WorldWideScience

Sample records for showed inhibitory activity

  1. DC-159a Shows Inhibitory Activity against DNA Gyrases of Mycobacterium leprae.

    Science.gov (United States)

    Yamaguchi, Tomoyuki; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko

    2016-09-01

    Fluoroquinolones are a class of antibacterial agents used for leprosy treatment. Some new fluoroquinolones have been attracting interest due to their remarkable potency that is reportedly better than that of ofloxacin, the fluoroquinolone currently recommended for treatment of leprosy. For example, DC-159a, a recently developed 8-methoxy fluoroquinolone, has been found to be highly potent against various bacterial species. Nonetheless, the efficacy of DC-159a against Mycobacterium leprae is yet to be examined. To gather data that can support highly effective fluoroquinolones as candidates for new remedies for leprosy treatment, we conducted in vitro assays to assess and compare the inhibitory activities of DC-159a and two fluoroquinolones that are already known to be more effective against M. leprae than ofloxacin. The fluoroquinolone-inhibited DNA supercoiling assay using recombinant DNA gyrases of wild type and ofloxacin-resistant M. leprae revealed that inhibitory activities of DC-159a and sitafloxacin were at most 9.8- and 11.9-fold higher than moxifloxacin. Also the fluoroquinolone-mediated cleavage assay showed that potencies of those drugs were at most 13.5- and 9.8-fold higher than moxifloxacin. In addition, these two drugs retained their inhibitory activities even against DNA gyrases of ofloxacin-resistant M. leprae. The results indicated that DC-159a and sitafloxacin are more effective against wild type and mutant M. leprae DNA gyrases than moxifloxacin, suggesting that these antibacterial drugs can be good candidates that may supersede current fluoroquinolone remedies. DC-159a in particular is very promising because it is classified in a subgroup of fluoroquinolones that is known to be less likely to cause adverse effects. Our results implied that DC-159a is well worth further investigation to ascertain its in vivo effectiveness and clinical safety for humans.

  2. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf.

    Science.gov (United States)

    Hirata, Noriko; Tokunaga, Masashi; Naruto, Shunsuke; Iinuma, Munekazu; Matsuda, Hideaki

    2007-12-01

    Previously we reported that Piper nigrum leaf extract showed a potent stimulation effect on melanogenesis and that (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2) were isolated as active constituents. As a part of our continuous studies on Piper species for the development of cosmetic hair-care agents, testosterone 5alpha-reductase inhibitory activity of aqueous ethanolic extracts obtained from several different parts of six Piper species, namely Piper nigrum, P. methysticum, P. betle, P. kadsura, P. longum, and P. cubeba, were examined. Among them, the extracts of P. nigrum leaf, P. nigrum fruit and P. cubeba fruit showed potent inhibitory activity. Activity-guided fractionation of P. nigrum leaf extract led to the isolation of 1 and 2. Fruits of P. cubeba contain 1 as a major lignan, thus inhibitory activity of the fruit may be attributable to 1. As a result of further assay on other known constituents of the cited Piper species, it was found that piperine, a major alkaloid amide of P. nigrum fruit, showed potent inhibitory activity, thus a part of the inhibitory activity of P. nigrum fruit may depend on piperine. The 5alpha-reductase inhibitory activities of 1 and piperine were found for the first time. In addition, the P. nigrum leaf extract showed in vivo anti-androgenic activity using the hair regrowth assay in testosterone sensitive male C57Black/6CrSlc strain mice.

  3. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  4. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  5. Enzyme inhibitory activity of selected Philippine plants

    International Nuclear Information System (INIS)

    Sasotona, Joseph S.; Hernandez, Christine C.

    2015-01-01

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  6. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  7. Histamine release inhibitory activity of Piper nigrum leaf.

    Science.gov (United States)

    Hirata, Noriko; Naruto, Shunsuke; Inaba, Kazunori; Itoh, Kimihisa; Tokunaga, Masashi; Iinuma, Munekazu; Matsuda, Hideaki

    2008-10-01

    Oral administration of a methanolic extract of Piper nigrum leaf (PN-ext, 50, 200 and 500 mg/kg) showed a potent dose-dependent inhibition of dinitrofluorobenzene (DNFB)-induced cutaneous reaction at 1 h [immediate phase response (IPR)] after and 24 h [late phase response (LPR)] after DNFB challenge in mice which were passively sensitized with anti-dinitrophenyl (DNP) IgE antibody. Ear swelling inhibitory effect of PN-ext (50, 200 and 500 mg/kg, per os (p.o.)) on very late phase response (vLPR) in the model mice was significant but weaker than that on IPR. Oral administration of PN-ext (50, 200 and 500 mg/kg for 7 d) inhibited picryl chloride (PC)-induced ear swelling in PC sensitized mice. PN-ext exhibited in vitro inhibitory effect on compound 48/80-induced histamine release from rat peritoneal mast cells. Two lignans of PN-ext, (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2), were identified as major active principles having histamine release inhibitory activity.

  8. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Science.gov (United States)

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  9. Inhibitory Activity of (+-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    Directory of Open Access Journals (Sweden)

    Yi Yang

    Full Text Available Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+-usnic acid and cetuximab. These results implied that (+-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  10. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    Science.gov (United States)

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  11. New Biflavonoids with α-Glucosidase and Pancreatic Lipase Inhibitory Activities from Boesenbergia rotunda

    Directory of Open Access Journals (Sweden)

    Nutputsorn Chatsumpun

    2017-10-01

    Full Text Available Roots of Boesenbergia rotunda (L. Mansf. are prominent ingredients in the cuisine of several Asian countries, including Thailand, Malaysia, Indonesia, India, and China. An extract prepared from the roots of this plant showed strong inhibitory activity against enzymes α-glucosidase and pancreatic lipase and was subjected to chromatographic separation to identify the active components. Three new biflavonoids of the flavanone-chalcone type (9, 12, and 13 were isolated, along with 12 known compounds. Among the 15 isolates, the three new compounds showed stronger inhibitory activity against α-glucosidase than the drug acarbose but displayed lower pancreatic lipase inhibitory effect than the drug orlistat. The results indicated the potential of B. rotunda roots as a functional food for controlling after-meal blood glucose levels.

  12. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    Science.gov (United States)

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P Maillard reaction (P reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  13. Population activity structure of excitatory and inhibitory neurons.

    Science.gov (United States)

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  14. Population activity structure of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  15. Population activity structure of excitatory and inhibitory neurons

    Science.gov (United States)

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  16. Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica

    Science.gov (United States)

    Kuspradini, H.; Putri, AS; Mitsunaga, T.

    2018-04-01

    Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.

  17. Inhibitory activity of a water-soluble morin derivative on phosphatase ...

    African Journals Online (AJOL)

    enoh

    2012-03-01

    Mar 1, 2012 ... E-mail: taipinghe@163.com. Tel: 86- ... anthraquinone compounds from Rubia akane show inhibitory activity on .... incubation of the cells at 37°C for 24 h, the phase contrast images ... inverted microscope (Olympus IX50).

  18. Jojoba seed meal proteins associated with proteolytic and protease inhibitory activities.

    Science.gov (United States)

    Shrestha, Madan K; Peri, Irena; Smirnoff, Patricia; Birk, Yehudith; Golan-Goldhirsh, Avi

    2002-09-25

    The jojoba, Simmondsia chinensis, is a characteristic desert plant native to the Sonoran desert. The jojoba meal after oil extraction is rich in protein. The major jojoba proteins were albumins (79%) and globulins (21%), which have similar amino acid compositions and also showed a labile thrombin-inhibitory activity. SDS-PAGE showed two major proteins at 50 kDa and 25 kDa both in the albumins and in the globulins. The 25 kDa protein has trypsin- and chymotrypsin-inhibitory activities. In vitro digestibility of the globulins and albumins resembled that of casein and soybean protein concentrates and was increased after heat treatment. The increased digestibility achieved by boiling may be attributed to inactivation of the protease inhibitors and denaturation of proteins.

  19. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Mehran Fadaeinasab

    2015-11-01

    Full Text Available Background/Aims: Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1 and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2, along with five known, macusine B (3, vinorine (4, undulifoline (5, isoresrpiline (6 and rescinnamine (7 were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Conclusion: Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations.

  20. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity.

    Science.gov (United States)

    Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran

    2015-01-01

    Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.

  1. Ultrasonic extraction of polysaccharides from Laminaria japonica and their antioxidative and glycosidase inhibitory activities

    Science.gov (United States)

    Wan, Peng; Yang, Xiaoman; Cai, Bingna; Chen, Hua; Sun, Huili; Chen, Deke; Pan, Jianyu

    2015-08-01

    In the present study, ultrasonic extraction technique (UET) is used to improve the yield of polysaccharides from Laminaria japonica (LJPs). And their antioxidative as well as glycosidase inhibitory activities are investigated. Box-Behnken design (BBD) combined with response surface methodology (RSM) is applied to optimize ultrasonic extraction for polysaccharides. The optimized conditions are obtained as extraction time at 54 min, ultrasonic power at 1050 W, extraction temperature at 80°C and ratio of material to solvent at 1:50 (g mL-1). Under these optimal ultrasonic extraction conditions, an actual experimental yield (5.75% ± 0.3%) is close to the predicted result (5.67%) with no significant difference ( P > 0.05). Vitro antioxidative and glycosidase inhibitory activities tests indicate that the crude polysaccharides (LJP) and two major ethanol precipitated fractions (LJP1 and LJP2) are in a concentration-dependent manner. LJP2 (30%-60% ethanol precipitated polysaccharides) possesses the strongest α-glucosidase inhibitory activity and moderate scavenging activity against hydroxyl radicals (66.09% ± 2.19%, 3.0 mg mL-1). Also, the inhibitory activity against α-glucosidase (59.08% ± 3.79%, 5.0 mg mL-1) is close to that of acarbose (63.99% ± 3.27%, 5.0 mg mL-1). LJP1 (30% ethanol precipitated polysaccharides) exhibits the strongest scavenging activity against hydroxyl radicals (99.80% ± 0.00%, 3.0 mg mL-1) and moderate α-glucosidase inhibitory activity (47.76% ± 1.92%, 5.0 mg mL-1). LJP shows the most remarkable DPPH scavenging activity (66.20% ± 0.11%, 5.0 mg mL-1) but weakest α-glucosidase inhibitory activity (37.77% ± 1.30%, 5.0 mg mL-1). However, all these LJPs exert weak inhibitory effects against α-amylase. These results show that UET is an effective method for extracting bioactive polysaccharides from seaweed materials. LJP1 and LJP2 can be developed as a potential ingredient in hypoglycemic agents or functional food for the management of

  2. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch

    2005-10-01

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 μg/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 μg/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities

  3. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Thongphasuk, Jarunee [Office of Atoms for Peace, Bangkok (Thailand); Thongphasuk, Piyanuch [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani (Thailand)

    2005-10-15

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 {mu}g/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 {mu}g/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities.

  4. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake.

    Science.gov (United States)

    Liu, Shuyuan; Ai, Zeyi; Qu, Fengfeng; Chen, Yuqiong; Ni, Dejiang

    2017-11-01

    The objective of the present study was to evaluate the effect of steeping temperature on the biological activities of green tea, including the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, α-glucosidase and α-amylase inhibitory activities, and glucose uptake inhibitory activity in Caco-2 cells. Results showed that, with increasing extraction temperature, the polyphenol content increased, which contributed to enhance antioxidant activity and inhibitory effects on α-glucosidase and α-amylase. Green tea steeped at 100°C showed the highest DPPH radical-scavenging activity and inhibitory effects on α-glucosidase and α-amylase activities with EC 50 or IC 50 values of 6.15μg/mL, 0.09mg/mL, and 6.31mg/mL, respectively. However, the inhibitory potential on glucose uptake did not show an upward trend with increasing extraction temperature. Green tea steeped at 60°C had significantly stronger glucose uptake inhibitory activity (ptea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of phenolic profile, enzyme inhibitory and antimicrobial activities of Nigella sativa L. seed extracts

    Directory of Open Access Journals (Sweden)

    Anela Topcagic

    2017-11-01

    Full Text Available Black cumin (Nigella sativa L. [N.sativa] seed extracts demonstrated numerous beneficial biological effects including, among others, antidiabetic, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, antihypertensive, and antioxidant activity. To better understand the phytochemical composition of N. sativa seeds, methanol seed extracts were analyzed for phenolic acid and flavonoid content. Furthermore, we tested N. sativa methanol, n-hexane, and aqueous seed extracts for their inhibitory activity against butyrylcholinesterase (BChE and catalase (CAT as well as for antimicrobial activity against several bacterial and a yeast strains. The phenolic content of N. sativa was analyzed using ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS. The inhibition of BChE was assessed by modified Ellman’s method, and the inhibition of CAT was determined by monitoring hydrogen peroxide consumption. The extracts were tested against Bacillus subtilis, Staphylococcus aureus, Salmonella enterica, and Escherichia coli using the agar diffusion method. The UHPLC-MS/MS method allowed the identification and quantification of 23 phenolic compounds within 15 minutes. The major components found in N. sativa seed extract were sinapinic acid (7.22 ± 0.73 µg/mg as a phenolic acid and kaempferol (11.74 ± 0.92 µg/mg as a flavonoid. All extracts showed inhibitory activity against BChE, with methanol seed extract demonstrating the highest inhibitory activity (inhibitory concentration 50% [IC50] 79.11 ± 6.06 µg/ml. The methanol seed extract also showed strong inhibitory activity against CAT with an IC50 value of 6.61 ± 0.27 µg/ml. Finally, the methanol extract exhibited considerable inhibitory activity against the tested microbial strains. Overall, this is the first study to investigate the ability of black cumin seed extracts to inhibit CAT. Our results indicate that N. sativa seed can be considered as an effective inhibitor

  6. Evaluating the antioxidant and acetylcholinesterase inhibitory activity of three Centaurea species

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-01-01

    Full Text Available Factors such as oxidative stress and reduced acetylcholine level have been implicated in Alzheimer’s disease (AD pathology and recently there has been a trend towards natural product research to find potential sources of antioxidants and acetylcholinesterase inhibitors in the plants kingdom. Centaurea is a genus with about 500 species world wild, many of them have shown to possess biologic activity; Centaurea albonites, C. aucheri and C. pseudoscabiosa are three species which little investigation has been carried out about their biological properties. In the present study, the antioxidant and acetylcholinesterase inhibitory activity of the above mentioned species have been evaluated. The ability of the total extract and methanol fraction of the plants to scavenge free radicals has been assessed through DPPH radical scavenging assay, and the acetylcholinesterase inhibitory property has been evaluated by Ellman method. The total extract of all species exhibited moderate antioxidant activity whereas the extracts of C. pseudoscabiosa showed the strongest antioxidant property; its total extract also demonstrated the highest acetylcholinesterase inhibitory activity among the evaluated samples (19.2% inhibition. The results suggest the species as potential sources of natural antioxidants which could be focused in future studies of Alzheimer’s disease.

  7. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  8. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts.

    Science.gov (United States)

    Hadrich, Fatma; Cher, Slim; Gargouri, Youssef Talel; Adel, Sayari

    2014-01-01

    The chemical composition of essential oil, antioxidant and pancreatic lipase inhibitory activities of various solvent extracts obtained from pomegranate peelTunisian cultivar was evaluated. Gas chromatography/mass spectrometry was used to determine the composition of the PP essential oil. Nine-teen components were identified and the main compounds were the camphor (60.32%) and the benzaldehyde (20.98%). The phenolic and flavonoids content varied from 0 to 290.10 mg Gallic acid equivalent and from 5.2 to 20.43 mg catechin equivalent/g dried extract. The antioxidant activity of various solvent extracts from pomegranate peel was also investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method, β-carotene bleaching and reducing power assays.Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water and acetone extracts. The inhibitory effect of the pomegranate peelextracts on porcine pancreatic lipase was evaluated and the results showed that ethanol and methanol extracts markedly reduced lipase activity. Generally, the highestlipase activity inhibitory (100%) was observed at a concentration of 1 mg/ml after 30 min of incubation. LC-MS analysis of ethanol extract showed the presence of four components which are cholorogenic acid, mannogalloylhexoside, gallic acid and ellagic acid. Our findings demonstrate that the ethanol extract from pomegranate peel might be a good candidate for furtherinvestigations of new bioactive substances.

  9. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium.

    Science.gov (United States)

    Morikawa, Toshio; Ninomiya, Kiyofumi; Akaki, Junji; Kakihara, Namiko; Kuramoto, Hiroyuki; Matsumoto, Yurie; Hayakawa, Takao; Muraoka, Osamu; Wang, Li-Bo; Wu, Li-Jun; Nakamura, Seikou; Yoshikawa, Masayuki; Matsuda, Hisashi

    2015-10-01

    A methanol extract of everlasting flowers of Helichrysum arenarium L. Moench (Asteraceae) was found to inhibit the increase in blood glucose elevation in sucrose-loaded mice at 500 mg/kg p.o. The methanol extract also inhibited the enzymatic activity against dipeptidyl peptidase-IV (DPP-IV, IC50 = 41.2 μg/ml), but did not show intestinal α-glucosidase inhibitory activities. From the extract, three new dimeric dihydrochalcone glycosides, arenariumosides V-VII (2-4), were isolated, and the stereostructures were elucidated based on their spectroscopic properties and chemical evidence. Of the constituents, several flavonoid constituents, including 2-4, were isolated, and these isolated constituents were investigated for their DPP-IV inhibitory effects. Among them, chalconaringenin 2'-O-β-D-glucopyranoside (16, IC50 = 23.1 μM) and aureusidin 6-O-β-D-glucopyranoside (35, 24.3 μM) showed relatively strong inhibitory activities.

  10. COMPARATIVE EVALUATION OF INHIBITORY ACTIVITY OF ...

    African Journals Online (AJOL)

    Osondu

    2013-02-26

    Feb 26, 2013 ... especially the four bacteria isolates used in this study are present in the epiphgram of both normal and ... Keyword: Albino snail, Archachatina marginata, Inhibitory activity, Epiphgram, Bacteria isolate. Introduction .... evolution.

  11. Discrimination and Nitric Oxide Inhibitory Activity Correlation of Ajwa Dates from Different Grades and Origin

    Directory of Open Access Journals (Sweden)

    Nur Ashikin Abdul-Hamid

    2016-10-01

    Full Text Available This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO inhibitory activity. Identification of the metabolites was generated using 1H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.

  12. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  13. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts

    Directory of Open Access Journals (Sweden)

    Elena Neagu

    2018-03-01

    Full Text Available In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass and ethanolic extracts (10% mass and 70% ethanol, respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL, 66.96% and 94.03% (at 3 mg/mL, respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL. These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry. Keywords: Acetylcholinesterase inhibitory activity, Tyrosinase inhibitory activity, Antioxidant activity, Pulmonaria officinalis and Centarium umbellatum

  14. In vivo hypotensive effect and in vitro inhibitory activity of some Cyperaceae species

    Directory of Open Access Journals (Sweden)

    Monica Lacerda Lopes Martins

    2013-12-01

    Full Text Available In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES, a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg, with acetylcholine (ACh as positive control (5 µg/kg, i.v.. The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.. Captopril (30 mg/kg was used as positive control. Bulbostylis capillaris (86.89 ± 15.20% and ERE (74.89 ± 11.95%, ERE were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%. ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.

  15. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus.

    Science.gov (United States)

    Akihisa, Toshihiro; Franzblau, Scott Gary; Tokuda, Harukuni; Tagata, Masaaki; Ukiya, Motohiko; Matsuzawa, Tsunetomo; Metori, Koichi; Kimura, Yumiko; Suzuki, Takashi; Yasukawa, Ken

    2005-06-01

    Seven sterols (1-7) and eight polyisoprenepolyols (8-15), isolated from the non-saponifiable lipid fraction of the dichloromethane extract of an edible mushroom, Hypsizigus marmoreus (Buna-shimeji), were tested for their antitubercular activity against Mycobacterium tuberculosis strain H37Rv using the Microplate Alamar Blue Assay (MABA). Six sterols (2-7) and two polyisoprenepolyols (8, 12) showed a minimum inhibitory concentration (MIC) in the range of 1-51 microg/ml, while the others (1, 9-11, 13-15) were inactive (MIC>128 microg/ml). The seven sterols (1-7) and three polyisoprenepolyols (8, 10, 12) were further evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Sterols 6 and 7 showed potent inhibitory effects while preserving the high viability of Raji cells.

  16. Evaluation of Apoptotic and Growth Inhibitory Activity of Phloretin in ...

    African Journals Online (AJOL)

    Results: The results show that the inhibitory activity of phloretin in BGC823 gastric cancer cells was mediated by induction of apoptosis ... anti-proliferative effects of phloretin was dose-dependent and inhibited the growth of BGC823 gastric cancer cells by 73 % at 30 μM; .... weeks at 37 °C in 5 % CO2 in humidified incubator.

  17. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  18. Antioxidant, ACE-Inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaeia

    2016-07-01

    Full Text Available Background: There has been evidence that proteins are potentially excellent source of antioxidants, antihypertensive and antimicrobial peptides, and that enzymatic hydrolysis is an effective method to release these peptides from protein molecules. The functional properties of protein hydrolysates depends on the protein substrate, the specificity of the enzymes, the conditions used during proteolysis, degree of hydrolysis, and the nature of peptides released including molecular weight, amino acid composition, and hydrophobicity. Context and purpose of this study: The biomass of Kluyveromyces marxianus was considered as a source of ACE inhibitory, antioxidant and antimicrobial peptides. Results: Autolysis and enzymatic hydrolysis were completed respectively, after 96 h and 5 h. Overall, trypsin (18.52% DH and chymotrypsin (21.59% DH treatments were successful in releasing antioxidant and ACE inhibitory peptides. Autolysate sample (39.51% DH demonstrated poor antioxidant and ACE inhibitory activity compared to trypsin and chymotrypsin hydrolysates. The chymotrypsin 3-5 kDa (301.6±22.81 μM TE/mg protein and trypsin < 3 kDa (280.16±39.16 μM TE/mg protein permeate peptide fractions showed the highest DPPH radical scavenging activity. The trypsin <3 kDa permeate peptide fraction showed the highest ABTS radical scavenging (1691.1±48.68 μM TE/mg protein and ACE inhibitory (IC50=0.03±0.001 mg/mL activities. The fraction (MW=5-10 kD obtained after autolysis treatment showed antibacterial activity against St. aureus and Lis. monocytogenes in well diffusion screening. The minimum inhibitory concentration (MIC value was 13.3 mg/mLagainst St. aureus and Lis. monocytogenes calculated by turbidimetric assay and it showed bactericidal activity against St. aureus at 21.3 mg/mL protein concentration. Conclusions: Altogether, the results of this study reveal that K. marxianus proteins contain specific peptides in their sequences which can be released by

  19. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase.

    Science.gov (United States)

    Chen, Xian-Qiang; Zhao, Jing; Chen, Ling-Xiao; Wang, Shen-Fei; Wang, Ying; Li, Shao-Ping

    2018-05-01

    Eighteen previously undescribed lanostane triterpenes and thirty known analogues were obtained from the fruiting bodies of Ganoderma resinaceum. Resinacein C was isolated from a natural source for the first time. The structures of all the above compounds were elucidated by extensive spectroscopic analysis and comparisons of their spectroscopic data with those reported in the literature. Furthermore, in an in vitro assay, Resinacein C, ganoderic acid Y, lucialdehyde C, 7-oxo-ganoderic acid Z 3 , 7-oxo-ganoderic acid Z, and lucidadiol showed strong inhibitory effects against α-glucosidase compared with the positive control drug acarbose. The structure-activity relationships of ganoderma triterpenes on α-glucosidase inhibition showed that the C-24/C-25 double bond is necessary for α-glucosidase inhibitory activity. Moreover, the carboxylic acid group at C-26 and the hydroxy group at C-15 play important roles in enhancing inhibitory effects of these triterpenes. Copyright © 2018. Published by Elsevier Ltd.

  20. 2-(2-Pyridyl) Benzimidazole Analogs and their beta-Glucuronidase Inhibitory Activity

    International Nuclear Information System (INIS)

    Kamil, A.; Noureen, S.

    2015-01-01

    Synthesis of 2-(2-Pyridyl) benzimidazole analogs 1-11 have been carried out and evaluated for in vitro beta-glucuronidase inhibitory potential. The compounds 4 (IC/sub 50/ = 4.06 ± 0.34 meuM), 5 (IC/sub 50/ = 09.63 ± 0.81 meuM), 1 (IC/sub 50/ = 19.66 ± 0.44 meuM), 7 (IC/sub 50/ = 24.75 ± 0.25 meuM), 6 (IC/sub 50/ = 26.30 ± 1.37 meuM), and 3 (IC/sub 50/ = 32.11 ± 0.89 meuM), showed beta-glucuronidase inhibitory activity superior to the standard D-saccharic acid 1,4-lactone, with (IC/sub 50/ = 48.4 ± 1.25 meuM). Based on structure-activity relationship, we discover a new class of potent beta-glucuronidase inhibitors. (author)

  1. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  2. Relationships between the structure of wheat gluten and ACE inhibitory activity of hydrolysate: stepwise multiple linear regression analysis.

    Science.gov (United States)

    Zhang, Yanyan; Ma, Haile; Wang, Bei; Qu, Wenjuan; Wali, Asif; Zhou, Cunshan

    2016-08-01

    Ultrasound pretreatment of wheat gluten (WG) before enzymolysis can improve the angiotensin converting enzyme (ACE) inhibitory activity of the hydrolysates by alerting the structure of substrate proteins. Establishment of a relationship between the structure of WG and ACE inhibitory activity of the hydrolysates to judge the end point of the ultrasonic pretreatment is vital. The results of stepwise multiple linear regression (MLR) showed that the contents of free sulfhydryl, α-helix, disulfide bond, surface hydrophobicity and random coil were significantly correlated to ACE Inhibitory activity of the hydrolysate, with the standard partial regression coefficients were 3.729, -0.676, -0.252, 0.022 and 0.156, respectively. The R(2) of this model was 0.970. External validation showed that the stepwise MLR model could well predict the ACE inhibitory activity of hydrolysate based on the content of free sulfhydryl, α-helix, disulfide bond, surface hydrophobicity and random coil of WG before hydrolysis. A stepwise multiple linear regression model describing the quantitative relationships between the structure of WG and the ACE Inhibitory activity of the hydrolysates was established. This model can be used to predict the endpoint of the ultrasonic pretreatment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Fruit Wines Inhibitory Activity Against α-Glucosidase.

    Science.gov (United States)

    Cakar, Uros; Grozdanic, Nada; Petrovic, Aleksandar; Pejin, Boris; Nastasijevic, Branislav; Markovic, Bojan; Dordevic, Brizita

    2017-01-01

    Fruit wines are well known for their profound health-promoting properties including both enzyme activations and inhibitions. They may act preventive in regard to diabetes melitus and other chronic diseases. Potential α-glucosidase inhibitory activity of fruit wines made from blueberry, black chokeberry, blackberry, raspberry and sour cherry was the subject of this study. In order to increase the alcohol content due to enriched extraction of total phenolics, sugar was added in the fruit pomace of the half of the examined fruit wine samples. Compared with acarbose used as a positive control (IC50 = 73.78 µg/mL), all fruit wine samples exhibited higher α-glucosidase inhibitory activity. Indeed, blueberry wine samples stood out, both prepared with IC50 = 24.14 µg/mL, lyophilised extract yield 3.23% and without IC50 = 46.39 µg/mL, lyophilised extract yield 2.89% and with addition of sugar before fermentation. Chlorogenic acid predominantly contributed to α-glucosidase inhibitory activity of the blueberry, black chokeberry and sour cherry wine samples. However, ellagic acid, a potent α-glucosidase inhibitor possessing a planar structure, only slightly affected the activity of the blueberry wine samples, due to the lower concentration. In addition to this, molecular docking study of chlorogenic acid pointed out the importance of binding energy (-8.5 kcal/mol) for the inhibition of the enzyme. In summary, fruit wines made from blueberry should be primarily taken into consideration as a medicinal food targeting diabetes mellitus type 2 in the early stage, if additional studies would confirm their therapeutic potential for the control of postprandial hyperglycemia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Noorlidah Abdullah

    2012-01-01

    Full Text Available Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC. Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI. Ganoderma lucidum (30.1%, Schizophyllum commune (27.6%, and Hericium erinaceus (17.7% showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL. Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents.

  5. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities

    Science.gov (United States)

    Abdullah, Noorlidah; Ismail, Siti Marjiana; Aminudin, Norhaniza; Shuib, Adawiyah Suriza; Lau, Beng Fye

    2012-01-01

    Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC). Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI). Ganoderma lucidum (30.1%), Schizophyllum commune (27.6%), and Hericium erinaceus (17.7%) showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL). Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents. PMID:21716693

  6. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities.

    Science.gov (United States)

    Chao, Shi-Wei; Chen, Liang-Chieh; Yu, Chia-Chun; Liu, Chang-Yi; Lin, Tony Eight; Guh, Jih-Hwa; Wang, Chen-Yu; Chen, Chun-Yung; Hsu, Kai-Cheng; Huang, Wei-Jan

    2018-01-01

    Histone deacetylase (HDAC) is a validated drug target for various diseases. This study combined indole recognition cap with SAHA, an FDA-approved HDAC inhibitor used to treat cutaneous T-cell lymphoma (CTCL). The structure activity relationship of the resulting compounds that inhibited HDAC was disclosed as well. Some compounds exhibited much stronger inhibitory activities than SAHA. We identified two meta-series compounds 6j and 6k with a two-carbon linker had IC 50 values of 3.9 and 4.5 nM for HDAC1, respectively. In contrast, the same oriented compounds with longer carbon chain linkers showed weaker inhibition. The result suggests that the linker chain length greatly contributed to enzyme inhibitory potency. In addition, comparison of enzyme-inhibiting activity between the compounds and SAHA showed that compounds 6j and 6k displayed higher inhibiting activity for class I (HDAC1, -2, -3 and -8). The molecular docking and structure analysis revealed structural differences with the inhibitor cap and metal-binding regions between the HDAC isozymes that affect interactions with the inhibitors and play a key role for selectivity. Further biological evaluation showed multiple cellular effects associated with compounds 6j- and 6k-induced HDAC inhibitory activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Neurofeedback Training Effects on Inhibitory Brain Activation in ADHD: A Matter of Learning?

    Science.gov (United States)

    Baumeister, Sarah; Wolf, Isabella; Holz, Nathalie; Boecker-Schlier, Regina; Adamo, Nicoletta; Holtmann, Martin; Ruf, Matthias; Banaschewski, Tobias; Hohmann, Sarah; Brandeis, Daniel

    2018-05-15

    Neurofeedback training (NF) is a promising non-pharmacological treatment for ADHD that has been associated with improvement of attention-deficit/hyperactivity disorder (ADHD)-related symptoms as well as changes in electrophysiological measures. However, the functional localization of neural changes following NF compared to an active control condition, and of successful learning during training (considered to be the critical mechanism for improvement), remains largely unstudied. Children with ADHD (N=16, mean age: 11.81, SD: 1.47) were randomly assigned to either slow cortical potential (SCP, n=8) based NF or biofeedback control training (electromyogram feedback, n=8) and performed a combined Flanker/NoGo task pre- and post-training. Effects of NF, compared to the active control, and of learning in transfer trials (approximating successful transfer to everyday life) were examined with respect to clinical outcome and functional magnetic resonance imaging (fMRI) changes during inhibitory control. After 20 sessions of training, children in the NF group presented reduced ADHD symptoms and increased activation in areas associated with inhibitory control compared to baseline. Subjects who were successful learners (n=9) also showed increased activation in an extensive inhibitory network irrespective of the type of training. Activation increased in an extensive inhibitory network following NF training, and following successful learning through NF and control biofeedback. Although this study was only powered to detect large effects and clearly requires replication in larger samples, the results suggest a crucial role for learning effects in biofeedback trainings. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Wan, Yinhua

    2014-09-01

    Pretreatment of lignocellulosic material produces a wide variety of inhibitory compounds, which strongly inhibit the following enzymatic hydrolysis of cellulosic biomass. Vanillin is a kind of phenolics derived from degradation of lignin. The effect of vanillin on cellulase activity for the hydrolysis of cellulose was investigated in detail. The results clearly showed that vanillin can reversibly and non-competitively inhibit the cellulase activity at appropriate concentrations and the value of IC50 was estimated to be 30 g/L. The inhibition kinetics of cellulase by vanillin was studied using HCH-1 model and inhibition constants were determined. Moreover, investigation of three compounds with similar structure of vanillin on cellulase activity demonstrated that aldehyde group and phenolic hydroxyl groups of vanillin had inhibitory effect on cellulase. These results provide valuable and detailed information for understanding the inhibition of lignin derived phenolics on cellulase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Angiotensin-I Converting Enzyme (ACE Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora Hydrolysates

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2015-12-01

    Full Text Available In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8% after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH (56.00% and ferrous ion-chelating (FIC (59.00% methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  10. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity.

    Science.gov (United States)

    Mojzych, Mariusz; Tarasiuk, Paweł; Kotwica-Mojzych, Katarzyna; Rafiq, Muhammad; Seo, Sung-Yum; Nicewicz, Michał; Fornal, Emilia

    2017-12-01

    A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC 50 0.037, 0.044 and 0.042 μM, respectively, while IC 50 of thiourea is 20.9 μM.

  11. Free Radical Scavenging and Alpha/Beta-glucosidases Inhibitory Activities of Rambutan (Nephelium lappaceum L. Peel Extract

    Directory of Open Access Journals (Sweden)

    Wahyu Widowati

    2015-12-01

    Full Text Available BACKGROUND: Diabetes mellitus (DM is associated with oxidative reaction and hyperglycemic condition. Human body has an antioxidant defense system toward free radical, but overproduction of free radical causing imbalance condition between the free radical and the antioxidant defense in the body that lead to several diseases, including DM. Glucosidase is an enzyme that hydrolize carbohydrates causing increase of blood glucose level, so by inhibiting this enzyme blood glucose level in plasma could be effectively decreased. Rambutan (Nephelium lappaceum L. peel has been reported to have many potential roles, such as antioxidant and anti-glycemia. Therefore our current study was conducted to evaluate possible effectivity of Rambutan peel to scavenge free radical and to inhibit α- and β-glucosidases. METHODS: Rambutan peel extraction (RPE was performed based on maceration method. Geraniin was used as control. For antioxidant study, 2,2-diphenyl-1- picrylhydrazyl (DPPH free radical scavenging test was performed. For glucosidase inhibitory activity study,  α- and β-glucosidases inhibitory activity tests were performed. Results were analyzed for median of Inhibitory Concentration (IC50. RESULTS: The scavenging activity of RPE was comparable with Geraniin. Meanwhile, the α-glucosidase inhibitory activity of RPE was higher than the one of Geraniin. The α-glucosidase-inhibitory-activity IC50 of RPE and Geraniin were 0.106±0.080 μg/ml and 16.12±0.29 μg/ml, respectively. The β-glucosidase inhibitory activity of RPE was also higher than the one of Geraniin. The β-glucosidase-inhibitory-activity IC50 of RPE and Geraniin were 7.02±0.99 μg/ml and 19.81±0.66 μg/ml, respectively. CONCLUSIONS: Since RPE showed comparable free radical scavenging activity with Geraniin and higher α- and β-glucosidases inhibitory activities than Geraniin, RPE could be suggested as a promising antioxidant and antiglycemic agent.  KEYWORDS

  12. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    Science.gov (United States)

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  13. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract.

    Science.gov (United States)

    Tung, Bui Thanh; Thu, Dang Kim; Thu, Nguyen Thi Kim; Hai, Nguyen Thanh

    2017-05-04

    Background Zingiber officinale Roscoe has been used in traditional medicine for the treatment of neurological disorder. This study aimed to investigate the phenolic contents, antioxidant, acetylcholinesterase enzyme (AChE) inhibitory activities of different fraction of Z. officinale root grown in Vietnam. Methods The roots of Z. officinale are extracted with ethanol 96 % and fractionated with n-hexane, ethyl acetate (EtOAc) and butanol (BuOH) solvents. These fractions evaluated the antioxidant activity by 1,1-Diphenyl -2-picrylhydrazyl (DPPH) assay and AChE inhibitory activity by Ellman's colorimetric method. Results Our data showed that the total phenolic content of EtOAc fraction was highest equivalents to 35.2±1.4 mg quercetin/g of fraction. Our data also demonstrated that EtOAc fraction had the strongest antioxidant activity with IC50 was 8.89±1.37 µg/mL and AChE inhibitory activity with an IC50 value of 22.85±2.37 μg/mL in a dose-dependent manner, followed by BuOH fraction and the n-hexane fraction is the weakest. Detailed kinetic analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 30.61±1.43 µg/mL. Conclusions Our results suggest that the EtOAc fraction of Z. officinale may be a promising source of AChE inhibitors for Alzheimer's disease.

  14. Boehmenan, a lignan from Hibiscus ficulneus, showed Wnt signal inhibitory activity.

    Science.gov (United States)

    Shono, Takumi; Ishikawa, Naoki; Toume, Kazufumi; Arai, Midori A; Ahmed, Firoj; Sadhu, Samir K; Ishibashi, Masami

    2015-07-15

    The Wnt signal pathway modulates numerous biological processes, and its aberrant activation is related to various diseases. Therefore, inhibition of the Wnt signal may provide an effective (or efficient) strategy for these diseases. Cell-based luciferase assay targeting the Wnt signal (TOP assay) revealed that Hibiscus ficulneus extract inhibited the Wnt signal. The activity-guided isolation of the MeOH extract of H. ficulneus stems yielded four known (1-4) lignans along with myriceric acid (5). Compounds 1-4 potently inhibited the Wnt signal with TOPflash IC50 values of 1.0, 4.5, 6.3, and 1.9 μM, respectively. Compound 1 exhibited cytotoxicity against both Wnt-dependent (HCT116) and Wnt-independent (RKO) cells. Western blot analysis showed that 1 decreased the expression of full, cytosolic and nuclear β-catenin along with c-myc in STF/293 cells. Our results suggested that 1 may have inhibited the Wnt signal by decreasing β-catenin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. HPLC based activity profiling for 5-lipoxygenase inhibitory activity in Isatis tinctoria leaf extracts.

    Science.gov (United States)

    Oberthür, C; Jäggi, R; Hamburger, M

    2005-06-01

    In the pursuit of the anti-inflammatory constituents in lipophilic woad extracts, the 5-lipoxygenase (5-LOX) inhibitory activity was investigated by HPLC-based activity profiling. In a low-resolution profiling, two time windows with peaks of activity were found. The first coincided with tryptanthrin, a known dual inhibitor of cyclooxygenase-2 (COX-2) and 5-LOX, whereas the major inhibitory fraction was towards the end of the HPLC run. The active fractions were profiled in a peak-resolved manner, and the compounds analyzed by LC-MS, GC and TLC. The activity in the lipophilic fractions of the Isatis extract could be linked to an unsaturated fatty acid, alpha-linolenic acid.

  16. Bistability Analysis of Excitatory-Inhibitory Neural Networks in Limited-Sustained-Activity Regime

    International Nuclear Information System (INIS)

    Ni Yun; Wu Liang; Wu Dan; Zhu Shiqun

    2011-01-01

    Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors. These results may suggest one possible neuronal information processing by only tuning time scales. (interdisciplinary physics and related areas of science and technology)

  17. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    Science.gov (United States)

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  18. New polyacetylenes glycoside from Eclipta prostrate with DGAT inhibitory activity.

    Science.gov (United States)

    Meng, Xiao; Li, Ban-Ban; Lin, Xin; Jiang, Yi-Yu; Zhang, Le; Li, Hao-Ze; Cui, Long

    2018-06-08

    One new polyacetylene glycoside eprostrata Ⅰ (1), together with seven known compounds (2-8), were isolated from Eclipta prostrata. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated inhibitory activity on DGAT in an in vitro assay. Compounds 1-8 were found to exhibit inhibitory activity of DGAT1 with IC 50 values ranging from 74.4 ± 1.3 to 101.1 ± 1.1 μM.

  19. Alkaloids from the leaves of Uncaria rhynchophylla and their inhibitory activity on NO production in lipopolysaccharide-activated microglia.

    Science.gov (United States)

    Yuan, Dan; Ma, Bin; Wu, Chunfu; Yang, Jingyu; Zhang, Lijia; Liu, Suiku; Wu, Lijun; Kano, Yoshihiro

    2008-07-01

    Two new isomeric alkaloids, 18,19-dehydrocorynoxinic acid B (1) and 18,19-dehydrocorynoxinic acid (2), were isolated from the CHCl3 extract of the leaves of Uncaria rhynchophylla, together with four known rhynchophylline-type alkaloids, corynoxeine (3), isocorynoxeine (4), rhynchophylline (5), and isorhynchophylline (6), and an indole alkaloid glucoside, vincoside lactam (7). The structures of compounds 1 and 2 were elucidated by spectroscopic methods including UV, IR, HREIMS, 1D and 2D NMR, and CD experiments. The activity assay showed that compounds 3-6, with a C-16 carboxylic ester group, and 7 exhibited inhibitory activity on lipopolysaccharide (LPS)-induced NO release in primary cultured rat cortical microglia (IC 50: 13.7-19.0 microM). However, only weak inhibitory activity was observed for compounds 1 and 2, with a C-16 carboxylic acid group (IC 50: >100 microM).

  20. In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran

    2012-12-01

    Full Text Available The primary objective of this study was to investigate the aldose reductase inhibitory activity of flavonoids using in silico docking studies. In this perspective, flavonoids like biochanin, butein, esculatin, fisetin and herbacetin were selected. Epalrestat, a known aldose reductase inhibitor was used as the standard. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -9.33 kcal/mol to -7.23 kcal/mol when compared with that of the standard (-8.73 kcal/mol. Inhibition constant (144.13 µM to 4.98 µM and intermolecular energy (-11.42 kcal/mol to -7.83 kcal/mol of the flavonoids also coincide with the binding energy. All the selected flavonoids contributed aldose reductase inhibitory activity because of its structural properties. These molecular docking analyses could lead to the further development of potent aldose reductase inhibitors for the treatment of diabetes.

  1. Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors?

    Science.gov (United States)

    Truman, Penelope; Grounds, Peter; Brennan, Katharine A

    2017-03-01

    Monoamine oxidase inhibition is significant in smokers, but it is still unclear how the inhibition that is seen in the brains and bodies of smokers is brought about. Our aim was to test the contribution of the harman and norharman in tobacco smoke to MAO-A inhibition from tobacco smoke preparations, as part of a re-examination of harman and norharman as the cause of the inhibition of MAO-A inhibition in the brain. Tobacco smoke particulate matter and cigarette smoke particulate matter were prepared and the amounts of harman and norharman measured. The results were compared with the total monoamine oxidase-A inhibitory activity. At a nicotine concentration of 0.6μM (a "physiological" concentration in blood) the total monoamine oxidase-A inhibitory activity measured in these samples was sufficient to inhibit the enzyme by approximately 10%. Of this inhibitory activity, only a small proportion of the total was found to be due to harman and norharman. These results show that harman and norharman provide only a moderate contribution to the total monoamine oxidase-A inhibitory activity of tobacco smoke, perhaps under 10%. This suggests that other inhibitors (either known or unknown) may be more significant contributors to total inhibitory activity than has yet been established, and deserve closer examination. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  3. Antioxidant, Iron Chelating and Tyrosinase Inhibitory Activities of Extracts from Talinum triangulare Leach Stem

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Amorim

    2013-07-01

    Full Text Available The aim of this work is to evaluate the antioxidant activity against the radical species DPPH, the reducing capacity against Fe II ions, and the inhibitory activity on the tyrosinase enzyme of the T. triangulare. Hydromethanolic crude extract provided two fractions after the liquid/liquid partition with chloroform. The Folin-Ciocalteu method determined the total phenolic content of the crude extract (CE and the hydromethanolic fraction (Fraction 1, resulting in a concentration of 0.5853 g/100 g for Fraction 1, and 0.1400 g/100 g for the CE. Taking into account the results of the DPPH, the free radical scavenging capacity was confirmed. The formation of complexes with Fe II ions was evaluated by UV/visible spectrometry; results showed that CE has complexing power similar to the positive control (Gingko biloba extract.The inhibitory capacity of samples against the tyrosinase enzyme was determined by the oxidation of L-DOPA, providing IC50 values of 13.3 μg·mL−1 (CE and 6.6 μg·mL−1 (Fraction 1. The values indicate that Fraction 1 was more active and showed a higher inhibitory power on the tyrosinase enzyme than the ascorbic acid, used as positive control. The hydromethanolic extract of T. triangulare proved to have powerful antioxidant activity and to inhibit the tyrosinase enzyme; its potential is increased after the partition with chloroform.

  4. Identification of diphtheria toxin R domain mutants with enhanced inhibitory activity against HB-EGF.

    Science.gov (United States)

    Suzuki, Keisuke; Mizushima, Hiroto; Abe, Hiroyuki; Iwamoto, Ryo; Nakamura, Haruki; Mekada, Eisuke

    2015-05-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a ligand of EGF receptor, is involved in the growth and malignant progression of cancers. Cross-reacting material 197, CRM197, a non-toxic mutant of diphtheria toxin (DT), specifically binds to the EGF-like domain of HB-EGF and inhibits its mitogenic activity, thus CRM197 is currently under evaluation in clinical trials for cancer therapy. To develop more potent DT mutants than CRM197, we screened various mutant proteins of R domain of DT, the binding site for HB-EGF. A variety of R-domain mutant proteins fused with maltose-binding protein were produced and their inhibitory activity was evaluated in vitro. We found four R domain mutants that showed much higher inhibitory activity against HB-EGF than wild-type (WT) R domain. These R domain mutants suppressed HB-EGF-dependent cell proliferation more effectively than WT R domain. Surface plasmon resonance revealed their higher affinity to HB-EGF than WT R domain. CRM197(R460H) carrying the newly identified mutation showed increased cell proliferation inhibitory activity and affinity to HB-EGF. These results suggest that CRM197(R460H) or other recombinant proteins carrying newly identified mutation(s) in the R domain are potential therapeutics targeting HB-EGF. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. Determination of a-glucosidase inhibitory activity from selected Fabaceae plants.

    Science.gov (United States)

    Dej-Adisai, Sukanya; Pitakbut, Thanet

    2015-09-01

    Nineteen plants from Fabaceae family, which were used in Thai traditional medicine for treatment of diabetes, were determined of α-glucosidase inhibitory activity via enzymatic reaction. In this reaction, α-glucosidase was used as enzyme, which, reacted with the substrate, p-nitrophenol-D-glucopyranoside (pNPG). After that the product, p-nitro phenol (pNP) will be occurred and observed the yellow colour at 405 nm. In this study, acarbose was used as positive standard which, inhibited this enzyme with IC₅₀ as 331 ± 4.73 μg/ml. Caesalpinia pulcherrima leaves showed the highest activity with IC₅₀ as 436.97 ± 9.44 μg/ml. Furthermore, Bauhinia malabarica leaves presented moderately activity with IC₅₀ as 745.08 ± 11.15 μg/ml. However, the other plants showed mild to none activity of α-glucosidase inhibition. Accordingly, this study can support anti-diabetes of these plants in traditional medicine and it will be the database of the biological activity of Fabaceae plant.

  6. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus.

    Science.gov (United States)

    Chen, Yongfu; Li, Changkun; Xue, Jiangang; Kwok, Lai-yu; Yang, Jie; Zhang, Heping; Menghe, Bilige

    2015-08-01

    Hypertension affects up to 30% of the adult population in most countries. It is a known risk factor for cardiovascular diseases, including coronary heart disease, peripheral artery disease, and stroke. Owing to the increased health awareness of consumers, the application of angiotensin-converting enzyme (ACE)-inhibitory peptides produced by Lactobacillushelveticus to prevent or control high blood pressure has drawn wide attention. A total of 59 L. helveticus strains were isolated from traditional fermented dairy products and the ACE-inhibitory activity of the fermented milks produced with the isolated microorganisms was assayed. The ACE-inhibitory activity of 38 L. helveticus strains was more than 50%, and 3 strains (IMAU80872, IMAU80852, and IMAU80851) expressing the highest ACE-inhibitory activity were selected for further studies. Particularly, the gastrointestinal protease tolerance and thermostability of the ACE-inhibitory activity in the fermented milks were assessed. Based on these 2 criteria, IMAU80872 was found to be superior over the other 2 strains. Furthermore, IMAU80872 exhibited a high in vitro ACE-inhibitory activity at the following fermentation conditions: fermentation temperature at 40°C, inoculation concentration of 1×10(6) cfu/mL, and fermentation for 18h. Finally, by using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, we observed changes of the metabolome along the milk fermentation process of IMAU80872. Furthermore, 6 peptides were identified, which might have ACE-inhibitory activity. In conclusion, we identified a novel ACE-inhibitory L. helveticus strain suitable for the production of fermented milk or other functional dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of the Stability of the Total Antioxidant Capacity, Polyphenol Contents, and Starch Hydrolase Inhibitory Activities of Kombucha Teas Using an In Vitro Model of Digestion

    Directory of Open Access Journals (Sweden)

    Mindani I. Watawana

    2015-01-01

    Full Text Available The objective of this study was to evaluate and compare antioxidant and starch hydrolase inhibitory activity of three different types of Kombucha beverages prepared by three pellicles with different microbial compositions. The fermentation process was carried out for 7 days and the assessments of antioxidant and starch hydrolase inhibitory activities as well as tea phenolic compounds were carried out. These parameters were also evaluated after subjecting the final fermented samples to gastric and duodenal digestion in an in vitro digestion model. The pH had a statistically significant decrease during the period of fermentation. The total phenolics content and antioxidant activities had increased during the fermentation process as well as when subjected to digestion. The starch hydrolase inhibitory activities also increased in a similar manner during the different phases. The α-amylase and α-glucosidase inhibitory activities showed statistically significant increases (P<0.05 as the fermentation progressed, while an increase was observed after being subjected to pancreatic and duodenal digestion as well. All three types of tea showed a higher α-amylase inhibitory activity than α-glucosidase inhibitory activity.

  8. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity.

    Science.gov (United States)

    Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio

    2018-04-10

    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.

  9. Inhibitory Effects of Standardized Extracts of Phyllanthus amarus and Phyllanthus urinaria and Their Marker Compounds on Phagocytic Activity of Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Yuandani

    2013-01-01

    Full Text Available The standardized methanol extracts of Phyllanthus amarus and P. urinaria, collected from Malaysia and Indonesia, and their isolated chemical markers, phyllanthin and hypophyllanthin, were evaluated for their effects on the chemotaxis, phagocytosis and chemiluminescence of human phagocytes. All the plant extracts strongly inhibited the migration of polymorphonuclear leukocytes (PMNs with the Malaysian P. amarus showing the strongest inhibitory activity (IC50 value, 1.1 µg/mL. There was moderate inhibition by the extracts of the bacteria engulfment by the phagocytes with the Malaysian P. amarus exhibiting the highest inhibition (50.8% of phagocytizing cells. The Malaysian P. amarus and P. urinaria showed strong reactive oxygen species (ROS inhibitory activity, with both extracts exhibiting IC50 value of 0.7 µg/mL. Phyllanthin and hypophyllanthin exhibited relatively strong activity against PMNs chemotaxis, with IC50 values slightly lower than that of ibuprofen (1.4 µg/mL. Phyllanthin exhibited strong inhibitory activity on the oxidative burst with an IC50 value comparable to that of aspirin (1.9 µg/mL. Phyllanthin exhibited strong engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for neutrophils and monocytes, respectively. The strong inhibitory activity of the extracts was due to the presence of high amounts of phyllanthin and hypophyllanthin although other constituents may also contribute.

  10. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    African Journals Online (AJOL)

    Aldose Reductase Inhibitory and Antiglycation Activities of Four Medicinal Plant Standardized Extracts and Their Main Constituents for the Prevention of ... levels in galactosemic condition by using reverse phase high pressure liquid chromatography (RP-HPLC) and gas liquid chromatography (GLC) was determined.

  11. Nanocapsular Dispersion of Cinnamaldehyde for Enhanced Inhibitory Activity against Aflatoxin Production by Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Hongbo Li

    2015-04-01

    Full Text Available Cinnamaldehyde (CA is marginally soluble in water, making it challenging to evenly disperse it in foods, and resulting in lowered anti-A. flavus efficacy. In the present study, nano-dispersed CA (nano-CA was prepared to increase its aqueous solubility. Free and nano-dispersed CA were compared in terms of their inhibitory activity against fungal growth and aflatoxin production of A. flavus both in Sabouraud Dextrose (SD culture and in peanut butter. Our results indicated that free CA inhibited the mycelia growth and aflatoxin production of A. flavus with a minimal inhibitory concentration (MIC value of 1.0 mM, but promoted the aflatoxin production at some concentrations lower than the MIC. Nano-CA had a lower MIC value of 0.8 mM against A. flavus, and also showed improved activity against aflatoxin production without the promotion at lower dose. The solidity of peanut butter had an adverse impact on the antifungal activity of free CA, whereas nano-dispersed CA showed more than 2-fold improved activity against the growth of A. flavus. Free CA still promoted AFB1 production at the concentration of 0.25 mM, whereas nano-CA showed more efficient inhibition of AFB1 production in the butter.

  12. Trypsin inhibitory activity of artemisinin and its biotransformed product

    International Nuclear Information System (INIS)

    Shahwar, D.; Raza, M.A.

    2013-01-01

    Summary: Artemisinin (1 ), a sesquiterpene lactone is an important constituent of anti-malarial drugs. In the present study, it was extracted from aerial parts of Artemisia roxburghiana Besser. Biotransformation of artemisinin ( 1 ) was carried out in the culture of Aspergillus niger GC-4 which yielded 5-hydroxy artemisinin (2 ) The structures of 1-2 were confirmed through spectral studies. Both compounds were screened against trypsin using colorimetric method. The biotransformed product 2 showed significant protease inhibitory activity with 53.5 +- 1.6% inhibition and IC/sub 50/ = 0.29 +- 0.02 mM as compared to artemisinin (20.4 +- 0.3% inhibition). (author)

  13. New 5-deoxyflavonoids and their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) activity

    DEFF Research Database (Denmark)

    Nguyen, Phi Hung; Dao, Trong Tuan; Kim, Jayeon

    2011-01-01

    .9 ± 1.6 to 19.2 ± 1.1 μM), while compounds (3, 5, and 9) with 2,2-dimethylpyrano ring showed less inhibitory effect (IC₅₀ 22.6 ± 2.3 to 72.9 ± 9.7 μM). These results suggest that prenyl and methoxy groups may be responsible for the increase on the activity of 5-deoxyflavonoids against PTP1B......, but the presence of 2,2-dimethylpyrano ring on the B ring may be induced the decrease of PTP1B inhibitory activity....

  14. Description of two Enterococcus strains isolated from traditional Peruvian artisanal-produced cheeses with a bacteriocin-like inhibitory activity

    Directory of Open Access Journals (Sweden)

    Aguilar Galvez A.

    2009-01-01

    Full Text Available The aim of this work was to isolate and to characterize strains of lactic acid bacteria (LAB with bacteriocin-like inhibitory activity from 27 traditional cheeses artisanal-produced obtained from different Peruvian regions. Twenty Gram+ and catalasenegative strains among 2,277 isolates exhibited bacteriocin-like inhibitory activity against Listeria monocytogenes CWBIB2232 as target strain. No change in inhibitory activity was observed after organic acid neutralization and treatment with catalase of the cell-free supernatant (CFS. The proteinic nature of the antimicrobial activity was confirmed for the twenty LAB strains by proteolytic digestion of the CFS. Two strains, CWBI-B1431 and CWBI-B1430, with the best antimicrobial activity were selected for further researches. These strains were taxonomically identified by phenotypic and genotypic analyses as Enterococcus mundtii (CWBI-B1431 and Enterococcus faecium (CWBI-B1430. The two strains were sensitive to vancomycin (MIC 2 μg.ml-1 and showed absence of haemolysis.

  15. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  16. Chemical Composition and Enzymes Inhibitory, Brine Shrimp Larvae Toxicity, Antimicrobial and Antioxidant Activities of Caloplaca biatorina

    Directory of Open Access Journals (Sweden)

    Tahereh Valadbeigi

    2016-10-01

    Full Text Available Background This study evaluated the brine shrimp larvae toxicity and enzymes inhibitory especially anti-diabetic potential of Caloplaca biatorina via in vitro inhibition of α-amylase and α-glucosidase using the methanol extracts. Also aldehyde oxidase and xanthine oxidase enzymes inhibitory, cytotoxicity, and antioxidant activities of the species were determined. Methods In this experimental study, different concentrations of the extracts (0.2, 5.0, 1 and 1.5 mg/mL were incubated with enzyme substrate solution and the percentage of enzyme inhibitory activity and IC50 was calculated. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. The toxicity of the extract was assessed using the brine shrimp lethality bioassay. The minimal inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined. High-performance liquid chromatography and Thin-layer chromatography analysis were evaluated. The data were analyzed by SPSS V.21 software. Results Parietin, Emodin, 1,8-Dihydroxy-3-(hydroxymethyl-6- methoxy-9.10-anthracenedione and Rhein were identified. The extract showed strong α-glucosidase, aldehyde oxidase and xanthine oxidase inhibitory activities with IC50 value of 17.12, 40.09 and 11.02 µg/mL respectively. Also methanol extract displayed the strongest DPPH radical scavenging and brine shrimp toxicity (IC50 = 91.11 properties. Conclusions The result obtained suggests that the C. biatorina extract can be classified as non-toxic. Also, it revealed the antioxidant and antidiabetic potential of the lichen.

  17. Effects of Heat, pH, and Gamma Irradiation Treatments on Lipase Inhibitory Activity of Sargassum thunbergii Ethanol Extract

    International Nuclear Information System (INIS)

    Kim, D.H.; Kim, K.B.W.R.; Kim, M.J.; Sunwoo, C.; Jung, S.A.; Kim, H.J.; Jeong, D.H.; Ahn, D.H.; Kim, T.W.; Cho, Y.J.

    2012-01-01

    Inhibitory activity of Sagassum thunbergii (ST) against porcine pancreatic lipase was assessed after heat treatment, pH changes, and gamma irradiation. This analysis revealed that the ST ethanol extract exhibited high lipase inhibitory activity (37.37%) at 5 mg/mL. The ST ethanol extract was treated with heat at 60°C for 10, 30, and 60 min; 80 and 100°C for 10 and 20 min; and 121°C for 15 min, pH (2, 4, 6, 8 and 10) and γ -irradiation (3, 7 and 20 kGy). The lipase inhibitory activity of the ST ethanol extract increased in all heat treatments, especially at 121°C for 15 min (51.55%) compared with the control. With regard to pH stability, the ST ethanol extract showed no significant changes at pH 4 ~ 8, but somewhat decreased inhibitory activity was revealed at pH 2 (26.25%) and 10 (29.93%). On the other hand, the ST ethanol extract was not affected by γ -irradiation treatment conditions used in this study. These results suggest that ST has a potential role as a functional food agent. (author)

  18. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Science.gov (United States)

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC 50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  19. Molecular Descriptors Family on Vertex Cutting: Relationships between Acelazolamide Structures and their Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACĂ

    2009-12-01

    Full Text Available Aim: To investigate the relationship between the structural information of acetazolamides and their inhibitory activity on carbonic anhydrase II. Material and Method: A sample of previously reported acetazolamides was studied. A pool of descriptors was calculated based on matrix representation and vertex cut in order to be included in the multiple linear regression analysis. The best performing model in terms of goodness-of-fit was analysed in order to assess its validity and reliability. The model was compared with previously reported models using a series of information and prediction criteria besides the Steiger’s Z test. Results: A model with a 99.77% determination coefficient proved to be the best performing model. The obtained model proved to have a less than 5% average of the absolute difference between the observed and the estimated inhibitory activity. The information and prediction criteria showed that the obtained model was better than the previously reported models. This conclusion is also sustained by the results of Steiger’s Z test (7.78; p = 3.66·10-15. Conclusion: The inhibitory activity on carbonic anhydrase II of acetazolamides proved to be of geometric and topologic nature and depended on the compounds’ melting point, relative atomic mass and atomic electronegativity.

  20. Two new lignans from Saururus chinensis and their DGAT inhibitory activity.

    Science.gov (United States)

    Li, Na; Tuo, Zhen-Dong; Qi, Shi-Zhou; Xing, Shan-Shan; Lee, Hyun-Sun; Chen, Jian-Guang; Cui, Long

    2015-03-01

    Two new lignans were isolated from Saururus chinensis, along with eight known compounds. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1 and DGAT2. Among them, compounds 2, 3, 5 and 7 were found to exhibit selective inhibitory activity on DGAT1 with IC50 values ranging from 44.3±1.5 to 87.5±1.3μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The cartilage protein melanoma inhibitory activity contributes to inflammatory arthritis

    NARCIS (Netherlands)

    Yeremenko, Nataliya; Härle, Peter; Cantaert, Tineke; van Tok, Melissa; van Duivenvoorde, Leonie M.; Bosserhoff, Anja; Baeten, Dominique

    2014-01-01

    Melanoma inhibitory activity (MIA) is a small chondrocyte-specific protein with unknown function. MIA knockout mice (MIA(-/-)) have a normal phenotype with minor microarchitectural alterations of cartilage. Our previous study demonstrated that immunodominant epitopes of MIA are actively presented in

  2. Preliminary phytochemical screening and alpha-glucosidase inhibitory activity of Philippine taro (Colocasia esculenta (L.) Schott var. PSB-VG #9)

    Science.gov (United States)

    Lebosada, Richemae Grace R.; Librando, Ivy L.

    2017-01-01

    The study was conducted to determine the anti-hyperglycemic property in terms of α-glucosidase inhibitory activity of the various parts (corm, leaf and petiole) of Colocasia esculenta (L.) Schott var. PSB-VG #9. Each of the plant parts were extracted with 95% ethanol and concentrated using a rotary evaporator at 40 °C. The crude extracts were screened for the presence of alkaloids, flavonoids, glycosides and saponins using Thin Layer Chromatography. The α-glucosidase inhibitory activity of the crude extracts (50 mg/L) were assayed spectrophotometrically using a microplate reader. The results of the phytochemical screening revealed the presence of alkaloids, flavonoids, and saponins in the leaf part while flavonoids and saponins were detected in the petiole and only saponins were present in the corm. The assay showed that the percentage α-glucosidase inhibition of the 50 mg/L ethanolic crude extract of the corm, leaves and petiole of C. esculenta are 68.03, 71.64 and 71.39%, respectively. Statistical analysis shows significant differences in the α-glucosidase inhibition among the various plant parts. It can be concluded that the ethanolic crude extracts of the different parts of C. esculenta (L.) Schott var. PSB-VG #9 exhibited inhibitory activity against α-glucosidase and the presence of phytochemicals like alkaloids, flavonoids and saponins may have contributed greatly to the inhibitory activity of the plant extract and can be further subjected for isolation of the therapeutically active compounds with antidiabetes potency.

  3. Antioxidant, xanthine oxidase and lipoxygenase inhibitory activities and phenolics of Bauhinia rufescens Lam. (Caesalpiniaceae).

    Science.gov (United States)

    Compaoré, M; Lamien, C E; Lamien-Meda, A; Vlase, L; Kiendrebeogo, M; Ionescu, C; Nacoulma, O G

    2012-01-01

    An aqueous acetone extract of the stem with the leaves of Bauhinia rufescens and its fractions were analysed for their antioxidant and enzyme-inhibitory activities, as well as their phytochemical composition. For measurement of the antioxidant activities, the 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzoline-6-sulphonate) and the ferric-reducing methods were used. The results indicated that the aqueous acetone, its ethyl acetate and n-butanol fractions possessed considerable antioxidant activity. Further, the xanthine oxidase and lipoxygenase inhibitory assays showed that the n-butanol fraction possessed compounds that can inhibit both these enzymes. In the phytochemical analysis, the ethyl acetate and the n-butanol fractions of the aqueous acetone extract were screened by HPLC-MS for their phenolic content. The results indicated the presence of hyperoside, isoquercitrin, rutin quercetin, quercitrin, p-coumaric and ferulic acids in the non-hydrolysed fractions. In the hydrolysed fractions, kaempferol, p-coumaric and ferulic acids were identified.

  4. Effects of reward and punishment on brain activations associated with inhibitory control in cigarette smokers.

    Science.gov (United States)

    Luijten, Maartje; O'Connor, David A; Rossiter, Sarah; Franken, Ingmar H A; Hester, Robert

    2013-11-01

    Susceptibility to use of addictive substances may result, in part, from a greater preference for an immediate small reward relative to a larger delayed reward or relative insensitivity to punishment. This functional magnetic resonance imaging (fMRI) study examined the neural basis of inhibiting an immediately rewarding stimulus to obtain a larger delayed reward in smokers. We also investigated whether punishment could modulate inhibitory control. The Monetary Incentive Go/NoGo (MI-Go/NoGo) task was administered that provided three types of reward outcomes contingent upon inhibitory control performance over rewarding stimuli: inhibition failure was either followed by no monetary reward (neutral condition), a small monetary reward with immediate feedback (reward condition) or immediate monetary punishment (punishment condition). In the reward and punishment conditions, successful inhibitory control resulted in larger delayed rewards. Community sample of smokers in the Melbourne (Australia) area. Nineteen smokers were compared with 17 demographically matched non-smoking controls. Accuracy, reaction times and brain activation associated with the MI-Go/NoGo task. Smokers showed hyperactivation in the right insula (P rewarding stimulus to obtain a larger delayed reward, and during inhibition of neutral stimuli. Group differences in brain activity were not significant in the punishment condition in the right insula and dorsolateral prefrontal cortex, most probably as a result of increased activation in non-smoking controls. Compared with non-smokers, smokers showed increased neural activation when resisting immediately rewarding stimuli and may be less sensitive to punishment as a strategy to increase control over rewarding stimuli. © 2013 Society for the Study of Addiction.

  5. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb.

    Science.gov (United States)

    Liu, Xi; Zhu, Liancai; Tan, Jun; Zhou, Xuemei; Xiao, Ling; Yang, Xian; Wang, Bochu

    2014-01-10

    In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. These results imply that the FC and the TC could be

  6. LC-MS guided isolation of diterpenoids from Sapium insigne with α-glucosidase inhibitory activities.

    Science.gov (United States)

    Yan, De-Xiu; Geng, Chang-An; Yang, Tong-Hua; Huang, Xiao-Yan; Li, Tian-Ze; Gao, Zhen; Ma, Yun-Bao; Peng, Hua; Zhang, Xue-Mei; Chen, Ji-Jun

    2018-04-08

    Ten new (1-10) and ten known (11-20) diterpenoids involving ent-atisane, ent-seco-atisane, ent-kaurane and ent-seco-kaurane types were isolated from Sapium insigne under the guidance of LCMS-IT-TOF analyses. Their structures were characterized by extensive spectroscopic analyses (HRESIMS, UV, IR, 1D and 2D NMR). A putative biosynthetic pathway was proposed for ent-seco-atisane diterpenoids. Their inhibitory activities on α-glucosidase in vitro were tested for the first time. Compound 4 showed moderate inhibitory effect on α-glucosidase with an IC 50 value of 0.34 mM via a noncompetitive inhibition mechanism (K i  = 0.27 mM). The preliminary structure-activity relationships of the ent-atisane diterpenoids inhibiting α-glucosidase were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Chemical Constituents from Leaves of Hibiscus syriacus and Their α-Glucosidase Inhibitory Activities].

    Science.gov (United States)

    Wei, Qiang; Ji, Xiao-ying; Xu, Fei; Li, Qian-rong; Yin, Hao

    2015-05-01

    To study the chemical constituents from Hibiscus syriacus leaves and their α-glucosidase inhibitory activities. Column chromatography including macroporous resins, silica gel and Sephadex LH-20 were used for the isolation and purification of all compounds. Spectroscopic methods including physical and chemical properties, 1H-NMR and 13C-NMR were used for the identification of structures. Their α-glucosidase inhibitory activities were detected by a 96-well microplate. 15 compounds were isolated and identified as β-sitosterol(1), β-daucostero (2), β-amyrin (3), oleanolic acid (4), stigmast-4-en-3-one (5), friedelin (6), syriacusin A (7), kaempferol (8), isovitexin (9), vitexin (10), apigenin (11), apigenin-7-O-β-D-glucopyranoside (12), luteolin-7-O-β-D-glucopyranoside (13), vitexin-7-O-β-D-glucopyranoside (14) and rutin (15). All the compounds are isolated from the leaves of Hibiscus syriacus for the first time. Taking acarbose as positive control, the α-glucosidase inhibitory activities of 15 compounds were evaluated. Compounds 7 and 9 have shown strong α-glucosidase inhibitory activities with IC50 of 39.03 ± 0.38 and 32.12 ± 0.62 mg/L, inhibition ratio of 94.95% and 97.15%, respectively.

  8. Inhibitory effects of Citrus hassaku extract and its flavanone glycosides on melanogenesis.

    Science.gov (United States)

    Itoh, Kimihisa; Hirata, Noriko; Masuda, Megumi; Naruto, Shunsuke; Murata, Kazuya; Wakabayashi, Keitaro; Matsuda, Hideaki

    2009-03-01

    The 50% ethanolic extract (CH-ext) obtained from the unripe fruit of Citrus hassaku exhibited significant tyrosinase inhibitory activity. The CH-ext showed antioxidant activity, such as superoxide dismutase (SOD)-like activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Activity-guided fractionation of the CH-ext indicated that flavanone glycoside-rich fractions showed potent tyrosinase inhibitory activity. Further examination revealed that the tyrosinase inhibitory activity and antioxidant activity of the CH-ext were attributable to naringin and neohesperidin, respectively. The CH-ext showed inhibition of melanogenesis without any effects on cell proliferation in cultured murine B16 melanoma cells after glucosamine exposure. The topical application of the CH-ext to the dorsal skin of brownish guinea pigs showed in vivo preventive effects against UVB-induced pigmentation.

  9. Antibacterial and EGFR-Tyrosine Kinase Inhibitory Activities of Polyhydroxylated Xanthones from Garcinia succifolia

    Directory of Open Access Journals (Sweden)

    Susawat Duangsrisai

    2014-11-01

    Full Text Available Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae led to the isolation of 1,5-dihydroxyxanthone (1, 1,7-dihydroxyxanthone (2, 1,3,7-trihydroxyxanthone (3, 1,5,6-trihydroxyxanthone (4, 1,6,7-trihydroxyxanthone (5, and 1,3,6,7-tetrahydroxyxanthone (6. All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633 and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1, as well as for their epidermal growth factor receptor (EGFR of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4, 1,6,7-trihydroxy-(5, and 1,3,6,7-tetrahydroxyxanthones (6 exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2 showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1 and 1,7-dihydroxyxanthone (2 were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  10. Flavor Enhancer From Catfish (Clarias batrachus) Bekasam Powder and Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activity in Various Dishes

    Science.gov (United States)

    Lestari, Yanesti N.; Murwani, Retno; Agustini, Tri W.

    2018-02-01

    Flavor enhancer is characterized by high glutamic acid content and it can be obtained from fermented food such as Bekasam. Fermented food had inhibitory effect on Angiotensin-I-Converting Enzyme (ACE) activity which is advantageous for hypertension. However, such activity was not known to sustain in food system. The aim of this research was to study addition of flavour enhancer from Catfish Bekasam Powder (CBP) in various food systems and to determine the ACE inhibitory (ACEI) activity in the food system. Four food system consisted of carrot, champignon, and chicken meat dishes were boiled in water and added with CBP or MSG. Each food system was added with graded level of CBP (0%; 0.5%; 0.8%; 1.1%; and 1,4%) and for control monosodium glutamate (MSG) was used. ACEI activity in each food system and organoleptic test using multiple comparison differentiation on 15 semi-trained panellists were determined. The results showed that there were fluctuation of ACEI activity in the carrot, champignon, and chicken meat dishes (p=0.017; 0.043; and 0.032). The MSG containing dishes showed the lowest ACEI activity. Addition of graded level of CBP on carrot, champignon, and chicken meat dishes were directly proportional to glutamic acid content but inversely proportional to ACEI activity (pacid content but reduced ACE-inhibitory activity significantly (p<0.05). Comparing CBP to MSG addition in champignon dish revealed that increasing level of CBP increased the flavour preference of the panellists. On the contrary the higher the addition CBP in noodle and chicken meat dishes the worse were the flavour score (p<0.05). It can be concluded that the addition of CBP as flavour enhancer on various dishes can deliver better flavour and ACE-inhibitory activity than the addition of commercial MSG.

  11. Mururins A-C, three new lignoids from Brosimum acutifolium and their protein kinase inhibitory activity.

    Science.gov (United States)

    Takashima, Junko; Asano, Shoichi; Ohsaki, Ayumi

    2002-07-01

    Two new flavonolignans, mururins A and B ( 1 and 2), and a new lignan, mururin C ( 3), were isolated from the bark of Brosimum acutifolium Huber together with three known lignans. Their structures were elucidated by spectroscopic means and chemical modifications. They were tested for protein kinase A (PKA) and protein kinase C (PKC) inhibitory activity. Mururin A showed 3 % and 63 % inhibition to PKA and PKC, respectively, at 20 microM. Mururin B showed 58 % and 38 % inhibition, respectively. Mururin C did not have significant activity.

  12. [Evaluate drug interaction of multi-components in Morus alba leaves based on α-glucosidase inhibitory activity].

    Science.gov (United States)

    Ji, Tao; Su, Shu-Lan; Guo, Sheng; Qian, Da-Wei; Ouyang, Zhen; Duan, Jin-Ao

    2016-06-01

    Column chromatography was used for enrichment and separation of flavonoids, alkaloids and polysaccharides from the extracts of Morus alba leaves; glucose oxidase method was used with sucrose as the substrate to evaluate the multi-components of M. alba leaves in α-glucosidase inhibitory models; isobole method, Chou-Talalay combination index analysis and isobolographic analysis were used to evaluate the interaction effects and dose-effect characteristics of two components, providing scientific basis for revealing the hpyerglycemic mechanism of M. alba leaves. The components analysis showed that flavonoid content was 5.3%; organic phenolic acids content was 10.8%; DNJ content was 39.4%; and polysaccharide content was 18.9%. Activity evaluation results demonstrated that flavonoids, alkaloids and polysaccharides of M. alba leaves had significant inhibitory effects on α-glucosidase, and the inhibitory rate was increased with the increasing concentration. Alkaloids showed most significant inhibitory effects among these three components. Both compatibility of alkaloids and flavonoids, and the compatibility of alkaloids and polysaccharides demonstrated synergistic effects, but the compatibility of flavonoids and polysaccharides showed no obvious synergistic effects. The results have confirmed the interaction of multi-components from M. alba leaves to regulate blood sugar, and provided scientific basis for revealing hpyerglycemic effectiveness and mechanism of the multi-components from M. alba leaves. Copyright© by the Chinese Pharmaceutical Association.

  13. Medicinal Plants and Their Inhibitory Activities against Pancreatic Lipase: A Review

    Directory of Open Access Journals (Sweden)

    Atefehalsadat Seyedan

    2015-01-01

    Full Text Available Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity.

  14. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity.

    Science.gov (United States)

    Ahn, Jong Hoon; Shin, Eunjin; Liu, Qing; Kim, Seon Beom; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-01-01

    Pancreatic lipase digests dietary fats by hydrolysis, which is a key enzyme for lipid absorption. Therefore, reduction of fat absorption by the inhibition of pancreatic lipase is suggested to be a therapeutic strategy for obesity. From the EtOAc-soluble fraction of the stem barks of Fraxinus rhynchophylla (Oleaceae), four secoiridoids such as ligstroside (1), oleuropein (2), 2"-hydroxyoleuropein (3) and hydroxyframoside B (4) were isolated. The inhibitory activity of these compounds on pancreatic lipase was assessed using porcine pancreatic lipase as an in vitro assay system. Compound 4 showed the strongest inhibition on pancreatic lipase, which followed by compounds 1-3. In addition, compound 4 exerted inhibitory effect on pancreatic lipase in a mixed mechanism of competitive and noncompetitive manner. Taken together, F. rhynchophylla and its constituents might be beneficial to obesity.

  15. Proteolytic and ACE-inhibitory activities of probiotic yogurt containing non-viable bacteria as affected by different levels of fat, inulin and starter culture.

    Science.gov (United States)

    Shakerian, Mansour; Razavi, Seyed Hadi; Ziai, Seyed Ali; Khodaiyan, Faramarz; Yarmand, Mohammad Saeid; Moayedi, Ali

    2015-04-01

    In this study, the effects of fat (0.5 %, 3.2 % and 5.0 %), inulin (0.0 and 1.0 %) and starter culture (0.0 %, 0.5 %, 1.0 % and 1.5 %) on the angiotensin converting enzyme (ACE)-inhibitory activity of probiotic yogurt containing non-viable bacteria were assessed. Proteolytic activities of bacteria were also investigated. Yogurts were prepared either using a sole yogurt commercial culture including Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus or bifidobacterium animalis BB-12 and Lactobacillus acidophilus La5 in addition to yogurt culture. Relative degrees of proteolysis were found to be considerably higher in yogurt samples than UHT milk as the control. Both regular and probiotic yogurts showed considerable ACE-inhibitory activities. Results showed that degree of proteolysis was not influenced by different fat contents, while was increased by high concentration of starter culture (1.5 % w/w) and reduced by inulin (1 % w/w). ACE-inhibitory activities of yogurt were also negatively affected by the presence of inulin and high levels of fat (5 % w/w). Moreover, yogurt containing probiotic bacteria showed higher inhibitory against ACE in comparison to the yogurt prepared with non-probiotic strains.

  16. College Binge Drinking Associated with Decreased Frontal Activation to Negative Emotional Distractors during Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Julia E. Cohen-Gilbert

    2017-09-01

    Full Text Available The transition to college is associated with an increase in heavy episodic alcohol use, or binge drinking, during a time when the prefrontal cortex and prefrontal-limbic circuitry continue to mature. Traits associated with this immaturity, including impulsivity in emotional contexts, may contribute to risky and heavy episodic alcohol consumption. The current study used blood oxygen level dependent (BOLD multiband functional magnetic resonance imaging (fMRI to assess brain activation during a task that required participants to ignore background images with positive, negative, or neutral emotional valence while performing an inhibitory control task (Go-NoGo. Subjects were 23 college freshmen (seven male, 18–20 years who engaged in a range of drinking behavior (past 3 months’ binge episodes range = 0–19, mean = 4.6, total drinks consumed range = 0–104, mean = 32.0. Brain activation on inhibitory trials (NoGo was contrasted between negative and neutral conditions and between positive and neutral conditions using non-parametric testing (5000 permutations and cluster-based thresholding (z = 2.3, p ≤ 0.05 corrected. Results showed that a higher recent incidence of binge drinking was significantly associated with decreased activation of dorsolateral prefrontal cortex (DLPFC, dorsomedial prefrontal cortex (DMPFC, and anterior cingulate cortex (ACC, brain regions strongly implicated in executive functioning, during negative relative to neutral inhibitory trials. No significant associations between binge drinking and brain activation were observed for positive relative to neutral images. While task performance was not significantly associated with binge drinking in this sample, subjects with heavier recent binge drinking showed decreased recruitment of executive control regions under negative versus neutral distractor conditions. These findings suggest that in young adults with heavier recent binge drinking, processing of negative emotional

  17. Death and rebirth of neural activity in sparse inhibitory networks

    Science.gov (United States)

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  18. Effects of incentives, age, and behavior on brain activation during inhibitory control: A longitudinal fMRI study

    Directory of Open Access Journals (Sweden)

    David J. Paulsen

    2015-02-01

    Full Text Available We investigated changes in brain function supporting inhibitory control under age-controlled incentivized conditions, separating age- and performance-related activation in an accelerated longitudinal design including 10- to 22-year-olds. Better inhibitory control correlated with striatal activation during neutral trials, while Age X Behavior interactions in the striatum indicated that in the absence of extrinsic incentives, younger subjects with greater reward circuitry activation successfully engage in greater inhibitory control. Age was negatively correlated with ventral amygdala activation during Loss trials, suggesting that amygdala function more strongly mediates bottom-up processing earlier in development when controlling the negative aspects of incentives to support inhibitory control. Together, these results indicate that with development, reward-modulated cognitive control may be supported by incentive processing transitions in the amygdala, and from facilitative to obstructive striatal function during inhibitory control.

  19. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities

    Institute of Scientific and Technical Information of China (English)

    XIONG Jia; GRACE Mary H; ESPOSITO Debora; KOMARNYTSKY Slavko; WANG Fei; LILA Mary Ann

    2017-01-01

    The present study was designed to characterize the polyphenols isolated from Acacia mearnsii bark crude extract (B) and fractions (B1-B7) obtained by high-speed counter-current chromatography (HSCCC) and evaluate their anti-inflammatory and carbolytic enzymes (α-glucosidase and α-amylase) inhibitory activities.Fractions B4,B5,B6,B7 (total phenolics 850.3,983.0,843.9,and 572.5 mg·g-1,respectively;proanthocyanidins 75.7,90.5,95.0,and 44.8 mg·g-1,respectively) showed significant activities against reactive oxygen species (ROS),nitric oxide (NO) production,and expression of pro-inflammatory genes interleukin-lβ (IL-1β) and inducible nitric oxide synthase (iNOS) in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line RAW 264.7.All the extracts suppressed α-glucosidase and α-amylase activities,two primary enzymes responsible for carbohydrate digestion.A.mearnsii bark samples possessed significantly stronger inhibitory effects against α-glucosidase enzyme (IC50 of 0.4-1.4 tg·mL-1) than the pharmaceutical acarbose (IC50 141.8 μg·mL-1).B6 and B7 (IC5017.6 and 11.7 μg·mL-1,respectively) exhibited α-amylase inhibitory activity as efficacious as acarbose (IC50 15.4 μg·mL-1).Moreover,B extract,at 25 μg·mL-l,significantly decreased the non-mitochondrial oxidative burst that is often associated with inflammatory response in human monocytic macrophages.

  20. Biotransformation of isoimperatorin and imperatorin by Glomerella cingulata and beta-secretase inhibitory activity.

    Science.gov (United States)

    Marumoto, Shinsuke; Miyazawa, Mitsuo

    2010-01-01

    Biotransformation studies conducted on the furanocoumarins isoimperatorin (1) and imperatorin (3) have revealed that 1 was metabolized by Glomerella cingulata to give the corresponding reduced acid, 6,7-furano-5-prenyloxy hydrocoumaric acid (2), and 3 was transformed by G. cingulata to give the dealkylated metabolite, xanthotoxol (4) in high yields (83% and 81%), respectively. The structures of the new compound 2 have been established on the basis of spectral data. The metabolites 2 and 4 were tested for the beta-secretase (BACE1) inhibitory activity in vitro, and metabolite 2 slightly inhibited the beta-secretase activity with an IC(50) value of 185.6+/-6.8 microM. The metabolite 4 was less potent activity than compounds 1-3. In addition, methyl ester (2Me), methyl ether (2a) and methyl ester and ether (2aMe) of 2 were synthesized, and investigated for the ability to inhibit beta-secretase. Compound 2aMe exhibited the best beta-secretase inhibitory activity at the IC(50) value 16.2+/-1.2 microM and found to be the 2aMe showed competitive mode of inhibition against beta-secretase with K(i) value 11.3+/-2.8 microM. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    Directory of Open Access Journals (Sweden)

    Yeon Ja Choi

    Full Text Available Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel

  2. Chemical Constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and Its In Vitro α-Amilase and α-Glucosidase Inhibitory Activities.

    Science.gov (United States)

    Torres-Naranjo, María; Suárez, Alirica; Gilardoni, Gianluca; Cartuche, Luis; Flores, Paola; Morocho, Vladimir

    2016-11-02

    The phytochemical investigation of Muehlenbeckia tamnifolia , collected in Loja-Ecuador, led to the isolation of nine known compounds identified as: lupeol acetate ( 1 ); cis - p -coumaric acid ( 2 ); lupeol ( 3 ); β-sitosterol ( 4 ) trans - p -coumaric acid ( 5 ); linoleic acid ( 6 ) (+)-catechin ( 7 ); afzelin ( 8 ) and quercitrin ( 9 ). The structures of the isolated compounds were determined based on analysis of NMR and MS data, as well as comparison with the literature. The hypoglycemic activity of crude extracts and isolated compounds was assessed by the ability to inhibit α-amylase and α-glucosidase enzymes. The hexane extract showed weak inhibitory activity on α-amylase, with an IC 50 value of 625 µg·mL -1 , while the other extracts and isolated compounds were inactive at the maximum dose tested. The results on α-glucosidase showed more favorable effects; the hexanic and methanolic extracts exhibited a strong inhibitory activity with IC 50 values of 48.22 µg·mL -1 and 19.22 µg·mL -1 , respectively. Four of the nine isolated compounds exhibited strong inhibitory activity with IC 50 values below 8 µM, much higher than acarbose (377 uM). Linoleic acid was the most potent compound (IC 50 = 0.42 µM) followed by afzelin, (+)-catechin and quercitrin.

  3. α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum

    Directory of Open Access Journals (Sweden)

    Prachyaporn Inthongkaew

    Full Text Available ABSTRACT A methanol extract from the whole plant of Dendrobium formosum Roxb. ex Lindl., Orchidaceae, showed inhibitory potential against α-glucosidase and pancreatic lipase enzymes. Chromatographic separation of the extract resulted in the isolation of twelve phenolic compounds. The structures of these compounds were determined through analysis of NMR and HR-ESI-MS data. All of the isolates were evaluated for their α-glucosidase and pancreatic lipase inhibitory activities, as well as glucose uptake stimulatory effect. Among the isolates, 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (12 showed the highest α-glucosidase and pancreatic lipase inhibitory effects with an IC50 values of 126.88 ± 0.66 µM and 69.45 ± 10.14 µM, respectively. An enzyme kinetics study was conducted by the Lineweaver-Burk plot method. The kinetics studies revealed that compound 12 was a non-competitive inhibitor of α-glucosidase and pancreatic lipase enzymes. Moreover, lusianthridin at 1 and 10 µg/ml and moscatilin at 100 µg/ml showed glucose uptake stimulatory effect without toxicity on L6 myotubes. This study is the first report on the phytochemical constituents and anti-diabetic and anti-obesity activities of D. formosum.

  4. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Maira R. Segura-Campos

    2013-01-01

    Full Text Available Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%. Hydrophobic residues contributed substantially to the peptides’ inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (% ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 ( μg/mL from the 5–10 kDa fraction and F1 ( μg/mL from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry.

  5. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel's foot creeper leaves (Bauhinia vahlii).

    Science.gov (United States)

    Panda, Pritipadma; Dash, Priyanka; Ghosh, Goutam

    2018-03-01

    The present study is the first effort to a comprehensive evaluation of antityrosinase activity and chemometric analysis of Bauhinia vahlii. The experimental results revealed that the methanol extract of Bauhinia vahlii (BVM) possesses higher polyphenolic compounds and total antioxidant activity than those reported elsewhere for other more conventionally and geographically different varieties. The BVM contain saturated fatty acids such as hexadecanoic acid (10.15%), octadecanoic acid (1.97%), oleic acid (0.61%) and cis-vaccenic acid (2.43%) along with vitamin E (12.71%), α-amyrin (9.84%), methyl salicylate (2.39%) and β-sitosterol (17.35%), which were mainly responsible for antioxidant as well as tyrosinase inhibitory activity. Tyrosinase inhibitory activity of this extract was comparable to that of Kojic acid. These findings suggested that the B. vahlii leaves could be exploited as potential source of natural antioxidant and tyrosinase inhibitory agent, as well.

  6. Preliminary pharmacological studies on Eugenia uniflora leaves: xanthine oxidase inhibitory activity.

    Science.gov (United States)

    Schmeda-Hirschmann, G; Theoduloz, C; Franco, L; Ferro, E; de Arias, A R

    1987-11-01

    Eugenia uniflora is widely used in Paraguayan folk medicine. A hydroalcoholic extract of the leaves showed some central nervous system activity in hippocratic screening when given intraperitoneally, but little to no acute or subacute toxicity in doses up to 4200 mg/kg orally in BALB c mice. The LD50 of the extract was 220 mg/kg i.p. in mice. A decoction or infusion of the leaves is recommended for treating gout by native herbalists. The known flavonoids quercitrin, quercetin, myricitrin and myricetin were found to be responsible for the xanthine oxidase inhibitory action of the plant extract.

  7. Myostatin inhibitory region of fish (Paralichthys olivaceus) myostatin-1 propeptide.

    Science.gov (United States)

    Lee, Sang Beum; Kim, Jeong Hwan; Jin, Deuk-Hee; Jin, Hyung-Joo; Kim, Yong Soo

    2016-01-01

    Myostatin (MSTN) is a potent negative regulator of skeletal muscle growth, and its activity is suppressed by MSTN propeptide (MSTNpro), the N-terminal part of MSTN precursor cleaved during post-translational MSTN processing. The current study examined which region of flatfish (Paralichthys olivaceus) MSTN-1 propeptide (MSTN1pro) is critical for MSTN inhibition. Six different truncated forms of MSTN1pro containing N-terminal maltose binding protein (MBP) as a fusion partner were expressed in Escherichia coli, and partially purified by an affinity chromatography for MSTN-inhibitory activity examination. Peptides covering different regions of flatfish MSTN1pro were also synthesized for MSTN-inhibitory activity examination. A MBP-fused MSTN1pro region consisting of residues 45-100 had the same MSTN-inhibitory potency as the full sequence flatfish MSTN1pro (residues 23-265), indicating that the region of flatfish MSTN1pro consisting of residues 45-100 is sufficient to maintain the full MSTN-inhibitory capacity. A MBP-fused MSTN1pro region consisting of residues 45-80 (Pro45-80) also showed MSTN-inhibitory activity with a lower potency, and the Pro45-80 demonstrated its MSTN binding capacity in a pull-down assay, indicating that the MSTN-inhibitory capacity of Pro45-80 is due to its binding to MSTN. Flatfish MSTN1pro synthetic peptides covering residues 45-65, 45-70, and 45-80 demonstrated MSTN-inhibitory activities, but not the synthetic peptide covering residues 45-54, indicating that residues 45-65 of flatfish MSTN1pro are essential for MSTN inhibition. In conclusion, current study show that like the mammalian MSTNpro, the MSTN-inhibitory region of flatfish MSTN1pro resides near its N-terminus, and imply that smaller sizes of MSTNpro can be effectively used in various applications designed for MSTN inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yoichi Sunagawa

    2018-04-01

    Full Text Available The natural compound, curcumin (CUR, possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC and bisdemethoxycurcumin (BDMC are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy.Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure–activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy. Keywords: Curcumin, Demethoxycurcumin, Bisdemethoxycurcumin, p300, Cardiomyocyte hypertrophy

  9. Lactobacillus crispatus dominant vaginal microbiome is associated with inhibitory activity of female genital tract secretions against Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jeny P Ghartey

    Full Text Available Female genital tract secretions inhibit E. coli ex vivo and the activity may prevent colonization and provide a biomarker of a healthy microbiome. We hypothesized that high E. coli inhibitory activity would be associated with a Lactobacillus crispatus and/or jensenii dominant microbiome and differ from that of women with low inhibitory activity.Vaginal swab cell pellets from 20 samples previously obtained in a cross-sectional study of near-term pregnant and non-pregnant healthy women were selected based on having high (>90% inhibition or low (<20% inhibition anti-E. coli activity. The V6 region of the 16S ribosomal RNA gene was amplified and sequenced using the Illumina HiSeq 2000 platform. Filtered culture supernatants from Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis were also assayed for E. coli inhibitory activity.Sixteen samples (10 with high and 6 with low activity yielded evaluable microbiome data. There was no difference in the predominant microbiome species in pregnant compared to non-pregnant women (n = 8 each. However, there were significant differences between women with high compared to low E. coli inhibitory activity. High activity was associated with a predominance of L. crispatus (p<0.007 and culture supernatants from L. crispatus exhibited greater E. coli inhibitory activity compared to supernatants obtained from L. iners or G. vaginalis. Notably, the E. coli inhibitory activity varied among different strains of L. crispatus.Microbiome communities with abundant L. crispatus likely contribute to the E. coli inhibitory activity of vaginal secretions and efforts to promote this environment may prevent E. coli colonization and related sequelae including preterm birth.

  10. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    Science.gov (United States)

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Preparation of ACE Inhibitory Peptides from Mytilus coruscus Hydrolysate Using Uniform Design

    Directory of Open Access Journals (Sweden)

    Jin-Chao Wu

    2013-01-01

    Full Text Available The angiotensin-I-converting enzyme (ACE inhibitory peptides from mussel, Mytilus coruscus, were investigated and the variable factors, protease concentration, hydrolysis time, pH, and temperature, were optimized using Uniform Design, a new statistical experimental method. The results proved that the hydrolysate of alkali proteases had high ACE-inhibitory activity, especially the alkali protease E1. Optimization by Uniform Design showed that the best hydrolysis conditions for preparation of ACE-inhibitory peptides from Mytilus coruscus were protease concentration of 36.0 U/mL, hydrolysis time of 2.7 hours, pH 8.2, and Temperature at 59.5°C, respectively. The verification experiments under optimum conditions showed that the ACE-inhibitory activity (91.3% were agreed closely with the predicted activity of 90.7%. The amino acid composition analysis of Mytilus coruscus ACE-inhibitory peptides proved that it had high percent of lysine, leucine, glycine, aspartic acid, and glutamic acid.

  12. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Science.gov (United States)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao; Gejl, Anne Kær; Andersen, Lars Bo; Froberg, Karsten; Bugge, Anna

    2016-01-01

    To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive performance.

  13. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents.

    Directory of Open Access Journals (Sweden)

    Sidsel L Domazet

    Full Text Available To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents.The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12-14 years was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer.Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance.Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the scholastic or cognitive

  14. Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.

    Science.gov (United States)

    Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng

    2015-09-01

    Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.

  15. Inhibitory Effect of Capparis spinosa Extract on Pancreatic Alpha-Amylase Activity

    Directory of Open Access Journals (Sweden)

    Mostafa Selfayan

    2016-04-01

    Full Text Available Background Diabetes mellitus is a metabolic disorder characterized by high blood glucose level caused due to deficiency of insulin secretion or insulin function. The inhibition of carbohydrate hydrolyzing enzymes such as α-amylase can be an important strategy for decrease postprandial blood glucose level in patients with type II diabetes. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Objectives The aim of the present study is to investigate the effect of the ethanolic extract of Capparis spinosa on pancreatic α-amylase activities to find out the relevance of the plant in controlling blood sugar. Materials and Methods In this experimental study, root and leaves of C. spinosa were tested for α-amylase inhibition. Different concentrations (1.56, 3.12, 6.25, 12.5 and 25 mg/mL of extracts were incubated with enzyme substrate solution and the spectrometric method used for measure enzyme activity. Also acarbose was used as the standard inhibitor. Results Both root and leaves extracts showed inhibition of α-amylase (root = 97.31% and leaves = 98.92%. The root and leaves extracts of C. spinosa exhibited appreciable α-amylase inhibitory activity with an IC50 values 5.93 mg/mL and 3.89 mg/mL respectively, when compared with acarbose (IC50 value 0.038 mg/mL. Conclusions This study supports that root and leaves extracts of C. spinosa exhibit considerable α-amylase inhibitory activities. These results could be useful for developing functional foods by combination of plant-based foods for treatment of diabetes mellitus.

  16. Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa.

    Science.gov (United States)

    Xu, Jing; Ji, Feifei; Kang, Jing; Wang, Hao; Li, Shen; Jin, Da-Qing; Zhang, Qiang; Sun, Hongwei; Guo, Yuanqiang

    2015-06-24

    Curcuma longa L., belonging to the Zingiberaceae family, is a perennial herb and has been used as a spice and a pigment in the food industry. In the ongoing search for inhibitory reagents of NO production and survey of the chemical composition of natural vegetable foods, the chemical constituents of C. longa used as spice were investigated. This investigation resulted in the isolation of 2 new terpenoids and 14 known analogues. Their structures were established on the basis of the extensive analyses of 1D and 2D NMR spectroscopic data, and the absolute configurations of 1-4 were elucidated by comparison of the calculated and experimental ECD spectra. Among them, compound 1 is a rare norditerpene with an ent-labdane skeleton, and 2 is a skeletally novel sesquiterpene having an eight-membered ring. All of the compounds were found to possess NO inhibitory activities in murine microglial BV-2 cells. The discovery of two new compounds in this chemical investigation further disclosed the chemical composition of C. longa used a food spice, and the bioassay implied that the natural food spice C. longa, containing terpenoids with NO inhibitory activities, may be potentially promotive to human health.

  17. Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats

    DEFF Research Database (Denmark)

    Albertí, Elena; Mikkelsen, Hanne Birte; Wang, Xuanyu

    2007-01-01

    The aim of this study was to characterize the pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats, which harbor a mutation in the c-kit gene that affects development of interstitial cells of Cajal (ICC). In Ws/Ws rats, the density of KIT-positive cells was markedly...... as indirect innervation via ICC. In summary, loss of ICC markedly affects pacemaker and motor activities of the rat colon. Inhibitory innervation is largely maintained but nitrergic innervation is reduced possibly related to the loss of ICC-mediated relaxation....

  18. Effects of Different Working Modes of Ultrasound on Structural Characteristics of Zein and ACE Inhibitory Activity of Hydrolysates

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ren

    2017-01-01

    Full Text Available Ultrasound was used as a new technology to pretreat protein prior to proteolysis to improve enzymolysis efficiency. The effects of different working modes of ultrasound on the angiotensin I-converting enzyme (ACE inhibitory activity of zein hydrolysates and the structural characteristics of zein were investigated. The solubility, surface hydrophobicity (H0, ultraviolet-visible (UV-Vis spectra, intrinsic fluorescence spectra, and circular dichroism (CD spectra of zein pretreated with ultrasound were determined. All ultrasound pretreatments significantly improved the ACE inhibitory activity of zein hydrolysates (p<0.05. The highest ACE inhibitory activity, representing an increase of 99.21% over the control, was obtained with dual sweeping frequency ultrasound of 33±2 and 68±2 kHz. The effects of single sweeping frequency and dual fixed frequency ultrasound were stronger than those of single fixed frequency ultrasound for improving the ACE inhibitory activity of zein. Structural changes in zein were induced by ultrasound, as confirmed by changes in the solubility, H0, UV-Vis spectra, intrinsic fluorescence spectra, and CD spectra of zein, and these were consistent with the corresponding ACE inhibitory activities of zein hydrolysates. Thus, ultrasound working mode and frequency have significant effects on the structure of zein and the ACE inhibitory activity of zein hydrolysates.

  19. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study.

    Science.gov (United States)

    Adegboye, Akande Akinsola; Khan, Khalid Mohammed; Salar, Uzma; Aboaba, Sherifat Adeyinka; Kanwal; Chigurupati, Sridevi; Fatima, Itrat; Taha, Mohammad; Wadood, Abdul; Mohammad, Jahidul Isalm; Khan, Huma; Perveen, Shahnaz

    2018-04-25

    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the α-amylase inhibitory activity. For that purpose, 2-aryl benzimidazole derivatives 1-45 were synthesized and screened for in vitro α-amylase inhibitory activity. Structures of all synthetic compounds were deduced by various spectroscopic techniques. All compounds revealed inhibition potential with IC 50 values of 1.48 ± 0.38-2.99 ± 0.14 μM, when compared to the standard acarbose (IC 50  = 1.46 ± 0.26 μM). Limited SAR suggested that the variation in the inhibitory activities of the compounds are the result of different substitutions on aryl ring. In order to rationalize the binding interactions of most active compounds with the active site of α-amylase enzyme, in silico study was conducted. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    Science.gov (United States)

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  1. Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis.

    Science.gov (United States)

    Danz, Henning; Stoyanova, Stefka; Thomet, Olivier A R; Simon, Hans-Uwe; Dannhardt, Gerd; Ulbrich, Holger; Hamburger, Matthias

    2002-10-01

    The indolo[2,1- b]quinazoline alkaloid tryptanthrin has previously been identified as the cyclooxygenase-2 (COX-2) inhibitory principle in the extract ZE550 prepared from the medicinal plant Isatis tinctoria (Brassicaceae). We here investigated the potential inhibitory activity of tryptanthrin and ZE550 on COX-2, COX-1 in cellular and cell-free systems. A certain degree of selectivity towards COX-2 was observed when COX-1-dependent formation of thromboxane B(2) (TxB(2)) in HEL cells and COX-2-dependent formation of 6-ketoprostaglandin F(1alpha) (6-keto-PGF(1alpha)) in Mono Mac 6 and RAW 264.7 cells were compared. Preferential inhibition of COX-2 by two orders of magnitude was found in phorbol myristate acetate (PMA) activated bovine aortic coronary endothelial cells (BAECs). Assays with purified COX isoenzymes from sheep confirmed the high selectivity towards COX-2. The leukotriene B(4) (LTB(4)) release from calcium ionophore-stimulated human granulocytes (neutrophils) was used as a model to determine 5-lipoxygenase (5-LOX) activity. Tryptanthrin and the extract ZE550 inhibited LTB(4) release in a dose dependent manner and with a potency comparable to that of the clinically used 5-LOX inhibitor zileuton.

  2. Chemical Constituents of Malaysian U. cordata var. ferruginea and Their in Vitro α-Glucosidase Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Nur Hakimah Abdullah

    2016-04-01

    Full Text Available Continuing our interest in the Uncaria genus, the phytochemistry and the in-vitro α-glucosidase inhibitory activities of Malaysian Uncaria cordata var. ferruginea were investigated. The phytochemical study of this plant, which employed various chromatographic techniques including recycling preparative HPLC, led to the isolation of ten compounds with diverse structures comprising three phenolic acids, two coumarins, three flavonoids, a terpene and an iridoid glycoside. These constituents were identified as 2-hydroxybenzoic acid or salicylic acid (1, 2,4-dihydroxybenzoic acid (2, 3,4-dihydroxybenzoic acid (3, scopoletin or 7-hydroxy-6-methoxy-coumarin (4, 3,4-dihydroxy-7-methoxycoumarin (5, quercetin (6, kaempferol (7, taxifolin (8, loganin (9 and β-sitosterol (10. Structure elucidation of the compounds was accomplished with the aid of 1D and 2D Nuclear Magnetic Resonance (NMR spectral data and Ultraviolet-Visible (UV-Vis, Fourier Transform Infrared (FTIR spectroscopy and mass spectrometry (MS. In the α-glucosidase inhibitory assay, the crude methanolic extract of the stems of the plant and its acetone fraction exhibited strong α-glucosidase inhibition activity of 87.7% and 89.2%, respectively, while its DCM fraction exhibited only moderate inhibition (75.3% at a concentration of 1 mg/mL. The IC50 values of both fractions were found to be significantly lower than the standard acarbose suggesting the presence of potential α-glucosidase inhibitors. Selected compounds isolated from the active fractions were then subjected to α-glucosidase assay in which 2,4-dihydroxybenzoic acid and quercetin showed strong inhibitory effects against the enzyme with IC50 values of 549 and 556 μg/mL compared to acarbose (IC50 580 μg/mL while loganin and scopoletin only showed weak α-glucosidase inhibition of 44.9% and 34.5%, respectively. This is the first report of the isolation of 2-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid and loganin from the genus

  3. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  4. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  5. B16-BL6 melanoma cells release inhibitory factor(s) of active pump activity in isolated lymph vessels.

    Science.gov (United States)

    Nakaya, K; Mizuno, R; Ohhashi, T

    2001-12-01

    We investigated whether supernatant cultured with melanoma cell lines B16-BL6 and K1735 or the Lewis lung carcinoma cell line (LLC) can regulate lymphatic pump activity with bioassay preparations isolated from murine iliac lymph vessels. B16-BL6 and LLC supernatants caused significant dilation of lymph microvessels with cessation of pump activity. B16-BL6 supernatant produced dose-related cessation of lymphatic pump activity. There was no significant tachyphylaxis in the supernatant-mediated inhibitory response of lymphatic pump activity. Pretreatment with 3 x 10(-5) M N(omega)-nitro-L-arginine methyl ester (L-NAME) or 10(-7) M or 10(-6) M glibenclamide and 5 x 10(-4) M 5-hydroxydecanoic acid caused significant reduction of supernatant-mediated inhibitory responses. Simultaneous treatment with 10(-3) M L-arginine and 3 x 10(-5) M L-NAME significantly lessened L-NAME-induced inhibition of the supernatant-mediated response, suggesting that endogenous nitric oxide (NO) plays important roles in supernatant-mediated inhibitory responses. Chemical treatment dialyzed substances of B16-BL6 cells may release nonpeptide substance(s) of <1,000 MW, resulting in significant cessation of lymphatic pump activity via production and release of endogenous NO and activation of mitochondrial ATP-sensitive K(+) channels.

  6. Diverse models for the prediction of CDK4 inhibitory activity of ...

    Indian Academy of Sciences (India)

    employed for development of models for the prediction of CDK4 inhibitory activity using a dataset comprising of 52 analogues of ... index; molecular connectivity index; connective eccentricity topochemical index. 1. ... 80% of human cancers.

  7. α-Glucosidase inhibitory activity of selected Malaysian plants

    Directory of Open Access Journals (Sweden)

    Dzatil Awanis Mohd Bukhari

    2017-01-01

    Full Text Available Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  8. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants.

    Science.gov (United States)

    Mohd Bukhari, Dzatil Awanis; Siddiqui, Mohammad Jamshed; Shamsudin, Siti Hadijah; Rahman, Md Mukhlesur; So'ad, Siti Zaiton Mat

    2017-01-01

    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  9. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Otte, Jeanette; De Gobba, Cristian

    2017-01-01

    was hydrolysed using papain, pepsin or trypsin. The papain hydrolysate showed the highest ACE-inhibitory activity and radical scavenging capacity and was fractionated by size exclusion chromatography (SEC) and characterized by LC-MS analysis. A SEC-fraction with intermediate peptide size showed very high ACE...

  10. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    Science.gov (United States)

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P Feline LIF will further improve reproduction and stem cell research in the feline family. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Cadinane sesquiterpenes from Curcuma phaeocaulis with their inhibitory activities on nitric oxide production in RAW 264.7 cells.

    Science.gov (United States)

    Ma, Jianghao; Wang, Ying; Liu, Yue; Gao, Suyu; Ding, Liqin; Zhao, Feng; Chen, Lixia; Qiu, Feng

    2015-06-01

    Four new cadinane-type sesquiterpenes named phacadinanes A-D (1-4) were isolated from the rhizomes of Curcuma phaeocaulis. Their structures were elucidated by 1D and 2D NMR, as well as accurate mass measurements. Compound 4 was the first example of a rare 4,5-seco-cadinane sesquiterpene isolated from the Zingiberaceae family. Furthermore, inhibitory effects of the isolated compounds on nitric oxide production in LPS-activated macrophages were evaluated. Compounds 1 and 2 showed strong inhibitory activities on NO production with IC50 values of 3.88±0.58 and 2.25±0.71 μM, respectively. A possible biogenetic pathway for 4,5-seco-cadinane sesquiterpene (4) was postulated. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Somatostatin-expressing inhibitory interneurons in cortical circuits

    Directory of Open Access Journals (Sweden)

    Iryna Yavorska

    2016-09-01

    Full Text Available Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons.

  13. Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction.

    Science.gov (United States)

    Fernández-Musoles, Ricardo; López-Díez, José Javier; Torregrosa, Germán; Vallés, Salvador; Alborch, Enrique; Manzanares, Paloma; Salom, Juan B

    2010-10-01

    Endothelin-converting enzyme (ECE), a key peptidase in the endothelin (ET) system, cleaves inactive big ET-1 to produce active ET-1, which binds to ET(A) receptors to exert its vasoconstrictor and pressor effects. ECE inhibition could be beneficial in the treatment of hypertension. In this study, a set of eight lactoferricin B (LfcinB)-derived peptides, previously characterized in our laboratory as angiotensin-converting enzyme (ACE) inhibitory peptides, was examined for their inhibitory effects on ECE. In vitro inhibitory effects on ECE activity were assessed using both the synthetic fluorogenic peptide substrate V (FPS V) and the natural substrate big ET-1. To study vasoactive effects, an ex vivo functional assay was developed using isolated rabbit carotid artery segments. With FPS V, only four LfcinB-derived peptides induced inhibition of ECE activity, whereas the eight peptides showed ECE inhibitory effects with big ET-1 as substrate. Regarding the ex vivo assays, six LfcinB-derived peptides showed inhibition of big ET-1-induced, ECE-dependent vasoconstriction. A positive correlation between the inhibitory effects of LfcinB-derived peptides on ECE activity when using big ET-1 and the inhibitory effects on ECE-dependent vasoconstriction was shown. ECE-independent vasoconstriction induced by ET-1 was not affected, thus discarding effects of LfcinB-derived peptides on ET(A) receptors or intracellular signal transduction mechanisms. In conclusion, a combined in vitro and ex vivo method to assess the effects of potentially antihypertensive peptides on the ET system has been developed and applied to show the inhibitory effects on ECE-dependent vasoconstriction of six LfcinB-derived peptides, five of which were dual vasopeptidase (ACE/ECE) inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Inhibitory Activity of Artemisia spicigera Essential Oil Against Fungal Species Isolated From Minced Meat

    Directory of Open Access Journals (Sweden)

    Ghajarbeygi

    2015-11-01

    Full Text Available Background Meat is an important source of several nutrients. The capability top of fresh meat to rot, causing the group of studies food science, biological and chemical stability meat consideration. Objectives This study was conducted to examine the inhibitory effect of Artemisias spicigera essential oil against fungal species isolated from minced meat. Materials and Methods Two types of media dichloran 18% glycerol (DG18 agar and dichloran rosebengal chloramphenicol (DRBC agar were selected for the mycological analysis of the minced meat samples. To evaluate the antifungal activity of essential oils, the microdilution broth method based on the CLSI (M27A guideline was used. Results Artemisias spicigera essential oil has an inhibitory effect on the growth of fungi found in samples of minced meat. Aspergillus, Penicillium and Cladosporium were the most common genera on both medium types. Average Minimum Inhibitory Concentration 50 = 1.88 µL/mL and MIC90 = 2 µL/mL were reported. The genus of Mucor with MIC = 1.0 µL/mL was the most sensitive and Aspergilus versicolor was the most resistant species to the essential oil with MIC = 4 µL/mL. Conclusions The results of the present study show a favorable inhibitory effect of Artemisias spicigera essential oil on fungal growth, especially Aspergillus species. According to the results, antifungal components of Artemisias spicigera in different forms are used to prevent fungal pollution.

  15. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    DEFF Research Database (Denmark)

    Domazet, Sidsel L; Tarp, Jakob; Huang, Tao

    2016-01-01

    OBJECTIVES: To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. METHODS: The design was cross-sectional. A convenient sample of 869 sixth and seventh gra...

  16. Water-Soluble Polysaccharide Extracts from the Oyster Culinary-Medicinal Mushroom Pleurotus ostreatus (Agaricomycetes) with HMGCR Inhibitory Activity.

    Science.gov (United States)

    Gil-Ramirez, Alicia; Smiderle, Fhernanda R; Morales, Diego; Govers, Coen; Synytsya, Andriy; Wichers, Harry J; Iacomini, Marcello; Soler-Rivas, Cristina

    2017-01-01

    Water extracts from Pleurotus ostreatus containing no statins showed 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR) inhibitory activity (in vitro) that might be due to specific water-soluble polysaccharides (WSPs); when isolated and deproteinized, increasing concentrations of the WSP extract induced higher inhibition. The WSP extract contained mainly β-glucans, mannogalactans, and glycogen (e.g., α-glucans), although derivatives or fragments with lower molecular weights (between 14 and 3.5 kDa) were present and were able to induce the inhibitory activity. The extract contained more β-(1→3)-glucans than β-(11→3),(11→6)-glucans, and they partially survived digestion and managed to pass through Caco2 cell monolayers to the lower compartment after in vitro digestion and transport experiments. The WSP might also modulate Caco2 membrane integrity.

  17. Evaluation of In Vitro Inhibitory Activity of Rye-Buckwheat Ginger Cakes with Rutin on the Formation of Advanced Glycation End-Products (AGEs

    Directory of Open Access Journals (Sweden)

    Przygodzka Małgorzata

    2015-09-01

    Full Text Available In this study, the relationship between the inhibitory effects of extracts from rye-buckwheat ginger cakes supplemented with low and high rutin dosage baked without or with dough fermentation step on the formation of fluorescent advanced glycation end-products (AGEs, and phenolic compounds, rutin, D-chiro-inositol and antioxidant capacity were addressed. The cakes were based on rye flour substituted by light buckwheat flour or flour from roasted buckwheat groats at 30% level, and were produced with or without dough fermentation step. The inhibitory effect against AGEs formation was studied in bovine serum albumin (BSA-glucose and BSA-methylglyoxal (MGO systems. The antioxidant capacity was measured by 2,2-diphenyl- -1-picrylhydrazyl (DPPH and cyclic voltammetry (CV, rutin and D-chiro-inositol contents by HPLC and total phenolics (TPC by spectrophotometric assays. The study showed the inhibitory effects of extracts from rye-buckwheat ginger cakes supplemented with low and high rutin dosage. The results of the inhibitory activity were highly correlated in two applied model systems. Enrichment of rye-buckwheat ginger cakes with rutin improved their antioxidant properties. The correlation studies showed that the inhibitory effects of rye-buckwheat ginger cakes produced with dough fermentation step and enhanced with rutin against formation of AGEs were highly correlated with TPC, rutin and D-chiro-inositol contents, and antioxidant capacity. Moreover, the effect of rutin enrichment was clearly seen in cakes obtained with dough fermentation step, even the inhibitory activity was slightly lower as compared to the cakes produced without dough fermentation.

  18. Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain

    KAUST Repository

    Quintero, Francisco J.; Martí nez-Atienza, Juliana; Villalta, Irene; Jiang, Xingyu; Kim, Woeyeon; Ali, Zhair; Fujii, Hiroaki; Mendoza, Imelda; Yun, Daejin; Zhu, Jian-Kang; Pardo, José Manuel

    2011-01-01

    The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex upregulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.

  19. Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain

    KAUST Repository

    Quintero, Francisco J.

    2011-01-24

    The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex upregulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.

  20. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2009-05-01

    Full Text Available Abstract Local inhibitory interneurons in the dorsal horn play an important role in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception. Indeed, disinhibition of dorsal horn neuronal networks disrupts the balance between excitation and inhibition and is believed to be a key mechanism underlying different forms of pain hypersensitivity and chronic pain states. In this context, studying the source and the synaptic properties of the inhibitory inputs that the inhibitory interneurons receive is important in order to predict the impact of drug action at the network level. To address this, we studied inhibitory synaptic transmission in lamina II inhibitory interneurons identified under visual guidance in spinal slices taken from transgenic mice expressing enhanced green fluorescent protein (EGFP under the control of the GAD promoter. The majority of these cells fired tonically to a long depolarizing current pulse. Monosynaptically evoked inhibitory postsynaptic currents (eIPSCs in these cells were mediated by both GABAA and glycine receptors. Consistent with this, both GABAA and glycine receptor-mediated miniature IPSCs were recorded in all of the cells. These inhibitory inputs originated at least in part from local lamina II interneurons as verified by simultaneous recordings from pairs of EGFP+ cells. These synapses appeared to have low release probability and displayed potentiation and asynchronous release upon repeated activation. In summary, we report on a previously unexamined component of the dorsal horn circuitry that likely constitutes an essential element of the fine tuning of nociception.

  1. Four new compounds isolated from Psoralea corylifolia and their diacylglycerol acyltransferase (DGAT) inhibitory activity.

    Science.gov (United States)

    Lin, Xin; Li, Ban-Ban; Zhang, Le; Li, Hao-Ze; Meng, Xiao; Jiang, Yi-Yu; Lee, Hyun-Sun; Cui, Long

    2018-05-14

    A new bakuchiol compound Δ 11 -12-hydroxy-12-dimethyl bakuchiol (1), a new flavanone compound 2(S)-6-methoxy-7- hydroxymethylene-4'-hydroxyl-flavanone (8), and two new isoflavanone compounds 4',7-dihydroxy-3'-(6"β-hydroxy-3″,7″-dimethyl-,2″,7″-dibutenyl)-geranylisoflavone (9) and 4',7-dihydroxy-3'-(7″-hydroxy-7″-methyl-2″,5″-dibutenyl)-geranylisoflavone (10) together with eight known compounds (2-7, 11, 12) were isolated from the P. corylifolia. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1/2. Among them, compounds 3, 9 and 10 were found to exhibit selective inhibitory activity on DGAT1 with IC 50 values ranging from 93.7 ± 1.3 to 96.2 ± 1.1 μM. Compound 1 showed inhibition activity on DGAT1 with IC 50 values 73.4 ± 1.3 μM and inhibition of DGAT2 with IC 50 value 121.1 ± 1.3 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract.

    Science.gov (United States)

    Padilla-Camberos, Eduardo; Flores-Fernandez, Jose Miguel; Fernandez-Flores, Ofelia; Gutierrez-Mercado, Yanet; Carmona-de la Luz, Joel; Sandoval-Salas, Fabiola; Mendez-Carreto, Carlos; Allen, Kirk

    2015-01-01

    Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE) was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg) and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds.

  3. Hypocholesterolemic Effect and In Vitro Pancreatic Lipase Inhibitory Activity of an Opuntia ficus-indica Extract

    Directory of Open Access Journals (Sweden)

    Eduardo Padilla-Camberos

    2015-01-01

    Full Text Available Cholesterol control is fundamental for prevention of cardiovascular disorders. In this work, the hypocholesterolemic activity of an aqueous Opuntia ficus-indica extract (AOE was tested in triton-induced mice. The inhibitory activity on pancreatic lipase enzyme was evaluated in vitro by the same extract. Furthermore, polyphenol content of the extract was evaluated. Hypercholesterolemia was induced in three groups of mice by intraperitoneal administration of Triton WR-1339. After induction of hypercholesterolemia, the groups were treated with an AOE (500 mg/kg and saline solution and the positive control group with orlistat, respectively. Cholesterol levels were measured 24 h later in peripheral blood. The levels of blood cholesterol after administration of AOE significantly decreased compared to negative control. The inhibitory activity of AOE on pancreatic lipase enzyme was evaluated at concentrations from 60 to 1000 μg/mL. The AOE inhibited the pancreatic lipase with an IC50 = 588.5 μg/mL. The AOE had a high content of polyphenolic compounds. These results show that AOE is able to prevent hypercholesterolemia by pancreatic lipase inhibition, in part due to its polyphenolic compounds.

  4. The inhibitory effect of Curcuma longa extract on telomerase activity ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... curcumin, could have important effect on treatment of lung cancer. Curcumin ... study inhibitory effect of C. longa total extract on telomerase in A549 lung cancer cell line as in vitro model of ..... If A > 2× (OD of negative control), then, telomerase activity ... radiation, chemotherapy, laser therapy, photodynamic.

  5. Self-reported Physical Activity Predicts Pain Inhibitory and Facilitatory Function

    Science.gov (United States)

    Naugle, Kelly M.; Riley, Joseph L.

    2013-01-01

    Considerable evidence suggests regular physical activity can reduce chronic pain symptoms. Dysfunction of endogenous facilitatory and inhibitory systems has been implicated in multiple chronic pain conditions. However, few studies have investigated the relationship between levels of physical activity and descending pain modulatory function. Purpose This study’s purpose was to determine whether self-reported levels of physical activity in healthy adults predicted 1) pain sensitivity to heat and cold stimuli, 2) pain facilitatory function as tested by temporal summation of pain (TS), and 3) pain inhibitory function as tested by conditioned pain modulation (CPM) and offset analgesia. Methods Forty-eight healthy adults (age range 18–76) completed the International Physical Activity Questionnaire (IPAQ) and the following pain tests: heat pain thresholds (HPT), heat pain suprathresholds, cold pressor pain (CPP), temporal summation of heat pain, conditioned pain modulation, and offset analgesia. The IPAQ measured levels of walking, moderate, vigorous and total physical activity over the past seven days. Hierarchical linear regressions were conducted to determine the relationship between each pain test and self-reported levels of physical activity, while controlling for age, sex and psychological variables. Results Self-reported total and vigorous physical activity predicted TS and CPM (p’s pain and greater CPM. The IPAQ measures did not predict any of the other pain measures. Conclusion Thus, these results suggest that healthy older and younger adults who self-report greater levels of vigorous and total physical activity exhibit enhanced descending pain modulatory function. Improved descending pain modulation may be a mechanism through which exercise reduces or prevents chronic pain symptoms. PMID:23899890

  6. Inhibitory activities of microalgal extracts against Epstein-Barr Virus (EBV antigen expression in lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Koh Yih Yih

    2014-01-01

    Full Text Available The inhibitory activities of microalgal extracts against the expression of three EBV antigens, latent membrane protein (LMP1, Epstein-Barr nuclear antigen (EBNA1 and Z Epstein-Barr reactivation activator (ZEBRA were assessed by immunocytochemistry. The observation that the methanol extracts and their fractions from Ankistrodesmus convolutus, Synechococcus elongatus and Spirulina platensis exhibited inhibitory activity against EBV proteins in three Burkitt’s lymphoma cell lines at concentrations as low as 20 μg/ml suggests that microalgae could be a potential source of antiviral compounds against EBV.

  7. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    Science.gov (United States)

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  8. Chemical Composition and α-Glucosidase Inhibitory Activity of Vietnamese Citrus Peels Essential Oils

    Directory of Open Access Journals (Sweden)

    Nguyen Hai Dang

    2016-01-01

    Full Text Available Background. Inhibition of α-glucosidase is an important factor to control postprandial hyperglycemia in type 2 diabetes mellitus. Citrus essential oils (CEO are among the most widely used essential oils, and some of them exhibited promising antidiabetic effect. However, the α-glucosidase inhibition of CEO has not been investigated so far. The present work aims to evaluate the α-glucosidase inhibition of essential oils from six Vietnamese Citrus peels. Methods. The chemical composition of essential oils obtained by hydrodistillation from six Citrus peels was analyzed by GC-MS. All essential oils were tested for their inhibitory activity on α-glucosidase using p-nitrophenyl-α-D-glucopyranoside as substrate. Results. In Buddha’s hand and lime peels, the major components were limonene (59.0–61.31% and γ-terpinene (13.98–23.84% while limonene (90.95–95.74% was most abundant in pomelo, orange, tangerine, and calamondin peels. Among the essential oils, the Buddha’s hand oil showed the most significant α-glucosidase inhibitory effect with the IC50 value of 412.2 μg/mL. The combination of the Buddha’s hand essential oil and the antidiabetic drug acarbose increased the inhibitory effect. Conclusions. The results suggested the potential use of Buddha’s hand essential oil as an alternative in treatment of type 2 diabetes mellitus.

  9. Microbial transformation of isosteviol and inhibitory effects on Epstein-Barr virus activation of the transformation products.

    Science.gov (United States)

    Akihisa, Toshihiro; Hamasaki, Yusuke; Tokuda, Harukuni; Ukiya, Motohiko; Kimura, Yumiko; Nishino, Hoyoku

    2004-03-01

    Microbial transformation of isosteviol (2), a beyerane-type diterpenoid obtained from stevioside (1) by acid hydrolysis, yielded 7beta-hydroxyisosteviol (3), 11beta-hydroxyisosteviol (5), and 12beta-hydroxyisosteviol (6) by the fungus Aspergillus niger, 17-hydroxyisosteviol (7) by the fungus Glomerella cingulata, and 3 and 7-oxoisosteviol (4) by the fungus Mortierella elongate. The five metabolites, 3-7, along with 1 and 2 were evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells as a primary screening test for inhibitors of tumor promoters. All the diterpenes tested showed potent inhibitory effects, with the five metabolites 3-7 exhibiting more potent effects.

  10. Inhibitory effects of constituents of Morinda citrifolia seeds on elastase and tyrosinase.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Fukuhama, Akiko; Naruto, Shunsuke; Fujita, Tadashi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2009-07-01

    A 50% ethanolic extract (MCS-ext) from seeds of Morinda citrifolia ("noni" seeds) showed more potent in vitro inhibition of elastase and tyrosinase, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than extracts of M. citrifolia leaves or flesh. Activity-guided fractionation of MCS-ext using in vitro assays led to the isolation of ursolic acid as an active constituent of elastase inhibitory activity. 3,3'-Bisdemethylpinoresinol, americanin A, and quercetin were isolated as active constituents having both tyrosinase inhibitory and radical scavenging activities. Americanin A and quercetin also showed superoxide dismutase (SOD)-like activity. These active compounds were isolated from noni seeds for the first time.

  11. Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents

    Science.gov (United States)

    Huang, Tao; Gejl, Anne Kær; Froberg, Karsten

    2016-01-01

    Objectives To examine objectively measured physical activity level, organized sports participation and active commuting to school in relation to mathematic performance and inhibitory control in adolescents. Methods The design was cross-sectional. A convenient sample of 869 sixth and seventh grade students (12–14 years) was invited to participate in the study. A total of 568 students fulfilled the inclusion criteria and comprised the final sample for this study. Mathematic performance was assessed by a customized test and inhibitory control was assessed by a modified Eriksen flanker task. Physical activity was assessed with GT3X and GT3X+ accelerometers presented in sex-specific quartiles of mean counts per minute and mean minutes per day in moderate-to-vigorous physical activity. Active commuting and sports participation was self-reported. Mixed model regression was applied. Total physical activity level was stratified by bicycling status in order to bypass measurement error subject to the accelerometer. Results Non-cyclists in the 2nd quartile of counts per minute displayed a higher mathematic score, so did cyclists in the 2nd and 3rd quartile of moderate-to-vigorous physical activity relative to the least active quartile. Non-cyclists in the 3rd quartile of counts per minute had an improved reaction time and cyclists in the 2nd quartile of counts per minute and moderate-to-vigorous physical activity displayed an improved accuracy, whereas non-cyclists in the 2nd quartile of counts per minute showed an inferior accuracy relative to the least active quartile. Bicycling to school and organized sports participation were positively associated with mathematic performance. Conclusions Sports participation and bicycling were positively associated with mathematic performance. Results regarding objectively measured physical activity were mixed. Although, no linear nor dose-response relationship was observed there was no indication of a higher activity level impairing the

  12. In vitro antioxidant, lipoxygenase and xanthine oxidase inhibitory activities of fractions from Cienfuegosia digitata Cav., Sida alba L. and Sida acuta Burn f. (Malvaceae).

    Science.gov (United States)

    Konaté, K; Souza, A; Coulibaly, A Y; Meda, N T R; Kiendrebeogo, M; Lamien-Meda, A; Millogo-Rasolodimby, J; Lamidi, M; Nacoulma, O G

    2010-11-15

    In this study polyphenol content, antioxidant activity, lipoxygenase (LOX) and Xanthine Oxidase (XO) inhibitory effects of n-hexane, dichloromethane, ethyl acetate and n-butanol fractions of aqueous acetone extracts from S. alba L., S. acuta Burn f and Cienfuegosia digitata Cav. were investigated. The total phenolics, flavonoids, flavonols and total tannins were determined by spectrophotometric methods using Folin-ciocalteu, AlCl3 reagents and tannic acid, respectively. The antioxidant potential was evaluated using three methods: inhibition of free radical 2,2-diphenyl-1-picrylhydramzyl (DPPH), ABTS radical cation decolorization assay and Iron (III) to iron (II) reduction activity (FRAP). For enzymatic activity, lipoxygenase and xanthine oxidase inhibitory activities were used. This study shows a relationship between polyphenol contents, antioxidant and enzymatic activities. Present results showed that ethyl acetate and dichloromethane fractions elicit the highest polyphenol content, antioxidant and enzymatic activities.

  13. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull

    DEFF Research Database (Denmark)

    Saaby, Lasse; Rasmussen, Hasse Bonde; Jäger, Anna Katharina

    2009-01-01

    AIM OF THE STUDY: This study investigated MAO-A inhibitory activity of methanol extract of Calluna vulgaris (L.) Hull., which traditionally has been used as a nerve calming remedy. MATERIALS AND METHODS: A methanolic extract of Calluna vulgaris was partitioned against heptane, ethyl acetate...

  14. Inhibitory activity and conformational transition of alpha 1-proteinase inhibitor variants

    NARCIS (Netherlands)

    Schulze, A.J.; Huber, R.; Degryse, E.; Speck, D.; Bischoff, Rainer

    1991-01-01

    Several variants of alpha 1-proteinase inhibitor (alpha 1-PI) were investigated by spectroscopic methods and characterized according to their inhibitory activity. Replacement of Thr345 (P14) with Arg in alpha 1-PI containing an Arg residue in position 358 (yielding [Thr345----Arg,

  15. Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks

    Science.gov (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2018-01-01

    An excitatory-inhibitory recurrent neuronal network is established to numerically study the effect of inhibitory neurons on the synchronization degree of neuronal systems. The obtained results show that, with the number of inhibitory neurons and the coupling strength from an inhibitory neuron to an excitatory neuron increasing, inhibitory neurons can not only reduce the synchronization degree when the synchronization degree of the excitatory population is initially higher, but also enhance it when it is initially lower. Meanwhile, inhibitory neurons could also help the neuronal networks to maintain moderate synchronized states. In this paper, we call this effect as modulation effect of inhibitory neurons. With the obtained results, it is further revealed that the ratio of excitatory neurons to inhibitory neurons being nearly 4 : 1 is an economic and affordable choice for inhibitory neurons to realize this modulation effect.

  16. Evaluation of Aldose Reductase, Protein Glycation, and Antioxidant Inhibitory Activities of Bioactive Flavonoids in Matricaria recutita L. and Their Structure-Activity Relationship

    Directory of Open Access Journals (Sweden)

    Seung Hwan Hwang

    2018-01-01

    Full Text Available The inhibitory activities of Matricaria recutita L. 70% methanol extract were evaluated by isolating and testing 10 of its compounds on rat lens aldose reductase (RLAR, advanced glycation end products (AGEs, and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging. Among these compounds, apigenin-7-O-β-D-glucoside, luteolin-7-O-β-D-glucoside, apigenin-7-O-β-D-glucuronide, luteolin-7-O-β-D-glucuronide, 3,5-O-di-caffeoylquinic acid, apigenin, and luteolin showed potent inhibition, and their IC50 values in RLAR were 4.25, 1.12, 1.16, 0.85, 0.72, 1.72, and 1.42 μM, respectively. Furthermore, these compounds suppressed sorbitol accumulation in rat lens under high-glucose conditions, demonstrating their potential to prevent sorbitol accumulation ex vivo. Notably, luteolin-7-O-β-D-glucuronide and luteolin showed antioxidative as well as AGE-inhibitory activities (IC50 values of these compounds in AGEs were 3.39 and 6.01 μM. These results suggest that the M. recutita extract and its constituents may be promising agents for use in the prevention or treatment of diabetic complications.

  17. Antioxidant and α-glucosidase inhibitory ingredients identified from Jerusalem artichoke flowers.

    Science.gov (United States)

    Wang, Yan-Ming; Zhao, Jian-Qiang; Yang, Jun-Li; Idong, Pema Tsering; Mei, Li-Juan; Tao, Yan-Duo; Shi, Yan-Ping

    2017-11-09

    Jerusalem artichoke (JA, Helianthus tuberosus L.) has been researched extensively due to its wide range of uses, but there are limited studies on its flowers. In this study, we report the first detailed phytochemical study on JA flowers, which yielded 21 compounds. Compound 4 was identified as a major water-soluble yellow pigment of JA flowers. In addition, the methanol extract of JA flowers and the isolates were evaluated for their antioxidant and α-glucosidase inhibitory activities. Among the tested compounds, compound 13 showed the strongest ABTS + free radical scavenging activity with SC 50 value of 2.30 ± 0.13 μg/mL, and compound 6 showed most potent α-glucosidase inhibitory activity with inhibition rate of 60.0% ± 10.3% at a concentration of 250 μg/mL. Results showed that methanol extract of JA flowers exhibited antioxidant and α-glucosidase inhibitory activities which could be attributed to its phenolic ingredients including chlorogenic acid derivatives, flavonoids and phenols.

  18. Synthesis and 5α-Reductase Inhibitory Activity of C21 Steroids Having 1,4-diene or 4,6-diene 20-ones and 4-Azasteroid 20-Oximes

    Directory of Open Access Journals (Sweden)

    Eunsook Ma

    2011-12-01

    Full Text Available The synthesis and evaluation of 5α-reductase inhibitory activity of some 4-azasteroid-20-ones and 20-oximes and 3β-hydroxy-, 3β-acetoxy-, or epoxy-substituted C21 steroidal 20-ones and 20-oximes having double bonds in the A and/or B ring are described. Inhibitory activity of synthesized compounds was assessed using 5α-reductase enzyme and [1,2,6,7-3H]testosterone as substrate. All synthesized compounds were less active than finasteride (IC50: 1.2 nM. Three 4-azasteroid-2-oximes (compounds 4, 6 and 8 showed good inhibitory activity (IC50: 26, 10 and 11 nM and were more active than corresponding 4-azasteroid 20-ones (compounds 3, 5 and 7. 3β-Hydroxy-, 3β-acetoxy- and 1α,2α-, 5α,6α- or 6α,7α-epoxysteroid-20-one and -20-oxime derivatives having double bonds in the A and/or B ring showed no inhibition of 5α-reductase enzyme.

  19. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  20. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  1. 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus.

    Science.gov (United States)

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Kondo, Ryuichiro

    2010-09-01

    In our efforts to find new whitening agent from natural resources, we focused on wood of Artocarpus heterophyllus which shows anti-melanogenesis activity. By activity-guided fractionation of A. heterophyllus wood extract, a new prenylated flavonoid, 3-prenyl luteolin (1) was isolated. The IC(50) of mushroom tyrosinase inhibitory activity of 1 was 76.3 microM. The results of the comparison with that of luteolin showed the prenyl substituent at C-3 position of 1 play an important role for revealing tyrosinase inhibition. In melanin formation inhibition on B16 melanoma cells, IC(50) of 1 was 56.7 microM with less cytotoxicity. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Phytochemical analysis, antimicrobial, antioxidant and urease inhibitory potential of Cyphostemma digitatum Lam.

    Science.gov (United States)

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammad Mansour; Ali, Jawad; Rauf, Abdur

    2015-01-01

    In this paper we report the antimicrobial, antiradical and urease inhibitory potential along with photochemical investigation of the crude extracts of Cyphostemma digitatum Lam. Phytochemical screening of both the crude (hot/cold) alcoholic and aqueous extracts of C. digitatum showed the presence of alkaloids, flavonoids, saponins, coumarins, steroids, terpenoids and tannins. The crude methanolic extract (hot/cold) exhibited good antioxidant activity, while the aqueous extract was a weak antioxidant. The crude methanolic extract was found to be more active against Bacillus subtilis, while both the extracts showed moderate antifungal potential, the methanolic crude extract showed good urease inhibitory activity compared with the aqueous crude extract.

  3. α-Glucosidase inhibitory activities of fatty acids purified from the internal organ of sea cucumber Stichopus japonicas.

    Science.gov (United States)

    Nguyen, T H; Kim, S M

    2015-04-01

    α-Glucosidase inhibitory activities of the various solvent fractions (n-hexane, CHCl3 , EtOAc, BuOH, and water) of sea cucumber internal organ were investigated. 1,3-Dipalmitolein (1) and cis-9-octadecenoic acid (2) with potent α-glucosidase inhibitory activity were purified from the n-hexane fraction of sea cucumber internal organ. IC50 values of compounds 1 and 2 were 4.45 and 14.87 μM against Saccharomyces cerevisiae α-glucosidase. These compounds mildly inhibited rat-intestinal α-glucosidase. In addition, both compounds showed a mixed competitive inhibition against S. cerevisiae α-glucosidase and were very stable at pH 2 up to 60 min. The KI values of compounds 1 and 2 were 0.48 and 1.24 μM, respectively. Therefore, the internal organ of sea cucumber might be a potential new source of α-glucosidase inhibitors suitably used for prevention of obesity and diabetes mellitus. © 2015 Institute of Food Technologists®

  4. Two New Monoterpene Glycosides from Qing Shan Lu Shui Tea with Inhibitory Effects on Leukocyte-Type 12-Lipoxygenase Activity

    Directory of Open Access Journals (Sweden)

    Ding Zhi Fang

    2013-04-01

    Full Text Available We evaluated the inhibitory effect of 12 Chinese teas on leukocyte-type 12-lipoxygenase (LOX activity. Tea catechins such as epigallocatechin gallate have been known to exhibit leukocyte-type 12-LOX inhibition. Qing Shan Lu Shui, which contains lower catechin levels than the other tested teas, suppressed leukocyte-type 12-LOX activity. To characterize the bioactive components of Qing Shan Lu Shui, leukocyte-type 12-LOX inhibitory activity–guided fractionation of the aqueous ethanol extract of the tea was performed, resulting in the isolation of two new monoterpene glycosides: liguroside A (1 and B (2. The structures of compounds 1 and 2 were characterized as (2E,5E-7-hydroperoxy-3,7-dimethyl-2,5-octadienyl-O-(α-L-rhamnopyranosyl-(1″→3′-(4′″-O-trans-p-coumaroyl-β-D-glucopyranoside and (2E,5E-7-hydroperoxy-3,7-dimethyl-2,5-octa-dienyl- O-(α-L-rhamnopyranosyl-(1″→3′-(4′″-O-cis-p-coumaroyl-β-D-glucopyranoside, respectively, based on spectral and chemical evidence. Ligurosides A (1 and B (2 showed inhibitory effects on leukocyte-type 12-LOX activity, with IC50 values of 1.7 and 0.7 μM, respectively.

  5. Inhibitory Effects of 5,6,7-Trihydroxyflavones on Tyrosinase

    Directory of Open Access Journals (Sweden)

    Jun Kawabata

    2007-01-01

    Full Text Available Baicalein (1, 6-hydroxyapigenin (6, 6-hydroxygalangin (13 and 6-hydroxy-kaempferol (14, which are naturally occurring flavonoids from a set of 14 hydroxy-flavones tested, exhibited high inhibitory effects on tyrosinase with respect to L-DOPA,while each of the 5,6,7-trihydroxyflavones 1, 6, 13 or 14 acted as a cofactor tomonophenolase. Moreover, 6-hydroxykaempferol (14 showed the highest activity andwas a competitive inhibitor of tyrosinase compared to L-DOPA. 5,6,7-Trihydroxyflavones 1, 6, 13 or 14 showed also high antioxidant activities. Hence, weconclude that the 5,6,7-trihydroxy-flavones are useful as good depigmentation agentswith inhibitory effects in addition to their antioxidant properties.

  6. Inhibitory effects of antimicrobial agents against Fusarium species.

    Science.gov (United States)

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed. © The Author 2015. Published by Oxford University Press on

  7. Acetylcholinesterase inhibitory, antioxidant, and antimicrobial activities of Salvia tomentosa Mill. essential oil

    Directory of Open Access Journals (Sweden)

    ANDREY MARCHEV

    2015-08-01

    Full Text Available Chemical composition and bioactivity of essential oil from Salvia tomentosa Mill. natively grown in Bulgaria were investigated. GC-MS analysis identified 60 compounds which represented 98% of the oil constituents. The prevalent constituents were monoterpenes with eight dominant compounds being identified: borneol (10.3%, β-pinene (9%, camphor (7.9%, α-pinene (6%, camphene (4%, 1.8-cineole (3.8%, α-limonene (3.5% and β-caryophyllene (3%. The essential oil showed considerable acetylcholinesterase inhibitory activity (IC50=0.28±0.06 µg/mL, comparable with that of galanthamine. Study of antioxidant activity strongly suggested that the hydrogen atom transfer reaction was preferable over the electron transfer (ORAC=175.0±0.40 µM Trolox equivalents/g oil and FRAP=1.45±0.21 mM Trolox equivalents/g oil. The essential oil showed moderate antifungal and antibacterial activities against Candida albicans and Gram-positive bacteria, whereas it was almost inactive against the investigated Gram-negative strains. The results suggested that the essential oil of Bulgarian S. tomentosa could be considered as a prospective active ingredient for prevention of oxidative stress-related and neurodegenerative disorders in aromatherapy. Because of the high antioxidant capacity, the oil could be considered as natural supplement or antioxidant in cosmetics and food products.

  8. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies.

    Science.gov (United States)

    Bernasconi-Elias, P; Hu, T; Jenkins, D; Firestone, B; Gans, S; Kurth, E; Capodieci, P; Deplazes-Lauber, J; Petropoulos, K; Thiel, P; Ponsel, D; Hee Choi, S; LeMotte, P; London, A; Goetcshkes, M; Nolin, E; Jones, M D; Slocum, K; Kluk, M J; Weinstock, D M; Christodoulou, A; Weinberg, O; Jaehrling, J; Ettenberg, S A; Buckler, A; Blacklow, S C; Aster, J C; Fryer, C J

    2016-11-24

    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

  9. In vitro inhibitory activities of the extract of Hibiscus sabdariffa L ...

    African Journals Online (AJOL)

    In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family malvaceae) on selected cytochrome p450 isoforms. SS Johnson, FT Oyelola, T Ari, H Juho. Abstract. Literature is scanty on the interaction potential of Hibiscus sabdariffa L., plant extract with other drugs and the affected targets. This study was ...

  10. Inhibitory effects of astaxanthin, β-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities.

    Science.gov (United States)

    Zheng, Yu Fen; Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Choi, Hye Duck; Shin, Wan Gyoon; Bae, Soo Kyung

    2013-09-01

    Astaxanthin, β-cryptoxanthin, canthaxanthin, lutein and zeaxanthin, the major xanthophylls, are widely used in food, medicine, and health care products. To date, no studies regarding the inhibitory effects of these xanthophylls on the nine CYPs isozymes have been reported. This study investigated the reversible and time-dependent inhibitory potentials of five xanthophylls on CYPs activities in vitro. The reversible inhibition results showed that the five compounds had only a weak inhibitory effect on the nine CYPs. Lutein did not inhibit the nine CYPs activities. Astaxanthin weakly inhibited CYP2C19, with an IC₅₀ of 16.2 μM; and β-cryptoxanthin weakly inhibited CYP2C8, with an IC₅₀ of 13.8 μM. In addition, canthaxanthin weakly inhibited CYP2C19 and CYP3A4/5, with IC₅₀ values of 10.9 and 13.9 μM, respectively. Zeaxanthin weakly inhibited CYP3A4/5, with an IC₅₀ of 15.5 μM. However, these IC₅₀ values were markedly greater than the Cmax values reported in humans. No significant IC₅₀ shift was observed in the time-dependent inhibition screening. Based on these observations, it is unlikely that these five xanthophylls from the diet or nutritional supplements alter the pharmacokinetics of drugs metabolized by CYPs. These findings provide some useful information for the safe use of these five xanthophylls in clinical practice. Copyright © 2013. Published by Elsevier Ltd.

  11. Inhibitory effect of rhubarb on intestinal α-glucosidase activity in type ...

    African Journals Online (AJOL)

    Purpose: To investigate the inhibitory effect of rhubarb on α-glucosidase activity in the small intestine of rats with type 1 diabetes. Methods: Type 1 diabetic rat model was established by intraperitoneally injecting 30 male SD rats with 1 % streptozocin (STZ). Rats with fasting blood glucose > 11 mmol/L (24) were used for the ...

  12. A Subtype of Inhibitory Interneuron with Intrinsic Persistent Activity in Human and Monkey Neocortex

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-03-01

    Full Text Available A critical step in understanding the neural basis of human cognitive functions is to identify neuronal types in the neocortex. In this study, we performed whole-cell recording from human cortical slices and found a distinct subpopulation of neurons with intrinsic persistent activity that could be triggered by single action potentials (APs but terminated by bursts of APs. This persistent activity was associated with a depolarizing plateau potential induced by the activation of a persistent Na+ current. Single-cell RT-PCR revealed that these neurons were inhibitory interneurons. This type of neuron was found in different cortical regions, including temporal, frontal, occipital, and parietal cortices in human and also in frontal and temporal lobes of nonhuman primate but not in rat cortical tissues, suggesting that it could be unique to primates. The characteristic persistent activity in these inhibitory interneurons may contribute to the regulation of pyramidal cell activity and participate in cortical processing.

  13. The role of cardiac vagal tone and inhibitory control in pre-schoolers' listening comprehension.

    Science.gov (United States)

    Scrimin, Sara; Patron, Elisabetta; Florit, Elena; Palomba, Daniela; Mason, Lucia

    2017-12-01

    This study investigated the role of basal cardiac activity and inhibitory control at the beginning of the school year in predicting oral comprehension at the end of the year in pre-schoolers. Forty-three, 4-year-olds participated in the study. At the beginning of the school year children's electrocardiogram at rest was registered followed by the assessment of inhibitory control as well as verbal working memory and verbal ability. At the end of the year all children were administered a listening comprehension ability measure. A stepwise regression showed a significant effect of basal cardiac vagal tone in predicting listening comprehension together with inhibitory control and verbal ability. These results are among the first to show the predictive role of basal cardiac vagal tone and inhibitory control in pre-schoolers' oral text comprehension, and offer new insight into the association between autonomic regulation of the heart, inhibitory control, and cognitive activity at a young age. © 2017 Wiley Periodicals, Inc.

  14. In silico, in vitro and in vivo analyses of dipeptidyl peptidase IV inhibitory activity and the antidiabetic effect of sodium caseinate hydrolysate.

    Science.gov (United States)

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Jao, Chia-Ling; Hsieh, You-Liang; Wu, Si-Xian; Hsu, Kuo-Chiang

    2016-02-01

    The frequency (A), a novel in silico parameter, was developed by calculating the ratio of the number of truncated peptides with Xaa-proline and Xaa-alanine to all peptide fragments from a protein hydrolyzed with a specific protease. The highest in vitro DPP-IV inhibitory activity (72.7%) was observed in the hydrolysate of sodium caseinate by bromelain (Cas/BRO), and the constituent proteins of bovine casein also had relatively high A values (0.10-0.17) with BRO hydrolysis. 1CBR (the <1 kDa fraction of Cas/BRO) showed the greatest in vitro DPP-IV inhibitory activity of 77.5% and was used for in vivo test by high-fat diet-fed and low-dose streptozotocin-induced diabetic rats. The daily administration of 1CBR for 6 weeks was effective to improve glycaemic control in diabetic rats. The results indicate that the novel in silico method has the potential as a screening tool to predict dietary proteins to generate DPP-IV inhibitory and antidiabetic peptides.

  15. Phaeophytins from Thyrsacanthus ramosissimus Moric. with inhibitory activity on human DNA topoisomerase II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Analucia Guedes Silveira; Tenorio-Souza, Fabio Henrique; Moura, Marcelo Dantas; Mota, Sabrina Gondim Ribeiro; Silva Lins, Antonio Claudio da; Dias, Celidarque da Silva; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Ciencias Frmaceuticas; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas; Silva, Tania Maria Sarmento da [Universidade Federal Rural de Pernambuco, Recife, PE (Brazil). Dept. de Ciencias Moleculares; Santos, Creusioni Figueredo dos, E-mail: jbarbosa@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Biologia Molecular

    2012-07-01

    Our study reports the extraction and isolation of a new phaeophytin derivative 15{sup 1}-hydroxy-(15{sup 1}-S)-porphyrinolactone, designated anamariaine (1) herein, isolated from the chloroform fraction of aerial parts of Thyrsacanthus ramosissimus Moric. along with the known 15{sup 1}-ethoxy-(15{sup 1}-S)-porphyrinolactone (2). These compounds were identified by usual spectroscopic methods. Both compounds were subjected to in vitro (inhibitory activity) tests by means of supercoiled DNA relaxation techniques and were shown to display inhibitory activity against human DNA topoisomerase II-{alpha} at 50 {mu}M. Interconversion of these two pigments under the mild conditions of the isolation techniques should be highly unlikely but cannot be entirely ruled out. (author)

  16. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium

    Directory of Open Access Journals (Sweden)

    Md. Yousof Ali

    2017-12-01

    Full Text Available Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B, α-glucosidase, and ONOO−-mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively. In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14–14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively. In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO−-mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the

  17. Influence of Different Drying Treatments and Extraction Solvents on the Metabolite Profile and Nitric Oxide Inhibitory Activity of Ajwa Dates.

    Science.gov (United States)

    Abdul-Hamid, Nur Ashikin; Abas, Faridah; Ismail, Intan Safinar; Shaari, Khozirah; Lajis, Nordin H

    2015-11-01

    This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity. The association between metabolite profiles and nitric oxide (NO) inhibitory activity of the various extracts of Ajwa dates was evaluated by utilizing partial least squares (PLS) model. The validated PLS model can be employed to predict the NO inhibitory activity of new samples of date fruits based on their NMR spectra which was important for assessing fruit quality. The information gained might be used as guidance for quality control, nutritional values and as a basis for the preparation of any food supplements for human health that employs date palm fruit as the raw material. © 2015 Institute of Food

  18. Macrophage migration inhibitory factor is associated with aneurysmal expansion

    DEFF Research Database (Denmark)

    Pan, Jie-Hong; Lindholt, Jes Sanddal; Sukhova, Galina K

    2003-01-01

    Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution o...... of MIF to these human diseases remain unknown, although a recent rabbit study showed expression of this cytokine in atherosclerotic lesions.......Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution...

  19. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    Science.gov (United States)

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Inhibitory Effect and Mechanism of Arctium lappa Extract on NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Kim, Young-Kyu; Koppula, Sushruta; Shim, Do-Wan; In, Eun-Jung; Kwak, Su-Bin; Kim, Myong-Ki; Yu, Sang-Hyeun; Lee, Kwang-Ho; Kang, Tae-Bong

    2018-01-01

    Arctium lappa (A. lappa) , Compositae, is considered a potential source of nutrition and is used as a traditional medicine in East Asian countries for centuries. Although several studies have shown its biological activities as an anti-inflammatory agent, there have been no reports on A. lappa with regard to regulatory role in inflammasome activation. The purpose of this study was to investigate the inhibitory effects of A. lappa extract (ALE) on NLRP3 inflammasome activation and explore the underlying mechanisms. We found that ALE inhibited IL-1 β secretion from NLRP3 inflammasome activated bone marrow derived macrophages but not that secreted by NLRC4 and AIM2 inflammasomes activation. Mechanistic studies revealed that ALE suppressed the ATPase activity of purified NLRP3 and reduced mitochondrial reactive oxygen species (mROS) generated during NLRP3 activation. Therefore, the inhibitory effect of ALE on NLRP3 inflammasome might be attributed to its ability to inhibit the NLRP3 ATPase function and attenuated the mROS during inflammasome activation. In addition, ALE significantly reduced the LPS-induced increase of plasma IL-1 β in mouse peritonitis model. These results provide evidence of novel anti-inflammatory mechanisms of A. lappa , which might be used for therapeutic applications in the treatment of NLRP3 inflammasome-associated inflammatory disorders.

  1. Inhibitory Effects of Resveratrol Analogs on Mushroom Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Nádia Rezende Barbosa Raposo

    2012-10-01

    Full Text Available Skin pigmentation disorders typically involve an overproduction or uneven distribution of melanin, which results in skin spots. Resveratrol can inhibit tyrosinase, the active enzyme in the synthesis of melanin, but it does not inhibit the synthesis of melanin to an extent that enables its use alone as a skin whitening agent in pharmaceutical formulations, so its use as a coadjuvant in treatment of hyperpigmentation is suggested. Six resveratrol analogs were tested for tyrosinase inhibitory activity in vitro. Among the analogs tested, compound D was the most powerful tyrosinase inhibitor (IC50 = 28.66 µg/mL, two times more active than resveratrol (IC50 = 57.05 µg/mL, followed by the analogs A, E, B, F and C, respectively. This demonstrated that the hydroxylation at C4' on the phenolic ring was the molecular modification with most importance for the observed activity.

  2. Inhibitory effect of flavonoids from citrus plants on Epstein-Barr virus activation and two-stage carcinogenesis of skin tumors.

    Science.gov (United States)

    Iwase, Y; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H; Kawaii, S; Yano, M; Mou, X Y; Takayasu, J; Tokuda, H; Nishino, H

    2000-06-01

    To search for possible anti-tumor promoters, thirteen flavones (1-13) obtained from the peel of Citrus plants were examined for their inhibitory effects on the Epstein-Barr virus early antigen (EBV-EA) activation by a short-term in vitro assay. Of these flavones, 3,5,6,7,8,3',4'-heptamethoxyflavone (HPT) (13) exhibited significant inhibitory effects on the EBV-EA activation induced by the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA). Further, compound 13 exhibited remarkable inhibitory effects on mouse skin tumor promotion in an in vivo two-stage carcinogenesis test.

  3. Influence of thermodynamic parameter in Lanosterol 14alpha-demethylase inhibitory activity as antifungal agents: a QSAR approach.

    Science.gov (United States)

    Vasanthanathan, Poongavanam; Lakshmi, Manickavasagam; Arockia Babu, Marianesan; Kaskhedikar, Sathish Gopalrao

    2006-06-01

    A quantitative structure activity relationship, Hansch approach was applied on twenty compounds of chromene derivatives as Lanosterol 14alpha-demethylase inhibitory activity against eight fungal organisms. Various physicochemical descriptors and reported minimum inhibitory concentration values of different fungal organisms were used as independent variables and dependent variable respectively. The best models for eight different fungal organisms were first validated by leave-one-out cross validation procedure. It was revealed that thermodynamic parameters were found to have overall significant correlationship with anti fungal activity and these studies provide an insight to design new molecules.

  4. Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta)

    Science.gov (United States)

    Liu, Juan; Li, Fuchao; Liu, Ling; Jiang, Peng; Liu, Zhaopu

    2013-11-01

    In recent years, red tides occurred frequently in coastal areas worldwide. Various methods based on the use of clay, copper sulfate, and bacteria have been successful in controlling red tides to some extent. As a new defensive agent, marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae, such as Gymnodinium sp. (Pyrrophyta). In this study, we isolated a marine bacterium, HSB07, from seawater collected from Hongsha Bay, Sanya, South China Sea. Based on its 16S rRNA gene sequence and biochemical characteristics, the isolated strain HSB07 was identified as a member of the genus Halomonas. A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp. in a bioactive prescreening experiment. The extract was further separated into fractions A, B, and C by silica gel column chromatography. Fractions B and C showed strong inhibition activities against Gymnodinium. This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.

  5. Acetylcholinesterase Inhibitory Activities of Flavonoids from the Leaves of Ginkgo biloba against Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Xiao Ding

    2013-01-01

    Full Text Available Ginkgo biloba is a traditional Chinese medicinal plant which has potent insecticidal activity against brown planthopper. The MeOH extract was tested in the acetylcholinesterase (AChE inhibitory assay with IC50 values of 252.1 μg/mL. Two ginkgolides and thirteen flavonoids were isolated from the leaves of Ginkgo biloba. Their structures were established on the basis of spectroscopic data interpretation. It revealed that the 13 isolated flavonoids were found to inhibit AChE with IC50 values ranging from 57.8 to 133.1 μg/mL in the inhibitory assay. AChE was inhibited dose dependently by all tested flavonoids, and compound 6 displayed the highest inhibitory effect against AChE with IC50 values of 57.8 μg/mL.

  6. Free-Radical-Scavenging, Antityrosinase, and Cellular Melanogenesis Inhibitory Activities of Synthetic Isoflavones.

    Science.gov (United States)

    Lu, Tzy-Ming; Ko, Horng-Huey; Ng, Lean-Teik; Hsieh, Yen-Pin

    2015-06-01

    In this study, we examined the potential of synthetic isoflavones for application in cosmeceuticals. Twenty-five isoflavones were synthesized and their capacities of free-radical-scavenging and mushroom tyrosinase inhibition, as well as their impact on cell viability of B16F10 murine melanoma cells and HaCaT human keratinocytes were evaluated. Isoflavones that showed significant mushroom tyrosinase inhibitory activities were further studied on reduction of cellular melanin formation and antityrosinase activities in B16F10 melanocytes in vitro. Among the isoflavones tested, 6-hydroxydaidzein (2) was the strongest scavenger of both ABTS(.+) and DPPH(.) radicals with SC50 values of 11.3 ± 0.3 and 9.4 ± 0.1 μM, respectively. Texasin (20) exhibited the most potent inhibition of mushroom tyrosinase (IC50 14.9 ± 4.5 μM), whereas retusin (17) showed the most efficient inhibition both of cellular melanin formation and antityrosinase activity in B16F10 melanocytes, respectively. In summary, both retusin (17) and texasin (20) exhibited potent free-radical-scavenging capacities as well as efficient inhibition of cellular melanogenesis, suggesting that they are valuable hit compounds with potential for advanced cosmeceutical development. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity.

    Science.gov (United States)

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Pedada, Srinivasa Rao; Kalle, Arunasree M; Satya, A Krishna

    2016-11-01

    Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. Of the four oxadiazoles known, 1,3,4-oxadiazole has become an important structural motif for the development of new drugs and the compounds containing 1,3,4-oxadiazole cores have a broad spectrum of biological activity. Herein, we describe the design, synthesis and biological evaluation of a series of novel 2,5-disubstituted 1,3,4-oxadiazoles (10a-10j) as class I histone deacetylase (HDAC) inhibitors. The compounds were designed and evaluated for HDAC8 selectivity using in silico docking software (Glide) and the top 10 compounds with high dock score and obeying Lipinski's rule were synthesized organically. Further the biological HDAC inhibitory and selectivity assays and anti-proliferative assays were carried out. In in silico and in vitro studies, all compounds (10a-10j) showed significant HDAC inhibition and exhibited HDAC8 selectivity. Among all tested compounds, 10b showed substantial HDAC8 inhibitory activity and better anticancer activity which is comparable to the positive control, a FDA approved drug, vorinostat (SAHA). Structural activity relation is discussed with various substitutions in the benzene ring connected on 1,3,4-oxadizole and glycine/alanine. The study warranted further investigations to develop HDAC8-selective inhibitory molecule as a drug for neoplastic diseases. Novel 1,3,4-oxadizole substituted with glycine/alanine showed HDAC8 inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Metabolites with Gram-negative bacteria quorum sensing inhibitory activity from the marine animal endogenic fungus Penicillium sp. SCS-KFD08.

    Science.gov (United States)

    Kong, Fan Dong; Zhou, Li Man; Ma, Qing Yun; Huang, Sheng Zhuo; Wang, Pei; Dai, Hao Fu; Zhao, You Xing

    2017-01-01

    Three new compounds named penicitor A, aculene E and penicitor B, as well as four known compounds, were isolated from the fermentation broth of Penicillium sp. SCS-KFD08 associated with a marine animal Sipunculus nudus from the Haikou bay of China. Their planar structures and absolute configurations were unambiguously elucidated by spectroscopic data, Mosher's method, CD spectrum analysis along with quantum ECD calculation. Among them, compounds 2-7 showed quorum sensing inhibitory activity against Chromobacterium violaceum CV026, and could significantly reduce violacein production in N-hexanoyl-l-homoserine lactone (C6-HSL) induced C. violaceum CV026 cultures at sub-inhibitory concentrations.

  9. Inhibitory effect of Sphagnum palustre extract and its bioactive compounds on aromatase activity

    Directory of Open Access Journals (Sweden)

    Hee Jeong Eom

    2016-09-01

    Full Text Available Sphagnum palustre (a moss has been traditionally used in Korea for the cure of several diseases such as cardiac pain and stroke. In this research, the inhibitory effect of S. palustre on aromatase (cytochrome P450 19, CYP19 activity was studied. [1β-3H] androstenedione was used as a substrate and incubated with S. palustre extract and recombinant human CYP19 in the presence of NADPH. S. palustre extract inhibited aromatase in a concentration-dependent manner (IC50 value: 36.4 ± 8.1 µg/mL. To elucidate the major compounds responsible for the aromatase inhibitory effects of S. palustre extract, nine compounds were isolated from the extract and tested for their inhibition of aromatase activity. Compounds 1, 6, and 7 displayed aromatase inhibition, while the inhibition by the other compounds was negligible.

  10. Sempervivum davisii: phytochemical composition, antioxidant and lipase-inhibitory activities.

    Science.gov (United States)

    Uzun, Yusuf; Dalar, Abdullah; Konczak, Izabela

    2017-12-01

    Sempervivum davisii Muirhead (Crassulaceae) is a traditional medicinal herb from Eastern Anatolia. To date the composition of phytochemicals and physiological properties of this herb were not subjected to any research. This study identifies compounds in S. davisii hydrophilic extracts and evaluates their potential biological properties. Ethanol-based lyophilized extracts were obtained from aerial parts of plant (10 g of ground dry plant material in 200 mL of acidified aqueous ethanol, shaken for 2 h at 22 °C with supernatant collected and freeze-dried under vacuum). Phytochemical composition was investigated by liquid chromatography mass spectrometry (LC-MS/MS, phenolics) and gas chromatography mass spectrometry (GC-MS, volatiles). Phenolic compounds were quantified by high-performance liquid chromatography (HPLC) and the Folin-Ciocalteu assay. Subsequently, antioxidant capacity [ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) assays] and enzyme inhibitory properties (isolated porcine pancreatic lipase) of the extracts were determined. Polyphenolic compounds were the main constituents of lyophilized extracts, among which kaempferol glycosides and quercetin hexoside dominated. The extracts exhibited potent antioxidant (FRAP values of 1925.2-5973.3 μM Fe 2+ /g DW; ORAC values of 1858.5-4208.7 μM Trolox Eq./g DW) and moderate lipase inhibitory (IC 50 : 11.6-2.96 mg/mL) activities. Volatile compounds (nonanal, dehydroxylinalool oxide isomers, 2-decenal, 2-undecenal, 2,6-di-tetr-butylphenol) were also found. Phenolic compounds with the dominating kaempferol and quercetin derivatives are the sources of potent antioxidant properties of S. davisii hydrophilic extracts. The extracts exhibit moderate inhibitory properties towards isolated pancreatic lipase.

  11. Asperpyrone-Type Bis-Naphtho-γ-Pyrones with COX-2-Inhibitory Activities from Marine-Derived Fungus Aspergillus niger.

    Science.gov (United States)

    Fang, Wei; Lin, Xiuping; Wang, Jianjiao; Liu, Yonghong; Tao, Huaming; Zhou, Xuefeng

    2016-07-20

    Bis-naphtho-γ-pyrones (BNPs) are an important group of aromatic polyketides derived from fungi, and asperpyrone-type BNPs are produced primarily by Aspergillus species. The fungal strain Aspergillus niger SCSIO Jcsw6F30, isolated from a marine alga, Sargassum sp., and identified according to its morphological traits and the internal transcribed spacer (ITS) region sequence, was studied for BNPs secondary metabolisms. After HPLC/MS analysis of crude extract of the fermentation broth, 11 asperpyrone-type BNPs were obtained directly and quickly by chromatographic separation in the extract, and those isolated asperpyrone-type BNPs were structurally identified by NMR and MS analyses. All of the BNPs showed weak cytotoxicities against 10 human tumor cells (IC50 > 30 μM). However, three of them, aurasperone F (3), aurasperone C (6) and asperpyrone A (8), exhibited obvious COX-2-inhibitory activities, with the IC50 values being 11.1, 4.2, and 6.4 μM, respectively. This is the first time the COX-2-inhibitory activities of BNPs have been reported.

  12. Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Sinonovacula constricta

    Directory of Open Access Journals (Sweden)

    Yun Li

    2016-06-01

    Full Text Available Angiotensin I-converting enzyme (ACE inhibitory activity of razor clam hydrolysates produced using five proteases, namely, pepsin, trypsin, alcalase, flavourzyme and proteases from Actinomucor elegans T3 was investigated. Flavourzyme hydrolysate showed the highest level of degree of hydrolysis (DH (45.87% followed by A. elegans T3 proteases hydrolysate (37.84% and alcalase (30.55%. The A. elegans T3 proteases was observed to be more effective in generating small peptides with ACE-inhibitory activity. The 3 kDa membrane permeate of A. elegans T3 proteases hydrolysate showed the highest ACE-inhibitory activity with an IC50 of 0.79 mg/mL. After chromatographic separation by Sephadex G-15 gel filtration and reverse phase-high performance liquid chromatography, the potent fraction was subjected to MALDI/TOF-TOF MS/MS for identification. A novel ACE-inhibitory peptide (VQY was identified exhibiting an IC50 of 9.8 μM. The inhibitory kinetics investigation by Lineweaver-Burk plots demonstrated that the peptide acts as a competitive ACE inhibitor. The razor clam hydrolysate obtained by A. elegans T3 proteases could serve as a source of functional peptides with ACE-inhibitory activity for physiological benefits.

  13. GC-MS Analysis of Fixed Oil from Nelumbo nucifera Gaertn Seeds: Evaluation of Antimicrobial, Antileishmanial and Urease Inhibitory Activities

    International Nuclear Information System (INIS)

    Shahnaz, A.; Khan, H.; Shah, A.; Khan, N.M.

    2016-01-01

    In the present study, chemical composition of fixed oil (NnFO) obtained from Nelumbo nucifera seeds was determined by GC-MS analysis which revealed the presence of 39 compounds mainly comprised of 20.8 % keto fatty acids with high content of methyl ester of palmitic acid (13.59 %) and methyl ester of 9-oxo-nonanoic acid (11.89 %). The other major constituents identified were; fumaric acid-3-methylbut-3-enyl nonyl ester, 2-decenal and methyl ester of 9E-octadecenoic acid as 6.45 %, 5.09 %, 5.06 %, respectively. NnFO along with other fractions were tested for in vitro antimicrobial, antileishmanial and urease inhibitory assays. NnFO showed weak antibacterial activities against the tested bacteria while promising antifungal effect against Candida albicans (68 %), Candida glaberata (65 %) and Aspergillus flavus (64 %). NnFO showed strong antileishmanial activity with IC50 = 7.34 ±0.72 as compared to reference drug (5.1± 0.29) probably due to the presence of keto-ene derivatives. NnFO showed weak urease inhibitory activity while the ethyl acetate fraction (N3) strongly inhibited both J.B. urease (IC50= 21.45 %) and B.P. urease (IC50= 28.65%) respectively. In conclusion, N. nucifera seeds fixed oil possess promising therapeutic potential as a new antifungal and antileishmanial agent. (author)

  14. Identification and molecular docking study of novel angiotensin-converting enzyme inhibitory peptides from Salmo salar using in silico methods.

    Science.gov (United States)

    Yu, Zhipeng; Chen, Yang; Zhao, Wenzhu; Li, Jianrong; Liu, Jingbo; Chen, Feng

    2018-01-25

    In order to circumvent some challenges of the classical approach, the in silico method has been applied to the discovery of angiotensin-converting enzyme (ACE) inhibitory peptides from food proteins. In this study, some convenient and efficient in silico tools were utilized to identify novel ACE inhibitory peptides from Salmo salar. Collagen from Salmo salar was digested in silico into hundreds of peptides. Results revealed that tetrapeptides PGAR and IGPR showed potent ACE inhibitory activity, with IC 50 values of 0.598 ± 0.12 and 0.43 ± 0.09 mmol L -1 , respectively. The molecular docking result showed that PGAR and IGPR interact with ACE mostly via hydrogen bonds and attractive charge. Peptide IGPR interacts with Zn + at the ACE active site, showing high inhibitory activity. Interaction with Zn + in ACE may lead to higher inhibitory activity of peptides, and Pi interactions may promote the effect of peptides on ACE. The in silico method can be an effective method to predict potent ACE inhibitory peptides from food proteins. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory activity of pyrazole-based 1,3,4-oxadiazole derivatives

    Science.gov (United States)

    Qi, De-Qiang; Yu, Chuan-Ming; You, Jin-Zong; Yang, Guang-Hui; Wang, Xue-Jie; Zhang, Yi-Ping

    2015-11-01

    A series of pyrazole-based 1,3,4-oxadiazole derivatives were rationally designed and synthesized in good yields by following a convenient route. All the newly synthesized molecules were fully characterized by IR, 1H NMR and elemental analysis. Eight compounds were structurally determined by single crystal X-ray diffraction analysis. The fluorescence properties of all the compounds were investigated in dimethyl sulfoxide media. In addition, these newly synthesized compounds were evaluated for in vitro inhibitory activity against commercial enzyme xanthine oxidase (XO) by measuring the formation of uric acid from xanthine. Among the compounds synthesized and tested, 3d and 3e were found to be moderate inhibitory activity against commercial XO with IC50 = 72.4 μM and 75.6 μM. The studies gave a new insight in further optimization of pyrazole-based 1,3,4-oxadiazole derivatives with excellent fluorescence properties and XO inhibitory activity.

  16. Two Novel Bioactive Peptides from Antarctic Krill with Dual Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory Activities.

    Science.gov (United States)

    Ji, Wei; Zhang, Chaohua; Ji, Hongwu

    2017-07-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE) are considered useful in managing 2 often associated conditions: diabetes and hypertension. In this study, corolase PP was used to hydrolyze Antarctic krill protein. The hydrolysate (AKH) was isolated by ultrafiltration and purified by size-exclusion chromatography, ion exchange chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) sequentially. The in vitro inhibitory activities of all AKHs and several fractions obtained against ACE and DPP-IV were assessed. Two peptides, purified with dual-strength inhibitory activity against ACE and DPP-IV, were identified by TOF-MS/MS. Results indicated that not all fractions exhibited dual inhibitory activities of ACE and DPP-IV. The purified peptide Lys-Val-Glu-Pro-Leu-Pro had half-maximal inhibitory concentrations (IC 50 ) of 0.93±0.05 and 0.73±0.04 mg/mL against ACE and DPP-IV, respectively. The other peptide Pro-Ala-Leu had IC 50 values of 0.64±0.05 and 0.88±0.03 mg/mL against ACE and DPP-IV, respectively. This study firstly reported the sequences of dual bioactive peptides from Antarctic krill proteins, further provided new insights into the bioactive peptides responsible for the ACE and DPP-IV inhibitory activities from the Antarctic krill protein hydrolysate to manage hypertension and diabetes. © 2017 Institute of Food Technologists®.

  17. Utilisation of rapeseed protein isolates for production of peptides with angiotensin I-converting enzyme (ACE-inhibitory activity

    Directory of Open Access Journals (Sweden)

    Vioque, Javier

    2004-12-01

    Full Text Available ACE activity is related to increased arterial pressure and coronary diseases. A rapeseed protein isolate was hydrolyzed with the protease Alcalase in order to investigate the possible presence of ACE inhibitory peptides in the resulting hydrolysates. Hydrolysis for 30 min yielded a hydrolysate with the highest ACE inhibitory activity. Two fractions of this hydrolysate obtained by Biogel P2 gel filtration chromatography were used for further purification of ACE inhibitory peptides. Three fractions with ACE inhibitory activity were purified by reverse-phase HPLC of Biogel P2 f ractions. This demonstrates that rapeseed protein hydrolysates represent a good source of ACE inhibitory peptides .La actividad de ECA está relacionada con una presión arterial alta y enfermedades cardíacas. Un aislado proteico de colza se hidrolizó con alcalasa para estudiar la posible presencia de péptidos inhibidores de ECA en el hidrolizado. La hidrólisis durante 30 min produjo el hidrolizado con la mayor actividad inhibidora de ECA. Dos fracciones de este hidrolizado, obtenidas por cromatografía de filtración en gel Biogel P2, se usaron para la purificación de péptidos inhibidores de ECA. Tres fracciones con actividad inhibidora de ECA se purificaron mediante HPLC en fase reversa de las fracciones obtenidas mediante Biogel P2. Esto demuestra que los hidrolizados proteicos de colza representan una buena fuente de péptidos inhibidores de ECA.

  18. The frontal lobes and inhibitory function

    International Nuclear Information System (INIS)

    Konishi, Seiki

    2011-01-01

    Neuropsychological studies using traditional tasks of inhibitory functions, such as the Wisconsin card sorting test (WCST) and the Go/No-Go Task have revealed that the frontal lobe is responsible for several types of inhibitory functions. However, the detailed psychological nature of the inhibitory functions and the precise location of their critical foci within the frontal lobe remain to be investigated. Functional magnetic resonance imaging provides spatial and temporal resolution that allowed us to illuminate at least 4 frontal regions involved in inhibitory functions: the dorsolateral, ventrolateral, and rostral parts of the frontal lobe and the presupplementary motor area (preSMA). The ventrolateral part of the frontal lobe in the right hemisphere was activated during response inhibition. The preSMA in the left hemisphere was activated during inhibition of proactive interference immediately after the dimension changes of the WCST. The rostral part of the frontal lobe in the left hemisphere was activated during inhibition long after the dimension changes. The dorsolateral part of the frontal lobe in the left hemisphere was activated at the dimension changes in the first time, but not in the second time. These findings provide clues to our understanding of functional differentiation of inhibitory functions and their localization in the frontal lobe. (author)

  19. Investigation of lactic acid bacterial strains for meat fermentation and the product's antioxidant and angiotensin-I-converting-enzyme inhibitory activities.

    Science.gov (United States)

    Takeda, Shiro; Matsufuji, Hisashi; Nakade, Koji; Takenoyama, Shin-Ichi; Ahhmed, Abdulatef; Sakata, Ryoichi; Kawahara, Satoshi; Muguruma, Michio

    2017-03-01

    In the lactic acid bacteria (LAB) strains screened from our LAB collection, Lactobacillus (L.) sakei strain no. 23 and L. curvatus strain no. 28 degraded meat protein and tolerated salt and nitrite in vitro. Fermented sausages inoculated strains no. 23 and no. 28 showed not only favorable increases in viable LAB counts and reduced pH, but also the degradation of meat protein. The sausages fermented with these strains showed significantly higher antioxidant activity than those without LAB or fermented by each LAB type strain. Angiotensin-I-converting-enzyme (ACE) inhibitory activity was also significantly higher in the sausages fermented with strain no. 23 than in those fermented with the type strain. Higher ACE inhibitory activity was also observed in the sausages fermented with strain no. 28, but did not differ significantly from those with the type strain. An analysis of the proteolysis and degradation products formed by each LAB in sausages suggested that those bioactivities yielded fermentation products such as peptides. Therefore, LAB starters that can adequately ferment meat, such as strains no. 23 and no. 28, should contribute to the production of bioactive compounds in meat products. © 2016 Japanese Society of Animal Science.

  20. Antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions.

    Science.gov (United States)

    Chen, Lei; Kang, Young-Hwa

    2014-03-12

    An adaptation of cultural management to the specific cultural system, as well as crop demand, can further result in the improvement of the quality of horticultural products. Therefore, this study focused on the antioxidant and enzyme inhibitory activities of Plebeian herba (Salvia plebeia R. Br.) grown in hydroponics in comparison with those of the plant grown in soil. The antioxidant activities of Plebeian herba extract were measured as 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities as well as the reducing power by decreasing nitric oxide (NO) and superoxide dismutase activity (SOD) in vitro. Interestingly, by comparison with hydroponics and traditional cultivation, Plebeian herba cultivated in nutrition-based soil improved inhibitory effect on free radicals of DPPH, ABTS, and NO and increased the contents of phenolics such as caffeic acid (1), luteolin-7-glucoside (2), homoplantaginin (3), hispidulin (4), and eupatorin. Free radical scavenging and SOD activity, as well as α-glucosidase inhibitory effect, were higher in Plebeian herba grown in nutrition-based soil than in plants grown in hydroponics and traditional condition.

  1. Correlation between enzymes inhibitory effects and antioxidant ...

    African Journals Online (AJOL)

    ... and phytochemical content of fractions was investigated. The n-butanol fraction showed significant α-glucosidase and α-amylase inhibitory effects (IC50 values 15.1 and 39.42 μg/ml, respectively) along with the remarkable antioxidant activity when compared to the other fractions. High performance liquid chromatography ...

  2. Single-molecule analysis of inhibitory pausing states of V1-ATPase.

    Science.gov (United States)

    Uner, Naciye Esma; Nishikawa, Yoshihiro; Okuno, Daichi; Nakano, Masahiro; Yokoyama, Ken; Noji, Hiroyuki

    2012-08-17

    V(1)-ATPase, the hydrophilic V-ATPase domain, is a rotary motor fueled by ATP hydrolysis. Here, we found that Thermus thermophilus V(1)-ATPase shows two types of inhibitory pauses interrupting continuous rotation: a short pause (SP, 4.2 s) that occurred frequently during rotation, and a long inhibitory pause (LP, >30 min) that terminated all active rotations. Both pauses occurred at the same angle for ATP binding and hydrolysis. Kinetic analysis revealed that the time constants of inactivation into and activation from the SP were too short to represent biochemically predicted ADP inhibition, suggesting that SP is a newly identified inhibitory state of V(1)-ATPase. The time constant of inactivation into LP was 17 min, consistent with one of the two time constants governing the inactivation process observed in bulk ATPase assay. When forcibly rotated in the forward direction, V(1) in LP resumed active rotation. Solution ADP suppressed the probability of mechanical activation, suggesting that mechanical rotation enhanced inhibitory ADP release. These features were highly consistent with mechanical activation of ADP-inhibited F(1), suggesting that LP represents the ADP-inhibited state of V(1)-ATPase. Mechanical activation largely depended on the direction and angular displacement of forced rotation, implying that V(1)-ATPase rotation modulates the off rate of ADP.

  3. Altered BOLD response during inhibitory and error processing in adolescents with anorexia nervosa.

    Directory of Open Access Journals (Sweden)

    Christina Wierenga

    Full Text Available BACKGROUND: Individuals with anorexia nervosa (AN are often cognitively rigid and behaviorally over-controlled. We previously showed that adult females recovered from AN relative to healthy comparison females had less prefrontal activation during an inhibition task, which suggested a functional brain correlate of altered inhibitory processing in individuals recovered from AN. However, the degree to which these functional brain alterations are related to disease state and whether error processing is altered in AN individuals is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, ill adolescent AN females (n = 11 and matched healthy comparison adolescents (CA with no history of an eating disorder (n = 12 performed a validated stop signal task (SST during functional magnetic resonance imaging (fMRI to explore differences in error and inhibitory processing. The groups did not differ on sociodemographic variables or on SST performance. During inhibitory processing, a significant group x difficulty (hard, easy interaction was detected in the right dorsal anterior cingulate cortex (ACC, right middle frontal gyrus (MFG, and left posterior cingulate cortex (PCC, which was characterized by less activation in AN compared to CA participants during hard trials. During error processing, a significant group x accuracy (successful inhibit, failed inhibit interaction in bilateral MFG and right PCC was observed, which was characterized by less activation in AN compared to CA participants during error (i.e., failed inhibit trials. CONCLUSION/SIGNIFICANCE: Consistent with our prior findings in recovered AN, ill AN adolescents, relative to CA, showed less inhibition-related activation within the dorsal ACC, MFG and PCC as inhibitory demand increased. In addition, ill AN adolescents, relative to CA, also showed reduced activation to errors in the bilateral MFG and left PCC. These findings suggest that altered prefrontal and cingulate activation during

  4. Fibrinogen Vicenza and Genova II: two new cases of congenital dysfibrinogenemia with isolated defect of fibrin monomer polymerization and inhibitory activity on normal coagulation.

    Science.gov (United States)

    Rodeghiero, F; Castaman, G C; Dal Belin Peruffo, A; Dini, E; Galletti, A; Barone, E; Gastaldi, G

    1987-06-03

    Two new cases of congenital dysfibrinogenemia are presented in which defective fibrin monomer polymerization and inhibitory activity on normal coagulation were observed. They have been tentatively called fibrinogen Vicenza and Genova II. The first was discovered in a family with mild bleeding diathesis, the second in an asymptomatic family. In almost all reported cases of fibrinogens with defective fibrin monomer polymerization, additional functional or structural defects have been detected. In our cases, on the contrary, detailed investigations failed to show any other abnormality. Fibrinogen Genova II is apparently identical to fibrinogen Baltimore IV, whereas fibrinogen Vicenza is similar to fibrinogen Troyes and Genova I, but also exerts an evident inhibitory activity on normal coagulation and differs from fibrinogen Genova II and Baltimore IV showing a different kinetic pattern of fibrin monomer polymerization.

  5. Inhibitory Effect and Mechanism of Arctium lappa Extract on NLRP3 Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Young-Kyu Kim

    2018-01-01

    Full Text Available Arctium lappa (A. lappa, Compositae, is considered a potential source of nutrition and is used as a traditional medicine in East Asian countries for centuries. Although several studies have shown its biological activities as an anti-inflammatory agent, there have been no reports on A. lappa with regard to regulatory role in inflammasome activation. The purpose of this study was to investigate the inhibitory effects of A. lappa extract (ALE on NLRP3 inflammasome activation and explore the underlying mechanisms. We found that ALE inhibited IL-1β secretion from NLRP3 inflammasome activated bone marrow derived macrophages but not that secreted by NLRC4 and AIM2 inflammasomes activation. Mechanistic studies revealed that ALE suppressed the ATPase activity of purified NLRP3 and reduced mitochondrial reactive oxygen species (mROS generated during NLRP3 activation. Therefore, the inhibitory effect of ALE on NLRP3 inflammasome might be attributed to its ability to inhibit the NLRP3 ATPase function and attenuated the mROS during inflammasome activation. In addition, ALE significantly reduced the LPS-induced increase of plasma IL-1β in mouse peritonitis model. These results provide evidence of novel anti-inflammatory mechanisms of A. lappa, which might be used for therapeutic applications in the treatment of NLRP3 inflammasome-associated inflammatory disorders.

  6. Chemical composition and α-amylase inhibitory activity of the essential oil from Sabina chinensis cv. Kaizuca leaves.

    Science.gov (United States)

    Gu, Dongyu; Fang, Chen; Yang, Jiao; Li, Minjing; Liu, Hengming; Yang, Yi

    2018-03-01

    Sabina chinensis cv. Kaizuca (SCK) is a variant of S. chinensis L. The essential oil from its leaves exhibited α-amylase inhibitory activity in vitro and the IC 50 value was 187.08 ± 0.56 μg/mL. Nineteen compounds were identified from this essential oil by gas chromatography-mass spectrometry (GC-MS) analysis. The major compounds identified were bornyl acetate (42.6%), elemol (20.5%), β-myrcene (13.7%) and β-linalool (4.0%). In order to study the reason of the α-amylase inhibitory activity of this essential oil, the identified compounds were docked with α-amylase by molecular docking individually. Among these compounds, γ-eudesmol exhibited the lowest binding energy (-6.73 kcal/mol), followed by α-copaen-11-ol (-6.66 kcal/mol), cubedol (-6.39 kcal/mol) and α-acorenol (-6.12 kcal/mol). The results indicated that these compounds were the active ingredients responsible for the α-amylase inhibitory activity of essential oil from SCK.

  7. Lipase inhibitory activity of Carica papaya, Chrysophyllum cainito, Corcorus olitorius, Cympogon citrates and Syzygium cumini extracts

    Directory of Open Access Journals (Sweden)

    Briones, A.T.

    2017-09-01

    Full Text Available The lipase inhibitory action of Carica papaya, Chrysophyllum cainito, Corcorus olitorius, Cymbopogon citrates and Syzygium cumini were evaluated to explore for the presence of anti-obesity compounds and their potential weight-lowering activity. Enzyme inhibition results of the alcoholic extracts of the five plants showed that C. cainito has the highest percent inhibition at 74.91% while S. cumini, C. citratus, C. olitorius and C. papaya obtained less than 50% average inhibition. C. cainito was partitioned using hexane and ethyl acetate to further concentrate the bioactive compounds. The lipase inhibition assay of hexane and ethyl acetate extracts showed 92.11% inhibition and 21.9% inhibition, respectively. The greater activity in the former may imply that majority of potential anti-lipase constituents are found in the hexane portion.

  8. Fungal growth inhibitory properties of new phytosphingolipid analogues.

    Science.gov (United States)

    Mormeneo, D; Manresa, A; Casas, J; Llebaria, A; Delgado, A

    2008-04-01

    To study the growth inhibitory properties of a series of phytosphingosine (PHS) and phytoceramide (PHC) analogues. A panel of two yeast (Candida albicans and Saccharomyces cerevisiae) and six moulds (Aspergillus repens, Aspergillus niger, Penicillium chrysogenum, Cladosporium cladosporioides, Arthroderma uncinatum and Penicillium funiculosum) has been used in this study. A series of new PHS and PHC analogues differing at the sphingoid backbone and the functional group at C1 position were synthesized. Among PHS analogues, 1-azido derivative 1c, bearing the natural D-ribo stereochemistry, showed a promising growth inhibitory profile. Among PHC analogues, compound 12, with a bulky N-pivaloyl group and a Z double bond at C3 position of the sphingoid chain, was the most active growth inhibitor. Minimal inhibitory concentration values were in the range of 23-48 micromol l(-1) for 1c and 44-87 micromol l(-1) for 12. Only scattered data on the antifungal activity of phytosphingolipids have been reported in the literature. This is the first time that a series of analogues of this kind are tested and compared to discern their structural requirements for antifungal activity.

  9. Cholinesterase inhibitory activity and structure elucidation of a new phytol derivative and a new cinnamic acid ester from Pycnanthus angolensis

    Directory of Open Access Journals (Sweden)

    Taiwo O. Elufioye

    Full Text Available ABSTRACT The leaves of Pycnanthus angolensis (Welw. Warb., Myristicaceae, are used as memory enhancer and anti-ageing in Nigerian ethnomedicine. This study aimed at evaluating the cholinesterase inhibitory property as well as isolates the bioactive compounds from the plant. The acetylcholinesterase and butyrylcholinesterase inhibitory potentials of extracts, fractions, and isolated compounds were evaluated by colorimetric and TLC bioautographic assay techniques. The extract inhibited both enzymes with activity increasing with purification, ethyl acetate fraction being most active fraction at 65.66 ± 1.06% and 49.38 ± 1.66% against acetylcholinesterase and butyrylcholinesterase, respectively while the supernatant had 77.44 ± 1.18 inhibition against acetylcholinesterase. Two new bioactive compounds, (2E, 18E-3,7,11,15,18-pentamethylhenicosa-2,18-dien-1-ol (named eluptol and [12-(4-hydroxy-3-methyl-oxo-cyclopenta-1,3-dien-1yl-11-methyl-dodecyl](E-3-(3,4-dimethylphenylprop-2-enoate (named omifoate A were isolated from the plant with IC50 of 22.26 µg/ml (AChE, 34.61 µg/ml (BuChE and 6.51 µg/ml (AChE, 9.07 µg/ml (BuChE respectively. The results showed that the plant has cholinesterase inhibitory activity which might be responsible for its memory enhancing action, thus justifying its inclusion in traditional memory enhancing preparations

  10. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    Science.gov (United States)

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  11. The Antioxidant and Starch Hydrolase Inhibitory Activity of Ten Spices in an In Vitro Model of Digestion: Bioaccessibility of Anthocyanins and Carotenoids

    Directory of Open Access Journals (Sweden)

    Nilakshi Jayawardena

    2015-01-01

    Full Text Available The antioxidant and starch hydrolase inhibitory activities of cardamom, cloves, coriander, cumin seeds, curry leaves, fenugreek, mustard seeds, nutmeg, sweet cumin, and star anise extracts were investigated in an in vitro model of digestion mimicking the gastric and duodenal conditions. The total phenolic contents in all spice extracts had statistically significantly (P<0.05 increased following both gastric and duodenal digestion. This was also in correlation with the antioxidant assays quantifying the water-soluble antioxidant capacity of the extracts. The lipophilic Oxygen Radical Absorbance Capacity assay did not indicate a statistically significant change in the values during any of the digestion phases. Statistically significant (P<0.05 reductions in the anthocyanin contents were observed during the digestion phases in contrast to the carotenoid contents. With the exception of the cumin seed extract, none of the spice extracts showed statistically significant changes in the initial starch hydrolase enzyme inhibitory values prior to gastric and duodenal digestion. In conclusion, this study was able to prove that the 10 spices were a significant source of total phenolics, antioxidant, and starch hydrolase inhibitory activities.

  12. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    Science.gov (United States)

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Acetylcholinesterase Inhibitory and Antioxidant Properties of Euphorbiacharacias Latex

    Directory of Open Access Journals (Sweden)

    Francesca Pintus

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the acetylcholinesterase inhibitory capacity and the antioxidant properties of extracts of Euphorbia characias latex, a Mediterranean shrub. We performed a new extraction method involving the use of the trichloroacetic acid. The extract showed high antioxidant activity, was rich in total polyphenolic and flavonoid content and exhibited substantial inhibition of acetylcholinesterase activity.

  14. Bilingual Contexts Modulate the Inhibitory Control Network

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-03-01

    Full Text Available The present functional magnetic resonance imaging (fMRI study investigated influences of language contexts on inhibitory control and the underlying neural processes. Thirty Cantonese–Mandarin–English trilingual speakers, who were highly proficient in Cantonese (L1 and Mandarin (L2, and moderately proficient in English (L3, performed a picture-naming task in three dual-language contexts (L1-L2, L2-L3, and L1-L3. After each of the three naming tasks, participants performed a flanker task, measuring contextual effects on the inhibitory control system. Behavioral results showed a typical flanker effect in the L2-L3 and L1-L3 condition, but not in the L1-L2 condition, which indicates contextual facilitation on inhibitory control performance by the L1-L2 context. Whole brain analysis of the fMRI data acquired during the flanker tasks showed more neural activations in the right prefrontal cortex and subcortical areas in the L2-L3 and L1-L3 condition on one hand as compared to the L1-L2 condition on the other hand, suggesting greater involvement of the cognitive control areas when participants were performing the flanker task in L2-L3 and L1-L3 contexts. Effective connectivity analyses displayed a cortical-subcortical-cerebellar circuitry for inhibitory control in the trilinguals. However, contrary to the right-lateralized network in the L1-L2 condition, functional networks for inhibitory control in the L2-L3 and L1-L3 condition are less integrated and more left-lateralized. These findings provide a novel perspective for investigating the interaction between bilingualism (multilingualism and inhibitory control by demonstrating instant behavioral effects and neural plasticity as a function of changes in global language contexts.

  15. In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans.

    Science.gov (United States)

    Alam, Md Ariful; Zaidul, I S M; Ghafoor, Kashif; Sahena, F; Hakim, M A; Rafii, M Y; Abir, H M; Bostanudin, M F; Perumal, V; Khatib, A

    2017-03-31

    This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling. Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS). The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p < 0.05) impact on DPPH free radical scavenging and α-glucosidase inhibitory activity. Current results proposed the therapeutic potential of Clinacanthus nutans, especially ethyl acetate and butanol fraction as chemotherapeutic agent against oxidative related cellular damages and control the

  16. Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction.

    Science.gov (United States)

    Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B; Torregrosa, Germán; Marcos, José F; Alborch, Enrique; Manzanares, Paloma

    2006-07-26

    A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.

  17. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.

    Science.gov (United States)

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia

    2013-10-15

    Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp. alpestre

    DEFF Research Database (Denmark)

    Halldórsdóttir, Elsa Steinunn; Jaroszewski, Jerzy W; Olafsdottir, Elin Soffia

    2010-01-01

    The aim of this study was to investigate structures and acetylcholinesterase inhibitory activities of lycopodane-type alkaloids isolated from an Icelandic collection of Lycopodium annotinum ssp. alpestre. Ten alkaloids were isolated, including annotinine, annotine, lycodoline, lycoposerramine M...

  19. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.

    Science.gov (United States)

    Jang, Eun Kyeong; Kim, Nam Yeun; Ahn, Hyung Jin; Ji, Geun Eog

    2015-08-01

    To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30°C and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

  20. COX-1 inhibitory effect of medicinal plants of Ghana

    DEFF Research Database (Denmark)

    Larsen, Birgitte HV; Soelberg, Jens; Jäger, Anna

    2015-01-01

    zanthoxyloides showed an inhibitory effect over 90% in the final concentration 0.1 μg/μL. The HPLC profiles indicated that the extracts of the four active species did not contain tannins. The observed in vitro activities support the use of some of the plant species in the traditional medicine system in Ghana....

  1. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina.

    Science.gov (United States)

    Wickramaratne, M Nirmali; Punchihewa, J C; Wickramaratne, D B M

    2016-11-15

    Diabetes has caused a major burden to the health sector in the developing countries and has shown an increasing trend among the urban population. It is estimated that most patients are with type II diabetes which could be easily treated with dietary changes, exercise, and medication. Sri Lanka carries a long history ayurvedic medicine where it uses the plant for treating many diseases. Therefore it is important to screen medicinal plants scientifically so they could be used safely and effectively in the traditional medical system and also be used for further investigations. Adenanthera pavonina is a plant used in the Ayurvedic medical system in Sri Lanka for treating many diseases including diabetics. We evaluated the anti-diabetic properties and the antioxidant properties of Adenanthera pavonina leaves. The methanol extract of the leaves was sequentially extracted with petroleum ether and thereafter was partitioned between EtOAc, and water. The α-amylase inhibition assay was performed using the 3,5- dinitrosalicylic acid method. The antioxidant activities were measured using the DPPH free radical scavenging activity and the total phenolic content using Folin-Ciocalteu's reagent. The cytotoxicity of the extract was evaluated using the Brine shrimp bioassay. The IC 50 values of α amylase inhibitory activity of MeOH, EtOAc, petroleum ether, and water were 16.16 ± 2.23, 59.93 ± 0.25, 145.49 ± 4.86 and 214.85 ± 9.72 μg/ml respectively and was similar to that of Acarbose (18.63 ± 1.21 (μg/ml). Antioxidant activities were also determined and the EtOAc fraction showed the highest total phenolic content (34. 62 ± 1.14 mg/g extract) and the highest DPPH scavenging activity with an IC 50 of 249.92 ± 3.35 μg/ml. The leaf extracts of Adenanthera pavonina exhibit remarkable α-amylase inhibitory activity in the crude methanolic extract. Hence leaves of Adenanthera pavonina has a potential to be used as a regular green vegetable and

  2. Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae).

    Science.gov (United States)

    Rodríguez-González, Álvaro; Mayo, Sara; González-López, Óscar; Reinoso, Bonifacio; Gutierrez, Santiago; Casquero, Pedro Antonio

    2017-01-01

    Xylotrechus arvicola is an important pest in vineyards (Vitis vinifera) in the main Iberian wine-producing regions, and Acanthoscelides obtectus causes severe post-harvest losses in the common bean (Phaseolus vulgaris). Under laboratory conditions with a spray tower, the susceptibility of the immature stages of X. arvicola and A. obtectus against the entomopathogenic fungi Beauveria bassiana and four strains of Trichoderma spp. was evaluated. Both insect pests T. harzianum and B. bassiana showed a good inhibitory activity, accumulating an inhibition on the eggs of values above 85 and 82%, respectively. T. atroviride and T. citrinoviride had a lower inhibitory activity, with inhibition values of 74.1 and 73.3% respectively. These fungi can be considered a highly effective tool for the control during the immature stages of these species.

  3. Bacteriocin-like inhibitory activities of seven Lactobacillus delbrueckii subsp. bulgaricus strains against antibiotic susceptible and resistant Helicobacter pylori strains.

    Science.gov (United States)

    Boyanova, L; Gergova, G; Markovska, R; Yordanov, D; Mitov, I

    2017-12-01

    The aim of the study was to detect anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains by four cell-free supernatant (CFS) types. Activity of non-neutralized and non-heat-treated (CFSs1), non-neutralized and heat-treated (CFSs2), pH neutralized, catalase-treated and non-heat-treated (CFSs3), or neutralized, catalase- and heat-treated (CFSs4) CFSs against 18 H. pylori strains (11 of which with antibiotic resistance) was evaluated. All GLB strains produced bacteriocin-like inhibitory substances (BLISs), the neutralized CFSs of two GLB strains inhibited >81% of test strains and those of four GLB strains were active against >71% of antibiotic resistant strains. Two H. pylori strains were BLIS resistant. The heating did not reduce the CFS activity. Briefly, all GLB strains evaluated produced heat-stable BLISs, although GLB and H. pylori strain susceptibility patterns exhibited differences. Bacteriocin-like inhibitory substance activity can be an advantage for the probiotic choice for H. pylori infection control. In this study, anti-Helicobacter pylori activity of seven Lactobacillus delbrueckii subsp. bulgaricus (GLB) strains was evaluated by four cell-free supernatant (CFS) types. The GLB strains produced heat-stable bacteriocin-like inhibitory substances (BLISs) with a strong anti-H. pylori activity and some neutralized, catalase- and heat-treated CFSs inhibited >83% of the test strains. Bacteriocin-like inhibitory substance production of GLB strains can render them valuable probiotics in the control of H. pylori infection. © 2017 The Society for Applied Microbiology.

  4. Aspartic protease inhibitory and nematocidal activity of phenyl-4-(2-phenylhydrazonohexahydrofuro[3,2-c]pyridazin-7-ol (Percival dianhydroosazone

    Directory of Open Access Journals (Sweden)

    El Sayed H. El Ashry

    2014-04-01

    Full Text Available We synthesized Phenyl-4-(2-phenylhydrazonohexahydrofuro[3,2-c]pyridazin-7-ol (compound 3. The structure compound 3 was elucidated with IR, 1H NMR, 13C NMR and EIMS spectra. Compound 3 showed potent inhibitory activity against aspartic proteases, human cathepsin D and Plasmodium falciparum plasmepsin-II with IC50 = 20 μM. Enzyme-inhibitor complexes were predicted to stabilize by electrostatic and hydrophobic interactions between the side chains of amino acid residues at the active center and compound 3. Moreover, compound 3 displayed good nematocidal activity against all developmental stages of C. elegans.

  5. Antifeedant, insecticidal and growth inhibitory activities of selected plant oils on black cutworm, Agrotis ipsilon (Hufnagel (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Alagarmalai Jeyasankar

    2012-05-01

    Full Text Available Objective: To evaluate antifeedant, insecticidal and insect growth inhibitory activities of eucalyptus oil (Eucalyptus globules and gaultheria oil (Gaultheria procumbens L. against black cutworm, Agrotis ipsilon. Methods: Antifeedant, insecticidal and growth inhibitory activities of eucalyptus oil and gaultheria oil were tested against black cutworm, A. ipsilon. Results: Significant antifeedant activity was found in eucalyptus oil (96.24% where as the highest insecticidal activity was noticed in gaultheria oil (86.92%. Percentages of deformities were highest on gaultheria oil treated larvae and percentage of adult emergence was deteriorated also by gaultheria oil. Conclusions: These plants oil has potential to serve as an alternative eco-friendly control of insect pest.

  6. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Science.gov (United States)

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  7. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  8. Investigating Inhibitory Control in Children with Epilepsy: An fMRI Study

    Science.gov (United States)

    Triplett, Regina L.; Velanova, Katerina; Luna, Beatriz; Padmanabhan, Aarthi; Gaillard, William D.; Asato, Miya R.

    2014-01-01

    SUMMARY Objective Deficits in executive function are increasingly noted in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional Magnetic Resonance Imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. Methods This cross-sectional study consisted of 34 children aged 8 to 17 years: 17 with well-controlled epilepsy and 17 age-and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood-oxygen level dependent (BOLD) activation. Results Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (non-reward) and reward trials, but exhibited significant task improvement during reward trials. Post-hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. Significance Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation. PMID:25223606

  9. Determination of Antioxidant, Anticholinesterase, Tyrosinase Inhibitory Activities and Fatty Acid Profiles of 10 Anatolian Klasea Cass. Species

    Directory of Open Access Journals (Sweden)

    Gülsen Tel

    2016-01-01

    Full Text Available In search of new natural fatty acid sources, extract of 10 different Turkish Klasea species were studies. Fatty acids of Klasea species were studied by GC and GC-MSD. Oleic acid (4.8-45.8%, palmitic acid (15.6-51.8%, linoleic acid (0.3-45.5%, palmitoleic acid (0.8-28.4% and linolenic acid (15.6-34.6% were the main fatty acids elucidated. All extracts were also subjected to acetylcholinesterase, butyrylcholinesterase, tyrosinase, β-carotene-linoleic acid, DPPH • scavenging, CUPRAC and ferrous ion-chelating ability activities. Total flavonoid and phenolic contents were determined as quercetin and pyrocatechol equivalents. All extracts showed significant antioxidant activity in all tests, except hexane extracts of K. serratuloides and K. cerinthifolia that showed weak inhibition against BChE and AChE. The hexane extract of K. coriaceae and methanol extract of K. serratuloides exhibited notable tyrosinase inhibitory activity.

  10. Hypotensive and Angiotensin-Converting Enzyme Inhibitory Activities of Eisenia fetida Extract in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Shumei Mao

    2015-01-01

    Full Text Available Objectives. This study aimed to investigate the antihypertensive effects of an Eisenia fetida extract (EFE and its possible mechanisms in spontaneously hypertensive rats (SHR rats. Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats were used in this study. Rats were, respectively, given EFE (EFE group, captopril (captopril group, or phosphate-buffered saline (PBS (normal control group and SHR group for 4 weeks. ACE inhibitory activity of EFE in vitro was determined. The systolic blood pressure (SBP and diastolic blood pressure (DBP were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II, aldosterone (Ald, and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α in plasma were determined by radioimmunoassay, and serum nitric oxide (NO concentration was measured by Griess reagent systems. Results. EFE had marked ACE inhibitory activity in vitro (IC50 = 2.5 mg/mL. After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1α and NO than the SHR rats in SHR group. Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity.

  11. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    Science.gov (United States)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  12. Alpha-glucosidase inhibitory effect and inorganic constituents of Phyllanthus amarus Schum. & Thonn. ash

    Directory of Open Access Journals (Sweden)

    Malinee Wongnawa

    2014-10-01

    Full Text Available This study investigated the -glucosidase inhibitory effect and determined the concentration of some inorganic constituents in P. amarus ash. Oral glucose and sucrose tolerance test were performed on normal mice. In vitro -glucosidase inhibitory activity was evaluated by using yeast a-glucosidase. The element concentrations were measured by inductively coupled plasma (ICP spectroscopy. Single oral administration of P. amarus ash did not show antihyperglycemic effect after glucose administration, but decreased blood glucose level after sucrose administration. The ash showed -glucosidase inhibitory activity in vitro with IC50 of 982 mg/mL. The concentrations of K, Ca, Mg, Mn, Fe, Zn, Cu, Pb, Cr, Ni and Co in P. amarus ash were 35049.80±340.64, 3337.24±52.10, 1368.52±13.29, 90.81±1.34, 87.68±1.15, 18.28±0.22, 4.69±0.07, 1.07±0.15, 0.29±0.03, 0.20±0.04 and 0.10±0.02 mg/g, respectively. These results indicate that the antihyperglycemic effect of P. amarus ash might be partly due to the -glucosidase inhibitory activity of the inorganic constituents.

  13. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2013-01-01

    Full Text Available A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported.ResultsReactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 muM.DiscussionThe compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  14. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ziarani Ghodsi Mohammadi

    2013-01-01

    Full Text Available Abstract Background A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported. Results Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 μM. Discussion The compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  15. Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate.

    Science.gov (United States)

    Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Hsieh, You-Liang; Hsu, Kuo-Chiang

    2016-01-01

    Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.

  16. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking

    Directory of Open Access Journals (Sweden)

    Mahta Mirzaei

    2018-04-01

    Full Text Available Kluyveromyces marxianus protein hydrolysates were prepared by two different sonicated-enzymatic (trypsin and chymotrypsin hydrolysis treatments to obtain antioxidant and ACE-inhibitory peptides. Trypsin and chymotrypsin hydrolysates obtained by 5 h, exhibited the highest antioxidant and ACE-inhibitory activities. After fractionation using ultrafiltration and reverse phase high performance liquid chromatography (RP-HPLC techniques, two new peptides were identified. One fragment (LL-9, MW = 1180 Da with the amino acid sequence of Leu-Pro-Glu-Ser-Val-His-Leu-Asp-Lys showed significant ACE inhibitory activity (IC50 = 22.88 μM while another peptide fragment (VL-9, MW = 1118 Da with the amino acid sequence of Val-Leu-Ser-Thr-Ser-Phe-Pro-Pro-Lys showed the highest antioxidant and ACE inhibitory properties (IC50 = 15.20 μM, 5568 μM TE/mg protein. The molecular docking studies revealed that the ACE inhibitory activities of VL-9 is due to interaction with the S2 (His513, His353, Glu281 and S′1 (Glu162 pockets of ACE and LL-9 can fit perfectly into the S1 (Thr345 and S2 (Tyr520, Lys511, Gln281 pockets of ACE. Keywords: K. marxianus, Bioactive peptides, Antioxidant, ACE inhibitory, Protein hydrolysate

  18. Inhibitory effect of organotin compounds on rat neuronal nitric oxide synthase through interaction with calmodulin

    International Nuclear Information System (INIS)

    Ohashi, Koji; Kominami, Shiro; Yamazaki, Takeshi; Ohta, Shigeru; Kitamura, Shigeyuki

    2004-01-01

    Organotin compounds, triphenyltin (TPT), tributyltin, dibutyltin, and monobutyltin (MBT), showed potent inhibitory effects on both L-arginine oxidation to nitric oxide and L-citrulline, and cytochrome c reduction catalyzed by recombinant rat neuronal nitric oxide synthase (nNOS). The two inhibitory effects were almost parallel. MBT and TPT showed the highest inhibitory effects, followed by tributyltin and dibutyltin; TPT and MBT showed inhibition constant (IC 50 ) values of around 10 μM. Cytochrome c reduction activity was markedly decreased by removal of calmodulin (CaM) from the complete mixture, and the decrease was similar to the extent of inhibition by TPT and MBT. The inhibitory effect of MBT on the cytochrome c reducing activity was rapidly attenuated upon dilution of the inhibitor, and addition of a high concentration of CaM reactivated the cytochrome c reduction activity inhibited by MBT. However, other cofactors such as FAD, FMN or tetrahydrobiopterin had no such ability. The inhibitory effect of organotin compounds (100 μM) on L-arginine oxidation of nNOS almost vanished when the amount of CaM was sufficiently increased (150-300 μM). It was confirmed by CaM-agarose column chromatography that the dissociation of nNOS-CaM complex was induced by organotin compounds. These results indicate that organotin compounds disturb the interaction between CaM and nNOS, thereby inhibiting electron transfer from the reductase domain to cytochrome c and the oxygenase domain

  19. Production, optimisation and characterisation of angiotensin converting enzyme inhibitory peptides from sea cucumber (Stichopus japonicus) gonad.

    Science.gov (United States)

    Zhong, Chan; Sun, Le-Chang; Yan, Long-Jie; Lin, Yi-Chen; Liu, Guang-Ming; Cao, Min-Jie

    2018-01-24

    In this study, production of bioactive peptides with angiotensin converting enzyme (ACE) inhibitory activity from sea cucumber (Stichopus japonicus) gonad using commercial protamex was optimised by response surface methodology (RSM). As a result, the optimal condition to achieve the highest ACE inhibitory activity in sea cucumber gonad hydrolysate (SCGH) was hydrolysis for 1.95 h and E/S of 0.75%. For further characterisation, three individual peptides (EIYR, LF and NAPHMR) were purified and identified. The peptide NAPHMR showed the highest ACE inhibitory activity with IC 50 of 260.22 ± 3.71 μM. NAPHMR was stable against simulated gastrointestinal digestion and revealed no significant cytotoxicity toward Caco-2 cells. Molecular docking study suggested that Arg, His and Asn residues in NAPHMR interact with the S2 pocket or Zn 2+ binding motifs of ACE via hydrogen or π-bonds, potentially contributing to ACE inhibitory effect. Sea cucumber gonad is thus a potential resource to produce ACE inhibitory peptides for preparation of functional foods.

  20. Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activity against Mycobacterium tuberculosis

    Science.gov (United States)

    Chapman, Timothy M.; Bouloc, Nathalie; Buxton, Roger S.; Chugh, Jasveen; Lougheed, Kathryn E.A.; Osborne, Simon A.; Saxty, Barbara; Smerdon, Stephen J.; Taylor, Debra L.; Whalley, David

    2012-01-01

    A high-throughput screen against PknB, an essential serine–threonine protein kinase present in Mycobacterium tuberculosis (M. tuberculosis), allowed the identification of an aminoquinazoline inhibitor which was used as a starting point for SAR investigations. Although a significant improvement in enzyme affinity was achieved, the aminoquinazolines showed little or no cellular activity against M. tuberculosis. However, switching to an aminopyrimidine core scaffold and the introduction of a basic amine side chain afforded compounds with nanomolar enzyme binding affinity and micromolar minimum inhibitory concentrations against M. tuberculosis. Replacement of the pyrazole head group with pyridine then allowed equipotent compounds with improved selectivity against a human kinase panel to be obtained. PMID:22469702

  1. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    KAUST Repository

    Corgié, Stéphane C.

    2012-02-15

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Isolation of proanthocyanidins from red wine, and their inhibitory effects on melanin synthesis in vitro.

    Science.gov (United States)

    Fujimaki, Takahiro; Mori, Shoko; Horikawa, Manabu; Fukui, Yuko

    2018-05-15

    The red wines made from Vitis vinifera were identified as skin-whitening effectors by using in vitro assays. OPCs in the wine were evaluated for tyrosinase activity and melanogenesis. Strong tyrosinase inhibitory activity was observed in fractions with high oligomeric proanthocyanidin (OPC) content. Among OPC dimers, a strong inhibitory effect on tyrosinase was observed with OPCs which contain (+)-catechin as an upper unit. Melanogenesis inhibitory effect was observed with OPCs which have (-)-epicatechin as upper units. Also, OPC trimers, upper and middle units joined with 4 → 8 bonds, showed stronger effects compared to trimers with 4 → 6 linkages. Interestingly, (-)-epicatechin-(4β → 8)-(-)-epicatechin 3-O-gallate, which is a unique component of grapes has potent inhibitory effects on both tyrosinase and melanogenesis. Our data provide structural information about such active compounds. These results suggest that red wines containing OPC, have high melanogenesis inhibitory effect and are supposed to have skin-whitening effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Four new sesqui-lignans isolated from Acanthopanax senticosus and their diacylglycerol acyltransferase (DGAT) inhibitory activity.

    Science.gov (United States)

    Li, Jia-Lin; Li, Na; Lee, Hyun-Sun; Xing, Shan-Shan; Qi, Shi-Zhou; Tuo, Zhen-Dong; Zhang, Le; Li, Ban-Ban; Chen, Jian-Guang; Cui, Long

    2016-03-01

    Four new sesqui-lignans, (7R, 7'R, 7″S, 8S, 8'S, 8″S)-4',5″-dihydroxy-3,5,3',4″-tetramethoxy-7,9':7',9-diepoxy-4,8″-oxy-8,8'-sesquineo-lignan-7″,9″-diol (1), (7R, 7'R, 7″S, 8S, 8'S, 8″S)-4',3″-dihydroxy-3,5,3',5',4″-pentamethoxy-7,9':7',9-diepoxy-4,8″-oxy-8,8'-sesquineo-lignan-7″,9″-diol (2), (7R, 7'R, 7″S, 8S, 8'S, 8″S)-3',4″-dihydroxy-3,5,4',5″-tetramethoxy-7,9':7',9-diepoxy-4,8″-oxy-8,8'-sesquineo-lignan-7″,9″-diol (3) and acanthopanax A (7) together with three known compounds (4-6) were isolated from the EtOAc-soluble extract of Acanthopanax senticosus. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1 and DGAT2. Among them, compounds 1-6 were found to exhibit selective inhibitory activity on DGAT1 with IC50 values ranging from 61.1 ± 1.3 to 97.7 ± 1.1 μM and compound 7 showed selective inhibition of DGAT2 with IC50 value 93.2 ± 1.2. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Structure-activity relationship of the inhibitory effects of flavonoids on nitric oxide production in RAW264.7 cells.

    Science.gov (United States)

    Jiang, Wen-Jun; Daikonya, Akihiro; Ohkawara, Mitsuyoshi; Nemoto, Takashi; Noritake, Ryusuke; Takamiya, Tomoko; Kitanaka, Susumu; Iijima, Hiroshi

    2017-01-15

    We isolated flavonoids from herbal specimens from the Tibetan region (Sophora yunnanensis and Rhodiola sacra) that suppress nitric oxide (NO) production in macrophages stimulated by lipopolysaccharide and interferon-γ. The isolated flavonoids carry symmetric substitutions in the B ring (R 3' =R 5' ). We analyzed the quantitative structure-activity relationship of the inhibitory activity by comparative molecular field analysis (CoMFA) using this series of flavonoids. Use of flavonoids with symmetrical substitutions in the B ring made it simpler to align molecules because it was not necessary to consider a huge number of combinations due to the B-ring conformation. The CoMFA model, whose cross-validated q 2 value was 0.705, suggested the existence of a hydroxy group at the 5-position, the choice of the A/C-ring scaffold (chromane or chromene) and electrostatic field around the B ring are important for NO inhibitory activity. Flavonoids synthesized based on the CoMFA model exhibited significant inhibitory potential against NO production, validating the predictive capability of the CoMFA model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    Science.gov (United States)

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC 50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC 50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 50 0.15 ± 0.01 mg/mL.

  6. Inhibitory effects of ascorbic acid, vitamin E, and vitamin B-complex on the biological activities induced by Bothrops venom.

    Science.gov (United States)

    Oliveira, Carlos Henrique de Moura; Assaid Simão, Anderson; Marcussi, Silvana

    2016-01-01

    Natural compounds have been widely studied with the aim of complementing antiophidic serum therapy. The present study evaluated the inhibitory potential of ascorbic acid and a vitamin complex, composed of ascorbic acid, vitamin E, and all the B-complex vitamins, on the biological activities induced by snake venoms. The effect of vitamins was evaluated on the phospholipase, proteolytic, coagulant, and fibrinogenolytic activities induced by Bothrops moojeni (Viperidae), B. jararacussu, and B. alternatus snake venoms, and the hemagglutinating activity induced by B. jararacussu venom. The vitamin complex (1:5 and 1:10 ratios) totally inhibited the fibrinogenolytic activity and partially the phospholipase activity and proteolytic activity on azocasein induced by the evaluated venoms. Significant inhibition was observed in the coagulation of human plasma induced by venoms from B. alternatus (1:2.5 and 1:5, to vitamin complex and ascorbic acid) and B. moojeni (1:2.5 and 1:5, to vitamin complex and ascorbic acid). Ascorbic acid inhibited 100% of the proteolytic activities of B. moojeni and B. alternatus on azocasein, at 1:10 ratio, the effects of all the venoms on fibrinogen, the hemagglutinating activity of B. jararacussu venom, and also extended the plasma coagulation time induced by all venoms analyzed. The vitamins analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms, suggesting their interaction with toxins belonging to the phospholipase A2, protease, and lectin classes. The results can aid further research in clarifying the possible mechanisms of interaction between vitamins and snake enzymes.

  7. Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus.

    Science.gov (United States)

    Schoenfeld, Timothy J; Rada, Pedro; Pieruzzini, Pedro R; Hsueh, Brian; Gould, Elizabeth

    2013-05-01

    Physical exercise is known to reduce anxiety. The ventral hippocampus has been linked to anxiety regulation but the effects of running on this subregion of the hippocampus have been incompletely explored. Here, we investigated the effects of cold water stress on the hippocampus of sedentary and runner mice and found that while stress increases expression of the protein products of the immediate early genes c-fos and arc in new and mature granule neurons in sedentary mice, it has no such effect in runners. We further showed that running enhances local inhibitory mechanisms in the hippocampus, including increases in stress-induced activation of hippocampal interneurons, expression of vesicular GABA transporter (vGAT), and extracellular GABA release during cold water swim stress. Finally, blocking GABAA receptors in the ventral hippocampus, but not the dorsal hippocampus, with the antagonist bicuculline, reverses the anxiolytic effect of running. Together, these results suggest that running improves anxiety regulation by engaging local inhibitory mechanisms in the ventral hippocampus.

  8. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.

    Science.gov (United States)

    Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu

    2016-01-15

    A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]·NO3 (1), [CoL(2)(bipy)(N3)]·CH3OH (2), [CoL(3)(HL(3))(N3)]·NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Do piperacillin/tazobactam and other antibiotics with inhibitory activity against Clostridium difficile reduce the risk for acquisition of C. difficile colonization?

    Science.gov (United States)

    Kundrapu, Sirisha; Sunkesula, Venkata C K; Jury, Lucy A; Cadnum, Jennifer L; Nerandzic, Michelle M; Musuuza, Jackson S; Sethi, Ajay K; Donskey, Curtis J

    2016-04-18

    Systemic antibiotics vary widely in in vitro activity against Clostridium difficile. Some agents with activity against C. difficile (e.g., piperacillin/tazobactam) inhibit establishment of colonization in mice. We tested the hypothesis that piperacillin/tazobactam and other agents with activity against C. difficile achieve sufficient concentrations in the intestinal tract to inhibit colonization in patients. Point-prevalence culture surveys were conducted to compare the frequency of asymptomatic rectal carriage of toxigenic C. difficile among patients receiving piperacillin/tazobactam or other inhibitory antibiotics (e.g. ampicillin, linezolid, carbapenems) versus antibiotics lacking activity against C. difficile (e.g., cephalosporins, ciprofloxacin). For a subset of patients, in vitro inhibition of C. difficile (defined as a reduction in concentration after inoculation of vegetative C. difficile into fresh stool suspensions) was compared among antibiotic treatment groups. Of 250 patients, 32 (13 %) were asymptomatic carriers of C. difficile. In comparison to patients receiving non-inhibitory antibiotics or prior antibiotics within 90 days, patients currently receiving piperacillin/tazobactam were less likely to be asymptomatic carriers (1/36, 3 versus 7/36, 19 and 15/69, 22 %, respectively; P = 0.024) and more likely to have fecal suspensions with in vitro inhibitory activity against C. difficile (20/28, 71 versus 3/11, 27 and 4/26, 15 %; P = 0.03). Patients receiving other inhibitory antibiotics were not less likely to be asymptomatic carriers than those receiving non-inhibitory antibiotics. Our findings suggest that piperacillin/tazobactam achieves sufficient concentrations in the intestinal tract to inhibit C. difficile colonization during therapy.

  10. A Support Vector Machine Classification Model for Benzo[c]phenathridine Analogues with Topoisomerase-I Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2012-04-01

    Full Text Available Benzo[c]phenanthridine (BCP derivatives were identified as topoisomerase I (TOP-I targeting agents with pronounced antitumor activity. In this study, a support vector machine model was performed on a series of 73 analogues to classify BCP derivatives according to TOP-I inhibitory activity. The best SVM model with total accuracy of 93% for training set was achieved using a set of 7 descriptors identified from a large set via a random forest algorithm. Overall accuracy of up to 87% and a Matthews coefficient correlation (MCC of 0.71 were obtained after this SVM classifier was validated internally by a test set of 15 compounds. For two external test sets, 89% and 80% BCP compounds, respectively, were correctly predicted. The results indicated that our SVM model could be used as the filter for designing new BCP compounds with higher TOP-I inhibitory activity.

  11. [Study on the inhibitory activity, in vitro, of baicalein and baicalin against skin fungi and bacteria].

    Science.gov (United States)

    Yang, D; Hu, H; Huang, S; Chaumont, J P; Millet, J

    2000-05-01

    In this paper, we concentrated in examining, in vitro, the antiseptic activity of the baicalein and baicalin upon the seventeen pathogenic skin fungal and sixteen skin bacterial strains, these two flavonic compounds were known principally as the biosubstances of a traditional Chinese medicinal plant: Scutellaria baicalensis. In agar media, the baicalein possessed potent specific activity against the pathogenic yeasts with MICs of 70-100 micrograms/ml; But in the same condition, no inhibitory effect was observed upon dermatophytes and filamentous imperfect fungi for baicalein, and upon all used strains for baicalin. According to the antibacterial test of baicalein, a high efficacy was achieved against certain causative specie of axillary and foot's odour such as Micrococcus sedentarius, Staphylococcus epidermidis, S. hominis and C. xerosis with a MICs inferior to 250 micrograms/ml. The good inhibitory activity of baicalein could be linked to the group hydroxyl (-OH) in position seven of the molecule.

  12. A study to evaluate the potential of an in silico approach for predicting dipeptidyl peptidase-IV inhibitory activity in vitro of protein hydrolysates.

    Science.gov (United States)

    Wang, Tzu-Yuan; Hsieh, Cheng-Hong; Hung, Chuan-Chuan; Jao, Chia-Ling; Lin, Pei-Yi; Hsieh, You-Liang; Hsu, Kuo-Chiang

    2017-11-01

    A total of 294 edible protein sequences and 5 commercial proteases listed in the BIOPEP database were analyzed in silico. The frequency (A), a parameter in silico described previously, was examined further to calculating the ratio of truncated peptides with Xaa-proline and/or Xaa-alanine to all peptide fragments in a protein hydrolyzed with a protease, using the BIOPEP database. Then the in vitro DPP-IV inhibitory activity was determined using the same 15 protein and protease combinations to evaluate their relationship. The result shows that A values considering the number of Xaa-proline+Xaa-alanine exhibited a strong correlation with in vitro DPP-IV inhibition rates by Pearson's correlation analysis (r=0.6993; Psilico approach is effective to predict DPP-IV inhibitory activities in vitro of protein hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine Maillard reaction products on aldose reductase and tyrosinase.

    Science.gov (United States)

    Hwang, Seung Hwan; Wang, Zhiqiang; Suh, Hong-Won; Lim, Soon Sung

    2018-03-01

    This study aimed to better understand the functional properties of ribose and 20 amino acid Maillard reaction products (MRPs). The ABTS + radical scavenging ability of the ribose-20 amino acid MRPs was evaluated. Among the MRPs, ribose-histidine MRPs (RH-MRPs) showed the highest inhibitory activities on the ABTS + radical scavenging ability, aldose reductase (AR), and tyrosinase compared to other MRPs. Functional compounds with antioxidant and AR inhibitory activities have been recognized as an important strategy in the prevention and treatment of diabetic complications, and the search for tyrosinase inhibitors is important for the treatment of hyperpigmentation, development of skin-whitening agents, and use as preservatives in the food industry. On this basis, we sought to isolate and identify compounds with inhibitory activities against AR and tyrosinase. RH-MRPs were heated at 120 °C for 2 h and fractionated using four solvents: methylene chloride (MC), ethyl acetate, n-butanol, and water. The highest inhibitions were found in the MC fraction. The two compounds from this fraction were purified by silica gel column and preparative thin layer chromatography, and identified as 2-hydroxy-3-methylcyclopent-2-enone and furan-3-carboxylic acid. AR inhibition, tyrosinase inhibition, and ABTS + scavenging (IC 50 ) of 2-hydroxy-3-methylcyclopent-2-enone were 4.47, 721.91 and 9.81 μg mL -1 , respectively. In this study, inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from RH-MRP were demonstrated on AR, tyrosinase, and its antioxidant activity for the first time. RH-MRP and its constituents can be developed as beneficial functional food sources and cosmetic materials and should be investigated further as potential functional food sources.

  14. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria.

    Science.gov (United States)

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.

  15. Isoindolinone-containing meroterpenoids with α-glucosidase inhibitory activity from mushroom Hericium caput-medusae.

    Science.gov (United States)

    Chen, Lin; Li, Zheng-Hui; Yao, Jian-Neng; Peng, Yue-Ling; Huang, Rong; Feng, Tao; Liu, Ji-Kai

    2017-10-01

    Hericium caput-medusae is an edible and medicinal mushroom closely relative to H. erinaceus. According to our detailed chemical investigation, two novel isoindolinone-containing meroterpene dimers, caputmedusins A (1) and B (2), as well as nine analogues, caputmedusins C-K (3-11), were isolated from the fermentation broth of H. caput-medusae. Their structures were elucidated by analyses of 1D and 2D NMR spectroscopic methods. The absolute configurations of 1-4 were speculated based on the specific optical rotation and biogenetic consideration. The absolute configurations of 10 and 11 were rationalized by the calculation of 1 H NMR chemical shifts. Caputmedusins A-C (1-3) showed moderate inhibitory activity against α-glucosidase with the IC 50 values of 39.2, 36.2 and 40.8μM, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Gc, gc-ms analysis of lipophilic fractions of aerial parts of fagonia indica burm.f. showing growth inhibitory effect on ht 29 colorectal cancer cells

    International Nuclear Information System (INIS)

    Farheen, R.; Mahmood, I.

    2016-01-01

    Fagonia indica Burm.f. is a small genus of herbs and under shrubs. The plant contains potentially active substances and has been used traditionally for the treatment of many illnesses including cancer. Many polar compounds have been reported from this plant but its non-polar constituents have only been rarely studied. In the present studies these constituents of aerial parts of Fagonia indica Burm.f. and its sub fractions showing growth inhibitory effect on HT 29 colorectal cancer cells were analyzed using flame ionization detector (GC-FID) and GC-EIMS analysis. The present studies exhibited the presence of free fatty acids and their esters along with structurally diverse constituents including triterpene, heterocyclic organic compound, aromatics, hydrocarbons, alcohols, lactone and sterols which may be responsible for this activity. The results suggest that the non-polar constituents of F. indica bear a potential of further studies. (author)

  17. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants

    Directory of Open Access Journals (Sweden)

    Taiwo O. Elufioye

    Full Text Available Plants have been found to be useful as memory enhansers as well as antiaging. Twenty two of such plants from sixteen families were investigated for their acetylcholinesterase (AChE and butyrylcholinesterase (BuChE inhibitory activities using the in vitro Ellman's spectrophotometric and in situ bioautographic methods with physostigmine as standard. At least three morphological parts were examined for each of the plants investigated and the test concentration was 42.5 µg/ mL. Some plants were active on both enzymes though with some morphological parts being more active than others. The root bark of Spondias mombin showed the highest activity to the two enzymes; 64.77% and 83.94% on AChE and BuChE respectively. Other plant parts of the selected plants exhibited some remarkable selectivity in their actions. Those selectively active against AChE were Alchornia laxiflora stem bark (41.12% and root bark, Callophyllum inophyllurn root bark (56.52%. The leaves of C. jagus (74.25%, Morinda lucida leaves (40.15%, Peltophorum pterocarpum leaves and stem bark (49.5% and 68.85%, respectively, physiostigmine gave 90.31% inhibition. Generally higher activities were found against BuChE. Bombax bromoposenze leaves, root bark and stem bark were particularly active. The inhibition was over 80%. Other selective plant parts are the leaves Antiaris africana, Cissampelos owarensis aerial parts (78.96%, Combretum molle leaves and stem bark (90.42% and 88.13%, respectively, Dioscorea dumentorum root bark and tuber (over 87%, G. kola leaves, Markhamia tomentosa root bark, Pycnanthus angolensis stem bark and Tetrapleura tetraptera leaves. Most of these plants are taken as food or are food ingredients in Nigeria and may account for the low incidence of Alzheimer's disease in the country and may play certain roles in the mediation of the disease.

  18. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds.

    Science.gov (United States)

    Hernández-Álvarez, Alan Javier; Carrasco-Castilla, Janet; Dávila-Ortiz, Gloria; Alaiz, Manuel; Girón-Calle, Julio; Vioque-Peña, Javier; Jacinto-Hernández, Carmen; Jiménez-Martínez, Cristian

    2013-03-15

    Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above-ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin-converting enzyme (ACE-I)-inhibitory activity. Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE-I-inhibitory activity (IC(50) 0.0191 mg protein mL(-1)) and were very similar to those from control beans in terms of ACE-I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. The present results suggest the use of spoiled bean seeds, e.g. anthracnose-damaged beans, as an alternative for the isolation of ACE-I-inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry.

  19. Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities.

    Science.gov (United States)

    Hsu, Feng-Lin; Lin, Yaw-Huei; Lee, Mei-Hsien; Lin, Chien-Liang; Hou, Wen-Chi

    2002-10-09

    Dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), was purified to homogeneity by DE-52 ion-exchange chromatography. This purified dioscorin was shown by spectrophotometric methods to inhibit angiotensin converting enzyme (ACE) in a dose-dependent manner (12.5-750 microg, respectively, 20.83-62.5% inhibitions) using N-[3-(2-furyl)acryloyl]-Phe-Gly-Gly (FAPGG) as substrates. The 50% inhibition (IC(50)) of ACE activity was 6.404 microM dioscorin (250 microg corresponding to 7.81 nmol) compared to that of 0.00781 microM (0.0095 nmol) for captopril. The commercial bovine serum albumin and casein (bovine milk) showed less ACE inhibitory activity. The use of qualitative TLC also showed dioscorin as ACE inhibitors. Dioscorin showed mixed noncompetitive inhibitions against ACE; when 31.25 microg of dioscorin (0.8 microM) was added, the apparent inhibition constant (K(i)) was 2.738 microM. Pepsin was used for dioscorin hydrolysis at 37 degrees C for different times. It was found that the ACE inhibitory activity was increased from 51.32% to about 75% during 32 h hydrolysis. The smaller peptides were increased with increasing pepsin hydrolytic times. Dioscorin and its hydrolysates might be a potential for hypertension control when people consume yam tuber.

  20. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis.

    Science.gov (United States)

    Kloucek, Pavel; Smid, Jakub; Flesar, Jaroslav; Havlik, Jaroslav; Titera, Dalibor; Rada, Vojtech; Drabek, Ondrej; Kokoska, Ladislav

    2012-02-01

    This work evaluates the in vitro inhibitory activity of 70 essential oils (EOs) in the vapor phase for the control of Chalkbrood disease caused by Ascosphaera apis Maassen ex Claussen (Olive et Spiltoir). Two wild strains isolated from infected honey bee colonies together with one standard collection strain were tested by the microatmosphere method. From 70 EOs, 39 exhibited an antifungal effect against A. apis standard and wild strains. The greatest antifungal action was observed for EO vapors from Armoracia rusticana, followed by Thymus vulgaris, Cymbopogon flexosus, Origanum vulgare and Allium sativum. An investigation of chemical composition by GC-MS revealed, that the most active EOs contained allyl isothiocyanate, citral, carvacrol and diallyl sulfides as the main constituents. The chemical composition plays a key role, as activities of different EOs from the same botanical species were different according to their composition.

  1. Identification of novel 2-benzoxazolinone derivatives with specific inhibitory activity against the HIV-1 nucleocapsid protein.

    Science.gov (United States)

    Gamba, Elia; Mori, Mattia; Kovalenko, Lesia; Giannini, Alessia; Sosic, Alice; Saladini, Francesco; Fabris, Dan; Mély, Yves; Gatto, Barbara; Botta, Maurizio

    2018-02-10

    In this report, we present a new benzoxazole derivative endowed with inhibitory activity against the HIV-1 nucleocapsid protein (NC). NC is a 55-residue basic protein with nucleic acid chaperone properties, which has emerged as a novel and potential pharmacological target against HIV-1. In the pursuit of novel NC-inhibitor chemotypes, we performed virtual screening and in vitro biological evaluation of a large library of chemical entities. We found that compounds sharing a benzoxazolinone moiety displayed putative inhibitory properties, which we further investigated by considering a series of chemical analogues. This approach provided valuable information on the structure-activity relationships of these compounds and, in the process, demonstrated that their anti-NC activity could be finely tuned by the addition of specific substituents to the initial benzoxazolinone scaffold. This study represents the starting point for the possible development of a new class of antiretroviral agents targeting the HIV-1 NC protein. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Aglaiabbrevins A-D, New Prenylated Bibenzyls from the Leaves of Aglaia abbreviata with Potent PTP1B Inhibitory Activity.

    Science.gov (United States)

    Sun, Pan; Jiang, Chang-Sheng; Zhang, Yi; Liu, Ai-Hong; Liang, Tong-Jun; Li, Jia; Guo, Yue-Wei; Jiang, Jian-Mei; Mao, Shui-Chun; Wang, Bin

    2017-01-01

    Four new prenylated bibenzyls, named aglaiabbrevins A-D (2, 4-6), were isolated from the leaves of Aglaia abbreviata, along with two known related analogues, 3,5-dihydroxy-2-[3,7-dimethyl-2(E),6-octadienyl]bibenzyl (7) and 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl (8). The structures of the new compounds were elucidated on the basis of extensive spectroscopic experiments, mainly one and two dimensional (1D- and 2D)-NMR, and the absolute configuration of 5 was determined by the measurement of specific rotation. The isolated compounds were evaluated for their protein tyrosine phosphatase-1B (PTP1B) inhibitory activity. The results showed that compounds 5-7 exhibited more potent PTP1B inhibitory effects with IC 50 values of 2.58±0.52, 2.44±0.35, and 2.23±0.14 µM, respectively, than the positive control oleanolic acid (IC 50 =2.74±0.20 µM). On the basis of the data obtained, these bibenzyls with the longer C-2 prenyl groups may be considered as potential lead compounds for the development of new anti-obesity and anti-diabetic agents. Also, the PTP1B inhibitory effects for prenylated bibenzyls are being reported for the first time.

  3. WNT Inhibitory Activity of Malus Pumila miller cv Annurca and Malus domestica cv Limoncella Apple Extracts on Human Colon-Rectal Cells Carrying Familial Adenomatous Polyposis Mutations.

    Science.gov (United States)

    Riccio, Gennaro; Maisto, Maria; Bottone, Sara; Badolati, Nadia; Rossi, Giovanni Battista; Tenore, Gian Carlo; Stornaiuolo, Mariano; Novellino, Ettore

    2017-11-18

    Inhibitors of the Wingless-related Integration site (WNT)/β-catenin pathway have recently been under consideration as potential chemopreventive agents against Familial Adenomatous Polyposis (FAP). This autosomal-dominant syndrome is caused by germline mutations in the gene coding for the protein APC and leads to hyperactivation of the WNT/β-catenin signaling pathway, uncontrolled intestinal cell proliferation and formation of adenocarcinomas. The aim of the present work was to: (i) test, on in vitro cultures of cells carrying FAP mutations and on ex vivo biopsies of FAP patients, the WNT inhibitory activity of extracts from two common southern Italian apples, Malus pumila Miller cv. 'Annurca' and Malus domestica cv 'Limoncella'; (ii) identify the mechanisms underpinning their activities and; (iii) evaluate their potency upon gastrointestinal digestion. We here show that both Annurca and Limoncella apple extracts act as WNT inhibitors, mostly thanks to their polyphenolic contents. They inhibit the pathway in colon cells carrying FAP mutations with active dilutions falling in ranges close to consumer-relevant concentrations. Food-grade manufacturing of apple extracts increases their WNT inhibitory activity as result of the conversion of quercetin glycosides into the aglycone quercetin, a potent WNT inhibitor absent in the fresh fruit extract. However, in vitro simulated gastrointestinal digestion severely affected WNT inhibitory activity of apple extracts, as result of a loss of polyphenols. In conclusion, our results show that apple extracts inhibit the WNT pathway in colon cells carrying FAP mutations and represent a potential nutraceutical alternative for the treatment of this pathology. Enteric coating is advisable to preserve the activity of the extracts in the colon-rectal section of the digestive tract.

  4. WNT Inhibitory Activity of Malus Pumila miller cv Annurca and Malus domestica cv Limoncella Apple Extracts on Human Colon-Rectal Cells Carrying Familial Adenomatous Polyposis Mutations

    Directory of Open Access Journals (Sweden)

    Gennaro Riccio

    2017-11-01

    Full Text Available Inhibitors of the Wingless-related Integration site (WNT/β-catenin pathway have recently been under consideration as potential chemopreventive agents against Familial Adenomatous Polyposis (FAP. This autosomal-dominant syndrome is caused by germline mutations in the gene coding for the protein APC and leads to hyperactivation of the WNT/β-catenin signaling pathway, uncontrolled intestinal cell proliferation and formation of adenocarcinomas. The aim of the present work was to: (i test, on in vitro cultures of cells carrying FAP mutations and on ex vivo biopsies of FAP patients, the WNT inhibitory activity of extracts from two common southern Italian apples, Malus pumila Miller cv. ‘Annurca’ and Malus domestica cv ‘Limoncella’; (ii identify the mechanisms underpinning their activities and; (iii evaluate their potency upon gastrointestinal digestion. We here show that both Annurca and Limoncella apple extracts act as WNT inhibitors, mostly thanks to their polyphenolic contents. They inhibit the pathway in colon cells carrying FAP mutations with active dilutions falling in ranges close to consumer-relevant concentrations. Food-grade manufacturing of apple extracts increases their WNT inhibitory activity as result of the conversion of quercetin glycosides into the aglycone quercetin, a potent WNT inhibitor absent in the fresh fruit extract. However, in vitro simulated gastrointestinal digestion severely affected WNT inhibitory activity of apple extracts, as result of a loss of polyphenols. In conclusion, our results show that apple extracts inhibit the WNT pathway in colon cells carrying FAP mutations and represent a potential nutraceutical alternative for the treatment of this pathology. Enteric coating is advisable to preserve the activity of the extracts in the colon-rectal section of the digestive tract.

  5. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  6. Angiotensin I converting enzyme inhibitory activity and antihypertensive effect in spontaneously hypertensive rats of cobia (Rachycentron canadum) head papain hydrolysate.

    Science.gov (United States)

    Yang, Ping; Jiang, Yuchuan; Hong, Pengzhi; Cao, Wenhong

    2013-06-01

    Cobia head protein hydrolysate (CHPH) with angiotensin I converting enzyme (ACE) inhibitory activity was prepared with papain. The 3 kDa ultrafiltration filtrate CHPH-IV of the hydrolysate exerted a potent ACE inhibitory activity with IC50 being 0.24 mg/mL. The fractions with molecular weight located between 1749 Da and 173 Da represented up 66.96% of CHPH-IV, and those between 494 Da and 173 Da represented up 31.37% of CHPH-IV. It was found that the ACE inhibitory activity of CHPH-IV was intensified from IC50 0.24 mg/mL to 0.17 mg/mL after incubation with gastrointestinal proteases. The CHPH-IV significantly decreased the systolic blood pressure in a dose-dependent manner after oral administration to spontaneously hypertensive rats (SHR) at dose of 150 mg/kg, 600 mg/kg and 1200 mg/kg body weight. These results suggested that CHPH-IV from cobia head protein hydrolysate by papain could serve as a source of peptides with antihypertensive activity in functional food industry.

  7. Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria.

    Science.gov (United States)

    Danz, H; Stoyanova, S; Wippich, P; Brattström, A; Hamburger, M

    2001-07-01

    Various extracts prepared from the traditional dye and medicinal plant Isatis tinctoria L. were submitted to a broad in vitro screening against 16 anti-inflammatory targets. Dichloromethane (DCM) extracts from dried leaves showed a marked cyclooxygenase (COX) inhibitory activity with a preferential effect on COX-2 catalysed prostaglandin synthesis. A supercritical fluid extraction (SFE) procedure employing CO2-modifier mixtures was developed by which the bioactivity profile and chromatographic fingerprint of the DCM extract could be reproduced. High-resolution activity directed on-line identification of the COX-2 inhibitory principle, using a combination of LC-DAD-MS with a microtitre-based bioassay, led to the identification of tryptanthrin (1) as the constituent responsible for essentially all COX-2 inhibitory activity in the crude extract. Following on-line identification, 1 was isolated at preparative scale and its structure confirmed by comparison with synthetic tryptanthrin. In an assay with lipopolysaccharide stimulated Mono Mac 6 cells, tryptanthrin (1) was of comparable potency (IC50 = 64 nM) than the preferential COX-2 inhibitors nimesulide (IC50 = 39 nM) and NS 398 (IC50 = 2 nM). The SFE extract and 1 showed no cytotoxicity in Mono Mac 6 and RAW 264.7 cells when tested at 100 microg/ml and 10 microM, respectively.

  8. Effects of inhibitory neurons on the quorum percolation model and dynamical extension with the Brette-Gerstner model

    Science.gov (United States)

    Fardet, Tanguy; Bottani, Samuel; Métens, Stéphane; Monceau, Pascal

    2018-06-01

    The Quorum Percolation model (QP) has been designed in the context of neurobiology to describe the initiation of activity bursts occurring in neuronal cultures from the point of view of statistical physics rather than from a dynamical synchronization approach. This paper aims at investigating an extension of the original QP model by taking into account the presence of inhibitory neurons in the cultures (IQP model). The first part of this paper is focused on an equivalence between the presence of inhibitory neurons and a reduction of the network connectivity. By relying on a simple topological argument, we show that the mean activation behavior of networks containing a fraction η of inhibitory neurons can be mapped onto purely excitatory networks with an appropriately modified wiring, provided that η remains in the range usually observed in neuronal cultures, namely η ⪅ 20%. As a striking result, we show that such a mapping enables to predict the evolution of the critical point of the IQP model with the fraction of inhibitory neurons. In a second part, we bridge the gap between the description of bursts in the framework of percolation and the temporal description of neural networks activity by showing how dynamical simulations of bursts with an adaptive exponential integrate-and-fire model lead to a mean description of bursts activation which is captured by Quorum Percolation.

  9. [Study on the seasonal variations of the active components in Acer truncatum leaves and the inhibitory ability on fatty acid synthase].

    Science.gov (United States)

    Fan, Yuan-Jie; Ye, Yan-Bin; Gao, Wen; Zhang, Feng; Zhang, Ying-Xia

    2010-11-01

    To study the dynamic variations of the contents of total polyphenols, flvonoids and chlorogenic acid from Acer truncatum leaves in different months, and their inhibitory activities on fatty acid synthase. Spectrophotometry was used to determine the contents of total polyphenols, flavonoids and chlorogenic acid in extracts and the extracts' inhibitory effects were also investigated. All Leaves picked from May to November have inhibitory effect. But the contents of polyphenols in leaves of July appeared to be higher than other months', and consequently exhibited stronger inhibition against FAS. A positive correlation between the content of polyphenols in leaves extract and the inhibitory efficacy on FAS could be established.

  10. Inhibitory Activities of Antioxidant Flavonoids from Tamarix gallica on Amyloid Aggregation Related to Alzheimer's and Type 2 Diabetes Diseases.

    Science.gov (United States)

    Ben Hmidene, Asma; Hanaki, Mizuho; Murakami, Kazuma; Irie, Kazuhiro; Isoda, Hiroko; Shigemori, Hideyuki

    2017-01-01

    The prevention of amyloid aggregation is promising for the treatment of age-related diseases such as Alzheimer's (AD) and type 2 diabetes (T2D). Ten antioxidant flavonoids isolated from the medicinal halophyte Tamarix gallica were tested for their amyloid aggregation inhibition potential. Glucuronosylated flavonoids show relatively strong inhibitory activity of Amyloid β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregation compared to their aglycone analogs. Structure-activity relationship of the flavonoids suggests that the catechol moiety is important for amyloid aggregation inhibition, while the methylation of the carboxyl group in the glucuronide moiety and of the hydroxyl group in the aglycone flavonoids decreased it.

  11. Analogues of Cucurbita maxima trypsin inhibitor III (CMTI-III) with elastase inhibitory activity.

    Science.gov (United States)

    Rózycki, J; Kupryszewski, G; Rolka, K; Ragnarsson, U; Zbyryt, T; Krokoszyńska, I; Wilusz, T

    1994-04-01

    Three new CMTI-III analogues containing the Val residue in the reactive site (position 5) were synthesized by the solid-phase method. The analogues displayed an elastase inhibitory activity. It is shown that the removal of the N-terminal Arg residue and the introduction of the Gly-Pro-Gln tripeptide in the region 23-25 decreases the antielastase activity by two orders of magnitude. The removal of the disulfide bridge in positions 16-28 and the substitution of Ala for Cys16 and Gly for Cys28 decreases the activity (measured as Ka with HLE) by five orders of magnitude as compared with [Val5]CMTI-III.

  12. Humoral Na+-K+ pump inhibitory activity in essential hypertension and in normotensive subjects after acute volume expansion

    International Nuclear Information System (INIS)

    Pamnani, M.B.; Burris, J.F.; Jemionek, J.F.; Huot, S.J.; Price, M.; Freis, E.D.; Haddy, F.J.

    1989-01-01

    Plasma from black male patients with essential hypertension was bioassayed for vascular Na+-K+ pump inhibitory activity. Halves of the same rat tail artery were incubated for two hours in boiled plasma supernates from a hypertensive patient and a paired age-, sex-, and race-matched normotensive subject and then ouabain-sensitive 86 Rb uptake was measured. Ouabain-sensitive 86 Rb uptake by their leukocytes was also measured. Eighteen pairs of subjects were studied. The uptakes were not significantly different in the hypertensive patients and control subjects. However, when we selected from the eighteen hypertensive patients, nine with low plasma renin activity on the day of the study, uptakes were reduced in the hypertensive patients relative to the paired control subjects. We also assayed plasma supernates from normotensive black and white male subjects before and after acute volume expansion (2.5 L saline IV + 1.5 L distilled water orally over a three-hour period) and from paired normotensive subjects before and after sham volume expansion and obtained a positive bioassay in the expanded subjects both on intraindividual and interindividual comparisons. These studies demonstrate increased vascular Na+-K+ pump inhibitory activity in the plasma of black male patients with low renin essential hypertension and in the plasma of normotensive subjects after acute volume expansion. The findings suggest that the inhibitory activity in the hypertensive subjects' plasma is related to volume expansion, relative or absolute

  13. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok, E-mail: yrlee@yu.ac.kr

    2014-10-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities.

  14. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok

    2014-01-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities

  15. Inhibitory potential of nine mentha species against pathogenic bacteria strains

    International Nuclear Information System (INIS)

    Hussain, A.; Ahmad, N.; Rashid, M.; Ikram, A. U.; Shinwari, Z. K.

    2015-01-01

    Plants produce secondary metabolites, which are used in their growth and defense against pathogenic agents. These plant based metabolites can be used as natural antibiotics against pathogenic bacteria. Synthetic antibiotics caused different side effects and become resistant to bacteria. Therefore the main objective of the present study was to investigate the inhibitory potential of nine Mentha species extracts against pathogenic bacteria. The methanolic leaves extracts of nine Mentha species (Mentha arvensis, Mentha longifolia, Mentha officinalis, Mentha piperita, Mentha citrata, Mentha pulegium, Mentha royleana, Mentha spicata and Mentha suareolens) were compared for antimicrobial activities. These Mentha species showed strong antibacterial activity against four microorganisms tested. Mentha arvensis showed 25 mm and 30 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover, Mentha longifolia showed 24 mm zone of inhibition against Staphylococcus aureus. Mentha officinalis showed 30 mm zone of inhibition against Staphylococcus aureus. 25 mm inhibitory zone was recorded against Staphylococcus aureus by Mentha piperita. Mentha royleana showed 25 mm zone of inhibition against Vibrio cholera, while Mentha spicata showed 21 mm, 22 mm and 23 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover most of the Mentha species showed zone of inhibition in the range of 10-20 mm. (author)

  16. Tyrosinase inhibitory effects and antioxidative activities of saponins from Xanthoceras Sorbifolia nutshell.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    Full Text Available Certain saponins are bioactive compounds with anticancer, antivirus and antioxidant activities. This paper discussed inhibitory effects of saponins from Xanthoceras Sorbifolia on tyrosinase, through the research of the rate of tyrosinase catalyzed L-DOPA oxidation. The inhibition rate of tyrosinase activity presented non-linear changes with the saponins concentration. The rate reached 52.0% when the saponins concentration was 0.96 mg/ml. Antioxidant activities of saponins from Xanthoceras Sorbifolia were evaluated by using hydroxyl and superoxide radical scavenging assays. The hydroxyl radical scavenging effects of the saponins were 15.5-68.7%, respectively at the concentration of 0.18-2.52 mg/ml. The superoxide radical scavenging activity reduced from 96.6% to 7.05% with the time increasing at the concentration of 1.44 mg/ml. All the above antioxidant evaluation indicated that saponins from Xanthoceras Sorbifolia exhibited good antioxidant activity in a concentration- dependent manner.

  17. Porcine Pancreatic Lipase Inhibitory Agent Isolated from Medicinal Herb and Inhibition Kinetics of Extracts from Eleusine indica (L. Gaertner

    Directory of Open Access Journals (Sweden)

    Siew Ling Ong

    2016-01-01

    Full Text Available Eleusine indica (Linnaeus Gaertner is a traditional herb known to be depurative, febrifuge, and diuretic and has been reported with the highest inhibitory activity against porcine pancreatic lipase (PPL among thirty two plants screened in an earlier study. This study aims to isolate and identify the active components that may possess high potential as an antiobesity agent. Of the screened solvent fractions of E. indica, hexane fraction showed the highest inhibitory activity of 27.01±5.68% at 100 μg/mL. Bioactivity-guided isolation afforded three compounds from the hexane fraction of E. indica, namely, β-sitosterol, stigmasterol, and lutein. The structures of these compounds were elucidated using spectral techniques. Lutein showed an outstanding inhibitory activity against PPL (55.98±1.04%, with activity 60% higher than that of the reference drug Orlistat. The other compounds isolated and identified were β-sitosterol (2.99±0.80% and stigmasterol (2.68±0.38%. The enzyme kinetics of E. indica crude methanolic extract on PPL showed mixed inhibition mechanism.

  18. Porcine Pancreatic Lipase Inhibitory Agent Isolated from Medicinal Herb and Inhibition Kinetics of Extracts from Eleusine indica (L.) Gaertner.

    Science.gov (United States)

    Ong, Siew Ling; Mah, Siau Hui; Lai, How Yee

    2016-01-01

    Eleusine indica (Linnaeus) Gaertner is a traditional herb known to be depurative, febrifuge, and diuretic and has been reported with the highest inhibitory activity against porcine pancreatic lipase (PPL) among thirty two plants screened in an earlier study. This study aims to isolate and identify the active components that may possess high potential as an antiobesity agent. Of the screened solvent fractions of E. indica , hexane fraction showed the highest inhibitory activity of 27.01 ± 5.68% at 100  μ g/mL. Bioactivity-guided isolation afforded three compounds from the hexane fraction of E. indica , namely,  β -sitosterol, stigmasterol, and lutein. The structures of these compounds were elucidated using spectral techniques. Lutein showed an outstanding inhibitory activity against PPL (55.98 ± 1.04%), with activity 60% higher than that of the reference drug Orlistat. The other compounds isolated and identified were  β -sitosterol (2.99 ± 0.80%) and stigmasterol (2.68 ± 0.38%). The enzyme kinetics of E. indica crude methanolic extract on PPL showed mixed inhibition mechanism.

  19. Complete unconscious control: Using (in)action primes to demonstrate completely unconscious activation of inhibitory control mechanisms

    Science.gov (United States)

    Hepler, Justin; Albarracin, Dolores

    2018-01-01

    Although robust evidence indicates that action initiation can occur unconsciously and unintentionally, the literature on action inhibition suggests that inhibition requires both conscious thought and intentionality. In prior research demonstrating automatic inhibition in response to unconsciously processed stimuli, the unconscious stimuli had previously been consciously associated with an inhibitory response within the context of the experiment, and participants had consciously formed a goal to activate inhibition processes when presented with the stimuli (because task instructions required participants to engage in inhibition when the stimuli occurred). Therefore, prior work suggests that some amount of conscious thought and intentionality are required for inhibitory control. In the present research, we recorded event-related potentials during two go/no-go experiments in which participants were subliminally primed with general action/inaction concepts that had never been consciously associated with task-specific responses. We provide the first demonstration that inhibitory control processes can be modulated completely unconsciously and unintentionally. PMID:23747649

  20. Improving the acetylcholinesterase inhibitory effect of Illigera henryi by solid-state fermentation with Clonostachys rogersoniana.

    Science.gov (United States)

    Li, Xue-Jiao; Dong, Jian-Wei; Cai, Le; Mei, Rui-Feng; Ding, Zhong-Tao

    2017-11-01

    Illigera henryi, an endemic traditional Chinese medicine, contains abundant aporphine alkaloids that possess various bioactivities. In the present study, tubers of I. henryi were fermented by several fungi, and the acetylcholinesterase (AChE) inhibitory activities of non-fermented and fermented I. henryi were measured. The results showed that the fermentation of I. henryi with Clonostachys rogersoniana 828H2 is effective for improving the AChE inhibitory activity. A key biotransformation was found during the C. rogersoniana fermentation for clarifying the improvement of the AChE inhibitory activity of I. henryi: (S)-actinodaphnine (1) was converted to a new 4-hydroxyaporphine alkaloid (4R,6aS)-4-hydroxyactinodaphnine (2) that possessed a stronger AChE inhibitory activity, with an IC 50 value of 17.66±0.06 μM. This paper is the first to report that the pure strain fermentation processing of I. henryi and indicated C. rogersoniana fermentation might be a potential processing method for I. henryi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Chemical constituents, radical scavenging activity and enzyme inhibitory capacity of fruits from Cotoneaster pannosus Franch.

    Science.gov (United States)

    Les, Francisco; López, Víctor; Caprioli, Giovanni; Iannarelli, Romilde; Fiorini, Dennis; Innocenti, Marzia; Bellumori, Maria; Maggi, Filippo

    2017-05-24

    Cotoneaster pannosus (Rosaceae) is a semievergreen shrub, producing globose dark red pomes, native to China and widely used as an ornamental plant all over the world. Despite its extensive cultivation, little information is available on the chemical composition and biological activities of its fruits. In this work, the analysis of the chemical composition of C. pannosus fruits, in terms of phenolic components, carotenoids and ascorbic acid by HPLC/DAD, HPLC/ESI-MS and MS/MS as well as in terms of macro- and micro-nutrients was performed. The fruits proved to be a good source of shikimic acid and caffeoylquinic acids, whereas β-carotene, pelargonidin-3-O glucoside and cyanidin-3,5-rutinoside gave an important contribution to the color of the fruit. Both the polar and apolar fruit extracts showed noteworthy radical scavenger activity and inhibitory effects against monoamine oxidase A (MAO-A), tyrosinase (TYR) and α-glucosidase, making C. pannosus red pomes a promising candidate ingredient in functional foods and dietary supplements.

  2. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity.

    Science.gov (United States)

    Burmaoglu, Serdar; Yilmaz, Ali O; Taslimi, Parham; Algul, Oztekin; Kilic, Deryanur; Gulcin, Ilhami

    2018-02-01

    A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed K i values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II. © 2018 Deutsche Pharmazeutische Gesellschaft.

  3. Extracts of Moringa oleifera Lam . showing inhibitory activity against ...

    African Journals Online (AJOL)

    Moringa oleifera Lam. (Moringaceae) is one of the many medicinal plants employed by herbalist to treat or manage people living with HIV/AIDS (PLWHA) in African Traditional Medicine (ATM) and there are many claims to the fact that it improves quality of life and reverses the course of the HIV/AIDS disease progression.

  4. Mannose-binding lectin impairs Leptospira activity through the inhibitory effect on the motility of cell.

    Science.gov (United States)

    Xu, Jun; Guo, Yijie; Nakamura, Shuichi; Islam, Md Shafiqul; Tomioka, Rintaro; Yoneyama, Hiroshi; Isogai, Emiko

    2015-02-01

    Mannose-binding lectin (MBL) plays key role in lectin pathway of innate immunity, and shows the ability of triggering opsonization intermediately. Substantial increase in the serum level of MBL has been confirmed during leptospirosis, which caused by a pathogenic spirochete, Leptospira. Leptospira has a fascinating locomotion pattern, which simultaneously gyrating and swimming forward, such motility enables that Leptospira is difficult to be captured by immune cells if without any assistance. In this study, the effect of mannose-binding lectin to Leptospira was quantitatively investigated by measuring some kinematic parameters, to discover the mechanism behind MBL-mediated immune responses during leptospiral infection. The results showed that mannose-binding lectin is capable of inhibiting the motility of Leptospira by transforming free swimming cells to tumbled rotating cells, resulted in the increase number of rotating cells. Otherwise, decrease in rotation rate of rotating cell has been observed. However, the swimming speed of swimming Leptospira cells showed no observable change under the effect of MBL. The inhibitory effect were only valid in a relatively short period, Leptospira cells regained their original motility after 2 h. This raises an interesting topic that Leptospira is somehow able to escape from the inhibitory effect of MBL by dragging such unfavorable molecules toward to the cell end and eventually throwing it out. The inhibitory effect of MBL on the motility of Leptospira is expected to provide a new insight into lectin pathway. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Alpha-Glucosidase Inhibitory and Antioxidant Activity of Solvent ...

    African Journals Online (AJOL)

    regression analysis. Phytochemical contents and correlation with bioactivities. Total phenolic (TP), total proanthocyanidin. (TPro), and total hydroxycinnamic acid ..... An advantage of competitive inhibitors is that their inhibitory action is reversible, thus allowing undesirable effects to be readily mitigated by decreasing the ...

  6. Influence of baking enzymes on antimicrobial activity of five bacteriocin-like inhibitory substances produced by lactic acid bacteria isolated from Lithuanian sourdoughs.

    Science.gov (United States)

    Narbutaite, V; Fernandez, A; Horn, N; Juodeikiene, G; Narbad, A

    2008-12-01

    To evaluate the effect of four different baking enzymes on the inhibitory activity of five bacteriocin-like inhibitory substances (BLIS) produced by lactic acid bacteria (LAB) isolated from Lithuanian sourdoughs. The overlay assay and the Bioscreen methods revealed that the five BLIS exhibited an inhibitory effect against spore germination and vegetative outgrowth of Bacillus subtilis, the predominant species causing ropiness in bread. The possibility that the observed antibacterial activity of BLIS might be lost after treatment with enzymes used for baking purposes was also examined. The enzymes tested; hemicellulase, lipase, amyloglucosidase and amylase had little or no effect on the majority of the antimicrobial activities associated with the five BLIS studied. This study suggests a potential application in the sourdough baking industry for these antimicrobial producing LAB strains in the control of B. subtilis spore germination and vegetative outgrowth.

  7. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1

    Directory of Open Access Journals (Sweden)

    A. Rory McQuiston

    2014-09-01

    Full Text Available Acetylcholine release in the central nervous system (CNS has an important role in attention, recall and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB. Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors and astrocytes. A significant portion of acetylcholine’s effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.

  8. Structures, chemotaxonomic significance, cytotoxic and Na(+),K(+)-ATPase inhibitory activities of new cardenolides from Asclepias curassavica.

    Science.gov (United States)

    Zhang, Rong-Rong; Tian, Hai-Yan; Tan, Ya-Fang; Chung, Tse-Yu; Sun, Xiao-Hui; Xia, Xue; Ye, Wen-Cai; Middleton, David A; Fedosova, Natalya; Esmann, Mikael; Tzen, Jason T C; Jiang, Ren-Wang

    2014-11-28

    Five new cardenolide lactates (1–5) and one new dioxane double linked cardenolide glycoside (17) along with 15 known compounds (6–16 and 18–21) were isolated from the ornamental milkweed Asclepias curassavica. Their structures were elucidated by extensive spectroscopic methods (IR, UV, MS, 1D- and 2D-NMR). The molecular structures and absolute configurations of 1–3 and 17 were further confirmed by single-crystal X-ray diffraction analysis. Simultaneous isolation of dioxane double linked cardenolide glycosides (17–21) and cardenolide lactates (1–5) provided unique chemotaxonomic markers for this genus. Compounds 1–21 were evaluated for the inhibitory activities against DU145 prostate cancer cells. The dioxane double linked cardenolide glycosides showed the most potent cytotoxic effect followed by normal cardenolides and cardenolide lactates, while the C21 steroids were non-cytotoxic. Enzymatic assay established a correlation between the cytotoxic effects in DU145 cancer cells and the Ki for the inhibition of Na(+),K(+)-ATPase. Molecular docking analysis revealed relatively strong H-bond interactions between the bottom of the binding cavity and compounds 18 or 20, and explained why the dioxane double linked cardenolide glycosides possessed higher inhibitory potency on Na(+),K(+)-ATPase than the cardenolide lactate.

  9. Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes.

    Science.gov (United States)

    Salinas-Salazar, Carmen; Hernández-Brenes, Carmen; Rodríguez-Sánchez, Dariana Graciela; Castillo, Elena Cristina; Navarro-Silva, Jesús Manuel; Pacheco, Adriana

    2017-01-01

    High standards regarding Listeria monocytogenes control and consumer demands for food products without synthetic additives represent a challenge to food industry. We determined the antilisterial properties of an enriched acetogenin extract (EAE) from avocado seed, compared it to two commercial antimicrobials (one enriched in avocado acetogenins), and tested purified molecules. Acetogenin composition in pulp and seed of Hass avocado was quantified. EAE were obtained by two sequential centrifuge partition chromatography separations and molecules purified by preparative chromatography and quantified by HPLC-MS-TOF and HPLC-PDA. Avocado seed extracts which are the following two: 1) EAE and 2) the commercially available antimicrobial Avosafe®, presented similar inhibition zones and chemical profiles. Minimum inhibitory concentration (MIC) values of extracts and two isolated acetogenins varied between 7.8 and 15.6 mg/L, were effective at 37 and 4 °C, and showed a bactericidal effect probably caused by increased membrane permeability and lytic effects, evidenced by flow cytometry at 10 and 100× MIC. Activity was comparable to Mirenat®. Most potent acetogenins were Persenone C (5) and A (6), and AcO-avocadenyne (1), the latter exclusively present in seed. Common features of bioactive molecules were the acetyl moiety and multiple unsaturations (2 to 3) in the aliphatic chain, some persenones also featured a trans-enone group. Seeds contained 1.6 times higher levels of acetogenins than pulp (5048.1 ± 575.5 and 3107.0 ± 207.2 mg/kg fresh weight, respectively), and total content in pulp was 199 to 398 times higher than MIC values. Therefore, acetogenin levels potentially consumed by humans are higher than inhibitory concentrations. Results document properties of avocado seed acetogenins as natural antilisterial food additives. © 2016 Institute of Food Technologists®.

  10. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees.

    Science.gov (United States)

    Holler, Jes Gitz; Christensen, S Brøgger; Slotved, Hans-Christian; Rasmussen, Hasse B; Gúzman, Alfonso; Olsen, Carl-Erik; Petersen, Bent; Mølgaard, Per

    2012-05-01

    To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.

  11. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase.

    Science.gov (United States)

    Ercan, Pınar; El, Sedef Nehir

    2016-08-15

    The total saponin content and its in vitro bioaccessibilities in Tribulus terrestris and chickpea were determined by a static in vitro digestion method (COST FA1005 Action INFOGEST). Also, in vitro inhibitory effects of the chosen food samples on lipid and starch digestive enzymes were determined by evaluating the lipase, α-amylase and α-glucosidase activities. The tested T. terrestris and chickpea showed inhibitory activity against α-glucosidase (IC50 6967 ± 343 and 2885 ± 85.4 μg/ml, respectively) and α-amylase (IC50 343 ± 26.2 and 167 ± 6.12 μg/ml, respectively). The inhibitory activities of T. terrestris and chickpea against lipase were 15.3 ± 2.03 and 9.74 ± 1.09 μg/ml, respectively. The present study provides the first evidence that these food samples (T. terrestris, chickpea) are potent inhibitors of key enzymes in digestion of carbohydrates and lipids in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mansouri, S.

    2013-01-01

    Full Text Available Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC of 1000μg/mL. All extracts significantly (p≤0.003 reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 μg/mL. All plant extracts significantly (p≤0.003 reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future.

  13. A conformational switch in the inhibitory gamma-subunit of PDE6 upon enzyme activation by transducin.

    Science.gov (United States)

    Granovsky, A E; Artemyev, N O

    2001-11-06

    In response to light, a photoreceptor G protein, transducin, activates cGMP-phosphodiesterase (PDE6) by displacing the inhibitory gamma-subunits (Pgamma) from the enzyme's catalytic sites. Evidence suggests that the activation of PDE6 involves a conformational change of the key inhibitory C-terminal domain of Pgamma. In this study, the C-terminal region of Pgamma, Pgamma-73-85, has been targeted for Ala-scanning mutagenesis to identify the point-to-point interactions between Pgamma and the PDE6 catalytic subunits and to probe the nature of the conformational change. Pgamma mutants were tested for their ability to inhibit PDE6 and a chimeric PDE5-conePDE6 enzyme containing the Pgamma C-terminus-binding site of cone PDE. This analysis has revealed that in addition to previously characterized Ile86 and Ile87, important inhibitory contact residues of Pgamma include Asn74, His75, and Leu78. The patterns of mutant PDE5-conePDE6 enzyme inhibition suggest the interaction between the PgammaAsn74/His75 sequence and Met758 of the cone PDE6alpha' catalytic subunit. This interaction, and the interaction between the PgammaIle86/Ile87 and PDE6alpha'Phe777/Phe781 residues, is most consistent with an alpha-helical structure of the Pgamma C-terminus. The analysis of activation of PDE6 enzymes containing Pgamma mutants with Ala-substituted transducin-contact residues demonstrated the critical role of PgammaLeu76. Accordingly, we hypothesize that the initial step in PDE6 activation involves an interaction of transducin-alpha with PgammaLeu76. This interaction introduces a bend into the alpha-helical structure of the Pgamma C-terminus, allowing transducin-alpha to further twist the C-terminus thereby uncovering the catalytic pocket of PDE6.

  14. Inhibitory effect on nitric oxide production and free radical scavenging activity of Thai medicinal plants in osteoarthritic knee treatment.

    Science.gov (United States)

    Anuthakoengkun, Areeya; Itharat, Arunporn

    2014-08-01

    Thai medicine plants used for Osteoarthritis of knee (OA) treatment consist of twelve plants such as Crinumn asiaticum, Cleome viscosa, Drypetes roxburghii, Piper longum, Piper nigrum, Plumbago indica, Alpinia galanga, Curcuma aromatica, Globba malaccensis, Zingiber montanum, Zingiber officinale andZingiberzerumbet. They showedhighfrequency in OA formula. To investigate inhibitory effect on LPS-induced nitric oxide (NO) release from RAW264. 7 cell and free radical scavenging activity usingDPPH assay of these ethanolic plant extracts. Plant materials were extracted by maceration in 95% ethanol. Anti-inflammatory activity were tested on LPS-induced NO production. Free radical scavenging activity was performed by DPPH assay. All of ethanolic extracts exhibited potent inhibitory effect on NO release. The ethanolic extract of Z. zerumbet exhibited the highest inhibitory effect followed by Z. montanum and G. malaccensis, respectively. Except A. galanga and C. viscosa, all extracts possessed more influential than indomethacin (IC50 = 20.32±3.23 μLg/ml), a positive control. The investigation on antioxidant activity suggested that the ethanolic extracts of D. roxburghii, Z. officinale, Z. montanum, C. aromatic, A. galanga, P indica, G malaccensis, P nigrum exhibited antioxidant activity. By means ofD. roxburghii had the highest electron donating activity,followed by Z. officinale. Moreover both extracts were more effective than BHT apositive control (EC50 = 14.04±1.95 μg/ml). Thai medicinal plants had anti-inflammatory activity and could inhibit destruction of articular cartilage that corresponded to the traditional medicine and supported using these medicinal plants for OA treatment.

  15. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands.

    Science.gov (United States)

    Pan, Lin; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Zhu, Hailiang; Zhao, Xinlu; Qu, Dan; Niu, Fang; You, Zhonglu

    2016-06-01

    A series of new copper(II) complexes were prepared. They are [CuL(1)(NCS)] (1), [CuClL(1)]·CH3OH (2), [CuClL(2)]·CH3OH (3), [CuL(3)(NCS)]·CH3OH (4), [CuL(4)(NCS)]·0.4H2O (5), and [CuL(5)(bipy)] (6), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, 4-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide and 2-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, respectively, L(5) is the dianionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra and single crystal X-ray diffraction. The Cu atoms in complexes 1, 2, 3, 4 and 5 are coordinated by the NOO donor set of the aroylhydrazone ligands, and one Cl or thiocyanate N atom, forming square planar coordination. The Cu atom in complex 6 is in a square pyramidal coordination, with the NOO donor set of L(1), and one N atom of bipy defining the basal plane, and with the other N atom of bipy occupying the apical position. Complexes 1, 2, 3, 4 and 5 show effective urease inhibitory activities, with IC50 values of 5.14, 0.20, 4.06, 5.52 and 0.26μM, respectively. Complex 6 has very weak activity against urease, with IC50 value over 100μM. Molecular docking study of the complexes with the Helicobacter pylori urease was performed. The relationship between structures and urease inhibitory activities indicated that copper complexes with square planar coordination are better models for urease inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    Science.gov (United States)

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity

    Directory of Open Access Journals (Sweden)

    Nelson Jeng-Yeou Chear

    2016-04-01

    Full Text Available Stenochlaena palustris fronds are popular as a vegetable in Southeast Asia. The objectives of this study were to evaluate the anticholinesterase properties and phytochemical profiles of the young and mature fronds of this plant. Both types of fronds were found to have selective inhibitory effect against butyrylcholinesterase compared with acetylcholinesterase. However, different sets of compounds were responsible for their activity. In young fronds, an antibutyrylcholinesterase effect was observed in the hexane extract, which was comprised of a variety of aliphatic hydrocarbons, fatty acids, and phytosterols. In the mature fronds, inhibitory activity was observed in the methanol extract, which contained a series of kaempferol glycosides. Our results provided novel information concerning the ability of S. palustris to inhibit cholinesterase and its phytochemical profile. Further research to investigate the potential use of this plant against Alzheimer's disease is warranted, however, young and mature fronds should be distinguished due to their phytochemical differences.

  18. Do Children with Better Inhibitory Control Donate More? Differentiating between Early and Middle Childhood and Cool and Hot Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-12-01

    Full Text Available Inhibitory control may play an important part in prosocial behavior, such as donating behavior. However, it is not clear at what developmental stage inhibitory control becomes associated with donating behavior and which aspects of inhibitory control are related to donating behavior during development in early to middle childhood. The present study aimed to clarify these issues with two experiments. In Experiment 1, 103 3- to 5-year-old preschoolers completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results indicated that there were no relationships between cool or hot inhibitory control and donating behavior in the whole group and each age group of the preschoolers. In Experiment 2, 140 elementary school children in Grades 2, 4, and 6 completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results showed that inhibitory control was positively associated with donating behavior in the whole group. Cool and hot inhibitory control respectively predicted donating behavior in the second and sixth graders. Therefore, the present study reveals that donating behavior increasingly relies on specific inhibitory control, i.e., hot inhibitory control as children grow in middle childhood.

  19. Effect of O-methylated and glucuronosylated flavonoids from Tamarix gallica on α-glucosidase inhibitory activity: structure-activity relationship and synergistic potential.

    Science.gov (United States)

    Ben Hmidene, Asma; Smaoui, Abderrazak; Abdelly, Chedly; Isoda, Hiroko; Shigemori, Hideyuki

    2017-03-01

    O-Methylated and glucuronosylated flavonoids were isolated from Tamarix gallica as α-glucosidase inhibitors. Structure-activity relationship of these flavonoids suggests that catechol moiety and glucuronic acid at C-3 are factors in the increase in α-glucosidase inhibitory activity. Furthermore, rhamnetin, tamarixetin, rhamnazin, KGlcA, KGlcA-Me, QGlcA, and QGlcA-Me exhibit synergistic potential when applied with a very low concentration of acarbose to α-glucosidase from rat intestine.

  20. Diterpenes from buds of Wikstroemia chamaedaphne showing anti-hepatitis B virus activities.

    Science.gov (United States)

    Li, Shi-Fei; Jiao, Ying-Ying; Zhang, Zhi-Qiang; Chao, Jian-Bin; Jia, Jie; Shi, Xun-Long; Zhang, Li-Wei

    2018-07-01

    Phytochemical study of the buds of Wikstroemia chamaedaphne Meisn. led to the isolation of seven previously undescribed diterpenes, including one tigliane diterpene (wikstchalide A), two daphnane diterpenes (wikstroelides W-X), and four lathyrane diterpenes (laurifoliosides A-B and 2-epi-laurifoliosides A-B), along with four known diterpenes. The structures of these compounds were established by extensive spectroscopic evidence and electronic circular dichroism (ECD) calculations. Wikstchalide A possesses a 5,6-epoxy ring in the tigliane skeleton. Two compounds exhibited potential anti-hepatitis B virus activities, with IC 50 values of 46.5 and 88.3 μg/mL against hepatitis B virus (HBV) surface antigen (HBsAg), and six compounds showed certain inhibitory effects on HBV-DNA replication with the inhibition ratios ranging from 2.0% to 33.0% at the concentrations ranging from 0.39 to 6.25 μg/mL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fluctuating inhibitory inputs promote reliable spiking at theta frequencies in hippocampal interneurons

    Directory of Open Access Journals (Sweden)

    Duluxan eSritharan

    2012-05-01

    Full Text Available Theta frequency (4-12 Hz rhythms in the hippocampus play important roles in learning and memory. CA1 interneurons located at the stratum lacunosum-moleculare and radiatum junction (LM/RAD are thought to contribute to hippocampal theta population activities by rhythmically pacing pyramidal cells with inhibitory postsynaptic potentials. This implies that LM/RAD cells need to fire reliably at theta frequencies in vivo. To determine whether this could occur, we use biophysically-based LM/RAD model cells and apply different cholinergic and synaptic inputs to simulate in vivo-like network environments. We assess spike reliabilities and spiking frequencies, identifying biophysical properties and network conditions that best promote reliable theta spiking. We find that synaptic background activities that feature large inhibitory, but not excitatory, fluctuations are essential. This suggests that strong inhibitory input to these cells is vital for them to be able to contribute to population theta activities. Furthermore, we find that Type I-like oscillator models produced by augmented persistent sodium currents (INap or diminished A type potassium currents (IA enhance reliable spiking at lower theta frequencies. These Type I-like models are also the most responsive to large inhibitory fluctuations and can fire more reliably under such conditions. In previous work, we showed that INap and IA are largely responsible for establishing LM/RAD cells’ subthreshold activities. Taken together with this study, we see that while both these currents are important for subthreshold theta fluctuations and reliable theta spiking, they contribute in different ways – INap to reliable theta spiking and subthreshold activity generation, and IA to subthreshold activities at theta frequencies. This suggests that linking subthreshold and suprathreshold activities should be done with consideration of both in vivo contexts and biophysical specifics.

  2. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey

    Science.gov (United States)

    Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma

    2014-01-01

    Objective(s): Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. Materials and Methods: α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. Results: H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Conclusion: Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes. PMID:25140204

  3. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey

    Directory of Open Access Journals (Sweden)

    Nilüfer Orhan

    2014-06-01

    Full Text Available Objective(s:Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus  communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum, are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. Materials and Methods: α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. Results: H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2 on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml. Conclusion:Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes.

  4. Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.

    Science.gov (United States)

    Badavath, Vishnu N; Baysal, İpek; Uçar, Gülberk; Mondal, Susanta K; Sinha, Barij N; Jayaprakash, Venkatesan

    2016-01-01

    Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mutation at Glu23 eliminates the neuron growth inhibitory activity of human metallothionein-3

    International Nuclear Information System (INIS)

    Ding Zhichun; Teng Xinchen; Cai Bin; Wang Hui; Zheng Qi; Wang Yang; Zhou Guoming; Zhang Mingjie; Wu Houming; Sun Hongzhe; Huang Zhongxian

    2006-01-01

    Human metallothionein-3 (hMT3), first isolated and identified as a neuronal growth inhibitory factor (GIF), is a metalloprotein expressed predominantly in brain. However, untill now, the exact mechanism of the bioactivity of hMT3 is still unknown. In order to study the influence of acid-base catalysis on S-nitrosylation of hMT3, we constructed the E23K mutant of hMT3. During the course of bioassay, we found out unexpectedly that mutation at E23 of hMT3 eliminates the neuronal growth inhibitory activity completely. To the best of our knowledge, it is First report that other residues, besides the TCPCP motif, in the β-domain can alter the bioactivity of hMT3. In order to figure out the causes for the loss of bioactivity of the E23K mutant, the biochemical properties were characterized by UV-vis spectroscopy, CD spectroscopy, pH titration, DTNB reaction, EDTA reaction, and SNOC reaction. All data demonstrated that stability of the metal-thiolate cluster and overall structure of the E23K mutant were not altered too much. However, the reaction of the E23K mutant with SNOC exhibited biphasic kinetics and the mutant protein released zinc ions much faster than hMT3 in the initial step, while hMT3 exhibited single kinetic process. The 2D [ 1 H- 15 N] HSQC was also employed to characterize structural changes during the reaction of hMT3 with varying mounts of nitric oxide. It was shown that the resonance of Glu23 disappeared at a molar ratio of NO to protein of 4. Based on these results, we suggest that mutation at Glu23 may alter the NO metabolism and/or affect zinc homeostasis in brain, thus altering the neuronal growth inhibitory activity

  6. An appraisal of eighteen commonly consumed edible plants as functional food based on their antioxidant and starch hydrolase inhibitory activities.

    Science.gov (United States)

    Lee, Yian Hoon; Choo, Candy; Watawana, Mindani I; Jayawardena, Nilakshi; Waisundara, Viduranga Y

    2015-11-01

    Eighteen edible plants were assessed for their antioxidant potential based on oxygen radical absorbance capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, total phenolics, vitamin C content and various lipophilic antioxidants. The inhibitory activities of the plant extracts against the enzymatic activities of α-amylase and α-glucosidase were also evaluated. The antioxidant and starch hydrolase activities of the plants varied widely across a single batch of analysis. The ORAC and DPPH radical scavenging EC50 values varied between 298 and 1984 Trolox equivalents g(-1) fresh weight and between 91 and 533 mg kg(-1) fresh weight, respectively. The total phenolics and vitamin C contents varied between 32 and 125 mg gallic acid equivalents g(-1) fresh weight and between 96 and 285 µg g(-1) fresh weight, respectively. All the plants contained neoxanthin, violaxanthin, and α- and β-carotene in varying amounts. Coccinia grandis, Asparagus racemosus, Costus speciosus, Amaranthus viridis and Annona muricata displayed the highest inhibitory activities against starch hydrolases. They were the most efficient against the breakdown of seven starches exposed to the two enzymes as well. Overall, the edible plants were observed to display a high antioxidant potential with starch hydrolase inhibitory properties, which were beneficial in their being recognized as functional food. © 2014 Society of Chemical Industry.

  7. Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus).

    Science.gov (United States)

    Mirdhayati, Irdha; Hermanianto, Joko; Wijaya, Christofora H; Sajuthi, Dondin; Arihara, Keizo

    2016-08-01

    The meat of Kacang goat has potential for production of a protein hydrolysate. Functional ingredients from protein hydrolysate of Kacang goat meat were determined by the consistency of angiotensin-converting enzyme (ACE) inhibitory activity and antihypertensive effect. This study examined the potency of Kacang goat protein hydrolysate in ACE inhibition and antihypertensive activity. Protein hydrolysates of Kacang goat meat were prepared using sequential digestion of endo-proteinase and protease complex at several concentrations and hydrolysis times. The highest ACE inhibitory activity resulted from a hydrolysate that was digested for 4 h with 5 g kg(-1) of both enzymes. An ACE inhibitory peptide was purified and a novel peptide found with a sequence of Phe-Gln-Pro-Ser (IC50 value of 27.0 µmol L(-1) ). Both protein hydrolysates and a synthesised peptide (Phe-Gln-Pro-Ser) demonstrated potent antihypertensive activities in spontaneously hypertensive rats. Protein hydrolysate of Kacang goat meat produced by sequential digestion with endo-proteinase and protease complex has great potential as a functional ingredient, particularly as an antihypertensive agent. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. A New Probiotic Cheddar Cheese with High ACE-Inhibitory Activity and γ-Aminobutyric Acid Content Produced with Koumiss-Derived Lactobacillus casei Zhang

    Directory of Open Access Journals (Sweden)

    Hai Kuan Wang

    2010-01-01

    Full Text Available Cheddar cheese has been manufactured with Lactobacillus casei Zhang as the dairy starter adjunct. L. casei Zhang had previously been isolated from koumiss collected from Xilin Guole in Inner Mongolia and characterized in detail with regard to their probiotic potential. The addition of L. casei Zhang to Cheddar cheese had no adverse effects on sensory criteria. The cheese made with 0.1, 1 and 2 % of the probiotic strain L. casei Zhang adjuncts contained high levels of the Lactobacillus after 6 months of ripening with final counts of 9.6·10^7, 7.7·10^7 and 1.02·10^8 CFU/g, respectively. In the ripe control cheese, without the addition of probiotic strain L. casei Zhang, the number of Lactobacillus reached 5.7·107 CFU/g. Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR analysis was used to distinguish the added L. casei Zhang from the natural flora of the cheese and to determine whether L. casei Zhang grew in the cheese. ACE-inhibitory activity and γ-aminobutyric acid (GABA concentrations in the cheese were measured. Compared with control cheese, experimental cheese with 0.1, 1 and 2 % of probiotic strain L. casei Zhang revealed some increase in ACE-inhibitory activity and GABA mass fraction. In the present study, the production of both ACE-inhibitory activity and GABA in the probiotic cheese with the L. casei Zhang adjunct isolated from koumiss has been found for the first time. The results suggest that cheese with the probiotic strain L. casei Zhang showed good potential for application in the management of hypertension.

  9. Effects of nanosuspension and inclusion complex techniques on the in vitro protease inhibitory activity of naproxen

    Energy Technology Data Exchange (ETDEWEB)

    Dharmalingam, Senthil Rajan; Chidambaram, Kumarappan; Srinivasan, Ramamurthy; Nadaraju, Shamala, E-mail: dsenthilrajan@yahoo.co.in [School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur (Malaysia)

    2014-01-15

    This study investigated the effects of nanosuspension and inclusion complex techniques on in vitro trypsin inhibitory activity of naproxen—a member of the propionic acid derivatives, which are a group of antipyretic, analgesic, and non-steroidal anti-inflammatory drugs. Nanosuspension and inclusion complex techniques were used to increase the solubility and anti-inflammatory efficacy of naproxen. The evaporative precipitation into aqueous solution (EPAS) technique and the kneading methods were used to prepare the nanosuspension and inclusion complex of naproxen, respectively. We also used an in vitro protease inhibitory assay to investigate the anti-inflammatory effect of modified naproxen formulations. Physiochemical properties of modified naproxen formulations were analyzed using UV, IR spectra, and solubility studies. Beta-cyclodextrin inclusion complex of naproxen was found to have a lower percentage of antitryptic activity than a pure nanosuspension of naproxen did. In conclusion, nanosuspension of naproxen has a greater anti-inflammatory effect than the other two tested formulations. This is because the nanosuspension formulation reduces the particle size of naproxen. Based on these results, the antitryptic activity of naproxen nanosuspension was noteworthy; therefore, this formulation can be used for the management of inflammatory disorders. (author)

  10. A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases.

    Science.gov (United States)

    Baraldi, Patrícia T; Magro, Angelo J; Matioli, Fábio F; Marcussi, Silvana; Lemke, Ney; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M; Correa, Arlene G; Fontes, Marcos R M

    2016-02-01

    Metalloproteases play a fundamental role in snake venom envenomation inducing hemorrhagic, fibrigen(ogen)olytic and myotoxic effects in their victims. Several snake venoms, such as those from the Bothrops genus, present important local effects which are not efficiently neutralized by conventional serum therapy. Consequently, these accidents may result in permanent sequelae and disability, creating economic and social problems, especially in developing countries, leading the attention of the World Health Organization that considered ophidic envenomations a neglected tropical disease. Aiming to produce an efficient inhibitor against bothropic venoms, we synthesized different molecules classified as quinolinones - a group of low-toxic chemical compounds widely used as antibacterial and antimycobacterial drugs - and tested their inhibitory properties against hemorrhage caused by bothropic venoms. The results from this initial screening indicated the molecule 2-hydroxymethyl-6-methoxy-1,4-dihydro-4-quinolinone (Q8) was the most effective antihemorrhagic compound among all of the assayed synthetic quinolinones. Other in vitro and in vivo experiments showed this novel compound was able to inhibit significantly the hemorrhagic and/or proteolytic activities of bothropic crude venoms and isolated snake venom metalloproteases (SVMPs) even at lower concentrations. Docking and molecular dynamic simulations were also performed to get insights into the structural basis of Q8 inhibitory mechanism against proteolytic and hemorrhagic SVMPs. These structural studies demonstrated that Q8 may form a stable complex with SVMPs, impairing the access of substrates to the active sites of these toxins. Therefore, both experimental and structural data indicate that Q8 compound is an interesting candidate for antiophidic therapy, particularly for the treatment of the hemorrhagic and necrotic effects induced by bothropic venoms. Copyright © 2015 Elsevier B.V. and Société Française de

  11. Release of Gentamicin and Vancomycin from Preformed Spacers in Infected Total Hip Arthroplasties: Measurement of Concentrations and Inhibitory Activity in Patients’ Drainage Fluids and Serum

    Directory of Open Access Journals (Sweden)

    Dario Regis

    2013-01-01

    Full Text Available Gentamicin (G and vancomycin (V concentrations in drainage fluids obtained from patients during the first 24 hours after implantation of antibiotic-loaded polymethylmethacrylate (PMMA spacers in two-stage revision of infected total hip arthroplasty were studied. The inhibitory activity of drainage fluids against different multiresistant clinical isolates was investigated as well. Seven hips were treated by implantation of industrial G-loaded spacers. Vancomycin was added by manually mixing with PMMA bone cement. Serum and drainage fluid samples were collected 1, 4, and 24 hours after spacer implantation. Antibiotics concentrations and drains bactericidal titer of combination were determined against multiresistant staphylococcal strains. The release of G and V from PMMA cement at the site of infection was prompt and effective. Serum levels were below the limit of detection. The local release kinetics of G and V from PMMA cement was similar, exerting a pronounced, combined inhibitory effect in the implant site. The inhibitory activity of drainage fluids showed substantial intersubject variability related to antibiotic concentrations and differed according to the pathogens tested. Gentamicin and vancomycin were released from temporary hip spacers at bactericidal concentrations, and their use in combination exerted strong inhibition against methicillin-resistant S. aureus and Coagulase Negative Staphylococci strains.

  12. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-06-01

    Nine new sesquiterpenoids, clitocybulol derivatives, clitocybulols G-O (1-9) and three known sesquiterpenoids, clitocybulols C-E (10-12), were isolated from the solid culture of the edible fungus Pleurotus cystidiosus. The structures of compounds 1-12 were determined by spectroscopic methods. The absolute configurations of compounds 1-9 were assigned via the circular dichroism (CD) data analysis. Compounds 1, 6 and 10 showed moderate inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 and 36.0μM, respectively. Copyright © 2016. Published by Elsevier B.V.

  13. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: Potential application in the management of hyperglycemia

    Directory of Open Access Journals (Sweden)

    Gulati Vandana

    2012-06-01

    Full Text Available Abstract Background Traditional Indian and Australian medicinal plant extracts were investigated to determine their therapeutic potential to inhibit key enzymes in carbohydrate metabolism, which has relevance to the management of hyperglycemia and type 2 diabetes. The antioxidant activities were also assessed. Methods The evaluation of enzyme inhibitory activity of seven Australian aboriginal medicinal plants and five Indian Ayurvedic plants was carried out against α-amylase and α-glucosidase. Antioxidant activity was determined by measuring (i the scavenging effect of plant extracts against 2, 2-diphenyl-1-picryl hydrazyl (DPPH and 2, 2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS and (ii ferric reducing power. Total phenolic and total flavonoid contents were also determined. Results Of the twelve plant extracts evaluated, the highest inhibitory activity against both α-amylase and α-glucosidase enzymes was exerted by Santalum spicatum and Pterocarpus marsupium with IC50 values of 5.43 μg/ml and 0.9 μg/ml, respectively, and 5.16 μg/ml and 1.06 μg/ml, respectively. However, the extracts of Acacia ligulata (IC50 = 1.01 μg/ml, Beyeria leshnaultii (0.39 μg/ml, Mucuna pruriens (0.8 μg/ml and Boerhaavia diffusa (1.72 μg/ml exhibited considerable activity against α-glucosidase enzyme only. The free radical scavenging activity was found to be prominent in extracts of Acacia kempeana, Acacia ligulata followed by Euphorbia drummondii against both DPPH and ABTS. The reducing power was more pronounced in Euphorbia drummondii and Pterocarpus marsupium extracts. The phenolic and flavonoid contents ranged from 0.42 to 30.27 μg/mg equivalent of gallic acid and 0.51 to 32.94 μg/mg equivalent of quercetin, respectively, in all plant extracts. Pearson’s correlation coefficient between total flavonoids and total phenolics was 0.796. Conclusion The results obtained in this study showed that most of the plant extracts

  14. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Phytochemical profile, aldose reductase inhibitory, and antioxidant activities of Indian traditional medicinal Coccinia grandis (L.) fruit extract.

    Science.gov (United States)

    Kondhare, Dasharath; Lade, Harshad

    2017-12-01

    Coccinia grandis (L.) fruits (CGFs) are commonly used for culinary purposes and has several therapeutic applications in the Southeast Asia. The aim of this work was to evaluate phytochemical profile, aldose reductase inhibitory (ARI), and antioxidant activities of CGF extract. The CGFs were extracted with different solvents including petroleum ether, dichloromethane, acetone, methanol, and water. The highest yield of total extractable compounds (34.82%) and phenolic content (11.7 ± 0.43 mg of GAE/g dried extract) was found in methanol extract, whereas water extract showed the maximum content of total flavonoids (82.8 ± 7.8 mg QE/g dried extract). Gas chromatography-mass spectroscopy (GC-MS) analysis of methanol and water extract revealed the presence of flavonoids, phenolic compounds, alkaloids, and glycosides in the CGFs. Results of the in vitro ARI activity against partially purified bovine lens aldose reductase showed that methanol extract of CGFs exhibited 96.6% ARI activity at IC 50 value 6.12 µg/mL followed by water extract 89.1% with the IC 50 value 6.50 µg/mL. In addition, methanol and water extracts of CGF showed strong antioxidant activities including ABTS *+ scavenging, DPPH* scavenging, and hydroxyl radical scavenging. Our results suggest that high percentage of both flavonoids and phenolic contents in the CGFs are correlated with the ARI and antioxidant activities. The fruits of C. grandis are thus potential bifunctional agents with ARI and antioxidant activities that can be used for the prevention and management of DM and associated diseases.

  16. Anti-inflammatory and enzyme inhibitory activities of a crude extract and a pterocarpan isolated from the aerial parts of Vitex agnus-castus.

    Science.gov (United States)

    Ahmad, Bashir; Azam, Sadiq; Bashir, Shumaila; Khan, Ibrar; Adhikari, Achyut; Choudhary, Muhammad Iqbal

    2010-11-01

    A new compound, 6a,11a-dihydro-6H-[1] benzofuro [3,2-c][1,3]dioxolo[4,5-g]chromen-9-ol was isolated from the ethyl acetate fraction of Vitex agnus-castus. The structure of this compound was identified with the help of spectroscopic techniques ((13)C NMR, (1)H NMR, HMBC, HMQC, NOESY and COSY). The compound showed low urease- (32.0%) and chymotrypsin- (31.4%) inhibitory activity, and moderate (41.3%) anti-inflammatory activity. The crude extract and various fractions obtained from the aerial parts of the plant were also screened for possible in vitro hemagglutination, antibacterial and phytotoxic activities. No hemagglutination activity against human erythrocytes was observed in crude extracts and fractions of V. agnus-castus. The fractions and crude methanolic extract showed moderate and low antibacterial activity. Exceptions were the CHCl(3) fraction, which showed significant antibacterial activity against Klebsiella pneumonia (81% with MIC(50)=2.19 mg/mL), the n-hexane fraction, which exhibited no activity against Salmonella typhi, and the CHCl(3) and aqueous fractions, which showed no activity against Bacillus pumalis. Moderate phytotoxic activity (62.5%) was observed by n-hexane fraction of V. agnus-castus against Lemna minor L at 1000 μg/mL.

  17. Polyoxygenated Cyclohexenoids with Promising α-Glycosidase Inhibitory Activity Produced by Phomopsis sp. YE3250, an Endophytic Fungus Derived from Paeonia delavayi.

    Science.gov (United States)

    Huang, Rong; Jiang, Bo-Guang; Li, Xiao-Nian; Wang, Ya-Ting; Liu, Si-Si; Zheng, Kai-Xuan; He, Jian; Wu, Shao-Hua

    2018-02-07

    Seven new polyoxygenated cyclohexenoids, namely, phomopoxides A-G (1-7), were isolated from the fermentation broth extract of an endophytic fungal strain Phomopsis sp. YE3250 from the medicinal plant Paeonia delavayi Franch. The structures of these compounds were established by spectroscopic interpretation. The absolute configurations of compounds 1 and 4 were confirmed by X-ray crystallographic analysis and chemical derivative approach. All isolated compounds showed weak cytotoxic activities toward three human tumor cell lines (Hela, MCF-7, and NCI-H460) and weak antifungal activities against five pathogenic fungi (Candida albicans, Aspergillus niger, Pyricularia oryzae, Fusarium avenaceum, and Hormodendrum compactum). In addition, compounds 1-7 showed a promising α-glycosidase inhibitory activity with IC 50 values of 1.47, 1.55, 1.83, 2.76, 2.88, 3.16, and 2.94 mM, respectively, as compared with a positive control of acarbose (IC 50 = 1.22 mM).

  18. Optimization of a fermented pumpkin-based beverage to improve Lactobacillus mali survival and α-glucosidase inhibitory activity: A response surface methodology approach

    Directory of Open Access Journals (Sweden)

    W.Y. Koh

    2018-03-01

    Full Text Available The aim of this research was to develop an optimum fermentation and composition model for a new fermented pumpkin-based beverage with high probiotic survival and α-glucosidase inhibitory activity. Relationship between fermentation temperature, inoculum and ingredient concentration with response variables (fermentation time at the fermentation endpoint pH 4.5, survival rate of Lactobacillus mali K8 in pumpkin-based beverage treated with simulated gastrointestinal tract enzyme fluids, α-glucosidase inhibitory activity and sensory overall acceptability after 4 weeks of refrigerated storage was investigated using response surface methodology. Optimal formulation was obtained at an approximation of 40% pumpkin puree concentration, 8 Log CFU/mL inoculum and at 35 °C. The product derived from this optimum formula reached the fermentation endpoint after 28.34 ± 0.10 h and the quality change during 4 weeks storage was studied. The product achieved 88.56 ± 0.67% of L. mali survival after treatment with simulated gastric and intestinal juices; demonstrated 95.89 ± 0.30% α-glucosidase inhibitory activity, as well as scored 6.99 ± 0.40 on sensory overall acceptability after 4 weeks of storage. These findings illustrated that the model is effective in improving probiotic survival and α-glucosidase inhibitory activity with excellent sensory acceptability, thus may offer a dietary means for the management of hyperglycaemia. Keywords: Probiotics, Response surface methodology, Box-Behnken, Hyperglycaemia, Functional food

  19. Antioxidant and protease-inhibitory potential of extracts from grains of oat

    Directory of Open Access Journals (Sweden)

    Krošlák Erik

    2016-01-01

    Full Text Available The most of important crops cultivated for production of foods and feeds could be considered as plants possessing nutraceutical or medically interesting compounds, especially if can be eaten without processing. Chemical and biological parameters that were evaluated in 100 oat (Avena sativa L. genotypes were others than those that are important in food and feed production. Contents of polyphenols and flavonoids, radical scavenging activity (DPPH, and inhibitory activities against five proteases (trypsin, thrombin, urokinase, elastase, cathepsin B were analyzed in extracts from mature grains. The antioxidant activity (DPPH correlated to the content of total polyphenols. Only a minority (15 from 100 of analyzed genotypes created separate subgroup with a high content of polyphenols, flavonoids, and high antioxidant activity. The best in these parameters were genotypes CDC-SOL-FI, Saul, and Avesta, respectively. Fifteen other genotypes assembled another minority subgroup (also 15 from 100 on the basis of their high inhibitory activities against tested proteases. The highest trypsin-, urokinase-, and elastase-inhibitory activities were in genotype Racoon, the best in thrombin-, and cathepsin B-inhibitory activities were genotypes Expression and SW Kerstin, respectively. Three oats genotypes – Rhea, AC Percy, and Detvan appeared in both subgroups.

  20. Do personality traits predict individual differences in excitatory and inhibitory learning?

    Directory of Open Access Journals (Sweden)

    Zhimin eHe

    2013-05-01

    Full Text Available Conditioned inhibition (CI is demonstrated in classical conditioning when a stimulus is used to signal the omission of an otherwise expected outcome. This basic learning ability is involved in a wide range of normal behaviour - and thus its disruption could produce a correspondingly wide range of behavioural deficits. The present study employed a computer-based task to measure conditioned excitation and inhibition in the same discrimination procedure. Conditioned inhibition by summation test was clearly demonstrated. Additionally summary measures of excitatory and inhibitory learning (difference scores were calculated in order to explore how performance related to individual differences in a large sample of normal participants (n=176 following exclusion of those not meeting the basic learning criterion. The individual difference measures selected derive from two biologically-based personality theories, Gray’s reinforcement sensitivity theory (1982 and Eysenck’s psychoticism, extraversion and neuroticism theory (1991. Following the behavioural tasks, participants completed the behavioural inhibition system/behavioural activation system scales (BIS/BAS and the Eysenck personality questionnaire revised short scale (EPQ-RS. Analyses of the relationship between scores on each of the scales and summary measures of excitatory and inhibitory learning suggested that those with higher BAS (specifically the drive sub-scale and higher EPQ-RS neuroticism showed reduced levels of excitatory conditioning. Inhibitory conditioning was similarly attenuated in those with higher EPQ-RS neuroticism, as well as in those with higher BIS scores. Thus the findings are consistent with higher levels of neuroticism being accompanied by generally impaired associative learning, both inhibitory and excitatory. There was also evidence for some dissociation in the effects of behavioural activation and behavioural inhibition on excitatory and inhibitory learning respectively.

  1. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark.

    Science.gov (United States)

    Mohieldin, Ebtihal Abdalla M; Muddathir, Ali Mahmoud; Mitsunaga, Tohru

    2017-04-20

    Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at

  2. Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives

    Directory of Open Access Journals (Sweden)

    Prachayasittikul V

    2014-08-01

    Full Text Available Veda Prachayasittikul,1 Ratchanok Pingaew,2 Chanin Nantasenamat,3 Supaluk Prachayasittikul,3 Somsak Ruchirawat,4,5 Virapong Prachayasittikul1 1Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 2Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand; 3Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 4Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 5Chulabhorn Graduate Institute, Bangkok, Thailand Purpose: Estrogens play important roles in the pathogenesis and progression of breast cancer as well as estrogen-related diseases. Aromatase is a key enzyme in the rate-limiting step of estrogen production, in which its inhibition is one strategy for controlling estrogen levels to improve prognosis of estrogen-related cancers and diseases. Herein, a series of metal (Mn, Cu, and Ni complexes of 8-hydroxyquinoline (8HQ and uracil derivatives (4–9 were investigated for their aromatase inhibitory and cytotoxic activities. Methods: The aromatase inhibition assay was performed according to a Gentest™ kit using CYP19 enzyme, wherein ketoconazole and letrozole were used as reference drugs. The cytotoxicity was tested on normal embryonic lung cells (MRC-5 using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: Only Cu complexes (6 and 9 exhibited aromatase inhibitory effect with IC50 0.30 and 1.7 µM, respectively. Cytotoxicity test against MRC-5 cells showed that Mn and Cu complexes (5 and 6, as well as free ligand 8HQ, exhibited activity with IC50 range 0.74–6.27 µM. Conclusion: Cu complexes (6 and 9 were found to act as a novel class of aromatase inhibitor. Our findings suggest that these 8HQ–Cu–uracil complexes are promising agents that could be potentially developed as a selective anticancer agent for breast cancer

  3. Sleep: The hebbian reinforcement of the local inhibitory synapses.

    Science.gov (United States)

    Touzet, Claude

    2015-09-01

    Sleep is ubiquitous among the animal realm, and represents about 30% of our lives. Despite numerous efforts, the reason behind our need for sleep is still unknown. The Theory of neuronal Cognition (TnC) proposes that sleep is the period of time during which the local inhibitory synapses (in particular the cortical ones) are replenished. Indeed, as long as the active brain stays awake, hebbian learning guarantees that efficient inhibitory synapses lose their efficiency – just because they are efficient at avoiding the activation of the targeted neurons. Since hebbian learning is the only known mechanism of synapse modification, it follows that to replenish the inhibitory synapses' efficiency, source and targeted neurons must be activated together. This is achieved by a local depolarization that may travel (wave). The period of time during which such slow waves are experienced has been named the "slow-wave sleep" (SWS). It is cut into several pieces by shorter periods of paradoxical sleep (REM) which activity resembles that of the awake state. Indeed, SWS – because it only allows local neural activation – decreases the excitatory long distance connections strength. To avoid losing the associations built during the awake state, these long distance activations are played again during the REM sleep. REM and SWS sleeps act together to guarantee that when the subject awakes again, his inhibitory synaptic efficiency is restored and his (excitatory) long distance associations are still there. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. QSAR Modeling of COX -2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method.

    Science.gov (United States)

    Akbari, Somaye; Zebardast, Tannaz; Zarghi, Afshin; Hajimahdi, Zahra

    2017-01-01

    COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure-activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R 2 ) of 0.972 and 0.531 for training and test groups, respectively. The quality of the model was evaluated by leave-one-out (LOO) cross validation (LOO correlation coefficient (Q 2 ) of 0.943) and Y-randomization. We also employed a leverage approach for the defining of applicability domain of model. Based on QSAR models results, COX-2 inhibitory activity of selected data set had correlation with BEHm6 (highest eigenvalue n. 6 of Burden matrix/weighted by atomic masses), Mor03u (signal 03/unweighted) and IVDE (Mean information content on the vertex degree equality) descriptors which derived from their structures.

  5. Activity evaluation from different native or irradiated with 60 Co gamma rays snake venoms and their inhibitory effect on Leishmania (Leishmania) amazonensis

    International Nuclear Information System (INIS)

    Lourenco, Cecilia de Oliveira

    2000-01-01

    Cutaneous leishmaniasis is a disease, caused by Leishmania parasites, that occurs frequently in tropical and sub-tropical regions of the world. Skin lesions that could results in disfiguring aspect characterize it. The treatment is based on few drugs as antimony salts or pentamidine that are toxic with increasing resistance by the parasite. Alternative forms of disease treatment are in constant search, including natural components as snake venoms. Previous studies demonstrate that some components of snake venoms have an inhibitory effect against those parasites, including Leishmania species. Although snake venoms presented high toxicity, several methods have been described to detoxify most or some of their toxic components, with favorable results by the use of gamma irradiation. In this report we tested several native and irradiated snake venoms for inhibitory effect against Leishmania (Leishmania) amazonensis parasite and LLCMK 2 mammalian cells, with enzymatic tests and electrophoresis. There are significant activity in Acanthophis antarcticus, Agkistrodon bilineatus, Bothrops moojeni, Bothrops jararaca, Hoplocephalus stephensi, Naja melanoleuca, Naja mossambica, Pseudechis australis, Pseudechis colletti, Pseudechis guttatus and Pseudechis porphyriacus, venom being inactive Pseudonaja textilis, Notechis ater niger, Notechis scutatus. Oxyuranus microlepidotus and Oxyuranus scutellatus venoms. After 2 KGy of 60 Co irradiation most venom loses significantly their activity. Venoms with antileishmanial activity presented L-amino acid oxidase (L-AO) activity and showed common protein with a molecular weight about 60kDa in SDS-PAGE. These results indicate that L-AO activity in those venoms are probably related with antileishmanial effect. (author)

  6. Chemistry and Selective Tumor Cell Growth Inhibitory Activity of Polyketides from the South China Sea Sponge Plakortis sp.

    Science.gov (United States)

    Li, Jiao; Li, Cui; Riccio, Raffaele; Lauro, Gianluigi; Bifulco, Giuseppe; Li, Tie-Jun; Tang, Hua; Zhuang, Chun-Lin; Ma, Hao; Sun, Peng; Zhang, Wen

    2017-05-03

    Simplextone E ( 1 ), a new metabolite of polyketide origin, was isolated with eight known analogues ( 2 - 9 ) from the South China Sea sponge Plakortis sp. The relative configuration of the new compound was elucidated by a detailed analysis of the spectroscopic data and quantum mechanical calculation of NMR chemical shifts, aided by the newly reported DP4+ approach. Its absolute configuration was determined by the TDDFT/ECD calculation. Simplextone E ( 1 ) is proven to be one of the isomers of simplextone D. The absolute configuration at C-8 in alkyl chain of plakortone Q ( 2 ) was also assigned based on the NMR calculation. In the preliminary in vitro bioassay, compounds 6 and 7 showed a selective growth inhibitory activity against HCT-116 human colon cancer cells with IC 50 values of 8.3 ± 2.4 and 8.4 ± 2.3 μM, corresponding to that of the positive control, adriamycin (IC 50 4.1 μM). The two compounds also showed selective activities towards MCF-7 human breast cancer and K562 human erythroleukemia cells while compound 3 only displayed weak activity against K562 cells.

  7. When is an Inhibitory Synapse Effective?

    Science.gov (United States)

    Qian, Ning; Sejnowski, Terrence J.

    1990-10-01

    Interactions between excitatory and inhibitory synaptic inputs on dendrites determine the level of activity in neurons. Models based on the cable equation predict that silent shunting inhibition can strongly veto the effect of an excitatory input. The cable model assumes that ionic concentrations do not change during the electrical activity, which may not be a valid assumption, especially for small structures such as dendritic spines. We present here an analysis and computer simulations to show that for large Cl^- conductance changes, the more general Nernst-Planck electrodiffusion model predicts that shunting inhibition on spines should be much less effective than that predicted by the cable model. This is a consequence of the large changes in the intracellular ionic concentration of Cl^- that can occur in small structures, which would alter the reversal potential and reduce the driving force for Cl^-. Shunting inhibition should therefore not be effective on spines, but it could be significantly more effective on the dendritic shaft at the base of the spine. In contrast to shunting inhibition, hyperpolarizing synaptic inhibition mediated by K^+ currents can be very effective in reducing the excitatory synaptic potentials on the same spine if the excitatory conductance change is less than 10 nS. We predict that if the inhibitory synapses found on cortical spines are to be effective, then they should be mediated by K^+ through GABA_B receptors.

  8. The persistent inhibitory properties of saxagliptin on renal dipeptidyl peptidase-4: Studies with HK-2 cells in vitro and normal rats in vivo

    Directory of Open Access Journals (Sweden)

    Masako Uchii

    2017-11-01

    Full Text Available Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2 cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4.

  9. Fermentation characteristics and angiotensin I-converting enzyme-inhibitory activity of Lactobacillus helveticus isolate H9 in cow milk, soy milk, and mare milk.

    Science.gov (United States)

    Wang, Jicheng; Li, Changkun; Xue, Jiangang; Yang, Jie; Zhang, Qing; Zhang, Heping; Chen, Yongfu

    2015-06-01

    Lactobacillus helveticus isolate H9 demonstrated high angiotensin I-converting enzyme (ACE)-inhibitory activity in previous research. Here, we evaluated the fermentation characteristics (pH, titratable acidity, free amino nitrogen, and viable bacterial counts), ACE-inhibitory activity, and contents of Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) peptides of stored yogurt (4°C for 28 d) fermented by L. helveticus isolate H9 (initially inoculated at 4 concentrations), from cow, mare, and soy milks. During storage, the pH and titratable acidity remained stable in yogurts produced from all milk types and all inoculation concentrations. The viable bacterial counts in all stored yogurts ranged between 10(6.72) and 10(8.59) cfu/g. The highest ACE-inhibitory activity (70.9-74.5%) was achieved at inoculation concentrations of 5×10(6) cfu/mL. The ACE-inhibitory tripeptides VPP and IPP as determined by ultra-performance liquid chromatography-tandem mass spectrometry were not produced in yogurt made from soy milk or mare milk. These evaluations indicate that L. helveticus H9 has good probiotic properties and would be a promising candidate for production of fermented food with probiotic properties. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Structural Modifications of Benzimidazoles via Multi-Step Synthesis and Their Impact on Sirtuin-Inhibitory Activity.

    Science.gov (United States)

    Yoon, Yeong Keng; Choon, Tan Soo

    2016-01-01

    Benzimidazole derivatives have been shown to possess sirtuin-inhibitory activity. In the continuous search for potent sirtuin inhibitors, systematic changes on the terminal benzene ring were performed on previously identified benzimidazole-based sirtuin inhibitors, to further investigate their structure-activity relationships. It was demonstrated that the sirtuin activities of these novel compounds followed the trend where meta-substituted compounds possessed markedly weaker potency than ortho- and para-substituted compounds, with the exception of halogenated substituents. Molecular docking studies were carried out to rationalize these observations. Apart from this, the methods used to synthesize the interesting compounds are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [The inhibitory effect of decomposed Chinese traditional medicine Chaihu on Coxsackie B virus(CVB3m) replication and its influence on cell activity].

    Science.gov (United States)

    Wang, X; Wang, Y; Liu, F; Wei, K L

    2001-09-01

    To study the anti-Coxsackie B virus (CVB3m) action of Chaihu(XCT) and its decomposed herb soups No.1 and No.2 in vitro, and also their protective effect on cells. The anti CVB3m and cell protection effects of XCT and its decomposed herb soups No.1 and No.2 were observed by the methods of micro-cell culture and neutral red ingestion, taking cytopathic effect and cell activity as judgments of medicine toxicity and virus replication. The non-toxic concentrations of XCTand its decomposed herb soups No.1 and No.2 had no apparent influence on HeLa cell activity, on the contrary, in certain range of concentrations, they could promote cell growth and cell activity. In therapeutic cell group, XCT and its decomposed herb soups No.1 and No.2 all had apparent inhibitory effect on CVB3m replication, especially the decomposed No.1 showing an inhibitory rate of 107.6%. Under the same decomposed No.1 concentration(1.5 mg/ml), the viral inhibitory rate of the preventive therapeutic cell group was much higher than that of the therapeutic cell group, reaching as high as 128.1%. In virus adsorbed cell group, the CVB3m was also obviously inhibited by the XCT and decomposed No.1 and No.2. By comparing the effects on cell protection and virus replication of XCT and its decomposed herb soups No.1 and No.2, it identifies that XCT can protect cells against virus infection and directly kill the CVB3m, this Chinese herb medicine may be applied clinically for preventing and curing of viral myocarditis.

  12. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts

    Directory of Open Access Journals (Sweden)

    Jeanne F. Millogo

    2012-06-01

    Full Text Available This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus and Amaranthus hybridus (A. hybridus, two food plant species found in Burkina Faso. Hydroacetonic (HAE, methanolic (ME, and aqueous extracts (AE from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin–Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method and iron reducing power (FRAP method ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants.

  13. Inhibitory Effect of Lactococcus lactis HY 449 on Cariogenic Biofilm.

    Science.gov (United States)

    Kim, Young-Jae; Lee, Sung-Hoon

    2016-11-28

    Dental caries is caused by cariogenic biofilm, an oral biofilm including Streptococcus mutans . Recently, the prevention of dental caries using various probiotics has been attempted. Lactococcus lactis HY 449 is a probiotic bacterium. The aim of this study was to investigate the effect of L. lactis HY 449 on cariogenic biofilm and to analyze its inhibitory mechanisms. Cariogenic biofilm was formed in the presence or absence of L. lactis HY 449 and L. lactis ATCC 19435, and analyzed with a confocal laser microscope. The formation of cariogenic biofilm was reduced in cultures spiked with both L. lactis strains, and L. lactis HY 449 exhibited more inhibitory effects than L. lactis ATCC 19435. In order to analyze and to compare the inhibitory mechanisms, the antibacterial activity of the spent culture medium from both L. lactis strains against S. mutans was investigated, and the expression of glucosyltransferases ( gtfs ) of S. mutans was then analyzed by real-time RT-PCR. In addition, the sucrose fermentation ability of both L. lactis strains was examined. Both L. lactis strains showed antibacterial activity and inhibited the expression of gtfs , and the difference between both strains did not show. In the case of sucrose-fermenting ability, L. lactis HY 449 fermented sucrose but L. lactis ATCC 19435 did not. L. lactis HY 449 inhibited the uptake of sucrose and the gtfs expression of S. mutans , whereby the development of cariogenic biofilm may be inhibited. In conclusion, L. lactis HY 449 may be a useful probiotic for the prevention of dental caries.

  14. Dysfunctional frontal lobe activity during inhibitory tasks in individuals with childhood trauma: An event-related potential study.

    Science.gov (United States)

    Kim, Sungkean; Kim, Ji Sun; Jin, Min Jin; Im, Chang-Hwan; Lee, Seung-Hwan

    2018-01-01

    Individuals who experience childhood trauma are vulnerable to various psychological and behavioral problems throughout their lifetime. This study aimed to investigate whether individuals with childhood trauma show altered frontal lobe activity during response inhibition tasks. In total, 157 healthy individuals were recruited and instructed to perform a Go/Nogo task during electroencephalography recording. Source activities of N2 and P3 of Nogo event-related potentials (ERP) were analyzed. The Childhood Trauma Questionnaire (CTQ) and Barratt Impulsivity Scale (BIS) were applied. Individuals were divided into three groups based on their total CTQ score: low CTQ, middle CTQ, and high CTQ groups. The high CTQ group exhibited significantly higher BIS scores than the low CTQ group. P3 amplitudes of the differences between Nogo and Go ERP waves exhibited higher mean values in the low CTQ than the high CTQ group, with trending effects. In Nogo-P3, the source activities of the right anterior cingulate cortex, bilateral medial frontal cortex (MFC), bilateral superior frontal gyrus (SFG), and right precentral gyrus were significantly lower in the high CTQ than the low CTQ group. Motor impulsivity showed a significant negative correlation with activities of the bilateral MFC and SFG in Nogo-P3 conditions. Our study revealed that individuals with childhood trauma have inhibitory failure and frontal lobe dysfunction in regions related to Nogo-P3.

  15. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla.

    Science.gov (United States)

    Kim, N Y; Pae, H O; Ko, Y S; Yoo, J C; Choi, B M; Jun, C D; Chung, H T; Inagaki, M; Higuchi, R; Kim, Y C

    1999-10-01

    Bioassay-guided fractionation of an H2O extract of the barks of Fraxinus rhynchophylla has furnished two inducible nitric oxide synthase (iNOS) inhibitory compounds, ferulaldehyde (1) and scopoletin (3) together with a coumarin, fraxidin (2). Compounds 1 and 3 showed inhibition of nitric oxide (NO) synthesis in a dose-dependent manner by murine macrophage-like RAW 264.7 cells stimulated with interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). The inhibition of NO synthesis of 1 was reflected in the decreased amount of iNOS protein, as determined by Western blotting.

  16. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    International Nuclear Information System (INIS)

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-01-01

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with 14 C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition

  17. Synthesis and GGCT Inhibitory Activity of N-Glutaryl-L-alanine Analogues.

    Science.gov (United States)

    Ii, Hiromi; Yoshiki, Tatsuhiro; Hoshiya, Naoyuki; Uenishi, Jun'ichi

    2016-01-01

    γ-Glutamylcyclotransferase (GGCT) is an important enzyme that cleaves γ-glutamyl-amino acid in the γ-glutamyl cycle to release 5-oxoproline and amino acid. Eighteen N-acyl-L-alanine analogues including eleven new compounds have been synthesized and examined for their inhibitory activity against recombinant human GGCT protein. Simple N-glutaryl-L-alanine was found to be the most potent inhibitor for GGCT. Other N-glutaryl-L-alanine analogues having methyl and dimethyl substituents at the 2-position were moderately effective, while N-(3R-aminoglutary)-L-alanine, the substrate having an (R)-amino group at the 3-position or N-(N-methyl-3-azaglutaryl)-L-alanine, the substrate having an N-methyl substituent on the 3-azaglutaryl carbon, in constract, exhibited excellent inhibition properties.

  18. Lactic acid bacteria from chicken carcasses with inhibitory activity against Salmonella spp. and Listeria monocytogenes.

    Science.gov (United States)

    Sakaridis, I; Soultos, N; Dovas, C I; Papavergou, E; Ambrosiadis, I; Koidis, P

    2012-02-01

    This study was conducted to isolate psychrotrophic lactic acid bacteria (LAB) from chicken carcasses with inhibitory activity against strains of Salmonella spp. and Listeria monocytogenes. A total of 100 broiler samples were examined for the presence of LAB. Ninety-two LAB isolates that showed antimicrobial effects against Salmonella spp. and L. monocytogenes were further analysed to examine their LAB (Gram-positive, catalase negative, oxidase negative) and psychrotrophic characteristics (ability to grow at 7 °C). Fifty isolates were further selected and identified initially using standard biochemical tests in miniature (Micro-kits API CH 50) and then by sequencing of the 16s-23s rRNA gene boundary region (Intergenic Spacer Region). By molecular identification, these isolates were classified into 5 different LAB species: Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus johnsonii, Pediococcus acidilactici, and Lactobacillus paralimentarius. None of the isolates produced tyramine or histamine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The in-vitro and in-vivo inhibitory activity of biflorin in melanoma.

    Science.gov (United States)

    Vasconcellos, Marne C; Bezerra, Daniel P; Fonseca, Aluísio M; Araújo, Ana Jérsia; Pessoa, Cláudia; Lemos, Telma L G; Costa-Lotufo, Letícia V; de Moraes, Manoel Odorico; Montenegro, Raquel C

    2011-04-01

    Biflorin, an ortho-naphthoquinone, is an active compound found in the roots of Capraria biflora L. It has been reported that biflorin presents anticancer activity, inhibiting both tumor cell line growth in culture and tumor development in mice. The aim of this study was to examine the effectiveness of biflorin treatment using both in-vitro and in-vivo melanoma models. Biflorin displayed considerable cytotoxicity against all tested cell lines, with half maximal inhibitory concentration values ranging from 0.58 μg/ml in NCI H23 (human lung adenocarcinoma) to 14.61 μg/ml in MDA-MB-231 (human breast cancer) cell lines. In a second set of experiments using B16 melanoma cells as a model, biflorin reduced cell viability but did not cause significant increase in the number of nonviable cells. In addition, the DNA synthesis was significantly inhibited. Flow cytometry analysis showed that biflorin may lead to an apoptotic death in melanoma cells, inducing DNA fragmentation and mitochondria depolarization, without affecting membrane integrity. In B16 melanoma-bearing mice, administration of biflorin (25mg/day) for 10 days inhibited tumor growth, and also increased the mean survival rate from 33.3±0.9 days (control) to 44.5±3.4 days (treated). Our findings suggest that biflorin may be considered as a promising lead compound for designing new drugs to be used in the treatment of melanoma.

  20. Flexible brain network reconfiguration supporting inhibitory control.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-08-11

    The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties.

  1. Chemical analysis and toxicity of seaweed extracts with inhibitory activity against tropical fruit anthracnose fungi.

    Science.gov (United States)

    Machado, Levi Pompermayer; Matsumoto, Silvia Tamie; Jamal, Claudia Masrouah; da Silva, Marcelo Barreto; Centeno, Danilo da Cruz; Colepicolo Neto, Pio; de Carvalho, Luciana Retz; Yokoya, Nair S

    2014-07-01

    Banana and papaya are among the most important crops in the tropics, with a value amounting to millions of dollars per year. However, these fruits suffer significant losses due to anthracnose, a fungal disease. It is well known that certain seaweed extracts possess antifungal activity, but no published data appear to exist on the practical application of this property. In the present study, five organic Brazilian seaweed extracts were screened for their activity against banana and papaya anthracnose fungi. Furthermore, cytotoxic and mutagenic effects of the extracts were evaluated by the brine shrimp lethality assay and the Allium cepa root-tip mutagenicity test respectively, while their major components were identified by gas chromatography/mass spectrometry. Strong fungus-inhibitory effects of Ochtodes secundiramea and Laurencia dendroidea extracts were observed on both papaya (100 and 98% respectively) and banana (89 and 78% respectively). This impressive activity could be associated with halogenated terpenes, the major components of both extracts. Only Hypnea musciformis extract showed cytotoxic and mutagenic effects. The results of this study suggest the potential use of seaweed extracts as a source of antifungal agents with low toxicity to control anthracnose in papaya and banana during storage. © 2013 Society of Chemical Industry.

  2. Selected Enzyme Inhibitory Effects of Euphorbia characias Extracts

    Directory of Open Access Journals (Sweden)

    Antonella Fais

    2018-01-01

    Full Text Available Extracts of aerial part of Euphorbia characias were examined to check potential inhibitors for three selected enzymes involved in several metabolic disorders. Water and ethanol extracts from leaves and flowers showed in vitro inhibitory activity toward α-amylase, α-glucosidase, and xanthine oxidase. IC50 values were calculated for all the extracts and the ethanolic extracts were found to exert the best effect. In particular, for the α-glucosidase activity, the extracts resulted to be 100-fold more active than the standard inhibitor. The inhibition mode was investigated by Lineweaver-Burk plot analysis. E. characias extracts display different inhibition behaviors toward the three enzymes acting as uncompetitive, noncompetitive, and mixed-type inhibitors. Moreover, ethanolic extracts of E. characias showed no cytotoxic activity and exhibited antioxidant capacity in a cellular model. The LC-DAD metabolic profile was also performed and it showed that leaves and flowers extracts contain high levels of quercetin derivatives. The results suggest that E. characias could be a promising source of natural inhibitors of the enzymes involved in carbohydrate uptake disorders and oxidative stress.

  3. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  4. Inhibitory effect of mycoplasma-released arginase. Activity in mixed-lymphocyte and tumour cell cultures

    DEFF Research Database (Denmark)

    Claesson, M H; Tscherning, T; Nissen, Mogens Holst

    1990-01-01

    inhibition can be reversed by addition of excess arginine to the culture medium. Antisera raised against non-fermenting, but not against fermenting, mycoplasma species block the inhibitory effect of MAE. SDS-PAGE separation of MAE disclosed a broad band at 60 kDa which contained arginase activity when...... assayed in MLC and cell proliferation culture. SDS-PAGE followed by western blotting and reaction with antisera raised against non-fermenting mycoplasma species demonstrated a band at 43 kDa common for these micro-organisms....

  5. Inhibitory Effects of Urginea maritima (L. Baker, Zhumeria majdae Rech. F. and Wendelbo and Physalis divaricata D. Don Ethanolic Extracts on Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Foroogh Namjoyan, Alireza Jahangiri, Mohammad Ebrahim Azemi, Hamideh Mousavi

    2016-06-01

    Full Text Available Background: Tyrosinase is a key enzyme in melanin synthesis from tyrosine. To prevent or treat pigmentation disorders, tyrosinase inhibitors have been used increasingly for medicinal and cosmetic products. The aim of this study is to evaluate inhibitory effects of Urginea maritima (L. Baker, Zhumeria majdae Rech.f. & Wendelbo and Physalis divaricata D.Don on mushroom tyrosinase. Methods: The inhibitory activities of the hydroalcoholic extracts of plants against oxidation of L-DOPA (as a substrate by mushroom tyrosinase were investigated. The amount of formed DOPAchrome was determined at 475 nm as optical density. Results: The extracts showed anti-tyrosinase activity weaker than positive control (Kojic acid. The inhibitory activity of tested plants: U.maritima, Z.majdae and P.divaricata against mushroom tyrosinase were 38.61, 29.70 and 25.74 % at 1.67 mg/mL, respectively. Conclusion: The most tyrosinase inhibitory activity was seen for U.maritima. However more investigations on human tyrosinase, toxicological and clinical studies are needed to confirm its activity.

  6. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Shin, Eunjin; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Lee, Chong-Kil; Hwang, Bang Yeon; Lee, Mi Kyeong

    2010-01-01

    In the course of screening anti-adipogenic activity of natural products employing the preadipocyte cell line, 3T3-L1 as an in vitro assay system, the EtOAc fraction of the stem barks of Fraxinus rhynchophylla DENCE (Oleaceae) showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of six coumarins such as esculetin (1), scopoletin (2), fraxetin (3), fraxidin (4) esculin (5) and fraxin (6). Among the six coumarins isolated, esculetin (1) showed the most potent inhibitory activity on adipocyte differentiation, followed by fraxetin (3). Further studies with interval treatment demonstrated that esculetin (1) exerted inhibitory activity on adipocyte differentiation when treated within 2 d (days 0-2) after differentiation induction. We further investigated the effect of esculetin (1) on peroxisome proliferator activated receptor gamma (PPARgamma), one of the early adipogenic transcription factors. Esculetin (1) significantly blocked the induction of PPARgamma protein expression and inhibited adipocyte differentiation induced by troglitazone, a PPARgamma agonist. Taken together, these results suggest that esculetin (1), an active compound from F. rhynchophylla, inhibited early stage of adipogenic differentiation, in part, via inhibition of PPARgamma-dependent pathway.

  7. In Vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination

    Directory of Open Access Journals (Sweden)

    Park Su-Jin

    2010-11-01

    Full Text Available Abstract Background Alpinia katsumadai (AK extracts and fractions were tested for in vitro antiviral activities against influenza virus type A, specially human A/PR/8/34 (H1N1 and avian A/Chicken/Korea/MS96/96 (H9N2, by means of time-of-addition experiments; pre-treatment, simultaneous treatment, and post treatment. Results In pre-treatment assay, the AK extracts and AK fractions did not show significant antiviral activity. During the simultaneous treatment assay, one AK extract and five AK fractions designated as AK-1 to AK-3, AK-5, AK-10, and AK-11 showed complete inhibition of virus infectivity against A/PR/8/34 (H1N1 and A/Chicken/Korea/MS96/96 (H9N2. The 50% effective inhibitory concentrations (EC50 of these one AK extracts and five AK fractions with exception of the AK-9 were from 0.8 ± 1.4 to 16.4 ± 4.5 μg/mL against A/PR/8/34 (H1N1. The two AK extracts and three AK fractions had EC50 values ranging from μg/mL against A/Chicken/Korea/MS96/96 (H9N2. By the hemagglutination inhibition (HI assay, the two AK extracts and five AK fractions completely inhibited viral adsorption onto chicken RBCs at less than 100 μg/mL against both A/PR/8/34 (H1N1 and A/Chicken/Korea/MS96/96 (H9N2. Interestingly, only AK-3 was found with inhibition for both viral attachment and viral replication after showing extended antiviral activity during the post treatment assay and quantitative real-time PCR. Conclusions These results suggest that AK extracts and fractions had strong anti-influenza virus activity that can inhibit viral attachment and/or viral replication, and may be used as viral prophylaxis.

  8. Report: screening of selected medicinal plants for their enzyme inhibitory potential - a validation of their ethnopharmacological uses.

    Science.gov (United States)

    Khuda, Fazli; Iqbal, Zafar; Khan, Ayub; Zakiullah; Shah, Yasar; Khan, Abad

    2014-05-01

    In present study four medicinal plants namely Valeriana wallichii, Xanthium strumarium, Achyranthes aspera and Duchesnea indica belonging to different families were collected in Khyber Pakhtunkhwa province and crude extract and subsequent fractions were analyzed for their inhibitory potential against acetylcholinesterase, butyrylcholinesterase and α-glucosidase enzymes. Valeriana wallichii, Xanthium strumarium and Achyranthes aspera were significantly active against cholinesterases. Chloroform and ethylacetate fractions of Valeriana wallichii exhibited significant activity against acetylcholinesterase (IC50: 61μg/ml) and butyrylcholinesterase enzymes (IC50: 58μg/ml), respectively. Similarly ethylacetate fraction of Achyranthes aspera showed significant activity against acetylcholinesterase (IC50: 61 μg/ml) and butyrylcholinesterase enzymes (IC50: 61 μg/ml), respectively. In case of α-glucosidase enzyme, the chloroform fraction of Xanthium strumarium exhibited significant inhibitory activity (IC50: 72 μg/ml) as compared to the standard compound acarbose (IC50: 483 μg/ml). Duchesnea indica showed no such activities.

  9. Quantitative evaluation of inhibitory effect of various substances on anaerobic ammonia oxidation (anammox).

    Science.gov (United States)

    Nakamura, Tomotaka; Harigaya, Yuhki; Kimura, Yuya; Kuroiwa, Megumi; Kurata, Yuhri; Isaka, Kazuichi; Suwa, Yuichi

    2017-09-01

    The inhibitory effect of 20 substances of various chemical species on the anaerobic ammonia oxidation (anammox) activity of an enrichment culture, predominated by Candidatus Brocadia, was determined systematically by using a 15 N tracer technique. The initial anammox rate was determined during first 25 min with a small-scale anaerobic batch incubation supplemented with possible inhibitors. Although Cu 2+ and Mn 2+ did not inhibit anammox, the remaining 18 substances [Ni 2+ , Zn 2+ , Co 2+ , [Formula: see text] , Fe 2+ , 4 amines, ethylenediaminetetraacetic acid (EDTA), ethylenediamine-N,N'-bis (2-hydroxyphenylacetic acid) (EDDHA), citric acid, nitrilotriacetic acid (NTA), N,N-dimethylacetamide (DMA), 1,4-dioxane, dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) and tetrahydrofuran (THF)] were inhibitory. Inhibitory effect of NTA, EDDHA, THF, DMF, DMA and amines on anammox was first determined in this study. Inhibitory effects of metals were re-evaluated because chelators, which may interfere inhibitory effect, have been used to dissolve metal salts into assay solution. The relative anammox activities as a function of concentration of each substance were described successfully (R 2  > 0.91) either with a linear inhibition model or with a Michaelis-Menten-based inhibition model. IC 50 values were estimated based on either model, and were compared. The IC 50 values of the 4 chelators (0.06-2.7 mM) and 5 metal ions (0.02-1.09 mM) were significantly lower than those of the 4 amines (10.6-29.1 mM) and 5 organic solvents (3.5-82 mM). Although it did not show any inhibition within 25 min, 0.1 mM Cu 2+ completely inhibited anammox activity in 240 min, suggesting that the inhibitory effect caused by Cu 2+ is time-dependent. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Synthesis of dansyl-labeled probe of thiophene analogue of annonaceous acetogenins for visualization of cell distribution and growth inhibitory activity toward human cancer cell lines.

    Science.gov (United States)

    Kojima, Naoto; Suga, Yuki; Matsumoto, Takuya; Tanaka, Tetsuaki; Akatsuka, Akinobu; Yamori, Takao; Dan, Shingo; Iwasaki, Hiroki; Yamashita, Masayuki

    2015-03-15

    The convergent synthesis of the dansyl-labeled probe of the thiophene-3-carboxamide analogue of annonaceous acetogenins, which shows potent antitumor activity, was accomplished by two asymmetric alkynylations of the 2,5-diformyl THF equivalent with an alkyne having a thiophene moiety and another alkyne tagged with a dansyl group. The growth inhibitory profiles toward 39 human cancer cell lines revealed that the probe retained the biological function of its mother compound, and would be useful for studying cellular activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    Directory of Open Access Journals (Sweden)

    Marwa Yousr

    2015-12-01

    Full Text Available Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF. Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y and tryptophan (W, in sequences identified by LC-MS as WYGPD (EYGF-23 and KLSDW (EYGF-33, contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56 was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69% and IC50 value (3.35 mg/mL. The SDNRNQGY peptide (10 mg/mL had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL. In addition, YPSPV in (EYGF-33 (10 mg/mL had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  12. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins.

    Science.gov (United States)

    Yousr, Marwa; Howell, Nazlin

    2015-12-07

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  13. Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives.

    Science.gov (United States)

    Taha, Muhammad; Tariq Javid, Muhammad; Imran, Syahrul; Selvaraj, Manikandan; Chigurupati, Sridevi; Ullah, Hayat; Rahim, Fazal; Khan, Fahad; Islam Mohammad, Jahidul; Mohammed Khan, Khalid

    2017-10-01

    α-Amylase is a target for type-2 diabetes mellitus treatment. However, small molecule inhibitors of α-amylase are currently scarce. In the course of developing small molecule α-amylase inhibitors, we designed and synthesized thiadiazole quinoline analogs (1-30), characterized by different spectroscopic techniques such as 1 HNMR and EI-MS and screened for α-amylase inhibitory potential. Thirteen analogs 1, 2, 3, 4, 5, 6, 22, 23, 25, 26, 27, 28 and 30 showed outstanding α-amylase inhibitory potential with IC 50 values ranges between 0.002±0.60 and 42.31±0.17μM which is many folds better than standard acarbose having IC 50 value 53.02±0.12μM. Eleven analogs 7, 9, 10, 11, 12, 14, 15, 17, 18, 19 and 24 showed good to moderate inhibitory potential while seven analogs 8, 13, 16, 20, 21 and 29 were found inactive. Our study identifies novel series of potent α-amylase inhibitors for further investigation. Structure activity relationship has been established. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    Science.gov (United States)

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

  15. Inhibitory activity of root canal irrigants against Candida albicans, Enterococcus faecalis and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Tatiana Kelly da Silva Fidalgo

    2010-12-01

    Full Text Available The present study evaluated the antimicrobial activity of three root canal irrigants against Enterococcus faecalis, Candida albicans, and Staphylococcus aureus. These microorganisms were incubated in the presence of citric acid (6 and 10%, EDTA (17%, and NaOCl (0.5, 1.0, 2.5, and 5.25%. Agar diffusion tests were performed and redox indicator resazurin was used to evaluate the inhibitory effect of the irrigants on the metabolic activity of these microorganisms. The mean diameters of the inhibition zones for the C. albicans cultures were 11.6 mm (17% EDTA, 5.5 mm (0.5% NaOCl, 12.9 mm (1% NaOCl, 22.1 mm (2.5% NaOCl, and 28.5 mm (5.25% NaOCl. The mean diameters of the inhibition zones for E. faecalis were 2.8 mm (1% NaOCl, 5.4 mm (2.5% NaOCl, and 8.3 mm (5.25% NaOCl. For S. aureus, the mean values were 8.0 mm (17% EDTA, 3.0 mm (1% NaOCl, 8.8 mm (2.5% NaOCl, and 10.0 mm (5.25% NaOCl. Most of the irrigant solutions presented effective antimicrobial activity against C. albicans. A high inhibitory effect on the metabolic activity of E. faecalis was detected when the microorganisms were incubated with 17% EDTA. The same result was reached when S. aureus was incubated in the presence of > 2.5% NaOCl. Altogether, these results indicate that 2.5% and 5.25% NaOCl are microbicides against S. aureus while 0.5% and 1% NaOCl are only microbiostatic against the tested bacteria. The 6% and 10% citric acid as well as 17% EDTA did not affect the viability of any of the assayed microorganisms.

  16. INHIBITORY EFFECT OF SALVIA SCLAREA

    African Journals Online (AJOL)

    rakoe

    2011-11-02

    Nov 2, 2011 ... This study demonstrated anti-herpes simplex virus (HSV) activity of lavender, sage and ... Green monkey kidney cells were protected from HSV-2 infection by ... The highest inhibitory effect against HSV-2 was observed after treatment ..... some nuclear-replicating eukaryotic DNA viruses with large genomes.

  17. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    Science.gov (United States)

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  18. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P.

    2006-01-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-κB, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment

  19. Virus-cell fusion inhibitory activity of novel analogue peptides based on the HP (2-20) derived from N-terminus of Helicobacter pylori Ribosomal Protein L1.

    Science.gov (United States)

    Woo, Eun-Rhan; Lee, Dong Gun; Chang, Young-Su; Park, Yoonkyung; Hahm, Kyung-Soo

    2002-12-01

    HP (2-20) (AKKVFKRLEKLFSKIQNDK) is the antibacterial sequence derived from N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1). It has a broad-spectrum microbicidal activity in vitro that is thought to be related to the membrane-disruptive properties of the peptide. Based on the putative membrane-targeted mode of action, we postulated that HP (2-20) might be possessed virus-cell fusion inhibitory activity. To develop the novel virus-cell fusion inhibitory peptides, several analogues with amino acid substitution were designed to increase or decrease only net hydrophobic region. In particular, substitution of Gln and Asp for hydrophobic amino acid, Trp at position 17 and 19 of HP (2-20) (Anal 3) caused a dramatic increase in virus-cell fusion inhibitory activity without hemolytic effect.

  20. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits.

    Science.gov (United States)

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue

    2017-07-01

    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  1. Self-reported impulsivity and inhibitory control in problem gamblers.

    Science.gov (United States)

    Lorains, Felicity K; Stout, Julie C; Bradshaw, John L; Dowling, Nicki A; Enticott, Peter G

    2014-01-01

    Impulsivity is considered a core feature of problem gambling; however, self-reported impulsivity and inhibitory control may reflect disparate constructs. We examined self-reported impulsivity and inhibitory control in 39 treatment-seeking problem gamblers and 41 matched controls using a range of self-report questionnaires and laboratory inhibitory control tasks. We also investigated differences between treatment-seeking problem gamblers who prefer strategic (e.g., sports betting) and nonstrategic (e.g., electronic gaming machines) gambling activities. Treatment-seeking problem gamblers demonstrated elevated self-reported impulsivity, more go errors on the Stop Signal Task, and a lower gap score on the Random Number Generation task than matched controls. However, overall we did not find strong evidence that treatment-seeking problem gamblers are more impulsive on laboratory inhibitory control measures. Furthermore, strategic and nonstrategic problem gamblers did not differ from their respective controls on either self-reported impulsivity questionnaires or laboratory inhibitory control measures. Contrary to expectations, our results suggest that inhibitory dyscontrol may not be a key component for some treatment-seeking problem gamblers.

  2. Determination of antioxidant capacity and a-amylase inhibitory activity of the essential oils from citronella grass and lemongrass

    Science.gov (United States)

    The objective of the present study was to determine the antioxidant capacity of and in vitro a-amylase inhibitory activity of the essential oils extracted from citronella grass and lemongrass. The chemical composition of the extracted essential oils was determined by GC-MS. The antioxidant capacity ...

  3. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses.

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M; Tu, Tiffany; Reijmers, Leon G

    2013-11-20

    A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos-based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The gender differences in the inhibitory action of UVB-induced melanocyte activation by the administration of tranexamic acid.

    Science.gov (United States)

    Hiramoto, Keiichi; Yamate, Yurika; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid has an inhibitory action on ultraviolet (UV) B-induced melanocyte activation. This study examined the sex differences in the inhibitory action of tranexamic acid on UVB-induced melanocyte activation. We irradiated the eye and ear of male and female mice with UVB at a dose of 1.0 kJ/m(2) using a 20SE sunlamp. We orally administered tranexamic acid (750 mg/kg/day) at 30 min before UVB exposure. Tranexamic acid inhibited the UVB-induced epidermal melanocyte activation, and the effect was more remarkable under UVB eye irradiation than under UVB ear irradiation. Furthermore, the melanocyte activity suppression effect was stronger in female mice than in male mice. Following the administration of tranexamic acid, the female displayed increased blood levels of β-endorphin and μ-opioid receptor and estradiol receptor β expression in comparison with the male. Furthermore, the effect of melanocyte activity suppression in the female mice was decreased by the administration of tamoxifen (antagonist of estrogen receptor) or naltrexone (antagonist of μ-opioid receptor). These results suggest that the suppression by tranexamic acid of the UVB-induced melanocyte activation (UVB sensitivity) is stronger in female mice than in male mice and that female hormones and β-endorphin play an important role in this sex difference. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Phytochemical screening and in vitro acetylcholinesterase inhibitory ...

    African Journals Online (AJOL)

    Phytochemical screening and in vitro acetylcholinesterase inhibitory activity of seven plant extracts. Titilayo Johnson, Oduje A. Akinsanmi, Enoch J. Banbilbwa, Tijani A. Yahaya, Karima Abdulaziz, Kolade Omole ...

  6. β-Sitosterol and flavonoids isolated from Bauhinia malabarica found during screening for Wnt signaling inhibitory activity.

    Science.gov (United States)

    Park, Hyun Young; Toume, Kazufumi; Arai, Midori A; Koyano, Takashi; Kowithayakorn, Thaworn; Ishibashi, Masami

    2014-01-01

    Screening with a cell-based luciferase assay was conducted to identify bioactive natural products which inhibit Wnt signaling activity-guided separation of an MeOH extract of Bauhinia malabarica (Caesalpiniaceae) leaves yielded five compounds, which were identified as β-sitosterol (1), quercetin (2), 6,8-C-dimethyl kaempferol-3-O-rhamnopyranoside (3), hyperin (4), and 6,8-C-dimethyl kaempferol-3-methyl ether (5). The tested compounds 1, 3, and 5 exhibited Wnt signaling inhibitory activity, with IC50 values of 0.77, 0.74, and 16.6 μM, respectively.

  7. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L.

    Science.gov (United States)

    Zhao, Bing Tian; Le, Duc Dat; Nguyen, Phi Hung; Ali, Md Yousof; Choi, Jae-Sue; Min, Byung Sun; Shin, Heung Mook; Rhee, Hae Ik; Woo, Mi Hee

    2016-06-25

    Two new flavonoids, bismilachinone (11) and smilachinin (14), were isolated from the leaves of Smilax china L. together with 14 known compounds. Their structures were elucidated using spectroscopic methods. The PTP1B, α-glucosidase, and DPP-IV inhibitory activities of compounds 1-16 were evaluated at the molecular level. Among them, compounds 4, 7, and 10 showed moderate DPP-IV inhibitory activities with IC50 values of 20.81, 33.12, and 32.93 μM, respectively. Compounds 3, 4, 6, 11, 12, and 16 showed strong PTP1B inhibitory activities, with respective IC50 values of 7.62, 10.80, 0.92, 2.68, 9.77, and 24.17 μM compared with the IC50 value for the positive control (ursolic acid: IC50 = 1.21 μM). Compounds 2-7, 11, 12, 15, and 16 showed potent α-glucosidase inhibitory activities, with respective IC50 values of 8.70, 81.66, 35.11, 35.92, 7.99, 26.28, 11.28, 62.68, 44.32, and 70.12 μM. The positive control, acarbose, displayed an IC50 value of 175.84 μM. In the kinetic study for the PTP1B enzyme, compounds 6, 11, and 12 displayed competitive inhibition with Ki values of 3.20, 8.56, and 5.86 μM, respectively. Compounds 3, 4, and 16 showed noncompetitive inhibition with Ki values of 18.75, 5.95, and 22.86 μM, respectively. Molecular docking study for the competitive inhibitors (6, 11, and 12) radically corroborates the binding affinities and inhibition of PTP1B enzymes. These results indicated that the leaves of Smilax china L. may contain compounds with anti-diabetic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta.

    Science.gov (United States)

    Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing

    2014-03-06

    Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application.

  9. Melanogenesis-inhibitory and cytotoxic activities of diarylheptanoids from Acer nikoense bark and their derivatives.

    Science.gov (United States)

    Akihisa, Toshihiro; Takeda, Ayano; Akazawa, Hiroyuki; Kikuchi, Takashi; Yokokawa, Satoru; Ukiya, Motohiko; Fukatsu, Makoto; Watanabe, Kensuke

    2012-08-01

    Nine cyclic diarylheptanoids, 1-9, including two new compounds, i.e., 9-oxoacerogenin A (8) and 9-O-β-D-glucopyranosylacerogenin K (9), along with three acyclic diarylheptanoids, 10-12, and four phenolic compounds, 13-16, were isolated from a MeOH extract of the bark of Acer nikoense (Aceraceae). Acid hydrolysis of 9 yielded acerogenin K (17) and D-glucose. Two of the cyclic diarylheptanoids, acerogenin A (1) and (R)-acerogenin B (5), were converted to their ether and ester derivatives, 18-24 and 27-33, respectively, and to the dehydrated derivatives, 25, 26, 34, and 35. Upon evaluation of compounds 1-16 and 18-35 for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α-melanocyte-stimulating hormone (α-MSH), eight natural glycosides, i.e., six diarylheptanoid glycosides, 2-4, 6, 9, and 12, and two phenolic glycosides, 15 and 16, exhibited inhibitory activities with 24-61% reduction of melanin content at 100 μM concentration with no or almost no toxicity to the cells (88-106% of cell viability at 100 μM). In addition, when compounds 1-16 and 18-35 were evaluated for cytotoxic activity against human cancer cell lines, two natural acyclic diarylheptanoids, 10 and 11, ten ether and ester derivatives, 18-22 and 27-31, and two dehydrated derivatives, 34 and 35, exhibited potent cytotoxicities against HL60 human leukemia cell line (IC(50) 8.1-19.3 μM), and five compounds, 10, 11, 20, 29, and 30, against CRL1579 human melanoma cell line (IC(50) 10.1-18.4 μM). Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  10. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  11. Narcissus tazetta lectin shows strong inhibitory effects against ...

    Indian Academy of Sciences (India)

    Prakash

    against human enveloped viruses (Balzarini 2007a). They ... NTL with a high selective index (SI=CC50/IC50 >141) resulting from its potent antiviral activity and low cytotoxicity demonstrates a potential for biotechnological development as an ...

  12. Macrophage migration inhibitory factor as an incriminating agent in vitiligo.

    Science.gov (United States)

    Farag, Azza Gaber Antar; Hammam, Mostafa Ahmed; Habib, Mona SalahEldeen; Elnaidany, Nada Farag; Kamh, Mona Eaid

    2018-03-01

    Vitiligo is an autoimmune skin disorder in which the loss of melanocytes is mainly attributed to defective autoimmune mechanisms and, lately, there has been more emphasis on autoinflammatory mediators. Among these is the macrophage migration inhibitory factor, which is involved in many autoimmune skin diseases. However, little is known about the contribution of this factor to vitiligo vulgaris. To determine the hypothesized role of migration inhibitory factor in vitiligo via estimation of serum migration inhibitory factor levels and migration inhibitory factor mRNA concentrations in patients with vitiligo compared with healthy controls. We also aimed to assess whether there is a relationship between the values of serum migration inhibitory factor and/or migration inhibitory factor mRNA with disease duration, clinical type and severity in vitiligo patients. Evaluation of migration inhibitory factor serum level and migration inhibitory factor mRNA expression by ELISA and real-time PCR, respectively, were performed for 50 patients with different degrees of vitiligo severity and compared to 15 age- and gender-matched healthy volunteers as controls. There was a highly significant increase in serum migration inhibitory factor and migration inhibitory factor mRNA levels in vitiligo cases when compared to controls (pvitiligo patients, and each of them with duration and severity of vitiligo. In addition, patients with generalized vitiligo have significantly elevated serum migration inhibitory factor and mRNA levels than control subjects. Small number of investigated subjects. Migration inhibitory factor may have an active role in the development of vitiligo, and it may also be a useful index of disease severity. Consequently, migration inhibitory factor may be a new treatment target for vitiligo patients.

  13. Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity from the Edible Mushroom Pleurotus citrinopileatus.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Wang, Wen-Zhao; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-05-01

    One new perhydrobenzannulated 5,5-spiroketal sesquiterpene, pleurospiroketal F (1), as well as six new modified bisabolene sesquiterpenes pleurotins A-F (2-7) were isolated from solid-state fermentation of Pleurotus citrinopileatus. The structures of compounds 1-7 were determined by NMR and MS spectroscopic analysis. The absolute configuration of 1 was determined by X-ray diffraction analysis, while the absolute configurations of 3-7 were assigned using the in situ dimolybdenum circular dichroism method and circular dichroism data comparison. Protein tyrosine phosphatase 1B plays a crucial role as a negative regulator of the insulin-dependent signal cascades. Therefore, the protein tyrosine phosphatase 1B inhibitor can be used for treating type 2 diabetes mellitus and obesity. Compounds 2 and 6 showed moderate inhibitory effects on protein tyrosine phosphatase 1B with IC50 s of 32.1 µM and 30.5 µM, respectively. The kinetic study confirmed compound 2 to be a noncompetitive inhibitor. Compounds 1-7 did not show cytotoxic activity against cancer cell lines (IC50 > 50 µM). Georg Thieme Verlag KG Stuttgart · New York.

  14. Inhibitory effects of drugs on the metabolic activity of mouse and human aldehyde oxidases and influence on drug-drug interactions.

    Science.gov (United States)

    Takaoka, Naoki; Sanoh, Seigo; Okuda, Katsuhiro; Kotake, Yaichiro; Sugahara, Go; Yanagi, Ami; Ishida, Yuji; Tateno, Chise; Tayama, Yoshitaka; Sugihara, Kazumi; Kitamura, Shigeyuki; Kurosaki, Mami; Terao, Mineko; Garattini, Enrico; Ohta, Shigeru

    2018-04-17

    As aldehyde oxidase (AOX) plays an emerging role in drug metabolism, understanding its significance for drug-drug interactions (DDI) is important. Therefore, we tested 10 compounds for species-specific and substrate-dependent differences in the inhibitory effect of AOX activity using genetically engineered HEK293 cells over-expressing human AOX1, mouse AOX1 or mouse AOX3. The IC 50 values of 10 potential inhibitors of the three AOX enzymes were determined using phthalazine and O 6 -benzylguanine as substrates. 17β-Estradiol, menadione, norharmane and raloxifene exhibited marked differences in inhibitory effects between the human and mouse AOX isoforms when the phthalazine substrate was used. Some of the compounds tested exhibited substrate-dependent differences in their inhibitory effects. Docking simulations with human AOX1 and mouse AOX3 were conducted for six representative inhibitors. The rank order of the minimum binding energy reflected the order of the corresponding IC 50 values. We also evaluated the potential DDI between an AOX substrate (O 6 -benzylguanine) and an inhibitor (hydralazine) using chimeric mice with humanized livers. Pretreatment of hydralazine increased the maximum plasma concentration (C max ) and the area under the plasma concentration-time curve (AUC 0-24 ) of O 6 -benzylguanine compared to single administration. Our in vitro data indicate species-specific and substrate-dependent differences in the inhibitory effects on AOX activity. Our in vivo data demonstrate the existence of a DDI which may be of relevance in the clinical context. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. New benzimidazoles and their antitumor effects with Aurora A kinase and KSP inhibitory activities.

    Science.gov (United States)

    Abd El-All, Amira S; Magd-El-Din, Asmaa A; Ragab, Fatma A F; ElHefnawi, Mahmoud; Abdalla, Mohamed M; Galal, Shadia A; El-Rashedy, Ahmed A

    2015-07-01

    A newly synthesized series of anticancer compounds comprising thiazolo[3,2-a]pyrimidine derivatives 6a-q bearing a benzimidazole moiety was produced via a one-pot reaction of N-(4-(1H-benzo[d]imidazol-2-yl)phenyl)-2-cyanoacetamide 5 with 2-aminothiazole and an appropriate aromatic aldehyde. Compound 7 was obtained via the reaction of 4-(1H-benzo[d]imidazol-2yl)benzenamide 1 with carbon disulphide and methyl iodide in the presence of concentrated aqueous solution of NaOH, then treated with o-phenylenediamine to give N-(4-1H-benzo[d]imidazol-2-yl)phenyl)-1H-benzo[d]imidazol-2-amine 8. The structures of the newly synthesized compounds were confirmed by analytical and spectroscopic measurements (IR, MS, and (1) H NMR). The synthesized products were screened and studied for their in vitro antitumor activity against three human cancer cell lines (namely colorectal cancer cell line HCT116, human liver cancer cell line HepG2, and human ovarian cancer cell line A2780) and their Aurora A kinase and KSP inhibitory activities. All newly synthesized compounds revealed marked results comparable with the standard drug CK0106023. The compounds 6e and 6k of the thiazolopyrimidine derivatives were the most active compounds when tested against the three cell lines in comparison with the standard drug CK0106023, and showed potent dual KSP and Aurora A kinase inhibition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies.

    Science.gov (United States)

    Bussmann, R W; Malca-García, G; Glenn, A; Sharon, D; Chait, G; Díaz, D; Pourmand, K; Jonat, B; Somogy, S; Guardado, G; Aguirre, C; Chan, R; Meyer, K; Kuhlman, A; Townesmith, A; Effio-Carbajal, J; Frías-Fernandez, F; Benito, M

    2010-10-28

    The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as "inflammation". The aim of this study was to evaluate the minimum inhibitory concentration (MIC) of their antibacterial properties against gram-positive and gram-negative bacteria. The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against Escherichia coli and 38 extracts against Staphylococcus aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256 mg/ml, with only 36 species showing inhibitory concentrations of extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. The Effect of Domestication on Inhibitory Control: Wolves and Dogs Compared

    Science.gov (United States)

    Marshall-Pescini, Sarah; Virányi, Zsófia; Range, Friederike

    2015-01-01

    Inhibitory control i.e. blocking an impulsive or prepotent response in favour of a more appropriate alternative, has been suggested to play an important role in cooperative behaviour. Interestingly, while dogs and wolves show a similar social organization, they differ in their intraspecific cooperation tendencies in that wolves rely more heavily on group coordination in regard to hunting and pup-rearing compared to dogs. Hence, based on the ‘canine cooperation’ hypothesis wolves should show better inhibitory control than dogs. On the other hand, through the domestication process, dogs may have been selected for cooperative tendencies towards humans and/or a less reactive temperament, which may in turn have affected their inhibitory control abilities. Hence, based on the latter hypothesis, we would expect dogs to show a higher performance in tasks requiring inhibitory control. To test the predictive value of these alternative hypotheses, in the current study two tasks; the ‘cylinder task’ and the ‘detour task’, which are designed to assess inhibitory control, were used to evaluate the performance of identically raised pack dogs and wolves. Results from the cylinder task showed a significantly poorer performance in wolves than identically-raised pack dogs (and showed that pack-dogs performed similarly to pet dogs with different training experiences), however contrary results emerged in the detour task, with wolves showing a shorter latency to success and less perseverative behaviour at the fence. Results are discussed in relation to previous studies using these paradigms and in terms of the validity of these two methods in assessing inhibitory control. PMID:25714840

  18. The inhibitory activity of Lactic acid bacteria isolated from fresh cow cheese

    Directory of Open Access Journals (Sweden)

    Nevijo Zdolec

    2007-04-01

    Full Text Available Lactic acid bacteria are the constituent part of milk microbial flora that could influence the safety of dairy products due production of organic acids, hydrogen peroxide, carbon dioxide and bacteriocins. Taking this in consideration, the objective of this study was to investigate the composition of lactic acid bacteria population in fresh cow cheeses taken from local markets, as well as their antimicrobial capacity. Lactic acid bacteria counts were determined according to ISO 1524:1998 method, biochemical determination using API 50 CHL system, and inhibitory activity against L. monocytogenes NCTC 10527 by agar well diffusion assay. Lactic acid bacteria count in fresh cow cheeses (n=10 ranged from 5.87 to 8.38 log10 CFU g-1. Among 52 MRS isolates collected, 61.54 % were assigned to the Lactococcus lactis subsp. Lactis species, 23.07 % Lactobacillus helveticus, 11.54 % Leuconostoc mesenteroides subsp. cremoris and 3.85 % Leuconostoc mesenteroides subsp. mesenteroides. Antilisterial activity was found in 18 isolates.

  19. Animal and Plant Proteins as Precursors of Peptides with ACE Inhibitory Activity – An in silico Strategy of Protein Evaluation

    Directory of Open Access Journals (Sweden)

    Anna Iwaniak

    2009-01-01

    Full Text Available This paper presents a modern in silico approach useful in the evaluation of proteins as a source of ACE inhibitors. All protein sequences analyzed were derived from the BIOPEP database. To determine the protein value, the following criteria of evaluation were applied: the profile of potential biological (ACE inhibitory activity of a protein, the frequency of the occurrence of fragments with ACE inhibitory activity (A and the potential biological activity of a protein (B. The results, based on a statistical analysis, indicate that milk proteins can be a better source of ACE inhibitors than wheat gliadins. Moreover, all analyzed gliadins possessed more potent ACE inhibitors than chicken meat proteins. No significant differences were observed when comparing A values between soy globulins and β-lactoglobulins. Although criteria such as the profile of potential biological activity of protein, as well as parameters A and B, can be suitable tools in protein evaluation, the proteolytic digestion of protein needs to be considered. Moreover, computerised methods of classifying proteins according to different algorithms are often subjective due to discretion in interpretation of the results.

  20. Leukemia inhibitory factor and its role in physiologic and pathological processes

    Directory of Open Access Journals (Sweden)

    Grégory Alfonso García

    2006-12-01

    Full Text Available Leukemia inhibitory factor (LIF is celular comunication mediator that shows a very wide range of biologic activities that include the cell differentiation, cell growth and proliferation, cell trophic and anti-apoptotic effect, cell protection of different cells and tissue types, regulating energetic and bone metabolism, neural development, embryogenesis, reparation and remodelation tissue, and modulation of inflammation. Due to its pleiotrophic activities, LIF is central in the pathologic events related to many disorders. In this review, the diverse topics are alluded to.

  1. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea.

    Science.gov (United States)

    Roy, Somendu K; Kumari, Neela; Pahwa, Sonika; Agrahari, Udai C; Bhutani, Kamlesh K; Jachak, Sanjay M; Nandanwar, Hemraj

    2013-10-01

    The purpose of this investigation was to study the modulator and efflux pump inhibitor activity of coumarins isolated from Mesua ferrea against clinical strains as well as NorA-over expressed strain of Staphylococcus aureus 1199B. Seven coumarins were tested for modulator activity using ethidium bromide (EtBr) as a substrate. Compounds 1, 4-7 modulated the MIC of EtBr by ≥ 2 fold against wild type clinical strains of S. aureus 1199 and S. aureus 1199B, whereas compounds 4-7 modulated the MIC of EtBr by ≥ 16 fold against MRSA 831. Compounds 1, 4-7 also reduced the MIC of norfloxacin by ≥ 8 fold against S. aureus 1199B, and 4-6 reduced the MIC of norfloxacin by ≥ 8 fold against MRSA 831 at half of their MICs. Inhibition of EtBr efflux by NorA-overproducing S. aureus 1199B and MRSA 831 confirmed the role of compounds 4-6 as NorA efflux pump inhibitors (EPI). Dose-dependent activity at sub-inhibitory concentration (6.25 μg/mL) suggested that compounds 4 and 5 are promising EPI compared to verapamil against 1199B and MRSA 831 strains. © 2013.

  2. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    Science.gov (United States)

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (casein presents an excellent source to produce ACE inhibitory peptides.

  3. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.

    Science.gov (United States)

    Spiegel, Ivo; Mardinly, Alan R; Gabel, Harrison W; Bazinet, Jeremy E; Couch, Cameron H; Tzeng, Christopher P; Harmin, David A; Greenberg, Michael E

    2014-05-22

    The nervous system adapts to experience by inducing a transcriptional program that controls important aspects of synaptic plasticity. Although the molecular mechanisms of experience-dependent plasticity are well characterized in excitatory neurons, the mechanisms that regulate this process in inhibitory neurons are only poorly understood. Here, we describe a transcriptional program that is induced by neuronal activity in inhibitory neurons. We find that, while neuronal activity induces expression of early-response transcription factors such as Npas4 in both excitatory and inhibitory neurons, Npas4 activates distinct programs of late-response genes in inhibitory and excitatory neurons. These late-response genes differentially regulate synaptic input to these two types of neurons, promoting inhibition onto excitatory neurons while inducing excitation onto inhibitory neurons. These findings suggest that the functional outcomes of activity-induced transcriptional responses are adapted in a cell-type-specific manner to achieve a circuit-wide homeostatic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Evaluation of cholinesterase inhibitory and antioxidant activities of wild and cultivated samples of sage (Salvia fruticosa) by activity-guided fractionation.

    Science.gov (United States)

    Senol, Fatma Sezer; Orhan, Ilkay Erdogan; Erdem, Sinem Aslan; Kartal, Murat; Sener, Bilge; Kan, Yüksel; Celep, Ferhat; Kahraman, Ahmet; Dogan, Musa

    2011-11-01

    In European folk medicine, Salvia species have traditionally been used to enhance memory. In our previous study of 55 Salvia taxa, we explored significant anticholinesterase activity of cultivated S. fruticosa. In this study, we compared the inhibitory activity of dichloromethane, ethyl acetate, and ethanol extracts of 3 wild-grown samples and 1 cultivated sample of S. fruticosa against acetylcholinesterase and butyrylcholinesterase enzymes (which are associated with pathogenesis of Alzheimer's disease) by using the spectrophotometric Ellman method. Antioxidant activities were assessed by determining 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, iron-chelating capacity, and ferric-reducing antioxidant power. The dichloromethane extract of the cultivated sample was then subjected to fractionation by using open column chromatography and medium-pressure liquid chromatography to obtain the most active fraction by activity-guided fractionation. All fractions and subfractions were tested in the same manner, and inactive subfractions were discarded. The essential oil of the cultivated sample was analyzed by gas chromatography-mass spectrometry.

  5. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    Science.gov (United States)

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC 50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC 50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC 50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of

  6. Inhibitory activities of some vitamins on the formation of cholesterol oxidation products in beef patties.

    Science.gov (United States)

    Wong, Daniel; Wang, Mingfu

    2013-09-04

    The capacities of 15 vitamins to inhibit the formation of 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol were examined in beef patties. Their inhibitory activities were tested at a concentration of 0.4 mmol in 30 g of beef. Among them, L-ascorbic acid, retinoic acid, and α-(±)-tocopherol were found to exert a potent inhibitory effect (30-50%) on 7-ketocholesterol formation and (~20%) on 7α-hydroxycholesterol and 7β-hydroxycholesterol formations. Pyridoxamine inhibited 7-ketocholesterol formation by 60% with a statistically significant difference (p cholesterol oxidation, a chemical model with pyridoxamine added in the cholesterol oxidation system (heated at 140 °C for 240 min in dimethyl sulfoxide) was employed. It was demonstrated that pyridoxamine could directly react with 7-ketocholesterol via the addition reaction. The reaction involved a nucleophilic attack of the free amine group of pyridoxamine on 7-ketocholesterol (an α,β-unsaturated carbonyl compound). This type of reaction was also found to occur in beef patties by chromatographic and spectral analyses.

  7. Four New Flavonoids with α-Glucosidase Inhibitory Activities from Morus alba var. tatarica.

    Science.gov (United States)

    Zhang, Ya-Long; Luo, Jian-Guang; Wan, Chuan-Xing; Zhou, Zhong-Bo; Kong, Ling-Yi

    2015-11-01

    Four new flavonoids, mortatarins A-D (1-4, resp.), along with eight known flavonoids (5-12) were isolated from the root bark of Morus alba var. tatarica. Their structures were established on the basis of spectroscopic data analysis, and the absolute configuration of 4 was determined by analysis of its CD spectrum. All isolates were tested for inhibitory activities against α-glucosidase. Compounds 4, 7, and 8 exhibited a significant degree of inhibition with IC50 values of 5.0 ± 0.3, 7.5 ± 0.5, and 5.9 ± 0.2 μM, respectively. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  8. A Novel Aspartic Protease with HIV-1 Reverse Transcriptase Inhibitory Activity from Fresh Fruiting Bodies of the Wild Mushroom Xylaria hypoxylon

    Directory of Open Access Journals (Sweden)

    Qing-Xiu Hu

    2012-01-01

    Full Text Available A novel aspartic protease with HIV-1 RT inhibitory activity was isolated and characterized from fruiting bodies of the wild mushroom Xylaria hypoxylon. The purification protocol comprised distilled water homogenization and extraction step, three ion exchange chromatographic steps (on DEAE-cellulose, Q-Sepharose, and CM-cellulose in succession, and final purification was by FPLC on Superdex 75. The protease was adsorbed on all the three ion exchangers. It was a monomeric protein with a molecular mass of 43 kDa as estimated by SDS-PAGE and FPLC. Its N-terminal amino acid sequence was HYTELLSQVV, which exhibited no sequence homology to other proteases reported. The activity of the protease was adversely affected by Pepstatin A, indicating that it is an aspartic protease. The protease activity was maximal or nearly so in the pH range 6–8 and in the temperature range 35–60°C. The purified enzyme exhibited HIV-1 RT inhibitory activity with an IC50 value of 8.3 μM, but was devoid of antifungal, ribonuclease, and hemagglutinating activities.

  9. Separation of antioxidant and α-glucosidase inhibitory flavonoids from the aerial parts of Asterothamnus centrali-asiaticus.

    Science.gov (United States)

    Wang, Yan-Ming; Zhao, Jian-Qiang; Yang, Jun-Li; Tao, Yan-Duo; Mei, Li-Juan; Shi, Yan-Ping

    2017-06-01

    A new flavonoid, along with 16 known ones, was separated from the aerial parts of Asterothamnus centrali-asiaticus. Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR techniques and HRESIMS. To confirm the structure of the new compound, computational prediction of its 13 C chemical shifts was performed. All of the 17 flavonoids were reported from A. centrali-asiaticus for the first time. In addition, all flavonoids were evaluated for their antioxidant and α-glucosidase inhibitory activities. The results showed that 10 of them exhibited antioxidant activity. Meanwhile, four flavonoids displayed α-glucosidase inhibitory effect with IC 50 values ranging from 38.9 to 299.7 μM.

  10. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents.

    Science.gov (United States)

    Bonesi, Marco; Menichini, Federica; Tundis, Rosa; Loizzo, Monica R; Conforti, Filomena; Passalacqua, Nicodemo G; Statti, Giancarlo A; Menichini, Francesco

    2010-10-01

    This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer's disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC(50) values of 51.1 and 80.6 microg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC(50) value of 94.4 microg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, beta-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC(50) values of 78.6 and 107.6 microg/mL, respectively. beta-Phellandrene was selective against AChE (IC(50) value of 120.2 microg/mL).

  11. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  12. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid

    Science.gov (United States)

    Yang, Dan-dan; Wang, Riu; Zhu, Jin-long; Cao, Qi-yue; Qin, Jie; Zhu, Hai-liang; Qian, Shao-song

    2017-01-01

    Three novel complexes, [Cu(L)2(H2O)](1), [Zn(L)2(H2O)2]·CH3OH·1.5H2O(2), and [Ni(L)2(H2O)1.8]·CH3OH·1.2H2O (3) (HL = 2-{4-[bis(4-fluorophenyl)methyl]pipera-zin-1-yl} acetic acid), were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential Monoamine oxidase B inhibitory activity. All acquired compounds were tested against rat brain MAO-B in vitro. In accordance with the result of calculation, it showed complex 1 (IC50 = 1.85 ± 0.31 μM) have good inhibitory activity against MAO-B at the same micromolar concentrations with positive control Iproniazid Phosphate (IP, IC50 = 7.59 ± 1.17 μM). These results indicated that complex 1 was a potent MAO-B inhibitor.

  13. Preschool Inhibitory Control Predicts ADHD Group Status and Inhibitory Weakness in School.

    Science.gov (United States)

    Jacobson, Lisa A; Schneider, Heather; Mahone, E Mark

    2017-12-26

    Discriminative utility of performance measures of inhibitory control was examined in preschool children with and without ADHD to determine whether performance measures added to diagnostic prediction and to prediction of informant-rated day-to-day executive function. Children ages 4-5 years (N = 105, 61% boys; 54 ADHD, medication-naïve) were assessed using performance measures (Auditory Continuous Performance Test for Preschoolers-Commission errors, Conflicting Motor Response Test, NEPSY Statue) and caregiver (parent, teacher) ratings of inhibition (Behavior Rating Inventory of Executive Function-Preschool version). Performance measures and parent and teacher reports of inhibitory control significantly and uniquely predicted ADHD group status; however, performance measures did not add to prediction of group status beyond parent reports. Performance measures did significantly predict classroom inhibitory control (teacher ratings), over and above parent reports of inhibitory control. Performance measures of inhibitory control may be adequate predictors of ADHD status and good predictors of young children's classroom inhibitory control, demonstrating utility as components of clinical assessments. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Inhibitory effect of a Brazilian marine brown alga Spatoglossum schröederi on biological activities of Lachesis muta snake venom

    Directory of Open Access Journals (Sweden)

    Thaisa Francielle Souza Domingos

    2012-04-01

    Full Text Available The ability of crude extracts of the brown seaweed Spatoglossum schröederi to counteract some of the biological activities of Lachesis muta snake venom was evaluated. In vitro assays showed that only the extract of S. schröederi prepared in ethyl acetate was able to inhibit the clotting of fibrinogen induced by L. muta venom. On the other hand, all extracts were able to inhibit partially the hemolysis caused by venom and those prepared in dichloromethane or ethyl acetate fully neutralized the proteolysis and hemorrhage produced by the venom. Moreover, the dichloromethane or ethyl acetate extracts inhibited the hemolysis induced by an isolated phospholipase A2 from L. muta venom, called LM-PLA2-I. In contrast, the hexane extract failed to protect mice from hemorrhage or to inhibit proteolysis and clotting. These results show that the polarity of the solvent used to prepare the extracts of S. schröederi algae influenced the potency of the inhibitory effect of the biological activities induced by L. muta venom. Thus, the seaweed S. schröederi may be a promising source of natural inhibitors of the enzymes involved in biological activities of L. muta venom.

  15. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    Science.gov (United States)

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Physicochemical, functional and angiotensin converting enzyme inhibitory properties of amaranth (Amaranthus hypochondriacus) 7S globulin.

    Science.gov (United States)

    Quiroga, Alejandra V; Aphalo, Paula; Ventureira, Jorge L; Martínez, E Nora; Añón, María C

    2012-01-30

    Amaranth 7S globulin is a minor globulin component and its impact on the properties of an amaranth protein ingredient depends on its proportion in the variety of amaranth being considered. Some physicochemical, functional and angiotesin I-converting enzyme (ACE) inhibitory properties of amaranth vicilin were studied in this work and compared with the 11S globulin. Fluorescence spectroscopy results indicated that 7S globulin tryptophans were more exposed to the solvent and, by calorimetry, the 7S globulin denaturation temperature (T(d) ) was found lower than the 11S globulin T(d) , suggesting a more flexible structure. The 7S globulin surface hydrophobicity was higher than that of the 11S globulin, which is in agreement with the better emulsifying properties of the 7S globulin. The solubility in neutral buffer of the 7S globulin (851 ± 25 g kg(-1) ) was also higher than that of the 11S globulin (195 ± 6 g kg(-1) ). Bioinformatic analyses showed the presence of ACE inhibitory peptides encrypted in 7S tryptic sequences and peptides released after in vitro gastrointestinal digestion showed a high ACE-inhibitory capacity (IC(50) = 0.17 g L(-1) ), similar to that of 11S globulin peptides. Compared with the 11S globulin, the 7S globulin presents similar ACE inhibitory activity and some functional advantages, better solubility and emulsifying activity, which suits some food requirements. The functional behavior has been related with the structural properties. Copyright © 2011 Society of Chemical Industry.

  17. Inhibitory Effect of Plant Manilkara subsericea against Biological Activities of Lachesis muta Snake Venom

    Directory of Open Access Journals (Sweden)

    Eduardo Coriolano De Oliveira

    2014-01-01

    Full Text Available Snake venom is composed of a mixture of substances that caused in victims a variety of pathophysiological effects. Besides antivenom, literature has described plants able to inhibit injuries and lethal activities induced by snake venoms. This work describes the inhibitory potential of ethanol, hexane, ethyl acetate, or dichloromethane extracts and fractions from stem and leaves of Manilkara subsericea against in vivo (hemorrhagic and edema and in vitro (clotting, hemolysis, and proteolysis activities caused by Lachesis muta venom. All the tested activities were totally or at least partially reduced by M. subsericea. However, when L. muta venom was injected into mice 15 min first or after the materials, hemorrhage and edema were not inhibited. Thus, M. subsericea could be used as antivenom in snakebites of L. muta. And, this work also highlights Brazilian flora as a rich source of molecules with antivenom properties.

  18. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    Science.gov (United States)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  19. Inhibitory Effects of Daiokanzoto (Da-Huang-Gan-Cao-Tang on P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Yuka Watanabe

    2012-01-01

    Full Text Available We have studied the effects of various Kampo medicines on P-glycoprotein (P-gp, a drug transporter, in vitro. The present study focused on Daiokanzoto (Da-Huang-Gan-Cao-Tang, which shows the most potent inhibitory effects on P-gp among the 50 Kampo medicines studied, and investigated the P-gp inhibitory effects of Daiokanzoto herbal ingredients (rhubarb and licorice root and their components by an ATPase assay using human P-gp membrane. Both rhubarb and licorice root significantly inhibited ATPase activity, and the effects of rhubarb were more potent than those of licorice root. The content of rhubarb in Daiokanzoto is double that in licorice root, and the inhibition patterns of Daiokanzoto and rhubarb involve both competitive and noncompetitive inhibition, suggesting that the inhibitory effects of Daiokanzoto are mainly due to rhubarb. Concerning the components of rhubarb, concentration-dependent inhibitory effects were observed for (−-catechin gallate, (−-epicatechin gallate, and (−-epigallocatechin gallate. In conclusion, rhubarb may cause changes in the drug dispositions of P-gp substrates through the inhibition of P-gp. It appears that attention should be given to the interactions between these drugs and Kampo medicines containing rhubarb as an herbal ingredient.

  20. The 15-lipoxygenase inhibitory, antioxidant, antimycobacterial activity and cytotoxicity of fourteen ethnomedicinally used African spices and culinary herbs.

    Science.gov (United States)

    Dzoyem, Jean Paul; Kuete, Victor; McGaw, Lyndy J; Eloff, Jacobus N

    2014-10-28

    Culinary herbs and spices are widely used ethnomedically across Africa. They are traditionally employed in the treatment of several ailments including inflammation disorders, pain alleviation and infectious diseases. Pharmacological studies are necessary to provide a scientific basis to substantiate their traditional use and safety. In this study, the 15-lipoxygenase inhibitory, antioxidant, antimycobacterial and the cytotoxic activities, total phenolic and flavonoid contents of fourteen edible plants were investigated. The 15-lipoxygenase inhibitory activity was evaluated by the ferrous oxidation-xylenol orange (FOX) assay method. The antioxidant activity was determined using free-radical scavenging assays. The antimycobacterial activity was determined by a broth microdilution method against three species of mycobacteria: Mycobacterium smegmatis, Mycobacterium aurum and Mycobacterium fortuitum using tetrazolium violet as growth indicator. The cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on Vero monkey kidney cells. All the extracts tested had some 15-lipoxygenase inhibitory activity ranging from 32.9 to 78.64%. Adansonia digitata (fruit) had the highest antioxidant capacity (IC₅₀ values of 8.15 μg/mL and 9.16 μg/mL in the DPPH and ABTS assays respectively; TEAC of 0.75 in the FRAP assay) along with the highest amount of total phenolics (237.68 mg GAE/g) and total flavonoids (16.14 mg E/g). There were good correlations between DPPH and ABTS values (R(2) 0.98) and between total phenolics and total flavonoids (R(2) 0.94). Tamarindus indica had significant antimycobacterial activity against Mycobacterium aurum (MIC 78 μg/mL). As could be expected with edible plants, all the extracts had a relatively low cytotoxicity with LC₅₀ values higher than 102 μg/mL with the exception of the two Aframomum species (33 and 74 μg/mL). This study provides scientific support for some of the the traditional uses

  1. Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Nef Proteins Show Distinct Patterns and Mechanisms of Src Kinase Activation

    Science.gov (United States)

    Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves

    1999-01-01

    The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375

  2. Sub-inhibitory stress with essential oil affects enterotoxins production and essential oil susceptibility in Staphylococcus aureus.

    Science.gov (United States)

    Turchi, Barbara; Mancini, Simone; Pistelli, Luisa; Najar, Basma; Cerri, Domenico; Fratini, Filippo

    2018-03-01

    Fourteen wild strains of Staphylococcus aureus positive for gene sea were tested for enterotoxins production and the minimum inhibitory concentration of Leptospermum scoparium, Origanum majorana, Origanum vulgare, Satureja montana and Thymus vulgaris essential oils (EOs) were determined. After this trial, bacteria stressed with sub-inhibitory concentration of each EO were tested for enterotoxins production by an immunoenzymatic assay and resistance to the same EO. Oregano oil exhibited the highest antibacterial activity followed by manuka and thyme oils. After the exposure to a sub-inhibitory concentration of EOs, strains displayed an increased sensitivity in more than 95% of the cases. After treatment with oregano and marjoram EOs, few strains showed a modified enterotoxins production, while 43% of the strains were no longer able to produce enterotoxins after treatment with manuka EO. The results obtained in this study highlight that exposure to sub-inhibitory concentration of EO modifies strains enterotoxins production and EOs susceptibility profile.

  3. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Domann Eugen

    2011-02-01

    Full Text Available Abstract Background Black elderberries (Sambucus nigra L. are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.

  4. Influence of temperature on the inhibitory potency of Eucalyptus honey against Candida albicans

    Directory of Open Access Journals (Sweden)

    Ahmed Moussa

    2012-12-01

    Full Text Available Objective: To evaluate the effects of heat processing on the antifungal activity of honey. Methods: A sample of the honey of eucalyptus was divided into four portions of 250 g each. One of the four portions obtained from studied honey was not heated (not heated fraction 25曟, the other portions were placed in water bath during 24 hours at 40 曟, 60 曟 and 80曟 temperatures. The HMF rates, Acidity, pH and the index of refraction were determined by harmonized methods. The antifungal tests (Minimum Inhibitory Concentration were carried out on Sabouraud agar medium embedded with honey according to dilution test. Results: The moisture shows values of 15.65% and 15.83%, pH between 4.10 and 4.24, the free acidity ranges between 33.8 and 38.36 meq kg-1, hydroxymethylfurfural (HMF content shows values between 28.8 and 103.44 mg kg-1. The antifungal action of the non-heated fraction (Fc of honey in vitro was marked 40 % (vol/vol than heated fractions of honey (42%, 44%, and 45% vol/vol. respectively The antifungal activity of each fraction decreased in the following order: Fct曘 25 > Fct曘 40 > Fct曘 60 > Fct曘 80]. Conclusion: our findings indicate that different levels of parameters physical-chemical properties of honey to different temperatures showed inhibitory activity against C. albicans with variable degrees.

  5. Inhibitory effect of betel quid on the volatility of methyl mercaptan.

    Science.gov (United States)

    Wang, C K; Chen, S L; Wu, M G

    2001-04-01

    Betel quid, a popular natural masticatory in Taiwan, is mainly composed of fresh areca fruit, Piper betle (leaf or inflorescence), and slaked lime paste. People say that halitosis disappears during betel quid chewing. In this study, the removal of mouth odor during betel quid chewing was discussed by using a model system which measured its inhibition on the volatility of methyl mercaptan. Results showed that crude extracts of betel quid (the mixture of areca fruit, Piper betle, and slaked lime paste) and extracts of the mixture of areca fruit and slaked lime paste exhibited marked effects on the volatility of methyl mercaptan, and the inhibition function increased when increasing amounts of slaked lime paste were added. The same condition (increased inhibition) was also found by replacing the slaked lime paste with alkaline salts (calcium hydroxide, potassium hydroxide, or sodium hydroxide). Areca fruit, the major ingredient of betel quid, contained abundant phenolics. However, the crude phenolic extract of areca fruit did not show any inhibitory activity on the volatility of methyl mercaptan. Great inhibitory activity occurred only when the crude phenolic extract of areca fruit was treated with alkali. Further studies by using gel filtration determined that the effect probably came from the oxidative polymerization of phenolics of areca fruit after alkaline treatment.

  6. Synthesis and Heme Polymerization Inhibitory Activity (HPIA Assay of Antiplasmodium of (1-N-(3,4-Dimethoxybenzyl-1,10-Phenanthrolinium Bromide from Vanillin

    Directory of Open Access Journals (Sweden)

    Dhina Fitriastuti

    2014-03-01

    Full Text Available The synthesis of (1-N-(3,4-dimethoxy-benzyl-1,10-phenanthrolinium bromide had been conducted from vanillin. Heme polymerization inhibitory activity assay of the synthesized antiplasmodium has also been carried out. The first step of reaction was methylation of vanillin using dimethylsulfate and NaOH. The mixture was refluxed for 2 h to yield veratraldehyde in the form of light yellow solid (79% yield. Methylation product was reduced using sodium borohydride (NaBH4 with grinding method and yielded veratryl alcohol in the form of yellow liquid (98% yield. Veratryl alcohol was brominated using PBr3 to yield yellowish black liquid (85% yield. The final step was benzylation of 1,10-phenanthroline monohydrate with the synthesized veratryl bromide under reflux condition in acetone for 14 h to afford (1-N-(3,4-dimethoxy-benzyl-1,10-phenanthrolinium bromide (84% as yellow solid with melting point of 166-177 °C. The structures of products were characterized by FT-IR, GC-MS and 1H-NMR spectrometers. The results of heme polymerization inhibitory activity assay of (1-N-(3,4-dimethoxybenzyl-1,10-phenanthrolinium bromide showed that it had IC50 HPIA of 3.63 mM, while chloroquine had IC50 of4.37 mM. These results indicated that (1-N-(3,4-dimethoxybenzyl-1,10-phenanthrolinium bromide was more potential antiplasmodium than chloroquine.

  7. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium.

    Science.gov (United States)

    Gamboa-Gómez, Claudia I; González-Laredo, Rubén F; Gallegos-Infante, José Alberto; Pérez, Mş Del Mar Larrosa; Moreno-Jiménez, Martha R; Flores-Rueda, Ana G; Rocha-Guzmán, Nuria E

    2016-09-01

    Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical ( i . e . lower IC 50 ). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens ); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC 50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  8. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium

    Directory of Open Access Journals (Sweden)

    Claudia I. Gamboa-Gómez

    2016-01-01

    Full Text Available Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profi le measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50 % of DPPH radical (i.e. lower IC50. Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14 % of E. camaldulensis and 49 % of L. glaucescens; whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril. The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  9. Interaction between BDNF Polymorphism and Physical Activity on Inhibitory Performance in the Elderly without Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Anne Canivet

    2017-11-01

    Full Text Available Background: In the elderly, physical activity (PA enhances cognitive performances, increases brain plasticity and improves brain health. The neurotrophic hypothesis is that the release of brain-derived neurotrophic factor (BDNF, which is implicated in brain plasticity and cognition, is triggered by PA because motoneurons secrete BDNF into the bloodstream during exercise. Individual differences in cognitive performance may be explained by individual differences in genetic predisposition. A single nucleotide polymorphism on the BDNF gene, BDNFVal66Met, affects activity-dependent BDNF secretion. This study investigated the influence of the BDNFVal66Met polymorphism on the relationship between PA and controlled inhibition performance in older adults.Methods: A total of 114 healthy elderly volunteers (mean age = 71.53 years old were evaluated. Participants were genotyped for the BDNFVal66Met polymorphism. We evaluated inhibitory performance using choice reaction times (RT and error rates from a Simon-like task and estimated their PA using two self-reported questionnaires. We established four groups according to PA level (active vs. inactive and BDNFVal66Met genotype (Met carriers vs. Val-homozygous. The results were analyzed using ANOVA and ANCOVA, including age, gender and body mass index as covariates.Results: The BDNFVal66Met polymorphism interacted with PA on controlled inhibition performance. More specifically, inactive Val-homozygous participants exhibited a lower inhibition performance than active Val homozygotes and inactive Met carriers; the former had a higher error rate without differences in RT.Conclusion: Differences between individuals on inhibitory performance may be partially understood by the interaction between genetic influence in BDNF secretion and PA level. The results of this study clearly support the neurotrophic hypothesis that BDNF synthesis is an important mechanism underlying the influence of physical activity on brain

  10. Inhibitory effects of silver zeolite on in vitro growth of fish egg pathogen, Saprolegnia sp.

    Directory of Open Access Journals (Sweden)

    Seyed Ali Johari

    2014-05-01

    Full Text Available Objective: To investigate the effects of powdered silver zeolite (SZ on the in vitro growth of the fish pathogen Saprolegnia sp. Methods: The antifungal activity of SZ was evaluated by determining the minimum inhibitory concentrations using two-fold serial dilutions of powdered SZ in a glucose yeast extract agar at 22 °C. The growth of Saprolegnia sp. on the SZ agar treatments was compared to that on SZ-free agar controls. Results: The results showed that SZ had an inhibitory effect on the in vitro growth of the tested fungi. The minimum inhibitory concentration of SZ for Saprolegnia sp. was also calculated at 600 mg/L, which is equal to 0.06 percent. Conclusions: SZ is a potential good candidate to replace teratogenic and toxic agents, such as malachite green in aquaculture systems.

  11. Marine Bacillus spp. associated with the egg capsule of Concholepas concholepas (common name "loco") have an inhibitory activity toward the pathogen Vibrio parahaemolyticus.

    Science.gov (United States)

    Leyton, Yanett; Riquelme, Carlos

    2010-10-01

    The pandemic bacterium Vibrio parahaemolyticus, isolated from seawater, sediment, and marine organisms, is responsible for gastroenteric illnesses in humans and also cause diseases in aquaculture industry in Chile and other countries around the world. In this study, bacterial flora with inhibitory activity against pathogenic V. parahaemolyticus were collected from egg capsules of Concholepas concholepas and evaluated. The 16S rRNA fragment was sequenced from each isolated strain to determine its identity using the GenBank database. A phylogenetic analysis was made, and tests for the productions of antibacterial substance were performed using the double-layer method. Forty-five morphotypes of bacterial colonies were isolated, 8 of which presented an inhibitory effect on the growth of V. parahaemolyticus. 16S rRNA sequence and phylogenetic analysis show that these strains constitute taxa that are phylogenetically related to the Bacillus genus and are probably sister species or strains of the species Bacillus pumilus, Bacillus licheniform, or Bacillus sp. It is important to determine the nature of the antibacterial substance to evaluate their potential for use against the pathogen species V. parahaemolyticus.

  12. On minimal inhibitory rules for almost all k-valued information systems

    KAUST Repository

    Moshkov, Mikhail; Skowron, Andrzej; Suraj, Zbigniew

    2009-01-01

    The minimal inhibitory rules for information systems can be used for construction of classifiers. We show that almost all information systems from a certain large class of information systems have relatively short minimal inhibitory rules. However

  13. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    Science.gov (United States)

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  14. Activity-dependent formation of a vesicular inhibitory amino acid transporter gradient in the superior olivary complex of NMRI mice.

    Science.gov (United States)

    Ebbers, Lena; Weber, Maren; Nothwang, Hans Gerd

    2017-10-26

    In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular

  15. Solution structure and dynamics of melanoma inhibitory activity protein

    International Nuclear Information System (INIS)

    Lougheed, Julie C.; Domaille, Peter J.; Handel, Tracy M.

    2002-01-01

    Melanoma inhibitory activity (MIA) is a small secreted protein that is implicated in cartilage cell maintenance and melanoma metastasis. It is representative of a recently discovered family of proteins that contain a Src Homologous 3 (SH3) subdomain. While SH3 domains are normally found in intracellular proteins and mediate protein-protein interactions via recognition of polyproline helices, MIA is single-domain extracellular protein, and it probably binds to a different class of ligands.Here we report the assignments, solution structure, and dynamics of human MIA determined by heteronuclear NMR methods. The structures were calculated in a semi-automated manner without manual assignment of NOE crosspeaks, and have a backbone rmsd of 0.38 A over the ordered regions of the protein. The structure consists of an SH3-like subdomain with N- and C-terminal extensions of approximately 20 amino acids each that together form a novel fold. The rmsd between the solution structure and our recently reported crystal structure is 0.86 A over the ordered regions of the backbone, and the main differences are localized to the most dynamic regions of the protein. The similarity between the NMR and crystal structures supports the use of automated NOE assignments and ambiguous restraints to accelerate the calculation of NMR structures

  16. Facile alkylation of 4-nitrobenzotriazole and its platelet aggregation inhibitory activity.

    Science.gov (United States)

    Singh, Dhandeep; Silakari, Om

    2017-10-15

    We explored the facile alkylation of 4-nitrobenzotriazole under basic conditions and the synthesized derivatives were tested for their potential ADP induced platelet aggregation inhibition activity in comparison with standard drug ticagrelor (selective P2Y12 inhibitor). The nitro group at 4-position is highly activating toward alkylation reactions (under strong basic conditions) and resulted in formation of degradation product like 3-nitrobenzene-1,2-diamine which make isolation of alkyl products very difficult. We optimized the reaction under mild basic condition (potassium carbonate and DMF) which is devoid of any degradation product. This is perhaps the first report of 4-nitrobenzotriazole derivatives possessing platelet aggregation inhibitory activity. Generally activity increases with increase in length of alkyl chain and 1-alkyl positional isomers were found to be more potent than 2-alkyl isomers. The benzoyl derivative was found to be the most potent [compound 22; (4-Nitro-1H-benzotriazol-1-yl)(phenyl)methanone; IC 50 =0.65±0.10mM] which may be attributed to electronegative oxygen atom and aromatic ring. Benzyl derivatives [compound 20; 1-Benzyl-4-nitro-1H-benzotriazole; IC 50 =0.81±0.08mM, compound 21; 2-Benzyl-4-nitro-2H-benzotriazole; IC 50 =0.82±0.19mM] and sulfonyl derivative [compound 23; 1-[(4-Methylphenyl)sulfonyl]-4-nitro-1H-benzotriazole; IC 50 =0.82±0.19mM] are also found to be highly active. Furthermore, all compounds possess P2Y12 binding affinity as confirmed by VASP/P2Y12 phosphorylation assay. Copyright © 2017. Published by Elsevier Ltd.

  17. Chemical Composition, Antioxidant Capacity, Acetyl- and Butyrylcholinesterase Inhibitory Activities of the Essential Oil of Thymus haussknechtii Velen.

    Directory of Open Access Journals (Sweden)

    Handan G. Sevindik

    2016-01-01

    Full Text Available The chemical composition of the essential oil from the aerial parts of Thymus haussknechtii Velen. was analyzed by using gas chromatography (GC-FID and gas chromatography-mass spectrometry (GC-MS. The major component of the essential oil was thymol (52.2%. Total phenolic content of the essential oil was determined as 132.9 µg gallic acid equivalent. The antioxidant capacity was evaluated by DPPH free radical, superoxide anion radical and hydrogen peroxide scavenging activities along with ferrous ion-chelating power test, ABTS radical cation decolorization assay and ferric thiocyanate methods. In addition to antioxidant activity, anticholinesterase activity of the essential oil was also evaluated. It exhibited inhibitory activities on AChE and BuChE which play an important role in Alzheimer’s disease, along with significant antioxidant activity.

  18. Effects of chloroquine, mefloquine and quinine on natural killer cell activity in vitro. An analysis of the inhibitory mechanism

    DEFF Research Database (Denmark)

    Pedersen, B K; Bygbjerg, I C; Theander, T G

    1986-01-01

    ) or interleukin 2 (Il-2); preincubation of mononuclear cells with IF or Il-2 followed by addition of anti-malarial drugs decreased the inhibitory effects of the drugs. The drug-induced inhibition of the NK cell activity was not dependent on the presence of monocytes. Using monocyte depleted Percoll fractionated......Natural killer (NK) cell activity against K 562 target cells was inhibited by pharmacological concentrations of chloroquine, mefloquine and quinine. The most potent were mefloquine and quinine. The drug-induced inhibition of the NK cell activity was abolished by addition of alpha-interferon (IF...

  19. Porritoxins, metabolites of Alternaria porri, as anti-tumor-promoting active compounds.

    Science.gov (United States)

    Horiuchi, Masayuki; Tokuda, Harukuni; Ohnishi, Keiichiro; Yamashita, Masakazu; Nishino, Hoyoku; Maoka, Takashi

    2006-02-01

    To search for possible cancer chemopreventive agents from natural sources, we performed primary screening of metabolites of Alternaria porri by examining their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. The ethyl acetate extract of A. porri showed the inhibitory effect on EBV-EA activation. Three porritoxins (1-3) were obtained as inhibitory active compounds for EBV-EA from ethyl acetate extract. 6-(3',3'-Dimethylallyloxy)-4-methoxy-5-methylphthalide (2) showed the strongest activity among them. Inhibitory effect of porritoxin (1) and (2) was superior to that of beta-carotene, a well-known anti-tumor promoter. Furthermore, the structure-activity correlation of porritoxins and their related compounds were discussed.

  20. Influence of gas-liquid two-phase flow on angiotensin-I converting enzyme inhibitory peptides separation by ultra-filtration.

    Science.gov (United States)

    Charoenphun, Narin; Youravong, Wirote

    2017-01-01

    Membrane fouling is a major problem in ultra-filtration systems and two-phase flow is a promising technique for permeate flux enhancement. The objective of this research was to study the use of an ultra-filtration (UF) system to enrich angiotensin-I converting enzyme (ACE) inhibitory peptides from tilapia protein hydrolysate. To select the most appropriate membrane and operating condition, the effects of membrane molecular weight cut-off (MWCO), transmembrane pressure (TMP) and cross-flow velocity (CFV) on permeate flux and ACE inhibitory peptide separation were studied. Additionally, the gas-liquid two-phase flow technique was applied to investigate its effect on the process capability. The results showed that the highest ACE inhibitory activity was obtained from permeate of the 1 kDa membrane. In terms of TMP and CFV, the permeate flux tended to increase with TMP and CFV. The use of gas-liquid two-phase flow as indicated by shear stress number could reduce membrane fouling and increase the permeate flux up to 42%, depending on shear stress number. Moreover, the use of a shear stress number of 0.039 led to an augmentation in ACE inhibitory activity of permeates. Operating conditions using a shear stress number of 0.039 were recommended for enrichment of ACE inhibitory peptides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. In-vitro Antioxidant, Cytotoxic, Cholinesterase Inhibitory Activities and Anti-Genotoxic Effects of Hypericum retusum Aucher Flowers, Fruits and Seeds Methanol Extracts in Human Mononuclear Leukocytes.

    Science.gov (United States)

    Keskin, Cumali; Aktepe, Necmettin; Yükselten, Yunus; Sunguroglu, Asuman; Boğa, Mehmet

    2017-01-01

    The present study investigates the antioxidant, anticancer, anticholinesterase, anti-genotoxic activities and phenolic contents of flower, fruit and seed methanol extracts of Hypericum retusum AUCHER. The amounts of protocatechuic acid, catechin, caffeic acid and syringic acid in methanol extracts were determined by HPLC. Total phenolic content of H. retusum seed extract was found more than fruit and flower extracts. The DPPH free radical scavenging activity of flower and seed methanol extracts showed close activity versus BHT as control. Among three extracts of H. retusum only flower methanol extract was exhibited considerable cytotoxic activities against to HeLa and NRK-52E cell lines. Moreover, seed methanol extract showed both acetyl and butyrl-cholinesterase inhibitory activity. The highest anti-genotoxic effects were seen 25 and 50 μg/mL concentrations. In this study, the extracts showed a strong antioxidant and anti-genotoxic effect. The seed extract was more efficient- than extracts of fruit and flowers. Our results suggest that the antioxidant and anti-genotoxic effects of extracts depend on their phenolic contents. Further studies should evaluate the in-vitro and in-vivo the benefits of H. retusum seed methanol extracts.

  2. Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain.

    Science.gov (United States)

    Teh, Sue-Siang; Bekhit, Alaa El-Din A; Carne, Alan; Birch, John

    2016-07-15

    Hemp protein isolates (HPIs) were hydrolysed by proteases (AFP, HT, ProG, actinidin and zingibain). The enzymatic hydrolysis of HPIs was evaluated through the degree of hydrolysis and SDS-PAGE profiles. The bioactive properties of the resultant hydrolysates (HPHs) were accessed through ORAC, DPPḢ scavenging and ACE-inhibitory activities. The physical properties of the resultant HPHs were evaluated for their particle sizes, zeta potential and surface hydrophobicity. HT had the highest rate of caseinolytic activity at the lowest concentration (0.1 mg mL(-1)) compared to other proteases that required concentration of 100 mg mL(-1) to achieve their maximum rate of caseinolytic activity. This led to the highest degree of hydrolysis of HPIs by HT in the SDS-PAGE profiles. Among all proteases and substrates, HT resulted in the highest bioactivities (ORAC, DPPḢ scavenging and ACE-inhibitory activities) generated from alkali extracted HPI in the shortest time (2 h) compared to the other protease preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ophiamides A-B, new potent urease inhibitory sphingolipids from Heliotropium ophioglossum.

    Science.gov (United States)

    Firdous, Sadiqa; Ansari, Nida Hassan; Fatima, Itrat; Malik, Abdul; Afza, Nighat; Iqbal, Lubna; Lateef, Mehreen

    2012-07-01

    Ophiamides A (1) and B (2), two new sphingolipids have been isolated from the n-hexane subfraction of the MeOH extract of the whole plant of Heliotropium ophioglossum along with glycerol monopalmitate (3) and β-sitosterol 3-O-β-D: -glucoside (4) reported for the first time from this species. Their structures were elucidated by spectroscopic techniques including MS and 2D-NMR spectroscopy. Both the compounds 1 and 2 showed potent inhibitory activity against the enzyme urease.

  4. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  5. Rosmarinic Acid from Eelgrass Shows Nematicidal and Antibacterial Activities against Pine Wood Nematode and Its Carrying Bacteria

    Directory of Open Access Journals (Sweden)

    Qunqun Guo

    2012-11-01

    Full Text Available Pine wilt disease (PWD, a destructive disease for pine trees, is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus and additional bacteria. In this study, extracts of Zostera marina showed a high nematicidal activity against PWN and some of the bacteria that it carries. Light yellow crystals were obtained from extracts of Z. marina through solvent extraction, followed by chromatography on AB-8 resin and crystallization. The NMR and HPLC analysis showed that the isolated compound was rosmarinic acid (RosA. RosA showed effective nematicidal activity, of which the LC50 (50% lethal concentration to PWN at 24 h, 48 h and 72 h was 1.18 mg/g, 1.05 mg/g and 0.95 mg/g, respectively. To get a high yield rate of RosA from Z. marina, single factor experiments and an L9 (34 orthogonal experiment were performed. This extraction process involved 70% ethanol for 3 h at 40 °C. The extraction dosage was 1:50 (w/v. The highest yield of RosA from Zostera was 3.13 mg/g DW (dried weight. The crude extracts of Zostera marina (10 mg/mL and RosA (1 mg/mL also showed inhibitory effects to some bacterial strains carried by PWN: Klebsiella sp., Stenotrophomonas maltophilia, Streptomyces sp. and Pantoea agglomerans. The results of these studies provide clues for preparing pesticide to control PWD from Z. marina.

  6. Inhibitory Effects of Thai Essential Oils on Potentially Aflatoxigenic Aspergillus parasiticus and Aspergillus flavus.

    Science.gov (United States)

    Jantapan, Kittika; Poapolathep, Amnart; Imsilp, Kanjana; Poapolathep, Saranya; Tanhan, Phanwimol; Kumagai, Susumu; Jermnak, Usuma

    2017-01-01

     The antiaflatoxigenic and antifungal activities of essential oils (EOs) of finger root (Boesenbergia rotunda (L.) Mansf.), pine (Pinus pinaster), rosewood (Aniba rosaedora), Siam benzoin (Styrax tonkinensis), Thai moringa (Moringa oleifera), and ylang ylang (Cananga odorata) were tested for Aspergillus parasiticus and Aspergillus flavus in potato dextrose broth. Aflatoxin B 1 (AFB 1 ) was extracted from culture using a QuEChERS-based extraction procedure and analyzed with high performance liquid chromatography (HPLC) coupled to a fluorescence detector. EO of pine showed the greatest inhibition of growth and AFB 1 production of A. parasiticus, followed by EOs of rosewood, finger root, Siam benzoin, and ylang ylang. EO of finger root gave the best inhibitory effects on A. flavus, followed by EOs of rosewood, pine, ylang ylang, and Siam benzoin. EO of Thai moringa did not show any significant inhibition of aflatoxigenic fungi. The antiaflatoxigenic activities of EOs correlated with their antifungal activities in the dosedependent manner. Comparison of the application of the five selected EOs in peanut pods by direct and vapor exposure indicated that the AFB 1 production inhibitory effects of the five EOs by direct exposure were faster and more effective than by vapor exposure. EO of finger root showed the best inhibition of AFB 1 production of A. flavus in peanut pods by direct exposure, followed by EOs of pine, rosewood, ylang ylang, and Siam benzoin.

  7. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation.

    Science.gov (United States)

    Lemieux, Maxime; Chauvette, Sylvain; Timofeev, Igor

    2015-02-01

    During slow-wave sleep, neurons of the thalamocortical network are engaged in a slow oscillation (<1 Hz), which consists of an alternation between the active and the silent states. Several studies have provided insights on the transition from the silent, which are essentially periods of disfacilitation, to the active states. However, the conditions leading to the synchronous onset of the silent state remain elusive. We hypothesized that a synchronous input to local inhibitory neurons could contribute to the transition to the silent state in the cat suprasylvian gyrus during natural sleep and under ketamine-xylazine anesthesia. After partial and complete deafferentation of the cortex, we found that the silent state onset was more variable among remote sites. We found that the transition to the silent state was preceded by a reduction in excitatory postsynaptic potentials and firing probability in cortical neurons. We tested the impact of chloride-mediated inhibition in the silent-state onset. We uncovered a long-duration (100-300 ms) inhibitory barrage occurring about 250 ms before the silent state onset in 3-6% of neurons during anesthesia and in 12-15% of cases during natural sleep. These inhibitory activities caused a decrease in cortical firing that reduced the excitatory drive in the neocortical network. That chain reaction of disfacilitation ends up on the silent state. Electrical stimuli could trigger a network silent state with a maximal efficacy in deep cortical layers. We conclude that long-range afferents to the neocortex and chloride-mediated inhibition play a role in the initiation of the silent state. Copyright © 2015 the American Physiological Society.

  8. In vitro assessment of the growth and plasma membrane H+ -ATPase inhibitory activity of ebselen and structurally related selenium- and sulfur-containing compounds in Candida albicans.

    Science.gov (United States)

    Orie, Natalie N; Warren, Andrew R; Basaric, Jovana; Lau-Cam, Cesar; Piętka-Ottlik, Magdalena; Młochowski, Jacek; Billack, Blase

    2017-06-01

    Ebselen (EB, compound 1) is an investigational organoselenium compound that reduces fungal growth, in part, through inhibition of the fungal plasma membrane H + -ATPase (Pma1p). In the present study, the growth inhibitory activity of EB and of five structural analogs was assessed in a fluconazole (FLU)-resistant strain of Candida albicans (S2). While none of the compounds were more effective than EB at inhibiting fungal growth (IC 50  ∼ 18 μM), two compounds, compounds 5 and 6, were similar in potency. Medium acidification assays performed with S2 yeast cells revealed that compounds 4 and 6, but not compounds 2, 3, or 5, exerted an inhibitory activity comparable to EB (IC 50  ∼ 14 μM). Using a partially purified Pma1p preparation obtained from S2 yeast cells, EB and all the analogs demonstrated a similar inhibitory activity. Taken together, these results indicate that EB analogs are worth exploring further for use as growth inhibitors of FLU-resistant fungi. © 2017 Wiley Periodicals, Inc.

  9. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium

    OpenAIRE

    Gamboa-Gómez, Claudia I.; González-Laredo, Rubén F.; Gallegos-Infante, José Alberto; Pérez, MŞ del Mar Larrosa; Moreno-Jiménez, Martha R.; Flores-Rueda, Ana G.; Rocha-Guzmán, Nuria E.

    2016-01-01

    Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profi le measured by UPLC MS/MS analysis d...

  10. Inhibitory Activities of Zygophyllum album: A Natural Weight-Lowering Plant on Key Enzymes in High-Fat Diet-Fed Rats

    Science.gov (United States)

    Mnafgui, Kais; Hamden, Khaled; Ben Salah, Hichem; Kchaou, Mouna; Nasri, Mbarek; Slama, Sadok; Derbali, Fatma; Allouche, Noureddine; Elfeki, Abdelfattah

    2012-01-01

    Obesity is a serious health problem that increased risk for many complications, including diabetes and cardiovascular disease. The results showed EZA, which found rich in flavonoids and phenolic compounds, exhibited an inhibitory activity on pancreatic lipase in vitro with IC50 of 91.07 μg/mL. In vivo administration of this extract to HFD-rats lowered body weight and serum leptin level; and inhibited lipase activity of obese rats by 37% leading to notable decrease of T-Ch, TGs and LDL-c levels accompanied with an increase in HDL-c concentration in serum and liver of EZA treated HFD-rats. Moreover, the findings revealed that EZA helped to protect liver tissue from the appearance of fatty cysts. Interestingly, supplementation of EZA modulated key enzyme related to hypertension such as ACE by 36% in serum of HFD animals and improve some of serum electrolytes such as Na+, K+, Cl−, Ca2+ and Mg2+. Moreover, EZA significantly protected the liver-kidney function by reverted back near to normal the values of the liver-kidney dysfunction indices AST&ALT, ALP, CPK and GGT activities, decreased T-Bili, creat, urea and uric acid rates. In conclusion, these results showed a strong antihypelipidemic effect of EZA which can delay the occurrence of dislipidemia and hypertension. PMID:23258993

  11. Initiation and slow propagation of epileptiform activity from ventral to dorsal medial entorhinal cortex is constrained by an inhibitory gradient.

    Science.gov (United States)

    Ridler, Thomas; Matthews, Peter; Phillips, Keith G; Randall, Andrew D; Brown, Jonathan T

    2018-03-31

    The medial entorhinal cortex (mEC) has an important role in initiation and propagation of seizure activity. Several anatomical relationships exist in neurophysiological properties of mEC neurons; however, in the context of hyperexcitability, previous studies often considered it as a homogeneous structure. Using multi-site extracellular recording techniques, ictal-like activity was observed along the dorso-ventral axis of the mEC in vitro in response to various ictogenic stimuli. This originated predominantly from ventral areas, spreading to dorsal mEC with a surprisingly slow velocity. Modulation of inhibitory tone was capable of changing the slope of ictal initiation, suggesting seizure propagation behaviours are highly dependent on levels of GABAergic function in this region. A distinct disinhibition model also showed, in the absence of inhibition, a prevalence for interictal-like initiation in ventral mEC, reflecting the intrinsic differences in mEC neurons. These findings suggest the ventral mEC is more prone to hyperexcitable discharge than the dorsal mEC, which may be relevant under pathological conditions. The medial entorhinal cortex (mEC) has an important role in the generation and propagation of seizure activity. The organization of the mEC is such that a number of dorso-ventral relationships exist in neurophysiological properties of neurons. These range from intrinsic and synaptic properties to density of inhibitory connectivity. We examined the influence of these gradients on generation and propagation of epileptiform activity in the mEC. Using a 16-shank silicon probe array to record along the dorso-ventral axis of the mEC in vitro, we found 4-aminopyridine application produces ictal-like activity originating predominantly in ventral areas. This activity spreads to dorsal mEC at a surprisingly slow velocity (138 μm s -1 ), while cross-site interictal-like activity appeared relatively synchronous. We propose that ictal propagation is constrained by

  12. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum.

    Science.gov (United States)

    Losurdo, Luca; Quintieri, Laura; Caputo, Leonardo; Gallerani, Raffaele; Mayo, Baltasar; De Leo, Francesca

    2013-03-01

    A wide range of biopeptides potentially able to lower blood pressure through inhibition of the angiotensin-I converting enzyme (ACE) is produced in fermented foods by proteolytic starter cultures. This work applies a procedure based on recombinant DNA technologies for the synthesis and expression of three ACE-inhibitory peptides using a probiotic cell factory. ACE-inhibitory genes and their pro-active precursors were designed, synthesized by PCR, and cloned in Escherichia coli; after which, they were cloned into the pAM1 E. coli-bifidobacteria shuttle vector. After E. coli transformation, constructs carrying the six recombinant clones were electrotransferred into the Bifidobacterium pseudocatenulatum M115 probiotic strain. Interestingly, five of the six constructs proved to be stable. Their expression was confirmed by reverse transcription PCR. Furthermore, transformed strains displayed ACE-inhibitory activity linearly correlated to increasing amounts of cell-free cellular lysates. In particular, 50 μg of lysates from constructs pAM1-Pro-BP3 and pAM1-BP2 showed a 50% higher ACE-inhibitory activity than that of the controls. As a comparison, addition of 50 ng of Pro-BP1 and Pro-BP3 synthetic peptides to 50 μg of cell-free extracts of B. pseudocatenulatum M115 wild-type strain showed an average of 67% of ACE inhibition; this allowed estimating the amount of the peptides produced by the transformants. Engineering of bifidobacteria for the production of biopeptides is envisioned as a promising cell factory model system. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Chemical constituents from Chirita longgangensis var. hongyao with inhibitory activity against porcine respiratory and reproductive syndrome virus

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yao; Wang, Yue-Hu; Tan, Ying; Yang, Jun; Liu, Hong-Xin; Gu, Wei; Long, Chun-Lin, E-mail: long@mail.kib.ac.cn [Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (China); Bi, Jun-Long; Yin, Ge-Fen, E-mail: yingefen383@sohu.com [College of Animal Science and Technology, Yunnan Agricultural University (China)

    2012-10-15

    Two new quinonoids chiritalone A and B, and a new neolignan 7'E-4,9-dihydroxy- 3,3',5'-trimethoxy-8,4'-oxyneolign-7'-en-9'-al, along with known (-)-8-hydroxy-{alpha}-dunnione, digiferruginol, 2,5-dimethoxy-1,4-benzoquinone and hederagenin, were isolated from the stems of Chirita longgangensis var. hongyao. The structures of the new compounds were elucidated by detailed analysis from NMR (nuclear magnetic resonance) and MS (mass spectrometry) data, and the absolute configuration of chiritalone A was determined by single crystal X-ray diffraction analysis using the Flack parameter. The inhibitory activity of compounds against porcine respiratory and reproductive syndrome virus (PRRSV) was measured by the cytopathic effect (CPE) method. Digiferruginol and hederagenin showed weak effect on PRRSV with an IC{sub 50} value of 80.5 {+-} 16.9 {mu}mol L{sup -1} (SI = 19.9) and 43.2 {+-} 7.4 {mu}mol L{sup -1} (SI = 13.1), respectively. (author)

  14. Chemical constituents from Chirita longgangensis var. hongyao with inhibitory activity against porcine respiratory and reproductive syndrome virus

    International Nuclear Information System (INIS)

    Su, Yao; Wang, Yue-Hu; Tan, Ying; Yang, Jun; Liu, Hong-Xin; Gu, Wei; Long, Chun-Lin; Bi, Jun-Long; Yin, Ge-Fen

    2012-01-01

    Two new quinonoids chiritalone A and B, and a new neolignan 7'E-4,9-dihydroxy- 3,3',5'-trimethoxy-8,4'-oxyneolign-7'-en-9'-al, along with known (-)-8-hydroxy-α-dunnione, digiferruginol, 2,5-dimethoxy-1,4-benzoquinone and hederagenin, were isolated from the stems of Chirita longgangensis var. hongyao. The structures of the new compounds were elucidated by detailed analysis from NMR (nuclear magnetic resonance) and MS (mass spectrometry) data, and the absolute configuration of chiritalone A was determined by single crystal X-ray diffraction analysis using the Flack parameter. The inhibitory activity of compounds against porcine respiratory and reproductive syndrome virus (PRRSV) was measured by the cytopathic effect (CPE) method. Digiferruginol and hederagenin showed weak effect on PRRSV with an IC 50 value of 80.5 ± 16.9 μmol L -1 (SI = 19.9) and 43.2 ± 7.4 μmol L -1 (SI = 13.1), respectively. (author)

  15. Persistent Graves' hyperthyroidism despite rapid negative conversion of thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results: a case report.

    Science.gov (United States)

    Ohara, Nobumasa; Kaneko, Masanori; Kitazawa, Masaru; Uemura, Yasuyuki; Minagawa, Shinichi; Miyakoshi, Masashi; Kaneko, Kenzo; Kamoi, Kyuzi

    2017-02-06

    -stimulating hormone receptor antibody upon improvement of thyroid autoimmunity with thiamazole treatment. Physicians should keep in mind that patients with Graves' disease may show thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results that do not reflect the severity of Graves' disease or indicate the outcome of the disease, and that active Graves' disease may persist even after negative results on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Timely performance of thyroid function tests in combination with sensitive imaging tests, including thyroid ultrasound and scintigraphy, are necessary to evaluate the severity of Graves' disease and treatment efficacy.

  16. Rapid Screening of Active Components with an Osteoclastic Inhibitory Effect in Herba epimedii Using Quantitative Pattern–Activity Relationships Based on Joint-Action Models

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yuan

    2017-10-01

    Full Text Available Screening of bioactive components is important for modernization and quality control of herbal medicines, while the traditional bioassay-guided phytochemical approach is time-consuming and laborious. The presented study proposes a strategy for rapid screening of active components from herbal medicines. As a case study, the quantitative pattern–activity relationship (QPAR between compounds and the osteoclastic inhibitory effect of Herba epimedii, a widely used herbal medicine in China, were investigated based on joint models. For model construction, standard mixtures data showed that the joint-action models are better than the partial least-squares (PLS model. Then, the Good2bad value, which could reflect components’ importance based on Monte Carlo sampling, was coupled with the joint-action models for screening of active components. A compound (baohuoside I and a component composed of compounds with retention times in the 6.9–7.9 min range were selected by our method. Their inhibition rates were higher than icariin, the key bioactive compound in Herba epimedii, which could inhibit osteoclast differentiation and bone resorption in a previous study. Meanwhile, the half-maximal effective concentration, namely, EC50 value of the selected component was 7.54 μg/mL, much smaller than that of baohuoside I—77 μg/mL—which indicated that there is synergistic action between compounds in the selected component. The results clearly show our proposed method is simple and effective in screening the most-bioactive components and compounds, as well as drug-lead components, from herbal medicines.

  17. New compounds from acid hydrolyzed products of the fruits of Momordica charantia L. and their inhibitory activity against protein tyrosine phosphatas 1B.

    Science.gov (United States)

    Zeng, Ke; He, Yan-Ni; Yang, Di; Cao, Jia-Qing; Xia, Xi-Chun; Zhang, Shi-Jun; Bi, Xiu-Li; Zhao, Yu-Qing

    2014-06-23

    Four new cucurbitane-type triterpene sapogenins, compounds 1-4, together with other eight known compounds were isolated from the acid-hydrolyzed fruits extract of Momordica charantia L. Their chemical structures were established by NMR, mass spectrometry and X-ray crystallography. Compounds 1-7 and 9-12 were evaluated for their inhibitory activities toward protein tyrosine phosphatase 1B (PTP1B), a tyrosine phosphatase that has been implicated as a key target for therapy against type II diabetes. Compounds 1, 2, 4, 7 and 9 were shown inhibitory activities of 77%, 62%, 62% 60% and 68% against PTP1B, respectively. All of these tested compounds were exhibited higher PTP1B inhibition activities than that of the Na3VO4, a known PTP1B inhibitor used as positive control in present study. Structure activity relationship (SAR) analysis indicated that the inhibition activity of PTP1B was associated with the presence and number of -OH groups. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Screening for Neuraminidase Inhibitory Activity in Traditional Chinese Medicines Used to Treat Influenza.

    Science.gov (United States)

    Yang, Xian-Ying; Liu, Ai-Lin; Liu, Shu-Jing; Xu, Xiao-Wei; Huang, Lin-Fang

    2016-08-27

    To screen for influenza virus neuraminidase inhibition and to provide a reference for the clinical treatment of influenza using traditional Chinese medicines (TCM). In this study, 421 crude extracts (solubilized with petroleum ether, ethanol, ethyl acetate, and aqueous solvents) were obtained from 113 TCM. The medicine extracts were then reacted with oseltamivir, using 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUNANA) as the substrate, to determine influenza virus neuraminidase activity using a standard fluorimetric assay. It was found that Chinese medicine extracts from Pyrola calliantha, Cynanchum wilfordii, Balanophora involucrata and Paeonia delavayi significantly inhibited neuraminidase activity at a concentration of 40 μg/mL. Dose-dependent inhibitory assays also revealed significant inhibition. The IC50 range of the TCM extracts for influenza virus neuraminidase was approximately 12.66-34.85 μg/mL, respectively. Some Chinese medicines have clear anti-influenza viral effects that may play an important role in the treatment of influenza through the inhibition of viral neuraminidase. The results of this study demonstrated that plant medicines can serve as a useful source of neuraminidase (NA) inhibitors and further investigation into the pharmacologic activities of these extracts is warranted.

  19. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults

    Directory of Open Access Journals (Sweden)

    Ayaka Ishii-Takahashi

    2014-01-01

    Full Text Available The differential diagnosis of autism spectrum disorders (ASDs and attention deficit hyperactivity disorder (ADHD based solely on symptomatic and behavioral assessments can be difficult, even for experts. Thus, the development of a neuroimaging marker that differentiates ASDs from ADHD would be an important contribution to this field. We assessed the differences in prefrontal activation between adults with ASDs and ADHD using an entirely non-invasive and portable neuroimaging tool, near-infrared spectroscopy. This study included 21 drug-naïve adults with ASDs, 19 drug-naïve adults with ADHD, and 21 healthy subjects matched for age, sex, and IQ. Oxygenated hemoglobin concentration changes in the prefrontal cortex were assessed during a stop signal task and a verbal fluency task. During the stop signal task, compared to the control group, the ASDs group exhibited lower activation in a broad prefrontal area, whereas the ADHD group showed underactivation of the right premotor area, right presupplementary motor area, and bilateral dorsolateral prefrontal cortices. Significant differences were observed in the left ventrolateral prefrontal cortex between the ASDs and ADHD groups during the stop signal task. The leave-one-out cross-validation method using mean oxygenated hemoglobin changes yielded a classification accuracy of 81.4% during inhibitory control. These results were task specific, as the brain activation pattern observed during the verbal fluency task did not differentiate the ASDs and ADHD groups significantly. This study therefore provides evidence of a difference in left ventrolateral prefrontal activation during inhibitory control between adults with ASDs and ADHD. Thus, near-infrared spectroscopy may be useful as an auxiliary tool for the differential diagnosis of such developmental disorders.

  20. Synthesis and evaluation of 2-benzylidene-1-tetralone derivatives for monoamine oxidase inhibitory activity.

    Science.gov (United States)

    Amakali, Klaudia T; Legoabe, Lesetja Jan; Petzer, Anel; Petzer, Jacobus P

    2018-05-01

    Chalcone has been identified as a promising lead for the design of monoamine oxidase (MAO) inhibitors. This study attempted to discover potent and selective chalcone-derived MAO inhibitors by synthesising a series consisting of various cyclic chalcone derivatives. The cyclic chalcones were selected based on the possibility that their restricted structures would confer a higher degree of MAO isoform selectivity, and included the following chemical classes: 1-indanone, 1-tetralone, 1-benzosuberone, chromone, thiochromone, 4-chromanone and 4-thiochromanone. The results showed that the cyclic chalcones are in general good potency, and in most instances specific inhibitors of the human MAO-B isoform. Among these compounds, the 4-chromanone derivative was the most potent MAO-B inhibitor with an IC50 value of 0.156 µM. To further investigate the MAO inhibition of cyclic chalcones, a series of twenty-three 2-benzylidene-1-tetralone derivatives were synthesised and evaluated as MAO inhibitors. Most 2-benzylidene-1-tetralones possess good inhibitory activity and specificity for MAO-B with the most potent inhibitor displaying an IC50 value of 0.0064 µM, while the most potent MAO-A inhibitor possessed an IC50 value of 0.754 µM. This study thus shows that certain cyclic chalcones are human MAO-B inhibitors, compounds that could be suitable for the treatment of neurodegenerative disorders such as Parkinson's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes.

    Science.gov (United States)

    Wei, Wei; Wang, Xiao-Jing

    2016-12-07

    We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia.

    Science.gov (United States)

    Tan, Hwee-Feng; Gan, Chee-Yuen

    2016-04-01

    Functional polysaccharide was isolated from Momordica charantia, with a yield of 36% (w/w). M. charantia bioactive polysaccharide (MCBP) was an acidic and branched heteropolysaccharide with a molecular weight of 92 kDa. Fourier transform infrared spectroscopic analysis indicated that MCBP was a pectin-like polysaccharide with an esterification degree of 53% and it contains numerous monosaccharides, predominantly glucose, galactose, and galaturonic acid. The results also showed that MCBP exhibited free radical scavenging activity (31.9%), ferric reducing antioxidant power (0.95 mM), α-amylase inhibition (89.1%), and angiotensin-converting enzyme inhibition (94.1%). In the terms of functionality, MCBP showed a lower water-holding capacity but higher in oil-holding capacity, emulsifying activity and foaming capacity compared to citrus pectin. Scanning electron microscopy images demonstrated that MCBP formed gels with a porous structure, and flow analysis showed that the gel solution exhibited pseudoplastic shear-thinning behavior. These findings indicated that MCBP is a promising functional macromolecular carbohydrate for the food and nutraceutical industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making.

    Directory of Open Access Journals (Sweden)

    Ritwik K Niyogi

    Full Text Available Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the

  4. Virus encoded MHC-like decoys diversify the inhibitory KIR repertoire.

    Directory of Open Access Journals (Sweden)

    Paola Carrillo-Bustamante

    Full Text Available Natural killer (NK cells are circulating lymphocytes that play an important role in the control of viral infections and tumors. Their functions are regulated by several activating and inhibitory receptors. A subset of these receptors in human NK cells are the killer immunoglobulin-like receptors (KIRs, which interact with the highly polymorphic MHC class I molecules. One important function of NK cells is to detect cells that have down-regulated MHC expression (missing-self. Because MHC molecules have non polymorphic regions, their expression could have been monitored with a limited set of monomorphic receptors. Surprisingly, the KIR family has a remarkable genetic diversity, the function of which remains poorly understood. The mouse cytomegalovirus (MCMV is able to evade NK cell responses by coding "decoy" molecules that mimic MHC class I. This interaction was suggested to have driven the evolution of novel NK cell receptors. Inspired by the MCMV system, we develop an agent-based model of a host population infected with viruses that are able to evolve MHC down-regulation and decoy molecules. Our simulations show that specific recognition of MHC class I molecules by inhibitory KIRs provides excellent protection against viruses evolving decoys, and that the diversity of inhibitory KIRs will subsequently evolve as a result of the required discrimination between host MHC molecules and decoy molecules.

  5. Generation and Characterization of Inhibitory Antibodies Specific to Guinea Pig CXCR1 and CXCR2.

    Science.gov (United States)

    Tanaka, Kento; Yoshimura, Chigusa; Shiina, Tetsuo; Terauchi, Tomoko; Yoshitomi, Tomomi; Hirahara, Kazuki

    2017-04-01

    CXCR1 and CXCR2 are chemokine receptors that have different selectivity of chemokine ligands, but the distinct role of each receptor is not clearly understood. This is due to the absence of specific inhibitors in guinea pigs, which are the appropriate species for investigation of CXCR1 and CXCR2 because of their functional similarity to humans. In this study, we generated and evaluated monoclonal antibodies that specifically bound to guinea pig CXCR1 (gpCXCR1) and guinea pig CXCR2 (gpCXCR2) for acquisition of specific inhibitors. To assess the activity of antibodies, we established CHO-K1 cells stably expressing either gpCXCR1 or gpCXCR2 (CHO/gpCXCR1 or CHO/gpCXCR2). CHO/gpCXCR1 showed migration in response to guinea pig interleukin (IL)-8, and CHO/gpCXCR2 showed migration in response to both guinea pig IL-8 and guinea pig growth-regulated oncogene α. The receptor selectivities of the chemokines of guinea pigs were the same as the human orthologs. The inhibitory activities of the anti-gpCXCR1 and anti-gpCXCR2 monoclonal antibodies on cell migration were observed in a concentration-dependent manner. In conclusion, we successfully obtained inhibitory antibodies specific to gpCXCR1 and gpCXCR2. These inhibitory antibodies will be useful to clarify the physiological roles of CXCR1 and CXCR2 in guinea pigs.

  6. Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties

    Science.gov (United States)

    Ferreres, Federico; Lopes, Graciliana; Gil-Izquierdo, Angel; Andrade, Paula B.; Sousa, Carla; Mouga, Teresa; Valentão, Patrícia

    2012-01-01

    Purified phlorotannin extracts from four brown seaweeds (Cystoseira nodicaulis (Withering) M. Roberts, Cystoseira tamariscifolia (Hudson) Papenfuss, Cystoseira usneoides (Linnaeus) M. Roberts and Fucus spiralis Linnaeus), were characterized by HPLC-DAD-ESI-MSn. Fucophloroethol, fucodiphloroethol, fucotriphloroethol, 7-phloroeckol, phlorofucofuroeckol and bieckol/dieckol were identified. The antioxidant activity and the hyaluronidase (HAase) inhibitory capacity exhibited by the extracts were also assessed. A correlation between the extracts activity and their chemical composition was established. F. spiralis, the species presenting higher molecular weight phlorotannins, generally displayed the strongest lipid peroxidation inhibitory activity (IC50 = 2.32 mg/mL dry weight) and the strongest HAase inhibitory capacity (IC50 = 0.73 mg/mL dry weight). As for superoxide radical scavenging, C. nodicaulis was the most efficient species (IC50 = 0.93 mg/mL dry weight), followed by F. spiralis (IC50 = 1.30 mg/mL dry weight). These results show that purified phlorotannin extracts have potent capabilities for preventing and slowing down the skin aging process, which is mainly associated with free radical damage and with the reduction of hyaluronic acid concentration, characteristic of the process. PMID:23222802

  7. Chemical composition and acetylcholinesterase inhibitory activity of Artemisia maderaspatana essential oil.

    Science.gov (United States)

    Jyotshna; Srivastava, Nidhi; Singh, Bhuwanendra; Chanda, Debabrata; Shanker, Karuna

    2015-01-01

    To date, there are no reports to validate the Indian traditional and folklore claims of Artemisia maderaspatana L. (syn. Grangea maderaspatana L.) (Asteraceae) for the treatment of Alzheimer's disease. The present study characterizes the volatile components (non-polar compounds) of A. maderaspatana and evaluates its acetylcholinesterase inhibition potential. The essential oils (yield 0.06% v/w) were obtained from fresh aerial part of A. maderaspatana. The characterization of volatile components (non-polar compounds) was performed by GC-MS data and with those of reference compounds compiled in the spectral library of in-house database. The in vitro acetylcholinesterase (AChE) inhibition of the volatile organic constituents (VOC's) of A. maderaspatana aerial part was evaluated in varying concentration ranges (0.70-44.75 µg/mL) with Ellman's method. The major components were α-humulene (46.3%), β-caryophyllene (9.3%), α-copaene (8.2%), β-myrcene (4.3%), Z(E)-α-farnesene (3.7%), and calarene (3.5%). Chemical variability among other Artemisia spp. from different climatic regions of India and countries namely Iran and France was observed. The experimental results showed that diverse volatile organic constituents of A. maderaspatana have significant acetylcholinesterase inhibitory activity (an IC50 value of 31.33 ± 1.03 µg/mL). This is the first report on the inhibition of acetylcholinesterase properties of essential oil of A. maderaspatana obtained from fresh aerial part. The present results indicate that essential oil of A. maderaspatana isolated from the northern region of India could inhibit AChE moderately. Therefore, the possibility of novel AChE inhibitors might exist in VOCs of this plant.

  8. Coagulation factor VII variants resistant to inhibitory antibodies.

    Science.gov (United States)

    Branchini, Alessio; Baroni, Marcello; Pfeiffer, Caroline; Batorova, Angelika; Giansily-Blaizot, Muriel; Schved, Jean F; Mariani, Guglielmo; Bernardi, Francesco; Pinotti, Mirko

    2014-11-01

    Replacement therapy is currently used to prevent and treat bleeding episodes in coagulation factor deficiencies. However, structural differences between the endogenous and therapeutic proteins might increase the risk for immune complications. This study was aimed at identifying factor (F)VII variants resistant to inhibitory antibodies developed after treatment with recombinant activated factor VII (rFVIIa) in a FVII-deficient patient homozygous for the p.A354V-p.P464Hfs mutation, which predicts trace levels of an elongated FVII variant in plasma. We performed fluorescent bead-based binding, ELISA-based competition as well as fluorogenic functional (activated FX and thrombin generation) assays in plasma and with recombinant proteins. We found that antibodies displayed higher affinity for the active than for the zymogen FVII (half-maximal binding at 0.54 ± 0.04 and 0.78 ± 0.07 BU/ml, respectively), and inhibited the coagulation initiation phase with a second-order kinetics. Isotypic analysis showed a polyclonal response with a large predominance of IgG1. We hypothesised that structural differences in the carboxyl-terminus between the inherited FVII and the therapeutic molecules contributed to the immune response. Intriguingly, a naturally-occurring, poorly secreted and 5-residue truncated FVII (FVII-462X) escaped inhibition. Among a series of truncated rFVII molecules, we identified a well-secreted and catalytically competent variant (rFVII-464X) with reduced binding to antibodies (half-maximal binding at 0.198 ± 0.003 BU/ml) as compared to the rFVII-wt (0.032 ± 0.002 BU/ml), which led to a 40-time reduced inhibition in activated FX generation assays. Taken together our results provide a paradigmatic example of mutation-related inhibitory antibodies, strongly support the FVII carboxyl-terminus as their main target and identify inhibitor-resistant FVII variants.

  9. Inhibitory Effects of Spices on Biogenic Amine Accumulation during Fish Sauce Fermentation.

    Science.gov (United States)

    Zhou, Xuxia; Qiu, Mengting; Zhao, Dandan; Lu, Fei; Ding, Yuting

    2016-04-01

    The presence of high levels of biogenic amines is detrimental to the quality and safety of fish sauce. This study investigated the effects of ethanol extracts of spices, including garlic, ginger, cinnamon, and star anise extracts, in reducing the accumulation of biogenic amines during fish sauce fermentation. The concentrations of biogenic amines, which include histamine, putrescine, tyramine, and spermidine, all increased during fish sauce fermentation. When compared with the samples without spices, the garlic and star anise extracts significantly reduced these increases. The greatest inhibitory effect was observed for the garlic ethanolic extracts. When compared with controls, the histamine, putrescine, tyramine, and spermidine contents and the overall biogenic amine levels of the garlic extract-treated samples were reduced by 30.49%, 17.65%, 26.03%, 37.20%, and 27.17%, respectively. The garlic, cinnamon, and star anise extracts showed significant inhibitory effects on aerobic bacteria counts. Furthermore, the garlic and star anise extracts showed antimicrobial activity against amine producers. These findings may be helpful for enhancing the safety of fish sauce. © 2016 Institute of Food Technologists®

  10. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities.

    Science.gov (United States)

    Hemalatha, P; Bomzan, Dikki Pedenla; Sathyendra Rao, B V; Sreerama, Yadahally N

    2016-05-15

    Whole grain quinoa and its milled fractions were evaluated for their phenolic composition in relation to their antioxidant properties and inhibitory effects on α-amylase and α-glucosidase activities. Compositional analysis by HPLC-DAD showed that the distribution of phenolic compounds in quinoa is not entirely localised in the outer layers of the kernel. Milling of whole grain quinoa resulted in about 30% loss of total phenolic content in milled grain. Ferulic and vanillic acids were the principal phenolic acids and rutin and quercetin were predominant flavonoids detected in whole grain and milled fractions. Quinoa milled fractions exhibited numerous antioxidant activities. Despite having relatively lower phenolic contents, dehulled and milled grain fractions showed significantly (p ⩽ 0.05) higher metal chelating activity than other fractions. Furthermore, extracts of bran and hull fractions displayed strong inhibition towards α-amylase [IC50, 108.68 μg/ml (bran) and 148.23 μg/ml (hulls)] and α-glucosidase [IC50, 62.1 μg/ml (bran) and 68.14 μg/ml (hulls)] activities. Thus, whole grain quinoa and its milled fractions may serve as functional food ingredients in gluten-free foods for promoting health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism.

    Science.gov (United States)

    Mo, Zhi-Zhun; Wang, Xiu-Fen; Zhang, Xie; Su, Ji-Yan; Chen, Hai-Ming; Liu, Yu-Hong; Zhang, Zhen-Biao; Xie, Jian-Hui; Su, Zi-Ren

    2015-07-16

    The inhibitory effect of andrographolide sodium bisulphite (ASB) on jack bean urease (JBU) and Helicobacter pylori urease (HPU) was performed to elucidate the inhibitory potency, kinetics and mechanism of inhibition in 20 mM phosphate buffer, pH 7.0, 2 mM EDTA, 25 °C. The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of ASB was characterized with IC50 values. Lineweaver-Burk and Dixon plots for JBU inhibition of ASB was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni2+ binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode. The IC50 of ASB against JBU and HPU was 3.28±0.13 mM and 3.17±0.34 mM, respectively. The inhibition proved to be competitive and concentration- dependent in a slow-binding progress. The rapid formation of initial ASB-JBU complex with an inhibition constant of Ki=2.86×10(-3) mM was followed by a slow isomerization into the final complex with an overall inhibition constant of Ki*=1.33×10(-4) mM. The protective experiment proved that the urease active site is involved in the binding of ASB. Thiol reagents (L-cysteine and dithiothreithol) strongly protect the enzyme from the loss of enzymatic activity, while boric acid and fluoride show weaker protection, indicating that the active-site sulfhydryl group of JBU was potentially involved in the blocking process. Moreover, inhibition of ASB proved to be reversible since ASB-inactivated JBU could be reactivated by dithiothreitol application. Molecular docking assay suggested that ASB made contacts with the important sulfhydryl group Cys-592 residue and restricted the mobility of the active-site flap. ASB was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration

  12. The effects of inhibitory control training for preschoolers on reasoning ability and neural activity

    DEFF Research Database (Denmark)

    Liu, Qian; Zhu, Xinyi; Ziegler, Albert

    2015-01-01

    Inhibitory control (including response inhibition and interference control) develops rapidly during the preschool period and is important for early cognitive development. This study aimed to determine the training and transfer effects on response inhibition in young children. Children....../week, for 3 weeks. Several cognitive tasks (involving inhibitory control, working memory, and fluid intelligence) were used to evaluate the transfer effects, and electroencephalography (EEG) was performed during a go/no-go task. Progress on the trained game was significant, while performance on a reasoning...

  13. Inhibitory effects of Caesalpinia sappan on growth and invasion of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Kim, Kang-Ju; Yu, Hyeon-Hee; Jeong, Seung-Il; Cha, Jung-Dan; Kim, Shin-Moo; You, Yong-Ouk

    2004-03-01

    In the present study, we investigated antimicrobial activity of Caesalpinia sappan against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and effect of Caesalpinia sappan extract on the invasion of MRSA to human mucosal fibroblasts (HMFs). Chloroform, n-butanol, methanol, and aqueous extracts of the Caesalpinia sappan showed antimicrobial activity against standard methicillin-sensitive Staphylococcus aureus (MSSA) as well as MRSA. Methanol extract of Caesalpinia sappan demonstrated a higher inhibitory activity than n-butanol, chloroform, and aqueous extracts. In the checkerboard dilution method, methanol extract of Caesalpinia sappan markedly lowered the minimal inhibitory concentrations (MICs) of ampicillin and oxacillin against MRSA. To determine whether methanol extract of Caesalpinia sappan inhibits the MRSA invasion to HMFs, the cells were treated with various sub-MIC concentrations of methanol extract and bacterial invasion was assayed. MRSA invasion was notably decreased in the presence of 20-80 microg/ml of Caesalpinia sappan extract compared to the control group. The effect of Caesalpinia sappan extract on MRSA invasion appeared dose-dependent. These results suggest that methanol extract of Caesalpinia sappan may have antimicrobial activity and the potential to restore the effectiveness of beta-lactam antibiotics against MRSA, and inhibit the MRSA invasion to HMFs.

  14. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis

    Directory of Open Access Journals (Sweden)

    Gladis Raja Malar Chelladurai

    2018-05-01

    Full Text Available ABSTRACT Our present investigation deals with the phytochemical screening, estimation of total flavonoids, terpenoids and tannin contents to evaluate the anti-diabetic activities of Salacia oblonga stem followed by GC-MS analysis. It explores the natural compounds and the potential α-amylase and α-glucosidase inhibitory actions of stem extracts. The aqueous stem extract was selected from other extracts (ethanol, acetone, petroleum ether and chloroform for the in vitro study of anti-diabetic activity by alpha amylase and alpha glucosidase inhibitory assays. The stem extract was also analyzed by gas chromatography mass spectrometry to identify the natural chemical components. Phytochemical analysis of aqueous stem extract showed major classes of secondary metabolites such as phenols, flavonoids, alkaloids, terpenoids, tannins, saponins. The total flavonoid, terpenoid, and tannin contents were quantified as 19.82±0.06 mg QE/g, 96.2±0.20 mg/g and 11.25±0.03 mg TAE/g respectively. The percentage inhibition of assays showed maximum inhibitory effects (59.46±0.04% and 68.51±0.01% at a concentration of 100 mg/mL. The IC50 values of stem extract was found to be 73.56 mg/mL and 80.90 mg/mL for alpha amylase and alpha glucosidase inhibition. Fifteen chemical constituents were found by GC-MS analysis. This study suggest the aqueous stem extract of Salacia oblonga might be considered as potential source of bio active constituents with excellent antidiabetic activity.

  15. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    Science.gov (United States)

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  16. Chemical investigation of Cyperus distans L. and inhibitory activity of scabequinone in seed germination and seedling growth bioassays.

    Science.gov (United States)

    Vilhena, Karyme S S; Guilhon, Giselle Maria Skelding Pinheiro; Zoghbi, Maria das Graças B; Santos, Lourivaldo Silva; Souza Filho, Antonio Pedro Silva

    2014-01-01

    Chemical investigation of the rhizomes of Cyperus distans (Cyperaceae) led to the identification of α-ciperone, cyperotundone and scabequinone, besides other common constituents. Complete assignment of the (13)C NMR data of scabequinone is being published for the first time. The inhibitory effects of C. distans extracts and scabequinone on the seed germination and seedling growth of Mimosa pudica, Senna obtusifolia and Pueraria phaseoloides were evaluated. Seed germination inhibition bioassay revealed that S. obtusifolia (52-53%) was more sensitive to the hexane and the methanol extracts at 1% than M. pudica (0-10%). Scabequinone at 250 mg L⁻¹ displayed seed germination inhibitions more than 50% and radicle growth reduction of more than 35% of the test species S. obtusifolia and P. phaseoloides, while the hypocotyl growth of M. pudica was significantly affected (>50%) by the quinone at the same concentration. These results demonstrate that scabequinone contributes to the overall inhibitory activities of C. distans.

  17. Crude extract and fractions from Eugenia uniflora Linn leaves showed anti-inflammatory, antioxidant, and antibacterial activities.

    Science.gov (United States)

    Falcão, Tamires Rocha; de Araújo, Aurigena Antunes; Soares, Luiz Alberto Lira; de Moraes Ramos, Rhayanne Thaís; Bezerra, Isabelle Cristinne Ferraz; Ferreira, Magda Rhayanny Assunção; de Souza Neto, Manoel André; Melo, Maria Celeste Nunes; de Araújo, Raimundo Fernandes; de Aguiar Guerra, Andreza Conceição Véras; de Medeiros, Juliana Silva; Guerra, Gerlane Coelho Bernardo

    2018-03-09

    This study showed phytochemical composition and evaluates the anti-inflammatory, and analgesic activities of crude extract (CE) and fractions from E. uniflora Linn leaves. Polyphenols present in crude extract (CE), in aqueous fraction (AqF), and ethyl acetate (EAF) treated fractions from E. uniflora Linn leaves were shown by chromatographic analysis in order to conduct a phytochemical characterization. Antibacterial activity was evaluated based on minimum inhibitory concentrations (MICs) determined using the agar dilution method. Doses of 50, 100, and 200 mg/kg of the CE and fractions were applied for conducting in vivo models (male Swiss mice, 8-10 weeks old). The peritonitis experimental model was induced by carrageenan following of Myeloperoxidase activity (MPO), Total glutathione and malondialdehyde (MDA), IL-1β and TNF-α levels by spectroscopic UV/VIS analysis. Antinociceptive activity was evaluated based on an abdominal writhing model and hot plate test. The results were statistically evaluated using one-way analysis of variance (ANOVA), followed by Bonferroni's post-hoc test. The level of statistical significance was p fractions obtained from E. uniflora Linn leaves (0.05-0.87%w/w, 0.20-0.32%w/w, and 1.71-6.56%w/w, respectively). In general, the CE had lower MIC values than the fractions, including the lowest MIC against the MRSA strain. The CE and AqF also significantly reduced leukocyte migration and MPO activity (p fractions exhibited an antioxidant effect (p fractions from the studied E. uniflora Linn leaves exhibited antibacterial, anti-inflammatory, antioxidant, and analgesic activity in the performed assays.

  18. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds.

    Science.gov (United States)

    Pendota, S C; Aderogba, M A; Ndhlala, A R; Van Staden, J

    2013-07-09

    Buddleja salviifolia leaves are used for the treatment of eye infections and neurodegenerative conditions by various tribes in South Africa. This study was designed to isolate the phenolic constituents from the leaf extracts of Buddleja salviifolia and evaluate their antimicrobial and acetylcholinesterase (AChE) activities. Three phenolic compounds were isolated from the ethyl acetate fraction of a 20% aqueous methanol leaf extract of Buddleja salviifolia using Sephadex LH-20 and silica gel columns. Structure elucidation of the isolated compounds was carried out using spectroscopic techniques: mass spectrometry (ESI-TOF-MS) and NMR (1D and 2D). The extracts and isolated compounds were evaluated for antimicrobial and acetylcholinesterase activities using the microdilution technique. The bacteria used for the antimicrobial assays were Gram-positive Bacillus subtilis and Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumoniae. The isolated compounds were characterized as: 4'-hydroxyphenyl ethyl vanillate (1) a new natural product, acteoside (2) and quercetin (3). The crude extract, fractions and the isolated compounds from the leaves of the plant exhibited a broad spectrum of antibacterial activity. The EtOAc fraction exhibited good activity against Bacillus subtilis and Staphylococcus aureus with MIC values ranging from 780.0 to 390.0 µg/mL. Isolated compound 2 exhibited good activity against Staphylococcus aureus with an MIC value of 62.5 µg/mL. The hexane and DCM fractions of leaves showed the best activity against Candida albicans with MIC and MFC values of 390.0 µg/mL. In the AChE inhibitory test, among the tested extracts, the hexane fraction was the most potent with an IC50 value of 107.4 µg/mL, whereas for the isolated compounds, it was compound (3) (quercetin) with an IC50 value of 66.8 µg/mL. Activities demonstrated by the extracts and isolated compounds support the ethnopharmacological use of Buddleja salviifolia against eye

  19. Inhibitory effect of cyanide on nitrification process and its eliminating method in a suspended activated sludge process.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Xibiao; Wang, Yuan; Liu, Yongdi; Chen, Xiurong

    2014-02-01

    Inhibition of nitrification by four typical pollutants (acrylonitrile, acrylic acid, acetonitrile and cyanide) in acrylonitrile wastewater was investigated. The inhibitory effect of cyanide on nitrification was strongest, with a 50% inhibitory concentration of 0.218 mg·gVSS-1 being observed in a municipal activated sludge system. However, the performance of nitrification was recovered when cyanide was completely degraded. The nitrification, which had been inhibited by 4.17 mg·gVSS-1 of free cyanide for 24 h, was recovered to greater than 95% of that without cyanide after 10 days of recovery. To overcome cyanide inhibition, cyanide-degrading bacteria were cultivated in a batch reactor by increasing the influent cyanide concentration in a stepwise manner, which resulted in an increase in the average cyanide degradation rate from 0.14 to 1.01 mg CN-·gVSS-1·h-1 over 20 days. The cultured cyanide-degrading bacteria were shaped like short rods, and the dominant cyanide-degrading bacteria strain was identified as Pseudomonas fluorescens NCIMB by PCR.

  20. Suppression of leukocyte inhibitory factor (LIF) production and [3H]thymidine incorporation by concanavalin A-activated mononuclear cells

    International Nuclear Information System (INIS)

    Lomnitzer, R.; Rabson, A.R.

    1979-01-01

    The capacity of human mononuclear (MN) cells pretreated with concanavalin A (Con A) to suppress the activity of fresh phytohemagglutinin (PHA)-pulsed mononuclear cells was assessed. Con A-pretreated MN cells suppressed leukocyte inhibitory factor (LIF) activity in supernatants of PHA-pulsed cell cultures and [ 3 H]thymidine incorporation by these cells. Suppression was obtained in both allogeneic and autologous systems with mitomycin-treated, irradiated, or untreated Con A-induced cells. Lymphocytes from two patients that, following treatment with Con A, did not suppress mitogen-induced proliferative response of normal cells also did not suppress LIF production

  1. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs to the sub......A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  2. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus John; Yuk, Heung Joo; Wang, Yan; Zhuang, Ningning; Lee, Kon Ho; Jeon, Kwon Seok; Park, Ki Hun

    2014-01-01

    Tribulus terrestris fruits are well known for their usage in pharmaceutical preparations and food supplements. The methanol extract of T. terrestris fruits showed potent inhibition against the papain-like protease (PLpro), an essential proteolylic enzyme for protection to pathogenic virus and bacteria. Subsequent bioactivity-guided fractionation of this extract led to six cinnamic amides (1-6) and ferulic acid (7). Compound 6 emerged as new compound possessing the very rare carbinolamide motif. These compounds (1-7) were evaluated for severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro inhibitory activity to identify their potencies and kinetic behavior. Compounds (1-6) displayed significant inhibitory activity with IC50 values in the range 15.8-70.1 µM. The new cinnamic amide 6 was found to be most potent inhibitor with an IC50 of 15.8 µM. In kinetic studies, all inhibitors exhibited mixed type inhibition. Furthermore, the most active PLpro inhibitors (1-6) were proven to be present in the native fruits in high quantities by HPLC chromatogram and liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI/MS).

  3. Four new neolignans isolated from Eleutherococcus senticosus and their protein tyrosine phosphatase 1B inhibitory activity (PTP1B).

    Science.gov (United States)

    Zhang, Le; Li, Ban-Ban; Li, Hao-Ze; Meng, Xiao; Lin, Xin; Jiang, Yi-Yu; Ahn, Jong-Seog; Cui, Long

    2017-09-01

    Four new compounds, erythro-7'E-4-hydroxy-3,3'-dimethoxy-8,5'-oxyneoligna-7'-ene-7,9-diol-9'-al (1), (7S,8S)-4-hydroxy-3,1',3'-trimethoxy-4',7-epoxy-8,5'-neolign-9-ol (5), (7S,8S,7'E)-5-hydroxy-3,3'-dimethoxy-4',7-epoxy-8,5'-neolign-7'-ene-9,9'-diol (6) and (7S,8S,7'E)-5-hydroxy-3,3',9'-trimethoxy-4'-7-epoxy-8,5'-neolign-7'-ene-9-ol (7). Along with four known compounds (2-4, 8) were isolated from the EtOAc-soluble extract of Eleutherococcus senticosus. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All the compounds were evaluated for in vitro inhibitory activity against PTP1B, VHR and PP1. Among them, compounds 1-4 and 6-8 were found to exhibit selective inhibitory activity on PTP1B with IC 50 values ranging from 17.2±1.6 to 32.7±1.2μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Provocative and inhibitory effects of a video-EEG neuropsychologic protocol in juvenile myoclonic epilepsy.

    Science.gov (United States)

    Guaranha, Mirian Salvadori Bittar; da Silva Sousa, Patrícia; de Araújo-Filho, Gerardo Maria; Lin, Katia; Guilhoto, Laura Maria Figueiredo Ferreira; Caboclo, Luís Otávio Sales Ferreira; Yacubian, Elza Márcia Targas

    2009-11-01

    Studies suggest that higher cognitive functions could precipitate seizures in juvenile myoclonic epilepsy (JME). The present study aimed to analyze the effects of higher mental activity on epileptiform discharges and seizures in patients with JME and compare them to those of habitual methods of activation. Seventy-six patients with JME (41 female) underwent a video-EEG (electroencephalography) neuropsychologic protocol (VNPP) and habitual methods of activation for 4-6 h. Twenty-nine of the 76 (38.2%) presented provocative effect, and inhibition was seen in 28 of 31 (90.3%). A mixed effect was observed in 11 (35.5%), and 30 patients (39.5%) suffered no effect of VNPP. Action-programming tasks were more effective than thinking in provoking epileptiform discharges (23.7% and 11.0% of patients, respectively, p = 0.03). Inhibitory effect was observed equally in the various categories of tasks, except in mental calculation, which had a higher inhibitory rate. Habitual methods of activation were more effective than VNPP in provoking discharges. Anxiety disorders were diagnosed in 24 of 58 patients (41.4%); anxious patients had greater discharge indexes and no significant inhibitory effect on VNPP. Praxis exerted the most remarkable provocative effect, in accordance with the motor circuitry hyperexcitability hypothesis in JME. Inhibitory effect, which had no such task specificity, might be mediated by a widespread cortical-thalamic pathway, possibly involving the parietal cortex. The frequent inhibitory effect found under cortical activation conditions, influenced by the presence of anxiety, supports nonpharmacologic therapeutic interventions in JME.

  5. Angiotensin I-Converting-Enzyme-Inhibitory and Antibacterial Peptides from Lactobacillus helveticus PR4 Proteinase-Hydrolyzed Caseins of Milk from Six Species

    Science.gov (United States)

    Minervini, F.; Algaron, F.; Rizzello, C. G.; Fox, P. F.; Monnet, V.; Gobbetti, M.

    2003-01-01

    Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine αS1-casein (αS1-CN) 24-47 fragment (f24-47), f169-193, and β-CN f58-76; ovine αS1-CN f1-6 and αS2-CN f182-185 and f186-188; caprine β-CN f58-65 and αS2-CN f182-187; buffalo β-CN f58-66; and a mixture of three tripeptides originating from human β-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 μg/ml (100 μmol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC50) of some of the crude peptide fractions was very low (16 to 100 μg/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC50s were confirmed. An antibacterial peptide corresponding to β-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 μg/ml. Once generated, the bioactive peptides were resistant to further

  6. PURIFICATION OF ANGIOTENSIN CONVERTING ENZYME INHIBITORY PEPTIDE DERIVED FROM KACANG GOAT MEAT PROTEIN HYDROLYSATE

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The objective of this study was to identify the Angiotensin Converting Enzyme (ACE inhibitorypeptide derived from Kacang goat meat protein hydrolysate. Kacang goat meat loin section washydrolyzed with pepsin, trypsin and chymotrypsin. Protein hydrolysate of Kacang goat meat was thentested the protein concentration and ACE inhibitory activity. ACE inhibitory peptide of the proteinhydrolysate was purified through several steps of purification by column SEP-PAK Plus C18 Cartridgeand RP-HPLC using a Cosmosil column 5PE-SM, 4.6 x 250 mm. The sequence of amino acid of ACEinhibitory peptide was identified by amino acid sequencer. The results showed that amino acidssequence of ACE inhibitory peptide derived from protein hydrolysate of Kacang goat meat was leu-thrglu-ala-pro-leu-asn-pro-lys-ala-arg- asn-glu-lys. It had a molecular weight (MW of 1581 and occurredat the position of 20th to 33rd residues of b-actin of goat meat protein (Capra hircus. The ACE inhibitoryactivity (IC50 of the peptide was 190 mg/mL or 120 mM.

  7. Solution NMR structure and inhibitory effect against amyloid-β fibrillation of Humanin containing a D-isomerized serine residue

    Energy Technology Data Exchange (ETDEWEB)

    Alsanousi, Nesreen [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sugiki, Toshihiko, E-mail: sugiki@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Furuita, Kyoko; So, Masatomo; Lee, Young-Ho; Fujiwara, Toshimichi [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kojima, Chojiro, E-mail: kojima-chojiro-xk@ynu.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2016-09-02

    Humanin comprising 24 amino acid residues is a bioactive peptide that has been isolated from the brain tissue of patients with Alzheimer's disease. Humanin reportedly suppressed aging-related death of various cells due to amyloid fibrils and oxidative stress. There are reports that the cytoprotective activity of Humanin was remarkably enhanced by optical isomerization of the Ser14 residue from L to D form, but details of the molecular mechanism remained unclear. Here we demonstrated that Humanin D-Ser14 exhibited potent inhibitory activity against fibrillation of amyloid-β and remarkably higher binding affinity for amyloid-β than that of the Humanin wild-type and S14G mutant. In addition, we determined the solution structure of Humanin D-Ser14 by nuclear magnetic resonance (NMR) and showed that D-isomerization of the Ser14 residue enables drastic conformational rearrangement of Humanin. Furthermore, we identified an amyloid-β-binding site on Humanin D-Ser14 at atomic resolution by NMR. These biophysical and high-resolution structural analyses clearly revealed structure–function relationships of Humanin and explained the driving force of the drastic conformational change and molecular basis of the potent anti-amyloid-β fibrillation activity of Humanin caused by D-isomerization of the Ser14 residue. This is the first study to show correlations between the functional activity, tertiary structure, and partner recognition mode of Humanin and may lead to elucidation of the molecular mechanisms of the cytoprotective activity of Humanin. - Highlights: • Humanin D-Ser14 showed the strongest inhibitory activity against Aβ40 fibrillation. • NMR structure of Humanin D-Ser14 was determined in alcohol/water mixture solution. • Humanin D-Ser14 directly bound Aβ40 stronger than Humanin wild-type and Humanin S14G. • Aβ40 and zinc ion binding sites of Humanin D-Ser14 were identified. • Structure around Ser14 of Humanin is critical for Aβ40 binding and

  8. Do detour tasks provide accurate assays of inhibitory control?

    Science.gov (United States)

    Whiteside, Mark A.; Laker, Philippa R.; Beardsworth, Christine E.

    2018-01-01

    Transparent Cylinder and Barrier tasks are used to purportedly assess inhibitory control in a variety of animals. However, we suspect that performances on these detour tasks are influenced by non-cognitive traits, which may result in inaccurate assays of inhibitory control. We therefore reared pheasants under standardized conditions and presented each bird with two sets of similar tasks commonly used to measure inhibitory control. We recorded the number of times subjects incorrectly attempted to access a reward through transparent barriers, and their latencies to solve each task. Such measures are commonly used to infer the differential expression of inhibitory control. We found little evidence that their performances were consistent across the two different Putative Inhibitory Control Tasks (PICTs). Improvements in performance across trials showed that pheasants learned the affordances of each specific task. Critically, prior experience of transparent tasks, either Barrier or Cylinder, also improved subsequent inhibitory control performance on a novel task, suggesting that they also learned the general properties of transparent obstacles. Individual measures of persistence, assayed in a third task, were positively related to their frequency of incorrect attempts to solve the transparent inhibitory control tasks. Neophobia, Sex and Body Condition had no influence on individual performance. Contrary to previous studies of primates, pheasants with poor performance on PICTs had a wider dietary breadth assayed using a free-choice task. Our results demonstrate that in systems or taxa where prior experience and differences in development cannot be accounted for, individual differences in performance on commonly used detour-dependent PICTS may reveal more about an individual's prior experience of transparent objects, or their motivation to acquire food, than providing a reliable measure of their inhibitory control. PMID:29593115

  9. Brain and behavioral inhibitory control of kindergartners facing negative emotions.

    Science.gov (United States)

    Farbiash, Tali; Berger, Andrea

    2016-09-01

    Inhibitory control (IC) - one of the most critical functions underlying a child's ability to self-regulate - develops significantly throughout the kindergarten years. Experiencing negative emotions imposes challenges on executive functioning and may specifically affect IC. In this study, we examined kindergartners' IC and its related brain activity during a negative emotional situation: 58 children (aged 5.5-6.5 years) performed an emotion-induction Go/NoGo task. During this task, we recorded children's performance and brain activity, focusing on the fronto-central N2 component in the event-related potential (ERP) and the power of its underlying theta frequency. Compared to Go trials, inhibition of NoGo trials was associated with larger N2 amplitudes and theta power. The negative emotional experience resulted in better IC performance and, at the brain level, in larger theta power. Source localization of this effect showed that the brain activity related to IC during the negative emotional experience was principally generated in the posterior frontal regions. Furthermore, the band power measure was found to be a more sensitive index for children's inhibitory processes than N2 amplitudes. This is the first study to focus on kindergartners' IC while manipulating their emotional experience to induce negative emotions. Our findings suggest that a kindergartner's experience of negative emotion can result in improved IC and increases in associated aspects of brain activity. Our results also suggest the utility of time-frequency analyses in the study of brain processes associated with response inhibition in young children. © 2015 John Wiley & Sons Ltd.

  10. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    Science.gov (United States)

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.

  11. A new phenylpropanoid and an alkylglycoside from Piper retrofractum leaves with their antioxidant and α-glucosidase inhibitory activity.

    Science.gov (United States)

    Luyen, Bui Thi Thuy; Tai, Bui Huu; Thao, Nguyen Phuong; Yang, Seo Young; Cuong, Nguyen Manh; Kwon, Young In; Jang, Hae Dong; Kim, Young Ho

    2014-09-01

    Two new compounds, piperoside (1) and isoheptanol 2(S)-O-β-D-xylopyranosyl (1→6)-O-β-D-glucopyranoside (11), along with 10 known compounds 3,4-dihydroxyallylbenzene (2), 1,2-di-O-β-D-glucopyranosyl-4-allylbenzene (3), tachioside (4), benzyl-O-β-D-glucopyranoside (5), icariside F2 (6), dihydrovomifoliol-3'-O-β-D-glucopyranoside (7), isopropyl O-β-D-glucopyranoside (8), isopropyl primeveroside (9), n-butyl O-β-D-glucopyranoside (10), isoheptanol 2(S)-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (12), were isolated from the leaves of Piper retrofractum. Their structures were determined from 1D-NMR, 2D-NMR, and HR-ESI-MS spectral, a modified Mosher's method, and comparisons with previous reports. All of the isolated compounds showed modest α-glucosidase inhibitory (4.60±1.74% to 11.97±3.30%) and antioxidant activities under the tested conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro.

    Science.gov (United States)

    McCue, Patrick P; Shetty, Kalidas

    2004-01-01

    Porcine pancreatic alpha-amylase (PPA) was allowed to react with herbal extracts containing rosmarinic acid (RA) and purified RA. The derivatized enzyme-phytochemical mixtures obtained were characterized for residual amylase activity. These in vitro experiments showed that the amylase activity was inhibited in the presence of these phytochemicals. The extent of amylase inhibition correlated with increased concentration of RA. RA-containing oregano extracts yielded higher than expected amylase inhibition than similar amount of purified RA, suggesting that other phenolic compounds or phenolic synergies may contribute to additional amylase inhibitory activity. The significance of food-grade, plant-based amylase inhibitors for modulation of diabetes mellitus and other oxidation-linked diseases is hypothesized and discussed.

  13. Chemical constituents of the stem bark of Vochysia thyrsoidea Pohl. (Vochysiaceae) and evaluation of their cytotoxicity and inhibitory activity against cathepsins B and K

    International Nuclear Information System (INIS)

    Sousa, Lorena Ramos Freitas de; Silva, Jame's A. da; Vieira, Paulo Cezar; Costa, Maisa Borges; Santos, Mirley Luciene dos; Menezes, Antonio Carlos Severo; Sbardelotto, Aline Borba; Pessoa, Claudia do O; Moraes, Manoel Odorico de

    2014-01-01

    A new flavonoid, catechin-3-O-(3 - O-trans-cinnamoyl)-α-rhamnopyranoside, along with known compounds, catechin-3-O-α-rhamnopyranoside, 3-oxo-urs-12-en-28-oic acid, 2,4,6-trimethoxybenzoic acid, 2-butyl-D-fructofuranoside and 1-butyl-D-fructofuranoside, has been isolated from the stem bark of V. thyrsoidea. These compounds were assayed for inhibition of protease activity (cathepsins B and K) and against cancer cell lines. Catechin-3-O-(3 - O-trans-cinnamoyl)-α-rhamnopyranoside showed moderate inhibitory activity (IC 50 = 62.02 µM) against cathepsin B while 2-butyl-D-fructofuranoside was the most potent against a strain of CNS (SF-295) and human leukemia (HL-60) with IC 50 = 36.80 μM and IC 50 = 25.37 μM, respectively (author)

  14. Immunomodulating Activity of Aronia melanocarpa Polyphenols

    Directory of Open Access Journals (Sweden)

    Giang T. T. Ho

    2014-06-01

    Full Text Available The immunomodulating effects of isolated proanthocyanidin-rich fractions, procyanidins C1, B5 and B2 and anthocyanins of Aronia melanocarpa were investigated. In this work, the complement-modulating activities, the inhibitory activities on nitric oxide (NO production in LPS-induced RAW 264.7 macrophages and effects on cell viability of these polyphenols were studied. Several of the proanthocyanidin-rich fractions, the procyanidins C1, B5 and B2 and the cyanidin aglycone possessed strong complement-fixing activities. Cyanidin 3-glucoside possessed stronger activity than the other anthocyanins. Procyanidins C1, B5 and B2 and proanthocyanidin-rich fractions having an average degree of polymerization (PD of 7 and 34 showed inhibitory activities on NO production in LPS-stimulated RAW 264.7 mouse macrophages. All, except for the fraction containing proanthocyanidins with PD 34, showed inhibitory effects without affecting cell viability. This study suggests that polyphenolic compounds of A. melanocarpa may have beneficial effects as immunomodulators and anti-inflammatory agents.

  15. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT Assay and Larvicidal Activities.

    Science.gov (United States)

    Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess

    2017-09-01

    We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC 50 = 111.2μg/ml) in DPPH and IC 50 = 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD 50 = 1.1μg/ml) in brine shrimp lethality test and with (IC 50 = 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC 50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli , Aspergillus niger and Candida albicans. The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  16. Selective deficiencies in descending inhibitory modulation in neuropathic rats: implications for enhancing noradrenergic tone.

    Science.gov (United States)

    Patel, Ryan; Qu, Chaoling; Xie, Jennifer Y; Porreca, Frank; Dickenson, Anthony H

    2018-05-31

    Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. In contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared to sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief.

  17. Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances.

    Science.gov (United States)

    Sulzer, G; Busse, M

    1991-12-01

    Bacterial strains exhibiting antimicrobial activity towards other bacteria are quite common in nature. During the past few years several genera have been shown to exert inhibitory action against Listeria. spp. In the present work strains of Enterococcus, Lactobacillus and Lactococcus were tested for their influence on the development of Listeria spp. on Camembert cheese. Partial or complete inhibition of growth of Listeria spp. was observed using various inhibitory bacteria. Complete inhibition occurred when the inhibitory strain was used as a starter culture and there was a low level of contamination with Listeria spp. during the first stage of ripening. Very little inhibition occurred if the inhibitory strain was added together with the starter culture.

  18. In vitro evaluation of capsaicin inhibitory effects on zonula occludens toxin in vibrio cholerae ATCC14035 strain

    Directory of Open Access Journals (Sweden)

    Soroor Erfanimanesh

    2014-10-01

    Conclusion: Capsaicin is one of the active compounds of red chili that can drastically suppress zot gene expression and shows promising inhibitory effect against V. cholerae zot production. Thus, routine intake of red chilli, which is easily available and inexpensive, may be an alternative approach to prevent and control symptoms of cholera.

  19. Inhibitory Control as a Core Process of Creative Problem Solving and Idea Generation from Childhood to Adulthood

    Science.gov (United States)

    Cassotti, Mathieu; Agogué, Marine; Camarda, Anaëlle; Houdé, Olivier; Borst, Grégoire

    2016-01-01

    Developmental cognitive neuroscience studies tend to show that the prefrontal brain regions (known to be involved in inhibitory control) are activated during the generation of creative ideas. In the present article, we discuss how a dual-process model of creativity--much like the ones proposed to account for decision making and reasoning--could…

  20. Negative regulation of AMP-activated protein kinase (AMPK) activity by macrophage migration inhibitory factor (MIF) family members in non-small cell lung carcinomas.

    Science.gov (United States)

    Brock, Stephanie E; Rendon, Beatriz E; Yaddanapudi, Kavitha; Mitchell, Robert A

    2012-11-02

    AMP-activated protein kinase (AMPK) is a nutrient- and metabolic stress-sensing enzyme activated by the tumor suppressor kinase, LKB1. Because macrophage migration inhibitory factor (MIF) and its functional homolog, d-dopachrome tautomerase (d-DT), have protumorigenic functions in non-small cell lung carcinomas (NSCLCs) but have AMPK-activating properties in nonmalignant cell types, we set out to investigate this apparent paradox. Our data now suggest that, in contrast to MIF and d-DTs AMPK-activating properties in nontransformed cells, MIF and d-DT act cooperatively to inhibit steady-state phosphorylation and activation of AMPK in LKB1 wild type and LKB1 mutant human NSCLC cell lines. Our data further indicate that MIF and d-DT, acting through their shared cell surface receptor, CD74, antagonize NSCLC AMPK activation by maintaining glucose uptake, ATP production, and redox balance, resulting in reduced Ca(2+)/calmodulin-dependent kinase kinase β-dependent AMPK activation. Combined, these studies indicate that MIF and d-DT cooperate to inhibit AMPK activation in an LKB1-independent manner.

  1. Influence of inhibitory control on planning abilities in children with mild intellectual disability

    Directory of Open Access Journals (Sweden)

    Gligorović Milica

    2016-01-01

    Full Text Available With regard to the fact that the tendency toward unsophisticated strategies is often related to difficulties with basic components of executive functions, the aim of this research was to determine the relation between planning abilities and inhibitory control in children with mild intellectual disability (MID. The sample included 56 children with idiopathic MID (IQ 50-69, M=61.13, SD=7.14, of both genders (26/46.3% of girls, between 9.11 and 14.03 years of age (M=11.61; SD=1.29. Go no Go Task and Day/Night Stroop Task were used for the assessment of inhibitory control (delayed response to the agreed signal, conflict provoking motor responses, and inhibition of arrogant verbal responses, while Tower of London Test (ToL was used for the assessment of planning abilities. Multivariate analysis of covariance (MANCOVA, paired samples t-test, Pearson's correlation, and partial correlation coefficients were used in statistical analysis of the results. The results showed that the mistakes in Response delay set of Go-no-Go task were the only significant factor of primary Total move score variable (ToL. The influence of the ability to delay motor activity, assessed by Response delay set, on all ToL variables was statistically significant (p=0.003. The results lead to a conclusion that, during the processes of planning and executing activities, children with MID primarily rely on simple inhibitory mechanisms.

  2. Antiglycation, radical scavenging, and semicarbazide-sensitive amine oxidase inhibitory activities of acetohydroxamic acid in vitro

    Directory of Open Access Journals (Sweden)

    Liu YH

    2017-07-01

    Full Text Available Yuh-Hwa Liu,1,2,* Yeh-Lin Lu,3,* Der-Zen Liu,4 Wen-Chi Hou5 1Division of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; 2Department of General Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; 3Department of Pharmacy, Taipei Medical University, Taipei, Taiwan; 4Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; 5Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to this work Abstract: Advanced glycation endproducts (AGEs can promote intracellular reactive oxygen species production, and the levels of AGEs are highly correlated with cardiovascular disease and diabetes complications. Acetohydroxamic acid (acetH is a bacterial urease inhibitor drug used to treat kidney stones and infections in the urinary tract, and hydroxyurea (HU is a drug used for antineoplasm and sickle cell diseases. Both acetH and HU are hydroxamic acid derivatives. It was found that acetH and HU at 2.5 or 5 mM showed anti-AGE formation by lowering the AGEs’ fluorescent intensities and Nε-(carboxymethyllysine formation in bovine serum albumin/galactose models, and both showed better and significant differences (P<0.05 compared to the positive control of aminoguanidine. Regarding radical scavenging activities, the half-inhibition concentrations (IC50 of acetH against α,α-diphenyl-β-picrylhydrazyl radical and hydroxyl radical were 34.86 and 104.42 µM, respectively. The IC50 of acetH against semicarbazide-sensitive amine oxidase was 10.56 µM, and acetH showed noncompetitive inhibition respective to the substrates (benzylamine. The antiglycation, antioxidant, and semicarbazide-sensitive amine oxidase inhibitory activities of acetH prove that it has the potential for treating cardiovascular disease and diabetes complications and it needs further investigation in animal models. Keywords: acetH, AGEs, Nε

  3. Mechanisms underlying electrical and mechanical responses of the bovine retractor penis to inhibitory nerve stimulation and to an inhibitory extract.

    Science.gov (United States)

    Byrne, N. G.; Muir, T. C.

    1985-01-01

    The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is

  4. Nitric oxide inhibitory substances from Curcuma mangga rhizomes

    Directory of Open Access Journals (Sweden)

    Kanidta Kaewkroek

    2009-08-01

    Full Text Available Curcuma mangga Val. & Zijp. is a member of the Zingiberaceae family commonly grown in Thailand. It is locally known as mango tumeric because of its mango-like smell when the fresh rhizomes are cut. C. mangga is a popular vegetable, the tips of the young rhizomes and shoots are consumed raw with rice. Medicinally, the rhizomes are used as a stomachic and for chest pains, fever, and general debility. It is also used in postpartum care. In the present study, we investigated the anti-inflammatory effect of the extract and compounds from C. mangga rhizomes against lipopolysaccharide (LPS-induced nitric oxide (NO production in RAW 264.7 cell line. From bioassay-guided fractionation, the chloroform fraction exhibited the most potent inhibitory activity with an IC50 value of 2.1 g/ml, followed by the hexane fraction (IC50 = 3.8 g/ml and the ethyl acetate fraction (IC50 = 23.5 g/ml, respectively. Demethoxycurcumin (1 and 3-buten-2-one, 4-[(1R, 4aR, 8aR-decahydro-5, 5, 8a-trimethyl-2-methylene-1-naphthalenyl]-, (3E-rel- (2 were isolated from the chloroform- and hexane fractions, respectively. Bisdemethoxycurcumin (3 whose structure is similar to that of 1 was also tested for NO inhibitory activity. Of the tested compounds, compound 1 exhibited the highest activity with an IC50 value of 12.1 μM, followed by 3(IC50 = 16.9 M and 2 (IC50 = 30.3 M. These results suggest that C. mangga and its compounds exert NO inhibitory activity and have a potential to be developed as a pharmaceutical preparation for treatment of inflammatory-related diseases. Moreover, this is the first report of compound 2 that was isolated from C. mangga rhizomes.

  5. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  6. Differences in Inhibitory Control between Impulsive and Premeditated Aggression in Juvenile Inmates

    Directory of Open Access Journals (Sweden)

    Zhuo Zhang

    2017-07-01

    Full Text Available Inhibitory control dysfunction was considered a universal characteristic of violent offenders. The aim of this study was to examine differences in inhibitory control between two subtypes of violent youth; those displaying predominantly impulsive and those presenting predominantly premeditated aggression (PM. Forty-four juvenile offenders, defined on the basis of the Procedures for the Classification of Aggressive/Violent Acts (Stanford and Barratt, 2001 participated (N = 23: impulsive; N = 21 premeditated. A visual Go/NoGo task was used to compare behavioral responses and event-related potentials (ERPs between groups. The task contained two letters (W and M, W was the Go stimulus and M the NoGo stimulus. The impulsive youth showed a significantly greater decrease in N2 latency for Go relative to NoGo trials than the premeditated aggressive youth. The differentiation in N2 amplitude between Go and NoGo (N2d was negatively correlated with impulsivity of aggression. Both groups showed no significant central NoGo P3. Our findings suggest that impulsive violent youth show stronger prepotent responses and impaired conflict monitoring during early inhibitory control processing relative to premeditated aggressive youth. Both impulsive and premeditated violent youth may show impaired response inhibition at the late processing stage of inhibitory control.

  7. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of β-Carboline and Quinoline Alkaloids Derivatives from the Plants of Genus Peganum

    Directory of Open Access Journals (Sweden)

    Ting Zhao

    2013-01-01

    Full Text Available It was reported that the main chemical constituents in plants of genus Peganum were a serial of β-carboline and quinoline alkaloids. These alkaloids were quantitatively assessed for selective inhibitory activities on acetylcholinesterase (AChE and butyrylcholinesterase (BChE by in vitro Ellman method. The results indicated that harmane was the most potent selective AChE inhibitor with an IC50 of 7.11 ± 2.00 μM and AChE selectivity index (SI, IC50 of BChE/IC50 of AChE of 10.82. Vasicine was the most potent BChE inhibitor with feature of dual AChE/BChE inhibitory activity, with an IC50 versus AChE/BChE of 13.68 ± 1.25/2.60 ± 1.47 μM and AChE SI of 0.19. By analyzing and comparing the IC50 and SI of those chemicals, it was indicated that the β-carboline alkaloids displayed more potent AChE inhibition but less BChE inhibition than quinoline alkaloids. The substituent at the C7 position of the β-carboline alkaloids and C3 and C9 positions of quinoline alkaloids played a critical role in AChE or BChE inhibition. The potent inhibition suggested that those alkaloids may be used as candidates for treatment of Alzheimer’s disease. The analysis of the quantitative structure-activity relationship of those compounds investigated might provide guidance for the design and synthesis of AChE and BChE inhibitors.

  8. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    Science.gov (United States)

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  9. Prelimbic cortex extracellular signal-regulated kinase 1/2 activation is required for memory retrieval of long-term inhibitory avoidance.

    Science.gov (United States)

    Luo, Fei; Zheng, Jian; Sun, Xuan; Deng, Wei-Ke; Li, Bao Ming; Liu, Fang

    2017-04-15

    Neural mechanism underlying memory retrieval has been extensively studied in the hippocampus and amygdala. However, little is known about the role of medial prefrontal cortex in long-term memory retrieval. We evaluate this issue in one-trial step-through inhibitory avoidance (IA) paradigm. Our results showed that, 1) inactivation of mPFC by local infusion of GABA A -receptor agonist muscimol caused severe deficits in retrieval of 1-day and 7-day but had no effects on 2-h inhibitory avoidance memory; 2) the protein level of phosphorylated-ERK1/2 in mPFC were significantly increased following retrieval of 1-day and 7-day IA memory, so did the numbers of phosphorylated-ERK (pERK) and phosphorylated-CREB (pCREB) labeled neurons; 3) intra-mPFC infusion of ERK kinase inhibitor PD98095 significantly reduced phosphorylated ERK1/2 levels and phosphorylated-ERK1/2 and phosphorylated-CREB labeled cells, and severely impaired retrieval of 7-day IA memory when the drugs were administrated 30min prior to test. The present study provides evidence that retrieval of long-lasting memory for inhibitory avoidance requires mPFC and involves the ERK-CREB signaling cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Inhibitory effect of chitosan oligosaccharide on human hepatoma ...

    African Journals Online (AJOL)

    Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. Materials and Methods: MTT assay was applied to detect cell ...

  11. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    Science.gov (United States)

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  12. Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence.

    Science.gov (United States)

    Guo, Yuxing; Gan, Junai; Zhu, Qian; Zeng, Xiaoqun; Sun, Yangying; Wu, Zhen; Pan, Daodong

    2018-02-01

    To exert an antihypertensive effect after oral administration, angiotensin I-converting enzyme (ACE)-inhibitory peptides must remain active after intestinal transport. The purpose of this article is to elucidate the transport permeability and route of ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro (RLSFNP) across the intestinal epithelium using Caco-2 cell monolayers. Intact RLSFNP and RLSFNP breakdown fragments F, FNP, SFNP and RLSF were found in RLSFNP transport solution across Caco-2 cell monolayers using ultra-performance liquid chromatography-tandem mass spectrometry. RLSFNP fragments FNP, SFNP and RLSF also contributed to ACE inhibitory effects. Protease inhibitors (bacitracin and leupeptin) and absorption enhancers (sodium glycocholate hydrate, sodium deoxycholate and Na 2 EDTA) improved the transport flux of RLSFNP. A transport inhibitor experiment showed that intact RLSFNP may be transported via the paracellular route. Intact RLSFNP can be transported across the Caco-2 cell monolayers via the paracellular route. Extensive hydrolysis was the chief reason for the low permeability of RLSFNP. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder.

    Science.gov (United States)

    Valencia Garcia, Sara; Brischoux, Frédéric; Clément, Olivier; Libourel, Paul-Antoine; Arthaud, Sébastien; Lazarus, Michael; Luppi, Pierre-Hervé; Fort, Patrice

    2018-02-05

    Despite decades of research, there is a persistent debate regarding the localization of GABA/glycine neurons responsible for hyperpolarizing somatic motoneurons during paradoxical (or REM) sleep (PS), resulting in the loss of muscle tone during this sleep state. Combining complementary neuroanatomical approaches in rats, we first show that these inhibitory neurons are localized within the ventromedial medulla (vmM) rather than within the spinal cord. We then demonstrate their functional role in PS expression through local injections of adeno-associated virus carrying specific short-hairpin RNA in order to chronically impair inhibitory neurotransmission from vmM. After such selective genetic inactivation, rats display PS without atonia associated with abnormal and violent motor activity, concomitant with a small reduction of daily PS quantity. These symptoms closely mimic human REM sleep behavior disorder (RBD), a prodromal parasomnia of synucleinopathies. Our findings demonstrate the crucial role of GABA/glycine inhibitory vmM neurons in muscle atonia during PS and highlight a candidate brain region that can be susceptible to α-synuclein-dependent degeneration in RBD patients.

  14. Inhibitory effect of corn silk on skin pigmentation.

    Science.gov (United States)

    Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk

    2014-03-03

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  15. Inhibitory Effect of Corn Silk on Skin Pigmentation

    Directory of Open Access Journals (Sweden)

    Sang Yoon Choi

    2014-03-01

    Full Text Available In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  16. Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease.

    Science.gov (United States)

    Intra, Bungonsiri; Mungsuntisuk, Isada; Nihira, Takuya; Igarashi, Yasuhiro; Panbangred, Watanalai

    2011-04-01

    Colletotrichum is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of Colletotrichum are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of Colletotrichum spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil. A total of 304 actinomycetes were isolated and tested for their inhibitory activity against Colletotrichum gloeosporioides strains DoA d0762 and DoA c1060 and Colletotrichum capsici strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic Saccharomyces cerevisiae strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and S. cerevisiae used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus Streptomyces sp., while one each belongs to Saccharopolyspora (strain SB-2) and Nocardiopsis (strain CM-2) and two to Nocardia (strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi. Preliminary analysis of crude

  17. Entecavir Exhibits Inhibitory Activity against Human Immunodeficiency Virus under Conditions of Reduced Viral Challenge▿

    Science.gov (United States)

    Lin, Pin-Fang; Nowicka-Sans, Beata; Terry, Brian; Zhang, Sharon; Wang, Chunfu; Fan, Li; Dicker, Ira; Gali, Volodymyr; Higley, Helen; Parkin, Neil; Tenney, Daniel; Krystal, Mark; Colonno, Richard

    2008-01-01

    Entecavir (ETV) was developed for the treatment of chronic hepatitis B virus (HBV) infection and is globally approved for that indication. Initial preclinical studies indicated that ETV had no significant activity against human immunodeficiency virus type 1 (HIV-1) in cultured cell lines at physiologically relevant ETV concentrations, using traditional anti-HIV assays. In response to recent clinical observations of anti-HIV activity of ETV in HIV/HBV-coinfected patients not receiving highly active antiretroviral therapy (HAART), additional investigative studies were conducted to expand upon earlier results. An extended panel of HIV-1 laboratory and clinical strains and cell types was tested against ETV, along with a comparison of assay methodologies and resistance profiling. These latest studies confirmed that ETV has only weak activity against HIV, using established assay systems. However, a >100-fold enhancement of antiviral activity (equivalent to the antiviral activity of lamivudine) could be obtained when assay conditions were modified to reduce the initial viral challenge. Also, the selection of a M184I virus variant during the passage of HIV-1 at high concentrations of ETV confirmed that ETV can exert inhibitory pressure on the virus. These findings may have a significant impact on how future assays are performed with compounds to be used in patients infected with HIV. These results support the recommendation that ETV therapy should be administered in concert with HAART for HIV/HBV-coinfected patients. PMID:18316521

  18. Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality

    Directory of Open Access Journals (Sweden)

    Toria Herd

    2018-02-01

    Full Text Available Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems and social competence. In this prospective longitudinal study, we examine whether changes in inhibitory control, measured at both behavioral and neural levels, mediate the association between stress and changes in secure relationship quality with parents and peers. The sample included 167 adolescents (53% males who were first recruited at age 13 or 14 years and assessed annually three times. Adolescents’ inhibitory control was measured by their behavioral performance and brain activities, and adolescents self-reported perceived stress levels and relationship quality with mothers, fathers, and peers. Results suggest that behavioral inhibitory control mediates the association between perceived stress and adolescent’s secure relationship quality with their mothers and fathers, but not their peers. In contrast, given that stress was not significantly correlated with neural inhibitory control, we did not further test the mediation path. Our results highlight the role of inhibitory control as a process through which stressful life experiences are related to impaired secure relationship quality between adolescents and their mothers and fathers.

  19. Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality.

    Science.gov (United States)

    Herd, Toria; Li, Mengjiao; Maciejewski, Dominique; Lee, Jacob; Deater-Deckard, Kirby; King-Casas, Brooks; Kim-Spoon, Jungmeen

    2018-01-01

    Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems and social competence. In this prospective longitudinal study, we examine whether changes in inhibitory control, measured at both behavioral and neural levels, mediate the association between stress and changes in secure relationship quality with parents and peers. The sample included 167 adolescents (53% males) who were first recruited at age 13 or 14 years and assessed annually three times. Adolescents' inhibitory control was measured by their behavioral performance and brain activities, and adolescents self-reported perceived stress levels and relationship quality with mothers, fathers, and peers. Results suggest that behavioral inhibitory control mediates the association between perceived stress and adolescent's secure relationship quality with their mothers and fathers, but not their peers. In contrast, given that stress was not significantly correlated with neural inhibitory control, we did not further test the mediation path. Our results highlight the role of inhibitory control as a process through which stressful life experiences are related to impaired secure relationship quality between adolescents and their mothers and fathers.

  20. Inhibitory effects of different forms of tocopherols, tocopherol phosphates, and tocopherol quinones on growth of colon cancer cells.

    Science.gov (United States)

    Dolfi, Sonia C; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S

    2013-09-11

    Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols (T), tocopheryl phosphates (TP), and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation, and inducing apoptosis; however, α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ forms of TP and TQ were more active than the δ forms in inhibiting cancer cell growth, whereas the α forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 values of ∼0.8 and ∼2 μM on HCT116 cells after a 72 h incubation, respectively) were greater than 100-fold and greater than 20-fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP, and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ forms of TP and TQ, and the ineffectiveness of the α forms of tocopherol and their metabolites against colon cancer cells.