstrated due to inhibition of Jurkat cells proliferation by samples as a result of cytotoxicity. In general, the essential oils from young and adult leaves of E. benthamii presented cytotoxicity against the investigated tumor cell lines which confirms their antitumor potential.

  19. In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines

    Science.gov (United States)

    Döll-Boscardin, Patrícia Mathias; Sartoratto, Adilson; Sales Maia, Beatriz Helena Lameiro de Noronha; Padilha de Paula, Josiane; Nakashima, Tomoe; Farago, Paulo Vitor; Kanunfre, Carla Cristine

    2012-01-01

    Eucalyptus L. is traditionally used for many medicinal purposes. In particular, some Eucalyptus species have currently shown cytotoxic properties. Local Brazilian communities have used leaves of E. benthamii as a herbal remedy for various diseases, including cancer. Considering the lack of available data for supporting this cytotoxic effect, the goal of this paper was to study the in vitro cytotoxic potential of the essential oils from young and adult leaves of E. benthamii and some related terpenes (α-pinene, terpinen-4-ol, and γ-terpinene) on Jurkat, J774A.1 and HeLa cells lines. Regarding the cytotoxic activity based on MTT assay, the essential oils showed improved results than α-pinene and γ-terpinene, particularly for Jurkat and HeLa cell lines. Terpinen-4-ol revealed a cytotoxic effect against Jurkat cells similar to that observed for volatile oils. The results of LDH activity indicated that cytotoxic activity of samples against Jurkat cells probably involved cell death by apoptosis. The decrease of cell DNA content was demonstrated due to inhibition of Jurkat cells proliferation by samples as a result of cytotoxicity. In general, the essential oils from young and adult leaves of E. benthamii presented cytotoxicity against the investigated tumor cell lines which confirms their antitumor potential. PMID:22645627

  20. The future of cytotoxic therapy: selective cytotoxicity based on biology is the key

    International Nuclear Information System (INIS)

    Bono, Johann S de; Tolcher, Anthony W; Rowinsky, Eric K

    2003-01-01

    Although mortality from breast cancer is decreasing, 15% or more of all patients ultimately develop incurable metastatic disease. It is hoped that new classes of target-based cytotoxic therapeutics will significantly improve the outcome for these patients. Many of these novel agents have displayed cytotoxic activity in preclinical and clinical evaluations, with little toxicity. Such preferential cytotoxicity against malignant tissues will remain tantamount to the Holy Grail in oncologic therapeutics because this portends improved patient tolerance and overall quality of life, and the capacity to deliver combination therapy. Combinations of such rationally designed target-based therapies are likely to be increasingly important in treating patients with breast carcinoma. The anticancer efficacy of these agents will, however, remain dependent on the involvement of the targets of these agents in the biology of the individual patient's disease. Results of DNA microarray analyses have raised high hopes that the analyses of RNA expression levels can successfully predict patient prognosis, and indicate that the ability to rapidly 'fingerprint' the oncogenic profile of a patient's tumor is now possible. It is hoped that these studies will support the identification of the molecules driving a tumor's growth, and the selection of the appropriate combination of targeted agents in the near future

  1. Study of Cytotoxic Effects of Benzonitrile Pesticides

    Science.gov (United States)

    Lovecka, Petra; Thimova, Marketa; Grznarova, Petra; Lipov, Jan; Knejzlik, Zdenek; Stiborova, Hana; Nindhia, Tjokorda Gde Tirta; Demnerova, Katerina; Ruml, Tomas

    2015-01-01

    The benzonitrile herbicides bromoxynil, chloroxynil, dichlobenil, and ioxynil have been used actively worldwide to control weeds in agriculture since 1970s. Even though dichlobenil is prohibited in EU since 2008, studies addressing the fate of benzonitrile herbicides in the environment show that some metabolites of these herbicides are very persistent. We tested the cytotoxic effects of benzonitrile herbicides and their microbial metabolites using two human cell lines, Hep G2 and HEK293T, representing liver and kidneys as potential target organs in humans. The cell viability and proliferation were determined by MTT test and RTCA DP Analyzer system, respectively. The latter allows real-time monitoring of the effect of added substances. As the cytotoxic compounds could compromise cell membrane integrity, the lactate dehydrogenase test was performed as well. We observed high toxic effects of bromoxynil, chloroxynil, and ioxynil on both tested cell lines. In contrast, we determined only low inhibition of cell growth in presence of dichlobenil and microbial metabolites originating from the tested herbicides. PMID:26339609

  2. Cytotoxicity Effects of Amoora rohituka and chittagonga on Breast and Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Leo L. Chan

    2011-01-01

    Full Text Available Chemotherapeutic agents for cancer are highly toxic to healthy tissues and hence alternative medicine avenues are widely researched. Majority of the recent studies on alternative medicine suggested that Amoora rohituka possesses considerable antitumor and antibacterial properties. In this work, rohituka and chittagonga, fractionated with petroleum ether, dichloromethane, and ethanol, were explored for their anticancer potential against two breast cancer (MCF-7 and HTB-126 and three pancreatic cancer (Panc-1, Mia-Paca2, and Capan1. The human foreskin fibroblast, Hs68, was also included. Cytotoxicity of each extract was analyzed using the MTT assay and label-free photonic crystal biosensor assay. A concentration series of each extract was performed on the six cell lines. For MCF-7 cancer cells, the chittagonga (Pet-Ether and CH2Cl2 and rohituka (Pet-Ether extracts induced cytotoxicity; the chittagonga (EtoAC and rohituka (MeOH extracts did not induce cytotoxicity. For HTB126, Panc-1, Mia-Paca2, and Capan-1 cancer cells, only the chittagonga CH2Cl2 extract showed a significant cytotoxic effect. The extracts were not cytotoxic to normal fibroblast Hs68 cells, which may be correlated to the specificity of Amoora extracts in targeting cancerous cells. Based on these results, further examination of the potential anticancer properties Amoora species and the identification of the active ingredients of these extracts is warranted.

  3. Ru/Fe bimetallic complexes: Synthesis, characterization, cytotoxicity and study of their interactions with DNA/HSA and human topoisomerase IB.

    Science.gov (United States)

    Takarada, Jessica E; Guedes, Adriana P M; Correa, Rodrigo S; Silveira-Lacerda, Elisângela de P; Castelli, Silvia; Iacovelli, Federico; Deflon, Victor Marcelo; Batista, Alzir Azevedo; Desideri, Alessandro

    2017-12-15

    Three ruthenium/iron-based compounds, 1: [Ru(MIm)(bipy)(dppf)]PF 6 (MIm = 2-mercapto-1-methylimidazole anion), 2: [RuCl(Im)(bipy)(dppf)]PF 6 (Im = imidazole), and 3: [Ru(tzdt)(bipy)(dppf)]PF 6 (tzdt = 1,3-thiazolidine-2-thione anion) (dppf = 1,1'-bis(diphenylphosphine)ferrocene and bipy = 2,2'-bipyridine), were synthesized, and characterized by elemental analyses, conductivity, UV/Vis, IR, 1 H, 13 C and 31 P{1H} NMR spectroscopies, and by electrochemical technique. The complex 3 was also characterized by single-crystal X-ray. The three ruthenium(II) complexes show cytotoxicity against DU-145 (prostate carcinoma cells) and A549 (lung carcinoma cells) tumor cells. The free ligands do not exhibit any cytotoxic activity, such as evident by the IC 50 values higher than 200 μM. UV/Vis and viscosity experiments showed that the complexes interact weakly with the DNA molecule, via electrostatic forces. The interaction of the complexes 1-3 with the HSA is moderate, with K b values in range of 10 5 -10 7  M -1 , presenting a static mechanism of interaction stabilized by hydrophobic. Complexes 2 and 3 showed high affinity for the FA7 HSA site as evidenced by fluorescence spectroscopy and molecular docking. Complexes 1-3 were tested as potential human Topoisomerase IB inhibitors by analysing the different steps of the enzyme catalytic cycle. The results indicate that all compounds efficiently inhibit the DNA relaxation and the cleavage reaction, in which the effect increases upon pre-incubation. Complexes 1 and 2 are also able to slow down the religation reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Cytotoxic effect of Vibrio cholerae non-O1 on Vero cells].

    Science.gov (United States)

    Figueroa-Arredondo, P; García-Lozano, H; Gutiérrez-Cogco, L; Valdespino-Gómez, J L

    1994-01-01

    At the present time there is still in Mexico a diarrhoeal outbreak due to Vibrio cholerae O1. In INDRE we have isolated from the same outbreak last year (jan-apr), 70 strains of Vibrio cholerae Non-O1. These were isolated from patients with a diarrhoeal illness different from cholera. Patients were of different ages and sex, and from various geographic areas. The isolated strains were confirmed by serological agglutination test with polyclonal antisera, and they neither belong to O1 serogroup or O139. We assayed all the 70 strains in Vero cells, searching for cytotoxic effect, probably attributed to cholera toxin, or any other toxin. The strains were screened by PCR for cholera toxin gene detection, and negative results were obtained. We have found only one CT-producer strain, but it was a rough one so, we are not able to affirm that is not a V. cholerae O1 serotype. Vibrio cholerae Non-O1 strains, tested in Vero cells assay, produced cytotoxic effect within 24 h. It was found that 48/70 strains (66.6%), had cytotoxic activity, showing rounding and then lysis of cells. From our results we concluded that this cytotoxic effect, is not cholera toxin related, instead we propose it could be due to an unknown virulence factor, probably a different toxin in mexican Vibrio cholerae Non-O1 strains.

  5. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  6. Detection of tumor-specific cytotoxic drug activity in vitro using the fluorometric microculture cytotoxicity assay and primary cultures of tumor cells from patients.

    Science.gov (United States)

    Nygren, P; Fridborg, H; Csoka, K; Sundström, C; de la Torre, M; Kristensen, J; Bergh, J; Hagberg, H; Glimelius, B; Rastad, J

    1994-03-01

    The semi-automated fluorometric microculture cytotoxicity assay (FMCA), based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) by viable cells, was employed for cytotoxic drug sensitivity testing of tumor cells from patients with hematological or solid tumors. In total, 390 samples from 20 diagnoses were tested with up to 12 standard cytotoxic drugs. The technical success rate for different tumor types ranged from 67 to 95%. Fluorescence was linearly related to cell number but variably steep depending on tumor type. Samples from most solid tumors thus showed higher signal-to-noise ratios than hematological samples. A wide spectrum of in vitro drug activity was obtained, with acute leukemias and non-Hodgkin's lymphomas being sensitive to almost all tested drugs, whereas renal and adrenocortical carcinomas were essentially totally resistant. Between these extremes were samples of breast and ovarian carcinomas and sarcomas. When in vitro response was compared with known clinical response patterns, a good correspondence was observed. The results indicate that the FMCA is a rapid and efficient method for in vitro measurement of tumor-specific drug activity both in hematological and in solid tumors. The assay may be suitable for new drug development and direction of phase-2 trials to suitable patients.

  7. Progesterone treatment shows benefit in a pediatric model of moderate to severe bilateral brain injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available Controlled cortical impact (CCI models in adult and aged Sprague-Dawley (SD rats have been used extensively to study medial prefrontal cortex (mPFC injury and the effects of post-injury progesterone treatment, but the hormone's effects after traumatic brain injury (TBI in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.Twenty-eight-day old (PND 28 male Sprague Dawley rats received sham (n = 24 or CCI (n = 47 injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight or vehicle injections on post-injury days (PID 1-7, subjected to behavioral testing from PID 9-27, and analyzed for lesion size at PID 28.The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.

  8. Phenolics, Antiradical Assay and Cytotoxicity of Processed Mango ...

    African Journals Online (AJOL)

    Phenolics, Antiradical Assay and Cytotoxicity of Processed Mango ( Mangifera indica ) and Bush Mango ( Irvingia gabonensis ) Kernels. ... Nigerian Food Journal ... Phenolic constituents (total phenols, flavonoids, tannins, and anthocyanins), comparative antiradical potency and cytotoxicity of processed mango (Mangifera ...

  9. Reducing ZnO nanoparticle cytotoxicity by surface modification.

    Science.gov (United States)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N; Martin, Lisandra L; Hughes, Anthony E; Wright, Paul F A; Turney, Terence W

    2014-06-07

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.

  10. The effect of gamma irradiation on cytotoxic activity of the flesh of Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) Fruits

    International Nuclear Information System (INIS)

    Ermin K Winarno; Mazda; Hindra Rahmawati; Hendig Winarno

    2010-01-01

    Gamma irradiation had been used by herbs medicine industries for preservation of medicinal plants, but the effect of irradiation on their bioactivities has not been observed. The purpose of this research was to obtain the optimum radiation dose for the preservation of mahkota dewa flesh fruits without damaging their cytotoxic activities. To evaluate the effect of irradiation, dried samples of flesh fruit of mahkota dewa were irradiated at various doses of 0; 5; 7.5; 10; 15 and 20 kGy. Microbial contamination was tested using Indonesian National Standard method, which indicated that all microbes were killed at the dose of 5 kGy. Each sample was macerated with ethanol, and the extracts obtained were then fractionated with column chromatography, from which 8 fractions were obtained. Cytotoxicity test of the fractions against leukemia L1210 cells, showed that the Fr.3 was the most cytotoxic. To determine optimal irradiation dose to inhibit and to kill bacteria and yeast/mold in the mahkota dewa flesh fruit samples without decreasing cytotoxic activity, a thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) analysis of the Fr.3 were done. The results showed that the doses of ≥ 5 kGy inhibited the growth and killed all the bacteria, yeast and mold without decreasing significantly the cytotoxic activity of ethanol extract against leukemia L1210 cell. The significant decrease of cytotoxic against leukemia L1210 of ethanol extract were occurred after ≥ 10 kGy irradiation of the samples. At the dose of 10 kGy, the cytotoxicity decreased even though it was not exceeded the limit of the fraction was declared inactive. Analysis of thin layer chromatogram profiles showed that the Fr.3 contained at least 10 components. Irradiation until the dose of 20 kGy decreased the major peak intensity. with the increasing of irradiation doses. It was concluded that the dose of 5 kGy to 10 kGy were the optimum dose for the preservation of flesh fruit of

  11. Cytotoxicity and genotoxicity of clothianidin in human lymphocytes with or without metabolic activation system.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Şekeroğlu, Vedat; Uçgun, Ebru; Kontaş Yedier, Seval; Aydın, Birsen

    2018-02-26

    Clothianidin (CHN) is a broad-spectrum neonicotinoid insecticide. Limited studies have been carried out on the cytotoxic and genotoxic effects of both CHN using different genotoxicity tests in human cells with or without human metabolic activation system (S9 mix). Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of CHN and its metabolites on human lymphocyte cultures with or without S9 mix using chromosomal aberration (CA) and micronucleus (MN) tests. The cultures were treated with 25, 50, and 100 µg/ml of CHN in the presence (3 h treatment) and absence (48 h treatment) of S9 mix. Dimethyl sulfoxide (DMSO) was used as a solvent control. CHN showed cytotoxic and genotoxic effects due to significant decreases in mitotic index (MI) and nuclear division index (NDI), and significant increases in the CAs, aberrant cells, and MN formation in the absence of S9 mix when compared with solvent control. However, CHN did not significantly induce cytotoxicity and genotoxicity in the presence of S9 mix. Our results indicated that CHN has cytotoxic, cytostatic, and genotoxic potential on human peripheral blood lymphocyte cultures, but not its metabolites under the experimental conditions.

  12. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkuviene, Aida [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Kaseta, Vytautas [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Voronovic, Jaroslav [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Ramanauskaite, Giedre; Biziuleviciene, Gene [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Ramanaviciene, Almira [NanoTechnas–Center of Nanotechnology and Material Science at Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius (Lithuania); Ramanavicius, Arunas, E-mail: Arunas.Ramanavicius@chf.vu.lt [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Laboratory of BioNanoTechnology, Department of Materials Science and Electronics, Institute of Semiconductor Physics, State Scientific Research Institute Centre for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2013-04-15

    Highlights: ► Polypyrrole nanoparticles synthesized by environmentally friendly polymerization at high concentrations are cytotoxic. ► Primary mouse embryonic fibroblast, mouse hepatoma and human T lymphocyte Jurkat cell lines were treated by Ppy nanoparticles. ► Polypyrrole nanoparticles at high concentrations inhibit cell proliferation. -- Abstract: Polypyrrole (Ppy) is known as biocompatible material, which is used in some diverse biomedical applications and seeming to be a very promising for advanced biotechnological applications. In order to increase our understanding about biocompatibility of Ppy, in this study pure Ppy nanoparticles (Ppy-NPs) of fixed size and morphology were prepared by one-step oxidative polymerization and their cyto-compatibility was evaluated. The impact of different concentration of Ppy nanoparticles on primary mouse embryonic fibroblasts (MEF), mouse hepatoma cell line (MH-22A), and human T lymphocyte Jurkat cell line was investigated. Cell morphology, viability/proliferation after the treatment by Ppy nanoparticles was evaluated. Obtained results showed that Ppy nanoparticles at low concentrations are biocompatible, while at high concentrations they became cytotoxic for Jurkat, MEF and MH-22A cells, and it was found that cytotoxic effect is dose-dependent.

  13. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Yasushi [Meikai Univ., Sakado, Saitama (Japan). School of Dentistry

    2000-07-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  14. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    International Nuclear Information System (INIS)

    Kashiwagi, Yasushi

    2000-01-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  15. Positive control for cytotoxicity evaluation of dental vinyl polysiloxane impression materials using sodium lauryl sulfate.

    Science.gov (United States)

    Kwon, Jae-Sung; Lee, Sang-Bae; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-11-01

    Vinyl polysiloxane (VPS) is elastomeric dental impression material which, despite having very few reports of adverse reactions, has shown high levels of cytotoxicity that is difficult to be interpreted without referencing to the positive control material. Therefore, in this study, positive control VPS was developed using sodium lauryl sulfate (SLS) for the reference of cytotoxicity test. The positive control VPS with SLS was formed with a different proportion of SLS (0, 1, 2, 4, 8 and 16 wt%) added to the base. The cytotoxicity test was then carried out using the extractions or dilutions of the extractions from each of the test samples using murine fibroblast cells (L929). The final product of positive control VPS behaved similar to commercially available VPS; being initially liquid-like and then becoming rubber-like. Ion chromatography showed that the level of SLS released from the product increased as the proportion of added SLS increased, consequently resulting in an increased level of cytotoxicity. Also, the commercially available VPS was less cytotoxic than the positive control VPS with more or equal to 2 wt% of SLS. However, even the VPS with the highest SLS (16 wt%) did not cause oral mucosa irritation during the animal study. The positive control VPS was successfully produced using SLS, which will be useful in terms of providing references during in vitro cytotoxicity testing.

  16. Cytotoxicity study of plant Aloe vera (Linn

    Directory of Open Access Journals (Sweden)

    Atul N Chandu

    2012-01-01

    Full Text Available Background: The objective of this study has been to evaluate the in-vitro antitumor activity of Aloe vera extract of in cultured B16F10 melanoma cell line by measuring cell viability using "Trypan blue exclusion assay" method. Aim: To find out such kind of anticancer drug which is a cheap, safe, less toxic, and more potent drug compared to chemotherapy drug. Materials and Methods: In-vitro antitumor activity cell culture1, drug treatment (standard and test extract and Trypan blue exclusion assay growth and viability test 1 were used. Treatment of Aloe vera extract against B16F10 melanoma cell line, in all concentration range, showed decrease in percent cell viability, as compared to that of negative when examined by "Trypan blue exclusion assay". Results: In overall variation of test samples, Aloe vera extract showed its best activity in the concentration of 300 μg/ml, which was approximately equal to the activity of standard drug doxorubicin. Evaluation of in-vitro antitumor activity revealed that Aloe vera extract exhibits good cytotoxic activity. The best cytotoxic activity by Aloe vera was shown at 200 μg/ml concentration. Conclusion: The study of cytoprotection against normal cells by micronucleus assay has shown that the herbal extracts have less toxic effects to the normal blood lymphocytes, as compared to that of standard anticancer drug.

  17. Cytotoxic constituents of propolis from Myanmar and their structure-activity relationship.

    Science.gov (United States)

    Li, Feng; Awale, Suresh; Tezuka, Yasuhiro; Kadota, Shigetoshi

    2009-12-01

    Thirteen cycloartane-type tritepenes (1-13) and four prenylated flavanones (14-17) isolated from propolis collected in Myanmar, were evaluated for their cytotoxic activity against a panel of six different cancer cell lines; three murine cancer cell lines (colon 26-L5 carcinoma, B16-BL6 melanoma, and Lewis lung carcinoma) and three human cancer cell lines (lung A549 adenocarcinoma, cervix HeLa adenocarcinoma and HT-1080 fibrosarcoma). Among them, a cycloartane-type triterpene, 3alpha,27-dihydroxycycloart-24E-en-26-oic acid (3), showed the most potent cytotoxicity against B16-BL6 cells with an IC(50) value of 5.91 microM, comparable to those of positive controls, doxorubicin (IC(50), 5.66 microM) and 5-fluorouracil (IC(50), 4.88 microM). In addition, (2S)-5,7-dihydroxy-4'-methoxy-8,3'-diprenylflavanone (14) exhibited strong cytotoxicity against all the tested cancer cell lines with the IC(50) values ranging from 14.0 to 26.4 microM. Based on the observed results, the structure-activity relationships are discussed.

  18. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Wingett D

    2016-07-01

    Full Text Available Denise Wingett,1–3 Panagiota Louka,1 Catherine B Anders,2 Jianhui Zhang,4 Alex Punnoose2,41Department of Biological Sciences, 2Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 3Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 4Department of Physics, Boise State University, Boise, ID, USA Abstract: ZnO nanoparticles (NPs have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic

  19. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Buri, Marcus V; Torquato, Heron F Vieira; Barros, Carlos Castilho; Ide, Jaime S; Miranda, Antonio; Paredes-Gamero, Edgar J

    2017-07-01

    Several reports described different modes of cell death triggered by antimicrobial peptides (AMPs) due to direct effects on membrane disruption, and more recently by apoptosis and necrosis-like patterns. Cytotoxic curves of four β-hairpin AMPs (gomesin, protegrin, tachyplesin, and polyphemusin) were obtained from several human leukemic lineages and normal monocytes and Two cell lines were then selected based on their cytotoxic sensitivity. One was sensitive to AMPs (K562) and the other resistant (KG-1) and their effect compared between these lineages. Thus, these lineages were chosen to further investigate biological features related with their cytotoxicities to AMPs. Stimulation with AMPs produced cell death, with activation of caspase-3, in K562 lineage. Increase on the fluidity of plasmatic membrane by reducing cholesterol potentiated cytotoxicity of AMPs in both lineages. Quantification of internal and external gomesin binding to the cellular membrane of both K562 and KG-1 cells showed that more peptide is accumulated inside of K562 cells. Additionally, evaluation of multi-drug resistant pumps activity showed that KG-1 has more activity than K562 lineage. A comparison of intrinsic gene patterns showed great differences between K562 and KG-1, but stimulation with gomesin promoted few changes in gene expression patterns. Differences in internalization process through the plasma membrane, multidrug resistance pumps activity, and gene expression pattern are important features to AMPs regulated cell death. J. Cell. Biochem. 118: 1764-1773, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Discovery of DNA Topoisomerase I Inhibitors with Low-Cytotoxicity Based on Virtual Screening from Natural Products

    Directory of Open Access Journals (Sweden)

    Lan-Ting Xin

    2017-07-01

    Full Text Available Currently, DNA topoisomerase I (Topo I inhibitors constitute a family of antitumor agents with demonstrated clinical effects on human malignancies. However, the clinical uses of these agents have been greatly limited due to their severe toxic effects. Therefore, it is urgent to find and develop novel low toxic Topo I inhibitors. In recent years, during our ongoing research on natural antitumor products, a collection of low cytotoxic or non-cytotoxic compounds with various structures were identified from marine invertebrates, plants, and their symbiotic microorganisms. In the present study, new Topo I inhibitors were discovered from low cytotoxic and non-cytotoxic natural products by virtual screening with docking simulations in combination with bioassay test. In total, eight potent Topo I inhibitors were found from 138 low cytotoxic or non-cytotoxic compounds from coral-derived fungi and plants. All of these Topo I inhibitors demonstrated activities against Topo I-mediated relaxation of supercoiled DNA at the concentrations of 5–100 µM. Notably, the flavonoids showed higher Topo I inhibitory activities than other compounds. These newly discovered Topo I inhibitors exhibited structurally diverse and could be considered as a good starting point for the development of new antitumor lead compounds.

  1. A fluorescence-based rapid screening assay for cytotoxic compounds

    International Nuclear Information System (INIS)

    Montoya, Jessica; Varela-Ramirez, Armando; Estrada, Abril; Martinez, Luis E.; Garza, Kristine; Aguilera, Renato J.

    2004-01-01

    A simple fluorescence-based assay was developed for the rapid screening of potential cytotoxic compounds generated by combinatorial chemistry. The assay is based on detection of nuclear green fluorescent protein (GFP) staining of a human cervical cancer cell line (HeLa) carrying an integrated histone H2B-GFP fusion gene. Addition of a cytotoxic compound to the HeLa-GFP cells results in the eventual degradation of DNA and loss of the GFP nuclear fluorescence. Using this assay, we screened 11 distinct quinone derivatives and found that several of these compounds were cytotoxic. These compounds are structurally related to plumbagin an apoptosis-inducing naphthoquinone isolated from Black Walnut. In order to determine the mechanism by which cell death was induced, we performed additional experiments with the most cytotoxic quinones. These compounds were found to induce morphological changes (blebbing and nuclear condensation) consistent with induction of apoptosis. Additional tests revealed that the cytotoxic compounds induce both necrotic and apoptotic modes of death

  2. Cytotoxic activity of ethanolic extract of the marine sponge Aaptos suberitoides against T47D cell

    Science.gov (United States)

    Nurhayati, Awik Puji Dyah; Prastiwi, Rarastoeti; Sukardiman, Wahyuningsih, Tri

    2018-04-01

    Aaptos suberitoides marine sponge produce many kinds of secondary metabolites. The purpose of this study were to examine the cytotoxic, proliferation inhibition and apoptosis induction of marine sponge A.suberitoides. The sponge was extracted with 96 % ethanol. Ethanol extract cytotoxicity assay were performed with MTT method (Microculture Tetrazolium) against to cell line of T47D. The proliferation inhibition were done by doubling time. The apoptosis induction by observing the treated cell morphology after staining with acrydine orange. The results show that cytotoxic activity of the ethanol extract was 153.109 µg/mL, inhibits cell proliferation cell lines of T47D at 24 hours of incubation and apoptosis induction.

  3. Poly (D,L-lactide-co-glycolide nanoparticles: Uptake by epithelial cells and cytotoxicity

    Directory of Open Access Journals (Sweden)

    J. H. Hamman

    2014-03-01

    Full Text Available Nanoparticles as drug delivery systems offer benefits such as protection of the encapsulated drug against degradation, site-specific targeting and prolonged blood circulation times. The aim of this study was to investigate nanoparticle uptake into Caco-2 cell monolayers, their co-localization within the lysosomal compartment and their cytotoxicity in different cell lines. Rhodamine-6G labelled poly(D,L-lactide-co-glycolide (PLGA nanoparticles were prepared by a double emulsion solvent evaporation freeze-drying method. Uptake and co-localisation of PLGA nanoparticles in lysosomes were visualized by confocal laser scanning microscopy. The cytotoxicity of the nanoparticles was evaluated on different mammalian cells lines by means of Trypan blue exclusion and the MTS assay. The PLGA nanoparticles accumulated in the intercellular spaces of Caco-2 cell monolayers, but were also taken up transcellularly into the Caco-2 cells and partially co-localized within the lysosomal compartment indicating involvement of endocytosis during uptake. PLGA nanoparticles did not show cytotoxic effects in all three cell lines. Intact PLGA nanoparticles are therefore capable of moving across epithelial cell membranes partly by means of endocytosis without causing cytotoxic effects.

  4. Study of the Cytotoxic and Antifungal Activities of Neolignans 8.O.4´ and Structurally Related Compounds

    Directory of Open Access Journals (Sweden)

    P. Matyus

    2000-03-01

    Full Text Available In the present work we report the antifungal and cytotoxic activities of a neolignan 8.O.4´series. The most active antifungal compounds show a significant cytotoxic effect which might be related.

  5. Antiglycopeptide Mouse Monoclonal Antibody LpMab-21 Exerts Antitumor Activity Against Human Podoplanin Through Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity.

    Science.gov (United States)

    Kato, Yukinari; Kunita, Akiko; Fukayama, Masashi; Abe, Shinji; Nishioka, Yasuhiko; Uchida, Hiroaki; Tahara, Hideaki; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Fujii, Yuki; Honma, Ryusuke; Takagi, Michiaki; Ogasawara, Satoshi; Murata, Takeshi; Kaneko, Mika K

    2017-02-01

    The interaction between podoplanin (PDPN) and C-type lectin-like receptor 2 (CLEC-2) is involved in tumor malignancy. We have established many monoclonal antibodies (mAbs) against human podoplanin using the cancer-specific mAb (CasMab) technology. LpMab-21, one of the mouse antipodoplanin mAbs, is of the IgG 2a subclass, and its minimum epitope was determined to be Thr76-Arg79 of the human podoplanin. Importantly, sialic acid is linked to Thr76; therefore, LpMab-21 is an antiglycopeptide mAb (GpMab). In this study, we investigated whether LpMab-21 shows antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cell lines in vitro and also studied its antitumor activities using a xenograft model. LpMab-21 showed high ADCC and CDC activities against not only podoplanin-expressing Chinese hamster ovary cells but also LN319 glioblastoma cells and PC-10 lung cancer cells, both of which endogenously express podoplanin. Furthermore, LpMab-21 decreased tumor growth in vivo, indicating that LpMab-21 could be useful for antibody therapy against human podoplanin-expressing cancers.

  6. Cytotoxic activity of isolated constituents from leaves of Premna serratifolia on MCF-7 and HT-29 cell lines

    Directory of Open Access Journals (Sweden)

    Mahesh Biradi

    2015-03-01

    Full Text Available Premna serratifolia (Syn: Premna integrifolia is an important medicinal herb known as “Agnimantha” in Ayurveda and traditionally used for anticancer activity. The objective of present study was to isolate the cytotoxic phytoconstituents from the n-hexane soluble fraction of P. serratifolia leaf extract. Unsaponifiable portion of n-hexane soluble fraction was subjected to silica based column chromatography. The major constituents present in all the sub-fractions were identified by TLC and phytochemical tests. Two constituents were isolated and they were purified. Sub-fractions with isolates were tested for cytotoxic effect by BSL bioassay. Two isolates were found to be active and which were tested on cancer cell lines MCF-7 and HT-29 for their cytotoxicity. Among two isolates, one compound has shown significant cytotoxicity. From the results we conclude that the plant isolates showed cytotoxicity against selected human cancer cell lines.

  7. ANTIFUNGAL AND CYTOTOXIC ACTIVITIES OF FIVE TRADITIONALLY USED INDIAN MEDICINAL PLANTS

    Directory of Open Access Journals (Sweden)

    Adhikarimayum Haripyaree

    2013-02-01

    Full Text Available Hexane, Methanol and Distilled water extracts of five Indian Medicinal plants viz., Mimosa pudica L, Vitex trifolia Linn, Leucas aspera Spreng, Centella asiatica (L Urban and Plantago major Linn belonging to different families were subjected to preliminary antimicrobial screening against six standard organisms viz., Ceratocystis paradoxa, Aspergillus niger, Penicillium citrinum, Macrophomina phaseoli, Trichoderma viride and Rhizopus nigricans. To evaluate antifungal activity agar well diffusion method was used. In addition LD50 of the same plant extracts were determined by using Range test on Mus musculus for cytotoxic activity. Methanolic extract of M. pudica showed the highest and significant inhibitory effect against some fungal species. Again, methanolic extract of M. pudica displayed the greatest cytotoxic activity.

  8. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    Cytotoxic effect of betulinic acid and betulinic acid acetate isolated from Melaleuca cajuput on human myeloid leukemia (HL-60) cell line. ... The cytotoxic effect of betulinic acid (BA), isolated from Melaleuca cajuput a Malaysian plant and its four synthetic derivatives were tested for their cytotoxicity in various cell line or ...

  9. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    Science.gov (United States)

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cytotoxicity and accumulation of ergot alkaloids in human primary cells.

    Science.gov (United States)

    Mulac, Dennis; Humpf, Hans-Ulrich

    2011-04-11

    Ergot alkaloids are secondary metabolites produced by fungi of the species Claviceps. Toxic effects after consumption of contaminated grains are described since mediaeval times. Of the more than 40 known ergot alkaloids six are found predominantly. These are ergotamine, ergocornine, ergocryptine, ergocristine, ergosine and ergometrine, along with their corresponding isomeric forms (-inine-forms). Toxic effects are known to be induced by an interaction of the ergot alkaloids as neurotransmitters, like dopamine or serotonin. Nevertheless data concerning cytotoxic effects are missing and therefore a screening of the six main ergot alkaloids was performed in human primary cells in order to evaluate the toxic potential. As it is well known that ergot alkaloids isomerize easily the stability was tested in the cell medium. Based on these results factors were calculated to correct the used concentration values to the biologically active lysergic (-ine) form. These factors range from 1.4 for the most stable compound ergometrine to 5.0 for the most unstable ergot alkaloid ergocristine. With these factors, reflecting the instability, several controverse literature data concerning the toxicity could be explained. To evaluate the cytotoxic effects of ergot alkaloids, human cells in primary culture were used. These cells remain unchanged in contrast to cell lines and the data allow a better comparison to the in vivo situation than using immortalized cell lines. To characterize the effects on primary cells, renal proximal tubule epithelial cells (RPTEC) and normal human astrocytes (NHA) were used. The parameters necrosis (LDH-release) and apoptosis (caspase-3-activation, DNA condensation and fragmentation) were distinguished. The results show that depending on the individual structure of the peptide ergot alkaloids the toxic properties change. While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed a different toxic potential. Of

  11. Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cells.

    Science.gov (United States)

    Amen, Yhiya M; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Mira, Amira; Shimizu, Kuniyoshi

    2016-07-01

    A new oxygenated lanostane-type triterpene, named lucidumol C, together with six known compounds, was isolated from the chloroform extract of the fruiting bodies of Ganoderma lingzhi. Structures were established based on extensive spectroscopic and chemical studies. Potential cytotoxic activities of the isolated compounds were evaluated against human colorectal carcinoma (HCT-116, Caco-2), human liver carcinoma (HepG2), and human cervical carcinoma (HeLa) cell lines using WST-1 reagent. Selectivity was evaluated using normal human fibroblast cells (TIG-1 and HF19). Among the compounds, lucidumol C showed potent selective cytotoxicity against HCT-116 cells with an IC50 value of 7.86 ± 4.56 µM and selectivity index (SI) >10 with remarkable cytotoxic activities against Caco-2, HepG2 and HeLa cell lines.

  12. Comparative Cytotoxicity and Genotoxicity of Particulate and Soluble Hexavalent Chromium in Human and Sperm Whale (Physeter macrocephalus) Skin Cells

    Science.gov (United States)

    Li Chen, Tânia; LaCerte, Carolyne; Wise, Sandra S.; Holmes, Amie; Martino, Julieta; Wise, John Pierce; Thompson, W. Douglas; Wise, John Pierce

    2014-01-01

    Chromium (Cr) is a global marine pollutant, present in marine mammal tissues. Hexavalent chromium [Cr(VI)] is a known human carcinogen. In this study we compare the cytotoxic and clastogenic effects of Cr(VI) in human (Homo sapiens) and sperm whale (Physeter macrocephalus) skin fibroblasts. Our data show that increasing concentrations of both particulate and soluble Cr(VI) induce increasing amounts of cytotoxicity and clastogenicity in human and sperm whale skin cells. Furthermore, the data show that sperm whale cells are resistant to these effects exhibiting less cytotoxicity and genotoxicity than the human cells. Differences in Cr uptake accounted for some but not all of the differences in particulate and soluble Cr(VI) genotoxicity, although it did explain the differences in particulate Cr(VI) cytotoxicity. Altogether the data indicate that Cr(VI) is a genotoxic threat to whales, but also suggest that whales have evolved cellular mechanisms to protect them against the genotoxicity of environmental agents such as Cr(VI). PMID:21466859

  13. Cytotoxic Compounds from Aerial Organs of Xanthium strumarium.

    Science.gov (United States)

    Ferrer, Janet Piloto; Zampini, Iris Catiana; Cuello, Ana Soledad; Francisco, Marbelis; Romero, Aylema; Valdivia, Dayana; Gonzalez, Maria; Carlos Salas; Lamar, Angel Sanchez; Isla, Maria Inés

    2016-03-01

    Xanthium strumarium L., the main species of the genus Xanthium, is ubiquitously distributed. The aim of this study was to determine the cytotoxic effect of aerial organs of X strumarium, grown in Cuba, against cancer cell lines and the isolation of compounds potentially responsible for this activity. Initially, an ethanol partitioning procedure yielded the XSE extract that was subsequently fractionated with chloroform resulting in a XSCF fraction. Both, XSE and XSCF fractions exhibited cytotoxic effects on MDA MB-23 1, MCF7, A549 and CT26 cell lines by using the MTT assay. Above all, the XSCF fraction was more active than XSE. For this reason, XSCF was subsequently fractionated by silica gel chromatography and the active fractions submitted to semi-preparative HPLC for isolation of bioactive compounds. Six sub-fractions (SF1 to SF6) were recovered. Sub-fractions 3 and 6 were the most active on each assayed cell line, while sub-fractions 4 and 5 were only active against A549 and CT26 cell lines. In each case, sub-fraction 6 showed the strongest inhibitory effect. The HPLC-DAD fingerprint of sub-fraction 6 showed a single peak that was identified by GC-MS as (-) spathulenol, a sesquiterpene with reported antitumor activity.

  14. Cytotoxic effects of nickel nanowires in human fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2016-03-09

    The increasing interest in the use of magnetic nanostructures for biomedical applications necessitates rigorous studies to be carried out in order to determine their potential toxicity. This work attempts to elucidate the cytotoxic effects of nickel nanowires (NWs) in human fibroblasts WI-38 by a colorimetric assay (MTT) under two different parameters: NW concentration and exposure time. This was complemented with TEM and confocal images to assess the NWs internalization and to identify any changes in the cell morphology. Ni NWs were fabricated by electrodeposition using porous alumina templates. Energy dispersive X-Ray analysis, scanning electron microscopy and transmission electron microscopy imaging were used for NW characterization. The results showed decreased cell metabolic activity for incubation times longer than 24 hours and no negative effects for exposure times shorter than that. The cytotoxicity effects for human fibroblasts were then compared with those reported for HCT 116 cells, and the findings point out that it is relevant to consider the cellular size. In addition, the present study compares the toxic effects of equivalent amounts of nickel in the form of its salt to those of NWs and shows that the NWs are more toxic than the salts. Internalized NWs were found in vesicles inside of the cells where their presence induced inflammation of the endoplasmic reticulum.

  15. Cytotoxic activity of plants from East Azarbaijan province, Iran

    Directory of Open Access Journals (Sweden)

    M. Irani

    2017-11-01

    Full Text Available Background and objectives: Due to the high cancer mortality rates and side effects of different types of cancer treatments, discovering effective treatments without or with fewer side effects is the main purpose of many researchers all around the world. Plants play an important role in the discovery of new drugs. Iran owns rich and varied vegetation but the majority of these plants have not yet undergone chemical, pharmacological and toxicological studies. In the present study, some species from East Azarbaijan province of Iran were evaluated for cytotoxicity effects. Methods: Total methanol extract of 29 plants from 18 families were screened for their cytotoxic activities. The inhibition of cell growth for these extracts was evaluated against MCF-7, A-549, Hep-G2, HT-29 and MDBK cell lines. Their 50% inhibitions of growth (IC50 were determined by MTT assay. Moreover, cytotoxic evaluation of different fractions (ether de petrol, chloroform and methanol of the most potent species was performed. Results: Total extracts and fractions of Bryonia aspera, Centaurea salicifolia, Cuscuta chinensis, Ecbalium elaterium, Gypsophila ruscifolia, Ononis spinosa exhibited potent cytotoxic activity against one or more of the cell lines. Three of the mentioned total extracts presented cytotoxicity effects exclusively against HT-29 cells. Also three fractions (one ether de petrol and two chloroform fractions demonstrated selective cytotoxicity effects against MCF-7cells. Conclusion: It was concluded that these 6 potent species were proper candidates for identification and isolation of active ingredients with cytotoxic effects  and further studies about these species are recommended.

  16. Design, Synthesis and Cytotoxic Evaluation of o-Carboxamido Stilbene Analogues

    Directory of Open Access Journals (Sweden)

    Mohamad Nurul Azmi

    2013-11-01

    Full Text Available Resveratrol, a natural stilbene found in grapes and wines exhibits a wide range of pharmacological properties. Resveratrol is also known as a good chemopreventive agent for inhibiting carcinogenesis processes that target kinases, cyclooxygenases, ribonucleotide reductase and DNA polymerases. A total of 19 analogues with an amide moiety were synthesized and the cytotoxic effects of the analogues on a series of human cancer cell lines are reported. Three compounds 6d, 6i and 6n showed potent cytotoxicity against prostate cancer DU-145 (IC50 = 16.68 µM, colon cancer HT-29 (IC50 = 7.51 µM and breast cancer MCF-7 (IC50 = 21.24 µM, respectively, which are comparable with vinblastine. The resveratrol analogues were synthesized using the Heck method.

  17. Synthesis of hydantoin and thiohydantoin related compounds from benzil and study of their cytotoxicity

    Directory of Open Access Journals (Sweden)

    A. Kashem Liton and M. Rabiul Islam

    2006-06-01

    Full Text Available Condensation of benzil (1 with urea, monophenyl urea and diphenyl urea in the presence of absolute ethanol using 30% aqueous NaOH gave the products 1a, 1b and 1c respectively and also with thiourea, monomethyl thiourea, dimethyl thiourea and diethyl thiourea the products 2a, 2b, 2c and 2d were obtained. Methylation of the product, 2a in the presence of dimethyl formamide (DMF using K2CO3 formed 2. The compounds 1b, 1c, 2b, 2c and 2 showed highly cytotoxic activity and the compounds 1a, 2a, 2d showed relatively low cytotoxic activity against brine shrimp lethality bioassay.

  18. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    Science.gov (United States)

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Sourav

    2012-04-01

    Full Text Available Abstract Background Polymer nanoparticles (PNP are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce. Results Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm and surface charges (positive and negative were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP45 (45 nm showed a higher cytotoxicity compared to the positive bigger PNP90 (90 nm particles including reduction in mitochondrial membrane potential (ΔΨm, induction of reactive oxygen species (ROS production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨm, uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM. Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP, caveolin (for negative PNP and mannose receptors (for hydroxylated PNP were found with smaller PNP45 showing stronger interactions with the receptors than bigger PNP90. Conclusions The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose leading to cellular internalization were observed to depend on

  1. Development of cold source moderator structure

    International Nuclear Information System (INIS)

    Aso, Tomokaze; Ishikura, Syuichi; Terada, Atsuhiko; Teshigawara, Makoto; Watanabe, Noboru; HIno, Ryutaro

    1999-01-01

    The cold and thermal neutrons generated at the target (which works as a spallation neutron source under a 5MW proton beam condition) is filtered with cold source moderators using supercritical hydrogen. Preliminary structural analysis was carried out to clarify technical problems on the concept of the thin-walled structure for the cold source moderator. Structural analytical results showed that the maximum stress of 1 12MPa occurred on the moderator surface, which exceeded the allowable design stresses of ordinary aluminum alloys. Flow patterns measured by water flow experiments agreed well with hydraulic analytical results, which showed that an impinging jet flow from an inner pipe of the moderator caused a recirculation flow on a large scale. Based on analytical and experimental results, new moderator structures with minute frames, blowing flow holes etc. were proposed to keep its strength and to suppress the recirculation flow. (author)

  2. Comparative study of cytotoxicity of direct metal laser sintered and cast Co-Cr-Mo dental alloy

    Directory of Open Access Journals (Sweden)

    T. Puskar

    2015-07-01

    Full Text Available The presented work investigated the cytotoxicity of direct metal laser sintered (DMLS and cast Co-Cr-Mo (CCM dental alloy. In vitro tests were done on human fibroblast cell line MRC-5. There was no statistically significant difference in the cytotoxic effects of DMLS and CCM alloy specimens. The results of this investigation show good potential of DMLS Co-Cr-Mo alloy for application in dentistry.

  3. In vitro cytotoxic screening of selected Saudi medicinal plants.

    Science.gov (United States)

    Almehdar, Hussein; Abdallah, Hossam M; Osman, Abdel-Moneim M; Abdel-Sattar, Essam A

    2012-04-01

    Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC(50)) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

  4. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.

    Science.gov (United States)

    Jin, Cheng-Yu; Zhu, Bang-Shang; Wang, Xue-Feng; Lu, Qing-Hua

    2008-09-01

    Nanotitanium dioxide (TiO2) is an important industrial material that is widely used as an additive in cosmetics, pharmaceuticals, and food colorants. Although the small size of the TiO2 nanoparticle is useful in various applications, the biosafety of this material needs to be evaluated. In this study, mouse fibroblast (L929) cells were used to evaluate the cytotoxicity of different concentrations (3-600 microg/mL) of homogeneous and weakly aggregated TiO2 nanoparticles in aqueous solution. The L929 cells became round and even shrank as the concentration of TiO2 nanoparticles increased. Moreover, TiO2 nanoparticle-treated cells had condensed fragmented chromatin or were directly necrosed, as observed by acridine orange (AO) staining. The transmission electron microscopy (TEM) analysis showed that in cells cultured in a medium containing 300 microg/mL TiO2, the number of lysosomes increased, and some cytoplasmic organelles were damaged. In addition, there was a significant increase in oxidative stress at higher TiO2 nanoparticle concentrations (>60 microg/mL). As the concentration of TiO2 nanoparticles increased in the culture medium, the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) increased, while those of methyl tetrazolium cytotoxicity (MTT), glutathione (GSH), and superoxide dismutase (SOD) decreased. A possible mechanism for the cytotoxicity of TiO2 nanoparticles is also discussed.

  5. Cytotoxicity of topical antimicrobial agents used in burn wounds in Australasia.

    Science.gov (United States)

    Fraser, John F; Cuttle, Leila; Kempf, Margit; Kimble, Roy M

    2004-03-01

    Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical antimicrobial agents has helped improve the survival of these patients. Silvazine (Sigma Pharmaceuticals, Melbourne, Australia) (1% silver sulphadiazine and 0.2% chlorhexidine digluconate) is used exclusively in Australasia, and there is no published study on its cytotoxicity. This study compared the relative cytotoxicity of Silvazine with 1% silver sulphadiazine (Flamazine (Smith & Nephew Healthcare, Hull, UK)) and a silver-based dressing (Acticoat (Smith & Nephew Healthcare, Hull, UK)). Dressings were applied to the centre of culture plates that were then seeded with keratinocytes at an estimated 25% confluence. The plates were incubated for 72 h and culture medium and dressings then removed. Toluidine blue was added to stain the remaining keratinocytes. Following removal of the dye, the plates were photographed under standard conditions and these digital images were analysed using image analysis software. Data was analysed using Student's t-test. In the present study, Silvazine is the most cytotoxic agent. Seventy-two hour exposure to Silvazine in the present study results in almost no keratinocyte survival at all and a highly statistically significant reduction in cell survival relative to control, Acticoat and Flamazine (Pstudy comparing Acticoat, Silvazine and Flamazine, Silvazine shows an increased cytotoxic effect, relative to control, Flamazine and Acticoat. An in-vivo study is required to determine whether this effect is carried into the clinical setting.

  6. Surface-dependent cytotoxicity on bacteria as a model for environmental stress of halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyo-Jick, E-mail: hyojickchoi@gmail.com [National Institute for Nanotechnology, Nanotechnology Accelerator and Department of Chemical and Materials Engineering, University of Alberta (Canada); Stazak, Theodore J. [School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati (United States); Montemagno, Carlo D., E-mail: montemag@ualberta.ca [National Institute for Nanotechnology, Nanotechnology Accelerator and Department of Chemical and Materials Engineering, University of Alberta (Canada)

    2013-10-15

    This study examined the cytotoxicity of halloysite nanotubes (HNTs) by investigating physiological responses of Escherichia coli, from cell growth to protein expression. Surfaces of HNTs were modified by amine functionalization (NH{sub 2}-HNTs) or bovine serum albumin (BSA) coating and their cytotoxicity levels were compared with that of non-modified HNTs (Bare-HNTs). Bare- and NH{sub 2}-HNTs exhibited accelerated cell death rates at {>=}0.5 mg/ml of HNTs. It was also found that concentration as low as 0.01 mg/ml of HNTs exerted significant toxic effects on the bacterial cells. Cellular viability, metabolic activity, and DNA replication all decreased with increasing concentrations of Bare- and NH{sub 2}-HNTs. In contrast, 0.01 mg/ml of BSA-coated HNTs (BSA-HNTs) coated showed no evidence of cytotoxicity. Even at concentrations {<=}0.1 mg/ml, the cytocompatibility of BSA-HNTs was significantly better than those of Bare- and NH{sub 2}-HNTs, which was confirmed by the observation of (i) the same or similar levels of cell proliferation and cell viability to the control, and (ii) higher levels of metabolic activity and plasmid DNA replication than those of Bare- and NH{sub 2}-HNTs. In addition, higher ranaspumin-2 protein yield was observed from bacterial culture supplemented with BSA-HNTs (100, 83, and 80 % of yield at 0.01, 0.05, and 0.1 mg/ml, respectively, relative to the control). This work showed that the increase of bacterial cytotoxicity of HNTs correlated well with elevating HNT concentration and that surface modification of HNTs with amine functional group and BSA coating was an effective strategy to reduce cytotoxicity up to 0.1 mg/ml of HNTs.

  7. Andiroba Oil (Carapa guianensis Aublet Nanoemulsions: Development and Assessment of Cytotoxicity, Genotoxicity, and Hematotoxicity

    Directory of Open Access Journals (Sweden)

    Susana Suely Rodrigues Milhomem-Paixão

    2017-01-01

    Full Text Available Andiroba oil (AO is obtained from an Amazonian plant and is used in traditional medicine. We carried out a comparative study to test the cytotoxicity, genotoxicity, and hematotoxicity of the oil and its nanoemulsion (AN in vitro (fibroblasts, lineage NIH/3T3 and in vivo (Swiss mice. The AN was characterized by DLS/Zeta, and its stability was investigated for 120 days. The biological activity of AN was assessed in vitro by MTT test and cell morphology analyses and in vivo by micronucleus, comet, and hematotoxicity tests. The AN presented a hydrodynamic diameter (Hd of 142.5±3.0 and PDI of 0.272±0.007 and good stability at room temperature. The MTT test evidenced the cytotoxicity of AO and of AN only at their highest concentrations, but AN showed lower cytotoxicity than AO. A lower cytotoxicity of AN, when compared to AO, is in fact an interesting data suggesting that during therapeutic application there will be a lower impact in the cell viability of healthy cells. Cytotoxicity, genotoxicity, and hematotoxicity were not observed in vivo. These tests on the biological and toxicological effects of andiroba oil and nanostructured oil are still initial ones but will give a direction to future application in cosmetics and/or the development of new phytotherapics.

  8. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use

    Directory of Open Access Journals (Sweden)

    Galati Gaspare

    2009-07-01

    Full Text Available Abstract Background Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. Methods The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. Results Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6 as well as a tumor-line (HL60. Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. Conclusion Resveratrol is

  9. Cytotoxic isoferulic acidamide from Myricaria germanica (Tamaricaceae).

    Science.gov (United States)

    Nawwar, Mahmoud A; Swilam, Noha F; Hashim, Amani N; Al-Abd, Ahmed M; Abdel-Naim, Ashraf B; Lindequist, Ulrike

    2013-01-01

    Tamgermanitin, a unique N-trans-Isoferuloyltyramine, together with the hitherto unknown polyphenolics, 2,4-di-O-galloyl-(α/β)-glucopyranose and kaempferide 3,7-disulphate have been isolated from the leaf aqueous ethanol extract of the false tamarisk, Myricaria germanica DESV. In addition, 18 known phenolics were also separated and characterized. All structures were elucidated on the basis of detailed analysis of 1D- (1)H and (13)C NMR, COSY, HSQC, HMBC and HRFTESIMS spectral data. The extract, its chromatographic column fractions and the isolated isoferuloyltyramine, tamgermanetin demonstrated potential cytotoxic effect against three different tumor cell lines, namely liver (Huh-7), breast (MCF-7) and prostate (PC-3). The IC 50''s were found to be substantially low with low-resistance possibility. DNA flow-cytometic analysis indicated that column fractions and tamgermanetin enhanced pre-G apoptotic fraction. Both materials showed inhibiting activity against PARP enzyme activity. In conclusion, we report the isolation and identification of a novel compound, tamgermanitin, from the aqueous ethanol extract of Myricaria germanica leaves. Further, different fractions of the extract and tamgermanitin exhibit potent cytotoxic activities which warrant further investigations.

  10. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    Science.gov (United States)

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  11. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Szlachcic A

    2016-08-01

    Full Text Available Anna Szlachcic, Malgorzata Zakrzewska, Michal Lobocki, Piotr Jakimowicz, Jacek Otlewski Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland Abstract: Fibroblast growth factor receptors (FGFRs are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V, was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE, and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. Keywords: fibroblast growth factor 1, FGF receptor, targeted cancer therapy, cytotoxic conjugates, FGFR-dependent cancer, MMAE, auristatin

  12. EVALUATION OF CYTOTOXIC, ANTIMICROBIAL AND ANTIINFLAMMATORY PROPERTIES FROM THE LATEX OF IPOMEA STAPHYLINA

    Directory of Open Access Journals (Sweden)

    Prasanthi Narra

    2014-04-01

    Full Text Available The plant Ipomoea staphylina has been used in diverse traditional medication for the treatment of diseases and illness of human beings. The crude latex extract obtained from the stem of Ipomea staphylina was evaluated for cytotoxic, antimicrobial and wound healing properties. Cell viability and cytotoxicity assays such as Colony Formation method and Enzyme based methods that determined cell viability with a colorimetric method were performed to evaluate the medicinal properties of Ipomea staphylina. Similarly Microbiological Antibiotic Assay to determine the antimicrobial properties and wound healing properties were tested by determining the potent anti-inflammatory molecules that inhibited COX and LOX enzymes. Results showed that the latex crude extract of Ipomea staphylina showed potent Antimicrobial and Antiinflamatory properties, but the viability of the cells were unaffected.

  13. Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts

    Science.gov (United States)

    Abd Samad, Azman; Jamil, Shajarahtunnur

    2014-01-01

    Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines. PMID:25574182

  14. Chemically dispersed oil is cytotoxic and genotoxic to sperm whale skin cells.

    Science.gov (United States)

    Wise, Catherine F; Wise, James T F; Wise, Sandra S; Wise, John Pierce

    2018-06-01

    Two major oil crises in United States history, the 1989 Exxon-Valdez oil spill in Alaska and the 2010 Deepwater Horizon Oil Rig explosion in the Gulf of Mexico, drew attention to the need for toxicological experiments on oil and chemically dispersed oil. We are still learning the effects these spills had on wildlife. However, little data is known about the toxicity of these substances in marine mammals. The objective of this study is to determine the toxicity of Alaskan oil, as well as chemically dispersed oil. Oil experiments were performed using the water accommodated fraction of Alaskan oil (WAF) and the chemically enhanced water accommodated fraction of Alaskan oil (CEWAF). The Alaskan WAF is not cytotoxic to sperm whale skin cells though it did induce chromosome damage; S9-mediated metabolism did not affect the cytotoxicity of WAF but did increase the levels of chromosome damage. Alaskan CEWAF is more cytotoxic and genotoxic than the WAF; S9 mediated metabolism increased both cytotoxicity and genotoxicity of CEWAF. Analysis of the PAH content of Alaskan WAF and CEWAF revealed a forty-fold increase in the total levels of PAHs in CEWAF compared to WAF. These findings show that chemically dispersed oil leads to higher levels of PAH exposure which are more toxic and likely to lead to longer and more persistent health effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Antioxidant Capacity, Cytotoxicity, and Acute Oral Toxicity of Gynura bicolor

    Directory of Open Access Journals (Sweden)

    Wuen Yew Teoh

    2013-01-01

    Full Text Available Gynura bicolor (Compositae which is widely used by the locals as natural remedies in folk medicine has limited scientific studies to ensure its efficacy and nontoxicity. The current study reports the total phenolic content, antioxidant capacity, cytotoxicity, and acute oral toxicity of crude methanol and its fractionated extracts (hexane, ethyl acetate, and water of G. bicolor leaves. Five human colon cancer cell lines (HT-29, HCT-15, SW480, Caco-2, and HCT 116, one human breast adenocarcinoma cell line (MCF7, and one human normal colon cell line (CCD-18Co were used to evaluate the cytotoxicity of G. bicolor. The present findings had clearly demonstrated that ethyl acetate extract of G. bicolor with the highest total phenolic content among the extracts showed the strongest antioxidant activity (DPPH radical scavenging assay and metal chelating assay, possessed cytotoxicity, and induced apoptotic and necrotic cell death, especially towards the HCT 116 and HCT-15 colon cancer cells. The acute oral toxicity study indicated that methanol extract of G. bicolor has negligible level of toxicity when administered orally and has been regarded as safe in experimental rats. The findings of the current study clearly established the chemoprevention potential of G. bicolor and thus provide scientific validation on the therapeutic claims of G. bicolor.

  16. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricate) skin cells

    Science.gov (United States)

    Young, Jamie L.; Wise, Sandra S.; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-01-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271 uM) that human cells (LC50=471 uM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate sea turtles may be a useful sentinel for human health responses to marine pollution. PMID:26440299

  17. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-04-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  18. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-01-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  19. Effects of folic acid deficiency and MTHFRC677T polymorphisms on cytotoxicity in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Wu Xiayu; Liang Ziqing; Zou Tianning; Wang Xu

    2009-01-01

    Apoptosis (APO) and necrosis (NEC) are two different types of cell death occurring in response to cellular stress factors. Cells with DNA damage may undergo APO or NEC. Folate is an essential micronutrient associated with DNA synthesis, repair and methylation. Methylenetetrahydrofolate reductase (MTHFR) regulates intracellular folate metabolism. Folate deficiency and MTHFR C677T polymorphisms have been shown to be related to DNA damage. To verify the cytotoxic effects of folate deficiency on cells with different MTHFR C677T genotypes, 15 human peripheral lymphocyte cases with different MTHFR C677T genotypes were cultured in folic acid (FA)-deficient and -sufficient media for 9 days. Cytotoxicity was quantified using the frequencies of APO and NEC as endpoints, the nuclear division index (NDI), and the number of viable cells (NVC). These results showed that FA is an important factor in reducing cytotoxicity and increasing cell proliferation. Lymphocytes with the TT genotype proliferated easily under stress and exhibited different responses to FA deficiency than lymphocytes with the CC and CT genotypes. A TT individual may accumulate more cytotoxicity under cytotoxic stress, suggesting that the effects of FA deficiency on cytotoxicity are greater than the effects in individuals with the other MTHFR C677T variants.

  20. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e

  1. Antioxidant and cytotoxic activity of new di- and polyamine caffeine analogues.

    Science.gov (United States)

    Jasiewicz, Beata; Sierakowska, Arleta; Jankowski, Wojciech; Hoffmann, Marcin; Piorońska, Weronika; Górnicka, Agnieszka; Bielawska, Anna; Bielawski, Krzysztof; Mrówczyńska, Lucyna

    2018-04-18

    A series of new di- and polyamine-caffeine analogues were synthesized and characterized by NMR, FT-IR and MS spectroscopic methods. To access stability of the investigated caffeine analogues Molecular Dynamic simulations were performed in NAMD 2.9 assuming CHARMM36 force field. To evaluate the antioxidant capacity of new compounds, three different antioxidant assays were used, namely 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH • ) scavenging activity, ferrous ions (Fe 2+ ) chelating activity and Fe 3+ →Fe 2+ reducing ability. In vitro, the ability of new derivatives to protect human erythrocytes against oxidative haemolysis induced by free radical from 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) was estimated. The cytotoxic activity was tested using MCF-7 breast cancer cells and human erythrocytes. All compounds showed the antioxidant capacity depending mostly on their ferrous ions chelating activity. In the presence of AAPH, some derivatives were able to effectively inhibit the oxidative haemolysis. Two derivatives, namely 8-(methyl(2-(methylamino)ethyl)-amino)caffeine and 8-(methyl(3-(methylamino)propyl)amino)caffeine, showed cytotoxic activity against MCF-7 breast cancer cells but not against human erythrocytes. Therefore, it is concluded that the selected di- and polyamine caffeine analogues, depending on their chemical structure, were able to minimize the oxidative stress and to inhibit the tumour cell grow. The confirmed antioxidant and cytotoxic properties of some caffeine derivatives make them attractive for potential applications in food or pharmaceutical industries.

  2. Leishmanicidal and cytotoxic activity from plants used in Tacana traditional medicine (Bolivia).

    Science.gov (United States)

    Arévalo-Lopéz, Diandra; Nina, Nélida; Ticona, Juan C; Limachi, Ivan; Salamanca, Efrain; Udaeta, Enrique; Paredes, Crispin; Espinoza, Boris; Serato, Alcides; Garnica, David; Limachi, Abigail; Coaquira, Dayana; Salazar, Sarah; Flores, Ninoska; Sterner, Olov; Giménez, Alberto

    2018-04-24

    Thirty-eight Tacana medicinal plant species used to treat skin problems, including leishmania ulcers, skin infections, inflammation and wound healing, were collected in the community of Buena Vista, Bolivia, with the Tacana people. Twenty two species are documented for the first time as medicinal plants for this ethnic group living in the northern area of the Department of La Paz. To evaluate the leishmanicidal effect (IC 50 ) and cytotoxicity (LD 50 ) of the selected plants. To carry out bioguided studies on the active extracts. To assess the potential of Bolivian plant biodiversity associated with traditional knowledge in the discovery of alternative sources to fight leishmaniasis. Seventy three ethanol extracts were prepared from 38 species by maceration and were evaluated in vitro against promastigotes of Leishmania amazonensis and L. braziliensis. Active extracts (IC 50 ≤ 50 μg/mL) were fractionated by chromatography on Silica gel column and the fractions were assessed against the two Leishmania strains. The most active fractions and the crude extracts were evaluated against reference strains of L. amazonensis, L. braziliensis, L. aethiopica, two native strains (L. Lainsoni and L. braziliensis) and for cytotoxicity against HeLa cells. The chromatographic profile of the active fractions was obtained by reverse phase chromatography using HPLC. From the 73 extracts, 39 extracts (53.4%) were inactive and 34 showed activity. Thirteen species were sselected for bioguided studies. The crude extracts and their 36 fractions were evaluated against two Leishmania strains. The most active fraction were tested in a panel of five leishmania strains and for cytotoxicity. The Selective Index (SI = LD 50 /IC 50 ) was calculated, and were generally low. Retention time and UV spectra were recorded for the active fractions by HPLC-DAD using a reverse phase column. Profiles were very different from each other, showing the presence of different compounds. Bolivian traditional

  3. Anti-inflammatory, anti-cholinergic and cytotoxic effects of Sida rhombifolia.

    Science.gov (United States)

    Mah, Siau Hui; Teh, Soek Sin; Ee, Gwendoline Cheng Lian

    2017-12-01

    Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation. This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time. S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC 50 values. GC-MS analysis was carried out on the n-hexane extract. The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC 50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC 50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol. The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.

  4. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    International Nuclear Information System (INIS)

    Roberts, Joan E.; Wielgus, Albert R.; Boyes, William K.; Andley, Usha; Chignell, Colin F.

    2008-01-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C 60 (OH) 22-26 ] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C 60 (OH) 22-26 in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 μM. Exposure to either UVA or visible light in the presence of > 5 μM fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 μM lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein α-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C 60 (OH) 22-26 is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo

  5. Cytotoxicity and Radiosensitising Activity of Synthesized Dinitrophenyl Derivatives of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Khosrou Abdi

    2012-07-01

    Full Text Available Background and the purpose of the study: Dual functional agents in which nitroaromatic or nitroheterocyclic compounds are attached through a linker unit to mustards and aziridines have shown higher cytotoxicities than the corresponding counterparts to both aerobic and hypoxic cells and enhanced radiosensitizing activity. In thepresent investigation cytotoxicity and radiosensitizing activity of 2,4-dinitrobenzyl, 2,4-dinitrobenzoyl, and 2,4-dinitrophenacetyl derivatives of 5-fluorouracil which was assumed to release cytotoxic active quinone methidide,and 5-fluorouracil under hypoxic conditions on HT-29 cell line under both aerobic and hypoxic conditions wasinvestigated.Methods: 5-fluorouracil derivative X-XIII were prepared by the reaction of the corresponding di-nitro substitutedbenzyl, benzoyl and phenacetyl halides with 5-fluorouracil protected at N-1 with di-t-butoxydicarbonate (BOC in dimethyl formamide (DMF in the presence of the potassium carbonate followed by hydrolysis of the blocking,group by potassium carbonate in methanol. Cytotoxicity of fluorouracil VIII and tested compounds X-XIII against HT-29cell line under both aerobic and hypoxic conditions after 48 hrs incubation were measured by determination of the percent of the survival cells using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and percent of the dead cells using propidium iodide(PI-digitonine assay and results were used to calculate the corresponding IC50 values. Radiosensitization experiments were carried out by irradiation of the incubations with a 60Co source and clonogenic assay was performed to determine the cell viabilities following treatment with the tested compounds and/or radiation. Sensitization Enhancement Ratio (SER of each tested compound was obtained from the radiation survival curves in the absence and presence of each sensitizer for 37% survival respectively.Results and major conclusion: Findings of the present study showed that

  6. Control of CD56 expression and tumor cell cytotoxicity in human Vγ2Vδ2 T cells

    Directory of Open Access Journals (Sweden)

    Focaccetti Chiara

    2009-09-01

    Full Text Available Abstract Background In lymphocyte subsets, expression of CD56 (neural cell adhesion molecule-1 correlates with cytotoxic effector activity. For cells bearing the Vγ2Vδ2 T cell receptor, isoprenoid pyrophosphate stimulation leads to uniform activation and proliferation, but only a fraction of cells express CD56 and display potent cytotoxic activity against tumor cells. Our goal was to show whether CD56 expression was regulated stochastically, similar to conventional activation antigens, or whether CD56 defined a lineage of cells committed to the cytotoxic phenotype. Results Tracking individual cell clones defined by their Vγ2 chain CDR3 region sequences, we found that CD56 was expressed on precursor cytotoxic T cells already present in the population irrespective of their capacity to proliferate after antigen stimulation. Public T cell receptor sequences found in the CD56+ subset from one individual might appear in the CD56- subset of another donor. The commitment of individual clones to CD56+ or CD56- lineages was stable for each donor over a 1 year interval. Conclusion The ability to express CD56 was not predicted by TCR sequence or by the strength of signal received by the TCR. For γδ T cells, cytotoxic effector function is acquired when cytotoxic precursors within the population are stimulated to proliferate and express CD56. Expression of CD56 defines a committed lineage to the cytotoxic phenotype.

  7. Reduced cytotoxicity of insulin-immobilized CdS quantum dots using PEG as a spacer

    Directory of Open Access Journals (Sweden)

    Choi Moon-Jeong

    2011-01-01

    Full Text Available Abstract Cytotoxicity is a severe problem for cadmium sulfide nanoparticles (CSNPs in biological systems. In this study, mercaptoacetic acid-coated CSNPs, typical semiconductor Q-dots, were synthesized in aqueous medium by the arrested precipitation method. Then, amino-terminated polyethylene glycol (PEG was conjugated to the surface of CSNPs (PCSNPs in order to introduce amino groups to the surface. Finally, insulin was immobilized on the surface of PCSNPs (ICSNPs to reduce cytotoxicity as well as to enhance cell compatibility. The presence of insulin on the surface of ICSNPs was confirmed by observing infrared absorptions of amide I and II. The mean diameter of ICSNPs as determined by dynamic light scattering was about 38 nm. Human fibroblasts were cultured in the absence and presence of cadmium sulfide nanoparticles to evaluate cytotoxicity and cell compatibility. The results showed that the cytotoxicity of insulin-immobilized cadmium sulfide nanoparticles was significantly suppressed by usage of PEG as a spacer. In addition, cell proliferation was highly facilitated by the addition of ICSNPs. The ICSNPs used in this study will be potentials to be used in bio-imaging applications.

  8. Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility.

    Science.gov (United States)

    Tarantola, Marco; Schneider, David; Sunnick, Eva; Adam, Holger; Pierrat, Sebastien; Rosman, Christina; Breus, Vladimir; Sönnichsen, Carsten; Basché, Thomas; Wegener, Joachim; Janshoff, Andreas

    2009-01-27

    In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods. The method is validated by conventional cytotoxicity testing and accompanied by fluorescence and dark-field microscopy to visualize changes in the cytoskeleton integrity and to determine the location of the particles within the cell.

  9. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration

    International Nuclear Information System (INIS)

    Guelden, Michael; Moerchel, Sabine; Seibert, Hasso

    2005-01-01

    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC 50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC 50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC 50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity

  10. Evaluation of cytotoxicity and degree of conversion of orthodontic adhesives over different time periods

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2010-06-01

    Full Text Available As new orthodontic resin adhesives continue to be marketed, rapid and sensitive tests for examining their toxic effects at the ' cell and tissue level ' are needed because patient safety has been identifi ed as a legal concept. The objective of the present study was to evaluate the cytotoxicity and degree of monomer conversion of orthodontic adhesives over different time periods. Seven adhesives: Transbond® XT, Transbond® Color Change, Quick Cure, EagleBond, Orthobond®, Fill Mágic® and Biofix® were evaluated for their cytotoxicity in L929 fibroblastic cells and for their degree of monomer conversion over different time periods. Three control groups were also analysed: Positive control (C+, consisting of Tween 80 cell detergent; Negative control (C-, consisting of PBS; and cell control (CC, consisting of cells exposed to any material. The dye-uptake technique that involves the absorption of a neutral red dye in viable cells was used for the cytotoxicity evaluation and the degree of conversion was evaluated using spectroscopy with infrared. The results showed the cytotoxicity of the adhesives at 24, 48, 72 and 168 hours. At these times, the viability values presented for these materials were statistically different from the groups CC and C- (p 0.05. In the monomer conversions there was a percentage increase of monomer conversion from 24 to 72 hours. A direct correlation could be observed between cytotoxicity and monomer conversions. From this work it can be concluded that all adhesives evaluated are cytotoxic at the times of 24, 48 and 72 hours. Monomers continued conversion even after photopolymerization had stopped.

  11. Synthesis, Leishmanicidal and Cytotoxic Activity of Triclosan-Chalcone, Triclosan-Chromone and Triclosan-Coumarin Hybrids

    Directory of Open Access Journals (Sweden)

    Elver Otero

    2014-08-01

    Full Text Available Twelve hybrids derived from triclosan were obtained via Williamson etherification of O-triclosan alkyl bromide plus chalcone and O-coumarin or O-chromone alkyl bromide plus triclosan, respectively. Structures of the products were elucidated by spectroscopic analysis. The synthesized compounds were evaluated for antileishmanial activity against L. (V panamensis amastigotes. Cytotoxic activity was also evaluated against mammalian U-937 cells. Compounds 7–9 and 17, were active against Leishmania parasites (EC50 = 9.4; 10.2; 13.5 and 27.5 µg/mL, respectively and showed no toxicity toward mammalian cells (>200 µg/mL. They are potential candidates for antileishmanial drug development. Compounds 25–27, were active and cytotoxic. Further studies using other cell types are needed in order to discriminate whether the toxicity shown by these compounds is against tumor or non-tumor cells. The results indicate that compounds containing small alkyl chains show better selectivity indices. Moreover, Michael acceptor moieties may modify both the leishmanicidal activity and cytotoxicity. Further studies are required to evaluate if the in vitro activity against Leishmania panamensis demonstrated here is also observed in vivo.

  12. Synthesis and biological evaluations of cytotoxic and antiangiogenic triterpenoids-jacaranone conjugates

    DEFF Research Database (Denmark)

    Sun, Hua; Yue, Partick Y. K.; Wang, Shao Rong

    2016-01-01

    showed that these conjugates are more potent in both cytotoxic and antiangiogenic assays than their corresponding parent molecules, and are also selectively more active against melanoma cells B16 and metastatic B16BL6 than the two other cancer cell lines (A549 and MCF-7) tested. The predicted...

  13. Quantifying engineered nanomaterial toxicity: comparison of common cytotoxicity and gene expression measurements

    Directory of Open Access Journals (Sweden)

    Donald H. Atha

    2017-11-01

    Full Text Available Abstract Background When evaluating the toxicity of engineered nanomaterials (ENMS it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA-capped InP and CdSe quantum dots (QDs. We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS, the lactate dehydrogenase assay for membrane viability (LDH, the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks. Results The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity. Conclusions This study can

  14. Cytotoxic activity of Agave lechuguilla Torr | Casillas | African ...

    African Journals Online (AJOL)

    The cytotoxic activity of extract and isolated saponin from leaves of Agave lechuguilla was investigated. Ethanol extract from leaves of A. lechuguilla exhibited cytotoxic activity against HeLa cells in vitro (50% inhibitory concentration (IC50) = 89 μg/ml). Bioassay-guided fractionation of this extract had led to the isolation of 5-β ...

  15. A cytotoxicity study of silicon oxycarbide nanowires as cell scaffold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Lagonegro, P.; Rossi, F. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Galli, C., E-mail: carlo.galli@unipr.it [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Department of Biomedical, Biotechnological, and Translational Sciences, Parma University, via Gramsci 14, 43126 Parma (Italy); Smerieri, A. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Department of Biomedical, Biotechnological, and Translational Sciences, Parma University, via Gramsci 14, 43126 Parma (Italy); Alinovi, R.; Pinelli, S. [Department of Clinical and Experimental Medicine, Parma University, via Gramsci 14, 43126 Parma (Italy); Rimoldi, T. [Physics and Earth Science Department, Parma University, Parco Area delle Scienze 7/A, 43124 Parma (Italy); Attolini, G. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Macaluso, G.; Macaluso, C. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Department of Biomedical, Biotechnological, and Translational Sciences, Parma University, via Gramsci 14, 43126 Parma (Italy); Saddow, S.E. [Electrical Engineering Department, University of South Florida, 4202 East Fowler Avenue, ENB118 Tampa, Florida (United States); Salviati, G. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy)

    2017-04-01

    Goal: Nanowires are promising biomaterials in multiple clinical applications. The goal of this study was to investigate the cytotoxicity of carbon-doped silica nanowires (SiO{sub x}C{sub y} NWs) on a fibroblastic cell line in vitro. Materials and methods: SiO{sub x}C{sub y} NWs were grown on Si substrates by CVD process. Murine L929 fibroblasts were cultured in complete DMEM and indirect and direct cytotoxicity tests were performed in agreement with ISO 19003-5, by quantitating cell viability at MTT and chemiluminescent assay. Cell cultures were investigated at Scanning Electron Microscope (SEM) and immunocytochemistry to observe their morphology and investigate cell-NWs interactions. Furthermore, hemocompatibility with Platelet-rich Plasma was assayed at SEM and by ELISA assay. Results: SiOxCy NWs proved biocompatible and did not impair cell proliferation at contact assays. L929 were able to attach on NWs and proliferate. Most interestingly, L929 reorganised the NW scaffold by displacing the nanostructure and creating tunnels within the NW network. NWs moreover did not impair platelet activation and behaved similarly to flat SiO{sub 2}. Conclusions: Our data show that SiOxCy NWs did not release cytotoxic species and acted as a viable and adaptable scaffold for fibroblastic cells, thus representing a promising platform for implantable devices. - Highlights: • NWs did not release cytotoxic species. • Fibroblasts reorganised the NWs network, adapting it to their needs. • Blood tests with platelet-rich plasma and dynamic blood coagulation tests showed oxycarbide NWs induced platelet activation. • Carbon-doped SiO{sub x}C{sub y} NWs network are a promising biomaterial for implantable scaffolds for tissue regeneration.

  16. Combinatorial cytotoxic effects of Curcuma longa and Zingiber officinale on the PC-3M prostate cancer cell line

    Science.gov (United States)

    Kurapati, Kesava Rao V.; Samikkannu, Thangavel; Kadiyala, Dakshayani B.; Zainulabedin, Saiyed M.; Gandhi, Nimisha; Sathaye, Sadhana S.; Indap, Manohar A.; Boukli, Nawal; Rodriguez, Jose W.; Nair, Madhavan P.N.

    2015-01-01

    Background Many plant-derived products exhibit potent chemopreventive activity against animal tumor models as well as rodent and human cancer cell lines. They have low side effects and toxicity and presumably modulate the factors that are critical for cell proliferation, differentiation, senescence and apoptosis. The present study investigates the effects of some medicinal plant extracts from generally recognized as safe plants that may be useful in the prevention and treatment of cancer. Methods Clonogenic assays using logarithmically-growing cells were performed to test the effect. The cytotoxic effects of Curcuma longa and Zingiber officinale were studied using sulforhodamine B assay, tetrazolium dye assay, colony morphology and microscopic analysis. Results Out of the 13 lyophilized plant-derived extracts evaluated for growth-inhibitory effects on the PC-3M prostate cancer cell line, two extracts derived from C. longa and Z. officinale showed significant inhibitory effects on colony-forming ability. The individual and augmentative effects of these two extracts were tested for their narrow range effective lower concentration on PC-3M in clonogenic assays. At relatively lower concentrations, C. longa showed significant inhibition of colony formation in clonogenic assays; whereas at same concentrations Z. officinale showed only moderate inhibitory effects. However, when both the agents were tested together at the same concentrations, the combined effects were much more significant than their individual ones. On normal prostate epithelial cells both C. longa and Z. officinale had similar effects but at a lower magnitude. These observations were confirmed by several cytotoxicity assays involving the morphological appearance of the colonies, microscopic observations, per cent inhibition in comparison to control by sulforhodamine B and tetrazolium dye assay. Conclusions From these observations, it was concluded that the combined effects of C. longa and Z. officinale

  17. Development of a cone-geometry positron moderator

    International Nuclear Information System (INIS)

    Lynn, K.G.; Gramsch, E.; Usmar, S.G.; Sferlazzo, P.

    1989-01-01

    Results are presented on a new cone-shaped positron moderator which shows a high moderator efficiency (i.e., conversion of beta decay to emitted slow positrons). The moderator efficiencies for the cone moderators studied were found to be up to 0.14% compared to thin-foil measurements of 0.06% in the same experimental system including identical source and holder. These moderators are rugged and easily fabricated, however, they have a lower brightness than single-crystal foil moderators. Comparison of various geometries is presented as well as suggestions for further improvements to increase the total efficiencies

  18. Synthetic miR-145 Mimic Enhances the Cytotoxic Effect of the Antiangiogenic Drug Sunitinib in Glioblastoma.

    Science.gov (United States)

    Liu, Hongwei; Liu, Zhixiong; Jiang, Bing; Huo, Lei; Liu, Jinfang; Lu, Jingchen

    2015-06-01

    Although aggressive therapeutic regimen has been applied in the treatment of Glioblastoma (GBM), the prognosis of patients with GBM remains poor. Preclinical studies have demonstrated the efficacy of Suntinib in GBM both in vitro and in vivo. In this study, we showed that the cytotoxicity was enhanced by transfection with miR-145 mimic. In addition, we suggested that the enhanced cytotoxicity of Sunitinib by miR-145 mimic was mediated by inhibition of both P-gp and Bcrp.

  19. Effects of Cytochrome P 450 Inhibitors on Itraconazole and Fluconazole Induced Cytotoxicity in Hepatocytes

    International Nuclear Information System (INIS)

    Somchit, N.; Ngee, C.S.; Yaakob, A.; Ahmad, Z.; Zakaria, Z.A.

    2009-01-01

    Itraconazole and fluconazole have been reported to induce hepatotoxicity in patients. The present study was designed to investigate the role of cytochrome P450 inhibitors, SKF 525A, and curcumin pretreatment on the cytotoxicity of antifungal drugs fluconazole and itraconazole. For 3 consecutive days, female rats were administered daily SKF 525A or curcumin (5 and 25?mg/kg). Control rats received an equivalent amount of dosed vehicle. The animals were anaesthetised 24 hours after receiving the last dose for liver perfusion. Hepatocytes were then exposed to various concentrations of antifungal drugs. In vitro incubation of hepatocytes with itraconazole revealed significantly lower viability when compared to fluconazole as assessed by lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase activities. The cytotoxicity of itraconazole was enhanced when incubated with hepatocytes pretreated with SKF 525A. SKF 525A had no effects on the cytotoxicity of fluconazole. Curcumin failed to either increase or decrease the cytotoxicity of both antifungal drugs. ATP levels also showed significant decrease in both itraconazole and fluconazole incubated hepatocytes. However, SKF 525A pretreated hepatocytes had significantly lower ATP levels after itraconazole incubations. Collectively, these results confirm the involvement of cytochrome P450 in the cytoprotection in itraconazole induced hepatocyte toxicity. Differences of the effects of SKF 525A on the cytotoxicity induced by itraconazole and fluconazole may be due to the differences on the metabolism of each antifungal drug in vivo.

  20. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets

    Science.gov (United States)

    Federici, Ermanno; Prete, Roberta; Lazzi, Camilla; Pellegrini, Nicoletta; Moretti, Massimo; Corsetti, Aldo; Cenci, Giovanni

    2017-01-01

    This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides–Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut. PMID:28293225

  1. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets.

    Science.gov (United States)

    Federici, Ermanno; Prete, Roberta; Lazzi, Camilla; Pellegrini, Nicoletta; Moretti, Massimo; Corsetti, Aldo; Cenci, Giovanni

    2017-01-01

    This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides-Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut.

  2. Application of cytotoxicity test for toxic micropollutants. Saibo dokusei shiken ni yoru yugai kagaku busshitsu osen no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, H; Hamada, A [Showa University, Tokyo (Japan). School of Pharmaceutical Science; Ono, Y [National Institute of Hygienic Sciences, Tokyo (Japan)

    1992-10-01

    Considerations were given from a viewpoint of assessing toxicity to human bodies on methods of assessing water pollutants and organisms, and applicability of cytotoxity test using cultured cells to water quality assessment. Biological assessment systems used for water environment may use tests using multicellular organisms, cells, or organelles in cells. The organism assessment method is intended mainly for assessing ecological effects, and a suitable method must be selected upon extrapolating it to human bodies. A toxicity parameter used most frequently in a cytotoxity test is the cell revival rate, and life and death are determined from liberation of enzymes in cells, or with color rejection tests and incorporation tests. There are a number of test specimens of raw tap water and its chlorine treatment condensate that show no mutagenicity but cytotoxity. Efficiencies of removal by means of mild chlorine treatment, fast filtration, and activated carbon adsorption vary greatly with cytotoxity and mutagenicity. Introducing the cytotoxity test is expected of further contributing to improving safety in water quality. 24 refs., 1 fig., 7 tabs.

  3. Chemical composition, antischistosomal and cytotoxic effects of the essential oil of Lavandula angustifolia grown in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    André L.L. Mantovani

    Full Text Available This paper reports on the chemical composition, the in vitroantischistosomal effects, and the cytotoxicity of the essential oil from the leaves of Lavandula angustifolia Mill., Lamiaceae, grown in the Southeastern Brazil. Borneol (22.4%, epi-α-muurolol (13.4%, α-bisabolol (13.1%, precocene I (13.0%, and eucalyptol (7.9% were the major essential oil constituents. Incubation with essential oil at 200 μg/ml killed all the adult S. mansoni worms after 24 h (LC50117.7 and 103.9 μg/ml at 24 and 120 h of incubation, respectively. At a concentration of 50 μg/ ml, the essential oil significantly decreased the motor activity and reduced the percentage of egg development after 120 h. In addition, the essential oil separated all the coupled S. mansoni worm pairs into individual male and female at 25 and 50 μg/ml within 120 and 24 h, respectively. This oil was cytotoxic to GM07492-A cells at only concentrations higher than 200 µg/ml (IC50243.7 µg/ml. These data indicate that LA-EO exhibits moderate in vitro activity against adult S. mansoniand exerts remarkable effects on eggs development.

  4. Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate.

    Science.gov (United States)

    Guggi, Davide; Langoth, Nina; Hoffer, Martin H; Wirth, Michael; Bernkop-Schnürch, Andreas

    2004-07-08

    D-glucosamine and chitosan were modified by the immobilization of thiol groups utilizing 2-iminothiolane. The toxicity profile of the resulting D-glucosamine-TBA (4-thiobutylamidine) conjugate, of chitosan-TBA conjugate and of the corresponding unmodified controls was evaluated in vitro. On the one hand, the cell membrane damaging effect of 0.025% solutions of the test compounds was investigated via red blood cell lysis test. On the other hand, the cytotoxity of 0.025, 0.25 and 0.5% solutions of the test compounds was evaluated on L-929 mouse fibroblast cells utilizing two different bioassays: the MTT assay (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide), which assess the mitochondrial metabolic activity of the cells, and the BrdU-based enzyme-linked immunosorbent assay, which measures the incorporation in the DNA of 5-bromo-2'-deoxyuridine and consequently the cell proliferation. Results of the red blood cell lysis test showed that both thiolated compounds displayed a lower membrane damaging effect causing a significantly lower haemoglobine release than the unmodified compounds. Data obtained by the MTT assay and the BrdU assay revealed a concentration dependent relative cytotoxicity for all tested compounds. The covalent linkage of the TBA-substructure to D-glucosamine did not cause a significant increase in cytotoxicity, whereas at higher concentrations a slightly enhanced cytotoxic effect was caused by the derivatisation of chitosan. In conclusion, the -TBA derivatives show a comparable toxicity profile to the corresponding unmodified compounds, which should not compromise their future use as save pharmaceutical excipients.

  5. Cytotoxicity and antiangiogenic effects of Rhus coriaria, Pistacia vera and Pistacia khinjuk oleoresin methanol extracts.

    Science.gov (United States)

    Mirian, M; Behrooeian, M; Ghanadian, M; Dana, N; Sadeghi-Aliabadi, H

    2015-01-01

    Angiogenesis, formation of new blood vessels, play an important role in some diseases such as cancer and its metastasis. Using angiogenesis inhibitors, therefore, is one of the ways for cancer treatment and prevention of metastasis. Medicinal plants have been shown to play a major role in the treatment of a variety of cancers. In this direction, cytotoxic and angiogenic effects of oleo gum resin extracts of Rhus coriaria, Pistacia vera and Pistacia khinjuk from Anacardiaceae family were studied. For IC50 values, cytotoxic effects of the plant extracts were evaluated at different concentrations (1, 10, 20, 40, 80,100 μg/ml) against human umbilical vein endothelial normal cell (HUVEC) and Y79 cell lines using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. In vitro tube formation on matrigel base was used to evaluate angiogenic effects in the presence of increasing concentrations (50, 100, 250 μg/ml) of the extracts. Vascular endothelium growth factor was used as angiogenesis stimulator. Gas chromatography results showed that α-pinene and β-pinene were the major essential oils constituents of all plant extracts. According to the MTT assay results, the R. coriaria resin extract was more cytotoxic than those of P. vera and P. khinjuk extracts (IC50, 9.1 ± 1.6 vs 9.8 ± 2.1 and 12.0 ± 1.9, respectively; P<0.05). Cytotoxic effects of all extracts against Y79 cell line was significantly higher than those of HUVEC used as a normal cell line (P<0.05). Tube formation assay also showed that extract of R. coriaria resin inhibited angiogenesis more significantly than other tested extracts (P<0.05). It could be concluded that R. coriaria resin extract possess cytotoxic effect and antiangiogenesis against cancer cells and as an anticancer natural product has a good potential for future studies.

  6. Kinetics of micronucleus induction and cytotoxicity caused by distinct antineoplastics and alkylating agents in vivo.

    Science.gov (United States)

    Morales-Ramírez, Pedro; Vallarino-Kelly, Teresita; Cruz-Vallejo, Virginia

    2014-01-30

    This mini-review aims to compare the differences in the kinetics of the induction of micronucleated polychromatic erythrocytes (MN-PCE) and cytotoxicity by distinct antineoplastic and genotoxic agents in murine peripheral blood in vivo and to correlate these kinetics with the underlying processes. Comparisons were carried out using our previously obtained data with nominal doses causing similar levels of cytotoxicity, as measured in terms reduction of PCE. The aneuploidogens caused the most rapid induction of MN-PCEs and had the highest rates of cytotoxicity and genotoxicity. The promutagens cyclophosphamide and dimethylnitrosamine showed the most delayed responses and had the lowest genotoxic and cytotoxic efficiencies. DNA crosslinking agents had a similar delay of 4-5 h, greater than those of aneuploidogens, but differed in their cytotoxic and genotoxic efficiencies. Methylnitrosourea and 5-aza-cytidine caused greater delays than crosslinking agents. These delays can be due to the methylnitrosourea-mediated induction of formation of mono alkyl adducts which are interpreted as mismatches during DNA duplication, whereas 5-aza-cytidine requires incorporation into the DNA to induce breakage. This review allows us to conclude that the requirement for metabolic activation and the mechanisms of DNA breakage and of micronucleus induction are the main factors that affect the time of maximal MN-PCE induction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Cancer Cell Cytotoxicities of 1-(4-Substitutedbenzoyl-4-(4-chlorobenzhydrylpiperazine Derivatives

    Directory of Open Access Journals (Sweden)

    Mine Yarim

    2012-06-01

    Full Text Available A series of novel 1-(4-substitutedbenzoyl-4-(4-chlorobenzhydrylpiperazine derivatives 5ag was designed by a nucleophilic substitution reaction of 1-(4-chlorobenzhydrylpiperazine with various benzoyl chlorides and characterized by elemental analyses, IR and 1H nuclear magnetic resonance spectra. Cytotoxicity of the compounds was demonstrated on cancer cell lines from liver (HUH7, FOCUS, MAHLAVU, HEPG2, HEP3B, breast (MCF7, BT20, T47D, CAMA-1, colon (HCT-116, gastric (KATO-3 and endometrial (MFE-296 cancer cell lines. Time-dependent cytotoxicity analysis of compound 5a indicated the long-term in situ stability of this compound. All compounds showed significant cell growth inhibitory activity on the selected cancer cell lines.

  8. Impact of diffusion barriers to small cytotoxic molecules on the efficacy of immunotherapy in breast cancer.

    Directory of Open Access Journals (Sweden)

    Hiranmoy Das

    Full Text Available Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.

  9. Cytotoxic potential and chromatogram profile of sarang semut tuber (Myrmecodia Pendans Merr. & Perry) after gamma irradiation

    International Nuclear Information System (INIS)

    Ermin Katrin Winarno; Susanto; Hendig Winarno; Siva Fauziah

    2015-01-01

    Sarang semut tuber (Myrmecodia pendans Merr. & Perry) has cytotoxic activity. Preservation efforts of sarang semut tuber was performed with gamma irradiation. The research purposed to study the effect of gamma on cytotoxic activity against leukemia L1210 cell lines and chromatogram profiles of sarang semut tuber (Myrmecodia pendans Merr. & Perry). The dried sarang semut tuber were gamma irradiated with a variety of doses of 5; 7.5; 10; and 15 kGy. The experiments were performed with two replicates for each dose. Then samples were macerated with solvent by gradient polarity with n-hexane, ethyl acetate, and ethanol. Extracts were tested against the leukemia L1210 cell lines. From the results obtained showed that the ethanol extract was the most active against leukemia L1210 cell lines (IC50 9.88 μg/ml) compared with n-heksan (IC50 23.44 μg/ml) and ethyl acetate extract (IC50 17.32 μg/ml). Ethanol extracts were fractionated by column chromatography, the result were obtained 7 fractions. Based on the cytotoxic activity test for each fraction, the fraction 1 had the highest activity (IC50 ≤ 3.23 μg/ml). The identifications of ethanol extract and fraction 1 by CLT-densitometry showed that the spots area increased and decreased after gamma irradiation. The chromatogram profile of fraction 1 showed that the major peak area decreased after irradiation. The maximum irradiation dose without damaging the cytotoxic activity of sarang semut tuber againts leukemia L1210 cell lines was 5 kGy. (author)

  10. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricata) skin cells.

    Science.gov (United States)

    Young, Jamie L; Wise, Sandra S; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-12-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed that the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271μM) than that of human cells (LC50=471μM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated that the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate that sea turtles may be a useful sentinel for human health responses to marine pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. 2{sup -}Ethyl-furanoflavone derivatives from the stems of Cassia fistula and their cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Xue-Mei, Gao; Xiang-Zhong, Huang; Li-Ying, Yang; Li-Dan, Shu; Gan-Peng, Li, E-mail: ganpeng_li@sina.com [Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities, Yunnan (China); Yan-Qiong, Shen; Qiu-Fen, Hu, E-mail: huqiufena@yahoo.com.cn [Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities, Yunnan (China); Key Laboratory of Tobacco Chemistry of Yunnan Province, Yunnan Academy of Tobacco Science, Yunnan (China)

    2013-04-15

    Two new 2{sup -}ethyl-furanoflavones named fistulaflavones A and B together with six known furanoflavones were isolated from the stems of Cassia fistula. The structures were elucidated by spectroscopic methods including extensive 1D, 2D NMR and high resolution electrospray ionization mass spectrometry (HRESIMS) techniques, and comparison with literature data. All the compounds were evaluated for their cytotoxicity against five human tumor cell lines. One of the compounds showed potent cytotoxicity against SHSY5Y and MCF7 cells with IC{sub 50} values of 2.7 and 2.6 Greek-Small-Letter-Mu mol L{sup -1}, respectively (author)

  12. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Ana M Sanchez-Sanchez

    Full Text Available Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis. Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells and in cells where it inhibits proliferation (chondrosarcoma cells. Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.

  13. Myrtus comunis and Eucalyptus camaldulensis cytotoxicity on breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hrubik Jelena D.

    2012-01-01

    Full Text Available In vitro cytotoxicity of methanol, ethyl acetate, n-buthanol, and water extracts of Myrtus communis L. and Eucalyptus camaldulensis Dehnh. was examined against two human breast cancer cell lines (MCF 7 and MDA-MB-231 using MTT and SRB assays. The results showed significant cytotoxic potential of examined extracts, with IC50 values ranging from 7 to 138 μg/ml for M. communis and 3-250 μg/ml for E. camaldulensis. The two plants generally expressed similar activity, and no significant difference in cell line’s sensitivity towards extracts was observed. The results indicate to M. communis and E. camaldulensis as candidates for thorough chemical analyses for identification of active compounds, and eventually for attention in the process of discovery of new natural products in the control of cancer. [Projekat Ministarstva nauke Republike Srbije, br. 173037 i br. 172058

  14. Cytotoxic triterpenoids isolated from sweet chestnut heartwood (Castanea sativa) and their health benefits implication.

    Science.gov (United States)

    Pérez, Andy J; Pecio, Łukasz; Kowalczyk, Mariusz; Kontek, Renata; Gajek, Gabriela; Stopinsek, Lidija; Mirt, Ivan; Stochmal, Anna; Oleszek, Wiesław

    2017-11-01

    For centuries wood containers have been used in aging of wines and spirits, due to the pleasant flavors they give to the beverages. Together with oak, sweet chestnut wood (Castanea sativa) have been often used for such purpose. The maturation process involves the transfer of secondary metabolites, mainly phenolics, from the wood to the liquid. At the same time, other metabolites, such as triterpenoids and their glycosides, can also be released. Searching for the extractable triterpenoids from sweet chestnut heartwood (C. sativa), two new ursane-type triterpenoid saponins named chestnoside A (1) and chestnoside B (2), together with two known oleanen-type analogs (3 and 4) were isolated and characterized. The cytotoxicity of isolated compounds was tested against two cancer cell lines (PC3 and MCF-7), and normal lymphocytes. Breast cancer cells (MCF-7) were more affected by tested compounds than prostate cancer cells (PC3). Chestnoside B (2) exhibited the strongest cytotoxicity with an IC 50 of 12.3 μM against MCF-7 cells, lower than those of positive controls, while it was moderately active against normal lymphocytes (IC 50  = 67.2 μM). These results highlight the occurrence of triterpenoid saponins in sweet chestnut heartwood and their potential for the chemoprevention of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae).

    Science.gov (United States)

    Santos, Francianne Oliveira; de Lima, Hélimar Gonçalves; de Souza Santos, Nathália Silva; Serra, Taiane Menezes; Uzeda, Rosângela Soares; Reis, Isabella Mary Alves; Botura, Mariana Borges; Branco, Alexsandro; Batatinha, Maria José Moreira

    2017-10-15

    This study aimed to evaluate the in vitro activity of D. insularis extracts and fractions against gastrointestinal nematodes of goats and its cytotoxicity on Vero cells. The egg hatch (EHT) and larval motility (LMT) tests were conducted to investigate the anthelmintic effects of the crude hydroethanolic (CH), ethyl acetate (EA), butanolic (BT) and residual hydroethanolic (RH) extracts. The elution of the active extract (EA) on column chromatography (SiO 2 ) using organic solvents furnished six fractions (FR1 to FR6), which were also tested. Cytotoxicity was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Trypan Blue exclusion assays. All extracts, FR2 and FR3, inhibited egg hatching in a concentration-dependent manner. The EHT led to EC 50 values (effective concentration 50%) of 0.64; 0.69; 0.77; 0.96; 0.27 and 0.65mg/mL for CH, EA, BT, RH, FR2 and FR3, respectively. However, the extracts exhibited low effect on the motility of L 3. In the cytotoxicity evaluation (MTT assay), the IC 50 (inhibitory concentration 50%) was 1.18 (EA), 1.65 (FR2) and 1.59mg/mL (FR3), which was relatively high (low toxicity) in comparison to the EC 50 values in EHT, mainly for FR2. The chemical analyses of most active fractions (FR2) by Liquid Chromatography coupled to Mass Spectrometry (LC-MS) led the characterization of the flavones tricin and diosmetin. These results showed the high anthelmintic effect and low cytotoxicity of D. insularis and also that the flavones can be probably responsible for the nematocidal activity of this plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L show high anti-angiogenic, anti-tumor, brine shrimp and fibroblast NIH/3T3 cell line cytotoxicity

    Directory of Open Access Journals (Sweden)

    Muhammad eAyaz

    2016-03-01

    Full Text Available Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, GC-MS to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr, its subsequent fractions; n-hexane (Ph.Hex, chloroform (Ph.Chf, ethyl acetate (Ph.EtAc, n-Butanol (Ph.Bt, aqueous (Ph.Aq, saponins (Ph.Sp were performed using the chick embryo chorioallantoic membrane (CAM assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed on Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line using brine shrimps and MTT cells viability assays. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt and Ph.EtAc identified 126, 124, 153, 131 and 164 compounds respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75 and 461.53 µg/ml respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19 and 342.53 µg/ml respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50 and 71.50% cytotoxicity respectively at 1000 µg/ml with the LD50 of 140, 160 and 175 µg/ml respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer.

  17. induced acute cytotoxicity in human cervical epithelial carcinoma cells

    African Journals Online (AJOL)

    Molecular basis of arsenite (As +3 )-induced acute cytotoxicity in human cervical epithelial carcinoma cells. ... Libyan Journal of Medicine ... Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and ...

  18. Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras

    DEFF Research Database (Denmark)

    Staerk, D; Lemmich, E; Christensen, J

    2000-01-01

    -NMR resonances by COSY and NOESY experiments. These and related alkaloids showed pronounced activity against Leishmania major promastigotes (IC50 at the micromolar level) but no significant in vitro antiplasmodial activity (against chloroquine-sensitive Plasmodium falciparum). Cytotoxicity assessed with drug...

  19. Cytotoxicity and genotoxicity properties of particulate matter fraction 2.5 μm

    Science.gov (United States)

    Bełcik, Maciej K.; Trusz-Zdybek, Agnieszka; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna

    2017-11-01

    In the ambient is more than 2,000 chemical substances, some of them are absorbed on the surface of the particulate matter and may causes many health problems. Air pollution is responsible for more than 3.2 million premature deaths which classifies it as a second place environmental risk factor. Especially dangerous for health are polycyclic aromatic hydrocarbons and their nitro- and amino derivatives which shows mutagenic and carcinogenic properties. Air pollutions were also classified by International Agency for Research on Cancer to group which carcinogenic properties on human were proved by available knowledge. Air pollutions, including particulate matter are one of the biggest problem in Polish cities. World Health Organization in report published in May 2016 set many of Polish cities on the top of the list most polluted in European Union. The article presents results of mutagenicity, genotoxicity and cytotoxicity researches conducted on a particulate matter fraction 2.5 μm collected during all year long in Wroclaw agglomeration. The material were collected on filters using high-flow air aspirator and extracted using dichloromethane. Additionally it was fractionated into 2 parts containing: all pollutants and only polycyclic aromatic hydrocarbons. Dry residue of this fractions were dissolving in DMSO and tested using biological methods. Biological methods include mutagenicity properties which are investigated by Salmonella assay (Ames assay). Other biological method was comet assay and 4 parameter cytotoxicity test PAN-I assay. Results of the conducted experiments shows differences in mutagenic, genotoxic and cytotoxic properties between seasons of collection and between volume of dust pollutions fractions. The worst properties shows particles collected in autumn and winter season and this containing only polycyclic aromatics hydrocarbons. Results showed also some correlations in results obtained during different methods and properties.

  20. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    International Nuclear Information System (INIS)

    Boyd, Jessica M.; Huang, Li; Xie Li; Moe, Birget; Gabos, Stephan; Li Xingfang

    2008-01-01

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC 50 ) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC 50 values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC 50 concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC 50 . Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPhA causing cell

  1. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Jessica M [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Huang, Li [Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Li, Xie; Moe, Birget [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Gabos, Stephan [Public Health Surveillance and Environmental Health, Alberta Health and Wellness, 10025 Jasper Avenue, Box 1360, Edmonton, Alberta, T5J 2N3 (Canada); Xingfang, Li [Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada); Environmental Health Sciences, Department of Public Health Sciences, School of Public Health, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3 (Canada)], E-mail: xingfang.li@ualberta.ca

    2008-05-12

    A cell-microelectronic sensing technique is developed for profiling chemical cytotoxicity and is used to study different cytotoxic effects of the same class chemicals using nitrosamines as examples. This technique uses three human cell lines (T24 bladder, HepG2 liver, and A549 lung carcinoma cells) and Chinese hamster ovary (CHO-K1) cells in parallel as the living components of the sensors of a real-time cell electronic sensing (RT-CES) method for dynamic monitoring of chemical toxicity. The RT-CES technique measures changes in the impedance of individual microelectronic wells that is correlated linearly with changes in cell numbers during t log phase of cell growth, thus allowing determination of cytotoxicity. Four nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiphenylamine (NDPhA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were examined and unique cytotoxicity profiles were detected for each nitrosamine. In vitro cytotoxicity values (IC{sub 50}) for NDPhA (ranging from 0.6 to 1.9 mM) were significantly lower than the IC{sub 50} values for the well-known carcinogen NDMA (15-95 mM) in all four cell lines. T24 cells were the most sensitive to nitrosamine exposure among the four cell lines tested (T24 > CHO > A549 > HepG2), suggesting that T24 may serve as a new sensitive model for cytotoxicity screening. Cell staining results confirmed that administration of the IC{sub 50} concentration from the RT-CES experiments inhibited cell growth by 50% compared to the controls, indicating that the RT-CES method provides reliable measures of IC{sub 50}. Staining and cell-cycle analysis confirmed that NDPhA caused cell-cycle arrest at the G0/G1 phase, whereas NDMA did not disrupt the cell cycle but induced cell death, thus explaining the different cytotoxicity profiles detected by the RT-CES method. The parallel cytotoxicity profiling of nitrosamines on the four cell lines by the RT-CES method led to the discovery of the unique cytotoxicity of NDPh

  2. Cytotoxic drug sensitivity of Epstein-Barr virus transformed lymphoblastoid B-cells

    Directory of Open Access Journals (Sweden)

    Olah Eva

    2006-11-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV is the causative agent of immunosuppression associated lymphoproliferations such as post-transplant lymphoproliferative disorder (PTLD, AIDS related immunoblastic lymphomas (ARL and immunoblastic lymphomas in X-linked lymphoproliferative syndrome (XLP. The reported overall mortality for PTLD often exceeds 50%. Reducing the immunosuppression in recipients of solid organ transplants (SOT or using highly active antiretroviral therapy in AIDS patients leads to complete remission in 23–50% of the PTLD/ARL cases but will not suffice for recipients of bone marrow grafts. An additional therapeutic alternative is the treatment with anti-CD20 antibodies (Rituximab or EBV-specific cytotoxic T-cells. Chemotherapy is used for the non-responding cases only as the second or third line of treatment. The most frequently used chemotherapy regimens originate from the non-Hodgkin lymphoma protocols and there are no cytotoxic drugs that have been specifically selected against EBV induced lymphoproliferative disorders. Methods As lymphoblastoid cell lines (LCLs are well established in vitro models for PTLD, we have assessed 17 LCLs for cytotoxic drug sensitivity. After three days of incubation, live and dead cells were differentially stained using fluorescent dyes. The precise numbers of live and dead cells were determined using a custom designed automated laser confocal fluorescent microscope. Results Independently of their origin, LCLs showed very similar drug sensitivity patterns against 29 frequently used cytostatic drugs. LCLs were highly sensitive for vincristine, methotrexate, epirubicin and paclitaxel. Conclusion Our data shows that the inclusion of epirubicin and paclitaxel into chemotherapy protocols against PTLD may be justified.

  3. Sesquiterpene amino ether and cytotoxic phenols from Dendrobium wardianum Warner.

    Science.gov (United States)

    Zhang, Cong; Liu, Shou-Jin; Yang, Liu; Yuan, Ming-Yan; Li, Jin-Yu; Hou, Bo; Li, Hong-Mei; Yang, Xing-Zhi; Ding, Chang-Chun; Hu, Jiang-Miao

    2017-10-01

    A new bibenzyl derivative, dendrocandin V (1) and a new sesquiterpene amino ether, wardianumine A (2), together with eleven known compounds, including phenanthrenes (denbinobin (3), 9,10-dihydro-denbinobin (4), mostatin (5), loddigesiinols A (6)), bibenzyls (moscatilin (7), 5-hydroxy-3,4'-dimethoxybibenzyl (8), 3,4-dihydroxy-5,4'-dimethoxy bibenzyl (9), dendrocandin A (10), gigantol (11), dendrocandin U (12)) and an alkaloids (dihydroshihunine, 13) were isolated from the EtOH extraction of stems of Dendrobium wardianum Warner. Isolation of the new compound 2 indicated that N,N-dimethylethanolamine as the key adduction in the synthesis of dendroxine and its analogs in Dendrobium species. The hypothetical biosynthetic pathway of 2 was then postulated. Inspired by literature and traditional usage of the herbal medicine, some compounds were sent for cytotoxic activity and the results indicated that compounds 1, 3, 4, 5 showed cytotoxic activities against five human cancer cell lines (HL-60, A-549, SMMC-7721, MCF-7, and SW-480) with IC50 from 2.33-38.48μM. Among those compounds, 3 and 4 showed cell line selectivity with strong activity comparable to DDP. Copyright © 2017. Published by Elsevier B.V.

  4. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys

    International Nuclear Information System (INIS)

    Zhen, Zhen; Liu, Xiaoli; Huang, Tao; Xi, TingFei; Zheng, Yufeng

    2015-01-01

    Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg 2+ concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl 2 and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg 2+ reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg 2+ (< 100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg 2+ (> 300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg 2+ concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg 2+ . The Mg extract culture media caused no cytotoxicity, with pH = 8.44 and 47.80 μg/mL Mg 2+ . It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. - Highlights: • Mg 2+ and pH have been tested for hemolysis and cytotoxicity of biomedical Mg. • Even 1000 μg/ml Mg 2+ cannot cause hemolysis, but hemolysis reaches 53.8% when pH > 11. • Mg 2+ > 300 μg/mL induces death of L929 and slight alkaline improves the proliferation. • Pure Mg in normal saline induces high hemolysis, but in PBS causes no hemolysis. • True reason

  5. Ocaratuzumab, an Fc-engineered antibody demonstrates enhanced antibody-dependent cell-mediated cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Cheney, Carolyn M; Stephens, Deborah M; Mo, Xiaokui; Rafiq, Sarwish; Butchar, Jonathan; Flynn, Joseph M; Jones, Jeffrey A; Maddocks, Kami; O'Reilly, Adrienne; Ramachandran, Abhijit; Tridandapani, Susheela; Muthusamy, Natarajan; Byrd, John C

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is common in both developed and developing nations where the need for inexpensive and convenient administration of therapy is apparent. Ocaratuzumab is a novel Fc-engineered humanized IgG1 anti-CD20 monoclonal antibody (mAb) designed for effective antibody-dependent cell-mediated cytotoxicity (ADCC) at very low concentrations that may facilitate sub-cutaneous (vs. intravenous) dosing. Here, we report ocaratuzumab's potency against CLL cells. In vitro assessment of ocaratuzumab's direct cytotoxicity (DC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and ADCC was performed on CLL cells. Ocaratuzumab induced DC, CDC, and ADCP similarly to rituximab or ofatumumab (anti-CD20 mAbs). However, ocaratuzumab showed an advantage in NK cell-mediated ADCC over these antibodies. In allogeneic ADCC, [E:T (effector:target) ratios = 25:1, 12:1, 6:1], ocaratuzumab (10 µg/mL) improved ADCC by ~3-fold compared with rituximab or ofatumumab (P<0.001 all tested E:T ratios). Notably, the superiority of ocaratuzumab-induced ADCC was observed at low concentrations (0.1-10 ug/ml; P<0.03; allogeneic assays). In extended allogeneic ADCC E:T titration, ocaratuzumab (0.1 µg/mL) demonstrated 19.4% more cytotoxicity than rituximab (E:T = 0.38:1; P = 0.0066) and 21.5% more cytotoxicity than ofatumumab (E:T = 1.5:1; P = 0.0015). In autologous ADCC, ocaratuzumab (10 µg/mL) demonstrated ~1.5-fold increase in cytotoxicity compared with rituximab or ofatumumab at all E:T ratios tested (E:Ts = 25:1,12:1,6:1; all P<0.001). Obinutuzumab, a glyco-engineered anti-CD20 mAb, showed no improvement in ADCC activity compared with ocaratuzumab. The enhanced ADCC of ocaratuzumab suggests that it may be effective at low concentrations. If supported by clinical investigation, this feature could potentially allow for subcutaneous dosing at low doses that could expand the potential of administering chemoimmunotherapy in developing

  6. Cytotoxicity and inhibitory properties against topoisomerase II of doxorubicin and its formamidine derivatives.

    Science.gov (United States)

    Kik, Krzysztof; Studzian, Kazimierz; Wasowska-Łukawska, Małgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-01-01

    This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II.

  7. CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.

    Science.gov (United States)

    Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram

    2016-01-01

    The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum . Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC 50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC 50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC 50 values of greater than 500 μmol. The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents.

  8. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  9. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    Science.gov (United States)

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  10. NORMATIVE MODERATORS OF IMPULSE BUYING BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Danes Jaya Negara

    2003-01-01

    Full Text Available Prior research has presented the moderating role of normative evaluations in the relationship between the impulsive buying trait and consumers’ buying behaviors. In this article the authors show that consumer tendency to buy something spontaneous, unreflectively and immediately can be perceived as a factor which describes buying impulsiveness. This article also shows conceptual and empirical evidence that there is some support for the moderating role of normative evaluations in the relationship between buying impulsiveness and impulse buying behaviors. Significance occurs when consumers believe that act on impulse is suitable. The result suggests that consumers’ normative evaluation can moderate the link between the trait and behavioral aspects of impulse buying.

  11. Permeation of cytotoxic formulations through swatches from selected medical gloves.

    Science.gov (United States)

    Klein, Michael; Lambov, Nikolai; Samev, Nikola; Carstens, Gerhard

    2003-05-15

    The permeability of selected medical glove materials to various cytotoxic agents is described. Fifteen cytotoxic agents were prepared at the highest concentrations normally encountered by hospital personnel. Four single-layer and two double-layer glove systems made of two materials--latex and neoprene--were exposed to the drugs for 30, 60, 90, 120, 150, and 180 minutes. Circular sections of the glove material were cut from the cuff and evaluated without any pretreatment. Permeability tests were conducted in an apparatus consisting of a donor chamber containing the cytotoxic solution and a collection chamber filled with water (the acceptor medium). The two sections were separated by the glove material. Permeating portions, collected in water as the acceptor medium, were analyzed by either ultraviolet-visible light spectrophotometry or high-performance liquid chromatography (HPLC). Permeation rates were calculated on the basis of the concentration of the cytotoxic agent in the acceptor medium. Spectrophotometric measurements were taken every 30 minutes, and HPLC analysis was performed at the end of the three-hour period. Average permeation rates for 14 drugs were low (materials. All glove materials tested were impermeable to most of the cytotoxic agents over a period of three hours. Carmustine was the only agent that substantially permeated single-layer latex glove materials. Permeation of most tested cytotoxic formulations was low through swatches of material from various medical gloves.

  12. A comparative study of three cytotoxicity test methods for nanomaterials using sodium lauryl sulfate.

    Science.gov (United States)

    Kwon, Jae-Sung; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-10-01

    The biocompatibility evaluation of nanomaterials is essential for their medical diagnostic and therapeutic usage, where a cytotoxicity test is the simplest form of biocompatibility evaluation. Three methods have been commonly used in previous studies for the cytotoxicity testing of nanomaterials: trypan blue exclusion, colorimetric assay using water soluble tetrazolium (WST), and imaging under a microscope following calcein AM/ethidium homodimer-1 staining. However, there has yet to be a study to compare each method. Therefore, in this study three methods were compared using the standard reference material of sodium lauryl sulfate (SLS). Each method of the cytotoxicity test was carried out using mouse fibroblasts of L-929 exposed to different concentrations of SLS. Compared to the gold standard trypan blue exclusion test, both colorimetric assay using water soluble tetrazolium (WST) and imaging under microscope with calcein AM/ethidium homodimer-1 staining showed results that were not statistically different. Also, each method exhibited various advantages and disadvantages, which included the need of equipment, time taken for the experiment, and provision of additional information such as cell morphology. Therefore, this study concludes that all three methods of cytotoxicity testing may be valid, though careful consideration will be needed when selecting tests with regard to time, finances, and the amount of information required by the researcher(s).

  13. Cytotoxic drug sensitivity testing of tumor cells from patients with ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Csoka, K; Larsson, R; Tholander, B; Gerdin, E; de la Torre, M; Nygren, P

    1994-08-01

    The automated fluorometric microculture cytotoxicity assay (FMCA) is based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) to fluorescein by viable cells after a 72-hr culture period in microtiter plates. The FMCA was adopted for chemosensitivity testing of tumor cells from patients with ovarian carcinoma. Thirty-seven samples of solid tumors and malignant effusions were obtained from 35 patients at diagnosis or relapse. Tumor cells from solid samples and effusions were prepared by enzymatic digestion and centrifugation, respectively, followed by Percoll or Ficoll purification. The fluorescence was proportional to the number of cells/well and considerably higher in tumor cells than in contaminating normal cells. The effect of up to 19 cytotoxic drugs was successfully assessed in 70% of the samples and there was a good correlation between drug sensitivity data reported by the FMCA and the DiSC assay performed in parallel. The overall drug sensitivity pattern in vitro corresponded well to the clinical experience. The effect of cisplatin varied considerably between patients and resistance was found also in cases not previously exposed to cytotoxic drugs. The FMCA is a rapid and simple method that seems to report clinically relevant cytotoxic drug sensitivity data in ovarian carcinomas. In the future, this method may contribute to optimizing chemotherapy by assisting in individualized drug selection and new drug development.

  14. A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dose toxicity studies

    International Nuclear Information System (INIS)

    Marcusson-Staahl, Maritha; Cederbrant, Karin

    2003-01-01

    A recent regulatory document for immunotoxicity testing of new pharmaceutical drugs includes cytotoxic natural killer (NK)-cell function as a required parameter in repeated dose toxicity studies. The classical 51 Cr-release assay is the conventional test for cytotoxicity testing but several drawbacks with this assay has increased the demand for new reliable test systems. Here, we describe the optimisation of a flow-cytometric cytotoxicity assay especially adapted for regulatory rat studies in drug development. The test principle is based on target cell labelling with 5-(6)-carboxy-fluorescein succinimidyl ester (CFSE) and subsequent DNA-labelling with propidium iodide (PI) for identification of target cells with compromised cell membranes. The results are expressed as percentage of dead targets on a cell-to-cell basis. The final format of the assay includes 0.5 ml peripheral blood, 1.25x10 5 effector cells per sample, and collection of 500 target events by flow-cytometry. When NKR-P1+ cells were removed from the effector cell population by magnetic depletion the relative proportion decreased from 6 to 0.08%. The corresponding cytotoxic activity decreased from 68 to 8%. Also, the cytotoxic activity showed a significant and positive correlation with the proportion of NK-cells present in the effector cell suspension. Thus, the cytotoxicity measured is almost exclusively exerted by NK-cells. The current flow-cytometric test benefits from using peripheral blood as a source for effector cells since it will not conflict with the use of spleen for histopathological investigations in repeated dose toxicity studies. Additionally, since only a minimal number of effector cells are required per sample repeated testing of the same animal is enabled

  15. Cytotoxic action of Brazilian propolis in vitro on canine osteosarcoma cells.

    Science.gov (United States)

    Cinegaglia, N C; Bersano, P R O; Búfalo, M C; Sforcin, J M

    2013-09-01

    Osteosarcoma (OSA) is a primary bone neoplasm frequently diagnosed in dogs. The biology of OSA in pet dogs is identical to that of pediatric patients, and it has been considered an excellent model in vivo to study human OSA. Since the individual response to chemotherapy is unpredictable and considering that propolis is a natural product with several biological properties, this work evaluated the cytotoxic action of propolis on canine OSA cells. The primary cell culture of canine OSA was obtained from the tumor of a dog with OSA. Cell viability was assessed after incubation with propolis, 70% ethanol (propolis solvent), and carboplatin after 6, 24, 48, and 72 h. Cell viability was analyzed by the crystal violet method. Data showed that canine OSA cells were sensitive to propolis in a dose- and time-dependent manner and had a distinct morphology compared to control. Its solvent (70% ethanol) had no effect on cell viability, suggesting that the cytotoxic action was exclusively due to propolis. Our propolis sample exerted a cytotoxic effect on canine OSA cells, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Preliminary phytochemical analysis, Antioxidant and cytotoxicity test of Carissa edulis Vahl dried fruits

    Science.gov (United States)

    Fowsiya, J.; Madhumitha, G.

    2017-11-01

    Plants are the main source of medicine which is used in traditional as well as modern medicine in recent years for curing many diseases. Carissa edulis Vahl is one of the traditional plants which have healing property on diarrhea, toothache and chest pain. The present work aims on phytochemical, antioxidant and in vitro cytotoxicity test of C. edulis dried fruits. The different solvent extracts obtained from petroleum ether, ethyl acetate, chloroform, ethanol and water have been evaluated the presence of phytochemicals. Several assays were carried out like total antioxidant, DPPH, reducing power and thiobarbituric acid to investigate the free radical scavenging property. In addition, the cytotoxicity study also carried out on human lung cancer cells (A549). Among different solvent extract, ethanol exhibited strong antioxidant activity. Additionally, the in vitro cytotoxicity test of C. edulis on human lung cancer cell (A549) showed IC50 value 405.704 ± 2.42 μg/mL. Therefore, C. edulis could be useful as a potential preventive intervention for free radicals mediated diseases as well as an antioxidant drug in the pharmaceutical industry.

  17. Synthesis, antimicrobial and cytotoxicity evaluation of new cholesterol congeners

    Directory of Open Access Journals (Sweden)

    Mohamed Ramadan El Sayed Aly

    2015-10-01

    Full Text Available 3β-Azidocholest-5-ene (3 and (3β-3-(prop-2-yn-1-yloxycholest-5-ene (10 were prepared as substrates to synthesize a variety of three-motif pharmacophoric conjugates through CuAAC. Basically, these conjugates included cholesterol and 1,2,3-triazole moieties, while the third, the pharmacophore, was either a chalcone, a lipophilic residue or a carbohydrate tag. These compounds were successfully prepared in good yields and characterized by NMR, MS and IR spectroscopic techniques. Chalcone conjugate 6c showed the best antimicrobial activity, while the lactoside conjugate 27 showed the best cytotoxic effect in vitro.

  18. IGF-1 promotes the development and cytotoxic activity of human NK cells

    Science.gov (United States)

    Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming

    2013-01-01

    Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression leads to disparate cytotoxicity in human primary natural killer cells. Moreover, miR-483-3p is identified as a critical regulator of IGF-1 expression in natural killer cells. Overexpression of miR-483-3p has an effect similar to IGF-1 blockade and decreased natural killer cell cytotoxicity, whereas inhibition of miR-483-3p has the opposite effect, which is reversible with IGF-1 neutralizing antibody. These findings indicate that IGF-1 and miR-483-3p belong to a new class of natural killer cell functional modulators and strengthen the prominent role of IGF-1 in innate immunity. PMID:23403580

  19. Cytotoxicity and radiosensitising activity of synthesized dinitrophenyl derivatives of 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Khoshayand Mohammad

    2012-07-01

    showed that alkylation or acylation of 5-fluorouracil result in compounds which have little or no cytotoxicity and radiosensitizing activity under aerobic conditions, but have high cytotoxicity and radiosensitizing effects under hypoxic conditions. Furthermore radiosensitizing activities of compounds under hypoxic conditions increased by increase in their concentrations and SER of the tested 5-FU derivatives at concentrations higher than 50 μmol were equal or higher than 1.6 which is the minimum effective SER of a radiosensitizer in an in vitro assay.

  20. Cytotoxic activity of some medicinal plants from hamedan district of iran.

    Science.gov (United States)

    Behzad, Sahar; Pirani, Atefeh; Mosaddegh, Mahmoud

    2014-01-01

    Medicinal plants have been investigated for possible anti-cancer effects. The aim of the present study was to examine the cytotoxic activity of several medicinal plants on different tumor cell lines. 11 selected plant species which have been used in folkloric prescriptions were collected from different sites of Hamedan district of Iran. The methanolic extracts of the plants were prepared and their cytotoxic effects on four human cancer cell lines (A549, human lung adenocarcinoma; MCF7, human breast adenocarcinoma; HepG2, hepatocellular carcinoma and HT-29, human colon carcinoma) and one normal cell line (MDBK, bovine kidney) were examined using the MTT assay. Three of these were exhibited antiproliferative activity against one or more of the cell lines. The extract from Primula auriculata demonstrated the highest cytotoxicity with IC50 of 25.79, 35.79 and 43.34 μg.mL-1 against MCF7, HepG2 and HT- 29 cells, respectively. For some of the plants, their traditional use was correlated with the cytotoxic results, whereas for others the results may support the non-cytotoxicity of species used traditionally as natural remedies. The cytotoxic species could be considered as potential of anticancer compounds.

  1. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  2. Assessment of antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of titanium oxide: An in-vitro study.

    Science.gov (United States)

    Baby, Roshen Daniel; Subramaniam, Siva; Arumugam, Ilakkiya; Padmanabhan, Sridevi

    2017-04-01

    Our objective was to assess the antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of photocatalytic titanium oxide. From a total sample of 115 brackets, 68 orthodontic stainless steel brackets were coated with titanium oxide using a radiofrequency magnetron sputtering machine. The coated brackets were then converted into 34 each of the anatase and rutile phases of titanium oxide. These brackets were subdivided into 4 groups for antibacterial study and 3 groups for cytotoxicity study. Brackets for the antibacterial study were assessed against the Streptococcus mutans species using microbiologic tests. Three groups for the cytotoxicity study were assessed using the thiazolyl tetrazolium bromide assay. The antibacterial study showed that both phases were effective, but the rutile phase of photocatalytic titanium oxide had a greater bactericidal effect than did the anatase phase. The cytotoxicity study showed that the rutile phase had a greater decrease in viability of cells compared with the anatase phase. It is recommended that orthodontic brackets be coated with the anatase phase of titanium oxide since they exhibited a significant antibacterial property and were only slightly cytotoxic. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  3. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrino, Milena T. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Silva, Letícia C.; Watashi, Carolina M. [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil); Haddad, Paula S. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Rodrigues, Tiago; Seabra, Amedea B., E-mail: amedea.seabra@ufabc.edu.br [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil)

    2017-02-15

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL{sup −1} for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  4. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P.; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-01-01

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  5. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  6. Preliminary thermal-hydraulic and structural strength analyses for pre-moderator of cold moderator

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-08-01

    A light-water cooled pre-moderator with a thin-walled structure made of aluminum alloy is installed around a liquid hydrogen moderator in order to enhance the neutron performance of a MW-scale spallation target system which is being developed in the Japan Atomic Energy Research Institute (JAERI). Since the pre-moderator is needed to be located close to a target working as a neutron source, it is indispensable to remove nuclear heat deposition in the pre-moderator effectively by means of smooth water flow without flow stagnation. Also, the structural integrity of the thin-walled structure should be kept against the water pressure. Preliminary thermal-hydraulic analytical results showed that the water temperature rise could be suppressed less than 1degC while keeping the smooth water flow, which would assure the expected neutron performance. As for the structural integrity, several measures to meet allowable stress conditions of aluminum alloy were proposed on the basis of the preliminary structural strength analyses. (author)

  7. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  8. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    Science.gov (United States)

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cerebrospinal fluid cytotoxicity does not affect survival in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Galán, L; Matías-Guiu, J; Matias-Guiu, J A; Yáñez, M; Pytel, V; Guerrero-Sola, A; Vela-Souto, A; Arranz-Tagarro, J A; Gómez-Pinedo, U; García, A G

    2017-09-01

    Cerebrospinal fluid (CSF) from some patients with amyotrophic lateral sclerosis (ALS) has been demonstrated to significantly reduce the neuronal viability of primary cell cultures of motor neurons. We aimed to study the potential clinical consequences associated with the cytotoxicity of CSF in a cohort of patients with ALS. We collected CSF from thirty-one patients with ALS. We analysed cytotoxicity by incubating it into the primary cultures of motor cortex neurons. Neural viability was quantified after 24 hours using the colorimetric MTT reduction assay. All patients were followed up from the moment of diagnosis to death, and a complete evaluation during disease progression and survival was performed, including gastrostomy and respiratory assistance. Twenty-one patients (67.7%) presented a cytotoxic CSF. There were no significant differences between patients with and without cytotoxicity regarding mean time from symptom onset to the diagnosis, from the diagnosis to death, from the diagnosis to respiratory assistance with BIPAP, from diagnosis to gastrostomy and from the onset of symptoms to death. In Cox regression analysis, bulbar onset, but not cytotoxicity, gender or age at onset, was associated with a lower risk of survival. Cerebrospinal fluid cytotoxicity was not associated with differential survival rates. This suggests that the presence of cytotoxicity in CSF, measured through neuronal viability in primary cultures of motor cortex neurons, could reflect different mechanisms of the disease, but it does not predict disease outcome. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Natural lipids in nanostructured lipid carriers and its cytotoxicity

    Science.gov (United States)

    Lima, Paula A.; Rampazo, Caroline A. D.; Costa, Amanda F.; Rodrigues, Tiago; Watashi, Carolina M.; Durán, Nelson

    2017-06-01

    Nanostructured lipid carriers (NLCs) are active carrier systems which modulate the sustained release of actives and protect unstable compounds against degradation. NLCs can also protect skin from sun light, due to its particulates nature, which gives them intrinsic scattering properties. In this work, we present the preparation of NLCs using natural lipids and its cytotoxicity profile. It was used a vegetal butter with melting point (m.p.) ~32-40°C, an animal wax (m.p. 35-40°C) and a vegetal oil (boiling point ~120-150°C). NLCs were prepared by hot high pressure homogenization method and particles were characterized by average size (Zave), polydispersity index (PDI) and zeta potential (PZ) (Fig.1). The thermal behavior of the NLCs was studied using Differential Scanning Calorimetry (DSC). All the formulations were followed up for 60 days in order to evaluate their stability. NLCs exhibited a Zave around 150-200 nm, PDI less than 0.2 and PZ varying from -25 to -40 mV. The m.p. for the lyophilized NLCs was about 40-56°C. Cytotoxicity of the formulations were evaluated for human keratinocytes (HaCaT) and melanocytes (Melan-A) in the exponential growth phase. Cell viability was used as indicator of cytotoxicity and determined after 4 days of culture by MTT assay. It was found that the NLC formulations were not toxic against HaCaT and Melan-A cells. Results showed that the NLCs produced are potential carriers for nanocosmetics and sunscreen products.

  11. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  12. Treatment of a solid tumor using engineered drug-resistant immunocompetent cells and cytotoxic chemotherapy.

    Science.gov (United States)

    Dasgupta, Anindya; Shields, Jordan E; Spencer, H Trent

    2012-07-01

    Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches.

  13. Study of tungsten based positron moderators

    International Nuclear Information System (INIS)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C.; DuBois, R.D.

    2015-01-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies

  14. Study of tungsten based positron moderators

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, O.G. de; Pérez, M.; Mendoza, U.; Morales, J.G.; Cruz, J.C. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México DF (Mexico); DuBois, R.D. [Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2015-07-01

    Positrons and how they interact with matter has a growing interest in many fields. Most of their uses require the production of slow positron beams with a well-defined energy, but since these particles are usually generated by means of a radioactive source, they are fast and with a broad distribution of energies. For this reason it is necessary to moderate them to lower energies via inelastic collisions. Then, they can be accelerated to the desired energies. This requires the use of a moderator. Tungsten is one of the most commonly used moderator materials because of its reasonable efficiency and relatively low cost. In this work we present different methods of producing transmission tungsten-based moderators, with particular interest in a combination of tungsten thin foils and grids. We also show results about the characterization of these moderators by ion beam analysis and microscopy techniques along with their relative moderation efficiencies.

  15. Effect of varying incubation periods on cytotoxicity and virucidal ...

    African Journals Online (AJOL)

    Backgrounds: Justicia gendarussa Burm.f. has an anti-HIV activity. This study was conducted to evaluate the effects of incubation periods on the cytotoxicity and virucidal activities of the J. gendarussa leaves extract on MOLT-4 cells. Materials and Methods: The cytotoxicity assay was evaluated by using the WST-1 test with ...

  16. Kaempferol glycosides and cardenolide glycosides, cytotoxic constituents from the seeds of Draba nemorosa (Brassicaceae).

    Science.gov (United States)

    Moon, Surk-Sik; Rahman, Md Aziz Abdur; Manir, Md Maniruzzaman; Jamal Ahamed, V S

    2010-08-01

    Bioassay-directed fractionation of a methanolic extract from the seeds of Draba nemorosa (Brassicaceae) led to isolation of a new flavonol glycoside, drabanemoroside (5, kaempferol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranose) along with four known flavonoid derivatives (1-4), four cardenolide glycosides (6-9). Kaempferol glycosides 2 and 5 showed strong cytotoxicity against human small lung cancer cell line A549 and melanoma SK-Mel-2 with an IC(50) of 0.5 microg/mL and 1.9 microg/mL, respectively. Cardenolide glycosides 6-9 showed potent cytotoxicity (A549) in the range of 0.01-0.032 microg/mL. Their structures were characterized based on spectroscopic data (2D NMR, HRTOFMS, IR, and UV) and comparison of literature values. The carbohydrate units were also confirmed by comparing the hydrolysate of 5 with authentic monosaccharides.

  17. HPLC-MS and GC-MS analyses combined with orthogonal partial least squares to identify cytotoxic constituents from turmeric (Curcuma longa L.).

    Science.gov (United States)

    Jiang, Jianlan; Zhang, Huan; Li, Zidan; Zhang, Xiaohang; Su, Xin; Li, Yan; Qiao, Bin; Yuan, Yingjin

    2013-08-01

    We investigated the fingerprints of 48 batches of turmeric total extracts (TTE) by HPLC-MS-MS and GC-MS analyses and 43 characteristic peaks (22 constituents from HPLC-MS-MS; 21 from GC-MS) were analyzed qualitatively and quantitatively. An MTT {3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide} assay was implemented to measure the cytotoxicity of the TTE against HeLa cells. Then we utilized orthogonal partial least squares analysis, which correlated the chemical composition of the TTE to its cytotoxic activity, to identify potential cytotoxic constituents from turmeric. The result showed that 19 constituents contributed significantly to the cytotoxicity. The obtained result was verified by canonical correlation analysis. Comparison with previous reports also indicated some interaction between the curcuminoids and sesquiterpenoids in turmeric.

  18. Analysis of cytotoxic effects of nickel on human blood lymphocytes.

    Science.gov (United States)

    Zarei, Mohammad Hadi; Hosseini Shirazi, Seyed Farshad; Aghvami, Marjan; Salimi, Ahmad; Pourahmad, Jalal

    2018-02-01

    Nickel compounds possess many applications in different industrial processes. Human beings are exposed to nickel commonly through occupational exposure and food. Although a few studies so far have investigated the effects of nickel compounds on human lymphocytes, the complete mechanism of cytotoxicity of this metal on human lymphocytes is yet to be determined. The intention of this paper was to determine the cytotoxicity mechanism of water soluble NiCl 2 toward human lymphocytes using the accelerated cytotoxicity mechanisms screening (ACMS) technique. Human lymphocytes were isolated from the blood of healthy subjects based on Ficoll-Paque PLUS standard method. For the assessment of cell viability, lymphocytes were incubated with 0.05-1 mM NiCl 2 for 12 h. Determination of mechanistic parameters was performed 2, 4 and 6 h after treatment of cells with ½ EC50 12h , EC50 12h and 2EC50 12h of NiCl 2 . Our results demonstrate that cytotoxicity of NiCl 2 on human lymphocytes is associated with increased ROS formation, mitochondrial membrane potential collapse, glutathione depletion, lysosomal membrane damage, cellular proteolysis and activation of caspase-3 before cytotoxicity ensued.

  19. In vitro antioxidant, anti-inflammatory, cytotoxic activities against prostate cancer of extracts from Hibiscus sabdariffa leaves.

    Science.gov (United States)

    Worawattananutai, Patsorn; Itharat, Arunporn; Ruangnoo, Srisopa

    2014-08-01

    Hibiscus sabdariffa (HS) leaves are a vegetable, which is used as a healthy sour soup for protection against chronic diseases in Thai traditional medicine. To investigate antioxidant, anti-inflammatory and cytotoxic activities of Hibiscus sabdariffa leave extracts from diferent extraction methods. Fresh and dry Hibiscus sabdariffa leaves were extracted by various methods such as maceration with 95% and 50% ethanol, squeeze, and boiling with water or decoction. All extracts were testedfor antioxidant activity by using DPPH radical scavenging assay, anti-inflammatory activity by determination on inhibitory effect of nitric oxide production on RAW264. 7 cell. Cytotoxic activity also tested against human prostate cancer cell line (PC-3) by using sulforhodamine B (SRB) assay. Total phenolic content determined by the Folin-Ciocalteu colorimetric method. The results found that the 95% ethanolic extract of Hibiscus sabdariffa dried leaves (HSDE95) showed the highest antioxidant activity with an EC50 of 34.51±2.62 μg/ml and had the highest phenolic content (57.00±3.73 mg GAE/g). HSDE95 also showed potent cytotoxicity against prostate cancer cell line with an IC50 of 8.58±0.68 μg/ml whereas HSDE95 and all of extracts ofHibiscus sabdariffa leaves had no anti-inflammatory activity. The obtained results revealed that HSDE95 extract showedpotent cytotoxic activity against prostate cancer cells but low antioxidant and anti-inflammatory activities. This extract should be further isolated as active compounds against prostate cancer.

  20. Cytotoxicity of the Ascidian Cystodytes dellechiajei Against Tumor Cells and Study of the Involvement of Associated Microbiota in the Production of Cytotoxic Compounds

    Directory of Open Access Journals (Sweden)

    Josefa Antón

    2007-07-01

    Full Text Available Many cytotoxic compounds of therapeutic interest have been isolated from marine invertebrates, and some of them have been reported to be of microbial origin. Pyridoacridine alkaloids are the main compounds extracted from the ascidian Cystodytes dellechiajei. Here we describe the in vitro antiproliferative activity against different tumor cell lines of the ascidian extracts and provide some insights on the role of the microbial community associated with the tunicate in the production of these compounds. C. dellechiajei extracts showed remarkably high antiproliferative activity (IC50 ≤5 μg/mL in human lung carcinoma A-549, colon adenocarcinoma H-116, pancreatic adenocarcinoma PSN-1 and breast carcinoma SKBR3 cell lines. Moreover, we found that the maximum activity was located in the tunic tissue of the colony, which harbours a microbial community. In order to ascertain the involvement of this community in the synthesis of the bioactive compounds different approachs that included culture and culture independent methods were carried out. We undertook a screening for antiproliferative activities of the bacterial isolates from the ascidian, as well as a comprative analysis of the cytotoxic activities and the microbial communities from two color morphs of the ascidian, green and blue. In addition, the changes of the antiproliferative activities and the composition of the microbial communities were studied from ascidians kept in aquaria and treated with antibiotics for one month. Our data obtained from the different experiments did not point out to bacteria as the source of the cytotoxic compounds, suggesting thus an ascidian origin.

  1. Cytotoxicity and regenerative proliferation as the mode of action for diuron-induced urothelial carcinogenesis in the rat.

    Science.gov (United States)

    da Rocha, Mitscheli S; Nascimento, Merielen G; Cardoso, Ana Paula F; de Lima, Patrícia L A; Zelandi, Edneia A; de Camargo, João Lauro V; de Oliveira, Maria Luiza C S

    2010-01-01

    Diuron, a substituted urea herbicide, is carcinogenic to the urinary bladder of rats at high dietary levels. Its proposed carcinogenic mode of action (MOA) includes urothelial cytotoxicity and necrosis followed by regenerative cell proliferation and sustained urothelial hyperplasia. Cytotoxicity could be induced either by urinary solids or by chemical toxicity by diuron and/or metabolites excreted in the urine. Diuron was not genotoxic in a previous single-cell gel (comet) assay, but possible cross-linking activity remained to be evaluated. The present study explored the MOA of diuron and the effect of urinary acidification on the development of urothelial lesions. Male Wistar rats were fed diuron (2500 ppm, about 130 mg/kg of body weight) either with or without NH(4)Cl 10,000 ppm to acidify the urine. Reversibility of urothelial changes was also examined. The animals were euthanized after 15, 25, or 30 weeks. Diuron-fed rats had urinary amorphous precipitate and magnesium ammonium phosphate crystals similar to control animals. Groups treated with diuron + NH(4)Cl showed decreased urinary pH and reduced amounts of urinary crystals and precipitate. Urothelial necrosis and simple hyperplasia were observed by light microscopy and scanning electron microscopy both in diuron- and in diuron + NH(4)Cl-treated groups. Cytotoxicity and proliferative changes were mostly reversible. A modified comet assay developed in vitro with Chinese hamster ovary cells showed that diuron did not induce DNA cross-links. These data suggest that cytotoxicity with consequent regenerative cell proliferation is the predominant MOA for diuron rat urothelial carcinogenesis, the cytotoxicity being chemically induced and not due to urinary solids.

  2. The fluorometric microculture cytotoxicity assay.

    Science.gov (United States)

    Lindhagen, Elin; Nygren, Peter; Larsson, Rolf

    2008-01-01

    The fluorometric microculture cytotoxicity assay (FMCA) is a nonclonogenic microplate-based cell viability assay used for measurement of the cytotoxic and/or cytostatic effect of different compounds in vitro. The assay is based on hydrolysis of the probe, fluorescein diacetate (FDA) by esterases in cells with intact plasma membranes. The assay is available as both a semiautomated 96-well plate setup and a 384-well plate version fully adaptable to robotics. Experimental plates are prepared with a small amount of drug solution and can be stored frozen. Cells are seeded on the plates and cell viability is evaluated after 72 h. The protocol described here is applicable both for cell lines and freshly prepared tumor cells from patients and is suitable both for screening in drug development and as a basis for a predictive test for individualization of anticancer drug therapy.

  3. Cytotoxic effects of local anesthesia through lidocaine/ropivacaine on human melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Ding-Kun Kang

    Full Text Available Abstract Background: Local anesthetics (LAs are generally considered as safe, but cytotoxicity has been reported for several local anesthetics used in humans, which is not well investigated. In the present study, the cytotoxicity of lidocaine, ropivacaine and the combination of lidocaine and ropivacaine were evaluated on human melanoma cell lines. Melphalan, a nitrogen mustard alkylating agent, was used as a control agent for comparison of cytotoxic activity. Methods: Melanoma cell lines, A375 and Hs294T, were exposed to 1 h to different concentrations of above agents. Cell-viability after exposure was determined by flow cytometry. Results: Investigated LAs showed detrimental cytotoxicity on studied melanoma cell lines in time- (p < 0.001, concentration- (p < 0.001, and agent dependant. In both A375 and Hs294T cell lines, minimum cell viability rates were found after 72 h of exposure to these agents. Lidocaine 2% caused a reduction of vital cells to 10% ± 2% and 14% ± 2% in A375 and Hs294T, respectively after 72 h of exposure. Ropivacaine 0.75% after 72 h reduced viable cells to 15% ± 3% and 25% ± 3% in A375 and Hs294T, respectively. Minimum cell viability after 72 h exposure to the combination was 10% ± 2% and 18% ± 2% in A375 and Hs294T, respectively. Minimum cell viability after 72 h exposure to melphalan was 8% ± 1% and 12% ± 2%, in A375 and Hs294T, respectively. Conclusion: LAs have cytotoxic activity on human melanoma cell lines in a time-, concentration- and agent-dependant manner. Apoptosis in the cell lines was mediated through activity of caspases-3 and caspases-8.

  4. Cytotoxic compounds from the leaves of Combretum paniculatum Vent

    African Journals Online (AJOL)

    It is used locally in the treatment of carcinomous tumors. The cytotoxic activity of pheophorbide a and pheophorbide a-methyl ester isolated from the leaves of C. paniculatum were investigated. In vitro cytotoxicity of the compounds were evaluated against HT-29, MCF-7 and HeLa cancer cell lines using the methyl thiazolyl ...

  5. CYTOTOXICITY AND MUTAGENESIS METHODS FOR EVALUATING TOXICITY REMOVAL FROM WASTEWATERS

    Science.gov (United States)

    This project was a feasibility study of the effectiveness of a mammalian cell cytotoxicity assay and a mammalian cell mutagenesis assay for monitoring the toxicity and mutagenicity of influent and effluent wastewater at treatment plants. In the cytotoxicity assay, ambient samples...

  6. RELATIONS BETWEEN INVITRO CYTOTOXICITY AND CROSS-LINKED DERMAL SHEEP COLLAGENS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    Collagen-based biomaterials have found various applications in the biomedical field. However, collagen-based biomaterials may induce cytotoxic effects. This study evaluated possible cytotoxic effects of (crosslinked) dermal sheep collagen (DSC) using a 7-d-methylcellulose cell culture with human

  7. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.

    Science.gov (United States)

    Hamed, Selwan; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Youssef, Tareq

    2017-08-01

    The fast progression of nanotechnology has led to novel therapeutic interventions. Antimicrobial activities of silver nanoparticles (Ag NPs) were tested against standard ATCC strains of Staphylococcus aureus (ATCC 9144), Escherichia coli (O157:H7), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 90028) in addition to 60 clinical isolates collected from cancer patients. Antimicrobial activity was tested by disk diffusion method and MIC values for Ag NPs alone and in combination with N-acetylcysteine (NAC) against tested pathogens were determined by broth microdilution method. Ag NPs showed a robust antimicrobial activity against all tested pathogens and NAC substantially enhanced the antimicrobial activity of Ag NPs against all tested pathogens. Synergism between Ag NPs and NAC has been confirmed by checkerboard assay. The effect of Ag NPs on tested pathogens was further scrutinized by Transmission Electron Microscope (TEM) which showed disruption of cell wall in both bacteria and fungi. Ag NPs abrogated the activity of respiratory chain dehydrogenase of all tested pathogens and released muramic acid content from S. aureus in culture. The cytotoxic effect of Ag NPs alone and in combination with NAC was examined using human HepG2 cells and this revealed no cytotoxicity at MIC values of Ag NPs and interestingly, NAC reduced the cytotoxic effect of Ag NPs at concentrations higher than their MIC values. Taken together, Ag NPs have robust antimicrobial activity and NAC substantially enhances their antimicrobial activities against MDR pathogens which would provide a novel safe, effective, and inexpensive therapeutic approach to control the prevalence of MDR pathogens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A New Cytotoxicity Assay for Brevetoxins Using Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Jennifer R. McCall

    2014-09-01

    Full Text Available Brevetoxins are a family of ladder-framed polyether toxins produced during blooms of the marine dinoflagellate, Karenia brevis. Consumption of shellfish or finfish exposed to brevetoxins can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are believed to be due to the activation of voltage-sensitive sodium channels in cell membranes. The traditional cytotoxicity assay for detection of brevetoxins uses the Neuro-2A cell line, which must first be treated with the neurotoxins, ouabain and veratridine, in order to become sensitive to brevetoxins. In this study, we demonstrate several drawbacks of the Neuro-2A assay, which include variability for the EC50 values for brevetoxin and non-linear triphasic dose response curves. Ouabain/ veratridine-treated Neuro-2A cells do not show a typical sigmoidal dose response curve in response to brevetoxin, but rather, have a polynomial shaped curve, which makes calculating EC50 values highly variable. We describe a new fluorescence live cell imaging model, which allows for accurate calculation of cytotoxicity via nuclear staining and additional measurement of other viability parameters depending on which aspect of the cell is stained. In addition, the SJCRH30 cell line shows promise as an alternative to Neuro-2A cells for testing brevetoxins without the need for ouabain and veratridine.

  9. SYNTHESIS AND CYTOTOXIC ACTIVITY OF CHALCONE DERIVATIVES ON HUMAN BREAST CANCER CELL LINES

    Directory of Open Access Journals (Sweden)

    Nuraini Harmastuti

    2012-12-01

    Full Text Available Chalcone, an α,β-unsaturated ketone, has been shown have many biological activities such as anticancer and antifungi. This research was conducted to synthesize the chalcone derivatives and to obtain their cytotoxic activity on human cervix cancer cell lines. Synthesis of chalcone and its derivatives, 4II-methylchalcone, 4II-methoxychalcone, and 3II,4II-dichlorochalcone was carried out using starting materials of benzaldehide and acetofenon, p-methylacetophenone, p-methoxyacetophenone, as well as m,p-dichloroacetophenone through Claisen Schmidt condensation catalized by NaOH in ethanol at 15 °C. The purity of synthesized compounds were analyzed by thin layer chromatography, melting range, and gas chromatography. Structure elucidations were conducted by UV spectrophotometer, IR spectrometer, 1H-NMR spectrometer, as well as mass spectrometer. Cytotoxic activities were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT microculture tetrazolium viability assay. The results showed that chalcone and derivatives compounds have been able to be synthesized and purified and had the same structure as a predicted structure. Chalcone had highest cytotoxic activity compared to that of its derivatives, with the IC50 values of chalcone, 4II-methylchalcone, 4II-methoxychalcone, and 3II,4II-dichlorochalcone were 9.49, 14.79, 11.48, and 24.26 µg/mL respectively. It was concluded that methyl, methoxy as well as chlorine substitution at 3 II and 4II position decrease the cytotoxic activity of chalcone.

  10. Artifacts by marker enzyme adsorption on nanomaterials in cytotoxicity assays with tissue cultures

    International Nuclear Information System (INIS)

    Wohlleben, Wendel; Kolle, Susanne N; Hasenkamp, Laura-Carolin; Boeser, Alexander; Vogel, Sandra; Vacano, Bernhard von; Ravenzwaay, Ben van; Landsiedel, Robert

    2011-01-01

    We used precision cut lung slices (PCLS) to study the cytotoxicity of cobalt ferrite nanomaterials with and without bovine serum albumin (BSA) stabilization. Using mitochondrial activity as an indicator of cytotoxicity (WST-1 assay) increasing concentrations of cobalt ferrite nanomaterial caused increasing levels of cytotoxicity in PCLS irrespective of BSA stabilization. However, there was no increase in released lactate dehydrogenase (LDH) levels caused by BSA stabilized nanomaterial indicating concentration depended cytotoxictiy. Moreover, non-stabilized nanomaterial caused a decrease of background LDH levels in the PCLS culture supernatant confirmed by complementary methods. Direct characterization of the protein corona of extracted nanomaterial shows that the LDH decrease is due to adsorption of LDH onto the surface of the non-stabilized nanomaterial, correlated with strong agglomeration. Preincubation with serum protein blocks the adsorption of LDH and stabilizes the nanomaterial at low agglomeration. We have thus demonstrated the cytotoxicity of nanomaterials in PCLS does not correlate with disrupted membrane integrity followed by LDH release. Furthermore, we found that intracellular enzymes such as the marker enzyme LDH are able to bind onto surfaces of nanomaterial and thereby adulterate the detection of toxic effects. A replacement of BSA by LDH or a secondary LDH-on-BSA-corona were not observed, confirming earlier indications that the protein corona exchange rate are slow or vanishing on inorganic nanomaterial. Thus, the method(s) to assess nanomaterial-mediated effects have to be carefully chosen based on the cellular effect and possible nano-specific artifacts.

  11. Chlorpromazine inhibits tumour necrosis factor synthesis and cytotoxicity in vitro.

    Science.gov (United States)

    Zinetti, M; Galli, G; Demitri, M T; Fantuzzi, G; Minto, M; Ghezzi, P; Alzani, R; Cozzi, E; Fratelli, M

    1995-11-01

    Chlorpromazine (CPZ) has been previously shown to protect against endotoxin [lipopolysaccharide (LPS)] lethality and inhibit the release of tumour necrosis factor in vivo. We investigated at the cellular level whether this was due to direct inhibition of tumour necrosis factor-alpha (TNF-alpha) synthesis, using LPS-stimulated THP-1 human monocytic leukemia cells. We also studied the effect of CPZ on human TNF-alpha action by assessing TNF-alpha cytotoxicity on mouse fibrosarcoma L929 cells. CPZ (1-100 microM) inhibited TNF-alpha production in THP-1 cells in a dose dependent manner by a maximum of 80%. This effect was comparable to that of two well-known inhibitory drugs, dexamethasone and cyclicAMP. Inhibition was also evident at the mRNA level. On the other hand CPZ (10-25 microM) also inhibited TNF-alpha activity: in fact it reduced the cytotoxicity of TNF-alpha on L929 cells (EC50 was increased four times) and could provide protection even as a post-treatment. CPZ inhibited TNF-induced apoptosis in L929 cells, as detected by analysis of nuclear morphology. However, since we showed that apoptosis was very limited, and was not the main mode of cell death in our conditions, this could not explain the overall protection. Since CPZ did not interfere with either the oligomerization state of TNF-alpha or its receptor binding, our data suggest that it reduced cytotoxicity by inhibiting some steps in the TNF-alpha signalling pathways.

  12. A safety concern related to CANDU moderator subcooling and status of KAERI moderator circulation test (MCT) experiments

    International Nuclear Information System (INIS)

    Rhee, Bo W.; Kim, Hyoung T.; Kim, Tongbeum; Im, Sunghyuk

    2015-01-01

    The flow inside the moderator tank of a CANDU-6 reactor during full power steady state operation has been suspected to be operating in the buoyancy/inertial driven mixed convection regime as illustrated in the middle figure. At some regions of the moderator tank where the buoyancy driven upward flow and the inertial momentum driven downward flows interface counter-currently, there exist some interface regions between these two flows like the middle one, and the local temperatures at these interface regions are known to oscillate with different amplitude at various fluctuation frequencies as shown. According to a numerical simulation of the moderator flow and temperature distribution at full power steady state carried out by previous researches showed that any small disturbances in the flow or temperature may initiate the system unstable and aggravate the asymmetric flow and temperature patterns. The tests at the 3-D Moderator Test Facility (MTF) that is a representative scaled-down of CANDU reactors, reproduced the expected and observed moderator behavior in the reactor as well as the local temperature fluctuations arising from the delicate balance of forced and buoyancy induced flow. This observation raised a safety concern as the local moderator temperature at some regions showed fluctuations with an amplitude that may jeopardize the safety margin, i.e. the difference between the available subcooling and the subcooling requirement. The scope of this paper is to review the basis of the safety concern related to this moderator subcooling and local temperature fluctuation and describe the current status of MCT erection and some of the experiments carried so far

  13. Synthesis and Cytotoxic Evaluation of a Series of 2-Amino-Naphthoquinones against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Thiago A. P. de Moraes

    2014-08-01

    Full Text Available The cytotoxicity of a series of aminonaphthoquinones resulting from the reaction of suitable aminoacids with 1,4-naphthoquinone was assayed against SF-295 (glioblastoma, MDAMB-435 (breast, HCT-8 (colon, HCT-116 (colon, HL-60 (leukemia, OVCAR-8 (ovarian, NCI-H358M (bronchoalveolar lung carcinoma and PC3-M (prostate cancer cells and also against PBMC (peripheral blood mononuclear cells. The results demonstrated that all the synthetic aminonaphthoquinones had relevant cytotoxic activity against all human cancer lines used in this experiment. Five of the compounds showed high cytotoxicity and selectivity against all cancer cell lines tested (IC50 = 0.49 to 3.89 µg·mL−1. The title compounds were less toxic to PBMC, since IC50 was 1.5 to eighteen times higher (IC50 = 5.51 to 17.61 µg·mL−1 than values shown by tumour cell lines. The mechanism of cell growth inhibition and structure–activity relationships remains as a target for future investigations.

  14. Antimicrobial and Cytotoxic Activity of Three Bitter Plants-Enhydra fluctuans, Andrographis Peniculata and Clerodendrum Viscosum.

    Directory of Open Access Journals (Sweden)

    M. Ruhul Amin

    2012-08-01

    Full Text Available Purpose: In this study, three important medicinal plants (Enhydra fluctuans Lour, Clerodendrum viscosum Vent and Andrographis peniculata Wall of Bangladesh were investigated to analyze their antimicrobial and cytotoxic activities against some pathogenic microorganisms and Artemia salina (brine shrimp nauplii. Methods: The coarse powder material of leaves of each plant was extracted separately with methanol and acetone to yield methanol extracts of leaves of Enhydra fluctuans (MLE, Clerodendrum viscosum (MLC and Andrographis peniculata (MLA, and acetone extracts of leaves of Enhydra fluctuans (ALE, Clerodendrum viscosum (ALC and Andrographis peniculata (ALA. The disc diffusion method and the method described by Meyer were used to determine the antimicrobial and cytotoxic activities of each plant extract. Results: Among the test samples, MLE and ALE showed comparatively better antimicrobial activity against a number of bacteria and fungi with inhibition zones in the range of 06-15 mm and according to the intensity of activity, the efficacy against microorganisms were found in the order of Enhydra fluctuans> Andrographi speniculata> Clerodendrum viscosum. In cytotoxicity assay, all samples were found to be active against brine shrimp nauplii (Artemia salina and ALA produced lowest LC50 value (7.03 μg/ml. Conclusion: Enhydra fluctuans and Andrographi speniculata possesses significant antimicrobial and cytotoxic activities.

  15. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S., E-mail: sandra.wise@maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Xie, Hong, E-mail: hongxie@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Fukuda, Tomokazu, E-mail: tomofukuda009@gmail.com [Graduate School of Agricultural Sciences, Tohoku University, Laboratory of Animal Breeding and Genetics, Second Research Building, Rm 112, 1-1 Amamiyamachi, Aoba-ku, Sendai 981-8555 (Japan); Douglas Thompson, W., E-mail: dougt@usm.maine.edu [Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); and others

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.

  16. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus.

    Science.gov (United States)

    Huy, Tran Quang; Hien Thanh, Nguyen Thi; Thuy, Nguyen Thanh; Chung, Pham Van; Hung, Pham Ngoc; Le, Anh-Tuan; Hong Hanh, Nguyen Thi

    2017-03-01

    Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID 50 (Tissue Culture Infective Dose) after 30min, and 10TCID 50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID 50 , and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    International Nuclear Information System (INIS)

    Wise, Sandra S.; Xie, Hong; Fukuda, Tomokazu; Douglas Thompson, W.

    2014-01-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm 2 lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm 2 lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health

  18. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhao, Shuang; Pan, Hucheng; Song, Kai; Tang, Aitao

    2015-09-01

    In this study, biodegradable Mg-Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg-1Sn alloy was almost equiaxed grain, while the Mg-Sn alloys with higher Sn content (Sn≥3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg-Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg2Sn phase, and the amount of Mg2Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg-Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg-1Sn and Mg-3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg-1Sn and Mg-3Sn alloys were promising to be used as biodegradable implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cytotoxicity and Apoptotic Effects of Polyphenols from Sugar Beet Molasses on Colon Carcinoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Mingshun Chen

    2016-06-01

    Full Text Available Three polyphenols were isolated and purified from sugar beet molasses by ultrasonic-aid extraction and various chromatographic techniques, and their structures were elucidated by spectral analysis. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT assay, flow cytometry, caspase-3 activity assay and Western blot assay. The results showed that gallic acid, cyanidin-3-O-glucoside chloride and epicatechin have cytotoxicity to the human colon, hepatocellular and breast cancer cells. Cyanidin-3-O-glucoside chloride showed its cytotoxicity against various tumor cell lines, particularly against colon cancer Caco-2 cells with half maximal inhibitory concentration (IC50 value of 23.21 ± 0.14 μg/mL in vitro. Cyanidin-3-O-glucoside chloride may be a potential candidate for the treatment of colon cancer. In the mechanism study, cyanidin-3-O-glucoside chloride increased the ratio of cell cycle at G0/G1 phase and reduced cyclin D1 expression on Caco-2 cells. Cyanidin-3-O-glucoside chloride decreased mutant p21 expression, and increased the ratio of Bax/Bcl-2 and the activation of caspase-3 to induce apoptosis.

  20. Methanolic extracts of Uncaria rhynchophylla induce cytotoxicity and apoptosis in HT-29 human colon carcinoma cells.

    Science.gov (United States)

    Jo, Kyung-Jin; Cha, Mi-Ran; Lee, Mi-Ra; Yoon, Mi-Young; Park, Hae-Ryong

    2008-06-01

    In this paper, we report the anticancer activities of Uncaria rhynchophylla extracts, a Rubiaceae plant native to China. Traditionally, Uncaria rhynchophylla has been used in the prevention and treatment of neurotoxicity. However, the cytotoxic activity of Uncaria rhynchophylla against human colon carcinoma cells has not, until now, been elucidated. We found that the methanolic extract of Uncaria rhynchophylla (URE) have cytotoxic effects on HT-29 cells. The URE showed highly cytotoxic effects via the MTT reduction assay, LDH release assay, and colony formation assay. As expected, URE inhibited the growth of HT-29 cells in a dose-dependent manner. In particular, the methanolic URE of the 500 microg/ml showed 15.8% inhibition against growth of HT-29 cells. It induced characteristic apoptotic effects in HT-29 cells, including chromatin condensation and sharking occurring 24 h when the cells were treated at a concentration of the 500 microg/ml. The activation of caspase-3 and the specific proteolytic cleavage of poly (ADP-ribose) polymerase were detected over the course of apoptosis induction. These results indicate that URE contains bioactive materials with strong activity, and is a potential chemotherapeutic agent candidate against HT-29 human colon carcinoma cells.

  1. Cytotoxic and multidrug resistance reversal activity of a vegetable, 'Anastasia Red', a variety of sweet pepper.

    Science.gov (United States)

    Motohashi, Noboru; Wakabayashi, Hidetsugu; Kurihara, Teruo; Takada, Yuko; Maruyama, Shichiro; Sakagami, Hiroshi; Nakashima, Hideki; Tani, Satoru; Shirataki, Yoshiaki; Kawase, Masami; Wolfard, Kristina; Molnár, Joseph

    2003-04-01

    The vegetable, Anastasia Red, Capsicum annuum L. var. angulosum Mill. (Solanaceae) was successively extracted with hexane, acetone, methanol and 70% methanol, and the extracts were further separated into a total of 21 fractions by silica gel or octadecylsilane (ODS) column chromatography. The biological activities of extracts and fractions were determined. These extracts showed relatively higher cytotoxic activity against two human oral tumor cell lines (HSC-2, HSG) than against normal human gingival fibroblasts (HGF), suggesting a tumor-specific cytotoxic activity. The cytotoxic activity of these extracts was enhanced by fractionation on silica gel [H2, A2, M1-M3] or ODS column chromatography [70M]. Several fractions [H2, H4, H5, A1, A2, A3, A5, A6, A7, M2] reversed the multidrug resistance (MDR) phenotype with L5178 mouse lymphoma T cells, more efficiently than (+/-)-verapamil. The extracts and fractions did not show any detectable anti-human immunodeficiency virus (HIV) or anti-Helicobacter pylori activity. Thus, this study suggests the effective and selective antitumor potential of 'Anastasia Red' of sweet pepper for further phytochemical and biological investigation. Copyright 2003 John Wiley & Sons, Ltd.

  2. Cytotoxic and genotoxic effects induced by stannous chloride associated to nuclear medicine kits

    International Nuclear Information System (INIS)

    Guedes, Anderson P.; Cardoso, Valbert N.; De Mattos, Jose C.P.; Dantas, Flavio J.S.; Matos, Vanessa C.; Silva, Josiane C.F.; Bezerra, Roberto J.A.C.; Caldeira-de-Araujo, Adriano

    2006-01-01

    At present, more than 75% of routine nuclear medicine diagnostic procedures use technetium-99m ( 99m Tc). The binding between 99m Tc and the drug to obtain Radiopharmaceutical needs a reducing agent, with stannous chloride (SnCl 2 ) being one of the most used. There are controversies about the cytotoxic, genotoxic and mutagenic effects of SnCl 2 in the literature. Thus, the approaches below were used to better understand the biological effects of this salt and its association in nuclear medicine kits [methylenediphosphonate (MDP) bone scintigraphy and diethylenetriaminepentaacetic acid (DTPA) kidney and brain scintigraphy]: (i) bacterial inactivation experiments; (ii) agarose gel electrophoresis of supercoiled and linear plasmid DNA and (iii) bacterial transformation assay. The Escherichia coli strains used here were AB1157 (wild type) and BW9091 (xthA mutant). Data obtained showed that both MDP and SnCl 2 presented a high toxicity, but this was not observed when they were assayed together in the kit, thereby displaying a mutual protect effect. DTPA salt showed a moderate toxicity, and once more, the DTPA kit provided protection, compared to the SnCl 2 effect alone. The results suggest a possible complex formation, either MDP-SnCl 2 or DTPA-SnCl 2 , originating an atoxic compound. On the other hand, SnCl 2 -induced cell inactivation and the decrease in bacterial transformation generated by DTPA found in XthA mutant strain suggest that the lack of this enzyme could be responsible for the effects observed, being necessary to induce DNA damage repair

  3. Chemical Composition and Cytotoxicity Evaluation of Essential Oil from Leaves of Casearia Sylvestris, Its Main Compound α-Zingiberene and Derivatives

    Directory of Open Access Journals (Sweden)

    Patricia Sartorelli

    2013-08-01

    Full Text Available Casearia sylvestris (Salicaceae, popularly known as “guaçatonga”, is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ and fully hydrogenated a-zingiberene (THZ derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65mg/mL was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.

  4. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives.

    Science.gov (United States)

    Bou, Diego Dinis; Lago, João Henrique G; Figueiredo, Carlos R; Matsuo, Alisson L; Guadagnin, Rafael C; Soares, Marisi G; Sartorelli, Patricia

    2013-08-08

    Casearia sylvestris (Salicaceae), popularly known as "guaçatonga", is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ) and fully hydrogenated a-zingiberene (THZ) derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65 mg/mL) was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.

  5. Microbial-assisted synthesis and evaluation the cytotoxic effect of tellurium nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Forootanfar, Hamid [Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Amirpour-Rostami, Sahar; Jafari, Mandana [Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Forootanfar, Amir [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Yousefizadeh, Zahra [The Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Shakibaie, Mojtaba, E-mail: shakiba@kmu.ac.ir [Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of)

    2015-04-01

    The present study was designed to isolate bacterial strain capable of tellurium nanorods' (Te NRs) production followed by purification and evaluation of the cytotoxic effect of Te NRs. Among 25 environmental samples collected for screening of Te NR-producer bacterial strains one bacterial colony (isolated from hot spring and identified as Pseudomonas pseudoalcaligenes strain Te) was selected and applied for biosynthesis of Te NRs. Thereafter, an organic–aqueous partitioning system was applied for the purification of the biogenic Te NRs and the purified Te NRs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction spectroscopy (XRD), UV–visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR) techniques. The cytotoxic effect of biologically synthesized Te NRs and potassium tellurite on four cell lines of MCF-7, HT1080, HepG2 and A549 was then determined using the MTT assay method. The obtained results revealed lower toxicity for the rod-shaped biogenic tellurium nanostructures (~ 22 nm diameter by 185 nm length) compared to K{sub 2}TeO{sub 3}. - Highlights: • Te NR producing bacterial strain were isolated from hot springs. • Organic–aqueous partitioning system was applied for purification of Te nanorods. • The rod-shaped biogenic Te NPs showed lower cytotoxicity compared to K{sub 2}TeO{sub 3}.

  6. Microbial-assisted synthesis and evaluation the cytotoxic effect of tellurium nanorods

    International Nuclear Information System (INIS)

    Forootanfar, Hamid; Amirpour-Rostami, Sahar; Jafari, Mandana; Forootanfar, Amir; Yousefizadeh, Zahra; Shakibaie, Mojtaba

    2015-01-01

    The present study was designed to isolate bacterial strain capable of tellurium nanorods' (Te NRs) production followed by purification and evaluation of the cytotoxic effect of Te NRs. Among 25 environmental samples collected for screening of Te NR-producer bacterial strains one bacterial colony (isolated from hot spring and identified as Pseudomonas pseudoalcaligenes strain Te) was selected and applied for biosynthesis of Te NRs. Thereafter, an organic–aqueous partitioning system was applied for the purification of the biogenic Te NRs and the purified Te NRs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction spectroscopy (XRD), UV–visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR) techniques. The cytotoxic effect of biologically synthesized Te NRs and potassium tellurite on four cell lines of MCF-7, HT1080, HepG2 and A549 was then determined using the MTT assay method. The obtained results revealed lower toxicity for the rod-shaped biogenic tellurium nanostructures (~ 22 nm diameter by 185 nm length) compared to K 2 TeO 3 . - Highlights: • Te NR producing bacterial strain were isolated from hot springs. • Organic–aqueous partitioning system was applied for purification of Te nanorods. • The rod-shaped biogenic Te NPs showed lower cytotoxicity compared to K 2 TeO 3

  7. Tumor-Selective Cytotoxicity of Nitidine Results from Its Rapid Accumulation into Mitochondria

    Directory of Open Access Journals (Sweden)

    Hironori Iwasaki

    2017-01-01

    Full Text Available We identified a nitidine- (NTD- accumulating organelle and evaluated the net cytotoxicity of accumulated NTD. To evaluate tumor cell selectivity of the drug, we evaluated its selective cytotoxicity against 39 human cancer cell lines (JFCR39 panel, and the profile was compared with those of known anticancer drugs. Organelle specificity of NTD was visualized using organelle-targeted fluorescent proteins. Real-time analysis of cell growth, proliferation, and cytotoxicity was performed using the xCELLigence system. Selectivity of NTD in the JFCR39 panel was evaluated. Mitochondria-specific accumulation of NTD was observed. Real-time cytotoxicity analysis suggested that the mechanism of NTD-induced cell death is independent of the cell cycle. Short-term treatment indicated that this cytotoxicity only resulted from the accumulation of NTD into the mitochondria. The results from the JFCR39 panel indicated that NTD-mediated cytotoxicity resulted from unique mechanisms compared with those of other known anticancer drugs. These results suggested that the cytotoxicity of NTD is only induced by its accumulation in mitochondria. The drug triggered mitochondrial dysfunction in less than 2 h. Similarity analysis of the selectivity of NTD in 39 tumor cell lines strongly supported the unique tumor cell specificity of NTD. Thus, these features indicate that NTD may be a promising antitumor drug for new combination chemotherapies.

  8. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Zhen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Liu, Xiaoli [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Huang, Tao [Department of Materials Science and Engineering, State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871 (China); Xi, TingFei, E-mail: xitingfei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Biomedical Engineering Research Center, Shenzhen Institute, Peking University, Shenzhen 518057 (China); Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057 (China); Zheng, Yufeng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Materials Science and Engineering, State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871 (China); Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057 (China)

    2015-01-01

    Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg{sup 2+} concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl{sub 2} and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg{sup 2+} reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg{sup 2+} (< 100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg{sup 2+} (> 300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg{sup 2+} concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg{sup 2+}. The Mg extract culture media caused no cytotoxicity, with pH = 8.44 and 47.80 μg/mL Mg{sup 2+}. It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. - Highlights: • Mg{sup 2+} and pH have been tested for hemolysis and cytotoxicity of biomedical Mg. • Even 1000 μg/ml Mg{sup 2+} cannot cause hemolysis, but hemolysis reaches 53.8% when pH > 11. • Mg{sup 2+} > 300 μg/mL induces death of L929 and slight alkaline improves the proliferation. • Pure Mg in normal saline induces high

  9. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  10. Discrimination of human cytotoxic lymphocytes from regulatory and B-lymphocytes by orthogonal light scattering

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; de Grooth, B.G.; ten Napel, C.H.H.; van Berkel, W.; Greve, Jan

    1986-01-01

    Light scattering properties of human lymphocyte subpopulations selected by immunofluorescence were studied with a flow cytometer. Regulatory and B-lymphocytes showed a low orthogonal light scatter signal, whereas cytotoxic lymphocytes identified with leu-7, leu-11 and leu-15 revealed a large

  11. Cytotoxic and mutagenic effects of conventionally processed foods in comparison with irradiated foods

    International Nuclear Information System (INIS)

    Mohyuddin, M.

    1975-05-01

    Several kinds of spices and processed food namely onion, garlic, turmeric, red chillies, black pepper, cloves, cinnamon, simple curry, meat curry, curry prepared from irradiated onions and potatoes and curry from irradiated fish were tested for cytotoxocity and mutagenicity. Onion root tips were used in the studies of cytotoxicity. Pseudomonas fluorescens strain NCTC-9428, a streptomycin-sensitive strain, was used as the test organism in mutagenicity studies. Wide range of cytoxicity was observed in all spices and food tested, varying from 48% abnormality in root tips in black pepper to 97.7% in garlic extract. The degrees of cytotoxic abnormality of irradiated potatoes and onions appeared to be lower than in their control counterparts. The average percentages of cytotoxic abnormality in curry prepared from irradiated fish and the one prepared from irradiated potatoes and onions, at their original concentration, were 95.92% and 99.5% resp. Digesting curry prepared from irradiated potatoes and onions with bile salts appeared to show some detoxification characteristics. The mutation rate of Pseudomonas fluorescens grown in media containing unirradiated spice extract was significantly higher than in the control (media without spice extract). However, the mutation rate of an extract of irradiated onions (10 krad) showed no difference from the control. There was no difference in the mutation rate on extracts of curry prepared from irradiated onions and potatoes from the one prepared from unirradiated onions and potatoes

  12. Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Vincent, Steven R.

    2005-01-01

    Microsomal cytochrome P450 reductase catalyzes the one-electron transfer from NADPH via FAD and FMN to various electron acceptors, such as cytochrome P450s or to some anti-cancer quinone drugs. This results in generation of free radicals and toxic oxygen metabolites, which can contribute to the cytotoxicity of these compounds. Recently, a cytosolic NADPH-dependent flavin reductase, NR1, has been described which is highly homologous to the microsomal cytochrome P450 reductase. In this study, we show that over-expression of NR1 in human embryonic kidney cells enhances the cytotoxic action of the model quinone, menadione. Furthermore, we show that a novel human histidine triad protein DCS-1, which is expressed together with NR1 in many tissues, can significantly reduce menadione-induced cytotoxicity in these cells. We also show that DCS-1 binds NF1 and directly modulates its activity. These results suggest that NR1 may play a role in carcinogenicity and cell death associated with one-electron reductions

  13. Cytotoxicity of an 125I-labelled DNA ligand

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2000-01-01

    The subcellular distribution and cytotoxicity of a DNA-binding ligand [ 125 I]-Hoechst 33258 following incubation of K562 cells with the drug was investigated. The ability of a radical scavenger, dimethyl sulphoxide, to protect cells from the 125 I-decay induced cell death was also studied. Three different concentrations and specific activities of the drug were used to provide different ligand : DNA binding ratios. The results demonstrated a trend toward improved delivery of the ligand to the nucleus and to chromatin at higher ligand concentrations, with concomitant increased sensitivity to 125 I-decay induced cytotoxicity and decreased protection by dimethyl sulphoxide. This correlation of radiobiological parameters with subcellular drug distribution is consistent with the classical dogma that attributes cytotoxicity to DNA double-stranded breakage in the vicinity of the site of decay, where the high LET nature of the damage confers minimal sensitivity to radical scavenging

  14. Cytotoxic CD4 T Cells—Friend or Foe during Viral Infection?

    Science.gov (United States)

    Juno, Jennifer A.; van Bockel, David; Kent, Stephen J.; Kelleher, Anthony D.; Zaunders, John J.; Munier, C. Mee Ling

    2017-01-01

    CD4 T cells with cytotoxic function were once thought to be an artifact due to long-term in vitro cultures but have in more recent years become accepted and reported in the literature in response to a number of viral infections. In this review, we focus on cytotoxic CD4 T cells in the context of human viral infections and in some infections that affect mice and non-human primates. We examine the effector mechanisms used by cytotoxic CD4 cells, the phenotypes that describe this population, and the transcription factors and pathways that lead to their induction following infection. We further consider the cells that are the predominant targets of this effector subset and describe the viral infections in which CD4 cytotoxic T lymphocytes have been shown to play a protective or pathologic role. Cytotoxic CD4 T cells are detected in the circulation at much higher levels than previously realized and are now recognized to have an important role in the immune response to viral infections. PMID:28167943

  15. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    E Bianchi

    Full Text Available Some water bodies in the Sinos River Basin (SRB have been suffering the effects of pollution by residential, industrial and agroindustrial wastewater. The presence of cytotoxic and genotoxic compounds could compromise the water quality and the balance of these ecosystems. In this context, the research aimed to evaluate the genotoxicity and cytotoxicity of the water at four sites along the SRB (in the cities of Santo Antônio da Patrulha, Parobé, Campo Bom and Esteio, using bioassays in fish and cell culture. Samples of surface water were collected and evaluated in vitro using the Astyanax jacuhiensis fish species (micronucleus test and comet assay and the Vero lineage of cells (comet assay and cytotoxicity tests, neutral red - NR and tetrazolium MTT. The micronucleus test in fish showed no significant differences between the sampling sites, and neither did the comet assay and the MTT and NR tests in Vero cells. The comet assay showed an increase in genetic damage in the fish exposed to water samples collected in the middle and lower sections of the basin (Parobé, Campo Bom and Esteio when compared to the upper section of the basin (Santo Antônio da Patrulha. The results indicate contamination by genotoxic substances starting in the middle section of the SRB.

  16. Synthesis and biological evaluation of novel conjugates of camptothecin and 5-Flurouracil as cytotoxic agents

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: yqliu@lzu.edu.c [Lanzhou Jiaotong University (China). Environmental and Municipal Engineering School; Chun-Yan Zhaob; Ying-Qian Liu [Lanzhou University (China). School of Pharmacy

    2011-07-01

    A series of novel conjugates of camptothecin and 5-fluorouracil were first synthesized and their cytotoxic activities against two human tumor cell lines (SGC-7901 and A-549) as well as in vitro pharmacokinetic determination of lactone stability were studied. Among these compounds, most tested conjugates showed comparable or superior cytotoxic activities to 2, but less potent compared with 1. Particularly, conjugates 10b and 10d were highly active against A-549 with IC{sub 50} values of 0.45 and 0.38 {mu}mol L{sup -1}, respectively. Also, the in vitro pharmacokinetic determination of lactone levels of representative compound 10b showed that the biological life span of their lactone forms in human and mouse plasma significantly increased compared with their mother compound 1. Quantitative structure-activity relationship (QSAR) method was then applied for developing linear models to predict the cytotoxic activities of these derivatives that have not yet been synthesized or experimentally tested. In addition, molecular docking was used to clarify the binding mode of these derivatives to human DNA topoisomerase I. The important hydrogen-bonding interactions were observed between these derivatives and their receptor. The results from molecular modeling and QSAR study can guide the design of novel conjugates with higher antitumor activity. (author)

  17. Cytotoxicity of p-chloroamphetamine in dimethylhydrazine-induced carcinomata of rat colon.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1979-01-01

    Previous studies have shown that several serotonin-related compounds are cytotoxic to dimethylhydrazine-induced carcinomata of the colon of rat. This paper reports the cytotoxicity of another serotonin-related compound, p-chloroamphetamine.

  18. Sponge-Associated Bacteria Produce Non-cytotoxic Melanin Which Protects Animal Cells from Photo-Toxicity.

    Science.gov (United States)

    Vijayan, Vijitha; Jasmin, Chekidhenkuzhiyil; Anas, Abdulaziz; Parakkaparambil Kuttan, Sreelakshmi; Vinothkumar, Saradavey; Perunninakulath Subrayan, Parameswaran; Nair, Shanta

    2017-09-01

    Melanin is a photo-protective polymer found in many organisms. Our research shows that the bacteria associated with darkly pigmented sponges (Haliclona pigmentifera, Sigmadocia pumila, Fasciospongia cavernosa, Spongia officinalis, and Callyspongia diffusa) secrete non-cytotoxic melanin, with antioxidant activity that protects animal cells from photo-toxicity. Out of 156 bacterial strains screened, 22 produced melanin and these melanin-producing bacteria (MPB) were identified as Vibrio spp., Providencia sp., Bacillus sp., Shewanella sp., Staphylococcus sp., Planococcus sp., Salinococcus sp., and Glutamicibacter sp. Maximum melanin production was exhibited by Vibrio alginolyticus Marine Microbial Reference Facility (MMRF) 534 (50 mg ml -1 ), followed by two isolates of Vibrio harveyi MMRF 535 (40 mg ml -1 ) and MMRF 546 (30 mg ml -1 ). Using pathway inhibition assay and FT-IR spectral analysis, we identified the melanin secreted into the culture medium of MPB as 1,8-dihydroxynaphthalene-melanin. The bacterial melanin was non-cytotoxic to mouse fibroblast L929 cells and brine shrimps up to a concentration of 200 and 500 ppm, respectively. Bacterial melanin showed antioxidant activity at very low concentration (IC 50 -9.0 ppm) and at 50 ppm, melanin protected L929 cells from UV-induced intracellular reactive oxygen stress. Our study proposes sponge-associated bacteria as a potential source of non-cytotoxic melanin with antioxidant potentials.

  19. Conventional and whitening toothpastes: cytotoxicity, genotoxicity and effect on the enamel surface.

    Science.gov (United States)

    Camargo, Samira Esteves Afonso; Jóias, Renata Pilli; Santana-Melo, Gabriela Fátima; Ferreira, Lara Tolentino; El Achkar, Vivian Narana Ribeiro; Rode, Sigmar de Mello

    2014-12-01

    To evaluate the cytotoxicity and genotoxicity of whitening and common toothpastes, and the surface roughness of tooth enamel submitted to brushing with both toothpastes. Samples of whitening toothpastes [Colgate Whitening (CW) and Oral-B Whitening (OBW)] and regular (non-whitening) toothpastes (Colgate and Oral-B) were extracted in culture medium. Gingival human fibroblasts (FMM-1) were placed in contact with different dilutions of culture media that had been previously exposed to such materials, and the cytotoxicity was evaluated using the MTT assay. The genotoxicity was assessed by the micronucleus formation assay in Chinese hamster fibroblasts (V79). The cell survival rate and micronuclei number were assessed before and after exposure to the toothpaste extracts. For the surface roughness evaluation, 20 bovine tooth specimens, divided into four groups according to toothpastes, were submitted to 10,000 brushing cycles. The results were analyzed using the Mann-Whitney U and two-way ANOVA tests (P whitening toothpastes showed the highest numbers of micronuclei compared to the untreated control (UC) (P enamel surface (P whitening toothpastes and Oral-B were cytotoxic to the cells. The whitening toothpastes were more genotoxic to cells in vitro than the common toothpastes, and genotoxicity was more pronounced in the OBW toothpaste.

  20. Increased Peripheral Blood Pro-Inflammatory/Cytotoxic Lymphocytes in Children with Bronchiectasis.

    Directory of Open Access Journals (Sweden)

    G Hodge

    Full Text Available Bronchiectasis (BE in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin and inflammatory (IFNγ and TNFα mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE.Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry.There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL.Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities.

  1. Oleic acid is a key cytotoxic component of HAMLET-like complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2012-01-01

    HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.

  2. Uremic Toxins Enhance Statin-Induced Cytotoxicity in Differentiated Human Rhabdomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Uchiyama

    2014-09-01

    Full Text Available The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF. Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins—hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate—on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated. In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated. However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated. These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  3. In vitro cytotoxic, genotoxic and antioxidant/oxidant effects of guaiazulene on human lymphocytes

    Directory of Open Access Journals (Sweden)

    Başak Toğar

    2015-02-01

    Full Text Available The aim of this study was to evaluate for the cytotoxicity, genotoxicity and antioxidant/oxidant activity of GYZ on human peripheral blood lymphocytes (PBLs. Guaiazulene (GYZ was added into culture tubes at various concentrations (0-400 µg/mL-1. Cytotoxicity against the human lymphocytes cultures was examined by lactate dehydrogenase (LDH release assay. The proliferative response was estimated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay. Antioxidant/oxidant activity was evaluated by measuring the total oxidant status (TOS and total antioxidant capacity (TAC levels. Micronucleus (MN and chromosomal aberration (CA tests were used in genotoxicity studies. The results showed that GYZ caused cytotoxicity in the PBLs at high concentrations, but TOS level were not affected, while the level of TAC was significantly increased. GYZ also did not induce chromosomal aberrations when compared to that of the control group. Results this study clearly revealed that GYZ was not genotoxic and also increased the capacity of the antioxidant in the culture of human PBL cells. This report is first report on the impact of GYZ on human PBL cells.

  4. Cytotoxic Effects of Alcoholic Extract of Dorema Glabrum Seed on Cancerous Cells Viability

    Directory of Open Access Journals (Sweden)

    Maryam Bannazadeh Amirkhiz

    2013-08-01

    Full Text Available Purpose: In the present study cytotoxic effects of the alcoholic extract of Dorema Glabrum seed on viability of WEHI-164 cells, mouse Fibrosarcoma cell line and L929 normal cells were compared with the cytotoxic effects of Taxol (anticancer and apoptosis inducer drug. Methods: To find out the plant extract cytotoxic effects, MTT test and DNA fragmentation assay, the biochemical hallmark of apoptosis were performed on cultured and treated cells. Results: According to the findings the alcoholic extract of Dorema Glabrum seed can alter cells morphology and because of chromatin condensation and other changes they shrink and take a spherical shape, and lose their attachment too. So the plant extract inhibits cell growth albeit in a time and dose dependent manner and results in degradation of chromosomal DNA. Conclusion: Our data well established the anti-proliferative effect of methanolic extract of Dorema Glabrum seed and clearly showed that the plant extract can induce apoptosis and not necrosis in vitro, but the mechanism of its activities remained unknown. These results demonstrated that Dorema Glabrum seed might be a novel and attractive therapeutic candidate for tumor treatment in clinical practices.

  5. Comparative cytotoxicity of periodontal bacteria

    International Nuclear Information System (INIS)

    Stevens, R.H.; Hammond, B.F.

    1988-01-01

    The direct cytotoxicity of sonic extracts (SE) from nine periodontal bacteria for human gingival fibroblasts (HGF) was compared. Equivalent dosages (in terms of protein concentration) of SE were used to challenge HGF cultures. The cytotoxic potential of each SE was assessed by its ability to (1) inhibit HGF proliferation, as measured by direct cell counts; (2) inhibit 3H-thymidine incorporation in HGF cultures; or (3) cause morphological alterations of the cells in challenged cultures. The highest concentration (500 micrograms SE protein/ml) of any of the SEs used to challenge the cells was found to be markedly inhibitory to the HGFs by all three of the criteria of cytotoxicity. At the lowest dosage tested (50 micrograms SE protein/ml); only SE from Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, and Fusobacterium nucleatum caused a significant effect (greater than 90% inhibition or overt morphological abnormalities) in the HGFs as determined by any of the criteria employed. SE from Capnocytophaga sputigena, Eikenella corrodens, or Wolinella recta also inhibited cell proliferation and thymidine incorporation at this dosage; however, the degree of inhibition (5-50%) was consistently, clearly less than that of the first group of three organisms named above. The SE of the three other organisms tested (Actinomyces odontolyticus, Bacteroides intermedius, and Streptococcus sanguis) had little or no effect (0-10% inhibition) at this concentration. The data suggest that the outcome of the interaction between bacterial components and normal resident cells of the periodontium is, at least in part, a function of the bacterial species

  6. The cytotoxicity of organobismuth compounds with certain molecular structures can be diminished by replacing the bismuth atom with an antimony atom in the molecules.

    Science.gov (United States)

    Kohri, Kumiko; Yoshida, Eiko; Yasuike, Shuji; Fujie, Tomoya; Yamamoto, Chika; Kaji, Toshiyuki

    2015-06-01

    Organic-inorganic hybrid molecules, which are composed of an organic structure and metal(s), are indispensable for synthetic chemical reactions; however, their toxicity has been incompletely understood. In the present study, we discovered two cytotoxic organobismuth compounds whose cytotoxicity diminished upon replacement of the intramolecular bismuth atom with an antimony atom. The intracellular accumulation of the organobismuth compounds was much higher than that of the organoantimony compounds with the corresponding organic structures. We also showed that both the organic structure and bismuth atom are required for certain organobismuth compounds to exert their cytotoxic effect, suggesting that the cytotoxicity of such a compound is a result of an interaction between the organic structure and the bismuth atom. The present data suggest that organobismuth compounds with certain molecular structures exhibit cytotoxicity via an interaction between the molecular structure and the bismuth atom, and this cytotoxicity can be diminished by replacing the bismuth atom with an antimony atom, resulting in lower intracellular accumulation.

  7. PHA-induced cytotoxicity of human lymphocytes against adherent hela-cells

    NARCIS (Netherlands)

    Huges-Law, G.; de Gast, G. C.; The, T. Hauw

    The conditions for a phytohaemagglutinin(PHA)-induced cytotoxicity test of human peripheral blood lymphocytes were investigated. [3H]thymidine prelabelled HeLa cells were used as target cells. Stimulation with 10 μl PHA/ml during 24 h gave the best measure of lymphocyte cytotoxic capacity.

  8. DNA minor groove targeted alkylating agents based on bisbenzimidazole carriers: synthesis, cytotoxicity and sequence-specificity of DNA alkylation.

    Science.gov (United States)

    Smaill, J B; Fan, J Y; Denny, W A

    1998-12-01

    A series of bisbenzimidazoles bearing a variety of alkylating agents [ortho- and meta-mustards, imidazolebis(hydroxymethyl), imidazolebis(methylcarbamate) and pyrrolebis(hydroxymethyl)], appended by a propyl linker chain, were prepared and investigated for sequence-specificity of DNA alkylation and their cytotoxicity. Previous work has shown that, for para-aniline mustards, a propyl linker is optimal for cytotoxicity. Alkaline cleavage assays using a variety of different labelled oligonucleotides showed that the preferred sequences for adenine alkylation were 5'-TTTANANAANN and 5'-ATTANANAANN (underlined bases show the drug alkylation sites), with AT-rich sequences required on both the 5' and 3' sides of the alkylated adenine. The different aniline mustards showed little variation in alkylation pattern and similar efficiencies of DNA cross-link formation despite the changes in orientation and positioning of the mustard, suggesting that the propyl linker has some flexibility. The imidazole- and pyrrolebis(hydroxymethyl) alkylators showed no DNA strand cleavage following base treatment, indicating that no guanine or adenine N3 or N7 adducts were formed. Using the PCR-based polymerase stop assay, these alkylators showed PCR blocks at 5'-C*G sites (the * nucleotide indicates the blocked site), particularly at 5'-TAC*GA 5'-AGC*GGA, and 5'-AGCC*GGT sequences, caused by guanine 2-NH2 lesions on the opposite strand. Only the (more reactive) imidazolebis(methylcarbamoyl) and pyrrolebis(hydroxymethyl) alkylators demonstrated interstrand cross-linking ability. All of the bifunctional mustards showed large (approximately 100-fold) increases in cytotoxicity over chlorambucil, with the corresponding monofunctional mustards being 20- to 60-fold less cytotoxic. These results suggest that in the mustards the propyl linker provides sufficient flexibility to achieve delivery of the alkylator to favoured (adenine N3) sites in the minor groove, regardless of its exact geometry with

  9. A comparison of cytotoxicity of some phosphoramides against K562 cell line

    Directory of Open Access Journals (Sweden)

    niloufar Dorosti

    2012-03-01

    Conclusion: Since hydrogen bonds play a key role in biology processes, these results suggest that increase in the hydrogen bonds of derivatives bearing urea moiety (4-6 may be increase cytotoxicity of these compounds. Moreover, the 3-NO2 group showed higher anti-cancer activity than two other positions owing to possibility electronic and steric effects.

  10. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    Science.gov (United States)

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  11. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    Science.gov (United States)

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  12. Essential oil of the leaves of Ricinus communis L.: in vitro cytotoxicity and antimicrobial properties.

    Science.gov (United States)

    Zarai, Zied; Ben Chobba, Ines; Ben Mansour, Riadh; Békir, Ahmed; Gharsallah, Néji; Kadri, Adel

    2012-08-13

    The aim of the present study was to appraise the antimicrobial activity of Ricinus communis L. essential oil against different pathogenic microorganisms and the cytotoxic activity against HeLa cell lines. The agar disk diffusion method was used to study the antibacterial activity of Ricinus communis L. essential oil against 12 bacterial and 4 fungi strains. The disc diameters of zone of inhibition (DD), the minimum inhibitory concentrations (MIC) and the concentration inhibiting 50% (IC50) were investigated to characterize the antimicrobial activities of this essential oil. The in vitro cytotoxicity of Ricinus communis L. essential oil was examined using a modified MTT assay; the viability and the IC50 were used to evaluate this test. The essential oil from the leaves of Ricinus communis L. was analyzed by GC-MS and bioassays were carried out. Five constituents of the oil were identified by GC-MS. The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against twelve bacteria and four fungi species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested with higher sensitivity for Bacillus subtilis, Staphylococcus aureus and Enterobacter cloacae. The cytotoxic and apoptotic effects of the essential oil on HeLa cell lines were examined by MTT assay. The cytotoxicity of the oil was quite strong with IC50 values less than 2.63 mg/ml for both cell lines. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of Ricinus communis L., indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections.

  13. Synthesis and in vitro cytotoxicity of novel C-12 substituted-14-deoxy-andrographolide derivatives as potent anti-cancer agents.

    Science.gov (United States)

    Kandanur, Sai Giridhar Sarma; Golakoti, Nageswara Rao; Nanduri, Srinivas

    2015-12-15

    Andrographolide, the major labdane diterpenoid from Andrographis paniculata has been reported to be cytotoxic against various cancer cells in vitro. Our research efforts led to the discovery of novel 12-phenyl thio and 12-aryl amino-14-deoxy-andrographolide derivatives (III q and III r) with potent cytotoxic activity, 12-benzyl amino-14-deoxy-andrographolide analogues showing broad range of cytotoxic activity against most of the cell lines and 12-alkyl amino-14-deoxy-andrographolide derivatives being selective to few cell lines (PC-3 and HOP-92), when the selected analogues were evaluated against 60 human cancer cell line panel at National Cancer Institute (N.C.I.), USA. The SAR (structure activity relationship) studies demonstrated potent activity for the compounds containing the following functionalities at C-12: substituted aryl amino/phenyl thio>benzylamine>alkyl amine. The significant cytotoxic activity observed for compounds III q and III r suggest that these could serve as templates for further optimization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg 17 Sr 2 phases, and the content of Mg 17 Sr 2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?

    Science.gov (United States)

    Grandinetti, Giovanna; Smith, Adam E.; Reineke, Theresa M.

    2012-01-01

    The aim of this study is to compare the cytotoxicity mechanisms of linear PEI to two analogous polymers synthesized by our group: a hydroxyl-containing poly(L-tartaramidoamine) (T4) and a version containing an alkyl chain spacer poly(adipamidopentaethylenetetramine) (A4) by studying the cellular responses to polymer transfection. We have also synthesized analogues of T4 with different molecular weights (degrees of polymerization of 6, 12, and 43) to examine the role of molecular weight on the cytotoxicity mechanisms. Several mechanisms of polymer-induced cytotoxicity are investigated, including plasma membrane permeabilization, the formation of potentially harmful polymer degradation products during transfection including reactive oxygen species, and nuclear membrane permeabilization. We hypothesized that since cationic polymers are capable of disrupting the plasma membrane, they may also be capable of disrupting the nuclear envelope, which could be a potential mechanism of how the pDNA is delivered into the nucleus (other than nuclear envelope breakdown during mitosis). Using flow cytometry and confocal microscopy, we show that the polycations with the highest amount of protein expression and toxicity, PEI and T443, are capable of inducing nuclear membrane permeability. This finding is important for the field of nucleic acid delivery in that not only could direct nucleus permeabilization be a mechanism for pDNA nuclear import but also a potential mechanism of cytotoxicity and cell death. We also show that the production of reactive oxygen species is not a main mechanism of cytotoxicity, and that the presence or absence of hydroxyl groups as well as polymer length plays a role in polyplex size and charge in addition to protein expression efficiency and toxicity. PMID:22175236

  16. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves

    Directory of Open Access Journals (Sweden)

    Patil Shriniwas P.

    2017-07-01

    Full Text Available Several attempts have been made for green synthesis of silver nanoparticles (AgNPs using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii with LD50 value 514.50 µg/ml.

  17. The moderator's moderator

    International Nuclear Information System (INIS)

    Williamson, G.K.

    1990-01-01

    A brief account is given of the development of graphite moderators for Magnox and advanced gas cooled reactors. The accident at Windscale in 1957 brought to worldwide attention the importance of irradiation damage in graphite and the consequent storage of Wigner energy. In spite of the Windscale setback, preparations for the civil programme of Magnox reactors went ahead apace. Some of the background to the disastrous Dungeness B tender is presented. In spite of all the difficulties and uncertainties, the graphite in UK reactors has performed well. In all cases, as far as the author is aware, the behaviour of the graphite moderators will not prevent design life being achieved. (author)

  18. Cystatin F as a regulator of immune cell cytotoxicity.

    Science.gov (United States)

    Kos, Janko; Nanut, Milica Perišić; Prunk, Mateja; Sabotič, Jerica; Dautović, Esmeralda; Jewett, Anahid

    2018-05-10

    Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.

  19. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity.

    Science.gov (United States)

    Huang, Hui-Chi; Lin, Ming-Kuem; Yang, Hsin-Ling; Hseu, You-Cheng; Liaw, Chih-Chuang; Tseng, Yen-Hsueh; Tsuzuki, Minoru; Kuo, Yueh-Hsiung

    2013-09-01

    Two new cardenolides, kalantubolide A (1) and kalantubolide B (2), and two bufadienolide glycosides, kalantuboside A (3) and kalantuboside B (4), as well as eleven known compounds were isolated and characterized from the EtOH extract of Kalanchoe tubiflora. The structures of compounds were assigned based on 1D and 2D NMR spectroscopic analyses including HMQC, HMBC, and NOESY. Biological evaluation indicated that cardenolides (1-2) and bufadienolide glycosides (3-7) showed strong cytotoxicity against four human tumor cell lines (A549, Cal-27, A2058, and HL-60) with IC50 values ranging from 0.01 µM to 10.66 µM. Cardenolides (1-2) also displayed significant cytotoxicity toward HL-60 tumor cell line. In addition, compounds 3, 4, 5, 6, and 7 blocked the cell cycle in the G2/M-phase and induced apoptosis in HL-60 cells. Georg Thieme Verlag KG Stuttgart · New York.

  20. Cytotoxic constituents of Soymida febrifuga from Myanmar.

    Science.gov (United States)

    Awale, Suresh; Miyamoto, Tatsuya; Linn, Thein Zaw; Li, Feng; Win, Nwet Nwet; Tezuka, Yasuhiro; Esumi, Hiroyasu; Kadota, Shigetoshi

    2009-09-01

    The 70% ethanol extract of Soymida febrifuga was found to kill PANC-1 human pancreatic cancer cells preferentially under nutrition-deprived conditions at a concentration of 10 microg/mL. Phytochemical investigation led to the isolation of 27 compounds including four new compounds [(3R)-6,4'-dihydroxy-8-methoxyhomoisoflavan (1), (2R)-7,4'-dihydroxy-5-methoxy-8-methylflavan (2), 7-hydroxy-6-methoxy-3-(4'-hydroxybenzyl)coumarin (3), and 6-hydroxy-7-methoxy-3-(4'-hydroxybenzyl)coumarin (4)]. 2',4'-Dihydroxychalcone (8) displayed the most potent preferential cytotoxicity (PC(50) 19.0 microM) against PANC-1 cells. In addition, the cytotoxic activity against colon 26-L5 carcinoma (colon 26-L5), B16-BL6 melanoma (B16-BL6), lung A549 adenocarcinoma (A549), cervix HeLa adenocarcinoma (HeLa), and HT-1080 fibrosarcoma (HT-1080) cell lines and their structure-activity relationship are discussed. The cytotoxic activity of 4'-hydroxy-3,5-dimethoxystilbene (6) against colon 26-L5 (IC(50) 2.96 microM) was found to be stronger than the positive control, doxorubicin, at IC(50) 3.12 microM.

  1. Magnetic microgels for drug targeting applications: Physical–chemical properties and cytotoxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca (Romania); Craciunescu, Izabell [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca (Romania); Garamus, Vasil M. [Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, 21502 Geesthacht (Germany); Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph [ENT-Department, Else Kröner-Fresenius Stiftung-Professorship, Section for Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen (Germany); Vekas, Ladislau, E-mail: vekas@acad-tim.tm.edu.ro [Romanian Academy-Timisoara Branch, CFATR, Laboratory of Magnetic Fluids, Mihai Viteazul Street 24, 300223 Timisoara (Romania)

    2015-04-15

    Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe{sub 3}O{sub 4}/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40–350 nm. Physical–chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure–properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting. - Highlights: • Densely packed spherical clusters of magnetic nanoparticles were obtained. • High magnetization microgels with superparamagnetic behavior are reported. • The facile and reproducible synthesis procedure applied is easy to be up-scaled. • The toxicity tests show that magnetic microgels are not cytotoxic. • We show that mitoxantrone loaded microgels induce death of Jurkat cells.

  2. In vitro cytotoxity of silver: implication for clinical wound care.

    Science.gov (United States)

    Poon, Vincent K M; Burd, Andrew

    2004-03-01

    In this study, we look at the cytotoxic effects of silver on keratinocytes and fibroblasts. We have assessed the viability of monolayer cultures using the MTT and BrdU assays. The composition of the culture medium and also the culture technique were modified to assess the effects of culture 'environment' on the susceptibility of the cells to the toxic action of silver. Further in vitro, experiments were performed using tissue culture models to allow cellular behavior in three dimensional planes which more closely simulated in vivo behavior. The silver source was both silver released from silver nitrate solution but also nanocrystalline silver released from a commercially available dressing. The results show that silver is highly toxic to both keratinocytes and fibroblasts in monolayer culture. When using optimized and individualized culture the fibroblasts appear to be more sensitive to silver than keratinocytes. However, when both cell types were grown in the same medium their viability was the same. Using tissue culture models again indicated an 'environmental effect' with decreased sensitivity of the cells to the cytotoxic effects of the silver. Nevertheless in these studies the toxic dose of skin cells ranging from 7 x 10(-4) to 55 x 10(-4)% was similar to that of bacteria. These results suggest that consideration of the cytotoxic effects of silver and silver-based products should be taken when deciding on dressings for specific wound care strategies. This is important when using keratinocyte culture, in situ, which is playing an increasing role in contemporary wound and burn care.

  3. Cytotoxic effects of air freshener biocides in lung epithelial cells.

    Science.gov (United States)

    Kwon, Jung-Taek; Lee, Mimi; Seo, Gun-Baek; Kim, Hyun-Mi; Shim, Ilseob; Lee, Doo-Hee; Kim, Taksoo; Seo, Jung Kwan; Kim, Pilje; Choi, Kyunghee

    2013-09-01

    This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment.

  4. Antimicrobial and Cytotoxic Activities of Extracts from Laurus nobilis Leaves

    KAUST Repository

    Felemban, Shaza

    2011-05-01

    The cytotoxic activity and antimicrobial properties of crude extracts from Laurus nobilis were investigated. With the use of the organic solvents, methanol and ethanol, crude extracts were obtained. To determine the availability of active bio‐compounds, an analysis using liquid chromatography was conducted. The crude extract was also tested for antimicrobial activity. The disc diffusion method was used against the bacterium Escherichia coli. The results showed a weak antimicrobial activity against E. coli. For cytotoxicity testing, the crude extract was studied on four cell-­lines: human breast adenocarcinoma, human embryonic kidney, HeLa (human cervical adenocarcinoma), and human lung fibroblast. From the alamarBlue® assay results, the extracts most potently affected the cell-­lines of human breast adenocarcinoma and human embryonic kidney. Using the lactate dehydrogenase (LDH) assay, an effect on human embryonic kidney was most prominent. With these findings, a suggestion that the crude extract of Laurus nobilis may have antiproliferative properties is put forth, with the possibility of this mechanism being induction of apoptosis with the involvement of Nuclear Factor Kappa κB (NF κB).

  5. Metabolic and physiologic studies of nonimmune lymphoid cells cytotoxic for fibroblastic cells in vitro

    International Nuclear Information System (INIS)

    Mayhew, E.; Bennett, M.

    1974-01-01

    An in vitro reaction between mouse lymphoid cells and target fibroblastic cells in wells of microtest plates, which appears to simulate the in vivo rejection of hemopoietic allografts, has been analyzed for metabolic and physiologic requirements. Protein synthesis was required for only the first few hours of culture. Inhibition of RNA synthesis and alteration of cell surface charge with various agents were without obvious effects. Metabolic slowing at 4 0 C or deviation of the pH of the culture medium suppressed the reaction. Thymus cells, which are not cytotoxic in this system, significantly but not completely inhibited the cytotoxicity of lymph node cells. Antiserum directed against target cells specifically protected them from the cytotoxic lymphoid cells in the absence of complement. Precursors of cytotoxic lymphoid cells were radiosensitive, unlike the cytotoxic cells themselves. BALB/c anti-C57BL/6 spleen cell serum and 89 Sr both are able to prevent rejection of marrow allografts in vivo. Lymphoid cells incubated with this antiserum plus complement lost much of their cytotoxicity but were still effective at high ratios of aggressor to target cells. Lymphoid cells of mice treated with 89 Sr were effectively cytotoxic but lost practically all of their cytotoxicity after incubation with the antiserum plus complement. Thus, it appears that this reaction detects two different cytotoxic lymphoid cells, either of which can function in vitro. Both cell types may need to cooperate in vivo during marrow allograft rejections

  6. Sodium/bicarbonate cotransporter NBCn1/slc4a7 increases cytotoxicity in magnesium depletion in primary cultures of hippocampal neurons

    Science.gov (United States)

    Cooper, Deborah S.; Yang, Han Soo; He, Peijian; Kim, Eunjin; Rajbhandari, Ira; Yun, Chris C.; Choi, Inyeong

    2009-01-01

    Growing evidence suggests that pharmacological inhibition of Na/H exchange and Na/HCO3 transport provides protection against damage or injury in cardiac ischemia. In this study, we examined the contribution of the sodium/bicarbonate cotransporter NBCn1 (slc4a7) to cytotoxicity in cultured hippocampal neurons of rats. In neurons exposed to extracellular pH (pHo) ranging from 6.2 to 8.3, NBCn1 protein expression increased by fivefold at pH < 6.5 compared to the expression at pHo 7.4. At pHo 6.5, the intracellular pH of neurons was ~1 unit lower than that at pH 7.4. Immunochemistry showed a marked increase in NBCn1 immunofluorescence in plasma membranes and cytosol of the soma as well as in dendrites, at pHo 6.5. NBCn1 expression also increased by 40% in a prolonged Mg2+-free incubation at normal pHo. Knockdown of NBCn1 in neurons had negligible effect on cell viability. The effect of NBCn1 knockdown on cytotoxicity was then determined by exposing neurons to 0.5 mM glutamate for 10 min and measuring lactate dehydrogenase (LDH) release from neurons. Compared to normal incubation (pHo 7.2 for 6 h) after glutamate exposure, acidic incubation (pHo 6.3 for 6 h) reduced cytotoxicity by 75% for control neurons and 78% for NBCn1-knockdown neurons. Thus, both controls and knockdown neurons showed acidic protection from cytotoxicity. However, in Mg2+-free incubation after glutamate exposure, NBCn1 knockdown progressively attenuated cytotoxicity. This attenuation was unaffected by acidic preincubation before glutamate exposure. We conclude that NBCn1 has a dynamic upregulation in low pHo and Mg2+ depletion. NBCn1 is not required for acidic protection, but increases cytotoxicity in Mg2+-free conditions. PMID:19170751

  7. [Cytotoxic effect of physalis peruviana in cell culture of colorectal and prostate cancer and chronic myeloid leukemia].

    Science.gov (United States)

    Quispe-Mauricio, Angel; Callacondo, David; Rojas, José; Zavala, David; Posso, Margarita; Vaisberg, Abraham

    2009-01-01

    The plants have been used as drugs for centuries. However, limited research has been done on its great potential as sources of new therapeutic agents. The purpose of this study was to evaluate Physalis peruviana cytotoxic activity on cell lines HT-29, PC-3, K-562 and VERO. The HT-29 cell lines, PC-3, K-562 and VERO, were exposed to four concentrations of P. peruviana ethanolic leave and stem extracts, also at different concentrations of cisplatin and 5-fluorouracil (5-FU), which were used as positive controls. We found rates of growth within 48 hours, then we determined the inhibitory concentration 50 (IC50) using linear regression analysis and the index of selectivity of each sample. The P. peruviana ethanolic leave and stem extracts showed cytotoxic activity. The IC50 in g/mL in leaves and stems were, 0.35 (r =-0.95 p peruviana leaves and steams ethanolic extracts were more cytotoxic than cisplatin and 5 FU, on the lines HT-29, PC-3 and K562. Furthermore the P. peruviana cytotoxic effects were less than cisplatin and 5-FU for VERO control cells lines.

  8. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective ...

    African Journals Online (AJOL)

    Regarding the traditional utilization of Sambucus ebulus, Iranian native botany and its active ingredients (e.g. ebulitin and ebulin 1), cytotoxicity of ethyl acetate ... cytotoxic agent on liver and colon cancer cells and suggest that vitamins C and E may protect normal cells, when SEE were used in cancer therapy in future.

  9. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  10. Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Proefrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  11. Models of alien species richness show moderate predictive accuracy and poor transferability

    Directory of Open Access Journals (Sweden)

    César Capinha

    2018-06-01

    Full Text Available Robust predictions of alien species richness are useful to assess global biodiversity change. Nevertheless, the capacity to predict spatial patterns of alien species richness remains largely unassessed. Using 22 data sets of alien species richness from diverse taxonomic groups and covering various parts of the world, we evaluated whether different statistical models were able to provide useful predictions of absolute and relative alien species richness, as a function of explanatory variables representing geographical, environmental and socio-economic factors. Five state-of-the-art count data modelling techniques were used and compared: Poisson and negative binomial generalised linear models (GLMs, multivariate adaptive regression splines (MARS, random forests (RF and boosted regression trees (BRT. We found that predictions of absolute alien species richness had a low to moderate accuracy in the region where the models were developed and a consistently poor accuracy in new regions. Predictions of relative richness performed in a superior manner in both geographical settings, but still were not good. Flexible tree ensembles-type techniques (RF and BRT were shown to be significantly better in modelling alien species richness than parametric linear models (such as GLM, despite the latter being more commonly applied for this purpose. Importantly, the poor spatial transferability of models also warrants caution in assuming the generality of the relationships they identify, e.g. by applying projections under future scenario conditions. Ultimately, our results strongly suggest that predictability of spatial variation in richness of alien species richness is limited. The somewhat more robust ability to rank regions according to the number of aliens they have (i.e. relative richness, suggests that models of aliens species richness may be useful for prioritising and comparing regions, but not for predicting exact species numbers.

  12. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli

    International Nuclear Information System (INIS)

    Tran, Phong A; Biswas, Dhee P; O’Connor, Andrea J; O’Brien-Simpson, Neil; Reynolds, Eric C; Pantarat, Namfon

    2016-01-01

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection—resisting, non-cytotoxic coatings for medical devices. (paper)

  13. Cytotoxic effect of Erythroxylum suberosum combined with radiotherapy in head and neck cancer cell lines

    International Nuclear Information System (INIS)

    Macedo, Taysa B.C.; Torres, Hianne M.; Yamamoto-Silva, Fernanda Paula; Silva, Maria Alves G.; Elias, Silvia T.; Silveira, Damaris; Magalhaes, Perola O.; Lofrano-Porto, Adriana; Guerra, Eliete N.S.

    2016-01-01

    The mouth and oropharynx cancer is the 6 th most common type of cancer in the world. The treatment may involve surgery, chemotherapy and radiotherapy. More than 50% of drugs against cancer were isolated from natural sources, such as Catharanthus roseus and epipodophyllotoxin, isolated from Podophyllum. The biggest challenge is to maximize the control of the disease, while minimizing morbidity and toxicity to the surrounding normal tissues. The Erythroxylum suberosum is a common plant in the Brazilian Cerrado biome and is popularly known as 'cabelo-de-negro'. The objective of this study was to evaluate the cytotoxic activity of Erythroxylum suberosum plant extracts of the Brazilian Cerrado biome associated with radiotherapy in human cell lines of oral and hypopharynx carcinomas. Cells were treated with aqueous, ethanolic and hexanic extracts of Erythroxylum suberosum and irradiated at 4 Gy, 6 Gy and 8 Gy. Cytotoxicity was evaluated by MTT assay and the absorbance was measured at 570 nm in a Beckman Counter reader. Cisplatin, standard chemotherapy, was used as positive control. The use of Erythroxylum suberosum extracts showed a possible radiosensitizing effect in vitro for head and neck cancer. The cytotoxicity effect in the cell lines was not selective and it is very similar to the effect of standard chemotherapy. The aqueous extract of Erythroxylum suberosum, combined with radiotherapy was the most cytotoxic extract to oral and hypopharynx carcinomas. (author)

  14. Cytotoxic effect of Erythroxylum suberosum combined with radiotherapy in head and neck cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Taysa B.C.; Torres, Hianne M.; Yamamoto-Silva, Fernanda Paula; Silva, Maria Alves G. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Odontologia; Elias, Silvia T.; Silveira, Damaris; Magalhaes, Perola O.; Lofrano-Porto, Adriana; Guerra, Eliete N.S., E-mail: elieteneves@unb.br [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Faculdade de Ciencias da Saude

    2016-01-15

    The mouth and oropharynx cancer is the 6{sup th} most common type of cancer in the world. The treatment may involve surgery, chemotherapy and radiotherapy. More than 50% of drugs against cancer were isolated from natural sources, such as Catharanthus roseus and epipodophyllotoxin, isolated from Podophyllum. The biggest challenge is to maximize the control of the disease, while minimizing morbidity and toxicity to the surrounding normal tissues. The Erythroxylum suberosum is a common plant in the Brazilian Cerrado biome and is popularly known as 'cabelo-de-negro'. The objective of this study was to evaluate the cytotoxic activity of Erythroxylum suberosum plant extracts of the Brazilian Cerrado biome associated with radiotherapy in human cell lines of oral and hypopharynx carcinomas. Cells were treated with aqueous, ethanolic and hexanic extracts of Erythroxylum suberosum and irradiated at 4 Gy, 6 Gy and 8 Gy. Cytotoxicity was evaluated by MTT assay and the absorbance was measured at 570 nm in a Beckman Counter reader. Cisplatin, standard chemotherapy, was used as positive control. The use of Erythroxylum suberosum extracts showed a possible radiosensitizing effect in vitro for head and neck cancer. The cytotoxicity effect in the cell lines was not selective and it is very similar to the effect of standard chemotherapy. The aqueous extract of Erythroxylum suberosum, combined with radiotherapy was the most cytotoxic extract to oral and hypopharynx carcinomas. (author)

  15. Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II.

    Science.gov (United States)

    Singh, Bharat; Sahu, Pooran M; Sharma, Ram A

    2017-02-01

    The flavonoids are the largest group of phenolic compounds isolated from a wide range of higher plants. These compounds work as antimicrobials, anti-insect agents and protect plants from other types of biotic and abiotic stresses. Various researchers have suggested that flavonoids possessed antioxidant, antineoplastic and cytotoxic activities. The main objective of this study was to test dichloromethane fraction of resinous exudate of Heliotropium subulatum for their antioxidant, antineoplastic and cytotoxic activities, as well as to search new antioxidant and antineoplastic agents for pharmaceutical formulations. Five flavonoids were isolated from resinous exudate of this plant species and screened for their in vitro and in vivo antioxidant models (DPPH radical scavenging, reducing power, superoxide anion scavenging, metal chelating scavenging systems, catalase and lipid peroxidation), antineoplastic (Sarcoma 180), and cytotoxic (Chinese hamster V79 cells) activities. Tricetin demonstrated maximum antioxidant activity against both in vitro and in vivo experimental systems while galangin exhibited maximum inhibition (78.35%) at a dose of 10 µg/kg/day against Sarcoma 180. Similarly, it was found that galangin also showed highest activity (21.1 ± 0.15%) at a concentration of 70 µg/ml to Chinese hamster V79 cells. The observed results suggest that tricetin has a potential to scavenge free radicals in both in vitro and in vivo models while the galangin could be considered as antitumor and cytotoxic agent.

  16. Phytochemical screening, antiproliferative and cytotoxic activities of the mosses Rhytidiadelphus triquetrus (Hedw. Warnst. and Tortella tortuosa (Hedw. Limpr.

    Directory of Open Access Journals (Sweden)

    Muhammet Şamil Yağlıoğlu

    2017-06-01

    Full Text Available The paper presents information about the phytochemical analysis, antiproliferative and cytotoxic activities of Rhytidiadelphus triquetrus and Tortella tortuosa extracts. The cytotoxic activities of some extracts shows highest antiproliferative activities were detected with Lactate Dehydrogenase Leakage Assay. Sixteen components obtained from hexane extracts were determined by GC/MS. Palmitic acid was identified as the main component. The phenolic components of the other extracts were determined by HPLC-TOF/MS. 4-hydroxy benzoic acid, salicylic acid, gallic acid, caffeic acid, and gensitic acid were detected as the main components in all extracts. The hexane, chloroform, ethyl acetate extracts of studied mosses and the EtOAc and hexane extracts of R. triquetrus showed statistically significant antiproliferative activities.

  17. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines.

    Science.gov (United States)

    Fukushi, Saori; Yoshino, Hironori; Yoshizawa, Atsushi; Kashiwakura, Ikuo

    2016-07-25

    We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.

  18. Cytotoxic sesquiterpene lactones from the aerial parts of Inula aucheriana.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Gohari

    2015-06-01

    Full Text Available Inula aucheriana DC is a member of the family Asteraceae which is known to produce cytotoxic secondary metabolites noted as sesquiterpene lactones. In the present study, sesquiterpene lactones inuchinenolide B, 6-deoxychamissonolide (stevin and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were isolated from I. aucheriana. Inuchinenolide B and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were further evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay to demonstrate cytotoxic activity with IC50 values of (56.6, 19.0, (39.0, 11.8, and (55.7, 15.3 μg/mL against HepG-2, MCF-7 and A-549 cells, respectively. The cytotoxic activity of the two evaluated sesquiterpene lactones partly explains the cytotoxic activity that was previously observed for the extracts of Inula aucheriana. The isolated compounds could be further investigated in cancer research studies.

  19. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jing; Zhang, Shanshan; Dai, Yitong; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun, E-mail: qflei@zju.edu.cn

    2016-04-15

    Highlights: • Twelve piperazinium- and guanidinium-based ionic liquids were synthesized and characterized. • Antimicrobial activities of the ionic liquids against E. coli and S. aureus were investigated. • Cytotoxicity on the rat C6 glioma cells (C6) and human embryonic kidney cells (HEK-293) were evaluated. • The ionic liquids with the [BF{sub 4}]{sup −} anion and with benzene ring on cation exhibit relatively high toxicity. - Abstract: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by {sup 1}H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.

  20. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Yu, Jing; Zhang, Shanshan; Dai, Yitong; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    Highlights: • Twelve piperazinium- and guanidinium-based ionic liquids were synthesized and characterized. • Antimicrobial activities of the ionic liquids against E. coli and S. aureus were investigated. • Cytotoxicity on the rat C6 glioma cells (C6) and human embryonic kidney cells (HEK-293) were evaluated. • The ionic liquids with the [BF_4]"− anion and with benzene ring on cation exhibit relatively high toxicity. - Abstract: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by "1H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.

  1. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    Science.gov (United States)

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  2. An efficient analysis of nanomaterial cytotoxicity based on bioimpedance

    International Nuclear Information System (INIS)

    Kandasamy, Karthikeyan; Kim, Sanghyo; Choi, Cheol Soo

    2010-01-01

    In the emerging nanotechnology field, there is an urgent need for the development of a significant and sensitive method that can be used to analyse and compare the cytotoxicities of nanomaterials such as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs), since such materials can be applied as contrast agents or drug delivery carriers. The bioimpedance system possesses great potential in many medical research fields including nanotechnology. Electric cell-substrate impedance sensing (ECIS) is a particular bioimpedance system that offers a real-time, non-invasive, and quantitative measurement method for the cytotoxicity of various materials. The present work compared the cytotoxicity of AuNPs to that of purchased single-walled carbon nanotubes (SWCNTs). The size-controlled and monodispersed AuNPs were synthesized under autoclaved conditions and reduced by ascorbic acid (AA) whereas the purchased SWCNTs were used without any surface modifications. Bioimpedance results were validated by conventional WST-1 and trypan blue assays, and transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) were performed to examine nanomaterials inside the VERO cells. This research evaluates the ability of the ECIS system compared to those of conventional methods in analyzing the cytotoxicity of AuNPs and SWCNTs with higher sensitivity under real-time conditions.

  3. Antiviral and cytotoxic activities of some Indonesian plants.

    Science.gov (United States)

    Lohézic-Le Dévéhat, F; Bakhtiar, A; Bézivin, C; Amoros, M; Boustie, J

    2002-08-01

    Ten methanolic extracts from eight Indonesian medicinal plants were phytochemically screened and evaluated for antiviral (HSV-1 and Poliovirus) and cytotoxic activities on murine and human cancer lines (3LL, L1210, K562, U251, DU145, MCF-7). Besides Melastoma malabathricum (Melastomataceae), the Indonesian Loranthaceae species among which Elytranthe tubaeflora, E. maingayi, E. globosa and Scurrula ferruginea exhibited attractive antiviral and cytotoxic activities. Piper aduncum (Piperaceae) was found active on Poliovirus. S. ferruginea was selected for further studies because of its activity on the U251 glioblastoma cells.

  4. The cytotoxic effect of oxybuprocaine on human corneal epithelial cells by inducing cell cycle arrest and mitochondria-dependent apoptosis.

    Science.gov (United States)

    Fan, W-Y; Wang, D-P; Wen, Q; Fan, T-J

    2017-08-01

    Oxybuprocaine (OBPC) is a widely used topical anesthetic in eye clinic, and prolonged and repeated usage of OBPC might be cytotoxic to the cornea, especially to the outmost corneal epithelium. In this study, we characterized the cytotoxic effect of OBPC on human corneal epithelial (HCEP) cells and investigated its possible cellular and molecular mechanisms using an in vitro model of non-transfected HCEP cells. Our results showed that OBPC at concentrations ranging from 0.025% to 0.4% had a dose- and time-dependent cytotoxicity to HCEP cells. Moreover, OBPC arrested the cells at S phase and induced apoptosis of these cells by inducing plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation. Furthermore, OBPC could trigger the activation of caspase-2, -3, and -9, downregulate the expression of Bcl-xL, upregulate the expression of Bax along with the cytoplasmic amount of mitochondria-released apoptosis-inducing factor, and disrupt mitochondrial transmembrane potential. Our results suggest that OBPC has a dose- and time-dependent cytotoxicity to HCEP cells by inducing cell cycle arrest and cell apoptosis via a death receptor-mediated mitochondria-dependent proapoptotic pathway, and this novel finding provides new insights into the acute cytotoxicity and its toxic mechanisms of OBPC on HCEP cells.

  5. Cytotoxicity of poly(p-phenylenediamine)

    Czech Academy of Sciences Publication Activity Database

    Kuceková, Z.; Rejmontová, P.; Humpolíček, P.; Kašpárková, V.; Bober, Patrycja; Sáha, P.; Stejskal, Jaroslav

    2017-01-01

    Roč. 71, č. 2 (2017), s. 367-372 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : cytotoxicity * poly(p-phenylenediamine) * mouse embryonic fibroblasts Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  6. Screening of Venezuelan medicinal plant extracts for cytostatic and cytotoxic activity against tumor cell lines.

    Science.gov (United States)

    Taylor, Peter; Arsenak, Miriam; Abad, María Jesús; Fernández, Angel; Milano, Balentina; Gonto, Reina; Ruiz, Marie-Christine; Fraile, Silvia; Taylor, Sofía; Estrada, Omar; Michelangeli, Fabian

    2013-04-01

    There are estimated to be more than 20,000 species of plants in Venezuela, of which more than 1500 are used for medicinal purposes by indigenous and local communities. Only a relatively small proportion of these have been evaluated in terms of their potential as antitumor agents. In this study, we screened 308 extracts from 102 species for cytostatic and cytotoxic activity against a panel of six tumor cell lines using a 24-h sulphorhodamine B assay. Extracts from Clavija lancifolia, Hamelia patens, Piper san-vicentense, Physalis cordata, Jacaranda copaia, Heliotropium indicum, and Annona squamosa were the most cytotoxic, whereas other extracts from Calotropis gigantea, Hyptis dilatata, Chromolaena odorata, Siparuna guianensis, Jacaranda obtusifolia, Tapirira guianensis, Xylopia aromatica, Protium heptaphyllum, and Piper arboreum showed the greatest cytostatic activity. These results confirm previous reports on the cytotoxic activities of the above-mentioned plants as well as prompting further studies on others such as C. lancifolia and H. dilatata that have not been so extensively studied. Copyright © 2012 John Wiley & Sons, Ltd.

  7. DESIGN OF LOW CYTOTOXICITY DIARYLANILINE DERIVATIVES BASED ON QSAR RESULTS: AN APPLICATION OF ARTIFICIAL NEURAL NETWORK MODELLING

    Directory of Open Access Journals (Sweden)

    Ihsanul Arief

    2016-11-01

    Full Text Available Study on cytotoxicity of diarylaniline derivatives by using quantitative structure-activity relationship (QSAR has been done. The structures and cytotoxicities of  diarylaniline derivatives were obtained from the literature. Calculation of molecular and electronic parameters was conducted using Austin Model 1 (AM1, Parameterized Model 3 (PM3, Hartree-Fock (HF, and density functional theory (DFT methods.  Artificial neural networks (ANN analysis used to produce the best equation with configuration of input data-hidden node-output data = 5-8-1, value of r2 = 0.913; PRESS = 0.069. The best equation used to design and predict new diarylaniline derivatives.  The result shows that compound N1-(4′-Cyanophenyl-5-(4″-cyanovinyl-2″,6″-dimethyl-phenoxy-4-dimethylether benzene-1,2-diamine is the best-proposed compound with cytotoxicity value (CC50 of 93.037 μM.

  8. Antioxidant, Cytotoxic, and Toxic Activities of Propolis from Two Native Bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides

    Directory of Open Access Journals (Sweden)

    Thaliny Bonamigo

    2017-01-01

    Full Text Available Propolis is a natural mixture of compounds produced by various bee species, including stingless bees. This compound has been shown to exhibit antioxidant, antiproliferative, and antitumor activities. The present study aimed to determine the chemical constituents as well as the antioxidant, cytotoxic, and toxic activities of ethanol extracts of propolis obtained from the stingless bees Scaptotrigona depilis and Melipona quadrifasciata anthidioides, which are found in Brazil. Phytosterols, terpenes, phenolic compounds, and tocopherol were identified in the ethanol extracts of propolis (EEPs in different concentrations. The compounds stigmasterol, taraxasterol, vanilic acid, caffeic acid, quercetin, luteolin, and apigenin were found only in EEP-M. The EEPs were able to scavenge the free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid and protected human erythrocytes against lipid peroxidation, with the latter effect being demonstrated by their antihemolytic activity and inhibition of malondialdehyde formation. The EEPs showed cytotoxic activity against erythroleukemic cells and necrosis was the main mechanism of death observed. In addition, the concentrations at which the EEPs were cytotoxic were not toxic against Caenorhabditis elegans. In this context, it is concluded that EEP-S and EEP-M show antioxidant and cytotoxic activities and are promising bioactive mixtures for the control of diseases associated with oxidative stress and tumor cell proliferation.

  9. Antioxidant, Cytotoxic, and Toxic Activities of Propolis from Two Native Bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides.

    Science.gov (United States)

    Bonamigo, Thaliny; Campos, Jaqueline Ferreira; Alfredo, Tamaeh Monteiro; Balestieri, José Benedito Perrella; Cardoso, Claudia Andrea Lima; Paredes-Gamero, Edgar Julian; de Picoli Souza, Kely; Dos Santos, Edson Lucas

    2017-01-01

    Propolis is a natural mixture of compounds produced by various bee species, including stingless bees. This compound has been shown to exhibit antioxidant, antiproliferative, and antitumor activities. The present study aimed to determine the chemical constituents as well as the antioxidant, cytotoxic, and toxic activities of ethanol extracts of propolis obtained from the stingless bees Scaptotrigona depilis and Melipona quadrifasciata anthidioides , which are found in Brazil. Phytosterols, terpenes, phenolic compounds, and tocopherol were identified in the ethanol extracts of propolis (EEPs) in different concentrations. The compounds stigmasterol, taraxasterol, vanilic acid, caffeic acid, quercetin, luteolin, and apigenin were found only in EEP-M. The EEPs were able to scavenge the free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and protected human erythrocytes against lipid peroxidation, with the latter effect being demonstrated by their antihemolytic activity and inhibition of malondialdehyde formation. The EEPs showed cytotoxic activity against erythroleukemic cells and necrosis was the main mechanism of death observed. In addition, the concentrations at which the EEPs were cytotoxic were not toxic against Caenorhabditis elegans . In this context, it is concluded that EEP-S and EEP-M show antioxidant and cytotoxic activities and are promising bioactive mixtures for the control of diseases associated with oxidative stress and tumor cell proliferation.

  10. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica

    Science.gov (United States)

    Tahir, Mariya Mohd; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2014-09-01

    Three local medicinal plants namely Asplenium nidus (langsuyar), Eleusine indica (sambau) and Phaleria macrocarpa (mahkota dewa) were screened for the cytotoxicity and antiviral activities. Six plant extracts were prepared including the aqueous and methanol extracts from A. nidus leaf and root, aqueous extract from dried whole plant of E. indica and methanol extract from P. macrocarpa fruits. Cytotoxicity screening in Vero cell line by MTT assay showed that the CC50 values ranged from 15 to 60 mg/mL thus indicating the safety of the extracts even at high concentrations. Antiviral properties of the plant extracts were determined by plaque reduction assay. The EC50 concentrations were between 3.2 to 47 mg/mL. The selectivity indices (SI = CC50/EC50) of each tested extracts ranged from 4.3 to 63.25 indicating the usefulness of the extracts as potential antiviral agents.

  11. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricate) skin cells

    OpenAIRE

    Young, Jamie L.; Wise, Sandra S.; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-01-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered co...

  12. Cell viability score as an integrated indicator for cytotoxicity of benzalkonium chloride-containing antiglaucoma eyedrops.

    Science.gov (United States)

    Ayaki, Masahiko; Iwasawa, Atsuo; Niwano, Yoshimi

    2012-01-01

    We evaluated the in vitro cytotoxicity of benzalkonium chloride (BAK)-containing antiglaucoma eyedrops. We prepared cell cultures of SIRC, BCE C/D-1b, RC-1, and Chang conjunctiva. The viability of cell cultures was determined using the MTT and neutral red assays. The cell viability score (CVS) was used to compare the toxicity of test solutions. %CVS50 and %CVS40/80 of each eyedrop solution were 71 and 26 for Lumigan(®) (0.002% bimatoprost with 0.005% BAK), 100 and 99 for Tapros(®) (0.0015% tafluprost, a new formula from 2010 with 0.001% BAK), 39 and -29 for 2% Trusopt(®) (2% dorzolamide with 0.0075% BAK), 28 and -43 for Xalacom(®) (latanoprost/0.5% timolol with 0.02% BAK), 88 and 66 for DuoTrav(®) (travoprost/0.5% timolol with no BAK), 36 and -35 for Cosopt(®) (2% dorzolamide/0.5% timolol with 0.0075% BAK) and 53 and -1 for Combigan(®) (0.15% brimonidin/0.5% timolol with 0.005% BAK). Only Xalacom(®) and Tapros(®) did not show an apparent decrease in %CVS as compared to the corresponding concentration of BAK. In conclusion, the cytotoxicity of tested eyedrops was dependent on BAK. Only the eyedrops containing latanoprost or tafluprost showed a reduction in the cytotoxicity of BAK.

  13. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts.

    Science.gov (United States)

    Ogbole, Omonike O; Segun, Peter A; Adeniji, Adekunle J

    2017-11-22

    Cancer is a leading cause of death world-wide, with approximately 17.5 million new cases and 8.7 million cancer related deaths in 2015. The problems of poor selectivity and severe side effects of the available anticancer drugs, have demanded the need for the development of safer and more effective chemotherapeutic agents. The present study was aimed at determining the cytotoxicities of 31 medicinal plants extracts, used in Nigerian ethnomedicine for the treatment of cancer. The plant extracts were screened for cytotoxicity, using the brine shrimp lethality assay (BSLA) and MTT cytotoxicity assay. Rhabdomyosarcoma (RD) cell line, normal Vero cell line and the normal prostate (PNT2) cell line were used for the MTT assay, while Artemia salina nauplii was used for the BSLA. The phytochemical composition of the active plant extracts was determined by high performance liquid chromatography (HPLC) analysis. The extract of Eluesine indica (L.) Gaertn (Poaceae), with a LC 50 value of 76.3 μg/mL, had the highest cytotoxicity on the brine shrimp larvae compared to cyclophosphamide (LC 50  = 101.3 μg/mL). Two plants extracts, Macaranga barteri Mull. Arg. (Euphorbiaceae) and Calliandra portoricensis (Jacq.) Benth (Leguminosae) exhibited significant cytotoxic activity against the RD cell line and had comparable lethal activity on the brine shrimps. Further cytotoxic investigation showed that the dichloromethane fraction of Macaranga barteri (DMB) and the ethyl acetate fraction of Calliandra portoricensis (ECP), exhibited approximately 6-fold and 4-fold activity, respectively, compared to cyclophosphamide on RD cell line. Determination of selective index (SI) using Vero and PNT2 cell line indicated that DMB and ECP displayed a high degree of selectivity against the cancer cell under investigation. HPLC analysis showed that 3,5dicaffeoylquinic acid, acteoside, kampferol-7-O-glucoside and bastadin 11 were the major components of DMB while the major components of ECP were

  14. Radiation prevulcanized natural rubber latex: Cytotoxicity and safety evaluation on animal

    Energy Technology Data Exchange (ETDEWEB)

    Keong, C C; Zin, W M Wan; Ibrahim, P; Ibrahim, S, E-mail: chai@nuclearmalaysia.gov.my [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2010-05-15

    Radiation prevulcanized natural rubber latex (RVNRL) was claimed to be more user friendly than natural rubber latex prevulcanized by sulphur curing system. The absence of Type IV allergy inducing chemicals in RVNRL make it a suitable material for manufacturing of many kinds of latex products, especially those come into direct contact with users. This paper reveals and discusses the findings of cytotoxicity test and safety evaluation on animal for RVNRL. The test was done on RVNRL films prepared by coagulant dipping method and RVNRL dipped products produced by latex dipped product manufacturers. Cytotocixity test was carried out on mammalian cell culture American Type Culture Collection CCL 81, Vero. Results indicated that no cytotoxic effect from RVNRL films and products was found on the cell culture. Two animal studies, namely dermal sensitization study and primary skin irritation study, were done on gloves made from RVNRL. Albino white guinea pigs were used as test subjects in dermal sensitization study and results showed no sensitization induced by the application of test material in the guinea pigs. Primary skin irritation study was done on New Zealand white rabbits and results showed that the product tested was not corrosive and was not a primary irritant

  15. Short-chain analogs of luteinizing hormone-releasing hormone containing cytotoxic moieties.

    Science.gov (United States)

    Janáky, T; Juhász, A; Rékási, Z; Serfözö, P; Pinski, J; Bokser, L; Srkalovic, G; Milovanovic, S; Redding, T W; Halmos, G

    1992-11-01

    Five hexapeptide and heptapeptide analogs of luteinizing hormone-releasing hormone (LH-RH) were synthesized for use as carriers for cytotoxic compounds. These short analogs were expected to enhance target selectivity of the antineoplastic agents linked to them. Native LH-RH-(3-9) and LH-RH-(4-9) containing D-lysine and D-ornithine at position 6 were amidated with ethylamine and acylated on the N terminus. The receptor-binding affinity of one hexapeptide carrier AJ-41 (Ac-Ser-Tyr-D-Lys-Leu-Arg-Pro-NH-Et) to human breast cancer cell membranes was similar to that of [D-Trp6]LH-RH. Alkylating nitrogen mustards (melphalan, Ac-melphalan), anthraquinone derivatives including anticancer antibiotic doxorubicin, antimetabolite (methotrexate), and cisplatin-like platinum complex were linked to these peptides through their omega-amino group at position 6. The hybrid molecules showed no LH-RH agonistic activity in vitro and in vivo but had nontypical antagonistic effects on pituitary cells in vitro at the doses tested. These analogs showed a wide range of receptor-binding affinities to rat pituitaries and cell membranes of human breast cancer and rat Dunning prostate cancer. Several of these conjugates exerted some cytotoxic effects on MCF-7 breast cancer cell line.

  16. Radiation prevulcanized natural rubber latex: Cytotoxicity and safety evaluation on animal

    International Nuclear Information System (INIS)

    Keong, C C; Zin, W M Wan; Ibrahim, P; Ibrahim, S

    2010-01-01

    Radiation prevulcanized natural rubber latex (RVNRL) was claimed to be more user friendly than natural rubber latex prevulcanized by sulphur curing system. The absence of Type IV allergy inducing chemicals in RVNRL make it a suitable material for manufacturing of many kinds of latex products, especially those come into direct contact with users. This paper reveals and discusses the findings of cytotoxicity test and safety evaluation on animal for RVNRL. The test was done on RVNRL films prepared by coagulant dipping method and RVNRL dipped products produced by latex dipped product manufacturers. Cytotocixity test was carried out on mammalian cell culture American Type Culture Collection CCL 81, Vero. Results indicated that no cytotoxic effect from RVNRL films and products was found on the cell culture. Two animal studies, namely dermal sensitization study and primary skin irritation study, were done on gloves made from RVNRL. Albino white guinea pigs were used as test subjects in dermal sensitization study and results showed no sensitization induced by the application of test material in the guinea pigs. Primary skin irritation study was done on New Zealand white rabbits and results showed that the product tested was not corrosive and was not a primary irritant

  17. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca.

    Science.gov (United States)

    Thanh, Thi Thu Thuy; Quach, Thi Minh Thu; Nguyen, Thi Nu; Vu Luong, Dang; Bui, Minh Ly; Tran, Thi Thanh Van

    2016-12-01

    The structure of an ulvan obtained by water extraction from green seaweed Ulva lactuca was elucidated by using IR, NMR, SEC-MALL and ESIMS methods. The ulvan was also evaluated for its cytotoxic effects on three human cancer cell lines. The results showed that the ulvan was composed of rhamnose, galactose, xylose, manose, glucose (with a mole ratio of Rha: Gal: Xyl: Man: Glu equal to 1: 0.03: 0.07: 0.01: 0.06), uronic acid (21.5%) and sulfate content (18.9%) with a molecular weight of 347000. This ulvan mainly consists of disaccharide [→4)-β-d-GlcA-(1→4)-α-l-Rha3S-(1→] and other minor disaccharide β-GlcA-(1→2)-α-Xyl and β-GlcA-(→2)-α-Rha. The ulvan showed a significant cytotoxic activity against hepatocellular carcinoma (IC 50 29.67±2.87μg/ml), human breast cancer (IC 50 25.09±1.36μg/ml), and cervical cancer (IC 50 36.33±3.84μg/ml). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of mutagenicity and metabolism-mediated cytotoxicity of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin from Paepalanthus latipes

    Directory of Open Access Journals (Sweden)

    Rodrigo R. Kitagawa

    Full Text Available A large number of quinones have been associated with antitumor, antibacterial, antimalarial, and antifungal activities. Results of previous studies of 5-methoxy-3,4-dehydroxanthomegnin, a naphthoquinone isolated from Paepalanthus latipes Silveira, Eriocaulaceae, revealed antitumor, antibacterial, immunomodulatory, and antioxidant activities. In this study, we assessed the mutagenicity and metabolism-mediated cytotoxicity of 5-methoxy-3,4-dehydroxanthomegnin by using the Ames test and a microculture neutral red assay incorporating an S9 fraction (hepatic microsomal fraction and cofactors, respectively. We also evaluated the mutagenic activity in Salmonella typhimurium strains TA100, TA98, TA102, and TA97a, as well as the cytotoxic effect on McCoy cells with and without metabolic activation in both tests. Results indicated that naphthoquinone does not cause mutations by substitution or by addition and deletion of bases in the deoxyribonucleic acid sequence with and without metabolic activation. As previously demonstrated, the in vitro cytotoxicity of 5-methoxy-3,4-dehydroxanthomegnin to McCoy cells showed a significant cytotoxic index (CI50 of 11.9 μg/ml. This index was not altered by addition of the S9 fraction, indicating that the S9 mixture failed to metabolically modify the compound. Our results, allied with more specific biological assays in the future, would contribute to the safe use of 5-methoxy-3,4-dehydroxanthomegnin, compound that has showed in previous studies beneficial properties as a potential anticancer drug.

  19. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Fen; Shyu, Huey-Wen [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chang, Yi-Chuang [Department of Nursing, Fooyin University, Kaohsiung, Taiwan (China); Tseng, Wei-Chang [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chen, Chang-Yu, E-mail: mt037@mail.fy.edu.tw [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China)

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  20. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-01-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  1. Assessment of ACR moderator circulation design using CFD

    International Nuclear Information System (INIS)

    Bunama, R.; Carlucci, L.N.; Waddington, G.M.

    2004-01-01

    Assessment of the thermalhydraulic performance of the moderator circulation system for the Advanced CANDU Reactor (ACR) was carried out using the specialized Computational Fluid Dynamics (CFD) code MODTURC C LAS V2.9 IST. The assessment included modeling the moderator circulation inside the calandria vessel under nominal and isothermal flow conditions. The modeling results show that the moderator flow through the core is relatively uniform and mostly upward. The moderator temperature distribution is nearly stratified and increases monotonically from the bottom to the top of the calandria vessel. (author)

  2. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.

    Science.gov (United States)

    Zhu, Ying; Zhang, Yu; Shi, Guosheng; Yang, Jinrong; Zhang, Jichao; Li, Wenxin; Li, Aiguo; Tai, Renzhong; Fang, Haiping; Fan, Chunhai; Huang, Qing

    2015-02-05

    Nanomaterials hold great promise for applications in the delivery of various molecules with poor cell penetration, yet its potential for delivery of metal ions is rarely considered. Particularly, there is limited insight about the cytotoxicity triggered by nanoparticle-ion interactions. Oxidative stress is one of the major toxicological mechanisms for nanomaterials, and we propose that it may also contribute to nanoparticle-ion complexes induced cytotoxicity. To explore the potential of nanodiamonds (NDs) as vehicles for metal ion delivery, we used a broad range of experimental techniques that aimed at getting a comprehensive assessment of cell responses after exposure of NDs, metal ions, or ND-ion mixture: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Trypan blue exclusion text, optical microscope observation, synchrotron-based scanning transmission X-ray microscopy (STXM) and micro X-ray fluorescence (μXRF) microscopy, inductively coupled plasma-mass spectrometry (ICP-MS), reactive oxygen species (ROS) assay and transmission electron microscopy (TEM) observation. In addition, theoretical calculation and molecular dynamics (MD) computation were used to illustrate the adsorption properties of different metal ion on NDs as well as release profile of ion from ND-ion complexes at different pH values. The adsorption capacity of NDs for different metal ions was different, and the adsorption for Cu2+ was the most strong among divalent metal ions. These different ND-ion complexes then had different cytotoxicity by influencing the subsequent cellular responses. Detailed investigation of ND-Cu2+ interaction showed that the amount of released Cu2+ from ND-Cu2+ complexes at acidic lysosomal conditions was much higher than that at neutral conditions, leading to the elevation of intracellular ROS level, which triggered cytotoxicity. By theoretical approaches, we demonstrated that the functional carbon surface and cluster structures of NDs made them

  3. Cytotoxic Activity of Origanum Vulgare L. on Hepatocellular Carcinoma cell Line HepG2 and Evaluation of its Biological Activity

    Directory of Open Access Journals (Sweden)

    Hazem S. Elshafie

    2017-08-01

    Full Text Available The potential of plant essential oils (EOs in anticancer treatment has recently received many research efforts to overcome the development of multidrug resistance and their negative side effects. The aims of the current research are to study (i the cytotoxic effect of the crude EO extracted from Origanum vulgare subsp hirtum and its main constituents (carvacrol, thymol, citral and limonene on hepatocarcinoma HepG2 and healthy human renal cells HEK293; (ii the antibacterial and phytotoxic activities of the above EO and its main constituents. Results showed that cell viability percentage of treated HepG2 by EO and its main constituents was significantly decreased when compared to untreated cells. The calculated inhibition concentration (IC50 values for HepG2 were lower than healthy renal cells, indicating the sort of selectivity of the studied substances. Citral is not potentially recommended as an anticancer therapeutic agent, since there are no significant differences between IC50 values against both tested cell lines. Results showed also that oregano EO and its main constituents have a significant antibacterial activity and a moderate phytotoxic effect. The current research verified that oregano EO and its main constituents could be potentially utilized as anticancer therapeutic agents.

  4. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    International Nuclear Information System (INIS)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J

    2011-01-01

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  5. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J, E-mail: sjchoi@swu.ac.kr [Department of Food Science and Technology, Seoul Women' s University, 126 Gongneung 2-dong, Nowon-gu, Seoul 139-774 (Korea, Republic of)

    2011-07-06

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  6. Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-01-01

    Full Text Available Ethyl carbamate (EC is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH depletion and caused mitochondrial membrane potential (MMP collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress.

  7. Feasibility of the fluorometric microculture cytotoxicity assay (FMCA) for cytotoxic drug sensitivity testing of tumor cells from patients with acute lymphoblastic leukemia.

    Science.gov (United States)

    Nygren, P; Kristensen, J; Jonsson, B; Sundström, C; Lönnerholm, G; Kreuger, A; Larsson, R

    1992-11-01

    The automated fluorometric microculture cytotoxicity assay (FMCA) was used for chemotherapeutic drug sensitivity testing of fresh and cryopreserved tumor cells from patients with acute lymphoblastic leukemia (ALL) at diagnosis and relapse. The technique success rate was 87% for fresh and 81% for cryopreserved samples. Up to 16 different cytotoxic drugs were routinely tested, but neither asparaginase nor methotrexate produced dose-response related cell kill. FMCA data showed good correlation to the well established Disc assay and the drug sensitivity reported by the FMCA was in good agreement with known clinical activity. Samples from children and initial ALL tended to be more drug sensitive than those from adults and ALL at relapse, respectively. For 36 samples clinical outcome was correlated to the quartile position in comparison to all other samples for the most in vitro active drug actually given to the patient. For patients with samples in the first, second, third, and fourth quartiles, the probabilities of complete remission were 89, 57, 38, and 0%, respectively. Using the median value as cut-off line, the sensitivity and specificity of the assay were 87 and 62%, respectively. It is concluded that the FMCA with a minimum of effort and with high success rate report clinically relevant drug sensitivity profiles for ALL.

  8. Cytotoxic, mutagenicity, and genotoxicity effects of guanylhydrazone derivatives.

    Science.gov (United States)

    Pinhatti, Valéria Rodrigues; da Silva, Juliana; Martins, Tales Leandro Costa; Moura, Dinara Jaqueline; Rosa, Renato Moreira; Villela, Izabel; Stopiglia, Cheila Denise Ottonelli; da Silva Santos, Selma; Scroferneker, Maria Lúcia; Machado, Carlos Renato; Saffi, Jenifer; Henriques, João Antonio Pêgas

    2016-08-01

    Several studies have reported that guanylhydrazones display a variety of desirable biological properties, such as antihypertensive, antibacterial, and antimalarial behaviour. They furthermore promote anti-pneumocystosis and anti-trypanosomiasis, exhibit antitumor activity, and show significant cytotoxicity against cancer cell lines. In this work, we have evaluated the cytotoxicity, mutagenicity, and genotoxicity of two guanylhydrazones derivatives, (E)-2-[(2,3-dimethoxyphenyl) methylene] hydrazine carboxymidamide hydrochloride (2,3-DMeB) and (E)-2-[(3,4-dimethoxyphenyl) methylene] hydrazine carboxymidamide hydrochloride (3,4-DMeB), in different biological models. Both 2,3-DMeB and 3,4-DMeB induce weak cytotoxic and mutagenic effects in bacteria and yeast. The genotoxicity of these compounds was determined in a fibroblast cell line (V79) using alkaline comet assay, as well as a modified comet assay with bacterial enzymes formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). Both guanylhydrazone derivatives induced DNA damage. Treatment of V79 cells with EndoIII and FPG proteins demonstrated a significant effect of 2,3-DMeB and 3,4-DMeB with respect to oxidized bases. In addition, the derivatives induced a significant increase in the frequency of micronucleated cells at high doses. The antifungal and anti-trypanosomal properties of these guanylhydrazone derivatives were also evaluated, and the obtained results suggest that 2,3-DMeB is more effective than 3,4-DMeB. The biological activity of 2,3-DMeB and 3,4-DMeB may thus be related, at least in part, to their oxidative potential, as well as to their ability to interact with DNA. Considering the previously reported in vitro antitumor activity of guanylhydrazone derivatives in combination with the lack of acute toxicity and the fact that DNA damage is only observed at high doses should render both compounds good candidates for in vivo studies on antitumor activity. Copyright © 2016 Elsevier B

  9. Selective Cytotoxic Activity of Se-Methyl-Seleno-L-Cysteine- and Se-Polysaccharide-Containing Extracts from Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes).

    Science.gov (United States)

    Klimaszewska, Marzenna; Górska, Sandra; Dawidowski, Maciej; Podsadni, Piotr; Szczepanska, Agnieszka; Orzechowska, Emilia; Kurpios-Piec, Dagmara; Grosicka-Maciag, Emilia; Rahden-Staroń, Iwonna; Turło, Jadwiga

    2017-01-01

    Numerous formulations derived from the shiitake medicinal mushroom, Lentinus edodes, demonstrate anticancer activities. We hypothesized that isolates from selenium (Se)-enriched mycelia of L. edodes would possess stronger cancer-preventive properties than current preparations. The aim of this study was to investigate whether the presence of Se-methyl-seleno-L-cysteine in mycelial extracts of L. edodes affects their cytotoxic activity (makes them stronger) or whether they are as effective as Se-containing polysaccharides. Extracts were prepared from Se-containing mycelia under various conditions and assayed for cytotoxic activity in cancer (PC3 and HeLa) and normal (HMEC-1) cell lines. The chemical composition of the extracts was examined; specifically, the amounts of potentially cytotoxic Se compounds (methylselenocysteine, selenomethionine, and Se-containing polysaccharides) were measured. The relationship between extract composition and biological activity was characterized. Mycelial cultures were cultivated in a 10-L bioreactor in medium enriched with sodium selenite. Mycelial extracts were prepared either at 100°C or at 4°C in acidic solution. Total Se content was determined using the atomic absorption spectrometry method, and methylselenocysteine and selenomethionine contents were measured using reverse-phase high-performance liquid chromatography. Protein, carbohydrate, and polyphenolic contents were determined with spectrophotometric methods, and Se-containing polysaccharides were measured with the use of precipitation. Anticancer activity of mycelial extracts was examined using the MTT cell viability assay. Extracts containing Se-methyl-seleno-L-cysteine or Se-polysaccharides prepared at 4°C and 100°C, respectively, display moderate, time-dependent, specific cytotoxic activity in HeLa and PC3 cell lines. The effect in HeLa cells is more pronounced in the extract prepared at 4°C than at 100°C. The effect is almost equal for the PC3 cell line. However

  10. Diuron-induced rat bladder epithelial cytotoxicity.

    Science.gov (United States)

    Da Rocha, Mitscheli S; Arnold, Lora L; Pennington, Karen L; Muirhead, David; Dodmane, Puttappa R; Anwar, Muhammad M; Battalora, Michael; De Camargo, João Lauro V; Cohen, Samuel M

    2012-12-01

    Diuron, a substituted urea herbicide, is carcinogenic to the rat urinary bladder at high dietary levels (2500 ppm). To further elucidate the mode of action, this study aimed to determine the time course and sequence of bladder cytotoxic and proliferative changes induced by diuron treatment of male Wistar rats. Rats were randomized into two groups (control and 2500 ppm diuron) and treated for 28 days. Ten rats from each group were terminated on each of study days 1, 3, 7, or 28. Scanning electron micro scopy (SEM) showed urothelial cell swelling beginning on day 1, and by day 28, showed extensive necrosis, exfoliation and piling up of cells suggestive of hyperplasia. No difference in the bromo deoxyuridine labeling index was detected. In a second experiment, rats were randomized into control and diuron-treated groups and treated for 7 days or 8 weeks. After 7 days, transmission electron microscopy showed cell degenerative changes and distention of the cytoplasm, organelles, and nuclei characteristic of cytolysis. This resulted in protrusion of the superficial cells into the lumen, corresponding to the cell swelling observed previously by SEM. After 8 weeks, bladders in the diuron-treated group showed an increased incidence of simple hyperplasia by light microscopy (6/10, p diuron exposure in rats.

  11. Activity-guided isolation of cytotoxic bis-bibenzyl constituents from Dumortiera hirsuta.

    Science.gov (United States)

    Toyota, Masao; Ikeda, Risa; Kenmoku, Hiromichi; Asakawa, Yoshinori

    2013-01-01

    Activity-guided fractionation of the ether extract of Dumortiera hirsute (Japanese liverwort), using cytotoxicity testing with cultured HL 60 and KB cells, resulted in the isolation of a new cytotoxic bis-bibenzyl compound, along with the two known bis-bibenzyls: isomarchantin C and isoriccardin C. The structural determination of the new bis-bibenzyl through extensive NMR spectral data indicated a derivative of marchantin A, which has been isolated from the liverwort Marchantia polymorpha. The cytotoxicity of the bis-bibenzyls was evaluated by the MTT (3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using cultured HL 60 and KB cells.

  12. Cytotoxic and antioxidant constituents from the leaves of Psidium guajava.

    Science.gov (United States)

    Feng, Xiao-He; Wang, Zi-Hao; Meng, Da-Li; Li, Xian

    2015-01-01

    Psidium guajava (Myrtaceae) is an evergreen shrub growing extensively throughout the tropical and subtropical areas. Four new compounds, guavinoside C, D, E and F (1-3, 10) were isolated from the leaves of P. guajava, along with six known ones (4-9). Their structures were elucidated by spectroscopic analysis. Compounds 1, 4 and 10 showed significant cytotoxic activities on HeLa, SGC-7901 and A549 cell lines, respectively. Compounds 1 and 4-10 showed antioxidant activities in DPPH, ABTS and FRAP assays, and five of them (1, 4-6, 10) exhibited stronger activities than that of vitamin C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Smyth, Mark J; Miller, Richard G; Vergidis, Joanna; Fahim, Soad; Keating, Armand

    2005-10-01

    To compare the cytotoxicity of KHYG-1 with other natural killer (NK)/NK T-cell lines and identify molecules that may be associated with enhanced cytotoxicity, thereby eventually leading to improved NK cell-mediated cancer immunotherapy. NK/NK T-cell lines KHYG-1, NK-92, YT, and SNT-8 were compared with a novel flow cytometric cytotoxicity assay under different culture conditions. Transcription, expression, and phosphorylation studies were performed using polymerase chain reaction sequence-specific primers, reverse transcription polymerase chain reaction, immunoblotting, and flow cytometry. KHYG-1 is a highly cytotoxic cell line, exceeding the cytolytic capacity of the other cell lines against K562. KHYG-1 is also highly cytotoxic against the leukemia cell lines EM2, EM3, and HL60. The novel activation receptor NKp44 and its adaptor, DAP12, NKG2D, and constitutively phosphorylated ERK2 may be associated with the enhanced cytotoxicity of KHYG-1. This cell line most likely mediates cytolysis by granzyme M (but not granzymes A and B) together with perforin, which is constitutively fully cleaved to the 60-kD form, in contrast to the other cell lines. KHYG-1 is a valuable model for the study of enhanced cytotoxicity by NK cells. In addition to the activation of NKp44, KHYG-1 may induce apoptosis of tumor cells by the newly described granzyme M/perforin pathway. Targeted modifications of effector molecules demonstrated in this model could generate NK cells with even greater killing ability that may be particularly attractive for clinical application. Moreover, our demonstration of greater cytotoxicity of KHYG-1 versus NK-92 cells, already in clinical trials, suggests a direct therapeutic role for KHYG-1.

  14. CYTOTOXIC AND ANTIOXIDANT ACTIVITY OF BUCKWHEAT HULL EXTRACTS

    Directory of Open Access Journals (Sweden)

    Martina Danihelová

    2013-02-01

    Full Text Available Buckwheat contains many prophylactic compounds that are concentrated mainly in outer layers of buckwheat grain. The aim of this study was to prepare buckwheat hull extracts. Ten buckwheat cultivars were screened for their antioxidant and anticancer properties. Total polyphenol content was determined using Folin-Ciocalteau's reagent. Antioxidant activity was established by the method of binding free radical DPPH. Cytotoxic properties were measured on human cervical cancer cells HeLa using mitochondrial cytotoxic test (MTT. Total polyphenol content ranged from 166.67 to 635.31 mg GAE/100 g DW. The highest content displayed tartary buckwheat cultivar Madawaska (0.64% of hulls weight. Among common buckwheat the richest in polyphenols were cultivars Bamby and KASHO-2. The best free radical binding antioxidant activity was found for cultivars with highest polyphenol content. This relationship was not observed for cytotoxic action on human cervical cancer cells. The best growth inhibitory activity on HeLa cancer cells displayed common buckwheat cultivars Bamby and KASHO-2 (up to 50%, extract concentration 100 µg/ml. This was not found for tartary buckwheat cultivar Madawaska.

  15. Modification of the cytotoxic activity of mitomycin C

    International Nuclear Information System (INIS)

    Marshall, R.S.; Rauth, A.M.

    1985-01-01

    Utilizing a system in which oxygen levels could be altered and monitored during acute drug exposures, the authors have begun to characterize the cellular and molecular damage produced by MMC in CHO cells. The cytotoxic activity of MMC decreases sharply from 0 to 0.1% oxygen in solution, while from 0.1 to 20.0% there is little change. DNA crosslinking in cells was examined under these conditions by alkaline elution and found to be directly correlated with cell killing. While hypoxia increased crosslinking, significant levels were still observed under aerobic conditions. A cell-free assay for alkylation confirmed that overall levels increase in the absence of oxygen; however, negligible alkylation was observed under aerobic conditions. It was also noted that ascorbic acid present in the exposure medium (0.284 mM) increased the aerobic cytotoxicity without altering the hypoxic cytotoxicity. The present data suggest that MMC can be activated to an alkylating species by two mechanisms, one oxygen sensitive and one oxygen insensitive and that these two mechanisms may be independently modified

  16. Pharmacological modification of multi-drug resistance (MDR) in vitro detected by a novel fluorometric microculture cytotoxicity assay. Reversal of resistance and selective cytotoxic actions of cyclosporin A and verapamil on MDR leukemia T-cells.

    Science.gov (United States)

    Larsson, R; Nygren, P

    1990-07-15

    A novel fluorometric microculture cytotoxicity assay (FMCA), based on measurements of fluorescein diacetate (FDA) hydrolysis and DNA staining by Hoechst 33342, was used for drug sensitivity testing and detection of resistance reversal in acute lymphoblastic leukemia (ALL) cell lines. The 72-hr assay was found to be sensitive, reproducible and linearly related to the number of viable cells within a broad range of cell concentrations. At clinically achievable drug concentrations, the calcium channel blocker Verapamil (ver) and the immunosuppressant Cyclosporin A (csA) were found to partly reverse acquired Vincristine (vcr) resistance in multi-drug resistant (MDR) T-ALL L100 cells with little or no effect on the drug-sensitive parental L0 cell line. By combining the fluorometric indices, we found that low concentrations of csA were growth-inhibitory, whereas higher concentrations (greater than 10 micrograms/ml) were progressively cytotoxic for drug-sensitive L0 cells. In MDR L100 cells, on the other hand, csA produced significant cell kill even at low drug concentrations. Ver had no effects on sensitive L0 cells but showed considerable cytotoxic action towards MDR L100 cells. There was no apparent relationship between drug reversal of vcr resistance and the cytotoxic actions of the drug per se since the calcium channel blocker diltiazem (dil) significantly potentiated the actions of vcr on MDR L100 cells without being more toxic to these cells (compared to vcr-sensitive L0 cells).

  17. Essential Oil from the Resin of Protium heptaphyllum: Chemical Composition, Cytotoxicity, Antimicrobial Activity, and Antimutagenicity.

    Science.gov (United States)

    de Lima, Ewelyne Miranda; Cazelli, Didley Sâmia Paiva; Pinto, Fernanda Endringer; Mazuco, Renata Alves; Kalil, Ieda Carneiro; Lenz, Dominik; Scherer, Rodrigo; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho

    2016-01-01

    Protium heptaphyllum (Aubl.) March is popularly used as an analgesic and anti-inflammatory agent. This study aimed to evaluate the chemical composition of P. heptaphyllum essential oil, its cytotoxicity in a breast cancer cell line (MCF-7), antimicrobial activity, and its antimutagenicity in vivo. The chemical composition of the essential oil collected in three 3 years was determined by gas chromatography-mass spectrometry. The cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Annexin V conjugated with fluorescein isothiocyanate, caspase-3, and tumor necrosis factor-alpha (TNF-α) assays were performed to evaluate apoptosis and inflammatory events. The antimutagenic activity at doses of 25, 50, and 100 mg/kg was determined using a micronucleus test in murine bone marrow. The essential oil showed a predominance of monoterpene compounds, being the terpinolene, p-cymene-8-ol, and p-cymene, present in the essential oil extracted in the 3 years. The essential oil showed a protection against cyclophosphamide-induced genotoxicity, and the cytotoxicity index polychromatic erythrocytes/normochromatic erythrocytes ratio in animals treated with oil at all doses (1.34 ± 0.33; 1.15 ± 0.1; 1.11 ± 0.13) did not differ from the negative control animal (1.31 ± 0.33), but from the cyclophosphamide group (0.61 ± 0.12). Cytotoxicity, at a concentration of 40.0 μg/mL, and antimicrobial activity were not observed for the essential oil (minimum inhibitory concentration ≥0.5 mg/mL). The essential oil did not change the levels of caspase-3 in the TNF-α level. The essential oil showed antimutagenic activity due to its chemical composition. Terpinolene, p-cymene-8-ol, and p-cymene are the main constituents of the essential oil of P. heptaphyllum collected within 3-yearsThe essential oil of P. heptaphyllum did not show antimicrobial activity (MIC >0.5 mg/mL) against E. coli, S. aureus, E. faecalis, and C. albicansThe essential oil

  18. Screening of Indian medicinal plants for cytotoxic activity by Brine Shrimp Lethality (BSL assay and evaluation of their total phenolic content

    Directory of Open Access Journals (Sweden)

    Mahesh Biradi

    2014-01-01

    Full Text Available Objective: Plant-derived cytotoxic constituents and polyphenolic compounds have played an important role in the development of clinically useful anticancer agents. In this context, we have selected six Indian medicinal plants based on the literature claims and an attempt was made to evaluate the cytotoxic potential and total phenolic content (TPC of their methanol extracts and fractions. Materials and Methods: Six plants have been selected for the study, namely, Artemisia absinthium Linn. (Asteraceae, Oroxylum indicum (Linn. Vent. (Bignoniaceae, Heliotropium indicum Linn. (Boraginaceae, Amorphophallus sylvaticus (Roxb. Kunth. (Araceae, Mimosa pudica Linn. (Mimosaceae, and Premna serratifolia Linn. (Verbenaceae. Authenticated plant materials were subjected to extraction with methanol by cold maceration and hot percolation methods. The extracts were fractionated into four fractions (F1, F2, F3, and F4. Preliminary phytochemical investigation was carried out for all extracts and fractions. All extracts and their fractions were subjected to cytotoxicity screening by brine shrimp lethality (BSL bioassay. The plants with significant cytotoxicity were evaluated for TPC by using Folin-Ciocalteu reagent. Results: F1, F2, and F3 fractions of A. absinthium and P. serratifolia and F1 fraction of M. pudica have shown significant cytotoxicity (lethal concentration (LC 50 < 100 ppm compared with other fractions. F1, F2, and F3 fractions of A. absinthium show the LC 50 values 32.52, 14.27, and 24.02, respectively; F1, F2, and F3 of P. serratifolia show LC 50 values 7.61, 4.01, and 10.91 and same for F1 fraction of M. pudica was 34.82 μg/ml, respectively. TPC was found to be significantly higher (39.11 mg gallic acid equivalent (GAE/g in P. serratifolia compared with other two plants. Conclusion: The cytotoxicity screening system confirmed the proposed anticancer plants used by traditional healers and literature claims.

  19. Synthesis, antimicrobial and cytotoxicity studies of some novel modified Strobilurin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Sridhara, Ajjanna M.; Gopinath, Vadiraj S.; Bose, Prosenjit; Goud, Sanath Kumar [Advinus Therapeutics Pvt. Ltd., Bangalore (India); Reddy, Kallam R. Venugopala, E-mail: venurashmi30@rediffmail.co [Advinus Therapeutics Pvt. Ltd., Bangalore (India). Dept. of Studies in Industrial Chemistry; Keshavayya, Jathi [Advinus Therapeutics Pvt. Ltd., Bangalore (India). Dept. of Studies in Chemistry; Ambika, Dasannana Malige S. [Kuvempu University, Jnana Sahyadri, Karnataka (India). Dept. of Biochemistry; Peethambar, Sanenahalli K. [Kuvempu University, Jnana Sahyadri, Karnataka (India). Dept. of Plant Pathology

    2011-07-01

    A series of some new 3-isoxazoline substituted methyl-3-methoxy-2-(4-oxo-3,4- dihydrophthalazine-1-yl)prop-2-enoate derivatives were designed and synthesized from methyl- (4-oxo-3,4-dihydrophthalazine-1-yl)acetate, which in turn was prepared from phthalic anhydride. The structures of synthesized new compounds were characterized by spectral data and studied for their antimicrobial activities and cytotoxicity. Several of these compounds showed good antimicrobial activity (author)

  20. Cytotoxic effect of Reseda lutea L.: A case of forgotten remedy.

    Science.gov (United States)

    Radulović, Niko S; Zlatković, Dragan B; Ilić-Tomić, Tatjana; Senerović, Lidija; Nikodinovic-Runic, Jasmina

    2014-04-11

    Reseda lutea L. (Resedaceae) or Wild Mignonette is a widely distributed plant species. Pliny the Elder (AD 23-AD 79), a Roman scholar and naturalist, reported the use of R. lutea for reducing tumors in his Historia naturalis. Accounts of the beneficial effects of R. lutea in tumor treatment could also be found in the works of later authors, such as Étienne François Geoffroy (1672-1731) and Samuel Frederick Gray (1766-1828). However, to date no in vivo or in vitro evidence exists in support of the alleged tumor healing properties of R. lutea. The composition of autolysates obtained from different organs (root, flower and fruit) of R. lutea was investigated by GC and GC-MS analyses and IR, 1D and 2D NMR spectroscopy. These analyses led to the discovery of a new compound isolated in pure form from the flower autolysate. Autolysates and their major constituents were submitted to MTT-dye reduction cytotoxic assay on human A375 (melanoma) and MRC5 (fibroblast) cell lines. Mechanism of the cytotoxic effects was studied by cell cycle analysis and Annexin V assay. Benzyl isothiocyanate and 2-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate were identified as the major constituents of the root and flower autolysates, respectively (the later represents a new natural product). These compounds showed significant antiproliferative effects against both cell lines, which could also explain the observed high cytotoxic activity of the tested autolysates. Cell cycle analysis revealed apoptosis as the probable mechanism of cell death. Tumor healing properties attributed to R. lutea in the pre-modern texts were substantiated by the herein obtained results. Two isothiocyanates were found to be the major carriers of the observed activity. Although there was a relatively low differential effect of the plant metabolites on transformed and non-transformed cell lines, one can argue that the noted strong cytotoxicity provides first evidence that could explain the long forgotten use of this