WorldWideScience

Sample records for showed excellent thermal

  1. Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders

    International Nuclear Information System (INIS)

    Zhang, Lianmeng; Chen, Wenshu; Luo, Guoqiang; Chen, Pingan; Shen, Qiang; Wang, Chuanbin

    2014-01-01

    Highlights: • High-density (98.4%) W–20 wt.%Cu composites were low-temperature fabricated. • A highly pure Cu network and a homogenous microstructure formed in the composites. • The interfaces between W and Cu are well bonded with no spaces. • The composites have excellent thermal properties. -- Abstract: High-density W–20 wt.%Cu composites containing a Cu-network structure and exhibiting good thermal properties were fabricated by low-temperature hot-press sintering from high-purity copper-coated tungsten powders. The relative density of W–20 wt.%Cu composites sintered at 950 °C–100 MPa–2 h was 98.4%. The low-temperature densification of W–Cu composites occurs because the sintering mode of the coated particles involves only sintering of Cu to Cu, rather than both Cu to W and Cu to Cu, as required for conventional powder particles. The microstructure shows that a network of high-purity Cu extends throughout the composites, and that the W is distributed homogeneously; the interfaces between W and Cu show good contact. The composites have excellent thermal conductivity (239 W/(m K)) and a relatively low coefficient of thermal expansion (7.4 × 10 −6 /K), giving them some of the best properties reported to date for thermal-management materials. The excellent performance is mainly because of their structure, which arises from the characteristics of the high-purity copper-coated tungsten powders

  2. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    Science.gov (United States)

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  3. Thermal engineering studies with Excel, Mathcad and Internet

    CERN Document Server

    2016-01-01

    This book provides the fundamentals of the application of mathematical methods, modern computational tools (Excel, Mathcad, SMath, etc.), and the Internet to solve the typical problems of heat and mass transfer, thermodynamics, fluid dynamics, energy conservation and energy efficiency. Chapters cover the technology for creating and using databases on various properties of working fluids, coolants and thermal materials. All calculation methods are provided with links to online computational pages where data can be inserted and recalculated. It discusses tasks involving the generation of electricity at thermal, nuclear, gas turbine and combined-cycle power plants, as well as processes of co- and trigeneration, conditioning facilities and heat pumps. This text engages students and researchers by using modern calculation tools and the Internet for thermal engineering applications. .

  4. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity

    Science.gov (United States)

    Oddone, Valerio; Boerner, Benji; Reich, Stephanie

    2017-12-01

    High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.

  5. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    International Nuclear Information System (INIS)

    Yin, Hongyao; Xiao, Haibo; Ding, Lei; Zhang, Chun; Ren, Aiming; Li, Bo

    2015-01-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ cut-off  ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10 3 GM) and high thermal stability (T d  = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10 3 GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties

  6. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hongyao [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Ding, Lei [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Zhang, Chun; Ren, Aiming [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Li, Bo [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)

    2015-02-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ{sub cut-off} ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10{sup 3}GM) and high thermal stability (T{sub d} = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10{sup 3}GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties.

  7. Hotel shows health system keys to service excellence.

    Science.gov (United States)

    2003-08-01

    Ritz-Carlton partnership part of broader program pursuing service excellence. Nearly 600 system leaders will participate in day-long seminars. GE, Harvard serve as strategic partners for ongoing educational efforts.

  8. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    Science.gov (United States)

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  9. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties

    Science.gov (United States)

    Zeng, Xiaoliang; Ye, Lei; Yu, Shuhui; Li, Hao; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-04-01

    Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m-3) than that of the natural nacre. These excellent mechanical properties result from an ordered `brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m-1 K-1), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make the materials highly desirable as flexible substrates for next-generation commercial portable electronics.Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m-3) than that of the natural nacre. These excellent mechanical properties result from an ordered `brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m-1 K-1), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make

  10. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties.

    Science.gov (United States)

    Zeng, Xiaoliang; Ye, Lei; Yu, Shuhui; Li, Hao; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-04-21

    Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m(-3)) than that of the natural nacre. These excellent mechanical properties result from an ordered 'brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m(-1) K(-1)), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make the materials highly desirable as flexible substrates for next-generation commercial portable electronics.

  11. Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation

    International Nuclear Information System (INIS)

    Liao, B; Stangl, R; Ma, F; Mueller, T; Lin, F; Aberle, A G; Bhatia, C S; Hoex, B

    2013-01-01

    We demonstrate that by using a water (H 2 O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al 2 O 3 ) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s −1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2 O 3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100–400 °C range and peak firing temperatures of about 800 °C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance–voltage measurements reveal that the negative fixed charge density near the AlO x /c-Si interface increases from 1.4 × 10 12 to 3.3 × 10 12 cm −2 due to firing, while the midgap interface defect density reduces from 3.3 × 10 11 to 0.8 × 10 11 cm −2 eV −1 . This work demonstrates that direct firing activation of thermal ALD Al 2 O 3 is feasible, which could be beneficial for solar cell manufacturing. (paper)

  12. Excel 2013 formulas

    CERN Document Server

    Walkenbach, John

    2013-01-01

    Maximize the power of Excel 2013 formulas with this must-have Excel reference John Walkenbach, known as ""Mr. Spreadsheet,"" is a master at deciphering complex technical topics and Excel formulas are no exception. This fully updated book delivers more than 800 pages of Excel 2013 tips, tricks, and techniques for creating formulas that calculate, developing custom worksheet functions with VBA, debugging formulas, and much more. Demonstrates how to use all the latest features in Excel 2013 Shows how to create financial formulas and tap into the power of array formulas

  13. Preprocessor for RELAP5 code, nuclear reactor thermal hydraulics accident analysis program, using Microsoft MS-EXCEL tool

    International Nuclear Information System (INIS)

    Biaty, Patricia Andrea Paladino; Sabundjian, Gaiane

    2005-01-01

    The thermal hydraulic study in accidents and transients analyses in nuclear power plants is realized with some special tools. These programs use the best estimate analyses and have been developed to simulate accidents and transients in Pressurized Water Reactors (PWR) and auxiliary systems. The RELAP5 code has been used as tool to licensing the nuclear facilities in our country, which is the objective of this study. The main problem when RELAP5 code is used is a lot of information necessary to simulate thermal hydraulic accidents. Moreover, there is the necessity of a reasonable amount of mathematical operations to calculation of the geometry of the components existents. Therefore, in order to facilitate the manipulation of this information, it is necessary the developing a friendly preprocessor for attainment of the mathematical calculations for RELAP5 code. One of the tools used for some of these calculations is the MS-EXCEL, which will be used in this work. (author)

  14. Excel 2010 bible

    CERN Document Server

    Walkenbach, John

    2010-01-01

    A comprehensive reference to the newest version of the world's most popular spreadsheet application: Excel 2010 John Walkenbach's name is synonymous with excellence in computer books that decipher complex technical topics. Known as ""Mr. Spreadsheet,"" Walkenbach shows you how to maximize the power of all the new features of Excel 2010. An authoritative reference, this perennial bestseller proves itself indispensable no matter your level of skill, from Excel beginners and intermediate users to power users and potential power users everywhere. Fully updated for the new release, this

  15. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  16. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  17. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Andrea Školáková

    2017-11-01

    Full Text Available In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  18. Soft Thermal Sensor with Mechanical Adaptability.

    Science.gov (United States)

    Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong

    2016-11-01

    A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Excel 2010 Made Simple

    CERN Document Server

    Katz, Abbott

    2011-01-01

    Get the most out of Excel 2010 with Excel 2010 Made Simple - learn the key features, understand what's new, and utilize dozens of time-saving tips and tricks to get your job done. Over 500 screen visuals and clear-cut instructions guide you through the features of Excel 2010, from formulas and charts to navigating around a worksheet and understanding Visual Basic for Applications (VBA) and macros. Excel 2010 Made Simple takes a practical and highly effective approach to using Excel 2010, showing you the best way to complete your most common spreadsheet tasks. You'll learn how to input, format,

  20. Master VISUALLY Excel 2010

    CERN Document Server

    Marmel, Elaine

    2010-01-01

    The complete visual reference on Excel basics. Aimed at visual learners who are seeking an all-in-one reference that provides in-depth coveage of Excel from a visual viewpoint, this resource delves into all the newest features of Excel 2010. You'll explore Excel with helpful step-by-step instructions that show you, rather than tell you, how to navigate Excel, work with PivotTables and PivotCharts, use macros to streamline work, and collaborate with other users in one document.: This two-color guide features screen shots with specific, numbered instructions so you can learn the actions you need

  1. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  2. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    OpenAIRE

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these allo...

  3. A 3D graphene interface (Si-doped) of Ag matrix with excellent electronic transmission and thermal conductivity via nano-assembly modification

    Science.gov (United States)

    Ye, Xianzhu; Li, Ming; Zhang, Yafei

    2018-04-01

    The wide development of electronic materials requires higher load capacity and high temperature resistance. In this study, a novel architecture was fabricated consisting of a 3D reduced graphene oxide (rGO)-Si interface using a simple nano-assembly sintering to achieve high current capacity and excellent thermal features. Via the analysis of catalytic oxidation for methanol, the loading catalytic activity of nano-Ag still remained to a certain extent for the composite with 0.8 vol.% rGO. The final Ag-rGO composite apparently possesses a higher initial oxidation temperature and lower rate of oxidation for internal passing and shielding, and the thermal conductivity is significantly enhanced from 344 to 407 W m‑1 K‑1. Importantly, with a 3D synergistic transportation network, the resistivity of the Ag-rGO composite is much lower than pure Ag, and with a longer conductive time under a stress condition of current density of 6.0  ×  104 A cm‑2. Thermal-electronic features demonstrate that the dispersed graphene interface can efficiently suppress the primary failure pathways (high temperature) in Ag matrix and make it uniquely efficient for the advancement of microscale and thermal-management electronics.

  4. Exploration of porous SiC nanostructures as thermal insulator with high thermal stability and low thermal conductivity

    Institute of Scientific and Technical Information of China (English)

    Peng; WAN; Jingyang; WANG

    2016-01-01

    The crucial challenge for current nanoscale thermal insulation materials,such as Al2O3 and SiO2 aerogel composites,is to solve the trade-off between extremely low thermal conductivity and unsatisfied thermal stability.Typical high-temperature ceramic SiC possesses excellent mechanical properties and

  5. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity

    Science.gov (United States)

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed “biomimetic”. Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells. PMID:24648728

  6. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity.

    Science.gov (United States)

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed "biomimetic". Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells.

  7. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens.

    Science.gov (United States)

    Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin

    2016-07-05

    Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens.

  8. Nanorods of a new metal-biomolecule coordination polymer showing novel bidirectional electrocatalytic activity and excellent performance in electrochemical sensing.

    Science.gov (United States)

    Yang, Jiao; Zhou, Bo; Yao, Jie; Jiang, Xiao-Qing

    2015-05-15

    Metal organic coordination polymers (CPs), as most attractive multifunctional materials, have been studied extensively in many fields. However, metal-biomolecule CPs and CPs' electrochemical properties and applications were studied much less. We focus on this topic aiming at electrochemical biosensors with excellent performance and high biocompatibility. A new nanoscaled metal-biomolecule CP, Mn-tyr, containing manganese and tyrosine, was synthesized hydrothermally and characterized by various techniques, including XRD, TEM, EDS, EDX mapping, elemental analysis, XPS, and IR. Electrode modified with Mn-tyr showed novel bidirectional electrocatalytic ability toward both reduction and oxidation of H2O2, which might be due to Mn. With the assistance of CNTs, the sensing performance of Mn-tyr/CNTs/GCE was improved to a much higher level, with high sensitivity of 543 mA mol(-1) L cm(-2) in linear range of 1.00×10(-6)-1.02×10(-4) mol L(-1), and detection limit of 3.8×10(-7) mol L(-1). Mn-tyr/CNTs/GCE also showed fast response, high selectivity, high steadiness and reproducibility. The excellent performance implies that the metal-biomolecule CPs are promising candidates for using in enzyme-free electrochemical biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    International Nuclear Information System (INIS)

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-01-01

    Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 °C for 2 h and also possesses high total pore volumes (0.41 cm³ g −1 ) and high specific BET surface area (161 m 2 g −1 ), which is nine times larger than that of the pristine (19 m 2 g −1 ). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic–inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO 2 nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: ► A two-step synthesis method was used to prepare the CTAB-Al-MO. ► The CTAB-Al-MO has the large basal spacing and high specific BET surface area. ► The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. ► The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  10. Excel Initiative: Excellence in Youth Programming

    Directory of Open Access Journals (Sweden)

    Lynne M. Borden

    2015-06-01

    Full Text Available The Excellence in Youth Programming (Excel Initiative strives to support youth programs in delivering high quality programs. The backbone of Excel is the Youth Development Observational Tool (YDOT which allows for the virtual assessment of program staff who work with children and youth ages 9-18 years. The YDOT also allows Excel to provide structured feedback to programs. Excel has several unique features, including a virtual platform and a focus on the relationships between adults and youth participating in after-school programs. Offering structured assessment and interaction online eliminates expenses, provides convenient access for programs around the globe, and allows for unobtrusive assessment of worker-youth interactions. Excel is also integrated into a broader network of resources, tools, and research for those working with children and youth ages 9-18.

  11. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shujuan [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Xiao [Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jia, Beibei [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Jing, Xinli, E-mail: xljing@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an, 710049 (China)

    2017-01-15

    Highlights: • PBAB with excellent thermal resistance and high char yield was synthesized. • The chemical reaction of BPA with BA, and chemical structure of PBAB were studied. • PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. • The thermal stability of PBAB is greatly influenced by boron content. • Boron oxide and boron carbide are formed during the pyrolysis of PBAB. - Abstract: In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A{sub 2} + B{sub 3} strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph–O–B and B–O–B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N{sub 2}) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  12. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  13. Molecular thermal transistor: Dimension analysis and mechanism

    Science.gov (United States)

    Behnia, S.; Panahinia, R.

    2018-04-01

    Recently, large challenge has been spent to realize high efficient thermal transistors. Outstanding properties of DNA make it as an excellent nano material in future technologies. In this paper, we introduced a high efficient DNA based thermal transistor. The thermal transistor operates when the system shows an increase in the thermal flux despite of decreasing temperature gradient. This is what called as negative differential thermal resistance (NDTR). Based on multifractal analysis, we could distinguish regions with NDTR state from non-NDTR state. Moreover, Based on dimension spectrum of the system, it is detected that NDTR state is accompanied by ballistic transport regime. The generalized correlation sum (analogous to specific heat) shows that an irregular decrease in the specific heat induces an increase in the mean free path (mfp) of phonons. This leads to the occurrence of NDTR.

  14. Flomoxef showed excellent in vitro activity against clinically important gram-positive and gram-negative pathogens causing community- and hospital-associated infections.

    Science.gov (United States)

    Yang, Qiwen; Zhang, Hui; Cheng, Jingwei; Xu, Zhipeng; Hou, Xin; Xu, Yingchun

    2015-04-01

    The objective of this study was to better understand the in vitro activity of flomoxef against clinical pathogens. A total of 545 clinical isolates, including Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, and Streptococcus pyogenes, were isolated consecutively from clinical specimens from Peking Union Medical College Hospital in 2013. MICs were determined using broth microdilution method. esbl and ampC genes were detected by polymerase chain reaction and sequencing. Flomoxef showed excellent activity against E. coli, K. pneumoniae, and P. mirabilis isolates, with susceptibility rate of 88.8%, 88.3%, and 97.7%, separately. Moreover, flomoxef exhibited great activity against extended-spectrum beta-lactamase (ESBL) producers, with MIC50/MIC90 of 0.125/(0.5-1) μg/mL. Flomoxef showed MIC50/MIC90 of 0.5/0.5 μg/mL against MSSA, 0.125/0.25 μg/mL against S. pyogenes, and 2/16 μg/mL against S. pneumoniae. In conclusion, flomoxef is one of the cephamycins showing excellent activity against ESBL-producing or ESBL-nonproducing E. coli, K. pneumoniae, and P. mirabilis and was also potent against MSSA, S. pyogenes, and S. pneumoniae. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Writing Excel Macros with VBA

    CERN Document Server

    Roman, Steven

    2008-01-01

    To achieve the maximum control and flexibility from Microsoft® Excel often requires careful custom programming using the VBA (Visual Basic for Applications) language. Writing Excel Macros with VBA, 2nd Edition offers a solid introduction to writing VBA macros and programs, and will show you how to get more power at the programming level: focusing on programming languages, the Visual Basic Editor, handling code, and the Excel object model.

  16. Effect of Pre-Ageing Thermal Conditions on the Corrosion Properties ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology ... The alloy was subjected to a Single Thermal Ageing Treatment; STAT (T6 temper-solution heat ... showed an excellent improvement in corrosion resistance than the as-cast and conventional STAT alloy.

  17. Excel 2013 power programming with VBA

    CERN Document Server

    Walkenbach, John

    2013-01-01

    Maximize your Excel 2013 experience using VBA application development The new Excel 2013 boasts updated features, enhanced power, and new capabilities. Naturally, that means John Walkenbach returns with a new edition of his bestselling VBA Programming book and covers all the methods and tools you need to know in order to program with Excel. With this comprehensive guide, ""Mr. Spreadsheet"" shows you how to maximize your Excel experience using professional spreadsheet application development tips from his own personal bookshelf. Featuring a complete introduction to Visual Basic f

  18. A thermal ground cloak

    International Nuclear Information System (INIS)

    Yang, Tianzhi; Wu, Qinghe; Xu, Weikai; Liu, Di; Huang, Lujun; Chen, Fei

    2016-01-01

    The thermal cloak has been a long-standing scientific dream of researchers and engineers. Recently thermal metamaterials with man-made micro-structure have been presented based on the principle of transformation optics (TO). This new concept has received considerable attention, which is a powerful tool for manipulating heat flux in thermal imaging systems. However, the inherent material singularity has long been a captivation of experimental realization. As an alternative method, the scattering-cancellation-based cloak (or bi-layer thermal cloak) has been presented to remove the singularity for achieving the same cloaking performance. Nevertheless, such strategy needs prerequisite knowledge (geometry and conductivity) of the object to be cloaked. In this paper, a new thermal ground cloak is presented to overcome the limitations. The device is designed, fabricated and measured to verify the thermal cloaking performance. We experimentally show that the remarkably low complexity of the device can fully and effectively be manipulated using realizable transformation thermal devices. More importantly, this thermal ground cloak is designed to exclude heat flux without knowing the information of the cloaked object. - Highlights: • We present the first thermal carpet cloak. • The carpet can thermally cloak any shaped object without knowing the properties of the object to be cloaked. • Excellent agreements between simulation and experiment are observed.

  19. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  20. Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics.

    Science.gov (United States)

    Quan, Yi; Ren, Wei; Niu, Gang; Wang, Lingyan; Zhao, Jinyan; Zhang, Nan; Liu, Ming; Ye, Zuo-Guang; Liu, Liqiang; Karaki, Tomoaki

    2018-03-19

    Environment-friendly lead-free piezoelectric materials with high piezoelectric response and high stability in a wide temperature range are urgently needed for various applications. In this work, grain orientation-controlled (with a 90% ⟨001⟩ c -oriented texture) (K,Na)NbO 3 -based ceramics with a large piezoelectric response ( d 33 *) = 505 pm V -1 and a high Curie temperature ( T C ) of 247 °C have been developed. Such a high d 33 * value varies by less than 5% from 30 to 180 °C, showing a superior thermal stability. Furthermore, the high piezoelectricity exhibits an excellent fatigue resistance with the d 33 * value decreasing within only by 6% at a field of 20 kV cm -1 up to 10 7 cycles. These exceptional properties can be attributed to the vertical morphotropic phase boundary and the highly ⟨001⟩ c -oriented textured ceramic microstructure. These results open a pathway to promote lead-free piezoelectric ceramics as a viable alternative to lead-based piezoceramics for various practical applications, such as actuators, transducers, sensors, and acoustic devices, in a wide temperature range.

  1. Two-Dimensional Tellurene as Excellent Thermoelectric Material

    KAUST Repository

    Sharma, Sitansh

    2018-04-20

    We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.

  2. A comparative study on thermal efficiency between the present floor and a ceramic floor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.M.; Kim, K.S. [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Choi, B.S. [Kyung Hee University, Yongin (Korea, Republic of); Ko, J.S.; Park, S.K. [Bomwoo and Co. LTD., Kwangju (Korea, Republic of)

    1999-04-01

    A ceramic floor with improved thermal conductivity and efficiency has been developed in this study. The new ceramic floor minimizes the shrinkage rate to below 0.07% and shows almost no cleavage. There is no need to repair the ceramic floor because its bottom surface is flat. It especially shows an excellent performance in the test of a compressive strength (300 kg/cm{sup 2} based on 28 days), a flexural strength (64 kg/cm{sup 2} based on 28 days), and a convenient pressing. It is lighter than the present floor and it is expected to be applicable for a self-leveling ceramic motar in the residences and apartments. It shows an excellent character in the thermal conductivity and other physical properties compare to the present cement mortar. 5 refs., 3 figs., 2 tabs.

  3. Solving rational expectations models using Excel

    DEFF Research Database (Denmark)

    Strulik, Holger

    2004-01-01

    Problems of discrete time optimal control can be solved using backward iteration and Microsoft Excel. The author explains the method in general and shows how the basic models of neoclassical growth and real business cycles are solved......Problems of discrete time optimal control can be solved using backward iteration and Microsoft Excel. The author explains the method in general and shows how the basic models of neoclassical growth and real business cycles are solved...

  4. Azadirachta indica plant-assisted green synthesis of Mn3O4 nanoparticles: Excellent thermal catalytic performance and chemical sensing behavior.

    Science.gov (United States)

    Sharma, Jitendra Kumar; Srivastava, Pratibha; Ameen, Sadia; Akhtar, M Shaheer; Singh, Gurdip; Yadava, Sudha

    2016-06-15

    The leaf extract of Azadirachta indica (Neem) plant was utilized as reducing agent for the green synthesis of Mn3O4 nanoparticles (NPs). The crystalline analysis demonstrated the typical tetragonal hausmannite crystal structure of Mn3O4, which confirmed the formation of Mn3O4 NPs without the existence of other oxides. Green synthesized Mn3O4 NPs were applied for the catalytic thermal decomposition of ammonium perchlorate (AP) and as working electrode for fabricating the chemical sensor. The excellent catalytic effect for the thermal decomposition of AP was observed by decreasing the decomposition temperature by 175 °C with single decomposing step. The fabricated chemical sensor based on green synthesized Mn3O4 NPs displayed high, reliable and reproducible sensitivity of ∼569.2 μA mM(-1) cm(-2) with reasonable limit of detection (LOD) of ∼22.1 μM and the response time of ∼10 s toward the detection of 2-butanone chemical. A relatively good linearity in the ranging from ∼20 to 160 μM was detected for Mn3O4 NPs electrode based 2-butanone chemical sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Experimental data showing the thermal behavior of a flat roof with phase change material.

    Science.gov (United States)

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104.

  6. New flexible thermal control material for long-life satellite

    International Nuclear Information System (INIS)

    Sasaki, Shigekuni; Hasuda, Yoshinori; Ichino, Toshihiro

    1986-01-01

    Flexible thermal control materials are light weight, cheap and excellent in the practical applicability, and are expected to be applied to future long life, large capacity satellites. However, the flexible thermal control materials used at present have the defect that either the space environment withstanding capability or the thermal control performance is poor. Therefore, the authors examined the flexible thermal control materials which are excellent in both these properties, and have developed the thermal control material PEI-OSR using polyether imide films as the substrate. In this study, while comparing with the FEP Teflon with silver vapor deposition, which has been used so far for short life satellites, the long term reliability of the PEI-OSR supposing the use for seven years was examined. As the results, the FEP Teflon with silver vapor deposition caused cracking and separation by irradiation and heat cycle test, and became unusable, but the PEI-OSR did not change its flexibility at all. Also the thermal control performance of the PEI-OSR after the test equivalent to seven years was superior to the initial performance of the Kaptone with aluminum vapor deposition, which has excellent space environment endurance, thus it was clarified that the PEI-OSR is the most excellent for this purpose. (Kako, I.)

  7. The Effect of Thermal Cycling Treatments on the Thermal Stability and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite

    Directory of Open Access Journals (Sweden)

    Fan Bu

    2016-11-01

    Full Text Available The effect of thermal cycling treatments on the thermal stability and mechanical properties of a Ti48Zr20Nb12Cu5Be15 bulk metallic glass composite (BMGC has been investigated. Results show that moderate thermal cycles in a temperature range of −196 °C (cryogenic temperature, CT to 25 °C (room temperature, RT or annealing time at CT has not induced obvious changes of thermal stability and then it decreases slightly over critical thermal parameters. In addition, the dendritic second phases with a bcc structure are homogeneously embedded in the amorphous matrix; no visible changes are detected, which shows structural stability. Excellent mechanical properties as high as 1599 MPa yield strength and 34% plastic strain are obtained, and the yield strength and elastic modulus also increase gradually. The effect on the stability is analyzed quantitatively by crystallization kinetics and plastic-flow models, and indicates that the reduction of structural relaxation enthalpy, which is related to the degradation of spatial heterogeneity, reduces thermal stability but does not imperatively deteriorate the plasticity.

  8. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.

    Science.gov (United States)

    Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing

    2017-08-30

    Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.

  9. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  10. 101 ready-to-use Excel formulas

    CERN Document Server

    Alexander, Michael

    2014-01-01

    Mr. Spreadsheet has done it again with 101 easy-to-apply Excel formulas 101 Ready-to-Use Excel Formulas is filled with the most commonly-used, real-world Excel formulas that can be repurposed and put into action, saving you time and increasing your productivity. Each segment of this book outlines a common business or analysis problem that needs to be solved and provides the actual Excel formulas to solve the problem-along with detailed explanation of how the formulas work. Written in a user-friendly style that relies on a tips and tricks approach, the book details how to perform everyday Excel tasks with confidence. 101 Ready-to-Use Excel Formulas is sure to become your well-thumbed reference to solve your workplace problems. The recipes in the book are structured to first present the problem, then provide the formula solution, and finally show how it works so that it can be customized to fit your needs. The companion website to the book allows readers to easily test the formulas and provides visual confirmat...

  11. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  12. Experimental data showing the thermal behavior of a flat roof with phase change material

    Directory of Open Access Journals (Sweden)

    Ayça Tokuç

    2015-12-01

    Full Text Available The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104.

  13. Phase Behavior, Thermal Stability and Rheological Properties of PPEK/PC Blends

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase behavior, thermal stability and rheological properties of the blends of poly(phthalazinone ether ketone) (PPEK)with bisphenol-A polycarbonate (PC) prepared by solution coprecipitation were studied using differential scanning calorimetry (DSC), Frourier-Transform IR spectroscopy (FT-IR), thermogravimetric analysis (TGA) and capillary rheometer. The DSC results indicated that PPEK/PC blends are almost immiscible in full compositions. FT-IR investigation showed that there were no apparent specific interactions between the constituent polymers. The blends keep excellent thermal stability and the addition of PC degrades the thermal stability of blends to some degree. The thermal degradation processes of the blends are much similar to that of PC. The studies on rheological properties of blends show that blending PPEK with PC is beneficial to reducing the melt viscosity and improving the appearance of PPEK.

  14. Statistical analysis with Excel for dummies

    CERN Document Server

    Schmuller, Joseph

    2013-01-01

    Take the mystery out of statistical terms and put Excel to work! If you need to create and interpret statistics in business or classroom settings, this easy-to-use guide is just what you need. It shows you how to use Excel's powerful tools for statistical analysis, even if you've never taken a course in statistics. Learn the meaning of terms like mean and median, margin of error, standard deviation, and permutations, and discover how to interpret the statistics of everyday life. You'll learn to use Excel formulas, charts, PivotTables, and other tools to make sense of everything fro

  15. 101 Ready-To-Use Excel Macros

    CERN Document Server

    Alexander, Michael

    2012-01-01

    Save time and be more productive with this helpful guide to Excel macros! While most books about Excel macros offer only minor examples, usually aimed at illustrating a particular topic, this invaluable resource provides you with the tools needed to efficiently and effectively program Excel macros immediately. Step-by-step instructions show you how to create VBA macros and explain how to customize your applications to look and work exactly as you want them to. By the end of the book, you will understand how each featured macro works, be able to reuse the macros included in the book and online,

  16. Synthesis and characterization of conducting composites of polyaniline and carbon black with high thermal stability

    Directory of Open Access Journals (Sweden)

    Fabio R. Simões

    2009-01-01

    Full Text Available In this work, a detailed chemical route to prepare thermally stable polyaniline (PANI/carbon black (CB composites is described. The syntheses were performed by chemical polymerization of aniline over CB particles, using different PANI/CB mass ratios. The thermal and electrical properties were characterized. Composites with mass ratio up to 65:35 (PANI:CB showed excellent thermal stability maintaining their conducting properties when thermally treated at 230 °C for two hours, which is adequate to process these materials. Moreover, the results showed an important reduction in the surface area of the composites which have a good relationship with the improvement of the rheological properties in melt processing.

  17. A checkerboard selective absorber with excellent spectral selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: optyang@zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); School of Electrical, Computer, and Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Mo, Lei; Chen, Tuo [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Forsberg, Erik [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Electromagnetic Engineering, JORCEP, Roy Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2015-11-14

    A selective absorber with excellent spectral selectivity is proposed and analyzed. The absorber is based on a germanium (Ge) checkerboard on top of a tantalum (Ta) substrate. At wavelengths shorter than the 1.2 μm cutoff, a very high absorption is achieved due to strong cavity resonances in the Ge nanosquares, and their interactions with adjacent nanocavities and the bottom Ta substrate. At longer wavelengths, absorption is greatly suppressed due to destructive interference between the transparent checkerboard layer and the highly reflective Ta substrate. To better describe the superior selectivity of our configuration, a new figure of merit (FOM) is introduced. We observe a FOM value of 0.88 compared to 0.69 for its planar counterpart. We also conduct a thermal analysis to verify the excellent selectivity of our absorber. A high temperature can be achieved and maintained, promising good potential for applications in solar thermophotovoltaic systems.

  18. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  19. Layered Crystal Structure, Color-Tunable Photoluminescence, and Excellent Thermal Stability of MgIn2P4O14 Phosphate-Based Phosphors.

    Science.gov (United States)

    Zhang, Jing; Cai, Ge-Mei; Yang, Lv-Wei; Ma, Zhi-Yuan; Jin, Zhan-Peng

    2017-11-06

    Single-component white phosphors stand a good chance to serve in the next-generation high-power white light-emitting diodes. Because of low thermal stability and containing lanthanide ions with reduced valence state, most of reported phosphors usually suffer unstable color of lighting for practical packaging and comparably complex synthetic processes. In this work, we present a type of novel color-tunable blue-white-yellow-emitting MgIn 2 P 4 O 14 :Tm 3+ /Dy 3+ phosphor with high thermal stability, which can be easily fabricated in air. Under UV excitation, the MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 white phosphor exhibits negligible thermal-quenching behavior, with a 99.5% intensity retention at 150 °C, relative to its initial value at room temperature. The phosphor host MgIn 2 P 4 O 14 was synthesized and reported for the first time. MgIn 2 P 4 O 14 crystallizes in the space group of C2/c (No. 15) with a novel layered structure built of alternate anionic and cationic layers. Its disordering structure, with Mg and In atoms co-occupying the same site, is believed to facilitate the energy transfer between rare-earth ions and benefit by sustaining the luminescence with increasing temperature. The measured absolute quantum yields of MgIn 2 P 4 O 14 :Dy 0.04 , MgIn 2 P 4 O 14 :Tm 0.01 Dy 0.04 , and MgIn 2 P 4 O 14 :Tm 0.02 Dy 0.03 phosphors under the excitation of 351 nm ultraviolet radiation are 70.50%, 53.24%, and 52.31%, respectively. Present work indicates that the novel layered MgIn 2 P 4 O 14 is a promising candidate as a single-component white phosphor host with an excellent thermal stability for near-UV-excited white-light-emitting diodes (wLEDs).

  20. Excel 2013 simplified

    CERN Document Server

    McFedries, Paul

    2013-01-01

    A friendly, visual approach to learning the basics of Excel 2013 As the world's leading spreadsheet program, Excel is a spreadsheet and data analysis tool that is part of the Microsoft Office suite. The new Excel 2013 includes new features and functionalities that require users of older versions to re-learn the application. However, whether you're switching from an earlier version or learning Excel for the first time, this easy-to-follow visual guide gets you going with Excel 2013 quickly and easily. Numbered steps as well as full-color screen shots, concise information, and helpfu

  1. Synthesis and thermal properties of a novel high temperature alkyl-center-trisphenolic-based phthalonitrile polymer

    International Nuclear Information System (INIS)

    Sheng, Haitong; Peng, Xuegang; Guo, Hui; Yu, Xiaoyan; Tang, Chengchun; Qu, Xiongwei; Zhang, Qingxin

    2013-01-01

    A novel alkyl-center-trisphenolic-based high-temperature phthalonitrile monomer, namely, 1,1,1-tris-[4-(3,4-dicyanophenoxy)phenyl]ethane (TDPE), was synthesized from 1,1,1-tris-(4-hydroxyphenyl)ethane (THPE) via a facile nucleophilic displacement of a nitro-substituent from 4-nitrophthalonitrile (NPN). The structure of TDPE monomer was characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR), elemental analysis (EA). Curing behaviors of TDPE with 4-(aminophenoxy)phthalonitrile (APPH) were recorded by differential scanning calorimetric (DSC) and it showed a large processing window (122 °C) which is favorable to processing TDPE polymers. The structure of TDPE polymer was discussed and the thermal stabilities of TDPE polymer were evaluated by thermogravimetric analysis (TGA). The TDPE polymer exhibits excellent thermal stability, and mechanism of thermal decompositions was explored. Dynamic mechanical analysis (DMA) revealed that the TDPE polymer has high storage modulus and high glass transition temperature (T g > 380 °C). - Highlights: • A novel high-temperature phthalonitrile polymer was synthesized. • Polymerization mechanism was explored. • The polymer shows excellent thermal stability. • Outstanding mechanical properties was achieved: storage modulus = 3.7 GPa, T g > 380 °C. • Thermal decomposition mechanism was discussed

  2. People management as indicator of business excellence

    DEFF Research Database (Denmark)

    Haffer, Rafal; Kristensen, Kai

    2010-01-01

    Purpose – This paper aims to show the importance of people management as a key indicator of business excellence based on four research projects, conducted on the samples of Polish (in the years 2004-2005 and 2006-2007) and Danish companies (in 1999 and 2005). Design/methodology/approach – EFQM...... it possible to compare developing Polish and developed Danish companies in their initiatives aiming at business excellence. Findings – The results indicate significant negligence in the management of human resources as one of the initiatives towards business excellence of Polish enterprises before Poland...... Excellence Model indicators were used as the evaluation criteria for the studies. The data were next estimated as a structural equation model by partial least squares using SmartPLS software. That estimation was conducted on the model of the Danish Business Excellence Index methodology. Presented data make...

  3. Application of phase change materials in thermal management of electronics

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

    2007-01-01

    Application of a novel PCM package for thermal management of portable electronic devices was investigated experimentally for effects of various parameters e.g. power input, orientation of package, and various melting/freezing times under cyclic steady conditions. Also, a two-dimensional numerical study was made and compared the experimental results. Results show that increased power inputs increase the melting rate, while orientation of the package to gravity has negligible effect on the thermal performance of the PCM package. The thermal resistance of the device and the power level applied to the PCM package are of critical importance for design of a passive thermal control system. Comparison with numerical results confirms that PCM-based design is an excellent candidate design for transient electronic cooling applications

  4. Excellence in the knowledge-based economy: from scientific to research excellence

    DEFF Research Database (Denmark)

    Sørensen, Mads P.; Bloch, Carter Walter; Young, Mitchell

    2016-01-01

    In 2013, the European Union (EU) unveiled its new ‘Composite Indicator for Scientific and Technological Research Excellence’. This is not an isolated occurrence; policy-based interest in excellence is growing all over the world. The heightened focus on excellence and, in particular, attempts...... to define it through quantitative indicators can have important implications for research policy and for the conduct of research itself. This paper examines how the EU's understanding of excellence has evolved in recent years, from the presentation of the Lisbon strategy in 2000 to the current Europe 2020...... strategy. We find a distinct shift in the understanding of excellence and how success in the knowledge-based economy should be achieved: in the early period, excellence is a fuzzy concept, intrinsically embedded in research and researchers and revealed by peer review. In the later period, excellence...

  5. Improved resistance of chemically-modified nanocellulose against thermally-induced depolymerization.

    Science.gov (United States)

    Agustin, Melissa B; Nakatsubo, Fumiaki; Yano, Hiroyuki

    2017-05-15

    The study demonstrated the improvement in the resistance of nanocellulose against thermally-induced depolymerization by esterification with benzoyl (BNZ) and pivaloyl (PIV). The change in the degree of polymerization (DP) and molecular weight distribution (MWD) after thermal treatment in nitrogen and in air was investigated using viscometry and gel permeation chromatography. BNZ and PIV nanocellulose esters without α-hydrogens gave higher DP and narrower MWD than pure bacterial cellulose; and the acetyl and myristoyl esters, which possess α-hydrogens. Results also showed that when depolymerization is suppressed, thermal discoloration is also reduced. Resistance against depolymerization inhibits the formation of reducing ends which can be active sites for thermal discoloration. Finally, the findings suggest that benzoylation and pivaloylation can be an excellent modification technique to improve the thermal stability of nanocellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. BUSINESS EXCELLENCE AS A CRUCIAL COMPONENT FOR ORGANIZATION COMPETITIVENESS

    Directory of Open Access Journals (Sweden)

    Zeljko Pozega

    2014-12-01

    Full Text Available Background: Business excellence represents one of the most valuable management means of achieving competitive advantage of organizations. Modern and global market demands new organizational approaches for the long-term improvement at all organization levels. Objectives: This paper is concerned with the level of business excellence in Sibenik-Knin County and the level of knowledge about the EFQM model. Moreover, this paper is concerned with the level of knowledge of the top management concerning the business excellence and quality principles. Methods/Approach: For the purpose of this paper, the research was conducted among organizations in Sibenik-Knin County. Results: The results showed that the organizations in Sibenik-Knin County lack the initiatives for the systematic approach and implementation of business excellence model, but poses the knowledge about the basic concepts of business excellence. Conclusions: The research had showed that the organizations believe that the ISO certification is sufficient for strengthening competitive advantage and organization success.

  7. Excellence in the Knowledge-Based Economy: From Scientific to Research Excellence

    Science.gov (United States)

    Sørensen, Mads P.; Bloch, Carter; Young, Mitchell

    2016-01-01

    In 2013, the European Union (EU) unveiled its new "Composite Indicator for Scientific and Technological Research Excellence." This is not an isolated occurrence; policy-based interest in excellence is growing all over the world. The heightened focus on excellence and, in particular, attempts to define it through quantitative indicators…

  8. ASPIRE-to-Excellence Academy

    Directory of Open Access Journals (Sweden)

    Simon Drees

    2016-07-01

    Full Text Available The ASPIRE-to-Excellence Academy was recently founded at the 2015 Association for Medical Education in Europe (AMEE conference in Glasgow. The academy is new pillar of the ASPIRE-to-Excellence initiative by AMEE, which aims at promoting and encouraging medical schools in achieving excellence in the categories of assessment, student engagement, social accountability or faculty development. The Academy panel consists of the members of the ASPIRE Board and representatives from schools which have been recognised with an ASPIRE-to-excellence award in one or more of the categories. Major goal of the ASPIRE-to-Excellence Academy is to foster collaboration between excellent medical schools and to allow them to exchange experiences and Best Practices. The Academy members are organising workshops and symposia at international conferences to inform medical schools about the ASPIRE-to-Excellence programme and the areas for recognition in excellence as well as to support medical school in preparing their applications.

  9. Excel simulations

    CERN Document Server

    Verschuuren, Gerard M

    2013-01-01

    Covering a variety of Excel simulations, from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.

  10. Tailored functional materials with controlled thermal expansion and excellent thermal conductivity

    International Nuclear Information System (INIS)

    Korb, G.; Sebo, P.

    1997-01-01

    Engineering materials are mainly used for structures. Therefore high-strength, stiffness and sufficient toughness are of prime importance. For a long time engineers thought first in terms of metals. Material scientists developed alloys tailored to the needs of industry. Ceramics are known to be brittle and therefore not suitable in the first place for structural application under stress. Polymers with their low modulus became attractive when reinforced with high-strength fibres. Composites processed by polymer, metal or ceramic matrices and high-strength reinforcements have been introduced into many sectors of industry. Engineering materials for structural applications fulfil a function: they withstand high stresses, temperatures, fatigue, creep etc. But usually we do not call them functional materials. Functional materials serve applications apart from classical engineering fields. Electricity conducting materials, semi conductors, memory alloys and many others are called functional materials. Because of the fact that the basic physical properties cannot be changed in single-phase materials, the combination of two and more materials with different properties lead to components with new and tailored properties. A few techniques for preparation are described as powder metallurgy, infiltration of prepegs and compaction of precoated fibres/particles. The lecture is focusing on carbon fibre/particle reinforced Metal Matrix Materials. The achievable properties, in particular the thermal conductivity originating from the base materials is depending on the orientation of the fibres and interfacial contacts in the composite. The carefully controlled expansion behaviour is the most important property to use the material as a heat sink in electronic assemblies. (author)

  11. Novel polypyrrole films with excellent crystallinity and good thermal stability

    International Nuclear Information System (INIS)

    Jeeju, Pullarkat P.; Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M.; Jayalekshmi, Sankaran

    2012-01-01

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: ► Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. ► The solution casted films exhibit semi-crystallinity and good thermal stability. ► Percentage crystallinity estimated using XRD and DSC analysis is about 65%. ► Raman studies support the enhancement in crystallinity based on XRD and DSC data. ► The conductivity of the film is 30 times higher than that of HCl doped sample.

  12. Novel polypyrrole films with excellent crystallinity and good thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, Pullarkat P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Jayalekshmi, Sankaran, E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2012-06-15

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: Black-Right-Pointing-Pointer Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. Black-Right-Pointing-Pointer The solution casted films exhibit semi-crystallinity and good thermal stability. Black-Right-Pointing-Pointer Percentage crystallinity estimated using XRD and DSC analysis is about 65%. Black-Right-Pointing-Pointer Raman studies support the enhancement in crystallinity based on XRD and DSC data. Black-Right-Pointing-Pointer The conductivity of the film is 30 times higher than that of HCl doped sample.

  13. Striving for Excellence

    DEFF Research Database (Denmark)

    Hattke, Fabian; Blaschke, Steffen

    2015-01-01

    Purpose: - The purpose of this paper is to evaluate the influence of top management team diversity on academic excellence in universities. Academic excellence is conceptualized as successfully gaining funds for inter-organizational research collaborations, interdisciplinary graduate schools......, and high ranked scientific reputation. Design/methodology/approach: -The study applies upper echelon theory to universities. Three hypotheses are developed: 1) (Overall) top management team heterogeneity is positively associated with successful funding of excellence clusters, 2) (Overall) top management...... no significant effects. Besides top management team composition, we find that a high number of faculties and a broad inclusion of internal status groups (students, tenured faculty, academic and administrative staff) and external stakeholders in decision making processes may enhance academic excellence...

  14. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  15. These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnos

    Science.gov (United States)

    2002-01-01

    These images show thermal infrared radiation from Jupiter at different wavelengths which are diagnostic of physical phenomena The 7.85-micron image in the upper left shows stratospheric temperatures which are elevated in the region of the A fragment impact (to the left of bottom). Temperatures deeper in the atmosphere near 150-mbar are shown by the 17.2-micron image in the upper right. There is a small elevation of temperatures at this depth, indicated by the arrow, and confirmed by other measurements near this wavelength. This indicates that the influence of the impact of fragment A on the troposphere has been minimal. The two images in the bottom row show no readily apparent perturbation of the ammmonia condensate cloud field near 600 mbar, as diagnosed by 8.57-micron radiation, and deeper cloud layers which are diagnosed by 5-micron radiation.

  16. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  17. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  18. Sustainable Enterprise Excellence

    DEFF Research Database (Denmark)

    Edgeman, Rick

    2013-01-01

    Structured Abstract Purpose: Sustainable Enterprise Excellence (SEE) is defined and developed through integration and expansion of business excellence modeling and sustainability thought. The intent is to enable simple yet reliable enterprise assessment of triple bottom line (TBL) performance...... and produce actionable enterprise foresight that can enable next best practices and sources of sustainable competitive advantage through innovation. Methodology: Key elements of SEE are identified from various business excellence and sustainability reporting sources, including the Global Reporting Initiative...... assessment approach similar in structure to those behind established excellence awards are developed that enable enterprise assessment of progress toward SEE. The resulting assessment is delivered in a highly consumable, combined narrative and graphic format referred to as a SEE NEWS Report. Practical...

  19. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    Full Text Available In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  20. Evidence-based policy learning: the case of the research excellence indicat

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, S.; Vertesy, D.

    2016-07-01

    Excellence is arguably the single most important concept in academia today, especially when it comes to science policy making. At the same time, however, excellence leads to a great amount of discomfort, leading some to plea for an overall rejection of the concept. The discomfort with excellence reaches its heights whenever proposals are made for measuring it. Yet, especially given the period of professionalization science policy making finds itself in, these same metrics are frequently called upon to legitimate policy interventions. Excellence and its measurement, it seems therefore, is something we can neither life with nor without. This paper offers some middle ground in the debate on excellence and its measurement for science policy purposes. Using the case of the European Commission’s Research Excellence Indicator as an example, we show how the development and use of indicators offers an opportunity for learning in science policy making. Ultimately, therefore, we show how and in what ways measuring excellence can contribute to evidence-based science policy learning in practice. (Author)

  1. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Excel formulas and functions for dummies

    CERN Document Server

    Bluttman, Ken

    2013-01-01

    Learn to use Excel for practical, day-to-day calculations Excel is a powerful program with more than 300 built-in functions that can be used to perform an almost infinite number of calculations. This friendly book shows you how to use the 150 most valuable ones in real-world situations: to compare the cost of buying vs. leasing a car, calculate classroom grades, or evaluate investment performance, for example. Another 85 specialized functions are also described. Detailed, step-by-step instructions help you understand how functions work within formulas and how you can use them t

  3. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    International Nuclear Information System (INIS)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-01-01

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS_2(s) + 91NH_4NO_3(s) → 52NO(g) + 26SO_2(g) + 6Fe_2O_3(s) + 78NH_3(g) + 26N_2O(g) + 2FeSO_4(s) + 65H_2O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO_2, NH_3, SO_2 and N_2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  4. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhi-Xiang; Wang, Qian [School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Fu, Xiao-Qi, E-mail: xzx19820708@163.com [School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 (China)

    2015-12-30

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS{sub 2}(s) + 91NH{sub 4}NO{sub 3}(s) → 52NO(g) + 26SO{sub 2}(g) + 6Fe{sub 2}O{sub 3}(s) + 78NH{sub 3}(g) + 26N{sub 2}O(g) + 2FeSO{sub 4}(s) + 65H{sub 2}O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO{sub 2}, NH{sub 3}, SO{sub 2} and N{sub 2}O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  5. Striving for excellence

    International Nuclear Information System (INIS)

    Vaughn, G.E.

    1986-01-01

    With guidance and assistance from the Institute of Nuclear Power Operations (INPO), nuclear utilities are striving for excellence by making steady improvements in industry performance indicators. Duke Power Company has solidly committed to support the industry's effort to obtain higher standards of excellence. Dedicated, highly trained employees, who are motivated to making it happen, carry out this commitment within a management framework which includes: 1) top management support and direct involvement; 2) a strategy to achieve excellence over the long run; 3) a nuclear management priority structure; and 4) a goals program

  6. Excel2003 Formulas

    CERN Document Server

    Walkenbach, John

    2011-01-01

    Everything you need to know about* Mastering operators, error values, naming techniques, and absolute versus relative references* Debugging formulas and using the auditing tools* Importing and exporting XML files and mapping the data to specific cells* Using Excel 2003's rights management feature* Working magic with array formulas* Developing custom formulas to produce the results you needHere's the formula for Excel excellenceFormulas are the lifeblood of spreadsheets, and no one can bring a spreadsheet to life like John Walkenbach. In this detailed reference guide, he delves deeply into unde

  7. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  8. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    International Nuclear Information System (INIS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-01-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10 −3 cm 2 /s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s 0.5 /cm 2 K and volume heat capacity (5.2 ± 0.7) J/cm 3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  9. Promoting sustainable excellence through diversity in research careers

    CERN Multimedia

    CERN. Geneva; Dr. Vinkenburg, Claartje; Guinot, Genevieve

    2015-01-01

    Excellence is a non-negotiable in science, a necessary condition for a successful careers as well as the funding of research projects. Scientific excellence is the sole criterion used by the European Research Council (ERC) to award frontier research grants. However, statistics show that there are still persistent inequalities between men and women scientists in ERC funding success as well as other career outcomes. Dr. Claartje Vinkenburg, of the VU University of Amsterdam, will illustrate two projects commissioned by the ERC Gender Balance Working Group to uncover and address this phenomenon. The first project [ERCAREER (Vinkenburg PI, 2012-2014)] is about unconventional careers and career breaks, and studies the gendered nature of career paths of ERC applicants. Findings show that “conventional careers” in science are inextricably tied to normative beliefs about the ideal academic, mobility, independence, and excellence. Allowing unconventional careers to address the issue results in ir...

  10. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO 2 capture with excellent stability and regenerability

    KAUST Repository

    Patil, Umesh

    2012-01-01

    We report the use of silicon oxynitrides as novel adsorbents for CO 2 capture. Three series of functionalized materials based on KCC-1, SBA-15 and MCM-41 with Si-NH 2 groups were prepared using a simple one-step process via thermal ammonolysis using ammonia gas, and they demonstrated excellent CO 2 capture capabilities. These materials overcome several limitations of conventional amine-grafted mesoporous silica. They offer good CO 2 capture capacity, faster adsorption-desorption kinetics, efficient regeneration and reuse, more crucially excellent thermal and mechanical stability even in oxidative environments, and a clean and green synthesis route, which allows the overall CO 2 capture process to be practical and sustainable. This journal is © The Royal Society of Chemistry 2012.

  11. Mathematic preprocessor for RELAP5 code using Microsoft Excel; Pre-processador matematico para o codigo RELAP5 utilizando o Microsoft Excel

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Patricia Andrea

    2006-07-01

    Computational program are used for thermal hydraulic analysis of accidents and transients conditions in nuclear power plants. The RELAP5 code has been developed to simulate accidents and transients conditions, performing a best estimate analysis, in Pressurized Water Reactors (PWR) and auxiliary systems. The RELAP5 code, which has been used as a toll for licensing nuclear facilities in Brazil, is the objective of the study performed in this work. The main problem in using the RELAP5 code is the huge amount of information necessary to model the nuclear reactor and thus to simulate thermal-hydraulic accidents. Moreover, the RELAP5 code input data requires a large amount of mathematical operations to calculate the geometry of the plant components. Therefore, in order to make easier the data input for the RELAP5 code a friendly preprocessor has been developed. The preprocessor accepts basic information about the geometry of the plant components and performs all the calculations needed for the RELAP5 input. This preprocessor has been developed based on the MS-Excel software. (author)

  12. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    Science.gov (United States)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  13. Photovoltaic. Solar thermal. Solar thermal electricity;Le Photovoltaique. Le solaire thermique. L'heliothermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  14. NOBLE and EXCEL: The debate for excellence in dealing with left main stenosis.

    Science.gov (United States)

    Kindi, Hamood Al; Samaan, Amir; Hosny, Hatem

    2018-03-14

    Left main coronary artery (LMCA) disease is associated with increased morbidity and mortality. Coronary artery bypass grafting surgery (CABG) has always been the standard revascularization strategy for this group of patients. However, with the recent developments in stents design and medical therapy over the past decade, several trials have been designed to evaluate the safety and efficacy of percutaneous coronary intervention (PCI) as an alternative to CABG surgery in patients with LMCA disease. Recently, the results of two major trials, EXCEL and NOBLE, comparing CABG versus PCI in this patient population have been released. In fact, the results of both trials might appear contradictory at first glance. While the EXCEL trial showed that PCI was non-inferior to CABG surgery, the NOBLE trial suggested that CABG surgery is a better option. In the following review, we will discuss some of the similarities and contrasts between these two trials and conclude with lessons to be learned to our daily practice.

  15. Excellent fruits of national research and development

    International Nuclear Information System (INIS)

    2008-12-01

    This book introduces 100 excellent fruits of research and development in Korea. Such as. It show the titles of 100 excellent fruits about technology of hope to give people healthy life, technology of product and abundance to enrich resource, technology to make green growth and sound society, next service technology to communicate with network, new electron technology to brings life change, technology to draw innovation of industrial fields, technology to build higher value-added product with new fusion materials and technology to share and to create future knowledge.

  16. Leadership Excellence in East and West: Reports from the Trenches

    NARCIS (Netherlands)

    Hofstede, G.J.; Dooley, R.M.

    2017-01-01

    This article shows that leadership excellence is not uniformly perceived in one multinational. This study was done in a company active mainly in the USA, Malaysia and Singapore, half the management population (414 managers) joined in 39 focus sessions to define leadership excellence. This provided

  17. Activated Carbon Fibers "Thickly Overgrown" by Ag Nanohair Through Self-Assembly and Rapid Thermal Annealing

    Science.gov (United States)

    Yan, Xuefeng; Xu, Sijun; Wang, Qiang; Fan, Xuerong

    2017-11-01

    Anisotropic nanomaterial-modified carbon fibers attract increasing attention because of their superior properties over traditional ones. In this study, activated carbon fibers (ACFs) "thickly overgrown" by Ag nanohair were prepared through self-assembly and rapid thermal annealing. Viscose fibers with well-dispersed silver nanoparticles (AgNPs) on surfaces were first prepared through self-assembly of hyperbranched poly(amino-amine) (HBPAA)-capped AgNPs on viscose surfaces. HBPAA endowed the AgNP surfaces with negative charges and abundant amino groups, allowing AgNPs to monodispersively self-assemble to fiber surfaces. Ag nanohair-grown ACFs were prepared by sequential pre-oxidation and carbonization. Because the carbonization furnace was open-ended, ACFs are immediately transferrable to the outside of the furnace. Therefore, the Ag liquid adsorbed by ACF pores squeezed out to form Ag nanowires through thermal contraction. FESEM characterization indicated that Ag nanohairs stood on ACF surface and grew from ACF caps. XPS and XRD characterization showed that Ag successfully assembled to fiber surfaces and retained its metallic state even after high-temperature carbonization. TG analysis suggested that Ag nanohair-grown ACFs maintained their excellent thermal stabilities. Finally, the fabricated ACFs showed excellent and durable antibacterial activities, and the developed method may provide a potential strategy for preparing metal nanowire-grown ACFs.

  18. Novel Magnetic-to-Thermal Conversion and Thermal Energy Management Composite Phase Change Material

    Directory of Open Access Journals (Sweden)

    Xiaoqiao Fan

    2018-05-01

    Full Text Available Superparamagnetic materials have elicited increasing interest due to their high-efficiency magnetothermal conversion. However, it is difficult to effectively manage the magnetothermal energy due to the continuous magnetothermal effect at present. In this study, we designed and synthesized a novel Fe3O4/PEG/SiO2 composite phase change material (PCM that can simultaneously realize magnetic-to-thermal conversion and thermal energy management because of outstanding thermal energy storage ability of PCM. The composite was fabricated by in situ doping of superparamagnetic Fe3O4 nanoclusters through a simple sol–gel method. The synthesized Fe3O4/PEG/SiO2 PCM exhibited good thermal stability, high phase change enthalpy, and excellent shape-stabilized property. This study provides an additional promising route for application of the magnetothermal effect.

  19. Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil.

    Science.gov (United States)

    Ahn, B Kollbe; Kraft, Stefan; Wang, D; Sun, X Susan

    2011-05-09

    Thermal stability and optical transparency are important factors for flexible electronics and heat-related applications of pressure-sensitive adhesives (PSAs). However, current acryl- and rubber-based PSAs cannot attain the required thermal stability, and silicon-based PSAs are much more expensive than the alternatives. Oleo-chemicals including functionalized plant oils have great potential to replace petrochemicals. In this study, novel biobased PSAs from soybean oils were developed with excellent thermal stability and transparency as well as peel strength comparable to current PSAs. In addition, the fast curing (drying) property of newly developed biobased PSAs is essential for industrial applications. The results show that soybean oil-based PSA films and tapes have great potential to replace petro-based PSAs for a broad range of applications including flexible electronics and medical devices because of their thermal stability, transparency, chemical resistance, and potential biodegradability from triglycerides.

  20. Modeling of cross-plane interface thermal conductance between graphene nano-ribbons

    International Nuclear Information System (INIS)

    Varshney, Vikas; Lee, Jonghoon; Farmer, Barry L; Voevodin, Andrey A; Roy, Ajit K

    2014-01-01

    Using non-equilibrium molecular dynamics for thermal energy transfer, we investigate the interfacial thermal conductance between non-covalently interacting graphene nano-ribbons (GNRs) of varying lengths and widths in a cross-contact (x-shaped) geometry. Our results show that the out-of-plane conductance between GNRs can vary significantly (up to a factor of 4) depending upon their geometric parameters. We observe that when plotted against aspect ratio, the predicted interface thermal conductance values fit excellently on a single master-plot with a logarithmic scaling, suggesting the importance of GNR aspect ratio towards thermal conductance. We propose a model based on incorporating different thermal conductance characteristics of edge and inner interacting regions which predicts the observed logarithmic dependence on aspect ratio. We also study the effect of graphene edge roughness, temperature, and strain on out-of-plane thermal conductance and discuss the observed results based on local vibrational characteristics of atoms within interacting region, number of interacting phonons, and the degree to which they interact across the interaction zone. (paper)

  1. Model calculation of thermal conductivity in antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.

    2015-11-01

    A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.

  2. Organic transistors with high thermal stability for medical applications.

    Science.gov (United States)

    Kuribara, Kazunori; Wang, He; Uchiyama, Naoya; Fukuda, Kenjiro; Yokota, Tomoyuki; Zschieschang, Ute; Jaye, Cherno; Fischer, Daniel; Klauk, Hagen; Yamamoto, Tatsuya; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Sekitani, Tsuyoshi; Loo, Yueh-Lin; Someya, Takao

    2012-03-06

    The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm(2) V(-1)s(-1) within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

  3. Mathematic preprocessor for RELAP5 code using Microsoft Excel

    International Nuclear Information System (INIS)

    Paladino, Patricia Andrea

    2006-01-01

    Computational program are used for thermal hydraulic analysis of accidents and transients conditions in nuclear power plants. The RELAP5 code has been developed to simulate accidents and transients conditions, performing a best estimate analysis, in Pressurized Water Reactors (PWR) and auxiliary systems. The RELAP5 code, which has been used as a toll for licensing nuclear facilities in Brazil, is the objective of the study performed in this work. The main problem in using the RELAP5 code is the huge amount of information necessary to model the nuclear reactor and thus to simulate thermal-hydraulic accidents. Moreover, the RELAP5 code input data requires a large amount of mathematical operations to calculate the geometry of the plant components. Therefore, in order to make easier the data input for the RELAP5 code a friendly preprocessor has been developed. The preprocessor accepts basic information about the geometry of the plant components and performs all the calculations needed for the RELAP5 input. This preprocessor has been developed based on the MS-Excel software. (author)

  4. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    Science.gov (United States)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. ARS-Media for excel instruction manual

    Science.gov (United States)

    ARS-Media for Excel Instruction Manual is the instruction manual that explains how to use the Excel spreadsheet ARS-Media for Excel application. ARS-Media for Excel Instruction Manual is provided as a pdf file....

  6. A Thermally Insulating Textile Inspired by Polar Bear Hair.

    Science.gov (United States)

    Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao

    2018-04-01

    Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thermal conductive epoxy enhanced by nanodiamond-coated carbon nanotubes

    Science.gov (United States)

    Zhao, Bo; Jiang, Guohua

    2017-11-01

    Nanodiamond (ND) particles were coated on the surface of carbon nanotubes (CNTs) by chemical reactions. Reliable bonding was formed by the combination of acyl chloride on NDs and amine group on CNTs. ND coated CNTs (CNT-ND) were dispersed into epoxy to fabricate thermal conductive resins. The results show that the surface energy of CNTs is decreased by the coated NDs, which is contributed to the excellent dispersion of CNT-NDs in the epoxy matrix. The heat-transfer channels were built by the venous CNTs cooperating with the coated NDs, which not only plays an effective role of heat conduction for CNTs and NDs, but also avoids the electrical leakage by the protection of NDs surrounding outside of CNTs. Electrical and thermal conductance measurements demonstrate that the influence of the CNT-ND incorporation on the electrical conductance is minor, however, the thermal conductivity is improved significantly for the epoxy filled with CNT-ND.[Figure not available: see fulltext.

  8. Excel dashboards and reports

    CERN Document Server

    Alexander, Michael

    2013-01-01

    Learn to use Excel dashboards and reports to better conceptualize data Updated for all the?latest features and capabilities of Excel 2013, this go-to resource provides you with in-depth coverage of the individual functions and tools that can be used to create?compelling Excel reports. Veteran author Michael Alexander walks you through the most effective ways to present and report data. Featuring a comprehensive review of a wide array of technical and analytical concepts, this essential guide helps you go from reporting data with simple tables full of dull numbers to presenting

  9. A new high power thermal battery cathode material

    International Nuclear Information System (INIS)

    Faul, I.

    1986-01-01

    Smaller and lighter thermal batteries are major aims of the battery research programme at RAE Farnborough. Modern designs of thermal batteries, for use as power supplies in weapon systems, almost invariably use the Li:molten salt:FeS/sub 2/ system because of the significant increase in energy density achieved in comparison with the earlier Ca/CaCrO/sub 4/ couple. The disadvantage of the FeS/sub 2/ system is that the working cell voltage, between 1.5 and 2.0 V, is significantly lower so leading to more cells per battery than the earlier system. Further work at RAE and MSA (Britain) Ltd showed that the poor thermal stability of TiS/sub 2/ limited its use in thermal batteries, whilst the more stable V/sub 6/O/sub 13/ oxidised the electrolyte, giving poor efficiencies. However, the resulting reduced vanadium oxide material, subsequently called lithiated vanadium oxide (LVO), was found to be an excellent high voltage thermal battery cathode, being the subject of both UK and US patents. In this study both V/sub 6/O/sub 13/ made by the direct stoichiometric reaction of V/sub 2/O/sub 5/ and V and also by thermal decomposition of NH/sub 4/VO/sub 3/ under argon, have been used with equal success as the starting material for the preparation of LVO

  10. Excel 2003 for dummies

    CERN Document Server

    Harvey, Greg

    2013-01-01

    Every time you turn around, you run into Excel. It's on yourPC at work. It's on your PC at home. You get Excel files fromyour boss. Wouldn't you like to understand this powerfulMicrosoft Office spreadsheet program, once and for all? Now, youcan crunch financial data, add sparkle to presentations, convertstatic lists of numbers into impressive charts, and discover whatall the shouting's about regarding databases, formulas, andcells. You may even decide that getting organized with a goodspreadsheet is downright useful and fun! Flip open Excel 2003 For Dummies, and you'llquickly start getting th

  11. Beginning Microsoft Excel 2010

    CERN Document Server

    Katz, Abbott

    2010-01-01

    Beginning Microsoft Excel 2010 is a practical, step-by-step guide to getting started with the world's most widely used spreadsheet application. The book offers a hands-on approach to learning how to create and edit spreadsheets, use various calculation formulas, employ charts/graphs, and get work done efficiently. Microsoft is rolling out several new features with Excel 2010 - perhaps the most notable is the ability to use Excel 2010 online and this collaborate on a project in real time. Beginning Microsoft Office 2010 keeps you up-to-date with all of these new features and more. What you'll l

  12. Enhanced Thermal Conductivity of Polyimide Composites Filled with Modified h-BN and Nanodiamond Hybrid Filler.

    Science.gov (United States)

    Yang, Xi; Yu, Xiaoyan; Naito, Kimiyoshi; Ding, Huili; Qu, Xiongwei; Zhang, Qingxin

    2018-05-01

    A new thermally conductive and electrically insulative polyimide were prepared by filling different amounts of hexagonal boron nitride (h-BN) particles, and the thermal conductivity of Polyimide (PI) composites were improved with the increasing h-BN content. Based on this, two methods were applied to improve thermal conductivity furtherly at limited filler loading in this paper. One is modifying the h-BN to improve interface interaction, another is fabricating a nano-micro hybrid filler with 2-D h-BN and 0-D nano-scale nanodiamond (ND) to build more effective conductive network. Both surface modification and hybrid system have a positive effect on thermal conductivity. The composites introducing 40 wt% hybrid filler (the weight ratio of ND/modified BN was 1/10) showed the highest thermal conductivity, being up to 0.98 W/(m K) (5.2 times that of PI). In addition, the composites exhibits excellent electrical insulation, thermal stability properties etc.

  13. Excel VBA 24-hour trainer

    CERN Document Server

    Urtis, Tom

    2015-01-01

    Master VBA automation quickly and easily to get more out of Excel Excel VBA 24-Hour Trainer, 2nd Edition is the quick-start guide to getting more out of Excel, using Visual Basic for Applications. This unique book/video package has been updated with fifteen new advanced video lessons, providing a total of eleven hours of video training and 45 total lessons to teach you the basics and beyond. This self-paced tutorial explains Excel VBA from the ground up, demonstrating with each advancing lesson how you can increase your productivity. Clear, concise, step-by-step instructions are combined wit

  14. Teaching physics using Microsoft Excel

    Science.gov (United States)

    Uddin, Zaheer; Ahsanuddin, Muhammad; Khan, Danish Ahmed

    2017-09-01

    Excel is both ubiquitous and easily understandable. Most people from every walk of life know how to use MS office and Excel spreadsheets. Students are also familiar with spreadsheets. Most students know how to use spreadsheets for data analysis. Besides basic use of Excel, some important aspects of spreadsheets are highlighted in this article. MS Excel can be used to visualize effects of various parameters in a physical system. It can be used as a simulating tool; simulation of wind data has been done through spreadsheets in this study. Examples of Lissajous figures and a damped harmonic oscillator are presented in this article.

  15. CFD simulation for thermal mixing of a SMART flow mixing header assembly

    International Nuclear Information System (INIS)

    Kim, Young In; Bae, Youngmin; Chung, Young Jong; Kim, Keung Koo

    2015-01-01

    Highlights: • Thermal mixing performance of a FMHA installed in SMART is investigated numerically. • Effects of operating condition and discharge hole configuration are examined. • FMHA performance satisfies the design requirements under various abnormal conditions. - Abstract: A flow mixing header assembly (FMHA) is installed in a system-integrated modular advanced reactor (SMART) to enhance the thermal mixing capability and create a uniform core flow distribution under both normal operation and accident conditions. In this study, the thermal mixing characteristics of the FMHA are investigated for various steam generator conditions using a commercial CFD code. Simulations include investigations for the effects of FMHA discharge flow rate differences, turbulence models, and steam generator conditions. The results of the analysis show that the FMHA works effectively for thermal mixing in various conditions and makes the temperature difference at the core inlet decrease noticeably. We verified that the mixing capability of the FMHA is excellent and satisfies the design requirement in all simulation cases tested here

  16. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Chung, C.Y.; Lam, C.W.H.

    1999-01-01

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >A f =80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  17. Excel 2016 for engineering statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching engineering statistics effectively. Similar to the previously published Excel 2013 for Engineering Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical engineering problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in engineering courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However,Excel 2016 for Engineering Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and...

  18. Excel 2016 for business statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching business statistics effectively. Similar to the previously published Excel 2010 for Business Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical business problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in business courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Business Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each ch...

  19. Experimental investigation of a PCM-HP heat sink on its thermal performance and anti-thermal-shock capacity for high-power LEDs

    International Nuclear Information System (INIS)

    Wu, Yuxuan; Tang, Yong; Li, Zongtao; Ding, Xinrui; Yuan, Wei; Zhao, Xuezhi; Yu, Binhai

    2016-01-01

    Highlights: • A phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) is designed. • The PCM-HP heat sink can significantly lower the LED heating rate and temperature. • The PCM-HP heat sink achieves a best anti-thermal-shock capacity in LED cyclic working modes. - Abstract: High-power LEDs demonstrate a number of benefits compared with conventional incandescent lamps and fluorescent lamps, including a longer lifetime, higher brightness and lower power consumption. However, owing to their severe high heat flux, it is difficult to develop effective thermal management of high-power LEDs, especially under cyclic working modes, which cause serious periodic thermal stress and limit further development. Focusing on the above problem, this paper designed a phase-change material (PCM) base heat pipe heat sink (PCM-HP heat sink) that consists of a PCM base, adapter plate, heat pipe and finned radiator. Different parameters, such as three types of interior materials to fill the heat sink, three LED power inputs and eight LED cyclic working modes, were separately studied to investigate the thermal performance and anti-thermal-shock capacity of the PCM-HP heat sink. The results show that the PCM-HP heat sink possesses remarkable thermal performance owing to the reduction of the LED heating rate and peak temperature. More importantly, an excellent anti-thermal-shock capacity of the PCM-HP heat sink is also demonstrated when applied in LED cyclic working modes, and this capacity demonstrates the best range.

  20. Limitations of Using Microsoft Excel Version 2016 (MS Excel 2016) for Statistical Analysis for Medical Research.

    Science.gov (United States)

    Tanavalee, Chotetawan; Luksanapruksa, Panya; Singhatanadgige, Weerasak

    2016-06-01

    Microsoft Excel (MS Excel) is a commonly used program for data collection and statistical analysis in biomedical research. However, this program has many limitations, including fewer functions that can be used for analysis and a limited number of total cells compared with dedicated statistical programs. MS Excel cannot complete analyses with blank cells, and cells must be selected manually for analysis. In addition, it requires multiple steps of data transformation and formulas to plot survival analysis graphs, among others. The Megastat add-on program, which will be supported by MS Excel 2016 soon, would eliminate some limitations of using statistic formulas within MS Excel.

  1. ARS-Media for Excel

    Science.gov (United States)

    ARS-Media for Excel is an ion solution calculator that uses Microsoft Excel to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Thus, the recipes are genera...

  2. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Learn Excel 2011 for Mac

    CERN Document Server

    Hart-Davis, Guy

    2011-01-01

    Microsoft Excel 2011 for Mac OS X is a powerful application, but many of its most impressive features can be difficult to find. Learn Excel 2011 for Mac by Guy Hart-Davis is a practical, hands-on approach to learning all of the details of Excel 2011 in order to get work done efficiently on Mac OS X. From using formulas and functions to creating databases, from analyzing data to automating tasks, you'll learn everything you need to know to put this powerful application to use for a variety of tasks. What you'll learn * The secrets of the Excel for Mac interface! * How to create effective workbo

  4. Excel data analysis for dummies

    CERN Document Server

    Nelson, Stephen L

    2014-01-01

    Harness the power of Excel to discover what your numbers are hiding Excel Data Analysis For Dummies, 2nd Edition is the ultimate guide to getting the most out of your data. Veteran Dummies author Stephen L. Nelson guides you through the basic and not-so-basic features of Excel to help you discover the gems hidden in your rough data. From input, to analysis, to visualization, the book walks you through the steps that lead to superior data analysis. Excel is the number-one spreadsheet application, with ever-expanding capabilities. If you're only using it to balance the books, you're missing out

  5. "Excellence" in STEM Education

    Science.gov (United States)

    Clark, Aaron C.

    2012-01-01

    So what does it take to achieve excellence in STEM education? That is the title of the author's presentation delivered at International Technology and Engineering Educators Association's (ITEEA's) FTEE "Spirit of Excellence" Breakfast on March 16, 2012, in Long Beach, California. In preparation for this presentation, the author went back and read…

  6. A Survey of Level of Excellence in National Library and Archives of I.R. of Iran Based on EFQM Excellence Model

    Directory of Open Access Journals (Sweden)

    Elaheh Hassanzadeh

    2013-03-01

    Full Text Available EFQM excellence model as a framework for evaluation and improvement in organizations indicates some advantages which an excellent organization should achieve. Furthermore, based on its position and the type of service it offers, NLAI needs an all-out study using EFQM model. So the current research aimed at determining level of excellence in NLAI based on EFQM excellence model. The research method was descriptive. Statistical society consisted of top and middle managers of NLAI. Data was gathered through the proportionate EFQM's 90 questions questionnaire. The results from descriptive statistics showed that the mean of NLAI performance self-assessment was acquired in 9 criteria of EFQM model: leadership 56 out of 100, policy and strategy 34 out of 80, people 52 out of 90, partnership and resources 62 out of 90, processes 41 out of 140, customer results 80 out of 200, people results40 out of 90, society results 31 out of 60, key performance results 96 out of 150. Finally, the NLAI gained 492 out of 1000 points. Among all the criteria of the model, partnership criteria and resources have achieved the highest score (62 points of 90 and process criteria lowest score (41 points of 140. Therefore NLAI should be improving the process to meet the complete satisfaction and added value for users and other stakeholders. The results also showed that the EFQM was a good framework for self-assessment on of the EFQM model at NLAI and a good system for identifying strengths and areas for improvement.

  7. Spectroscopic and Theoretical Identification of Two Thermal Isomerization Pathways for Bistable Chiral Overcrowded Alkenes.

    Science.gov (United States)

    Kistemaker, Jos C M; Pizzolato, Stefano F; van Leeuwen, Thomas; Pijper, Thomas C; Feringa, Ben L

    2016-09-12

    Chiroptical molecular switches play an important role in responsive materials and dynamic molecular systems. Here we present the synthesis of four chiral overcrowded alkenes and the experimental and computational study of their photochemical and thermal behavior. By irradiation with UV light, metastable diastereoisomers with opposite helicity were generated through high yielding E-Z isomerizations. Kinetic studies on metastable 1-4 using CD spectroscopy and HPLC analysis revealed two pathways at higher temperatures for the thermal isomerization, namely a thermal E-Z isomerization (TEZI) and a thermal helix inversion (THI). These processes were also studied computationally whereby a new strategy was developed for calculating the TEZI barrier for second-generation overcrowded alkenes. To demonstrate that these overcrowded alkenes can be employed as bistable switches, photochromic cycling was performed, which showed that the alkenes display good selectivity and fatigue resistance over multiple irradiation cycles. In particular, switch 3 displayed the best performance in forward and backward photoswitching, while 1 excelled in thermal stability of the photogenerated metastable form. Overall, the alkenes studied showed a remarkable and unprecedented combination of switching properties including dynamic helicity, reversibility, selectivity, fatigue resistance, and thermal stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    Science.gov (United States)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  9. Low Thermal Budget Fabrication of III-V Quantum Nanostructures on Si Substrates

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Sanguinetti, S; Koguchi, N; Isella, G; Chrastina, D; Fedorov, A

    2010-01-01

    We show the possibility to integrate high quality III-V quantum nanostructures tunable in shape and emission energy on Si-Ge Virtual Substrate. Strong photoemission is observed, also at room temperature, from two different kind of GaAs quantum nanostructures fabricated on Silicon substrate. Due to the low thermal budget of the procedure used for the fabrication of the active layer, Droplet Epitaxy is to be considered an excellent candidate for implementation of optoelectronic devices on CMOS circuits.

  10. Textbooks for Responsible Data Analysis in Excel

    Science.gov (United States)

    Garrett, Nathan

    2015-01-01

    With 27 million users, Excel (Microsoft Corporation, Seattle, WA) is the most common business data analysis software. However, audits show that almost all complex spreadsheets have errors. The author examined textbooks to understand why responsible data analysis is taught. A purposeful sample of 10 textbooks was coded, and then compared against…

  11. A biomimic thermal fabric with high moisture permeability

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2013-01-01

    Full Text Available Moisture comfort is an essential factor for functional property of thermal cloth, especially for thick thermal cloth, since thick cloth may hinder effective moisture permeation, and high moisture concentration in the micro-climate between skin and fabric would cause cold feeling. Here, we report a biomimic thermal fabric with excellent warm retention and moisture management properties. In this fabric, the warp yarn system constructs many tree-shaped channel nets in the thickness direction of the fabric. Experimental result indicates that the special hierarchic configuration of warp yarns endows the biomimic thermal fabric with a better warm retention and water vapor management properties compared with the traditional fabrics.

  12. What Makes an Excellent Lecturer? Academics' Perspectives on the Discourse of "Teaching Excellence" in Higher Education

    Science.gov (United States)

    Wood, Margaret; Su, Feng

    2017-01-01

    In the context of the Teaching Excellence Framework (TEF), we examine academics' perspectives on the discourse of "teaching excellence" based on an empirical study with 16 participants from five post-1992 universities. The article reports the findings on academics' views of the term and concept of "teaching excellence",…

  13. Heat transfer and thermal storage performance of an open thermosyphon type thermal storage unit with tubular phase change material canisters

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Hu, Bo-Wen; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel open heat pipe thermal storage unit is design to improve its performance. • Mechanism of its operation is phase-change heat transfer. • Tubular canisters with phase change material were placed in thermal storage unit. • Experiment and analysis are carried out to investigate its operation properties. - Abstract: A novel open thermosyphon-type thermal storage unit is presented to improve design and performance of heat pipe type thermal storage unit. In the present study, tubular canisters filled with a solid–liquid phase change material are vertically placed in the middle of the thermal storage unit. The phase change material melts at 100 °C. Water is presented as the phase-change heat transfer medium of the thermal storage unit. The tubular canister is wrapped tightly with a layer of stainless steel mesh to increase the surface wettability. The heat transfer mechanism of charging/discharging is similar to that of the thermosyphon. Heat transfer between the heat resource or cold resource and the phase change material in this device occurs in the form of a cyclic phase change of the heat-transfer medium, which occurs on the surface of the copper tubes and has an extremely high heat-transfer coefficient. A series of experiments and theoretical analyses are carried out to investigate the properties of the thermal storage unit, including power distribution, start-up performance, and temperature difference between the phase change material and the surrounding vapor. The results show that the whole system has excellent heat-storage/heat-release performance

  14. Measuring research excellence in the EU

    DEFF Research Database (Denmark)

    Sørensen, Mads P.; Bloch, Carter Walter; Young, Mitchell

    In 2013, the European Union unveiled its new ‘Composite Indicator for Scientific and Technological Research Excellence’, marking a turning point in how excellence is understood and used in European policy. This is not an isolated occurrence; policy-based interest in excellence is growing all over...... the world. The heightened focus on excellence and in particular, attempts to define it through quantitative indicators can have important implications for research policy and for the conduct of research itself. This paper examines how the European Union’s understanding of excellence has evolved in recent...... years, from the presentation of the Lisbon strategy in 2000 to the current Europe 2020 strategy. We find a distinct shift in the understanding of excellence and how success in the knowledge-based economy should be achieved: in the early period, excellence is a fuzzy concept, intrinsically embedded...

  15. Managing for Excellence

    International Nuclear Information System (INIS)

    Gysel, T.

    2016-01-01

    Full text: Nuclear organizations now wishing to become much more effective as an organization require further advice and specific guidance, drawn from validated international best practices in the development and implementation of Knowledge Management in the context of the organization’s management system. Therefore the IAEA Nuclear Knowledge Management Section is developing an approach for implementing Knowledge Management in the context of a management system. What looks like excellence today, may not be tomorrow. Best-in-class competitors, technology, and management paradigms all evolve. Second, true Operational Excellence manifests itself through integrated performance across revenue, cost, and risk. (author

  16. Excel 2010 all-in-one for dummies

    CERN Document Server

    Harvey, Greg

    2010-01-01

    A comprehensive, up-to-date, user-friendly guide to Excel 2010 Excel is the standard for spreadsheet applications and is used worldwide, but it's not always user-friendly. That makes it a perfect For Dummies topic, and this handy all-in-one guide covers all the essentials, the new features, how to analyze data with Excel, and much more. Eight minibooks address Excel basics, worksheet design, formulas and functions, worksheet collaboration and review, charts and graphics, data management, data analysis, and Excel and VBA.Excel is the leading spreadsheet/data analysis s

  17. The electric industry in the service of employment and French excellence in the world. Study of economic impacts of the UFE 2020 vision and on opportunities to create French excellence sectors

    International Nuclear Information System (INIS)

    2010-06-01

    This study proposes assessments of economic growth and employment creation in the electric industry in relationship with energy production objectives (improvement of CO 2 performance in electricity production and use) and also with induced consequences of these objectives (energy independence, development of a sector of excellence). These aspects are addressed in the fields of wind energy, photovoltaic energy, solar thermal energy, geothermal energy, hydraulic energy, biomass, wood-energy, heat pumps, condensing boilers, building insulation, smart grids, nuclear energy, and CO 2 capture and storage

  18. Excel 2016 for marketing statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This is the first book to show the capabilities of Microsoft Excel in teaching marketing statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical marketing problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in marketing courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Marketing Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader t...

  19. Excel 2013 for engineering statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach engineering statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical engineering problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in engineering courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Engineering Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs...

  20. Achieveing Organizational Excellence Through

    OpenAIRE

    Mehdi Abzari; Mohammadreza Dalvi

    2009-01-01

    AbstractToday, In order to create motivation and desirable behavior in employees, to obtain organizational goals,to increase human resources productivity and finally to achieve organizational excellence, top managers oforganizations apply new and effective strategies. One of these strategies to achieve organizational excellenceis creating desirable corporate culture. This research has been conducted to identify the path to reachorganizational excellence by creating corporate culture according...

  1. Excel 2013 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching physical sciences statistics effectively. Similar to the previously published Excel 2010 for Physical Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their ...

  2. Excel 2016 for social science statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching social science statistics effectively. Similar to the previously published Excel 2013 for Social Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical social science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in social science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Social Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in ...

  3. An Investigation On Air and Thermal Transmission Through Knitted Fabric Structures Using the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Ghosh Anindya

    2017-06-01

    Full Text Available Knitted fabrics have excellent comfort properties because of their typical porous structure. Different comfort properties of knitted fabrics such as air permeability, thermal absorptivity, and thermal conductivity depend on the properties of raw material and knitting parameters. In this paper, an investigation was done to observe the effect of yarn count, loop length, knitting speed, and yarn input tension in the presence of two uncontrollable noise factors on selected comfort properties of single jersey and 1×1 rib knitted fabrics using the Taguchi experimental design. The results show that yarn count and loop length have significant influence on the thermo-physiological comfort properties of knitted fabrics.

  4. Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites

    Science.gov (United States)

    Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba

    2018-04-01

    The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.

  5. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  6. Sourcing Excellence

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi

    2011-01-01

    Sourcing Excellence is one of the key performance indicators (KPIs) in this world of ever changing sourcing strategies. Manufacturing companies need to access and diagnose the reliability and competencies of existing suppliers in order to coordinate and develop them. This would help in managing...

  7. The Susquehanna plant lifetime excellence program

    International Nuclear Information System (INIS)

    McNamara, R.W.

    1988-01-01

    This paper discusses how the Susquehanna plant lifetime excellence program (SPLEX) blends many of the objectives of a new managing for excellence program with plant life extension objectives to achieve excellence in the lifetime operation and availability of the two-unit Susquehanna steam electric station. Investments in lifetime excellence improvements will provide near-term, as well as plant life extension, benefits. A high-quality lifetime experience record, together with extensive, periodic technical assessments and cost-benefit analyses, will provide conclusive justification for future extensions of the unit operating licenses

  8. Teach yourself visually complete Excel

    CERN Document Server

    McFedries, Paul

    2013-01-01

    Get the basics of Excel and then go beyond with this new instructional visual guide While many users need Excel just to create simple worksheets, many businesses and professionals rely on the advanced features of Excel to handle things like database creation and data analysis. Whatever project you have in mind, this visual guide takes you step by step through what each step should look like. Veteran author Paul McFedries first presents the basics and then gradually takes it further with his coverage of designing worksheets, collaborating between worksheets, working with visual data

  9. Excel 2007 for Business Statistics A Guide to Solving Practical Business Problems

    CERN Document Server

    Quirk, Thomas J

    2012-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach business statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical business problems. If understanding statistics isn't your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in business courses. Its powerful computat

  10. Excel 2013 all-in-one for dummies

    CERN Document Server

    Harvey, Greg

    2013-01-01

    The comprehensive reference, now completely up-to-date for Excel 2013! As the standard for spreadsheet applications, Excel is used worldwide - but it's not always user-friendly. However, in the hands of veteran bestselling author Greg Harvey, Excel gets a whole lot easier to understand! This handy all-in-one guide covers all the essentials, the new features, how to analyze data with Excel, and much more. The featured minibooks address Excel basics, worksheet design, formulas and functions, worksheet collaboration and review, charts and graphics, data management, data analysis, and

  11. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    Science.gov (United States)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  12. Leading Others Toward Excellence.

    Science.gov (United States)

    Hupp, James R

    2015-12-01

    This essay puts forth the proposition that academic program excellence does not arise by accident. Effective leadership is required. To support this proposition, the essay discusses the characteristics common to effective leaders. It then proceeds to use the example of a successful academic oral-maxillofacial surgery department and characteristics of its leader to provide evidence that excellence derives from effective leadership. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Thermal diffusivity effect in opto-thermal skin measurements

    International Nuclear Information System (INIS)

    Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P

    2010-01-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  14. Multiscale thermal transport.

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  15. Excel2Genie: A Microsoft Excel application to improve the flexibility of the Genie-2000 Spectroscopic software

    International Nuclear Information System (INIS)

    Forgács, Attila; Balkay, László; Trón, Lajos; Raics, Péter

    2014-01-01

    Excel2Genie, a simple and user-friendly Microsoft Excel interface, has been developed to the Genie-2000 Spectroscopic Software of Canberra Industries. This Excel application can directly control Canberra Multichannel Analyzer (MCA), process the acquired data and visualize them. Combination of Genie-2000 with Excel2Genie results in remarkably increased flexibility and a possibility to carry out repetitive data acquisitions even with changing parameters and more sophisticated analysis. The developed software package comprises three worksheets: display parameters and results of data acquisition, data analysis and mathematical operations carried out on the measured gamma spectra. At the same time it also allows control of these processes. Excel2Genie is freely available to assist gamma spectrum measurements and data evaluation by the interested Canberra users. With access to the Visual Basic Application (VBA) source code of this application users are enabled to modify the developed interface according to their intentions. - Highlights: • User-friendly Microsoft Excel interface to the Genie-2000 Spectroscopic software. • Data acquisitions with changing parameters and sophisticated data analysis. • Three worksheets: data acquisition, data analysis and mathematical operations on spectra. • The source code is freely available

  16. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  17. Excel 2013 for social sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach social science statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical social science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in social science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Social Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formul...

  18. Excel 2010 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmental sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental sciences problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2010 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Eac...

  19. Excel 2016 for health services management statistics a guide to solving problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching health services management statistics effectively. Similar to the previously published Excel 2013 for Health Services Management Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical health service management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in health service courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Health Services Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply...

  20. Excel 2013 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmentall sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chap...

  1. Excel 2013 for human resource management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows how Microsoft Excel is able to teach human resource management statistics effectively. Similar to the previously published Excel 2010 for Human Resource Management Statistics, it is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical human resource management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in human resource management courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Human Resource Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to ...

  2. Why Excel?

    Science.gov (United States)

    Barreto, Humberto

    2015-01-01

    This article is not the usual Excel pedagogy fare in that it does not provide an application or example taught via a spreadsheet. Instead, it briefly reviews the history of spreadsheets in the economics classroom and explores the current environment, with an emphasis on modern learning theory. The conclusion is not surprising: spreadsheets improve…

  3. Analysis of nonlocal phonon thermal conductivity simulations showing the ballistic to diffusive crossover

    Science.gov (United States)

    Allen, Philip B.

    2018-04-01

    Simulations [e.g., X. W. Zhou et al., Phys. Rev. B 79, 115201 (2009), 10.1103/PhysRevB.79.115201] show nonlocal effects of the ballistic/diffusive crossover. The local temperature has nonlinear spatial variation not contained in the local Fourier law j ⃗(r ⃗) =-κ ∇ ⃗T (r ⃗) . The heat current j ⃗(r ⃗) depends not just on the local temperature gradient ∇ ⃗T (r ⃗) but also on temperatures at points r⃗' within phonon mean free paths, which can be micrometers long. This paper uses the Peierls-Boltzmann transport theory in nonlocal form to analyze the spatial variation Δ T (r ⃗) . The relaxation-time approximation (RTA) is used because the full solution is very challenging. Improved methods of extrapolation to obtain the bulk thermal conductivity κ are proposed. Callaway invented an approximate method of correcting RTA for the q ⃗ (phonon wave vector or crystal momentum) conservation of N (Normal as opposed to Umklapp) anharmonic collisions. This method is generalized to the nonlocal case where κ (k ⃗) depends on the wave vector of the current j ⃗(k ⃗) and temperature gradient i k ⃗Δ T (k ⃗) .

  4. Evaluation of thermal performance in fields subjected to steam injection (SW-SAGD mode), Orinoco oil belt, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Armas, F.; Mago, R.; Franco, L.; Rodriguez, J.; Gil, E. [PDVSA EandP (Venezuela)

    2011-07-01

    The first well to operate the SW-SAGD process in the Orinoco oil belt in Venezuela was built in 2006 by Petroleos de Venezuela S.A (PDVSA). SW-SAGD is a thermal recovery process consisting in the injection of steam through a horizontal well pipe insulation. In order to follow the behavior of steam and the movement of heated fluids in such a process better, PDVSA installed a monitoring system composed of high temperature fiber optic and thermocouple type sensors. The aim of this paper is to assess the thermal behavior of reservoirs in wells under the SW-SAGD process. A pilot test has been conducted over the last 3 years. Results show an increase in production and estimations show a recovery factor twice as high as in other wells. This study demonstrated that SW-SAGD is an excellent alternative solution to stimulate reservoirs in the Orinoco oil belt and valuable information on the reservoir's thermal behavior was established.

  5. Excel2Genie: A Microsoft Excel application to improve the flexibility of the Genie-2000 Spectroscopic software.

    Science.gov (United States)

    Forgács, Attila; Balkay, László; Trón, Lajos; Raics, Péter

    2014-12-01

    Excel2Genie, a simple and user-friendly Microsoft Excel interface, has been developed to the Genie-2000 Spectroscopic Software of Canberra Industries. This Excel application can directly control Canberra Multichannel Analyzer (MCA), process the acquired data and visualize them. Combination of Genie-2000 with Excel2Genie results in remarkably increased flexibility and a possibility to carry out repetitive data acquisitions even with changing parameters and more sophisticated analysis. The developed software package comprises three worksheets: display parameters and results of data acquisition, data analysis and mathematical operations carried out on the measured gamma spectra. At the same time it also allows control of these processes. Excel2Genie is freely available to assist gamma spectrum measurements and data evaluation by the interested Canberra users. With access to the Visual Basic Application (VBA) source code of this application users are enabled to modify the developed interface according to their intentions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Lineær programmering med Excel

    DEFF Research Database (Denmark)

    Lynggaard, Peter

    Publikationen giver en introduktion til faget "Lineær programmering". Formulering og løsning bygger på, at modellerne opstilles og løses i et Excel-regneark. Fremgangsmåden er forklaret trin for trin, således at hæftet kan bruges som selvstudiemateriale. Indholdsfortegnelse Generelt om styring og...... planlægning Lineær programmering Excel solveren Fortolkning af udskrifter Degeneration Excel tips Opgaver med løsninger...

  7. Thermally stable and flexible paper photosensors based on 2D BN nanosheets

    KAUST Repository

    Lin, Chun-Ho

    2018-01-30

    The market for printed and flexible electronics, key attributes for internet of things, is estimated to reach $45 billion by 2016 and paper-based electronics shows great potential to meet this increasing demand due to its popularity, flexibility, low cost, mass productivity, disposability, and ease of processing [1]. In the family of flexible electronics, solarblind deep ultraviolet (DUV) photodetectors (PDs) can be widely applied in wearable applications such as military sensing, automatization, short-range communications security and environmental detection [2]. However, conventional flexible devices made of paper and plastic substrates are expected to have thermal issues due to their poor thermal conductivity. For instance, conventional paper has a very low thermal conductivity of 0.03 W/mK as that of plastic is 0.23 W/mK. As a result, it is required to increase the thermal conductivity of the substrates used for flexible electronics. In this work, we present flexible DUV paper PDs consisting of 2D boron nitride nanosheets (BNNSs) and ID nanofibrillated celluloses (NFCs) with good detectivity (up to 8.05 × 10 cm Hz/W), fast recovery time (down to 0.393 s), great thermal stability (146 W/m K, 3-order-of-magnitude larger than conventional flexible substrates), high working temperature (up to 200 °C), excellent flexibility and bending durability (showing repeatable ON/OFF switching during 200-time bending cycles), which opens avenues to the flexible electronics.

  8. Essentials of Excel, Excel VBA, SAS and Minitab for statistical and financial analyses

    CERN Document Server

    Lee, Cheng-Few; Chang, Jow-Ran; Tai, Tzu

    2016-01-01

    This introductory textbook for business statistics teaches statistical analysis and research methods via business case studies and financial data using Excel, MINITAB, and SAS. Every chapter in this textbook engages the reader with data of individual stock, stock indices, options, and futures. One studies and uses statistics to learn how to study, analyze, and understand a data set of particular interest. Some of the more popular statistical programs that have been developed to use statistical and computational methods to analyze data sets are SAS, SPSS, and MINITAB. Of those, we look at MINITAB and SAS in this textbook. One of the main reasons to use MINITAB is that it is the easiest to use among the popular statistical programs. We look at SAS because it is the leading statistical package used in industry. We also utilize the much less costly and ubiquitous Microsoft Excel to do statistical analysis, as the benefits of Excel have become widely recognized in the academic world and its analytical capabilities...

  9. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    Science.gov (United States)

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  10. Excel PivotTables and PivotCharts Your Visual Blueprint for Creating Dynamic Spreadsheets

    CERN Document Server

    McFedries, Paul

    2010-01-01

    Master two of the most powerful features of Excel. Even if you use Excel all the time, you may not be up to speed on two of Excel's most useful features. PivotTable and PivotChart turn long lists of unreadable data into dynamic, easy-to-read tables and charts that highlight the information you need most; you can tweak results with a click or easily fuse data from several sources into one document. Now you can learn how to tap these powerful Excel tools with this practical guide. Using a series of step-by-step tutorials and easy-to-follow screenshots, this book shows you in a visual way how to

  11. Analytical solutions for thermal transient profile in solid target irradiated with low energy and high beam current protons

    International Nuclear Information System (INIS)

    Oliveira, Henrique B. de; Brazao, Nei G.; Sciani, Valdir

    2009-01-01

    There were obtained analytical solutions for thermal transient in solid targets, used in short half-life radioisotopes production, when irradiated with low energy and high beam current protons, in the cyclotron accelerator Cyclone 30 of the Institute for Energy and Nuclear Research (IPEN/CNEN-SP). The beam spatial profile was considered constant and the time depended heat distribution equation was resolved for a continuous particles flow entering the target. The problem was divided into two stages: a general solution was proposed which is the sum of two functions, the first one related to the thermal equilibrium situation and the second one related to a time dependent function that was determinate by the setting of the contour conditions and the initial conditions imposed by the real problem. By that one got an analytic function for a complete description of the heat transport phenomenon inside the targets. There were used both, numerical and symbolic computation methods, to obtain temperature maps and thermal gradients and the results showed an excellent agreement when compared with purely numerical models. The results were compared with obtained data from Gallium-67 and Thallium-201 irradiation routines conducted by the IPEN Cyclotrons accelerators center, showing excellent agreement. The objective of this paper is to develop solid targets irradiation systems (metals and oxides) so that one can operate with high levels of current beam, minimizing the irradiation time and maximizing the final returns. (author)

  12. Estimation of respiratory rate from thermal videos of preterm infants.

    Science.gov (United States)

    Pereira, Carina Barbosa; Heimann, Konrad; Venema, Boudewijn; Blazek, Vladimir; Czaplik, Michael; Leonhardt, Steffen

    2017-07-01

    Studies have demonstrated that respiratory rate (RR) is a good predictor of the patient condition as well as an early marker of patient deterioration and physiological distress. However, it is also referred as "the neglected vital parameter". This is mainly due to shortcoming of current monitoring techniques. Moreover, in preterm infants, the removal of adhesive electrodes cause epidermal stripping, skin disruption, and with it pain. This paper proposes a new algorithm for estimation of RR in thermal videos of moderate preterm infants. It uses the temperature modulation around the nostrils over the respiratory cycle to extract this vital parameter. To compensate movement artifacts the approach incorporates a tracking algorithm. In addition, a new reliable and accurate algorithm for robust estimation of local (breath-to-breath) intervals was included. To evaluate the performance of this approach, thermal recordings of four moderate preterm infants were acquired. Results were compared with RR derived from body surface electrocardiography. The results showed an excellent agreement between thermal imaging and gold standard. On average, the relative error between both monitoring techniques was 3.42%. In summary, infrared thermography may be a clinically relevant alternative to conventional sensors, due to its high thermal resolution and outstanding characteristics.

  13. Excel for chemists: a comprehensive guide

    National Research Council Canada - National Science Library

    Billo, E. Joseph

    2011-01-01

    ..., biological, and medicinal calculations. Including a CD-ROM for Windows, this new edition provides chemists and students with the a detailed guide to using the current versions of Excel (Excel 2007 and 2010...

  14. ACTIVATED SLUDGE DESIGN ON MS.EXCEL 8.0

    Directory of Open Access Journals (Sweden)

    Köksal SARICAOĞLU

    2000-01-01

    Full Text Available In this study, the planing of the Activated Sludge Method used on Environmental Engineering, was done by MS Excel 8.0, which very commonly used for spread sheet design. The program contained five sections. They are; the "DATA" section to enter the available data for calculations, the "RESULTS" section to show the outcomes of calculations, the "DETERMINATION of DIMENSIONS" section to determine the dimensions of the reactor, the "CALCULATION of AIR DIFFUSER" section to calculate the dimensions and capacity of air diffuser and the "EVALUATION" section to evaluate the results of calculations according to the criteria. The aim of this study was, to demonstrate that every engineer ca do easily needed programs related to her or his field using Excel's functions although can not know about any program language.

  15. Excellent Brightness with Shortening Lifetime of Textured Zn2SiO4:Mn2+ Phosphor Films on Quartz Glass

    Science.gov (United States)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Kim, Seongsin Margaret; Kung, Patrick

    2010-04-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor films were fabricated by the thermal diffusion of ZnO:Mn on quartz glass. The Zn2SiO4:Mn2+ phosphor films became textured along several hexagonal directions and their chemical composition was continuously graded at the interface. The decay time of Mn2+ was as short as 4.4 ms, and the optical transition probability of the films defined as the inverse of decay time showed a strong correlation with film texture degree as a function of annealing temperature. The brightest Zn2SiO4:Mn2+ film showed a photoluminescent brightness as high as 65% compared with a commercial Zn2SiO4:Mn2+ phosphor powder screen and a maximum absolute transparency of 70%. These excellent optical properties are explained by the combination of the unique textured structure and continuous grading of the Zn2SiO4:Mn2+ chemical composition at the interface.

  16. Sustainable Enterprise Excellence

    DEFF Research Database (Denmark)

    Edgeman, Rick; Williams, Joseph; Eskildsen, Jacob Kjær

    , supply chain, customer-related, human capital, financial, marketplace, societal, and environmental performance. Sustainable Enterprise Excellence integrates ethical, efficient and effective (E3) enterprise governance with 3E (equity, ecology, economy) Triple Top Line strategy throughout enterprise...

  17. Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method

    Directory of Open Access Journals (Sweden)

    A. Selvakumar

    2012-01-01

    Full Text Available Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.

  18. Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method

    Directory of Open Access Journals (Sweden)

    A. Selvakumar

    2013-04-01

    Full Text Available Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.

  19. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  20. Excel 2016 for educational and psychological statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching educational and psychological statistics effectively. Similar to the previously published Excel 2013 for Educational and Psychological Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical education and psychology problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in education and psychology courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Educational and Psychological Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and man...

  1. Teaching Excellence Initiatives: Modalities and Operational Factors

    Science.gov (United States)

    Land, Ray; Gordon, George

    2015-01-01

    Teaching excellence is at the centre of national and international higher education policy. The Higher Education Academy (HEA) is a part of the debate to develop a shared understanding of what constitutes teaching excellence and has published research including "Considering Teaching Excellence in Higher Education: 2007-2013" by Dr Vicky…

  2. Teaching excellence in nursing education: a caring framework.

    Science.gov (United States)

    Sawatzky, Jo-Ann V; Enns, Carol L; Ashcroft, Terri J; Davis, Penny L; Harder, B Nicole

    2009-01-01

    Nursing education plays a central role in the ability to practice effectively. It follows that an optimally educated nursing workforce begets optimal patient care. A framework for excellence in nursing education could guide the development of novice educators, establish the basis for evaluating teaching excellence, and provide the impetus for research in this area. However, a review of the social sciences and nursing literature as well as a search for existing models for teaching excellence revealed an apparent dearth of evidence specific to excellence in nursing education. Therefore, we developed the Caring Framework for Excellence in Nursing Education. This framework evolved from a review of the generic constructs that exemplify teaching excellence: excellence in teaching practice, teaching scholarship, and teaching leadership. Nursing is grounded in the ethic of caring. Hence, caring establishes the foundation for this uniquely nursing framework. Because a teaching philosophy is intimately intertwined with one's nursing philosophy and the ethic of caring, it is also fundamental to the caring framework. Ideally, this framework will contribute to excellence in nursing education and as a consequence excellence in nursing practice and optimal patient care.

  3. Synthesis of polycrystalline Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Wu, Dong; Xu, Yao [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-12-15

    Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystalline nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.

  4. PEEK: An excellent precursor for activated carbon production for high temperature application

    International Nuclear Information System (INIS)

    Cansado, I.P.P.; Goncalves, F.A.M.M.; Nabais, J.M.V.; Ribeiro Carrott, M.M.L.; Carrott, P.J.M.

    2009-01-01

    A series of activated carbons (AC) with high apparent surface area and very high micropore volumes were prepared from granulated PEEK (poly[oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-phenylene]) by physical activation with CO 2 at different temperatures and different activation times. The carbonisation yields at 873, 1073 and 1173 K were 57, 52 and 51%. As the activation temperature increased, between 873 and 1173 K, the burn-off, the micropore volume and mean pore size increased too. Those prepared at 1173 K, with 74% burn-off, present an extremely high apparent surface area (2874 m 2 g - 1 ) and a very high micropore volume (1.27 cm 3 g - 1 ). The presence of pyrone groups, identified by FTIR, on the AC surface corroborates the prevalence of a basic point of zero charge, always higher than 9.2. The thermal stability was checked by thermogravimetric analysis and as the carbonisation temperature increased the thermal stability of the char increased too. All AC obtained from PEEK by physical activation at 1173 K are thermally resistant, as at 1073 K the loss of the initial mass was less than 15%. The collective results confirm that PEEK is an excellent precursor for preparing AC with a high carbonisation yield, a high micropore volume and apparent surface area and a very high resistance at elevated temperature. (author)

  5. Thermal reactor benchmark testing of CENDL-2 and ENDF/B-6

    International Nuclear Information System (INIS)

    Liu Guisheng

    1996-01-01

    In order to test CENDL-2, ten homogeneous and eight heterogeneous thermal assemblies were used. Both of 123 group cross section libraries based on CENDL-2 and ENDF/B-6 were generated by a nuclear data processing system NSLINK, respectively. The calculations of resonance self-shielding, cell spectra, cell reaction rate ratios and effective multiplication factors (K eff ) of these assemblies have been performed by the modified PASC-1 code system. The calculated results using CENDL-2 show an excellent agreement with corresponding experimental values. However, for some assemblies the K eff values calculated by ENDF/B-6 data are underestimated. (7 tabs.)

  6. Discrimination against Women as a Subtext of Excellence.

    Science.gov (United States)

    Watson, Scott B.

    1993-01-01

    Pursuing excellence in sport discriminates against women. Alongside the primary texts of the glories of excellence runs a subtext of inequality and discrimination. The paper traces the idea of sport as a quest for excellence through various interpretations of the meaning of sport, discussing excellence as a socially constructed concept. (SM)

  7. What every engineer should know about excel

    CERN Document Server

    Holman, J P

    2006-01-01

    INTRODUCTIONGetting the Most from ExcelConventionsOutline of MISCELLANEOUS OPERATIONS IN EXCEL AND WORDIntroductionPrint Screen or Screen DumpCustom Keyboard Setup for Symbols in WordViewing or Printing Column and Row Headings and Gridlines in ExcelAssorted InstructionsMoving Objects in Small Increments (Nudging)Formatting Objects in Word, Including WrappingFormatting Objects in ExcelUse of Photo-Editing Software in Word, Including WrappingCopying Cell Formulas: Effect of Relative and Absolute AddressesCopying Formulas by Dragging the Fill HandleShortcut for Changing the Status of Cell Address

  8. Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi_4Ti_4O_1_5)

    International Nuclear Information System (INIS)

    Zhao, Tian-Long; Wang, Chun-Ming; Wang, Chun-Lei; Wang, Yi-Ming; Dong, Shuxiang

    2015-01-01

    Highlights: • Cobalt oxide modified CBT-based ceramics were prepared and investigated in detail. • XRPD analysis revealed Co ions enter into B-site of CBT-based ceramics. • CBT-Co4 ceramics show the enhanced d_3_3 of 14 pC/N and T_c of 782 °C. • CBT-Co4 ceramics present the improved high-temperature resistivity. • Thermal depoling behavior indicates CBT-Co4 ceramics exhibit good thermal stability. - Abstract: Bismuth layer-structured ferroelectric (BLSF) calcium bismuth titanate (CaBi_4Ti_4O_1_5, CBT) piezoelectric ceramics with 0.0–1.0 wt.% cobalt oxide (Co_2O_3) have been prepared via a conventional solid-state reaction method. Microstructural morphology and electrical properties of cobalt oxide-modified CBT ceramics were investigated in detail. X-ray powder diffraction (XRPD) analysis revealed that the cobalt oxide-modified CBT ceramics have a pure four-layer Aurivillius-type structure. The piezoelectric properties of CBT ceramics were significantly enhanced by cobalt oxide modifications. The piezoelectric coefficient d_3_3 and Curie temperature T_c of 0.2 wt.% cobalt oxide-modified CBT ceramics (CBT-Co4) are 14 pC/N and 782 °C, respectively. The DC resistivity and thermal depoling behavior at elevated temperature indicated that the CBT-Co4 ceramics exhibit good thermal stability, demonstrating that the CBT-Co4 ceramics are potential materials for high temperature piezoelectric applications.

  9. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids

    International Nuclear Information System (INIS)

    Kroon, Maaike C.; Buijs, Wim; Peters, Cor J.; Witkamp, Geert-Jan

    2007-01-01

    The long-term thermal stability of ionic liquids is of utmost importance for their industrial application. Although the thermal decomposition temperatures of various ionic liquids have been measured previously, experimental data on the thermal decomposition mechanisms and kinetics are scarce. It is desirable to develop quantitative chemical tools that can predict thermal decomposition mechanisms and temperatures (kinetics) of ionic liquids. In this work ab initio quantum chemical calculations (DFT-B3LYP) have been used to predict thermal decomposition mechanisms, temperatures and the activation energies of the thermal breakdown reactions. These quantum chemical calculations proved to be an excellent method to predict the thermal stability of various ionic liquids

  10. Map showing thermal-alteration indicies in roadless areas and the Santa Lucia Wilderness in the Los Padres National Forest, Southwestern California

    Science.gov (United States)

    Frederiksen, N.O.

    1985-01-01

    This map shows thermal-alteration indices (TAI's), based on colors of pollen grains, of 115 outcrop and 20 conventional core samples from Mesozoic and lower Tertiary rocks in the southern Coast and western Transverse Ranges, Southwestern California. The TAI's have been calibrated against previously determined vitrinite reflectance values from some of the same sample localities.

  11. Predictors of excellent response to lithium

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hellmund, Gunnar; Andersen, Per Kragh

    2011-01-01

    The aim of this study was to identify sociodemographic and clinical predictors of excellent response, that is, 'cure' of future affective episodes, to lithium in monotherapy. We used nationwide registers to identify all patients with a diagnosis of bipolar disorder in psychiatric hospital settings...... who were prescribed lithium from 1995 to 2006 in Denmark (N=3762). Excellent lithium responders were defined as patients who after a stabilization lithium start-up period of 6 months, continued lithium in monotherapy without getting hospitalized. The rate of excellent response to lithium...... with somatic comorbidity had increased rates of non-response to lithium compared with patients without somatic comorbidity (HR=1.23, 95% CI: 1.00-1.52).It is concluded that the prevalence of excellent response to lithium monotherapy is low and such patients are characterized by few earlier psychiatric...

  12. Advanced Excel for scientific data analysis

    CERN Document Server

    De Levie, Robert

    2004-01-01

    Excel is by far the most widely distributed data analysis software but few users are aware of its full powers. Advanced Excel For Scientific Data Analysis takes off from where most books dealing with scientific applications of Excel end. It focuses on three areas-least squares, Fourier transformation, and digital simulation-and illustrates these with extensive examples, often taken from the literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. These macros and functions are provided in uncompiled, computer-readable, easily

  13. Rapid fabrication of superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film with excellent energy-release characteristics and long-term storage stability

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Xiang; Zhou, Xiang, E-mail: zhouxiang@njust.edu.cn; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei, E-mail: superfine_jw@126.com

    2017-06-15

    Highlights: • Superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film is prepared by combining electrophoretic deposition and surface modification technologies. • The deposition system and kinetics of electrophoretic deposition process are investigated to optimize parameters to obtain smooth films. • Energy-release characteristics of superhydrophobic films are significantly improved for both fresh and aged samples. • Superhydrophobic films exhibit excellent long-time storage stability both in natural and accelerated aging test. • A preignition reaction is found to enhance the energy-release characteristics of superhydrophobic nanothermite film. - Abstract: One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al{sub 2}O{sub 3} shell and FAS-17. Superhydrophobic Al/Fe{sub 2}O{sub 3} nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in

  14. Obsessed with excellence

    Indian Academy of Sciences (India)

    Lawrence

    dia and develop new areas of research in their perspective laborato- ries. A staunch ... Her unique quality for allowing individual scientific tal- ents to bloom, in ... of excellence in sci- ence, Dr Ranadive made an indelible impression on my mind.

  15. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  16. Excel 2010 for health services management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2014-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach health services management statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical health services management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.   Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in health services management courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2010 for Health Services Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work....

  17. Excel 2016 for human resource management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching human resource management statistics effectively. Similar to the previously published Excel 2013 for Human Resource Management Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical human resource management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in human resource management courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Human Resource Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how ...

  18. Excel 2013 for health services management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel to teach health services management statistics effectively. Similar to the previously published Excel 2010 for Health Services Management Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical health services management problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in health services management courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Health Services Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers ho...

  19. Excel 2013 for educational and psychological statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach educational and psychological statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical problems in education and psychology. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and practitioners, is also an effective teaching and learning tool for quantitative analyses in statistics courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Educational and Psychological Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and practitioners how to apply Excel to statistical techniques necessary in their courses and work. E...

  20. Excel 2010 for human resource management statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2014-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach human resource  management statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical human resource management problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in human resource management courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2010 for Human Resource Management Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and ...

  1. Contribution of Lean Management to Excellence

    Directory of Open Access Journals (Sweden)

    López-Fresno Palmira

    2014-11-01

    Full Text Available To continuously and systematically improve efficiency and efficacy of processes, organizations need the implication of all employees in continuous improvement and innovation through suitable Quality Management Programs (QMPs. Effectiveness of these programs is directly linked to the requirement employees understand the methodologies and tools used for QM and the benefits that will derivate from their implementation, individually and collectively, so they can commit and implicate. Lean Management is a friendly methodology to continuously and systematically achieve process improvement, so helping the organization seeking operational excellence that contributes to overall excellence. This paper identifies Critical Success Factors (CSFs for an effective implementation of QMPs, suggests Lean Management as an easy-to-understand, powerful and friendly methodology for operational excellence and overall excellence, and presents a case experience of implementation of Lean Management in a health care organization that applies the EFQM model, and the lessons learnt.

  2. Achieving excellence in training

    International Nuclear Information System (INIS)

    Mangin, A.M.; Solymossy, J.M.

    1983-01-01

    Operating a nuclear power plant is a uniquely challenging activity, requiring a high degree of competence from all who are involved. Achieving and maintaining this competence requires excellence in training. But what does excellence mean, and how do we achieve it. Based on the experience gained by INPO in plant training evaluations and accreditation activities, this paper describes some of the actions that can be taken to achieve the quality appropriate for nuclear power plant training. These actions are discussed in relation to the four phases of a performance-based training system: (1) needs analysis, (2) program design and development, (3) implementation, and (4) evaluation and improvement

  3. Microsoft Office Excel 2003 Inside Out

    CERN Document Server

    Stinson, Craig

    2003-01-01

    Hey, you know your way around a spreadsheet-so now dig into Excel 2003 and really put your data to work! This supremely organized reference packs hundreds of timesaving solutions, troubleshooting tips, and handy workarounds in concise, fast-answer format. It's all muscle and no fluff. Discover the best and fastest ways to perform everyday tasks, and challenge yourself to new levels of Excel mastery! Build on what you already know about Excel and quickly dive into what's newLearn how the experts design more powerful spreadsheetsSharpen your core to advanced document editing and formatting skil

  4. Delayed hydride cracking and elastic properties of Excel, a candidate CANDU-SCWR pressure tube material

    International Nuclear Information System (INIS)

    Pan, Z.L.

    2010-01-01

    Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)

  5. Quality Management and Business Excellence

    OpenAIRE

    Vasile Dinu

    2017-01-01

    An excellent organization involves much more than the implementation and the certification of one or more models of management systems. It means developing techniques and tools of busin excellence which lead the organization to outstanding performance on quality, costs and deadlines in order to meet the expectations of all their stakeholders. Such an approach is needed especially in the context of an economy marked by globalization, extremely complex and dynamic that causes spectacular change...

  6. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids

    Science.gov (United States)

    Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin

    2017-10-01

    For decades, the three-phonon scattering process has been considered to govern thermal transport in solids, while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at 1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space. Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.

  7. Excel 2013 for business statistics a guide to solving practical business problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach business statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical business problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in business courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Business Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work.                                �...

  8. Critical self-evaluation for excellence

    International Nuclear Information System (INIS)

    Mullee, G.R.

    1988-01-01

    This paper discusses the use of critical self-evaluation of performance as a stimulus for excellence. Self-evaluation inherently provides acceptance and ownership of a problem, thereby motivating change. Some of the key elements of self-evaluation are discussed such as unbiased observations and appropriate performance standards. As circumstances change, an ongoing self-appraisal approach provides continuing feedback to maintain and further excellence. Two examples of critical self-evaluation in use at the Tennessee Valley Authority (TVA) are discussed

  9. Idea of Quality Versus Idea of Excellence

    Directory of Open Access Journals (Sweden)

    Marko Kiauta

    2012-12-01

    Full Text Available This study investigates professionals on the field of quality, are responsible to give to customer honest clarification of fundamental ideas. Quality movement is losing credibility with suggesting that the idea of quality is replacing with the idea of excellence. Findings are based on more than 25 years of practice in professional promotion of quality: in consulting on private and public sector, from 1990 lead auditor at SIQ (Slovenian Institute of Quality, from 1998 lead assessor – commission for Slovenian Excellence Quality Award. Theory is developed based on: Noriaki Kano theory of Attractive quality, Tito Conti ideas on TQM and applications problems of Excellence model, Practical case of General Hospital Novo Mesto (in 1998 first attempt of using EM, than forced to build QMS based on ISO 9001 and then returned to practice EM. Findings: We really need to amplify and to understand the concept of quality in a much wider way. To treat excellence related activities separated from all others quality management activities is not god solution. The name of EFQM Excellence Model should be replaced with Quality Management Model. Research limitations/implications: This paper present findings mainly based on practice in Slovenia and especially in public sector where practicing of CAF is not giving expected benefits. Practical implications: The three styles of quality management (improvements to reach demands, improvements to reach expectations, improvements to react on new conditions and needs should be connected with personal development. Theory is developed based on: Noriaki Kano theory of Attractive quality, Tito Conti ideas on TQM and applications problems of Excellence model. We need integration moments. Integration is other word for creativity and health. It leads to integrity. Excellence is only one of three states of quality. If we ask: How? The answer is bad, good or excellent. All three are possible states of the same parameter.

  10. Excellence, Masculinity and Work-Life Balance in Academia : Voices from Researchers in Germany andSweden

    OpenAIRE

    Salminen-Karlsson, Minna; Wolffram, Andrea; Almgren, Nina

    2018-01-01

    The concept of research excellence, as defined and practised in the current research landscape, has been shown to be problematic for gender equality. This interview study examines how the concept of excellence is perceived among researchers in two national contexts, Sweden and Germany. The findings show that the perception of what excellence is, and how it can be achieved, differs between the two countries. In Germany, the concept was perceived as positive, while researchers in Sweden were mo...

  11. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    Science.gov (United States)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  12. X-ray photoelectron spectroscopy study of Schottky barrier formation and thermal stability of the LaB6/GaAs(001) c (4 x 4) interface

    International Nuclear Information System (INIS)

    Yokotsuka, T.; Narusawa, T.; Uchida, Y.; Nakashima, H.

    1987-01-01

    Schottky barrier formation and thermal stability of the LaB 6 /GaAs(001) c (4 x 4) interface were investigated by x-ray photoelectron spectroscopy. Results show an excellent thermal stability without any appreciable interface reactions such as interdiffusion. Band bending induced by LaB 6 deposition is found to depend on the evaporation condition. However, the Fermi level pinning position does not change due to heat treatments between 300 and 700 0 C. This indicates that LaB 6 is a promising gate material for GaAs integrated circuits

  13. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  14. The Pursuit of Excellence through Education.

    Science.gov (United States)

    Ferrari, Michel, Ed.

    In this book theorists and researchers present a range of perspectives on how to promote excellence in education, providing an opportunity for expression to those who stress transformation of educational practice and those who emphasize individual abilities. In part 1, The Individual Pursuit of Excellence, the chapters are: (1) Learning from…

  15. Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Ping Cui

    2016-05-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully deposited on carbon nanotubes’ (CNTs surface via complex-precipitation method, the nanocomposite was characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, X-ray powder diffraction (XRD, Raman spectroscopy, Fourier transform infrared (FT-IR and Brunauer–Emmett–Teller (BET. The catalytic performance of CNTs/CuO on ammonium perchlorate (AP decomposition was analyzed by differential thermal analyzer (DTA, the DTA results showed its excellent catalytic effect on AP decomposition, as 8 wt.% CNTs/CuO was added in AP, the second exothermic peak temperature decreased by 158 °C. Such composite may be a promising candidate for catalyzing the AP thermal decomposition.

  16. Patient satisfaction: focusing on "excellent".

    Science.gov (United States)

    Otani, Koichiro; Waterman, Brian; Faulkner, Kelly M; Boslaugh, Sarah; Burroughs, Thomas E; Dunagan, W Claiborne

    2009-01-01

    In an emerging competitive market such as healthcare, managers should focus on achieving excellent ratings to distinguish their organization from others. When it comes to customer loyalty, "excellent" has a different meaning. Customers who are merely satisfied often do not come back. The purpose of this study was to find out what influences adult patients to rate their overall experience as "excellent." The study used patient satisfaction data collected from one major academic hospital and four community hospitals. After conducting a multiple logistic regression analysis, certain attributes were shown to be more likely than others to influence patients to rate their experiences as excellent. The study revealed that staff care is the most influential attribute, followed by nursing care. These two attributes are distinctively stronger drivers of overall satisfaction than are the other attributes studied (i.e., physician care, admission process, room, and food). Staff care and nursing care are under the control of healthcare managers. If improvements are needed, they can be accomplished through training programs such as total quality management or continuous quality improvement, through which staff employees and nurses learn to be sensitive to patients' needs. Satisfying patients' needs is the first step toward having loyal patients, so hospitals that strive to ensure their patients are completely satisfied are more likely to prosper.

  17. Thermal management of Li-ion battery with liquid metal

    International Nuclear Information System (INIS)

    Yang, Xiao-Hu; Tan, Si-Cong; Liu, Jing

    2016-01-01

    Highlights: • Liquid metal is used for power battery pack thermal management. • Better cooling performance and more uniform module temperature is obtained. • Less power consumption is needed. • The proposed liquid metal cooling system is robust and can cope with stressful conditions. - Abstract: Thermal management especially cooling of electric vehicles (EVs) battery pack is of great significance for guaranteeing the performance of the cells as well as safety and high-efficiency working of the EVs. Liquid cooling is a powerful way to keep the battery temperature in a proper range. However, the efficiency of conventional liquid cooling is still limited due to the inherently low thermal conductivity of the coolant which is usually water or aqueous ethanol. In this paper, a new kind of coolant, liquid metal, is proposed to be used for the thermal management of the battery pack. Mathematical analysis and numerical simulations are conducted to evaluate the cooling capability, pump power consumption and module temperature uniformity of the liquid metal cooling system, in comparison with that of water cooling. The results show that under the same flow conditions, a lower and more uniform module temperature can be obtained and less pump power consumption are needed in the liquid metal cooling system. In addition, liquid metal has an excellent cooling capability coping with stressful conditions, such as high power draw, defects in cells, and high ambient temperature. This makes it a promising coolant for the thermal management of high driving force EVs and quick charge batteries.

  18. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    International Nuclear Information System (INIS)

    Ross, R.J.; Ravenscroft, P.D.

    1996-01-01

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO 2 corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs

  19. Biodegradable multifunctional oil production chemicals: Thermal polyaspartates

    Energy Technology Data Exchange (ETDEWEB)

    Ross, R J [Donlar Corporation (United States); Ravenscroft, P D [BP Exploration Operating Company, (United Kingdom)

    1997-12-31

    The paper deals with biodegradable oil production chemicals. Control of both mineral scale and corrosion with a single, environmentally acceptable material is an ambitious goal. Polyaspartate polymers represent a significant milestone in the attainment of this goal. Thermal polyaspartates (TPA) are polycarboxylate polymers derived via thermal condensation of the naturally occurring amino acid aspartic acid. These protein-like polymers are highly biodegradable and non-toxic, and are produced by an environmentally benign manufacturing process. TPAs exhibit excellent mineral scale inhibition activity and CO{sub 2} corrosion control. Laboratory data on scale inhibition and corrosion control in the North Sea oil field production applications is presented. 8 refs., 2 figs., 6 tabs.

  20. Thermal degradation and isothermal crystalline behavior of poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Shu Guang Bian; Min Xiao; Shuan Jin Wang; Yue Zhong Meng

    2009-01-01

    Poly(trimethylene terephthalate)(PTT)is an excellent fiber material.Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis(TGA),thermogravimetric analysis-Fourier transform infrared spectroscopy(TGA-FTIR)analysis,differential scanning calorimetry(DSC)and X-ray diffraction(XRD).The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle.The PTT with intrinsicviscosity(IV)of 0.74 dL/g has a maximum crystallinity of about 55%at 190℃,as demonstrated by DSC and XRD measurements consistently.

  1. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2017-06-01

    Full Text Available A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.

  2. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications

    International Nuclear Information System (INIS)

    Sugo, Heber; Kisi, Erich; Cuskelly, Dylan

    2013-01-01

    New high energy-density thermal storage materials are proposed which use miscibility gap binary alloy systems to operate through the latent heat of fusion of one component dispersed in a thermodynamically stable matrix. Using trial systems Al–Sn and Fe–Cu, we demonstrate the development of the required inverse microstructure (low melting point phase embedded in high melting point matrix) and excellent thermal storage potential. Several other candidate systems are discussed. It is argued that such systems offer enhancement over conventional phase change thermal storage by using high thermal conductivity microstructures (50–400 W/m K); minimum volume of storage systems due to high energy density latent heat of fusion materials (0.2–2.2 MJ/L); and technical utility through adaptability to a great variety of end uses. Low (<300 °C), mid (300–400 °C) and high (600–1400 °C) temperature options exist for applications ranging from space heating and process drying to concentrated solar thermal energy conversion and waste heat recovery. -- Highlights: ► Alloys of immiscible metals are proposed as thermal storage systems. ► High latent heat of fusion per unit volume and tunable temperature are advantageous. ► Thermal storage systems with capacities of 0.2–2.2 MJ/L are identified. ► Heat delivery is via a rigid non-reactive high thermal conductivity matrix. ► The required inverse microstructures were developed for Sn–Al and Cu–Fe systems

  3. Thermal reactor benchmark testing of CENDL-2 and ENDF/B-6

    Energy Technology Data Exchange (ETDEWEB)

    Guisheng, Liu [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    In order to test CENDL-2, ten homogeneous and eight heterogeneous thermal assemblies were used. Both of 123 group cross section libraries based on CENDL-2 and ENDF/B-6 were generated by a nuclear data processing system NSLINK, respectively. The calculations of resonance self-shielding, cell spectra, cell reaction rate ratios and effective multiplication factors (K{sub eff}) of these assemblies have been performed by the modified PASC-1 code system. The calculated results using CENDL-2 show an excellent agreement with corresponding experimental values. However, for some assemblies the K{sub eff} values calculated by ENDF/B-6 data are underestimated. (7 tabs.).

  4. Realisatie van Excel Kwadraat in de praktijk

    NARCIS (Netherlands)

    Dijkstra, Elma

    2013-01-01

    Dijkstra, E. M. (2013, 2 July). Realisatie van Excel Kwadraat in de praktijk [Realization of Excellent Education in practice]. Presentation held at the OLK-meeting, ITS, Radboud University, Nijmegen, The Netherlands.

  5. The thermal ramp by kinetic considerations. Epoxic matrix; Importancia del programa de curado sobre el comportamiento termico. Matrices epoxidicas

    Energy Technology Data Exchange (ETDEWEB)

    Prades, P.; Pazos, M.; Gonzalez, G.; Lopez, A.; Paz, S. [Universidad de Santiago de Compostela (Spain)

    1999-11-01

    This study is focussed on the optimization of the thermal ramp by kinetic considerations. Commonly such optimization is carried out by thermal. mechanical and chemical measurements. The crosslinking parameter, R, is obtained at different temperatures by spectroscopic measurements (FTIR). This parameter is related to mechanical and thermal properties with excellent correlations. (Author) 7 refs.

  6. Creating cultures of excellence: Strategies and outcomes

    Directory of Open Access Journals (Sweden)

    Michael Mintrom

    2014-12-01

    Full Text Available Research findings on effective support for learning, the development of expertise, and the psychology of success suggest that the pursuit of excellence is teachable. Within the emerging field of research and practice termed “the scholarship of teaching and learning,” considerable effort has been made to document the practices of teachers who, by various measures, have been deemed excellent. In contrast, no effort has been made to codify how students can be trained to self-consciously build behaviors that generate excellent outcomes. This article reports on a multi-year effort to create cultures of excellence among cohorts of graduate students. A statistical analysis of subsequent student performance on a significant, related task indicates that explicitly promoting a culture of excellence among course participants can have a positive and sustained impact on their individual practices. Comments from subsequent student reflections further support this claim. The teaching strategies reported here could be refined, replicated, and reinvented to good effect across higher education. They are also of special relevance to those delivering professional development training to early- and mid-career professionals.

  7. Ancient science of yogic life for academic excellence in university students.

    Science.gov (United States)

    Tikhe, Sham Ganpat; Nagendra, H R; Tripathi, Neeraj

    2012-01-01

    Academic excellence is essential to provide opportunities for students to work together to improve their understanding of concepts in their academic core. Academic excellence helps students to teach problem-solving and collaborative learning strategies. The objective of this study was to assess Guna (personality traits) in students undergoing Yoga Instructor's Course (YIC). In all, 68 YIC students with a mean age of 28.03 ± 9.38 years participated in this single group pre-post study. The Personality Inventory data were collected before (pre) and after (post) the YIC. Means, standard deviations, Kolmogorov-Smirnov test, and Wilcoxon signed rank test were used for analyzing the data with the help of SPSS 16. The data analysis showed 11.33% decrease (P balanced personality trait) scores. This study suggests that YIC can result in the improvement of Sattva Guna (balance personality trait) among students, thus paving the way for their academic excellence.

  8. Thermal expansion of UO2-Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Une, Katsumi

    1986-01-01

    In recent years, more consideration has been given to the application of UO 2 -Gd 2 O 3 burnable poison fuel to LWRs in order to improve the core physics and to extend the burnup. It has been known that UO 2 forms a single phase cubic fluorite type solid solution with Gd 2 O 3 up to 20 - 30 wt.% above 1300 K. The addition of Gd 2 O 3 to UO 2 lattices changes the properties of the fuel pellets. The limited data on the thermal expansion of UO 2 -Gd 2 O 3 fuel exist, but those are inconsistent. UO 2 -Gd 2 O 3 fuel pellets were fabricated, and the linear thermal expansion of UO 2 and UO 2 -(5, 8 and 10 wt.%)Gd 2 O 3 fuel pellets was measured with a differential dilatometer over the temperature range of 298 - 1973 K. A sapphire rod of 6 mm diameter and 15.5 mm length was used as the reference material. After the preheating cycle, the measurement was performed in argon atmosphere. The results for UO 2 pellets showed excellent agreement with the data in literatures. The linear thermal expansion of UO 2 -Gd 2 O 3 fuel pellets showed the increase with increasing the Gd 2 O 3 content. Consideration must be given to this excessive expansion in the fuel design of UO 2 -Gd 2 O 3 pellets. The equations for the linear thermal expansion and density of UO 2 -Gd 2 O 3 fuel pellets were derived by the method of least squares. (Kako, I.)

  9. Coping with Excellence.

    Science.gov (United States)

    Culler, Jonathan

    2002-01-01

    Suggests that when the university devotes itself to "excellence," it substitutes, for a vision of what should be taught, a contentless measure, a bureaucratic concept that extends the range of managerial control without presuming to make judgments about content. Suggests that English departments should try to design sequences of courses that are…

  10. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment

    Science.gov (United States)

    Liu, Baicang; Wang, Shuai; Zhao, Pingju; Liang, Heng; Zhang, Wen; Crittenden, John

    2018-03-01

    Nanofiltration (NF) membranes have many excellent applications (e.g., removing multivalent ions and pretreating water before reverse osmosis, RO), but their relatively high cost limits their application. Especially in recent years, researchers have paid substantial attention to reducing the cost of NF membranes. In this paper, high-performance NF membranes were fabricated using interfacial polymerization (IP) methods. The polymer concentration, IP solution concentration, and thermal treatment conditions were varied. The synthesized membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), a contact angle goniometer, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, and performance tests. The results show that water flux was significantly improved using a hot-water thermal treatment method. Our fabricated thermal-treated NF membrane had an approximately 15% higher water permeability with a value of 13.6 L/(m2 h bar) than that of the commercially available GE HL membrane with a value of 11.8 L/(m2 h bar). Our membranes had the same MgSO4 rejection as that of the GE HL membrane. We found that the thermal treatment causes the NF membrane surface to be smoother and have a high crosslinking degree.

  11. Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification

    Science.gov (United States)

    Wang, Han; Wang, Shaokai; Lu, Weibang; Li, Min; Gu, Yizhou; Zhang, Yongyi; Zhang, Zuoguang

    2018-06-01

    Graphite films have excellent in-plane thermal conductivity but extremely low through-thickness thermal conductivity because of their intrinsic inter-layer spaces. To improve the inter-layer heat transfer of graphite films, we developed a simple interfacial modification with a short duration mixed-acid treatment. The effects of the mixture ratio of sulfuric and nitric acids and treatment time on the through-thickness thermal properties of graphite films were studied. The modification increased the through-thickness thermal conductivity by 27% and 42% for the graphite film and its composite, respectively. X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy results indicated that the acidification process had two competing effects: the positive contribution made by the enhanced interaction between the graphite layers induced by the functional groups and the negative effect from the destruction of the graphite layers. As a result, an optimal acidification method was found to be sulfuric/nitric acid treatment with a mixture ratio of 3:1 for 15 min. The resultant through-thickness thermal conductivity of the graphite film could be improved to 0.674 W/mK, and the corresponding graphite/epoxy composite shows a through-thickness thermal conductivity of 0.587 W/mK. This method can be directly used for graphite films and their composite fabrication to improve through-thickness thermal conductivity.

  12. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    International Nuclear Information System (INIS)

    Hai-Qing, Xiao; Chun-Lan, Zhou; Xiao-Ning, Cao; Wen-Jing, Wang; Lei, Zhao; Hai-Ling, Li; Hong-Wei, Diao

    2009-01-01

    Al 2 O 3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10 12 cm −2 is detected in the Al 2 O 3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO 2 and plasma enhanced chemical vapor deposition SiN x :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al 2 O 3 . (cross-disciplinary physics and related areas of science and technology)

  13. Quality Management and Business Excellence

    Directory of Open Access Journals (Sweden)

    Vasile Dinu

    2017-02-01

    Full Text Available An excellent organization involves much more than the implementation and the certification of one or more models of management systems. It means developing techniques and tools of busin excellence which lead the organization to outstanding performance on quality, costs and deadlines in order to meet the expectations of all their stakeholders. Such an approach is needed especially in the context of an economy marked by globalization, extremely complex and dynamic that causes spectacular changes in the business environment by integrating quality management principles on purpose to develop sustainable excellence. Not coincidentally, the new edition of the European excellence model EFQM integrates for the first time the principle "managing with agility“ with the principles: “developing organizational capability”, “harnessing creativity & innovation”, “adding value to the customer”, “sustaining outstanding results” for the organization and “creating a sustainable future”. Also, the new model for quality management system defined by the edition from 2015 of ISO 9000 standards , promotes the process-based approach, incorporating the cycle "Plan - Do − Check − Act" (PDCA and the risk-based thinking, focusing on organizational change and innovation, in order to ensure a sustainable performance in business. Noteworthy is the endeavor for the development of a high-level structure for all international standards for management systems, aiming to harmonize these standards to facilitate the implementation of integrated management systems (quality − environment − security − social responsibility.

  14. Robotic system for the servicing of the orbiter thermal protection system

    Science.gov (United States)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  15. Preparation and characterization of novel zwitterionic poly(arylene ether sulfone) ultrafiltration membrane with good thermostability and excellent antifouling properties

    Science.gov (United States)

    Rong, Guolong; Zhou, Di; Han, Xiaocui; Pang, Jinhui

    2018-01-01

    Zwitterionic poly(arylene ether sulfone) (PAES-NS) was synthesized via copolymerization by using a bisphenol monomer with a pyridine group. The chemical structures of the copolymers were confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopy; the copolymers showed good thermal stability. A series of polyphenysulfone (PPSU)/PAES-NS blend ultrafiltration (UF) membranes was prepared via conventional immersion precipitation phase inversion methods The morphologies of the modified membranes were investigated by scanning electron microscopy (SEM). The surface hydrophilicity of the UF membranes was studied by water contact angle measurement, indicating that the zwitterionic group increased the membrane hydrophilicity. UF of solvated model pollutants using the membranes showed a significant reduction of the irreversible adsorption of the foulants, illustrating the excellent anti-fouling properties of the membrane. The water flux of the PAES-NS membrane was significantly enhanced, being almost three times higher than that of the pristine PPSU membrane, with retention of a high rejection level. After three UF cycles, the water flux recovery of the PAES-NS membrane was as high as 96%.

  16. Thermal investigation of an infrared reflow oven with a convection fan

    International Nuclear Information System (INIS)

    Kim, Mi Ro; Choi, Young Ki; Lee, Jung Hee; Lee, Gyu Bong; Chung, Il Yong; Kim, Jung Duck

    1998-01-01

    A two-dimensional numerical model for an infrared reflow soldering with a convection fan is used by modifying the Eftychiou's numerical modeling. The two-dimensional tunnel model which predicts convective conditions within the reflow oven are solved using the finite volume method with the SIMPLER algorithm. The card model solves the transient two-dimensional heat conduction equation in conjunction with a radiative heat transfer analysis. We also performed an experiment to validate the numerical modeling. The numerical result shows excellent agreement with experimental data. Based on the capability of this model, parametric simulations are performed to determine the thermal response of the solder to variations in the oven operating conditions and heat transfer conditions. This study shows that radiation and conveyor velocity are important factors in the preheat region

  17. Thermal conductivity of electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  18. Influence of chemical structure of branched and dendritic organosilicon luminophores on their optical and thermal properties

    Directory of Open Access Journals (Sweden)

    Borshchev Oleg V.

    2017-04-01

    Full Text Available Synthesis and investigation of optical and thermal properties of a homologous series of highly luminescent nanostructured organosilicon luminophores (NOLs containing different donor to acceptor ratio (D:A are reported. Each of the NOL consists of a 1,4-bis(5-phenylthienyl-2-ylbenzene (PTPTP acceptor unit and four, six or twelve 2,2′-bithienyl donor fragments connected to each other through two or six silicon atoms. These complex molecules show a “molecular antenna” effect with high efficiency of intramolecular energy transfer about 97-98% combined with excellent photoluminescence (PL quantum yield of 84-91% and fast PL decay time of 0.90-0.95 ns. A significant increase of the molar extinction coefficient from 94 000 to 257 000 M−1cm−1 with increasing the D:A ratio from 4:1 to 12:1 was observed. It was found that increasing the branching extent in the NOLs prohibits their crystallization. Thermal gravimetric analysis (TGA showed that all the NOLs reported, regardless of their branching extent, are thermally stable up to 455 °C under nitrogen. These characteristics make them promising materials for various organic photonics applications.

  19. Head First Excel A learner's guide to spreadsheets

    CERN Document Server

    Milton, Michael

    2010-01-01

    Do you use Excel for simple lists, but get confused and frustrated when it comes to actually doing something useful with all that data? Stop tearing your hair out: Head First Excel helps you painlessly move from spreadsheet dabbler to savvy user. Whether you're completely new to Excel or an experienced user looking to make the program work better for you, this book will help you incorporate Excel into every aspect of your workflow, from a scratch pad for data-based brainstorming to exploratory analysis with PivotTables, optimizing outcomes with Goal Seek, and presenting your conclusions wit

  20. Total Quality Management and Business Excellence: The Best Practices at Toyota Motor Corporation.

    Directory of Open Access Journals (Sweden)

    Sorin-George Toma

    2017-05-01

    Full Text Available Today’s rough competition at a global level in all spheres of activity imposes companies worldwide to make sustained efforts in order to improve their products, services and processes. The automotive industry has always provided valuable examples of companies that achieved business excellence by putting quality at the core of their production system such as Toyota Motor Corporation. It has continuously designed, implemented and developed the Toyota Production System that influenced the emergence of the business excellence models. The paper aims to highlight the relationship between the concepts of total quality management and business excellence, and to identify and analyze the best practices related to them at Toyota Motor Corporation, a leader of automotive industry. The information obtained through the direct and personal observation method and from multiple secondary sources of data was collected, processed and analyzed in order to achieve the objectives of the paper. The main results show that the best practices of Toyota Motor Corporation related to total quality management and business excellence derive from the Toyota Production System and these practices are to be found in the attributes of business excellence.

  1. Excellent Thinking and Its Position among EFL Learners

    Directory of Open Access Journals (Sweden)

    Gholamhossein Shahini

    2018-03-01

    Full Text Available The major goal of education, according to the educationalist Matthew Lipman (2003, is to culture students to become thoughtful by attaining excellent thinking power; i.e., critical, creative, and caring thinking ability. The purpose of this study was to examine the current status of excellent thinking among EFL students. Using accessible sampling, 41 EFL students at Shiraz University, Iran read two passages of various types and were asked to make a number of essay-type questions on each one. The results indicated that the majority of the questions were trivial reading comprehension ones with no sign of excellent thinking. The findings may imply that despite the significance of cultivating excellent thinking within students, no/scant attention is paid to this issue and EFL students have not still gained the necessary skills of excellent thinking.

  2. How Accurately can we Calculate Thermal Systems?

    International Nuclear Information System (INIS)

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-01-01

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K eff , for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors

  3. Auto Draw from Excel Input Files

    Science.gov (United States)

    Strauss, Karl F.; Goullioud, Renaud; Cox, Brian; Grimes, James M.

    2011-01-01

    The design process often involves the use of Excel files during project development. To facilitate communications of the information in the Excel files, drawings are often generated. During the design process, the Excel files are updated often to reflect new input. The problem is that the drawings often lag the updates, often leading to confusion of the current state of the design. The use of this program allows visualization of complex data in a format that is more easily understandable than pages of numbers. Because the graphical output can be updated automatically, the manual labor of diagram drawing can be eliminated. The more frequent update of system diagrams can reduce confusion and reduce errors and is likely to uncover symmetric problems earlier in the design cycle, thus reducing rework and redesign.

  4. Achieving engineering excellence at Palo Verde

    International Nuclear Information System (INIS)

    Prawlocki, F.C.

    1989-01-01

    Early in 1988, the management of the newly formed Palo Verde Nuclear Generating Station (PVNGS) Engineering and Construction Division was faced with a dilemma: how to build a competent, confident, efficient engineering organization in the face of increasing requirements and tightened fiscal controls. This paper discusses steps taken by Palo Verde to address actions taken to effect a smooth transition from construction to operations and the development of the Engineering Excellence Program. The Engineering Excellence Program will continue to evolve over time as the number of the NED's [Nuclear Engineering Department] personnel grown and processes are changed over the course of the next few years. As tasks from the Engineering Excellence Program action plan are completed, the results achieved are expected to be integrated into the routine business of the NED

  5. Optical-Thermal Response of Laser-Irradiated Tissue

    CERN Document Server

    Welch, Ashley J

    2011-01-01

    The second edition of 'Optical-Thermal Response of Laser-Irradiated Tissue' maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes: 1. light propagation and diagnostic appl...

  6. Developing talent for operational excellence.

    Science.gov (United States)

    Theadore, Jason C; O'Brien, Thaddeus J

    2012-01-01

    Many organizations have the expectation that their employees will prepare for their own professional development without much support or guidance. To achieve operational excellence, development of the people in an organization is just as important as the development of technologies and processes. Ohio Health Ambulatory Division in Columbus, OH created a plan to develop its people systematically in three distinct pillars: management development, staff engagement, and clinical excellence. Much was learned about talent development since work began on "The People Plan", perhaps the most critical lesson learned has been the importance of not giving up on the effort.

  7. Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi{sub 4}Ti{sub 4}O{sub 15})

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tian-Long [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Wang, Chun-Ming, E-mail: wangcm@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Wang, Chun-Lei; Wang, Yi-Ming [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Dong, Shuxiang [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2015-11-15

    Highlights: • Cobalt oxide modified CBT-based ceramics were prepared and investigated in detail. • XRPD analysis revealed Co ions enter into B-site of CBT-based ceramics. • CBT-Co4 ceramics show the enhanced d{sub 33} of 14 pC/N and T{sub c} of 782 °C. • CBT-Co4 ceramics present the improved high-temperature resistivity. • Thermal depoling behavior indicates CBT-Co4 ceramics exhibit good thermal stability. - Abstract: Bismuth layer-structured ferroelectric (BLSF) calcium bismuth titanate (CaBi{sub 4}Ti{sub 4}O{sub 15}, CBT) piezoelectric ceramics with 0.0–1.0 wt.% cobalt oxide (Co{sub 2}O{sub 3}) have been prepared via a conventional solid-state reaction method. Microstructural morphology and electrical properties of cobalt oxide-modified CBT ceramics were investigated in detail. X-ray powder diffraction (XRPD) analysis revealed that the cobalt oxide-modified CBT ceramics have a pure four-layer Aurivillius-type structure. The piezoelectric properties of CBT ceramics were significantly enhanced by cobalt oxide modifications. The piezoelectric coefficient d{sub 33} and Curie temperature T{sub c} of 0.2 wt.% cobalt oxide-modified CBT ceramics (CBT-Co4) are 14 pC/N and 782 °C, respectively. The DC resistivity and thermal depoling behavior at elevated temperature indicated that the CBT-Co4 ceramics exhibit good thermal stability, demonstrating that the CBT-Co4 ceramics are potential materials for high temperature piezoelectric applications.

  8. Fracture mechanics evaluation for the cast duplex stainless steel after thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Shigeru [Kansai Electric Power Co., Inc., Osaka (Japan)

    1998-12-31

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years. (author)

  9. Analytical prediction of thermal performance of hypervapotron and its application to ITER

    International Nuclear Information System (INIS)

    Baxi, C.B.; Falter, H.

    1992-09-01

    A hypervapotron (HV) is a water cooled device made of high thermal conductivity material such as copper. A surface heat flux of up to 30 MW/m 2 has been achieved in copper hypervapotrans cooled by water at a velocity of 10 m/s and at a pressure of six bar. Hypervapotrons have been used in the past as beam dumps at the Joint European Torus (JET). It is planned to use them for diverter cooling during Mark II upgrade of the JET. Although a large amount of experimental data has been collected on these devices, an analytical performance prediction has not been done before due to the complexity of the heat transfer mechanisms. A method to analytically predict the thermal performance of the hypervapotron is described. The method uses a combination of a number of thermal hydraulic correlations and a finite element analysis. The analytical prediction shows an excellent agreement with experimental results over a wide range of velocities, pressures, subcooling, and geometries. The method was used to predict the performance of hypervapotron made of beryllium. Merits for the use of hypervapotrons for International Thermonuclear Experimental Reactor (ITER) and Tokamak Physics Experiment (TPX) are discussed

  10. Professional excellence : defining learning outcomes for honours higher education

    NARCIS (Netherlands)

    Fuller, Melissa; Robbe, Patricia; Wolfensberger, Marca

    2016-01-01

    Purpose Honours programs prepare talented students to become future excellent professionals . However, competences defining an excellent professional have not been elucidated yet. We investigated how professionals characterize an excellent communication professional, aiming to develop a competence

  11. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    Science.gov (United States)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  12. Tightly sealed facility of excellent in durability

    International Nuclear Information System (INIS)

    Shirano, Kenji; Chatani, Michio; Ebe, Shinji; Shimizu, Masatoshi; Seguchi, Tadao; Fukushima, Susumu; Hirata, Masaru; Shiosawa, Ken-ichi.

    1992-01-01

    It is found that a cross linked methacryl resin using an appropriate amount of a cross linking monomer also has a useful characteristic of an excellent chemical resistance and excellent γ-ray resistance. Then in the present invention, a cross linked methacryl resin molding product comprising 60 to 98 % by weight of methyl methacrylate units and 2 to 40 % by weight of cross linking monomer units is used as a material for transparent partition walls. A tightly sealed facility having the transparent partition wall materials of excellent radiation resistance in addition to acid resistance can be attained. (T.M.)

  13. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  14. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  15. PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Bingtao; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-01-01

    The thermal conductivity of form-stable PEG/SiO 2 phase change material (PCM) was enhanced by in situ doping of Al 2 O 3 using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO 2 –Al 2 O 3 reached 124 J g −1 , and thermal conductivity improved by 12.8% for 3.3 wt% Al 2 O 3 in the PCM compared with PEG/SiO 2 . The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO 2 –Al 2 O 3 hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects

  16. TOP PRIORITI QMS PRINCIPLES FOR ACHIEVING BUSINESS EXCELLENCE

    Directory of Open Access Journals (Sweden)

    Aleksandar Vujović

    2010-06-01

    Full Text Available The main target of this paper is to select top priority principles of QMS for achieving business excellence. This could be done from the standpoint of significant of principles. That means that. organization should make more attention to this principles in the way for making excellent results. This paper has been developed as a tendency of researchers in the Center for quality-Faculty of mechanical engineering in Podgorica to establish a model for improvement of business processes performances based on quality management system through comparison with top organizational performances characterized by criteria i.e. particularities of the business excellence model. Correlation of principles of the quality management system with QMS principles has been established to that effect. Weight coefficients have been also determined for each principle individually. Thereby key principles were identified, namely priorities in terms of achieving business excellence i.e. areas (principles were given priorities, that is to say principles that play the biggest part in achieving business excellence.

  17. A Tutorial on the Use of Excel 2010 and Excel for Mac 2011 for Conducting Delay-Discounting Analyses

    Science.gov (United States)

    Reed, Derek D.; Kaplan, Brent A.; Brewer, Adam T.

    2012-01-01

    In recent years, researchers and practitioners in the behavioral sciences have profited from a growing literature on delay discounting. The purpose of this article is to provide readers with a brief tutorial on how to use Microsoft Office Excel 2010 and Excel for Mac 2011 to analyze discounting data to yield parameters for both the hyperbolic…

  18. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  19. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system

    International Nuclear Information System (INIS)

    Wu, Weixiong; Yang, Xiaoqing; Zhang, Guoqing; Chen, Kai; Wang, Shuangfeng

    2017-01-01

    Highlights: • A heat pipe assisted phase change material based battery thermal management system is proposed. • The proposed system is compact and efficient from a view of practical application. • Cycling conditions are experimentally simulated for practical working environment. • The proposed system presents better thermal performance in comparison to other systems. • Combining forced air convection with heat pipe further enhances the cooling effect. - Abstract: In this paper, a heat pipe-assisted phase change material (PCM) based battery thermal management (BTM) system is designed to fulfill the comprehensive energy utilization for electric vehicles and hybrid electric vehicles. Combining the large heat storage capacity of the PCM with the excellent cooling effect of heat pipe, the as-constructed heat pipe-assisted PCM based BTM is feasible and effective with a relatively longer operation time and more suitable temperature. The experimental results show that the temperature maldistribution of battery module can be influenced by heat pipes when they are activated under high discharge rates of the batteries. Moreover, with forced air convection, the highest temperature could be controlled below 50 °C even under the highest discharge rate of 5C and a more stable and lower temperature fluctuation is obtained under cycling conditions. Meanwhile, the effectiveness of further increasing air velocity (i.e., more fan power consumption) is limited when the highest temperature continues to reduce at a lower rate due to the phase transition process of PCM. These results are expected to provide insights into the design and optimization of BTM systems.

  20. Achieving excellence on shift through teamwork

    International Nuclear Information System (INIS)

    Newman, L.

    1988-01-01

    Anyone familiar with the nuclear industry realizes the importance of operators. Operators can achieve error-free plant operations, i.e., excellence on shift through teamwork. As a shift supervisor (senior reactor operator/shift technical advisor) the author went through the plant's first cycle of operations with no scrams and no equipment damaged by operator error, having since changed roles (and companies) to one of assessing plant operations. This change has provided the opportunity to see objectively the importance of operators working together and of the team building and teamwork that contribute to the shift's success. This paper uses examples to show the effectiveness of working together and outlines steps for building a group of operators into a team

  1. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    Science.gov (United States)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  2. Tutorial: simulating chromatography with Microsoft Excel Macros.

    Science.gov (United States)

    Kadjo, Akinde; Dasgupta, Purnendu K

    2013-04-22

    Chromatography is one of the cornerstones of modern analytical chemistry; developing an instinctive feeling for how chromatography works will be invaluable to future generation of chromatographers. Specialized software programs exist that handle and manipulate chromatographic data; there are also some that simulate chromatograms. However, the algorithm details of such software are not transparent to a beginner. In contrast, how spreadsheet tools like Microsoft Excel™ work is well understood and the software is nearly universally available. We show that the simple repetition of an equilibration process at each plate (a spreadsheet row) followed by discrete movement of the mobile phase down by a row, easily automated by a subroutine (a "Macro" in Excel), readily simulates chromatography. The process is readily understood by a novice. Not only does this permit simulation of isocratic and simple single step gradient elution, linear or multistep gradients are also easily simulated. The versatility of a transparent and easily understandable computational platform further enables the simulation of complex but commonly encountered chromatographic scenarios such as the effects of nonlinear isotherms, active sites, column overloading, on-column analyte degradation, etc. These are not as easily simulated by available software. Views of the separation as it develops on the column and as it is seen by an end-column detector are both available in real time. Excel 2010™ also permits a 16-level (4-bit) color gradation of numerical values in a column/row; this permits visualization of a band migrating down the column, much as Tswett may have originally observed, but in a numerical domain. All parameters of relevance (partition constants, elution conditions, etc.) are readily changed so their effects can be examined. Illustrative Excel spreadsheets are given in the Supporting Information; these are easily modified by the user or the user can write his/her own routine. Copyright

  3. Stereoscopic, thermal, and true deep cumulus cloud top heights

    Science.gov (United States)

    Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.

    2004-05-01

    We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.

  4. Low concentration graphene nanoplatelets for shape stabilization and thermal transfer reinforcement of Mannitol: a phase change material for a medium-temperature thermal energy system

    Science.gov (United States)

    Jing, Gu; Dehong, Xia; Li, Wang; Wenqing, Ao; Zhaodong, Qi

    2018-03-01

    We report herein a novel series of Mannitol/GNPs (graphene nanoplatelets) composites with incremental GNPs loadings from 1 wt% to 10 wt% for further applications in medium-temperature thermal energy system. The phase change behavior and thermal conductivity of Mannitol/GNPs composite, a nanostructured PCM, have been evaluated as a function of GNPs content. Compared to the pristine Mannitol, the resultant stabilized composite with 8 wt% of GNPs displays an extremely high 1054% enhancement in thermal conductivity, and inherits 92% of phase change enthalpy of bulk Mannitol PCM (phase change material). More importantly, 92%Mannitol/GNPs composite still preserves its initial shape without any leakage even when subjected to a 400 consecutive melting/re-solidification cycles. The resulting Mannitol composites exhibit excellent chemical compatibility, large phase change enthalpy and improved thermal reliability, as compared to base PCM, which stands distinct in its class of organic with reference to the past literatures.

  5. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles

    International Nuclear Information System (INIS)

    Derradji, Mehdi; Ramdani, Noureddine; Zhang, Tong; Wang, Jun; Feng, Tian-tian; Wang, Hui; Liu, Wen-bin

    2015-01-01

    Highlights: • SiC microparticles improve the mechanical properties of phthalonitrile resin. • Excellent thermal stability achieved by adding SiC particles in phthalonitrile resin. • Adding 20 wt.% of SiC microparticles increases the T g by 38 °C. • Silane coupling agent can enhance the adhesion and dispersion of particles/matrix. - Abstract: A new type of composite based on phthalonitrile resin reinforced with silicon carbide (SiC) microparticles was prepared. For various weight ratios ranging between 0% and 20%, the effect of the micro-SiC particles on the mechanical and thermal properties has been studied. Results from thermal analysis revealed that the starting decomposition temperature and the residual weight were significantly improved upon adding the reinforcing phase. At the maximum micro-SiC loading, dynamic mechanical analysis (DMA) showed an important enhancement in both the storage modulus and glass transition temperature (T g ), reaching 3.1 GPa and 338 °C, respectively. The flexural strength and modulus as well as the microhardness were significantly enhanced by adding the microfillers. Tensile test revealed enhancements in the composites toughness upon adding the microparticles. Polarization optical microscope (POM) and scanning electron microscope (SEM) analysis confirmed that mechanical and thermal properties improvements are essentially attributed to the good dispersion and adhesion between the particles and the resin

  6. Using Microsoft Excel to Generate Usage Statistics

    Science.gov (United States)

    Spellman, Rosemary

    2011-01-01

    At the Libraries Service Center, statistics are generated on a monthly, quarterly, and yearly basis by using four Microsoft Excel workbooks. These statistics provide information about what materials are being requested and by whom. They also give details about why certain requests may not have been filled. Utilizing Excel allows for a shallower…

  7. Linear thermal expansion measurements on silicon from 6 to 340 K

    International Nuclear Information System (INIS)

    Lyon, K.G.; Salinger, G.L.; Swenson, C.A.; White, G.K.

    1977-01-01

    Linear thermal expansion measurements have been carried out from 6 to 340 K on a high-purity silicon sample using a linear absolute capacitance dilatometer. The accuracy of the measurements varies from +- 0.01 x 10 -8 K -1 at the lowest temperatures to +- 0.1 x 10 -8 K -1 or 0.1%, whichever is greater, near room temperature, and is sufficient to establish silicon as a thermal expansion standard for these temperatures. The agreement with previous data is satisfactory at low temperatures and excellent above room temperature where laser-interferometry data of comparable accuracy exist. Thermal expansions calculated from ultrasonic and heat-capacity data are preferred below 13 K where experimental problems occurred

  8. Modification and evaluation of thermal properties of melamine-formaldehyde/n-eicosane microcapsules for thermo-regulation applications

    International Nuclear Information System (INIS)

    Mohaddes, F.; Islam, S.; Shanks, R.; Fergusson, M.; Wang, L.; Padhye, R.

    2014-01-01

    A modified process to enhance the latent heat of fusion of n-eicosane microcapsules in melamine-formaldehyde shells is suggested for application in textiles. Deviations in melt enthalpy and phase change temperatures were determined for produced microcapsules by differential scanning calorimetry. Thermo-regulation efficiency of eicosane-microcapsule-treated fabrics was evaluated via fitting the Newton cooling law to the experimental data, and a new constant, α, was defined as the thermal delay factor. Scanning electron microscopy images and particle size distribution analysis were consistent and the particle size was found to be between 0.5 and 2.7 μm. Melamine-formaldehyde/n-eicosane microcapsule composition was confirmed using a Fourier transform infrared spectrophotometry. The microcapsules developed showed excellent heat storage capacities, over 162.4 J/g, over melting and crystallisation ranges compared with previous studies undertaken in this field. - Highlights: • Modified eicosane microcapsules with the highest phase change enthalpies were made. • Newton cooling law was fitted to determine thermal delay in PCM-substrates. • Fine microcapsule units with diameters less than 0.5 μm were prepared. • All pliable PCM-substrates can be thermally assessed using thermal logging method

  9. Claisen thermally rearranged (CTR) polymers

    Science.gov (United States)

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-01-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  10. Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices.

    Science.gov (United States)

    Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong

    2017-11-29

    Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.

  11. Statistische toetsen in Excel

    NARCIS (Netherlands)

    A.A.J. van Peet; H.A. Everaert

    2007-01-01

    In KG-18 hebben we verschillende grafieken laten zien. Een veel gebruikte grafische figuur in de statistiek is de zogenaamde boxplot. Weliswaar wordt deze niet vermeld bij de standaard keuzemogelijkheden onder de Wizard Grafieken, toch is het mogelijk om deze figuur met behulp van Excel te tekenen.

  12. Thermalization of squeezed states

    International Nuclear Information System (INIS)

    Solomon, Allan I

    2005-01-01

    Starting with a thermal squeezed state defined as a conventional thermal state based on an appropriate Hamiltonian, we show how an important physical property, the signal-to-noise ratio, is degraded, and propose a simple model of thermalization (Kraus thermalization)

  13. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Mandal, Jyotirmoy; Wang, Derek; Overvig, Adam C; Shi, Norman N; Paley, Daniel; Zangiabadi, Amirali; Cheng, Qian; Barmak, Katayun; Yu, Nanfang; Yang, Yuan

    2017-11-01

    A galvanic-displacement-reaction-based, room-temperature "dip-and-dry" technique is demonstrated for fabricating selectively solar-absorbing plasmonic-nanoparticle-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs' spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°), and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200 °C. Along with the performance of the PNFs, the simplicity, inexpensiveness, and environmental friendliness of the "dip-and-dry" technique makes it an appealing alternative to current methods for fabricating selective solar absorbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  15. BENCHMARKING WORKSHOPS AS A TOOL TO RAISE BUSINESS EXCELLENCE

    Directory of Open Access Journals (Sweden)

    Milos Jelic

    2011-03-01

    Full Text Available Annual competition for national award for business excellence appears to be a good opportunity for participating organizations to demonstrate their practices particularly those ones which enable them to excel. National quality award competition in Serbia (and Montenegro, namely "OSKAR KVALITETA" started in 1995 but was limited to competition cycle only. However, upon establishing Fund for Quality Culture and Excellence - FQCE in 2002, which took over OSKAR KVALITETA model, several changes took place. OSKAR KVALITETA turned to be annual competition in business excellence, but at the same time FQCE started to offer much wider portfolio of its services including levels of excellence programs, assessment and self-assessment training courses and benchmarking workshops. These benchmarking events have hosted by Award winners or other laureates in OSKAR KVALITETA competition who demonstrated excellence in regard of some particular criteria thus being in position to share their practice with other organizations. For six years experience in organizing benchmarking workshops FQCE scored 31 workshops covering major part of model issues. Increasing level of participation on the workshops and distinct positive trends of participants expressed satisfaction may serve as a reliable indicator that the workshops have been effective in actuating people to think and move in business excellence direction.

  16. Thermally multiplexed polymerase chain reaction.

    Science.gov (United States)

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  17. The computerized OMAHA system in microsoft office excel.

    Science.gov (United States)

    Lai, Xiaobin; Wong, Frances K Y; Zhang, Peiqiang; Leung, Carenx W Y; Lee, Lai H; Wong, Jessica S Y; Lo, Yim F; Ching, Shirley S Y

    2014-01-01

    The OMAHA System was adopted as the documentation system in an interventional study. To systematically record client care and facilitate data analysis, two Office Excel files were developed. The first Excel file (File A) was designed to record problems, care procedure, and outcomes for individual clients according to the OMAHA System. It was used by the intervention nurses in the study. The second Excel file (File B) was the summary of all clients that had been automatically extracted from File A. Data in File B can be analyzed directly in Excel or imported in PASW for further analysis. Both files have four parts to record basic information and the three parts of the OMAHA System. The computerized OMAHA System simplified the documentation procedure and facilitated the management and analysis of data.

  18. His Excellency Mr Farukh Amil

    CERN Multimedia

    hugho, Chemli

    2017-01-01

    His Excellency Mr Farukh Amil Ambassador Extraordinary and Plenipotentiary Permanent Representative of the Islamic Republic of Pakistan to the United Nations Office and other international organisations in Geneva

  19. Co-N-macrocyclic modified graphene with excellent electrocatalytic activity for lithium-thionyl chloride batteries

    International Nuclear Information System (INIS)

    Li, Bimei; Yuan, Zhongzhi; Xu, Ying; Liu, Jincheng

    2016-01-01

    Highlights: • A Co-N-graphene catalyst composed of CoN 4 -macrocyclic-like (CoN x ) structure is synthesized. • Co-N x -Graphene has effective electrocatalytic activity for Li/SOCl 2 batteries. • The storage stability of the catalyst is attributed to its insolubility in electrolyte. - Abstract: A mixture of cobalt phthalocyanine (CoPc) and graphene is thermally decomposed at 800 °C to synthesize a novel catalyst. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) show that the catalyst retains the lamellar structure of graphene. X-ray diffraction (XRD) reveals that the catalyst is no longer composed of CoPc and high-resolution TEM (HRTEM), X-ray photoelectron spectra (XPS) prove that Co and N elements have entered the graphene molecular structure, thus forming a Co-N x -graphene (Co-N x -G) catalyst composed of a CoN 4 -macrocyclic-like structure. This catalyst serves as an excellent catalyst of thionyl chloride (SOCl 2 ) reduction. Cyclic voltammetry and battery discharge tests reveal that Co-N x -G-800 substantially increases the discharge voltage and capacity of a Li/SOCl 2 battery. Moreover, Co-N x -G-800 exhibits stable catalytic activity during battery storage. Ultraviolet–visible spectroscopy shows that CoPc is soluble in a SOCl 2 electrolyte solution, whereas Co-N x -G-800 is not, this characteristic contributes to the stable catalytic property of Co-N x -G.

  20. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    Science.gov (United States)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  1. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    Science.gov (United States)

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-11

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  2. Dynamic Graphics in Excel for Teaching Statistics: Understanding the Probability Density Function

    Science.gov (United States)

    Coll-Serrano, Vicente; Blasco-Blasco, Olga; Alvarez-Jareno, Jose A.

    2011-01-01

    In this article, we show a dynamic graphic in Excel that is used to introduce an important concept in our subject, Statistics I: the probability density function. This interactive graphic seeks to facilitate conceptual understanding of the main aspects analysed by the learners.

  3. Thinly disguised contempt: a barrier to excellence.

    Science.gov (United States)

    Brown-Stewart, P

    1987-04-01

    Many elements in contemporary leadership and management convey contempt for employees. "Thinly disguised contempt," a concept introduced by Peters and Austin in A Passion For Excellence, explains many barriers to the achievement of excellence in corporations across disciplines. Health care executives and managers can learn from the errors of corporate management and avoid replicating these errors in the health care industry.

  4. Criticality analysis of thermal reactors for two energy groups applying Monte Carlo and neutron Albedo method

    International Nuclear Information System (INIS)

    Terra, Andre Miguel Barge Pontes Torres

    2005-01-01

    The Albedo method applied to criticality calculations to nuclear reactors is characterized by following the neutron currents, allowing to make detailed analyses of the physics phenomena about interactions of the neutrons with the core-reflector set, by the determination of the probabilities of reflection, absorption, and transmission. Then, allowing to make detailed appreciations of the variation of the effective neutron multiplication factor, keff. In the present work, motivated for excellent results presented in dissertations applied to thermal reactors and shieldings, was described the methodology to Albedo method for the analysis criticality of thermal reactors by using two energy groups admitting variable core coefficients to each re-entrant current. By using the Monte Carlo KENO IV code was analyzed relation between the total fraction of neutrons absorbed in the core reactor and the fraction of neutrons that never have stayed into the reflector but were absorbed into the core. As parameters of comparison and analysis of the results obtained by the Albedo method were used one dimensional deterministic code ANISN (ANIsotropic SN transport code) and Diffusion method. The keff results determined by the Albedo method, to the type of analyzed reactor, showed excellent agreement. Thus were obtained relative errors of keff values smaller than 0,78% between the Albedo method and code ANISN. In relation to the Diffusion method were obtained errors smaller than 0,35%, showing the effectiveness of the Albedo method applied to criticality analysis. The easiness of application, simplicity and clarity of the Albedo method constitute a valuable instrument to neutronic calculations applied to nonmultiplying and multiplying media. (author)

  5. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    International Nuclear Information System (INIS)

    Jiang, Longtao; Wang, Pingping; Xiu, Ziyang; Chen, Guoqin; Lin, Xiu; Dai, Chen; Wu, Gaohui

    2015-01-01

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond (111) /Al interface was found to be devoid of reaction products. While at the diamond (100) /Al interface, large-sized aluminum carbides (Al 4 C 3 ) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond (111) / aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond (111) /aluminum. • The growth mechanism of Al 4 C 3 was analyzed by crystallography theory

  6. INPO and the industry: a commitment to excellence

    International Nuclear Information System (INIS)

    Colvin, J.F.

    1985-01-01

    Utilities in the United States have undergone major changes in their attitudes and methods of operating nuclear stations in the 6 yr since the accident at Three Mile Island. These changes reflect a strong commitment by the US utility industry to excellence in nuclear plant operations. Fundamental in this commitment was the formation of the Institute of Nuclear Power Operations (INPO), an organization created by the industry in the United States to serve as a focus and catalyst for these changes. With membership in INPO, nuclear utilities make a commitment to strive for excellence in the construction and operation of their nuclear plants. INPO has programs to help utilities in their efforts to achieve excellence. The most visible are the INPO evaluation programs. By the end of 1985, INPO will have evaluated most operating plants at least four times. Construction project evaluations are also being conducted. Twenty-one construction evaluations will have been conducted by the end of the year. Through each of its programs, INPO seeks to promote excellence and to help those operating and building nuclear plants in their commitment to excellence

  7. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids.

    Science.gov (United States)

    Zhao, Ningbo; Li, Zhiming

    2017-05-19

    To effectively predict the thermal conductivity and viscosity of alumina (Al₂O₃)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al₂O₃-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al₂O₃-water nanofluids. However, the viscosity only depended strongly on Al₂O₃ nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data.

  8. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    Science.gov (United States)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  9. Thermal-mechanical deformation modelling of soft tissues for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar

    2014-01-01

    Modeling of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical deformations of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical deformations of soft tissues. The 3D governing equations of thermal-mechanical soft tissue deformation are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.

  10. Thermal conductivity of supercooled water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  11. Elements of organizational culture leading to business excellence

    Directory of Open Access Journals (Sweden)

    Andrej Bertoncelj

    2010-12-01

    Full Text Available The main aim of this research was to define the development of a conceptual frame to understand the impact of organizational culture on business excellence in medium-sized and large Slovenian enterprises. In our research the focus was on the importance of the role of communication structure, interpersonal relationships, motivation, and stimulation as part of knowledge management among 825 managers working in medium-sized and large Slovenian enterprises. The aim was to find out if these elements lead or contribute to business excellence. To analyse our data we applied analysis of variance as research methods. Our proposed thesis was supported since significant differences in business excellence between enterprises, different in the above mentioned elements. We can conclude that an appropriate communication structure, interpersonal relationships, motivation, stimulation and values as part of organizational culture positively affect business excellence in enterprises

  12. Developing versus developed companies in Business Excellence initiatives

    DEFF Research Database (Denmark)

    Haffer, Rafal; Kristensen, Kai

    2008-01-01

    The paper reports the advance of Polish companies in Business Excellence initiatives. It indicates how these activities influence their performance. EFQM Excellence Model indicators are used as the evaluation criteria for the study. The performance variable is introduced to ensure the calculation...... of correlations between EFQM model indicators and performance results. The data are next estimated as a structural equation model by partial least squares using SmartPLS software (Ringle et al., 2005). That estimation is conducted on the model of the Danish Business Excellence Index methodology (Kristensen et al...... results from the Business Excellence Model as a proxy for actual financial results in Poland. Data and results from a similar study done in Denmark are also described; thus, a comparison between developing Polish companies and developed Danish ones is included. Poland and Denmark are used as cases of...

  13. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Zhu, Chengling; Chen, Zhixin; Lu, Tao; Xu, Da; Li, Yao; Zhu, Shenmin

    2018-06-21

    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m -1 K -1 ) and through-plane (4.596 W m -1 K -1 ) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm -1 . The strategy reported here may open a new avenue to the development of high-performance thermal management films.

  14. Chasing Perfection and Catching Excellence in Graduate Medical Education.

    Science.gov (United States)

    Andolsek, Kathryn M

    2015-09-01

    The author reflects on the chapter titled "Preserving Excellence in Residency Training and Medical Care" in Dr. Kenneth Ludmerer's book Let Me Heal: The Opportunity to Preserve Excellence in American Medicine. Rather than assuming that the status quo represents excellence, however, the author asserts that we must make an informed judgment regarding the quality of graduate medical education (GME) by applying an evidence-based approach, carefully measuring performance against specific criteria. But what are the right criteria to judge excellence in GME? The author posits that the first criterion for excellence is the foundational concept identified by the Josiah Macy Jr. Foundation, that of accountability to the public. The author argues that for GME to be truly excellent it must produce a workforce "of sufficient size, specialty mix, and skill" needed to serve the public good. For GME to be truly excellent it must produce the right composition (reflecting the population it serves), use the right pedagogy, and be embedded within the right clinical learning environment. Implementation of competency-based education must be bolder and accelerated. The process of culling out service from education in GME must be more honest, not because all service cannot in some ways be educational but because it is simply too expensive to squander a single minute of time in training. Finally, the epidemic of burnout must be addressed urgently and innovatively.

  15. Studies on thermal properties and thermal control effectiveness of a new shape-stabilized phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Cheng Wenlong; Liu Na; Wu Wanfan

    2012-01-01

    In order to overcome the difficulty of conventional phase change materials (PCMs) in packaging, the shape-stabilized PCMs are proposed to be used in the electronic device thermal control. However, the conventional shape-stabilized PCMs have the drawback of lower thermal conductivity, so a new shape-stabilized PCM with high thermal conductivity, which is suitable for thermal control of electronic devices, is prepared. The thermal properties of n-octadecane-based shape-stabilized PCM are tested and analyzed. The heat storage/release performance is studied by numerical simulation. Its thermal control effect for electronic devices is also discussed. The results show that the expanded graphite (EG) can greatly improve the thermal conductivity of the material with little effect on latent heat and phase change temperature. When the mass fraction of EG is 5%, thermal conductivity has reached 1.76 W/(m K), which is over 4 times than that of the original one. Moreover, the material has larger latent heat and good thermal stability. The simulation results show that the material can have good heat storage/release performance. The analysis of the effect of thermal parameters on thermal control effect for electronic devices provides references to the design of phase change thermal control unit. - Highlights: ► A new shape-stabilized PCM with higher thermal conductivity is prepared. ► The material overcomes the packaging difficulty of traditional PCMs used in thermal control unit. ► The EG greatly improves thermal conductivity with little effect on latent heat. ► The material has high thermal stability and good heat storage/release performance. ► The effectiveness of the material for electronic device thermal control is proved.

  16. Dynamic water vapor sorption on Mg(Ga3+)O mixed oxides: Analysis of the LDH thermal regeneration process

    International Nuclear Information System (INIS)

    Bedolla-Valdez, Zaira I.; Ramirez-Solis, Sergio; Prince, Julia; Lima, Enrique; Pfeiffer, Heriberto; Valente, Jaime S.

    2013-01-01

    Highlights: ► Ga-LDH regeneration process was analyzed varying the relative humidity. ► Ga-LDH rehydrates faster than aluminum content LDH materials. ► Gallium seems to favor diffusion processeses during LDH regeneration. - Abstract: The rehydration process of the calcined MgGa-layered double hydroxides (Ga-LDH) was analyzed at different temperatures and relative humidities. Results clearly showed that Ga-LDH sample presented an excellent regeneration kinetic, in comparison to the aluminum typical one. Different techniques such as X-ray diffraction, infrared spectroscopy and thermal analysis were used to elucidate the presented results

  17. X-factor for innovation: identifying future excellent professionals

    NARCIS (Netherlands)

    den Hertog, J.H.

    2016-01-01

    In this study we wanted to identify which type of individual is capable of achieving professional excellence. Our main question therefore read: which individual antecedents predict professional excellence? We chose to focus on personality traits and specifically on proactive personality - the

  18. Development of Thermal Radiation Experiments Kit Based on Data Logger for Physics Learning Media

    Science.gov (United States)

    Permana, H.; Iswanto, B. H.

    2018-04-01

    Thermal Radiation Experiments Kit (TREK) based on data logger for physics learning media was developed. TREK will be used as a learning medium on the subject of Temperature and Heat to explain the concept of emissivity of a material in grade XI so that it can add variations of experiments which are commonly done such as thermal expansion, transfer of thermal energy (conduction, convection, and radiation), and specific heat capacity. DHT11 sensor is used to measure temperature and microcontroller Arduino-uno used as data logger. The object tested are in the form of coated glass thin films and aluminum with different colors. TREK comes with a user manual and student worksheet (LKS) to make it easier for teachers and students to use. TREK was developed using the ADDIE Development Model (Analyze, Design, Development, Implementation, and Evaluation). And validated by experts, physics teachers, and students. Validation instrument is a questionnaire with a five-item Likert response scale with reviewed aspect coverage: appropriate content and concepts, design, and user friendly. The results showed that TREK was excellent (experts 88.13%, science teachers 95.68%, and students 85.77%).

  19. Business excellence as a success factor for the performance of large Croatian enterprises

    Directory of Open Access Journals (Sweden)

    Ivica Zdrilić

    2016-06-01

    Full Text Available Croatian companies need a new approach that will provide them with sufficient competitive strength, based on business excellence. Focusing only on financial indicators and measures is insufficient. Therefore new concepts should be introduced, especially by large companies that are traditionally inert and exposed to global competition, and situated in the countries with ongoing transition, such as Croatia. Today 75% of the source of value within a company cannot be measured by means of the standard accounting techniques anymore, and in the 21st century it is impossible to rely exclusively on measuring financial parameters. According to the authors, in addition to financial measuring, a way should be found to measure non-financial parameters within a company. The paper is therefore aimed at exploring the influence of business excellence and its values on business in the Croatian business practice. The authors carried out a research on 106 large Croatian enterprises with more than 250 employees, exploring the connection between the values of business excellence and company performance, Results show a positive correlation between applying the principles of business excellence and successful company performance in practice.

  20. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  1. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    HU RuiFeng; CAO BingYang

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  2. Development and evaluation of a building integrated aquifer thermal storage model

    NARCIS (Netherlands)

    Bozkaya, B.; Li, R.; Labeodan, T.; Kramer, R.P.; Zeiler, W.

    2017-01-01

    An aquifer thermal energy storage (ATES) in combination with a heat pump is an excellent way to reduce the net energy usage of buildings. The use of ATES has been demonstrated to have the potential to provide a reduction of between 20 and 40% in the cooling and heating energy use of buildings. ATES

  3. Excel 2003 all-in-one desk reference for dummies

    CERN Document Server

    Harvey, Greg

    2013-01-01

    When you think of number-crunching and spreadsheets, you think of Excel, right? After Word, it's the most popular program in the Microsoft Office suite. But if technical jargon isn't your first language, you may have found Excel just a teeny bit frustrating. It can be really hard to pick your way through the many features and make Excel do what you need for it to do. Once you know how, you can use Excel to Create fill-in-the-blank forms Prepare expense reports and invoices Manage all sorts of data Keep sales and inventory records Analyze financial data and create forecasts Present informati

  4. Model voor Excellent voor cognitief excellente leerlingen in de onderbouw PO

    NARCIS (Netherlands)

    Dijkstra, Elma; Mooij, Ton; Kirschner, Paul A.

    2012-01-01

    Dijkstra, E. M., Mooij, T., & Kirschner, P. A. (2012, June). Model voor Excellent Onderwijs voor cognitief excellent leerlingen in de onderbouw PO. [Model of Excellent Education for cognitively excellent pupils in kindergarten]. Paper presented at the Onderwijs Research Dagen [Educational Research

  5. Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Khan MD, F. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Panigrahi, S.K., E-mail: skpanigrahi@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-10-15

    Ultrafine-grained microstructure of a QE22 alloy prepared by Friction Stir processing (FSP) is isochronally annealed to study the thermal stability and grain growth kinetics. The FSPed microstructure of QE22 alloy is thermally stable under ultrafine-grained regime up to 300 °C and the activation energy required for grain growth is found to be exceptionally high as compared to conventional ultrafine-grained magnesium alloys. The high thermal stability and activation energy of the FSPed QE22 alloy is due to Zener pinning effect from thermally stable eutectic Mg{sub 12}Nd and fine precipitates Mg{sub 12}Nd{sub 2}Ag and solute drag effect from segregation of Neodymium (Nd) solute atoms at grain boundaries.

  6. Polymer/boron nitride nanocomposite materials for superior thermal transport performance.

    Science.gov (United States)

    Song, Wei-Li; Wang, Ping; Cao, Li; Anderson, Ankoma; Meziani, Mohammed J; Farr, Andrew J; Sun, Ya-Ping

    2012-06-25

    Boron nitride nanosheets were dispersed in polymers to give composite films with excellent thermal transport performances approaching the record values found in polymer/graphene nanocomposites. Similarly high performance at lower BN loadings was achieved by aligning the nanosheets in poly(vinyl alcohol) matrix by simple mechanical stretching (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Achieving excellence with limited resources

    International Nuclear Information System (INIS)

    Anson, L.W.; Spinney, R.W.

    1985-01-01

    The achievement of excellence in safety of nuclear power plant operation is dependent in part upon establishment of a performance-based training program. Developing such a program can be a laborious, time-consuming, and very expensive effort. Conducting job and task analyses, designing course outlines from learning objectives, developing training materials, evaluating program effectiveness and managing the training process and program through the out-years will exhaust any utility's training budget and staff. Because the achievement of excellence implies that training become in part performance-based, the question arises of how best to attain quality training yet still maintain a reasonable budget and staff workload. The answer lies not just in contracting the support necessary but making use of all available resources - training staff, contractor personnel in INPO

  8. 77 FR 64314 - National Cybersecurity Center of Excellence (NCCoE)

    Science.gov (United States)

    2012-10-19

    ...-01] National Cybersecurity Center of Excellence (NCCoE) AGENCY: National Institute of Standards and... of interest in collaborating with NIST/ITL on an ongoing basis in the National Cybersecurity Center of Excellence (NCCoE) through partnerships called ``National Cybersecurity Excellence Partnerships...

  9. The Business Excellence Model for CSR Implementation?

    DEFF Research Database (Denmark)

    Neergaard, Peter; Gjerdrum Pedersen, Esben Rahbek

    2012-01-01

    Most of the Fortune 500 companies address Corporate Social Responsibility (CSR) on their websites. However, CSR remains a fluffy concept difficult to implement in organization. The European Business Excellence Model has since the introduction in 1992 served as a powerful tool for integrating...... European Award winning company has used the model to integrate CSR. The company adapted the Business Excellence model to improve performance, stimulate innovation and consensus....

  10. Confirmatory factor analysis using Microsoft Excel.

    Science.gov (United States)

    Miles, Jeremy N V

    2005-11-01

    This article presents a method for using Microsoft (MS) Excel for confirmatory factor analysis (CFA). CFA is often seen as an impenetrable technique, and thus, when it is taught, there is frequently little explanation of the mechanisms or underlying calculations. The aim of this article is to demonstrate that this is not the case; it is relatively straightforward to produce a spreadsheet in MS Excel that can carry out simple CFA. It is possible, with few or no programming skills, to effectively program a CFA analysis and, thus, to gain insight into the workings of the procedure.

  11. The contribution of thermal radiation to the thermal conductivity of porous UO2

    International Nuclear Information System (INIS)

    Bakker, K.; Kwast, H.; Cordfunke, E.H.P.

    1994-09-01

    The influence of cylindrical, spherical and ellipsoidal inclusions on the overall thermal conductivity was computed with the finite element technique. The results of these calculations were compared with equations that describe the effect of inclusions on the overall thermal conductivity. The analytical equation of Schulz that describes the effect of inclusions on the overall thermal conductivity is in good agreement with the results of the finite element computations. This good agreement shows that among a variety of porosity correction formulas, the equation of Schulz gives the best description of the effect of inclusions on the overall thermal conductivity. This equation and the results of finite element calculations allow us to compute the contribution of radiation to the overall thermal conductivity of UO 2 with oblate ellipsoidal porosity. The present radiation calculations show that Hayes and Peddicord overestimated the contribution of thermal radiation to the thermal conductivity. (orig.)

  12. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  13. The Teaching and Learning of Chemical Kinetics Supported with MS Excel

    Science.gov (United States)

    Zain, Sharifuddin Md; Rahman, Noorsaadah Abdul; Chin, Lee Sui

    2013-01-01

    Students in 12 secondary schools in three states of Malaysia were taught to use worksheets on the chemical kinetics topic which had been pre-created using the MS Excel worksheets. After the teaching, an opinion survey of 612 Form Six students from these schools was conducted. The results showed that almost all the students felt that MS Excel…

  14. Effect of Liquid Phase Content on Thermal Conductivity of Hot-Pressed Silicon Carbide Ceramics

    International Nuclear Information System (INIS)

    Lim, Kwang-Young; Jang, Hun; Lee, Seung-Jae; Kim, Young-Wook

    2015-01-01

    Silicon carbide (SiC) is a promising material for Particle-Based Accident Tolerant (PBAT) fuel, fission, and fusion power applications due to its superior physical and thermal properties such as low specific mass, low neutron cross section, excellent radiation stability, low coefficient of thermal expansion, and high thermal conductivity. Thermal conductivity of PBAT fuel is one of very important factors for plant safety and energy efficiency of nuclear reactors. In the present work, the effect of Y 2 O 3 -Sc 2 O 3 content on the microstructure and thermal properties of the hot pressed SiC ceramics have been investigated. Suppressing the β to α phase transformation of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. Developed SiC ceramics with Y 2 O 3 -Sc 2 O 3 additives are very useful for thermal conductivity on matrix material of the PBAT fuel

  15. Electrical, thermal and electrochemical properties of disordered carbon prepared from palygorskite and cane molasses

    Science.gov (United States)

    Alvarez, Edelio Danguillecourt; Laffita, Yodalgis Mosqueda; Montoro, Luciano Andrey; Della Santina Mohallem, Nelcy; Cabrera, Humberto; Pérez, Guillermo Mesa; Frutis, Miguel Aguilar; Cappe, Eduardo Pérez

    2017-02-01

    We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmett-Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m2 g-1). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysical measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10-7 m2 s-1) and conductivity (1.1 W m-1 K-1) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173-293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g-1 was reached.

  16. Preparation and thermal properties of Glauber’s salt-based phase-change materials for Qinghai-Tibet Plateau solar greenhouses

    Science.gov (United States)

    Jiang, Zipeng; Tie, Shengnian

    2017-07-01

    This paper reports the preparation and characterization of eutectic Glauber’s salt-based composite, phase-change materials (G-PCMs). PCMs were prepared using industrial-grade sodium sulfate decahydrate (Na2SO4 ṡ 10H2O) as the basic material. Other salts were added to obtain the eutectic Glauber’s salt-based PCMs with phase-change temperatures of 25∘C, 15∘C and 10∘C. The modification of the G-PCMs was designed using the same experimental method to select the efficient nucleating, thickening and thermal conductive agents. The results show that borax can be an effective nucleating agent, sodium carboxymethyl cellulose is an excellent thickener and carbon powder is a good thermal conductive agent. The phase-change temperature, latent heat and thermal conductivity of the three different PCMs are 23.9∘C, 15.4∘C and 9.5∘C; 179.6, 129 and 116.2 J/g; and 1.02, 1.10 and 1.23 W/(m K), respectively. These PCMs possess suitable phase-change temperature, high latent heat and good thermal conductivity, and can be used in Qinghai-Tibet Plateau agricultural solar greenhouses.

  17. Challenges to Business Excellence: Some Empirical Evidence

    Directory of Open Access Journals (Sweden)

    Brown Alan

    2014-11-01

    Full Text Available The business excellence models are used by many organisations around the world as a strategic driver for business improvement and in some cases as the basis for applications for awards based on the models. These include the Baldrige, EFQM, Australian Business Excellence Framework and many other national and regional models. Whilst many award recipients showcase their achievements, comparatively little is known about the challenges and impediments they face in reaching and sustaining high levels of success as evidenced by winning awards. This paper seeks to identify challenges faced by examining the experience of a sample of Australian Business Excellence Award winners. Findings suggest that the primary challenges include; leadership support, drive and consistency throughout the organisation and communicating strategy and making it meaningful for people at all levels. The study also found variability in challenges across organisations.

  18. Dynamic water vapor sorption on Mg(Ga{sup 3+})O mixed oxides: Analysis of the LDH thermal regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Bedolla-Valdez, Zaira I.; Ramirez-Solis, Sergio [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510, México, DF (Mexico); Prince, Julia [Instituto Mexicano del Petróleo, Eje Central 152, CP 07730, México, DF (Mexico); Lima, Enrique [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510, México, DF (Mexico); Pfeiffer, Heriberto, E-mail: pfeiffer@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510, México, DF (Mexico); Valente, Jaime S. [Instituto Mexicano del Petróleo, Eje Central 152, CP 07730, México, DF (Mexico)

    2013-02-10

    Highlights: ► Ga-LDH regeneration process was analyzed varying the relative humidity. ► Ga-LDH rehydrates faster than aluminum content LDH materials. ► Gallium seems to favor diffusion processeses during LDH regeneration. - Abstract: The rehydration process of the calcined MgGa-layered double hydroxides (Ga-LDH) was analyzed at different temperatures and relative humidities. Results clearly showed that Ga-LDH sample presented an excellent regeneration kinetic, in comparison to the aluminum typical one. Different techniques such as X-ray diffraction, infrared spectroscopy and thermal analysis were used to elucidate the presented results.

  19. Thermalization without eigenstate thermalization hypothesis after a quantum quench.

    Science.gov (United States)

    Mori, Takashi; Shiraishi, Naoto

    2017-08-01

    Nonequilibrium dynamics of a nonintegrable system without the eigenstate thermalization hypothesis is studied. It is shown that, in the thermodynamic limit, this model thermalizes after an arbitrary quantum quench at finite temperature, although it does not satisfy the eigenstate thermalization hypothesis. In contrast, when the system size is finite and the temperature is low enough, the system may not thermalize. In this case, the steady state is well described by the generalized Gibbs ensemble constructed by using highly nonlocal conserved quantities. We also show that this model exhibits prethermalization, in which the prethermalized state is characterized by nonthermal energy eigenstates.

  20. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Science.gov (United States)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  1. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  2. Tuning the thermal conductivity of silicon carbide by twin boundary: a molecular dynamics study

    International Nuclear Information System (INIS)

    Liu, Qunfeng; Wang, Liang; Shen, Shengping; Luo, Hao

    2017-01-01

    Silicon carbide (SiC) is a semiconductor with excellent mechanical and physical properties. We study the thermal transport in SiC by using non-equilibrium molecular dynamics simulations. The work is focused on the effects of twin boundaries and temperature on the thermal conductivity of 3C-SiC. We find that compared to perfect SiC, twinned SiC has a markedly reduced thermal conductivity when the twin boundary spacing is less than 100 nm. The Si–Si twin boundary is more effective to phonon scattering than the C–C twin boundary. We also find that the phonon scattering effect of twin boundary decreases with increasing temperature. Our findings provide insights into the thermal management of SiC-based electronic devices and thermoelectric applications. (paper)

  3. Design and thermal performances of a scalable linear Fresnel reflector solar system

    International Nuclear Information System (INIS)

    Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang

    2017-01-01

    Highlights: • A scalable linear Fresnel reflector which can supply different temperatures is proposed. • Inclination design of the mechanical structure is used to reduce the end losses. • The maximum thermal efficiency of 64% is achieved in Guangzhou. - Abstract: This paper proposes a scalable linear Fresnel reflector (SLFR) solar system. The optical mirror field which contains an array of linear plat mirrors closed to each other is designed to eliminate the inter-low shading and blocking. Scalable mechanical mirror support which can place different number of mirrors is designed to supply different temperatures. The mechanical structure can be inclined to reduce the end losses. Finally, the thermal efficiency of the SLFR with two stage mirrors is tested. After adjustment, the maximum thermal efficiency of 64% is obtained and the mean thermal efficiency is higher than that before adjustment. The results indicate that the end losses have been reduced effectively by the inclination design and excellent thermal performance can be obtained by the SLFR after adjustment.

  4. Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films.

    Science.gov (United States)

    Xiao, Lin; Ma, He; Liu, Junku; Zhao, Wei; Jia, Yi; Zhao, Qiang; Liu, Kai; Wu, Yang; Wei, Yang; Fan, Shoushan; Jiang, Kaili

    2015-12-09

    Adaptive camouflage in thermal imaging, a form of cloaking technology capable of blending naturally into the surrounding environment, has been a great challenge in the past decades. Emissivity engineering for thermal camouflage is regarded as a more promising way compared to merely temperature controlling that has to dissipate a large amount of excessive heat. However, practical devices with an active modulation of emissivity have yet to be well explored. In this letter we demonstrate an active cloaking device capable of efficient thermal radiance control, which consists of a vanadium dioxide (VO2) layer, with a negative differential thermal emissivity, coated on a graphene/carbon nanotube (CNT) thin film. A slight joule heating drastically changes the emissivity of the device, achieving rapid switchable thermal camouflage with a low power consumption and excellent reliability. It is believed that this device will find wide applications not only in artificial systems for infrared camouflage or cloaking but also in energy-saving smart windows and thermo-optical modulators.

  5. Stable and self-adaptive performance of mechanically pumped CO2 two-phase loops for AMS-02 tracker thermal control in vacuum

    International Nuclear Information System (INIS)

    Zhang, Z.; Sun, X.-H.; Tong, G.-N.; Huang, Z.-C.; He, Z.-H.; Pauw, A.; Es, J. van; Battiston, R.; Borsini, S.; Laudi, E.; Verlaat, B.; Gargiulo, C.

    2011-01-01

    A mechanically pumped CO 2 two-phase loop cooling system was developed for the temperature control of the silicon tracker of AMS-02, a cosmic particle detector to work in the International Space Station. The cooling system (called TTCS, or Tracker Thermal Control System), consists of two evaporators in parallel to collect heat from the tracker's front-end electronics, two radiators in parallel to emit the heat into space, and a centrifugal pump that circulates the CO 2 fluid that carries the heat to the radiators, and an accumulator that controls the pressure, and thus the temperature of the evaporators. Thermal vacuum tests were performed to check and qualify the system operation in simulated space thermal environment. In this paper, we reported the test results which show that the TTCS exhibited excellent temperature control ability, including temperature homogeneity and stability, and self-adaptive ability to the various external heat flux to the radiators. Highlights: → The active-pumped CO 2 two-phase cooling loop passed the thermal vacuum test. → It provides high temperature homogeneity and stability thermal boundaries. → Its working temperature is controllable in vacuum environment. → It possesses self-adaptive ability to imbalanced external heat fluxes.

  6. Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Pang, Zhicong

    2018-01-01

    Subsequent thermal cycling (STC), as the unique thermal behavior during the multi-layer manufacturing process of selective laser melting (SLM), brings about unique microstructure of the as-produced parts. A multi-layer finite element (FE) model was proposed to study the STC along with a contrast experiment. The FE simulational results show that as layer increases, the maximum temperature, dimensions and liquid lifetime of the molten pool increase, while the heating and cooling rates decrease. The maximum temperature point shifts into the molten pool, and central of molten pool shifts backward. The neighborly underlying layer can be remelted thoroughly when laser irradiates a powder layer, thus forming an excellent bonding between neighbor layers. The contrast experimental results between the single-layer and triple-layer samples show that grains in of latter become coarsen and tabular along the height direction compared with those of the former. Moreover, this effect become more serious in 2nd and 1st layers in the triple-layer sample. All the above illustrate that the STC has an significant influence on the thermal behavior during SLM process, and thus affects the microstructure of SLMed parts.

  7. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing

  8. Preparation of nanoencapsulated phase change material as latent functionally thermal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yutang; Kuang Shengyan; Gao Xuenong; Zhang Zhengguo, E-mail: ppytfang@scut.edu.c [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

    2009-02-07

    Nanoencapsulated phase change material with polystyrene as the shell and n-octadecane as the core was synthesized using the ultrasonic technique and miniemulsion in situ polymerization. The influences of polymerization factors, including initiator, chain transfer agent (CTA), surfactant, n-octadecane/styrene ratio and hydrophilic co-monomer, on the morphology and thermophysical properties of nanocapsules were systematically investigated. The optimized polymerization conditions were 0.5 wt% of initiator (2,2-azobisisobutyronitrile), 0.4 wt% of CTA (n-dodecyl mercaptan), 2% of composite surfactants which were composed of sodium dodecyl sulfate and poly-(ethylene glycol) monooctylphenyl ether by 1 : 1 in weight ratio, 1 wt% of hydrophilic co-monomer butyl acrylate or 3 wt% of methyl methacrylate and 1 : 1 n-octadecane to styrene in weight ratio. Under these conditions, the z-average size of prepared nanocapsules was 124 nm and the phase change enthalpy was 124.4 kJ kg{sup -1}. The heat capacity was as high as 11.61 kJ kg{sup -1} K{sup -1} at the latex concentration of 20.6 wt%. Thermal stability and viscosity testing show that this fluid had excellent resistance to thermal shock (after 100 cycles, no liquid Oct was observed during heating) and low viscosity (only 3.61 mPa s at the latex concentration of 20.6 wt%), which seems to be promising as a latent functionally thermal fluid.

  9. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage

    International Nuclear Information System (INIS)

    Chen, Changzhong; Liu, Wenmin; Wang, Hongwei; Peng, Kelin

    2015-01-01

    Highlights: • Three new kinds of SSPCMs were synthesized with different skeleton materials. • The phase change properties and thermal stability of SSPCMs were investigated. • The maximum enthalpy in heating (cooling) process is 107.5 kJ/kg (102.9 kJ/kg). • The rigid groups and crosslinking structure of SSPCMs improve the thermal stability. • The SSPCMs could be applied in the temperature range of 30–70 °C. - Abstract: Three kinds of new polymeric SSPCMs with different crosslinking structures were synthesized and characterized for thermal energy storage. In the SSPCMs, three hexahydroxy compounds (sorbitol, dipentaerythritol and inositol) were individually employed as the molecular skeleton and polyethylene glycol (PEG) was used as the phase change functional chain. The molecular structure, crystalline properties, phase change behaviors, thermal reliability and stability of the synthesized SSPCMs were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetry (TG), respectively. The results show that the prepared SSPCMs possess high thermal energy storage density and an applicable temperature range of 30–70 °C, and the maximum phase change enthalpy in the heating and cooling process for the SSPCMs is 107.5 kJ/kg and 102.9 kJ/kg, respectively. The prepared SSPCMs have good reusability, excellent thermal reliability and stability from the heating-cooling thermal cycle test and TG curves. The resultant SSPCMs could be potentially applied in the areas of thermal energy storage and temperature-control

  10. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    Science.gov (United States)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  11. Thermally stable cellulose nanocrystals toward high-performance 2D and 3D nanostructures

    Science.gov (United States)

    Chao Jia; Huiyang Bian; Tingting Gao; Feng Jiang; Iain Michael Kierzewski; Yilin Wang; Yonggang Yao; Liheng Chen; Ziqiang Shao; J. Y. Zhu; Liangbing Hu

    2017-01-01

    Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge....

  12. Low-stress photosensitive polyimide suspended membrane for improved thermal isolation performance

    Science.gov (United States)

    Fan, J.; Xing, R. Y.; Wu, W. J.; Liu, H. F.; Liu, J. Q.; Tu, L. C.

    2017-11-01

    In this paper, we introduce a method of isolating thermal conduction from silicon substrate for accommodating thermal-sensitive micro-devices. This method lies in fabrication of a low-stress photosensitive polyimide (PSPI) suspension structure which has lower thermal conductivity than silicon. First, a PSPI layer was patterned on a silicon wafer and hard baked. Then, a cavity was etched from the backside of the silicon substrate to form a membrane or a bridge-shape PSPI structure. After releasing, a slight deformation of about 20 nm was observed in the suspended structures, suggesting ultralow residual stress which is essential for accommodating micro-devices. In order to investigate the thermal isolation performance of the suspended PSPI structures, micro Pirani vacuum gauges, which are thermal-sensitive, had been fabricated on the PSPI structures. The measurement results illustrated that the Pirani gauges worked as expected in the range from 1- 470 Pa. Moreover, the results of the Pirani gauges based on the membrane and bridge structures were comparable, indicating that the commonly used bridge-shape structure for further reducing thermal conduction was unnecessary. Due to the excellent thermal isolation performance of PSPI, the suspended PSPI membrane is promising to be an outstanding candidate for thermal isolation applications.

  13. The contribution of thermal radiation to the thermal conductivity of porous UO2

    International Nuclear Information System (INIS)

    Bakker, K.; Kwast, H.; Cordfunke, E.H.P.

    1995-01-01

    The influence of cylindrical, spherical and ellipsoidal inclusions on the overall thermal conductivity was computed with the finite element technique. The results of these calculations were compared with equations that describe the effect of inclusions on the overall thermal conductivity. The analytical equation of Schulz [B. Schulz, KfK-1988 (1974)] that describes the effect of inclusions on the overall thermal conductivity is in good agreement with the results of the finite element computations. This good agreement shows that among a variety of porosity correction formulas, the equation of Schulz gives the best description of the effect of inclusions on the overall thermal conductivity. This equation and the results of finite element calculations allow us to compute the contribution of radiation to the overall thermal conductivity of UO 2 with oblate ellipsoidal porosity. The present radiation calculations show that Hayes and Peddicord [S.L. Hayes and K.L. Peddicord, J. Nucl. Mater. 202 (1993) 87] overestimated the contribution of thermal radiation to the thermal conductivity. ((orig.))

  14. A research-based profile of a Dutch excellent facility manager

    NARCIS (Netherlands)

    Roos-Mink, Anke; Offringa, Johan; de Boer, Esther; Heijne-Penninga, Marjolein; Mobach, Mark P.; Wolfensberger, Marca; Balslev Nielsen, S.; Anker Jensen, P.

    2016-01-01

    Purpose - This paper aims to establish the profile of an excellent facility manager in The Netherlands.Design/methodology/approach − As part of a large-scale study on profiles of excellent professionals, a study was carried out to find the key characteristics of an excellent facility manager. Three

  15. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  16. The relationship of learning motivation, achievement and satisfaction for nurses learning simple excel VBA information systems programming.

    Science.gov (United States)

    Lee, Ying Li; Chien, Tsai Feng; Kuo, Ming Chuan; Chang, Polun

    2014-01-01

    This study aims to understand the relationship between participating nurses' motivation, achievement and satisfaction before and after they learned to program in Excel Visual Basic for Applications (Excel VBA). We held a workshop to train nurses in developing simple Excel VBA information systems to support their clinical or administrative practices. Before and after the workshop, the participants were evaluated on their knowledge of Excel VBA, and a questionnaire was given to survey their learning motivation and satisfaction. Statistics softwares Winsteps and SPSS were used for data analysis. Results show that the participants are more knowledgeable about VBA as well as more motivated in learning VBA after the workshop. Participants were highly satisfied with the overall arrangement of the workshop and instructors, but didn't have enough confidence in promoting the application of Excel VBA themselves. In addition, we were unable to predict the participants' achievement by their demographic characteristics or pre-test motivation level.

  17. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  18. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    Science.gov (United States)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  19. Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations

    Science.gov (United States)

    Sung, Christopher Teh Boon

    2011-01-01

    Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…

  20. THERMAL CONSOLIDATION OF LAYERED POROUS HALF-SPACE TO VARIABLE THERMAL LOADING

    Institute of Scientific and Technical Information of China (English)

    BAI Bing

    2006-01-01

    An analytical method was derived for the thermal consolidation of layered,saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, thc thermo-osmosis effect has an obvious influence on thermal responses.

  1. Learning Microsoft Excel 2011 for Mac video training DVD

    CERN Document Server

    Vaccaro, Guy

    2011-01-01

    In this video tutorial for Microsoft Excel 2011 For Mac, expert author Guy Vaccaro teaches you to effectively utilize the features and functions of Excel through project based learning. You will complete various projects, and along they way learn to leverage the power of the most important features Excel 2011 has to offer the Mac user. Starting your training course with the creation of a spreadsheet to record and monitor sales data, you will learn the basics of what you can do with a spreadsheet. You will then move on to creating a Profit and Loss report, learning formulas along the way. Moving to score sheets for a sports day, you will discover conditional based formatting, lookups, and more. You then create a functional expense claim form, advancing your Excel expertise. Moving on to a sales contact management sheet, you will discover how you can manipulate text, and even create mail merges from Excel. Finally, you will utilize all your knowledge thus far to create a sales report, including charts, pivot ta...

  2. Homogeneity of the coefficient of linear thermal expansion of ZERODUR: a review of a decade of evaluations

    Science.gov (United States)

    Jedamzik, Ralf; Westerhoff, Thomas

    2017-09-01

    The coefficient of thermal expansion (CTE) and its spatial homogeneity from small to large formats is the most important property of ZERODUR. Since more than a decade SCHOTT has documented the excellent CTE homogeneity. It started with reviews of past astronomical telescope projects like the VLT, Keck and GTC mirror blanks and continued with dedicated evaluations of the production. In recent years, extensive CTE measurements on samples cut from randomly selected single ZERODUR parts in meter size and formats of arbitrary shape, large production boules and even 4 m sized blanks have demonstrated the excellent CTE homogeneity in production. The published homogeneity data shows single ppb/K peak to valley CTE variations on medium spatial scale of several cm down to small spatial scale of only a few mm mostly at the limit of the measurement reproducibility. This review paper summarizes the results also in respect to the increased CTE measurement accuracy over the last decade of ZERODUR production.

  3. Analysis of plant function as bio-thermal-conditioner using Pothos (Epipremnum aureum)

    Energy Technology Data Exchange (ETDEWEB)

    Nakazato, Tadashi, E-mail: nack-art@y7.dion.ne.jp [Nakadai Junior High School, 1-56-23 Nakadai Itabashi-ku, Tokyo 174-0064 (Japan); Inagaki, Terumi, E-mail: hotaru@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4 Chome, Nakanarusawa 12-1, Hitachi, Ibaraki 316-8511 (Japan)

    2012-03-20

    Plants absorb carbon dioxide by photosynthesis using solar energy and use thermal energy in the atmosphere by transpiration. Paying attention to the excellent functions that plants perform, we have measured the daily variation of the temperature and humidity on plant circumference of an individual level using Pothos (Epipremnum aureum), and have investigated the thermal conditioning effect of the plant irradiated white LED in a closed space covered with thermal insulation at the incubator adjusted temperature. The air-cooling effect of Pothos in a closed space at the incubator adjusted 23 Degree-Sign C was about 1 Degree-Sign C. High correlation between air temperature and that of soil was shown in the air-cooling effect, and long-time white light irradiation increased the air-cooling effect.

  4. Analysis of plant function as bio-thermal-conditioner using Pothos (Epipremnum aureum)

    International Nuclear Information System (INIS)

    Nakazato, Tadashi; Inagaki, Terumi

    2012-01-01

    Plants absorb carbon dioxide by photosynthesis using solar energy and use thermal energy in the atmosphere by transpiration. Paying attention to the excellent functions that plants perform, we have measured the daily variation of the temperature and humidity on plant circumference of an individual level using Pothos (Epipremnum aureum), and have investigated the thermal conditioning effect of the plant irradiated white LED in a closed space covered with thermal insulation at the incubator adjusted temperature. The air-cooling effect of Pothos in a closed space at the incubator adjusted 23 °C was about 1 °C. High correlation between air temperature and that of soil was shown in the air-cooling effect, and long-time white light irradiation increased the air-cooling effect.

  5. Efficient thermal diode with ballistic spacer

    Science.gov (United States)

    Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio

    2018-03-01

    Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.

  6. Centers of Excellence Contribution to Knowledge Augmentation

    International Nuclear Information System (INIS)

    Mignone, O.

    2016-01-01

    Full text: Knowledge management is a key need of the nuclear industry to cope with the knowledge limited augmentation and the risks of knowledge loss due to a number of reasons, such as: staff attrition, organizational changes, upgraded technologies, new projects implementation, and the nuclear power evolution in recent years (i.e., post-Fukushima upgrades). This document describes the contribution of nuclear centers of excellence to knowledge augmentation. The effective implementation of nuclear centers of excellence is a key success factor for the knowledge management programme of nuclear organizations. This document, is based on a real example of operating organization approach in launching such initiative for staff knowledge augmentation and performance improvement. Eventually, any type of organizations in the nuclear sector could apply the proposed technique to reach better knowledge usage. The nuclear centers of excellence are a key knowledge management initiative for the learning organizations that are caring about organizational intellectual capital and striving for performance improvement. The nuclear centers of excellence can be realized as a forum to exchange ideas, knowledge, information, experiences; to collect lessons learned; and to identify areas for improvement where further organizational competence building is needed. Usual realization of this initiative is going through an active staff involvement in knowledge sharing in a form of different technical communities of practice focusing on specific knowledge domains. (author

  7. A reconstruction of Maxwell model for effective thermal conductivity of composite materials

    International Nuclear Information System (INIS)

    Xu, J.Z.; Gao, B.Z.; Kang, F.Y.

    2016-01-01

    Highlights: • Deficiencies were found in classical Maxwell model for effective thermal conductivity. • Maxwell model was reconstructed based on potential mean-field theory. • Reconstructed Maxwell model was extended with particle–particle contact resistance. • Predictions by reconstructed Maxwell model agree excellently with experimental data. - Abstract: Composite materials consisting of high thermal conductive fillers and polymer matrix are often used as thermal interface materials to dissipate heat generated from mechanical and electronic devices. The prediction of effective thermal conductivity of composites remains as a critical issue due to its dependence on considerably factors. Most models for prediction are based on the analog between electric potential and temperature that satisfy the Laplace equation under steady condition. Maxwell was the first to derive the effective electric resistivity of composites by examining the far-field spherical harmonic solution of Laplace equation perturbed by a sphere of different resistivity, and his model was considered as classical. However, a close review of Maxwell’s derivation reveals that there exist several controversial issues (deficiencies) inherent in his model. In this study, we reconstruct the Maxwell model based on a potential mean-field theory to resolve these issues. For composites made of continuum matrix and particle fillers, the contact resistance among particles was introduced in the reconstruction of Maxwell model. The newly reconstructed Maxwell model with contact resistivity as a fitting parameter is shown to fit excellently to experimental data over wide ranges of particle concentration and mean particle diameter. The scope of applicability of the reconstructed Maxwell model is also discussed using the contact resistivity as a parameter.

  8. Improved silicon surface passivation of APCVD Al2O3 by rapid thermal annealing

    NARCIS (Netherlands)

    Black, L.E.; Allen, T.; McIntosh, K.R.; Cuévas, A.

    2016-01-01

    Short-duration post-deposition thermal treatments at temperatures above those normally used for annealing activation have the potential to further improve the already excellent passivation of crystalline silicon (c-Si) achieved by Al2O3, but have so far received little attention. In this work we

  9. Creating single-subject design graphs in Microsoft Excel 2007.

    Science.gov (United States)

    Dixon, Mark R; Jackson, James W; Small, Stacey L; Horner-King, Mollie J; Lik, Nicholas Mui Ker; Garcia, Yors; Rosales, Rocio

    2009-01-01

    Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The present article provides task analyses for constructing various types of commonly used single-subject design graphs in Microsoft Excel 2007. The task analyses were evaluated using a between-subjects design that compared the graphing skills of 22 behavior-analytic graduate students using Excel 2007 and either the Carr and Burkholder or newly developed task analyses. Results indicate that the new task analyses yielded more accurate and faster graph construction than the Carr and Burkholder instructions.

  10. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Longtao, E-mail: longtaojiang@163.com [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Pingping [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiu, Ziyang [Skate Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Chen, Guoqin [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lin, Xiu [Heilongjiang Academy of Industrial Technology, Harbin 150001 (China); Dai, Chen; Wu, Gaohui [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.

  11. Fracture mechanics evaluation of cast duplex stainless steel after thermal aging

    International Nuclear Information System (INIS)

    Tujikura, Y.; Urata, S.

    1999-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel, which is excellent in terms of strength, corrosion resistance and weldability, has conventionally been used. Cast duplex stainless steel contains the ferrite phase in the austenite matrix, and thermal aging after long-term service is known to decrease fracture toughness. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secure, even when such through-wall crack length is assumed to be as large as the fatigue crack length grown for a service period of up to 60 years. (orig.)

  12. Fracture mechanics evaluation of cast duplex stainless steel after thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Tujikura, Y.; Urata, S. [Kansai Electr. Power Co., Inc., Osaka (Japan). General Office of Nucl. and Fossil Power Production

    1999-07-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel, which is excellent in terms of strength, corrosion resistance and weldability, has conventionally been used. Cast duplex stainless steel contains the ferrite phase in the austenite matrix, and thermal aging after long-term service is known to decrease fracture toughness. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secure, even when such through-wall crack length is assumed to be as large as the fatigue crack length grown for a service period of up to 60 years. (orig.)

  13. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes.

    Science.gov (United States)

    Do, Yu Seong; Lee, Won Hee; Seong, Jong Geun; Kim, Ju Sung; Wang, Ho Hyun; Doherty, Cara M; Hill, Anita J; Lee, Young Moo

    2016-11-15

    Highly permeable, thermally rearranged polymer membranes based on bismaleimide derivatives that exhibit excellent CO 2 permeability up to 5440 Barrer with a high BET surface area (1130 m 2 g -1 ) are reported for the first time. In addition, the membranes can be easily used to form semi-interpenetrating networks with other polymers endowing them with superior gas transport properties.

  14. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  15. Water-Blown Polyurethane Foams Showing a Reversible Shape-Memory Effect

    Directory of Open Access Journals (Sweden)

    Elena Zharinova

    2016-11-01

    Full Text Available Water-blown polyurethane (PU foams are of enormous technological interest as they are widely applied in various fields, i.e., consumer goods, medicine, automotive or aerospace industries. The discovery of the one-way shape-memory effect in PU foams provided a fresh impetus for extensive investigations on porous polymeric actuators over the past decades. High expansion ratios during the shape-recovery are of special interest when big volume changes are required, for example to fill an aneurysm during micro-invasive surgery or save space during transportation. However, the need to program the foams before each operation cycle could be a drawback impeding the entry of shape-memory polymeric (SMP foams to our daily life. Here, we showed that a reversible shape-memory effect (rSME is achievable for polyurethane water-blown semicrystalline foams. We selected commercially available crystallizable poly(ε-caprolactone-diols of different molecular weight for foams synthesis, followed by investigations of morphology, thermal, thermomechanical and shape-memory properties of obtained compositions. Densities of synthesized foams varied from 110 to 180 kg∙m−3, while peak melting temperatures were composition-dependent and changed from 36 to 47 °C, while the melting temperature interval was around 15 K. All semicrystalline foams exhibited excellent one-way SME with shape-fixity ratios slightly above 100% and shape-recovery ratios from the second cycle of 99%. The composition with broad distribution of molecular weights of poly(ε-caprolactone-diols exhibited an rSME of about 12% upon cyclic heating and cooling from Tlow = 10 °C and Thigh = 47 °C. We anticipate that our experimental study opens a field of systematic investigation of rSMEs in porous polymeric materials on macro and micro scale and extend the application of water-blown polyurethane foams to, e.g., protective covers with zero thermal expansion or even cushions adjustable to a certain body

  16. Promoting Excellence in Nursing Education (PENE): Pross evaluation model.

    Science.gov (United States)

    Pross, Elizabeth A

    2010-08-01

    The purpose of this article is to examine the Promoting Excellence in Nursing Education (PENE) Pross evaluation model. A conceptual evaluation model, such as the one described here, may be useful to nurse academicians in the ongoing evaluation of educational programs, especially those with goals of excellence. Frameworks for evaluating nursing programs are necessary because they offer a way to systematically assess the educational effectiveness of complex nursing programs. This article describes the conceptual framework and its tenets of excellence. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  18. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Science.gov (United States)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  19. Evaluation of properties and thermal stress field for thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    王良; 齐红宇; 杨晓光; 李旭

    2008-01-01

    In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was tested and evaluated under different high temperatures. The relationship between the microstructure (porosity of top-coat) and properties of TBCs were analyzed to predict the thermal properties of ceramic top-coat, such as thermal conductivity and elastic modulus. The temperature and stress field of the vane with TBCs were simulated using two sets of thermal conductivity data and elastic modulus, which are from literatures and this work, respectively. The results show that the temperature and stress distributions change with thermal conductivity and elastic modulus. The differences of maximum temperatures and stress are 6.5% and 8.0%, respectively.

  20. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity

    International Nuclear Information System (INIS)

    Yu Xiongjun; Zhou Shaobing; Zheng Xiaotong; Guo Tao; Xiao Yu; Song Botao

    2009-01-01

    This paper reports a kind of biodegradable nanocomposite which can show an excellent shape-memory property in hot water or in an alternating magnetic field with f = 20 kH and H = 6.8 kA m -1 . The nanocomposite is composed of crosslinked poly(ε-caprolactone) (c-PCL) and Fe 3 O 4 nanoparticles. The crosslinking reaction in PCL with linear molecular structure was realized using benzoyl peroxide (BPO) as an initiator. The biocompatible Fe 3 O 4 magnetite nanoparticles with an average size of 10 nm were synthesized according to a chemical coprecipitation method. The initial results from c-PCL showed crosslinking modification had brought about a large enhancement in shape-memory effect for PCL. Then a series of composites made of Fe 3 O 4 nanoparticles and c-PCL were prepared and their morphological properties, mechanical properties, thermodynamic properties and shape-memory effect were investigated in succession. Significantly, the photos of the shape-memory process confirmed the anticipatory magnetically responsive shape-recovery effect of the nanocomposites because inductive heat from Fe 3 O 4 can be utilized to actuate the c-PCL vivification from their frozen temporary shape. All the results imply a very feasible method to fabricate shape-memory PCL-based nanocomposites since just a simple modification is required. Additionally, this modification would endow an excellent shape-memory effect to all other kinds of polymers so that they could broadly serve in various fields, especially in medicine.

  1. Managing Excellence in Sports Performance.

    Science.gov (United States)

    Lyle, John W. B.

    1997-01-01

    Conceptualizes excellence in sports performance and suggests that there is a failure to distinguish between community recreation and performance sports as well as lack of knowledge about talent identification. Proposes a structure for management and investment in education and training in the field. (SK)

  2. Thermal conductivity of technetium

    International Nuclear Information System (INIS)

    Minato, K.; Serizawa, H.; Fukuda, K.

    1998-01-01

    The thermal diffusivity of technetium was measured on a disk sample of 5 mm in diameter and 1 mm in thickness by the laser flash method from room temperature to 1173 K, and the thermal conductivity was determined by the measured thermal diffusivity and density, and the reported specific heat capacity. The thermal diffusivity of technetium decreases with increasing temperature though it is almost constant above 600 K. The thermal conductivity of technetium shows a minimum around 400 K, above which the thermal conductivity increases with temperature. The electronic and phonon components of the thermal conductivity were evaluated approximately. The increase in the thermal conductivity of technetium with temperature is due to the increase in the electronic component. (orig.)

  3. The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity

    Science.gov (United States)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi; Yang, Wulin

    2017-06-01

    The intermediate phase of NiS2 is thought to be a bottleneck currently to improve the overall performance of Li/NiS2 thermal batteries because of its low conductivity and close formation enthalpy between NiS2 and the intermediate phase (NiS, Ni3S2, etc). For improving the discharge performances of Li/NiS2 thermal batteries, the nano NiS2 with an average size of 85 ± 5 nm is designated as a cathode material. The electrochemical measurements show that the specific capacity of nano NiS2 cathode is higher than micro NiS2. The nano NiS2 cathode exhibits excellent electrochemical performances with high specific capacities of 794 and 654 mAh g-1 at current density of 0.1 and 0.5 A cm-2 under a cut-off voltage of 0.5 V, respectively. These results show that the rapid intermediate phase evolution from the nanocrystallization can obviously enhance use efficiency of NiS2 and improve discharge performances of thermal batteries.

  4. Designing organizational excellence model for cellulose industry of Iran

    Directory of Open Access Journals (Sweden)

    Seyed Abbas Kazemi

    2012-01-01

    Full Text Available Nowadays organizational excellence is regarded as the world’s most effective and progressive issue and many countries and organizations are attempting in the way of applying excellence. In this way, they attempt to improve such models and according to culture and sociopolitical conditions of each country, they attempt to design several models. The present research has been conducted with principal goal of designing organizational excellence model at cellulose industry of Iran. The study determines its components and aspects, priorities the aspects and components and analyzes relationship among different aspects of organizational excellence model at cellulose industry of Iran. The present research is an applied research with respect to goal and it is a descriptive-analytical method in terms of method. Statistical population of the present research covers all experts in the field of cellulose industry of Iran in which on this basis, the number of statistical sample was 207 people from managers to specialists. Results of research indicate that organizational excellence pattern of cellulose industry is a mixture of different aspects of technical, economic, inner environment, outer environment, motivation and behavioral processes.

  5. Proposing an Environmental Excellence Self-Assessment Model

    DEFF Research Database (Denmark)

    Meulengracht Jensen, Peter; Johansen, John; Wæhrens, Brian Vejrum

    2013-01-01

    that the EEA model can be used in global organizations to differentiate environmental efforts depending on the maturity stage of the individual sites. Furthermore, the model can be used to support the decision-making process regarding when organizations should embark on more complex environmental efforts......This paper presents an Environmental Excellence Self-Assessment (EEA) model based on the structure of the European Foundation of Quality Management Business Excellence Framework. Four theoretical scenarios for deploying the model are presented as well as managerial implications, suggesting...

  6. Low carbon content and carbon-free refractory materials with high thermal shock resistance; Thermoschockbestaendige feuerfeste Erzeugnisse mit geringerem Kohlenstoffgehalt bzw. kohlenstofffreie Erzeugnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brachhold, Nora; Aneziris, C.G.; Stein, Volker; Roungos, Vasileios; Moritz, Kirsten [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)

    2012-07-01

    Carbon bonded refractories are essential for steelmaking due to their excellent thermal shock resistance. The research on carbon reduced and carbon-free materials is necessary to manufacture high quality stainless steels tending carbon pick-up in contact to conventional refractory materials. Further advantages are reduced emissions of CO{sub 2} and energy saving potentials due to better heat insulation properties. The challenge is to develop alternative materials with lower carbon contents but with the necessary thermal shock resistance. The Priority Programme 1418 funded by the German Research Foundation (DFG) concentrates on this problem. In this article two materials are presented. First, the carbon content could be reduced by nanoscaled additives resulting in better bonding between matrix and oxidic components. Second, an AL{sub 2}O{sub 3}-rich carbon-free material is presented showing a very good thermal shock resistance due to its designed microstructure. Finally, a steel casting simulator is introduced to test the new materials under nearly real conditions. (orig.)

  7. Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-04-21

    We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.

  8. PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change materials with enhanced thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tangbt@dlut.edu.cn; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-03-01

    The thermal conductivity of form-stable PEG/SiO{sub 2} phase change material (PCM) was enhanced by in situ doping of Al{sub 2}O{sub 3} using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO{sub 2}–Al{sub 2}O{sub 3} reached 124 J g{sup −1}, and thermal conductivity improved by 12.8% for 3.3 wt% Al{sub 2}O{sub 3} in the PCM compared with PEG/SiO{sub 2}. The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects.

  9. Modeling the influence of interaction layer formation on thermal conductivity of U–Mo dispersion fuel

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    Highlights: • Hsu equation provides best thermal conductivity estimate of U–Mo dispersion fuel. • Simple model considering interaction layer formation was coupled with Hsu equation. • Interaction layer thermal conductivity is not the most important attribute. • Effective thermal conductivity is mostly influenced by interaction layer formation. • Fuel particle distribution also influences the effective thermal conductivity. - Abstract: The Global Threat Reduction Initiative Program continues to develop existing and new test reactor fuels to achieve the maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix, porosity that forms during fabrication of the fuel plates or rods, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation, dispersed particle size, and volume fraction of dispersed phase in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be as important in determining the effective conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the dispersed particle distribution by minimizing interaction

  10. Microtexture of the thermally grown alumina in commercial thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karadge, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Zhao, X. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Preuss, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Xiao, P. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom)]. E-mail: Ping.Xiao@manchester.ac.uk

    2006-02-15

    otextures of the thermally grown {alpha}-alumina (TGO) in isothermally treated and thermal cycled electron beam physical vapor deposited thermal barrier coatings (EB-PVD-TBC) and isothermally treated air plasma sprayed (APS-TBC) specimens were studied by high resolution electron back-scattered diffraction. The TGO in EB-PVD specimens exhibited a basal microtexture. The TGO in APS specimens, however, did not show any significant microtexture development.

  11. Self-scheduling with Microsoft Excel.

    Science.gov (United States)

    Irvin, S A; Brown, H N

    1999-01-01

    Excessive time was being spent by the emergency department (ED) staff, head nurse, and unit secretary on a complex 6-week manual self-scheduling system. This issue, plus inevitable errors and staff dissatisfaction, resulted in a manager-lead initiative to automate elements of the scheduling process using Microsoft Excel. The implementation of this initiative included: common coding of all 8-hour and 12-hour shifts, with each 4-hour period represented by a cell; the creation of a 6-week master schedule using the "count-if" function of Excel based on current staffing guidelines; staff time-off requests then entered by the department secretary; the head nurse, with staff input, then fine-tuned the schedule to provide even unit coverage. Outcomes of these changes included an increase in staff satisfaction, time saved by the head nurse, and staff work time saved because there was less arguing about the schedule. Ultimately, the automated self-scheduling method was expanded to the entire 700-bed hospital.

  12. Managing service excellence. Internal customer service training

    International Nuclear Information System (INIS)

    McAnulty, P.C.

    1991-01-01

    WHO ARE OUR CUSTOMERS? Electric Users, regulators, vendors, suppliers, or our own employees? The answer is ALL exclamation point They are all customers. Regardless if they are external or internal customers, one must focus on quality of service delivery in order to maintain customer satisfaction. The most successful companies are quickly realizing that managing SERVICE EX NCE is our only future. For the next decade, the issue of service quality will exceed the issue of productivity. It is very easy to see that the business behind a utility is serving our electric consumers. However, internal customer service - service excellence to employees inside a company is the foundation for success. This paper describes a training program that is being implemented across Duke Power for employees on internal customer service. How we provide service to each other within a company impacts service quality to our external customers. This training refocuses behaviors and perceptions so to concentrate on quality service delivery to our internal customers - our employees. We all have positive and negative experiences with obtaining quality service by either external organizations or internal employees. Therefore, we start with a common foundation. Whether it be a supplier, vendor, or a station administrative group, we have experienced either excellent or poor customer service. All of us have potential in managing the delivery of excellent customer service. However, many of us may need new perspectives so to add depth with which we view and manage service excellence to our internal customers

  13. A parylene-filled-trench technique for thermal isolation in silicon-based microdevices

    International Nuclear Information System (INIS)

    Lei Yinhua; Wang Wei; Li Ting; Jin Yufeng; Zhang Haixia; Li Zhihong; Yu Huaiqiang; Luo Yingcun

    2009-01-01

    Microdevices prepared in a silicon substrate have been widely used in versatile fields due to the matured silicon-based microfabrication technique and the excellent physical properties of silicon material. However, the high thermal conductivity of silicon restricts its application in most thermal microdevices, especially devices comprising different temperature zones. In this work, a parylene-filled-trench technique was optimized to realize high-quality thermal isolation in silicon-based microdevices. Parylene C, a heat transfer barricading material, was deposited on parallel high-aspect-ratio trenches, which surrounded the isolated target zones. After removing the remnant silicon beneath the trenches by deep reactive ion etching from the back side, a high-quality heat transfer barrier was obtained. By using narrow trenches, only 5 µm thick parylene was required for a complete filling, which facilitated multi-layer interconnection thereafter. The parylene filling performance inside the high-aspect-ratio trench was optimized by two approaches: multiple etch–deposition cycling and trench profile controlling. A 4 × 6 array, in which each unit was kept at a constant temperature and was well thermally isolated individually, was achieved on a silicon substrate by using the present parylene-filled-trench technique. The preliminary experimental results indicated that the present parylene-filled-trench structure exhibited excellent thermal isolation performance, with a very low power requirement of 0.134 mW (K mm 2 ) −1 for heating the isolated silicon unit and a high thermal isolation efficiency of 72.5% between two adjacent units. Accompanied with high-quality isolation performance, the microdevices embedded the present parylene-filled-trench structure to retain a strong mechanical connection larger than 400 kPa between two isolated zones, which is very important for a high-reliability-required micro-electro-mechanical-system (MEMS) device. Considering its room

  14. Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shafaei, Shahram; Van Opdenbosch, Daniel [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany); Fey, Tobias [Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Materials Science and Engineering 3: Glass and Ceramics, Martensstraße 5, D-91058 Erlangen (Germany); Koch, Marcus; Kraus, Tobias [INM, Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken (Germany); Guggenbichler, Josef Peter [AMiSTec GmbH & Co. KG, Leitweg 23, A-6345 Kössen (Austria); Zollfrank, Cordt, E-mail: cordt.zollfrank@tum.de [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany)

    2016-01-01

    The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps. Microbiological roll-on tests using Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed and exceptional antimicrobial activities were determined for anhydrous samples with orthorhombic lattice symmetry and a large specific surface area. The increase in the specific surface area is due to crack formation and to the loss of the hydrate water after calcination at 300 °C. The results support the proposed antimicrobial mechanism for transition metal oxides, which based on a local acidity increase as a consequence of the augmented specific surface area. - Highlights: • Molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) and anhydrous MoO{sub 3} after calcination exhibit exceptional antimicrobial activities • Especially the orthorhombic samples with a large specific surface area show excellent antimicrobial properties. • The increased specific surface area is due to crack formation and to loss of hydrate water after calcination at 300 °C. • Increased a local acidity as a consequence of the augmented surface area is related to the antimicrobial characteristics.

  15. Defining learning goals in Honours education : what makes an excellent professional?

    NARCIS (Netherlands)

    Robbe, Patricia; Heijne-Penninga, Marjolein; Wijkamp, Inge; Wolfensberger, Marca

    2016-01-01

    Honours programs prepare talented students to become the excellent professionals of the future. However, the behavioral aspects which define an excellent professional have not been elucidated yet. We therefore performed a research study on how professionals characterize an excellent professional in

  16. EMPIRICAL ASSESSMENT OF MICROFINANCE BANKS IN NIGERIA USING EFQM EXCELLENCE MODEL

    Directory of Open Access Journals (Sweden)

    Chijioke Nwachukwu

    2017-06-01

    Full Text Available Measuring the performance of microfinance banks ensure that the banks create value for their various stakeholders. Achieving and sustaining superior business performance is important for organisations. The goal of this study is to assess microfinance banks in Nigeria using EFQM Excellence Model. The study adapts the EFQM self- assessment questionnaire for collecting data from 53 senior staff of selected Microfinance banks in Nigeria. In analyzing our data, Pearson correlation, ANOVA, and multiple regression techniques were used. The result shows that a significant positive association exists between the enablers (leadership, strategy, people, partnerships and resources, processes, products, and services and results (customer, people, society, and business criterion. More important, all the 4 hypotheses are supported. The authors suggest that a robust performance management system that integrates leadership, strategy, people, resources, processes, products, and services are important to achieve and sustain excellent results for various stakeholders.

  17. Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning.

    Science.gov (United States)

    Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua

    2015-01-01

    Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101-150, 151-200 or 201-250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (Pcloning efficiency (Pcloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (Pcloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.

  18. Ballistic Performance of Porous-Ceramic, Thermal Protection Systems

    Science.gov (United States)

    Miller, J. E.; Bohl, W. E.; Christiansen, Eric C.; Davis, B. A.; Foreman, C. D.

    2011-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on 8 lb/cu ft alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/ reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principals impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. Model extensions to look at the implications of greater than 10 GPa equation of state is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.

  19. Thermal expansion anomaly and thermal conductivity of U3O8

    International Nuclear Information System (INIS)

    Schulz, B.

    1975-01-01

    The anomaly in the thermal expansion of U 3 O 8 and results of the thermal conductivity of this compound are described. U 3 O 8 powder heat treated at 1,223 K was consolidated by pressing and sintering in air at 1,223 and 1,373 K to a density of 66% and 80.8% TD. The O/U ratio was 2.67 and 2.63 respectively, the crystal structure being orthorhombic in both cases. For UOsub(2.63) the thermal linear expansion was measured in the temperature range 293 K-1,063 K in pressing direction and normal to it, while for UOsub(2.67) measurements were done parallel to the pressing direction. The curves of the linear thermal expansion from 373 K up to 623 K show negative values and above positive for the three curves. The results are related to known data of phase-transition-temperatures of the orthorhombic U 3 O 8 . Measurements of the thermal conductivity were done on UOsub(2.67). Because of the high porosity of the samples, known relationships for the porosity correction of the thermal conductivity were proved on alumina with 34 % porosity. The values of the thermal conductivity of UOsub(2.67) (corrected to zero porosity) show a very slight temperature dependence, they are about three times lower than those of the stoichiometric uranium dioxide in the same temperature range

  20. Thermal Analysis of Pure Uranium Metal, UMo and UMoSi Alloys Using a Differential Thermal Analyzer

    International Nuclear Information System (INIS)

    Yanlinastuti; Sutri Indaryati; Rahmiati

    2010-01-01

    Thermal analysis of pure uranium metal, U-7%Mo and U-7%Mo-1%Si alloys have been done using a Differential Thermal Analyzer (DTA). The experiments are conducted in order to measure the thermal stability, thermochemical properties of elevated temperature and enthalpy of the specimens. From the analysis results it is showed that uranium metal will transform from α to β phases at temperature of 667.16°C and enthalpy of 2.3034 cal/g and from β to γ phases at temperature of 773.05 °C and enthalpy of 2.8725 cal/g and start melting at temperature of 1125.26 °C and enthalpy of 2.1316 cal/g. The U-7%Mo shows its thermal stability up to temperature of 650 °C and its thermal changes at temperature of 673.75 °C indicated by the formation of an endothermic peak and enthalpy of 0.0257 cal/g. The U-7%Mo-1%Si alloys shows its thermal stability up to temperature of 550 °C and its thermal changes at temperature of 574.18 °C indicated by the formation of an endothermic peak and enthalpy of 0.613 cal/g. From the three specimens it is showed that they have a good thermal stability at temperature up to 550 °C. (author)

  1. Constraining Non-thermal and Thermal properties of Dark Matter

    Directory of Open Access Journals (Sweden)

    Bhupal eDev

    2014-05-01

    Full Text Available We describe the evolution of Dark Matter (DM abundance from the very onset of its creation from inflaton decay under the assumption of an instantaneous reheating. Based on the initial conditions such as the inflaton mass and its decay branching ratio to the DM species, the reheating temperature, and the mass and interaction rate of the DM with the thermal bath, the DM particles can either thermalize (fully/partially with the primordial bath or remain non-thermal throughout their evolution history. In the thermal case, the final abundance is set by the standard freeze-out mechanism for large annihilation rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by the freeze-in mechanism which also does not depend on the initial abundance, provided it is small to begin with. For even smaller interaction rates, the DM decouples while being non-thermal, and the relic abundance will be essentially set by the initial conditions. We put model-independent constraints on the DM mass and annihilation rate from over-abundance by exactly solving the relevant Boltzmann equations, and identify the thermal freeze-out, freeze-in and non-thermal regions of the allowed parameter space. We highlight a generic fact that inflaton decay to DM inevitably leads to an overclosure of the Universe for a large range of DM parameter space, and thus poses a stringent constraint that must be taken into account while constructing models of DM. For the thermal DM region, we also show the complementary constraints from indirect DM search experiments, Big Bang Nucleosynthesis, Cosmic Microwave Background, Planck measurements, and theoretical limits due to the unitarity of S-matrix. For the non-thermal DM scenario, we show the allowed parameter space in terms of the inflaton and DM masses for a given reheating temperature, and compute the comoving free-streaming length to identify the hot, warm and cold DM regimes.

  2. Thermal durability of modified Synroc material as reactor fuel matrix

    International Nuclear Information System (INIS)

    Kikuchi, Akira; Kanazawa, Hiroyuki; Togashi, Yoshihiro; Matumoto, Seiichiro; Nishino, Yasuharu; Ohwada, Isao; Nakata, Masahito; Amano, Hidetoshi; Mitamura, Hisayoshi

    1994-08-01

    A Synroc, a polyphase titanate ceramics composed of three mineral phases (perovskite, hollandite and zirconolite), has an excellent performance of immobilization of high level nuclear waste. A working group in the Department of Hot Laboratories paid special attention to this merit and started a development study on a LWR fuel named 'Waste Disposal Possible (WDP) Fuel', which has the two functions of a reactor fuel and a waste form. The present paper mainly describes thermal durability of a modified Synroc material, which is essentially important for applying the material to a fuel matrix. The two kinds of Synroc specimens, designated 'SM' as modified and 'SB' as a reference, were prepared by hot-pressing and annealed at 1200degC to 1500degC for 30 min in air. Unexpected and peculiar spherical voids were observed in the specimen SM at 1400degC and 1500degC, which caused the specimen swelling. The formation of the voids depends significantly on the existence of spherical precipitates seen in the as-fabricated specimen including latent micropores with high pressure. On the other hand, the heat treatment at 1500degC formed additional new phases, designated 'Phase A' for the specimen SB and 'Phase X' for SM. Phase A is a decomposition product of hollandite and Phase X a reaction product of Phase A and perovskite in the spherical voids. Furthermore, additional information and thermal properties examined are presented in Appendix 1 and Appendix 2, respectively. It was recognized that the modified Synroc specimen SM had excellent thermal properties. (author)

  3. A new hybrid ocean thermal energy conversion–Offshore solar pond (OTEC–OSP) design: a cost optimization approach

    NARCIS (Netherlands)

    Straatman, P.J.T.; van Sark, W.G.J.H.M.

    2008-01-01

    Solar thermal electricity (STE) generation offers an excellent opportunity to supply electricity with a non-CO2 emitting technology. However, present costs hamper widespread deployment and therefore research and development efforts are concentrated on accelerated cost reductions and efficiency

  4. The Complete Picture: "Standards for Technological Literacy" and "Advancing Excellence in Technological Literacy."

    Science.gov (United States)

    Technology Teacher, 2003

    2003-01-01

    Provides an overview of the "Standards for Technological Literacy: Content for the Study of Technology" (STL) and "Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards" (AETL). Shows how the documents work together to advance the technological literacy of technology educators and K-12…

  5. Advancing diversity through inclusive excellence in nursing education.

    Science.gov (United States)

    Bleich, Michael R; MacWilliams, Brent R; Schmidt, Bonnie J

    2015-01-01

    Nurse leaders call for a more diverse nursing workforce, but too few address the concept of inclusion as a recruitment and retention strategy or as part of improving the academic learning milieu. This article addresses organizational considerations of diversity and inclusion as part of the agenda established by the Association of American Colleges and Universities for inclusive excellence, building on the idea that academic environments only become excellent when an inclusive climate is reached. Six organizational strategies to inclusion are presented from the authors' experiences, some structural and others behavioral: admissions processes, invisibility, absence of community, promotion and tenure, exclusion, and tokenism. A call for structural and behavioral adaptions within nursing education to advance an inclusive excellence agenda is presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Excellence in sport: Towards an understanding of the psychological “architecture” of elite athletes

    Directory of Open Access Journals (Sweden)

    L.S. Almeida

    2011-01-01

    Full Text Available The purpose of this study was to provide a brief overview of the literature around the field of excellence, focused on the sport's context. Thus, the main approaches to the study of excellence were presented and then some important factors in its development and maintenance were sought considering a set of social and personal dimensions. Among the latter, the focus of attention was on the athlete's psychological, motivational, affective, and emotional characteristics and skills, in an attempt to design the elite athletes' psychological "architecture". The characterization of these athletes included a number of consensual factors and strategies, such as high levels of motivation, commitment, concentration, and self-confidence, as well as the use of adaptive coping strategies, self-regulation, goal-setting and mental imagery. Although these results show some consistency in terms of research, it is still unsolved the issue of the weight and importance of each one of these factors and how such factors are combined in order to "produce" excellent performances.

  7. The culture of excellence. Challenges and opportunities during changing times

    Directory of Open Access Journals (Sweden)

    Suciu Marta-Christina

    2017-07-01

    Full Text Available The main goal of the paper is to highlight the importance of supporting the promotion of the culture of excellence among people involved in a way or another in contemporary business. In order to support business excellence, the culture of excellence have to empower and engage all the people within an organization to think out of the box in a modern vision suitable to the challenging and changing times we are facing now. All over the world, in the most competitive countries, regions and sectors of activities there is a paradigmatic change of business strategies and policies oriented more and more towards performance and excellence. The paper highlights the importance of promoting the culture of excellence in the contemporary changing business environment. It suggests an important shift from a perspective that focuses on the so called ‘hero of excellence’ towards promoting the culture of excellence among the whole organization. Within modern business, in order to face challenges of the changing times and to explore their opportunities all the people from an organization are considered to manifest as ‘heroes of excellence’ by co-creating and co-working together within creative and innovative teams. They have to contribute and to participate actively to assure, preserve and develop the competitiveness and well being of the whole organization. The paper supports a holistic, cross disciplinary and integrated vision. It is structured into three parts including: a brief literature review based on an overview of the current state of the literature dedicated to the topic of culture of excellence (part 1; presentation of the main steps of the process of building a sustainable high performance organization (part 2; a brief presentation of examples of best practice and case studied identified internationally (part 3; conclusions that highlight the importance of culture of excellence in changing and challenging times.

  8. Comparative Analysis Of Three Largest World Models Of Business Excellence

    Directory of Open Access Journals (Sweden)

    Jasminka Samardžija

    2009-07-01

    Full Text Available Business excellence has become the strongest means of achieving competitive advantage of companies while total management of quality has become the road that ensures support of excellent results recognized by many world companies. Despite many differences, we can conclude that models have many common elements. By the audit in 2005, the DP and MBNQA moved the focus from excellence of product, i.e service, onto the excellence of quality of the entire organization process. Thus, the quality got strategic dimension instead of technical one and the accent passed from the technical quality on the total excellence of all organization processes. The joint movement goes to the direction of good management and appreciation of systems thinking. The very structure of EFOM model criteria itself is adjusted to strategic dimension of quality and that is why the model underwent only short audits within the criteria themselves. Essentially, the model remained unchanged. In all models, the accent is on the satisfaction of buyers, employees and community. National rewards for quality have an important role in promotion and giving a prize to excellence in organization performances. Moreover, they raise quality standards of companies and the country profile as a whole. Considering the GDP per capita and the percentage of certification level of companies, Croatia has all the predispositions for introduction the EFQM model of business excellence with the basic aim of deficit decrease in foreign trade balance and strengthening of competitiveness as the necessary preliminary work for the entrance in the competitive market of the EU. Quality management was introduced in many organizations. The methods used at that time developed in the course of years, and what are to predict is the continuation of the evolution road model as well as the method of business excellence.

  9. Predictors of excellent early outcome after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Smith George H

    2012-03-01

    Full Text Available Abstract Background Not all patients gain the same degree of improvement from total hip replacement and the reasons for this are not clear. Many investigators have assessed predictors of general outcome after hip surgery. This study is unique in its quest for the predictors of the best possible early outcome. Methods We prospectively collected data on 1318 total hip replacements. Prior to surgery patient characteristics, demographics and co-morbidities were documented. Hip function and general health was assessed using the Harris Hip score (HHS and the Short-Form 36 respectively. The HHS was repeated at three years. We took a maximal HHS of 100 to represent an excellent outcome (102 patients. Multiple logistic regression analysis was used to identify independent predictors of excellent outcome. Results The two strongest predictive factors in achieving an excellent result were young age and a high pre-operative HHS (p = 0.001. Conclusions It was the young and those less disabled from their arthritis that excelled at three years. When making a decision about the timing of hip arthroplasty surgery it is important to take into account the age and pre-operative function of the patient. Whether these patients continue to excel however will be the basis of future research.

  10. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    Directory of Open Access Journals (Sweden)

    Joong-Won Shin

    2017-07-01

    Full Text Available In this paper, we investigate a low thermal budget post-deposition-annealing (PDA process for amorphous In-Ga-ZnO (a-IGZO oxide semiconductor thin-film-transistors (TFTs. To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA and rapid thermal annealing (RTA methods were applied, and the results were compared with those of the conventional annealing (CTA method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C and short annealing time (2 min because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  11. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    Science.gov (United States)

    Shin, Joong-Won; Cho, Won-Ju

    2017-07-01

    In this paper, we investigate a low thermal budget post-deposition-annealing (PDA) process for amorphous In-Ga-ZnO (a-IGZO) oxide semiconductor thin-film-transistors (TFTs). To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA) and rapid thermal annealing (RTA) methods were applied, and the results were compared with those of the conventional annealing (CTA) method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C) and short annealing time (2 min) because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  12. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  13. Role modeling excellence in clinical nursing practice.

    Science.gov (United States)

    Perry, R N Beth

    2009-01-01

    Role modeling excellence in clinical nursing practice is the focus of this paper. The phenomenological research study reported involved a group of 8 nurses identified by their colleagues as exemplary. The major theme revealed in this study was that these exemplary nurses were also excellent role models in the clinical setting. This paper details approaches used by these nurses that made them excellent role models. Specifically, the themes of attending to the little things, making connections, maintaining a light-hearted attitude, modeling, and affirming others are presented. These themes are discussed within the framework of Watson [Watson, J., 1989. Human caring and suffering: a subjective model for health services. In: Watson, J., Taylor, R. (Eds.), They Shall Not Hurt: Human Suffering and Human Caring. Colorado University, Boulder, CO] "transpersonal caring" and [Bandura, A., 1997. Social Learning Theory. Prentice Hall, Englewood Cliffs, NJ] "Social Learning Theory." Particular emphasis in the discussion is on how positive role modeling by exemplary practitioners can contribute to the education of clinical nurses in the practice setting.

  14. Highly thermal conductivity and infrared emissivity of flexible transparent film heaters utilizing silver-decorated carbon nanomaterials as fillers

    International Nuclear Information System (INIS)

    Li, Yu-An; Chen, Yin-Ju; Tai, Nyan-Hwa

    2014-01-01

    A flexible transparent film heater using functionalized few-walled carbon nanotubes and graphene nanosheets decorated with silver nanoparticles as fillers and poly(3,4-ethylenedioxythiophene)- poly(4-stryrenesulfonate) (PEDOT:PSS) as a dispersant possesses excellent optoelectronic and electrothermal properties. The film possesses a low sheet resistance of 53.0 ± 4.2 ohm · sq −1 , a transmittance of 80.2 ± 0.8% at a wavelength of 550 nm, a high thermal conductivity of 142.0 ± 9.6 W · m −1  · K −1 , a quick response time of less than 60 s, stable heating performance, good reliability, low power consumption, flexibility, and uniform heat diffusion. Besides, the film shows an average infrared emissivity of 0.53 in the wavelength range of 4 to 14 μm, which shows an outstanding heat release performance by radiation. The flexible transparent film heaters adopting graphene and carbon nanotubes as fillers boast excellent electrothermal performance through heat conduction and infrared radiation, suggesting that they are good substitutes for traditional metallic and indium tin oxide film heaters. (papers)

  15. Pt/Pb(Zr, Ti)O3/Pt capacitor with excellent fatigue properties prepared by sol-gel process applied to FeRAM

    International Nuclear Information System (INIS)

    Jia Ze; Ren Tianling; Zhang Zhigang; Liu Tianzhi; Wen Xinyi; Hu Hong; Shao Tianqi; Xie Dan; Liu Litian

    2006-01-01

    Lead zirconate titanate (PZT) film is prepared on Pt/Ti/SiO 2 /Si substrate by proposed processes based on the sol-gel method and rapid thermal anneal (RTA). The ratio of Zr/Ti in the PZT film is 40/60. The PZT film has a mixture of perovskite orientations in which the (110) orientation is dominant. The Pt/PZT/Pt capacitor has remanent polarization of approximately 28.8 μC cm -2 and coercive voltage of approximately 0.76 V at 3 V voltage amplitude. The Pt/PZT/Pt capacitor has excellent fatigue properties. Switch polarizations decrease to 93.1% after 6 x 10 12 switch cycles. The excellent fatigue properties result from the ameliorations of PZT/Pt interface conditions, restraining Pb volatilization and the directions of crystal domains in the RTA process. Some electric properties of the PZT capacitor proposed are contrasted with those of PZT capacitors with a different anneal process in the preparation

  16. Learning with animation as a framework for educational excellence

    DEFF Research Database (Denmark)

    Gjedde, Lisa

    and the refinement of the expression. For some of the learners this type of learning environment, did present potentials for the experience of accomplishment, success and excellence, which they had rarely enjoyed in other types of learning environments. The notion of excellence will be reconsidered in relation...

  17. Mars Thermal Inertia

    Science.gov (United States)

    2001-01-01

    This image shows the global thermal inertia of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 5000 orbits of the MGS mapping mission. The pattern of inertia variations observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.

  18. Research on technology of evaluating thermal property data of nuclear power materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1997-01-01

    For the materials of first wall and diverter of nuclear fusion reactor, in order to withstand steady and unsteady high heat flux load, excellent thermal characteristics are required. It is strongly demanded to measure such thermal property values as heat conductivity, heat diffusivity, specific heat capacity, emissivity and so using small test pieces up to higher than 2000degC. As the materials of nuclear reactors are subjected to neutron irradiation, in order to secure the long term reliability of the materials, it is very important to establish the techniques for forecasting the change of the thermal property values due to irradiation effect. Also the establishment of the techniques for estimating the thermal property values of new materials like low radioactivation material is important. In National Research Laboratory of Metrology, the research on the advancement of the measuring technology for high temperature thermal properties has resulted in the considerably successful development of such technologies. In this research, the rapid measurement of thermal property values up to superhigh temperature with highest accuracy, the making of thermal property data set of high level, the analysis and evaluation of the correlation of material characters and thermal property values, and the development of the basic techniques for estimating the thermal property values of solid materials are aimed at and advanced. These are explained. (K.I.)

  19. Improving the Thermal Conductivity of UO2 Fuel with the Addition of Graphene

    International Nuclear Information System (INIS)

    Cho, Byoung Jin; Kim, Young Jin; Sohn, Dong Seong

    2012-01-01

    Improvement of fuel performances by increasing the fuel thermal conductivity using the BeO or W were reported elsewhere. In this paper, some major fuel performances of improved thermal conductivity oxide (ICO) nuclear fuel with the addition of 10 v/o graphene have been compared to those of standard UO 2 fuel. The fuel thermal conductivity affects many performance parameters and thus is an important parameter to determine the fuel performance. Furthermore, it also affects the performance of the fuel during reactor accidents. The improved thermal conductivity of the fuel would reduce the fuel temperature at the same power condition and would improve the fission gas release, rod internal pressure and fuel stored energy. Graphene is well known for its excellent electrical conductivity, strength and thermal conductivity. The addition of graphene to the UO 2 fuel could increase the thermal conductivity of the ICO fuel. Although the graphene material is extensively studied recently, the characteristics of the graphene material, especially the thermal properties, are not well-known yet. In this study, we used the Light Water Reactor fuel performance analysis code FRAPCON-3.2 to analyze the performance of standard UO 2 and ICO fuel

  20. Centre of Excellence For Simulation Education and Innovation (CESEI).

    Science.gov (United States)

    Qayumi, A Karim

    2010-01-01

    Simulation is becoming an integral part of medical education. The American College of Surgeons (ACS) was the first organization to recognize the value of simulation-based learning, and to award accreditation for educational institutions that aim to provide simulation as part of the experiential learning opportunity. Centre of Excellence for Simulation Education and Innovation (CESEI) is a multidisciplinary and interprofessional educational facility that is based at the University of British Columbia (UBC) and Vancouver Costal Health Authority (VCH). Centre of Excellence for Simulation Education and Innovation's goal is to provide excellence in education, research, and healthcare delivery by providing a technologically advanced environment and learning opportunity using simulation for various groups of learners including undergraduate, postgraduate, nursing, and allied health professionals. This article is an attempt to describe the infrastructure, services, and uniqueness of the Centre of Excellence for Simulation Education and Innovation. Copyright 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong; Chen, Tao; Lubineau, Gilles

    2017-01-01

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film's structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  2. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong

    2017-08-30

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film\\'s structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  3. Flexible all-carbon photovoltaics with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C., E-mail: ctung@ucmerced.edu

    2015-04-15

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C{sub 60}s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C{sub 60}s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that “lock up” the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C{sub 60}s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C{sub 60}s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current–voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C{sub 60}:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests. - Graphical abstract: The incorporation of solvent resistant, mechanically flexible and electrically addressable 2-D soft graphene nanoribbons facilitates the assembly of photoconductive carbon nano-p/n junctions for thermally stable and flexible photovoltaic cells.

  4. Flexible all-carbon photovoltaics with improved thermal stability

    International Nuclear Information System (INIS)

    Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C.

    2015-01-01

    The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C 60 s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C 60 s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that “lock up” the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C 60 s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C 60 s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current–voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C 60 :SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests. - Graphical abstract: The incorporation of solvent resistant, mechanically flexible and electrically addressable 2-D soft graphene nanoribbons facilitates the assembly of photoconductive carbon nano-p/n junctions for thermally stable and flexible photovoltaic cells.

  5. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    OpenAIRE

    Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun

    2017-01-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...

  6. Molecular evolution and thermal adaptation

    Science.gov (United States)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  7. Global thermal niche models of two European grasses show high invasion risks in Antarctica.

    Science.gov (United States)

    Pertierra, Luis R; Aragón, Pedro; Shaw, Justine D; Bergstrom, Dana M; Terauds, Aleks; Olalla-Tárraga, Miguel Ángel

    2017-07-01

    The two non-native grasses that have established long-term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress-tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site-specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature-based bioclimatic GIS layers for ice-free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species. © 2017 John Wiley & Sons Ltd.

  8. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  9. Enterprise-Wide Process & Performance Excellence:

    DEFF Research Database (Denmark)

    Edgeman, Rick; Kristensen, Kai; Eskildsen, Jacob Kjær

    2013-01-01

    Program value proposition, content, organization, and strategy are elaborated herein. This elaboration is the result of careful study of business and social trends, along with careful listening to collaborating enterprises. It is in this latter sense that the Enterprise-Wide Process & Performance...... Excellence certificate program is a product of a co-creation process....

  10. Understanding Research Excellence at IDRC

    International Development Research Centre (IDRC) Digital Library (Canada)

    KFerguson

    2009-01-18

    Jan 18, 2009 ... The primary intended users of this study are IDRC program staffand the ... type of framework, and some parameters that anchor the concepts.” ... (e.g., the complex health care delivery system), we have little reason to ..... defines or views research excellence and related concepts such as rigor and impact;.

  11. The Effect of Thermal Mass on Annual Heat Load and Thermal Comfort in Cold Climate Construction

    DEFF Research Database (Denmark)

    Stevens, Vanessa; Kotol, Martin; Grunau, Bruno

    2016-01-01

    been shown to reduce the annual heating demand. However, few studies exist regarding the effects of thermal mass in cold climates. The purpose of this research is to determine the effect of high thermal mass on the annual heat demand and thermal comfort in a typical Alaskan residence using energy......Thermal mass in building construction refers to a building material's ability to absorb and release heat based on changing environmental conditions. In building design, materials with high thermal mass used in climates with a diurnal temperature swing around the interior set-point temperature have...... modeling software. The model simulations show that increased thermal mass can decrease the risk of summer overheating in Alaskan residences. They also show that increased thermal mass does not significantly decrease the annual heat load in residences located in cold climates. These results indicate...

  12. Study of the behavior of thermal shield support system for the French CPO series plants

    International Nuclear Information System (INIS)

    Bellet, S.; Roux, P.; Bhandari, D.R.; Schwirian, R.E.; Yu, C.; Matarazzo, J.C.; Singleton, N.R.

    1996-01-01

    Degradation/failure of thermal shield support system in PWRs has been observed in the US as well as in foreign plants. In almost all the cases, remedial actions were put in place at very high economic costs to the utilities only after the failures had occurred. This paper presents the results of a comprehensive study to predict the long term behavior of a thermal shield support system due to flow-induced vibratory loads and thermal transients. Excellent agreement from the system finite model between the measured plant test data on the barrel/thermal shield beam and shell mode frequencies and the flexure strains confirms the basic structural behavior and physics of the flow induced vibrations. Loads and stresses on the support bolts and the flexures were determined to predict the fatigue life of the components

  13. An integrated service excellence model for military test and ...

    African Journals Online (AJOL)

    The purpose of this article is to introduce an Integrated Service Excellence Model (ISEM) for empowering the leadership core of the capital-intensive military test and evaluation facilities to provide strategic military test and evaluation services and to continuously improve service excellence by ensuring that all activities ...

  14. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application

    Science.gov (United States)

    Wu, Peng; Hu, Ming Yu; Chong, Xiao Yu; Feng, Jing

    2018-03-01

    Using the solid-state reaction method, the (ZrO2)x-(Dy3TaO7)1-x (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) ceramics are synthesized in this work. The identification of the crystal structures indicates that the (ZrO2)x-(Dy3TaO7)1-x ceramics belong to the orthorhombic system, and the space group is C2221 in spite of the value of x increasing to 0.1. The thermal conductivities of the (ZrO2)x-(Dy3TaO7)1-x ceramics range from 1.3 W/(m K) to 1.8 W/(m K), and this value is much lower than that of 7-8 YSZ (yttria-stabilized zirconia). Besides, the (ZrO2)x-(Dy3TaO7)1-x ceramics possess the glass-like thermal conductivity caused by intrinsic oxygen vacancies existing in the lattice of Dy3TaO7. Moreover, the results of thermal expansion rates demonstrate that the (ZrO2)x-(Dy3TaO7)1-x ceramics possess excellent high temperature phase stability, and the thermal expansion coefficients [(9.7-11) × 10-6 K-1] are comparable to that of 7-8 YSZ.

  15. The paranoia of promotors and the guilt of victims in the praxis of excel-lence in universities: towards a renewal of the desire to teach

    Directory of Open Access Journals (Sweden)

    José Manuel Rodríguez Victoriano

    2017-06-01

    Full Text Available The University of Valencia was the only university in Spain which had not approved the Docentia programme until 2015. This program appeared in 2006, on the stage of the integration of the Spanish Higher Education System within the European Higher Education Area (EHEA. The National Agency for Quality Assessment and Accreditation of Spain (ANECA proposed/imposed a new program sought to control and manage, in business terms, teaching (Dardot & Laval; 2013 to the whole of the Spanish public universities, in entrepreneurial terms the teaching activity. This work situates the program in the process of commodification of the Spanish public university where coexist on par excellence carrot and stick of precarious work and teaching, the paranoia of the excellence and the guilt of their victims. The example of the University of Valencia is used to show Union alternatives and educational responses. Then it is argued that the recovery of the public University, understood as a ’common good’, as well as teaching desire (Hill, 2015 passes through reactivates University ideological response and resistance movements.

  16. A dynamic network model to explain the development of excellent human performance

    Directory of Open Access Journals (Sweden)

    Ruud J.R. Den Hartigh

    2016-04-01

    Full Text Available Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research.

  17. SCEW: a Microsoft Excel add-in for easy creation of survival curves.

    Science.gov (United States)

    Khan, Haseeb Ahmad

    2006-07-01

    Survival curves are frequently used for reporting survival or mortality outcomes of experimental pharmacological/toxicological studies and of clinical trials. Microsoft Excel is a simple and widely used tool for creation of numerous types of graphic presentations however it is difficult to create step-wise survival curves in Excel. Considering the familiarity of clinicians and biomedical scientists with Excel, an algorithm survival curves in Excel worksheet (SCEW) has been developed for easy creation of survival curves directly in Excel worksheets. The algorithm has been integrated in the form of Excel add-in for easy installation and usage. The program is based on modification of frequency data for binary break-up using the spreadsheet formula functions whereas a macro subroutine automates the creation of survival curves. The advantages of this program are simple data input, minimal procedural steps and the creation of survival curves in the familiar confines of Excel.

  18. Assessing excellence in translational cancer research: a consensus based framework.

    Science.gov (United States)

    Rajan, Abinaya; Caldas, Carlos; van Luenen, Henri; Saghatchian, Mahasti; van Harten, Wim H

    2013-10-29

    It takes several years on average to translate basic research findings into clinical research and eventually deliver patient benefits. An expert-based excellence assessment can help improve this process by: identifying high performing Comprehensive Cancer Centres; best practices in translational cancer research; improving the quality and efficiency of the translational cancer research process. This can help build networks of excellent Centres by aiding focused partnerships. In this paper we report on a consensus building exercise that was undertaken to construct an excellence assessment framework for translational cancer research in Europe. We used mixed methods to reach consensus: a systematic review of existing translational research models critically appraised for suitability in performance assessment of Cancer Centres; a survey among European stakeholders (researchers, clinicians, patient representatives and managers) to score a list of potential excellence criteria, a focus group with selected representatives of survey participants to review and rescore the excellence criteria; an expert group meeting to refine the list; an open validation round with stakeholders and a critical review of the emerging framework by an independent body: a committee formed by the European Academy of Cancer Sciences. The resulting excellence assessment framework has 18 criteria categorized in 6 themes. Each criterion has a number of questions/sub-criteria. Stakeholders favoured using qualitative excellence criteria to evaluate the translational research "process" rather than quantitative criteria or judging only the outputs. Examples of criteria include checking if the Centre has mechanisms that can be rated as excellent for: involvement of basic researchers and clinicians in translational research (quality of supervision and incentives provided to clinicians to do a PhD in translational research) and well designed clinical trials based on ground-breaking concepts (innovative

  19. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  20. From Eminent Men to Excellent Universities: University Rankings as Calculative Devices.

    Science.gov (United States)

    Hammarfelt, Björn; de Rijcke, Sarah; Wouters, Paul

    2017-01-01

    Global university rankings have become increasingly important 'calculative devices' for assessing the 'quality' of higher education and research. Their ability to make characteristics of universities 'calculable' is here exemplified by the first proper university ranking ever, produced as early as 1910 by the American psychologist James McKeen Cattell. Our paper links the epistemological rationales behind the construction of this ranking to the sociopolitical context in which Cattell operated: an era in which psychology became institutionalized against the backdrop of the eugenics movement, and in which statistics of science became used to counter a perceived decline in 'great men.' Over time, however, the 'eminent man,' shaped foremost by heredity and upbringing, came to be replaced by the excellent university as the emblematic symbol of scientific and intellectual strength. We also show that Cattell's ranking was generative of new forms of the social, traces of which can still be found today in the enactment of 'excellence' in global university rankings.

  1. Visual Processing in Generally Gifted and Mathematically Excelling Adolescents

    Science.gov (United States)

    Paz-Baruch, Nurit; Leikin, Roza; Leikin, Mark

    2016-01-01

    Little empirical data are available concerning the cognitive abilities of gifted individuals in general and especially those who excel in mathematics. We examined visual processing abilities distinguishing between general giftedness (G) and excellence in mathematics (EM). The research population consisted of 190 students from four groups of 10th-…

  2. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    Science.gov (United States)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  3. Aging effects on vertical graphene nanosheets and their thermal stability

    Science.gov (United States)

    Ghosh, S.; Polaki, S. R.; Ajikumar, P. K.; Krishna, N. G.; Kamruddin, M.

    2018-03-01

    The present study investigates environmental aging effects and thermal stability of vertical graphene nanosheets (VGN). Self-organized VGN is synthesized by plasma enhanced chemical vapor deposition and exposed to ambient conditions over 6-month period to examine its aging behavior. A systematic inspection is carried out on morphology, chemical structure, wettability and electrical property by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, water contact angle and four-probe resistivity measurements at regular intervals, respectively. Detailed microscopic and spectroscopic analysis substantiated the retention of graphitic quality and surface chemistry of VGN over the test period. An unchanged sheet resistance and hydrophobicity reveals its electrical and wetting stability over the time, respectively. Thermogravimetric analysis ensures an excellent thermal stability of VGN up to 575 °C in ambient atmosphere. These findings of long-term morphological, structural, wetting, electrical and thermal stability of VGN validate their potential utilization for the next-generation device applications.

  4. Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage

    International Nuclear Information System (INIS)

    Han, Pengju; Lu, Lixin; Qiu, Xiaolin; Tang, Yali; Wang, Jun

    2015-01-01

    This paper was aimed to prepare, characterize and determine the comprehensive evaluation of promising composite macrocapsules containing microencapsulated PCMs (phase change materials) with calcium alginate gels as the matrix material. Macrocapsules containing microcapsules were fabricated by piercing-solidifying incuber method. Two kinds of microcapsules with n-tetradecane as core material, UF (urea-formaldehyde) and PMMA (poly(methyl methacrylate)) respectively as shell materials were prepared initially. For application concerns, thermal durability and mechanical property of macrocapsules were investigated by TGA (thermal gravimetric analysis) and Texture Analyser for the first time, respectively. The results showed excellent thermal stability and the compressive resistance of macrocapsules was sufficient for common application. The morphology and chemical structure of the prepared microcapsules and macrocapsules were characterized by SEM (scanning electron microscopy) and FT-IR (fourier transform infrared) spectroscopy method. Phase change behaviors and thermal durability of microcapsules and macrocapsules were investigated by DSC (differential scanning calorimetry). In order to improve latent heat of composite microcapsules, the core-shell weight ratio of tetradecane/UF shell microcapsules was chosen as 5.5:1 which obtained the phase change enthalpy of 194.1 J g −1 determined by DSC. In conclusion, these properties make it a feasible composite in applications of textile, building and cold-chain transportation. - Highlights: • We improved the phase change enthalpy with a higher core-shell ratio. • Urea-formaldehyde was firstly used as a shell material in the composite. • Mechanical and thermal durability property of the macrocapsules was firstly investigated in our work.

  5. Passive thermal management system for downhole electronics in harsh thermal environments

    International Nuclear Information System (INIS)

    Shang, Bofeng; Ma, Yupu; Hu, Run; Yuan, Chao; Hu, Jinyan; Luo, Xiaobing

    2017-01-01

    Highlights: • A passive thermal management system is proposed for downhole electronics. • Electronics temperature can be maintained within 125 °C for six-hour operating time. • The result shows potential application for the logging tool in oil and gas industry. - Abstract: The performance and reliability of downhole electronics will degrade in high temperature environments. Various active cooling techniques have been proposed for thermal management of such systems. However, these techniques require additional power input, cooling liquids and other moving components which complicate the system. This study presents a passive Thermal Management System (TMS) for downhole electronics. The TMS includes a vacuum flask, Phase Change Material (PCM) and heat pipes. The thermal characteristics of the TMS is evaluated experimentally. The results show that the system maintains equipment temperatures below 125 °C for a six-hour operating period in a 200 °C downhole environment, which will effectively protect the downhole electronics.

  6. Application of a thermally assisted mechanical dewatering process to biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, A.; Arlabosse, P. [Universite de Toulouse, Mines Albi, CNRS, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Centre RAPSODEE, Campus Jarlard, F-81013 Albi (France); Fernandez, A. [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31400 Toulouse (France); INRA, UMR792 Ingenierie des Systemes Biologiques et des Procedes, CNRS, UMR5504, F-31400 Toulouse (France)

    2011-01-15

    Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (T < 100 C and P < 3000 kPa) constitutes an original approach and a significant energy saving since the liquid is kept in liquid state. Response surface methodology was used to evaluate the effects of the processing parameters of TAMD on the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of TAMD. In this study, a two-factor central composite design was used to establish the optimum conditions for the TAMD of alfalfa biomass. Experiments were carried out on a laboratory compression cell. Experiments showed that the dewatering enhancement results only from thermal effects. With a moderate heat supply (T{sub piston} = 80 C), the dry solid content of the press cake can reach 66%, compared to 36% at ambient temperature. A significant regression model, describing changes on final dry solids content with respect to independent variables, was established with determination coefficient, R{sup 2}, greater than 88%. With an energy consumption of less than 150 kWh/m{sup 3}, the use of the TAMD process before a thermal drying process leads to an energy saving of at least 30% on the overall separation chain. (author)

  7. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    Science.gov (United States)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  8. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    International Nuclear Information System (INIS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants

  9. Escape Excel: A tool for preventing gene symbol and accession conversion errors.

    Science.gov (United States)

    Welsh, Eric A; Stewart, Paul A; Kuenzi, Brent M; Eschrich, James A

    2017-01-01

    Microsoft Excel automatically converts certain gene symbols, database accessions, and other alphanumeric text into dates, scientific notation, and other numerical representations. These conversions lead to subsequent, irreversible, corruption of the imported text. A recent survey of popular genomic literature estimates that one-fifth of all papers with supplementary gene lists suffer from this issue. Here, we present an open-source tool, Escape Excel, which prevents these erroneous conversions by generating an escaped text file that can be safely imported into Excel. Escape Excel is implemented in a variety of formats (http://www.github.com/pstew/escape_excel), including a command line based Perl script, a Windows-only Excel Add-In, an OS X drag-and-drop application, a simple web-server, and as a Galaxy web environment interface. Test server implementations are accessible as a Galaxy interface (http://apostl.moffitt.org) and simple non-Galaxy web server (http://apostl.moffitt.org:8000/). Escape Excel detects and escapes a wide variety of problematic text strings so that they are not erroneously converted into other representations upon importation into Excel. Examples of problematic strings include date-like strings, time-like strings, leading zeroes in front of numbers, and long numeric and alphanumeric identifiers that should not be automatically converted into scientific notation. It is hoped that greater awareness of these potential data corruption issues, together with diligent escaping of text files prior to importation into Excel, will help to reduce the amount of Excel-corrupted data in scientific analyses and publications.

  10. A Negative Thermal Expansion Material of ZrMgMo3O12

    International Nuclear Information System (INIS)

    Song Wen-Bo; Liang Er-Jun; Liu Xian-Sheng; Li Zhi-Yuan; Yuan Bao-He; Wang Jun-Qiao

    2013-01-01

    A material with the formula ZrMgMo 3 O 12 having negative thermal expansion is presented and characterized. It is shown that ZrMgMo 3 O 12 crystallizes in an orthorhombic symmetry with space group Pnma(62) or Pna2 1 (33) and exhibits negative thermal expansion in a large temperature range (α l = −3.8 × 10 −6 K −1 from 300K to 1000K by x-ray diffraction and α l = −3.73 × 10 −6 K −1 from 295K to 775K by dilatometer). ZrMgMo 3 O 12 remains the orthorhombic structure without phase transition or decomposition at least from 123K to 1200K and is not hygroscopic. These properties make it an excellent material with negative thermal expansion for a variety of applications

  11. Excel in the Accounting Curriculum: Perceptions from Accounting Professors

    Science.gov (United States)

    Ramachandran Rackliffe, Usha; Ragland, Linda

    2016-01-01

    Public accounting firms emphasize the importance of accounting graduates being proficient in Excel. Since many accounting graduates often aspire to work in public accounting, a question arises as to whether there should be an emphasis on Excel in accounting education. The purpose of this paper is to specifically look at this issue by examining…

  12. Investigation on a hydrogel based passive thermal management system for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Sijie; Zhao, Rui; Liu, Jie; Gu, Junjie

    2014-01-01

    An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. - Highlights: • A hydrogel thermal management system (TMS) is proposed for Li-ion battery. • It is found that the heat from internal resistance predominates at high discharge rate. • Effectiveness of hydrogel in controlling cell temperature is proved. • Battery equipped with hydrogel TMS is safer at continuous high rate cycle test. • The capacity fading rate of battery pack decreases when hydrogel TMS is implemented

  13. ZnO nanocrystals on SiO2/Si surfaces thermally cleaned in ultrahigh vacuum and characterized using spectroscopic photoemission and low energy electron microscopy

    International Nuclear Information System (INIS)

    Ericsson, Leif K. E.; Magnusson, Kjell O.; Zakharov, Alexei A.

    2010-01-01

    Thermal cleaning in ultrahigh vacuum of ZnO nanocrystals distributed on SiO 2 /Si surfaces has been studied using spectroscopic photoemission and low energy electron microscopy (SPELEEM). This study thus concern weakly bound ZnO nanocrystals covering only 5%-10% of the substrate. Chemical properties, crystallinity, and distribution of nanocrystals are used to correlate images acquired with the different techniques showing excellent correspondence. The nanocrystals are shown to be clean enough after thermal cleaning at 650 deg. C to be imaged by LEEM and x-ray PEEM as well as chemically analyzed by site selective x-ray photoelectron spectroscopy (μ-XPS). μ-XPS shows a sharp Zn 3d peak and resolve differences in O 1s states in oxides. The strong LEEM reflections together with the obtained chemical information indicates that the ZnO nanocrystals were thermally cleaned, but do not indicate any decomposition of the nanocrystals. μ-XPS was also used to determine the thickness of SiO 2 on Si. This article is the first to our knowledge where the versatile technique SPELEEM has been used to characterize ZnO nanocrystals.

  14. Preparing data for analysis using microsoft Excel.

    Science.gov (United States)

    Elliott, Alan C; Hynan, Linda S; Reisch, Joan S; Smith, Janet P

    2006-09-01

    A critical component essential to good research is the accurate and efficient collection and preparation of data for analysis. Most medical researchers have little or no training in data management, often causing not only excessive time spent cleaning data but also a risk that the data set contains collection or recording errors. The implementation of simple guidelines based on techniques used by professional data management teams will save researchers time and money and result in a data set better suited to answer research questions. Because Microsoft Excel is often used by researchers to collect data, specific techniques that can be implemented in Excel are presented.

  15. Effect of microscale gaseous thermal conduction on the thermal behavior of a buckled microbridge

    International Nuclear Information System (INIS)

    Wang Jiaqi; Tang Zhenan; Li Jinfeng; Zhang Fengtian

    2008-01-01

    A microbridge is a basic micro-electro-mechanical systems (MEMS) device and has great potential for application in microsensors and microactuators. The thermal behavior of a microbridge is important for designing a microbridge-based thermal microsensor or microactuator. To study the thermal behavior of a microbridge consisting of Si 3 N 4 and polysilicon with a 2 µm suspended gap between the substrate and the microbridge while the microbridge is heated by an electrical current fed through the polysilicon, a microbridge model is developed to correlate theoretically the input current and the temperature distribution under the buckling conditions, especially considering the effects of the microscale gaseous thermal conduction due to the microbridge buckling. The calculated results show that the buckling of the microbridge changes the microscale gaseous thermal conduction, and thus greatly affects the thermal behavior of the microbridge. We also evaluate the effects of initial buckling on the temperature distribution of the microbridge. The experimental results show that buckling should be taken into account if the buckling is large. Therefore, the variation in gaseous thermal conduction and the suspended gap height caused by the buckling should be considered in the design of such thermomechanical microsensors and microactuators, which requires more accurate thermal behavior

  16. Empowering boards to become instruments of innovation and excellence

    OpenAIRE

    Coulson-Thomas, Colin

    2016-01-01

    Examines the roles of directors, boards and CEOs in relation to excellence, innovation, innovative business models, leadership and human capital and the digital economy, aspects of leadership and the new, collective and shared leadership required for creativity, innovation and entrepreneurship. Written to encourage discussion at the 2016 Dubai Global Convention and 26th World Congress for Business Excellence & Innovation.

  17. Multi-Scale Thermal Heat Tracer Tests for Characterizing Transport Processes and Flow Channelling in Fractured Media: Theory and Field Experiments

    Science.gov (United States)

    de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.

    2017-12-01

    The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow

  18. Bronson Methodist Hospital: journey to excellence in quality and safety.

    Science.gov (United States)

    Knapp, Cheryl

    2006-10-01

    Bronson Healthcare Group, a 343-bed not-for-profit health care system serving all of southwest Michigan and northern Indiana, has as its flagship Bronson Methodist Hospital, the recipient of the 2005 Malcolm Baldrige National Quality Award. The Baldrige criteria were used to formalize Bronson's approach to performance excellence. The strategic plan is condensed and communicated via a "Plan for Excellence" focused on three strategies: clinical excellence, customer and service excellence, and corporate effectiveness. Initiatives include clinical scene investigation (a system for reporting and investigating sentinel and atypical events), a strategy for educating staff in the Situation-Background-Assessment-Recommendations (SBAR) communication technique, and mandatory influenza immunization for health care staff (safety), patient health literacy needs and a health information center (patient centeredness); methods to reduce bloodstream and ventilator-acquired pneumonia infections (effectiveness); a physician portal for access to forms, test results, and patient information (efficiency); restaurant-style pagers for patients and families while waiting (timeliness); and community outreach (equity). Bronson's journey to excellence continues with more accountability for hand-off communication and teamwork, enhancing a non-punitive environment for patient safety reporting, and further incorporating patient and family involvement.

  19. Indicators for constructing scientific excellence: ‘Independence’ in the ERC Starting Grant

    Energy Technology Data Exchange (ETDEWEB)

    Schiffbaenker, H.; Holzinger, F.

    2016-07-01

    Scientific excellence is of increasing relevance for assessing and funding research. Yet the definition of excellence is unclear and excellence difficult to measure. Classical indicators like scientific outcome and impact have been identified to have various limitations, in particular from a gender perspective. So other indicators are applied, like independence. In this paper we discuss various aspects of applying independence as indicator for excellence in ERC peer review panels. In core we analyse how independence is formally defined and how it is applied in practice, with focus on its gendered effects. Further, potential and limitations of independence as criterion for excellence are discussed. (Author)

  20. Excel 2013 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems.  Practice problems are provided at the end of each chapter with their solutions in an appendix.  Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.  Includes 164 illustrations in color Suitable for undergraduates or graduate student Prof. Tom Quirk is currently a Professor of Marketing at The Walker School of Business and Technology at Webster University in St....

  1. A thermal engine for underwater glider driven by ocean thermal energy

    International Nuclear Information System (INIS)

    Yang, Yanan; Wang, Yanhui; Ma, Zhesong; Wang, Shuxin

    2016-01-01

    Highlights: • Thermal engine with a double-tube structure is developed for underwater glider. • Isostatic pressing technology is effective to increase volumetric change rate. • Actual volumetric change rate reaches 89.2% of the theoretical value. • Long term sailing of 677 km and 27 days is achieved by thermal underwater glider. - Graphical Abstract: - Abstract: Underwater glider is one of the most popular platforms for long term ocean observation. Underwater glider driven by ocean thermal energy extends the duration and range of underwater glider powered by battery. Thermal engine is the core device of underwater glider to harvest ocean thermal energy. In this paper, (1) model of thermal engine was raised by thermodynamics method and the performance of thermal engine was investigated, (2) thermal engine with a double-tube structure was developed and isostatic pressing technology was applied to improve the performance for buoyancy driven, referencing powder pressing theory, (3) wall thickness of thermal engine was optimized to reduce the overall weight of thermal engine, (4) material selection and dimension determination were discussed for a faster heat transfer design, by thermal resistance analysis, (5) laboratory test and long term sea trail were carried out to test the performance of thermal engine. The study shows that volumetric change rate is the most important indicator to evaluating buoyancy-driven performance of a thermal engine, isostatic pressing technology is effective to improve volumetric change rate, actual volumetric change rate can reach 89.2% of the theoretical value and the average power is about 124 W in a typical diving profile. Thermal engine developed by Tianjin University is a superior thermal energy conversion device for underwater glider. Additionally, application of thermal engine provides a new solution for miniaturization of ocean thermal energy conversion.

  2. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  3. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song; Cottrill, Anton L.; Kunai, Yuichiro; Toland, Aubrey R.; Liu, Pingwei; Wang, Wen-Jun; Strano, Michael S.

    2017-01-01

    rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous

  4. LICSS - a chemical spreadsheet in microsoft excel.

    Science.gov (United States)

    Lawson, Kevin R; Lawson, Jonty

    2012-02-02

    Representations of chemical datasets in spreadsheet format are important for ready data assimilation and manipulation. In addition to the normal spreadsheet facilities, chemical spreadsheets need to have visualisable chemical structures and data searchable by chemical as well as textual queries. Many such chemical spreadsheet tools are available, some operating in the familiar Microsoft Excel environment. However, within this group, the performance of Excel is often compromised, particularly in terms of the number of compounds which can usefully be stored on a sheet. LICSS is a lightweight chemical spreadsheet within Microsoft Excel for Windows. LICSS stores structures solely as Smiles strings. Chemical operations are carried out by calling Java code modules which use the CDK, JChemPaint and OPSIN libraries to provide cheminformatics functionality. Compounds in sheets or charts may be visualised (individually or en masse), and sheets may be searched by substructure or similarity. All the molecular descriptors available in CDK may be calculated for compounds (in batch or on-the-fly), and various cheminformatic operations such as fingerprint calculation, Sammon mapping, clustering and R group table creation may be carried out.We detail here the features of LICSS and how they are implemented. We also explain the design criteria, particularly in terms of potential corporate use, which led to this particular implementation. LICSS is an Excel-based chemical spreadsheet with a difference:• It can usefully be used on sheets containing hundreds of thousands of compounds; it doesn't compromise the normal performance of Microsoft Excel• It is designed to be installed and run in environments in which users do not have admin privileges; installation involves merely file copying, and sharing of LICSS sheets invokes automatic installation• It is free and extensibleLICSS is open source software and we hope sufficient detail is provided here to enable developers to add their

  5. Key components when teaching for excellence

    NARCIS (Netherlands)

    Wolfensberger, Marca; Wolfensberger, Marca; Drayer, Lyndsay; Volker, Judith

    2014-01-01

    The Research Centre for Talent Development in Higher Education and Society, based at Hanze University of Applied Sciences in the Netherlands, organised the first international conference “Evoking Excellence in Higher Education and Beyond”. This conference brought together scholars and educators from

  6. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  7. Le choix de l'excellence

    CERN Document Server

    Collins, Jim

    2012-01-01

    Dix ans après le succès mondial de De la performance à l'excellence (Good to Great), Jim Collins et son associé Morten T. Hansen s'interrogent ici sur la nature de l excellence en période d incertitude. Pourquoi, dans un contexte chaotique, certaines entreprises sont florissantes et d autres non ? Comment, en ces temps troublés, réussir à diriger et vaincre l adversité pour dominer son marché ? La chance peut-elle sérieusement être envisagée comme un facteur de réussite ? À l issue d un programme de recherche ambitieux et rigoureux qui a duré neuf ans, les auteurs exposent dans cet ouvrage les nouveaux principes pour bâtir une entreprise réellement excellente. Leurs conclusions sont, comme toujours, étonnantes. Ils soulignent notamment que la course à l innovation n est pas toujours la meilleure voie à suivre, que discipline et créativité peuvent aller de concert et que malgré le changement permanent, les meilleures décisions sont rarement prises dans l urgence. Quant aux leaders, on...

  8. Thermal inertia in thermal infrared: porosity and chemical components of rocks; Inercia termica no infravermelho termal: porosidade e componentes quimicos de rochas

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Admilson P.; Ehlers, Ricardo Sandes [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Vitorello, Icaro [Instituto de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    1995-12-31

    The effect of porosity, and the relation between thermal inertia values and chemical components were determined. The thermal inertia values and chemical components were determined. The thermal inertia determinations were performed using radiometric observations, in the range 8 to 14 {mu}, of the surface temperature variations of the sample, induced by an incident heat flux. The results show that the increase in porosity tends to reduce the thermal inertia values, when the rock is in a dry state. In the water saturation state, the inertia also tends to show small values, only for porous rocks with thermal inertia values larger than the water values. The acid rocks show thermal inertia values smaller than those of the basic rocks. The intermediate and basic rocks show strong positive correlation between thermal inertia and Si O{sub 2}. 7 refs., 3 figs

  9. Form-stable LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage

    International Nuclear Information System (INIS)

    Jiang, Zhu; Leng, Guanghui; Ye, Feng; Ge, Zhiwei; Liu, Chuanping; Wang, Li; Huang, Yun; Ding, Yulong

    2015-01-01

    Graphical abstract: The figure (a) displays the microstructure of calcium silicate and the inset figure is the LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM. Calcium silicate is used as a porous skeleton material which could absorb large amounts of the nitrate PCM in voids and prevent the PCM from leakage during phase change process. Figure (b) shows the heat capacity of the composite PCM and the inset figure is the DSC curve of the composite. It indicates that this composite has a low melting point (103.5 °C) and good energy storage property. Based on the novel LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM, this work involves fabrication process, thermal and microstructural characterization, and chemical and physical stability measurements. - Highlights: • A novel LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM was prepared. • It has a low melting point (103.5 °C) and could remain stable until 585.5 °C. • It could keep form-stable without leakage during phase change process. • Thermal conductivity of the composite PCM reaches up to 1.177 W m"−"1 K"−"1. • It shows good thermal reliability after 1000 times heating and cooling cycling. - Abstract: In this paper, a novel form-stable LiNO_3–NaNO_3–KNO_3–Ca(NO_3)_2/calcium silicate composite PCM was developed by cold compression and sintering. The eutectic quaternary nitrate is used as PCM, while calcium silicate is used as structural supporting material. X-ray Diffraction (XRD) shows the PCM and the supporting material have good chemical compatibility. This composite PCM has a low melting point (103.5 °C) and remain stable without decomposition until 585.5 °C. Moreover, this composite shows excellent long term stability after 1000 melting and freezing cycles. Thermal conductivity of the composite was measured to be 1.177 W m"−"1 K"−"1, and that could be increased by adding thermal conductivity enhancers into the composite

  10. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  11. Designing a Knowledge Management Excellence Model Based on Interpretive Structural Modeling

    Directory of Open Access Journals (Sweden)

    Mirza Hassan Hosseini

    2014-09-01

    Full Text Available Despite the development of appropriate academic and experiential background knowledge management and its manifestation as a competitive advantage, many organizations have failed in its effective utilization. Among the reasons for this failure are some deficiencies in terms of methodology in inappropriate recognition and translation of KM dimensions and lack of systematic approach in establishment of causal relationships among KM factors. This article attempts to design an Organizational Knowledge Management Excellence Model. To design an organizational knowledge management excellence model based on library researches, interviews with experts and interpretive-structural modeling (ISM was used in order to identify and determine the relationships between the factors of km excellence. Accordingly, 9 key criteria of KM Excellence as well as 29 sub-criteria were extracted and the relationships and sequence of factors were defined and developed in 5 levels for designing an organizational KM excellence Model. Finally, the concepts were applied in Defense Organizations to illustrate the proposed methodology.

  12. Structural, electronic and thermal properties of super hard ternary boride, WAlB

    Science.gov (United States)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-04-01

    A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.

  13. Robotic-assisted thermal ablation of liver tumours

    International Nuclear Information System (INIS)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong; Goh, Khean Lee; Yoong, Boon Koon; Ho, Gwo Fuang; Yim, Carolyn Chue Wai; Kulkarni, Anjali

    2015-01-01

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  14. Robotic-assisted thermal ablation of liver tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Basri Johan Jeet; Yeong, Chai Hong [University of Malaya, Department of Biomedical Imaging and University of Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur (Malaysia); University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Goh, Khean Lee [University of Malaya, Department of Internal Medicine, Faculty of Medicine, Kuala Lumpur (Malaysia); Yoong, Boon Koon [University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur (Malaysia); Ho, Gwo Fuang [University of Malaya, Department of Oncology, Faculty of Medicine, Kuala Lumpur (Malaysia); Yim, Carolyn Chue Wai [University of Malaya, Department of Anesthesia, Faculty of Medicine, Kuala Lumpur (Malaysia); Kulkarni, Anjali [Perfint Healthcare Corporation, Florence, OR (United States)

    2015-01-15

    This study aimed to assess the technical success, radiation dose, safety and performance level of liver thermal ablation using a computed tomography (CT)-guided robotic positioning system. Radiofrequency and microwave ablation of liver tumours were performed on 20 patients (40 lesions) with the assistance of a CT-guided robotic positioning system. The accuracy of probe placement, number of readjustments and total radiation dose to each patient were recorded. The performance level was evaluated on a five-point scale (5-1: excellent-poor). The radiation doses were compared against 30 patients with 48 lesions (control) treated without robotic assistance. Thermal ablation was successfully completed in 20 patients with 40 lesions and confirmed on multiphasic contrast-enhanced CT. No procedure related complications were noted in this study. The average number of needle readjustment was 0.8 ± 0.8. The total CT dose (DLP) for the entire robotic assisted thermal ablation was 1382 ± 536 mGy.cm, while the CT fluoroscopic dose (DLP) per lesion was 352 ± 228 mGy.cm. There was no statistically significant (p > 0.05) dose reduction found between the robotic-assisted versus the conventional method. This study revealed that robotic-assisted planning and needle placement appears to be safe, with high accuracy and a comparable radiation dose to patients. (orig.)

  15. Leadership, excellence, creativity and innovation

    OpenAIRE

    Coulson-Thomas, Colin

    2016-01-01

    Raises questions about the meaning, purpose and practice of contemporary leadership in relation to excellence, creativity and innovation, covering leadership qualities, the context and requirements of leadership, leadership at different stages of development, creativity and innovation, CEOs and top down leadership, entrepreneurship and shared leadership, leading the network organisation, shared and collective leadership, the role and contribution of boards, key questions for boards, leadershi...

  16. Evaluation of Business Excellence among Halal Certified Food Manufacturers in Malaysia

    OpenAIRE

    Masrom Nor Ratna binti; Mohd Rasi Raja Zuraidah binti Raja; Daut Badru At Tamam bin

    2017-01-01

    Business excellence is a key tool to improve the efficiency of the company. Through the business excellence model, the organization can execute their strategies to determine, forecast and survive in highly competitive market. This paper presents on identifying those elements in business excellence model (leadership, strategy and planning, customer focus, measurement, analysis, and knowledge management, operation focus) this paper provides empirical support for halal food certified companies r...

  17. Achieving Business Excellence Prize: The Case Of Trimo Trebnje d.d.

    OpenAIRE

    Metka Tekavcic; Darja Peljhan

    2011-01-01

    The late 1980s and early 1990s saw a global realization of the strategic importance of quality, and many countries established programmes to recognize quality and excellence. Companies pursuing an excellence strategy soon recognized that the award frameworks offered more than just a vehicle for recognition. The frameworks were seen to be best-practice models for implementing excellence strategies, performing self-assessments, benchmarking and, ultimately, delivering improved performance. The ...

  18. "Trickle-Down" Reform: Hispanics, Higher Education, and the Excellence Movement.

    Science.gov (United States)

    Halcon, John J.; de la Luz Reyes, Maria

    1991-01-01

    Recent excellence-in-education reform measures have created greater restrictions on the access of Hispanics to higher education. Suggests that reformers expect reform benefits to "trickle down" to minorities after first benefiting mainstream students. The idea of excellence must include that of educational equity. (CJS)

  19. A balanced strategy in managing steam generator thermal performance

    International Nuclear Information System (INIS)

    Hu, M. H.; Nelson, P. R.

    2009-01-01

    This paper presents a balanced strategy in managing thermal performance of steam generator designed to deliver rated megawatt thermal (MWt) and megawatt electric (MWe) power without loss with some amount of thermal margin. A steam generator (SG) is a boiling heat exchanger whose thermal performance may degrade because of steam pressure loss. In other words, steam pressure loss is an indicator of thermal performance degradation. Steam pressure loss is mainly a result of either 1) tube scale induced poor boiling or 2) tube plugging historically resulting from tubing corrosion, wear due to flow induced tube vibration or loose parts impact. Thermal performance degradation was historically due to tube plugging but more recently it is due to poor boiling caused by more bad than good constituents of feedwater impurities. The whole SG industry still concentrates solely on maintenance programs towards preventing causes for tube plugging and yet almost no programs on maintaining adequate boiling of fouled tubes. There can be an acceptable amount of tube scale that provides excellent boiling capacity without tubing corrosion, as operational experience has repeatedly demonstrated. Therefore, future maintenance has to come up balanced programs for allocating limited resources in both maintaining good boiling capacity and preventing tube plugging. This paper discusses also thermal performance degradation due to feedwater impurity induced blockage of tube support plate and thus subsequent water level oscillations, and how to mitigate them. This paper provides a predictive management of tube scale for maintaining adequate steam pressure and stable water level without loss in MWt/MWe or recovering from steam pressure loss or water level oscillations. This paper offers a balanced strategy in managing SG thermal performance to fulfill its mission. Such a strategy is even more important in view of the industry trend in pursuing extended power uprate as high as 20 percent

  20. PowerPivot for Business Intelligence Using Excel and SharePoint

    CERN Document Server

    Ralston, Barry

    2011-01-01

    PowerPivot comprises a set of technologies for easy access to data mining and business intelligence analysis from Microsoft Excel and SharePoint. Power users and developers alike can create sophisticated, online analytic processing (OLAP) solutions using PowerPivot for Excel, and then share those solutions with other users via PowerPivot for SharePoint. Data can be pulled in from any of the leading database platforms, as well as from spreadsheets and flat files. PowerPivot for Business Intelligence Using Excel and SharePoint is your key to mastering PowerPivot. The book takes a scenario-based

  1. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  2. Unified approach for determining the enthalpic fictive temperature of glasses with arbitrary thermal history

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Potuzak, M.; Mauro, J. C.

    2011-01-01

    We propose a unified routine to determine the enthalpic fictive temperature of a glass with arbitrary thermal history under isobaric conditions. The technique is validated both experimentally and numerically using a novel approach for modeling of glass relaxation behavior. The technique is applic......We propose a unified routine to determine the enthalpic fictive temperature of a glass with arbitrary thermal history under isobaric conditions. The technique is validated both experimentally and numerically using a novel approach for modeling of glass relaxation behavior. The technique...... is applicable to glasses of any thermal history, as proved through a series of numerical simulations where the enthalpic fictive temperature is precisely known within the model. Also, we demonstrate that the enthalpic fictive temperature of a glass can be determined at any calorimetric scan rate in excellent...

  3. Room temperature and thermal decomposition of magnesium hydride/deuteride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Leardini, F.; Bodega, J.; Macia, M.D.; Diaz-Chao, P.; Ferrer, I.J.; Fernandez, J.F.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Magnesium hydride (MgH{sub 2}) can be considered an interesting material to store hydrogen as long as two main drawbacks were solved: (i) its high stability and (ii) slow (de)hydriding kinetics. In that context, magnesium hydride films are an excellent model system to investigate the influence of structure, morphology and dimensionality on kinetic and thermodynamic properties. In the present work, we show that desorption mechanism of Pd-capped MgH{sub 2} at room temperature is controlled by a bidimensional interphase mechanism and a similar rate step limiting mechanism is observed during thermal decomposition of MgH{sub 2}. This mechanism is different to that occurring in bulk MgH{sub 2} (nucleation and growth) and obtained activation energies are lower than those reported in bulk MgH{sub 2}. We also investigated the Pd-capping properties upon H-absorption/desorption by means of RBS and isotope experiments. (orig.)

  4. Packaged silica microsphere-taper coupling system for robust thermal sensing application.

    Science.gov (United States)

    Yan, Ying-Zhan; Zou, Chang-Ling; Yan, Shu-Bin; Sun, Fang-Wen; Ji, Zhe; Liu, Jun; Zhang, Yu-Guang; Wang, Li; Xue, Chen-Yang; Zhang, Wen-Dong; Han, Zheng-Fu; Xiong, Ji-Jun

    2011-03-28

    We propose and realize a novel packaged microsphere-taper coupling structure (PMTCS) with a high quality factor (Q) up to 5×10(6) by using the low refractive index (RI) ultraviolet (UV) glue as the coating material. The optical loss of the PMTCS is analyzed experimentally and theoretically, which indicate that the Q is limited by the glue absorption and the radiation loss. Moreover, to verify the practicability of the PMTCS, thermal sensing experiments are carried out, showing the excellent convenience and anti-jamming ability of the PMTCS with a high temperature resolution of 1.1×10(-3) ◦C. The experiments also demonstrate that the PMTCS holds predominant advantages, such as the robustness, mobility, isolation, and the PMTCS can maintain the high Q for a long time. The above advantages make the PMTCS strikingly attractive and potential in the fiber-integrated sensors and laser.

  5. Manufacturing of thermal neutron sensor using pMOS

    International Nuclear Information System (INIS)

    Lee, Nam Ho; Kim, Seung Ho

    2005-05-01

    A pMOSFET sensor having a Gadolinium converter has been invented successfully as a slow neutron sensor that is sensitive to neutron energy down to 0.025 eV. The Gd layer converts low energy neutrons to ionizing radiation of which the amount is proportional to neutron dose. Ionising radiation from neutron reactions changes the charge state of the gate oxide of the pMOSFET. The Gd-pMOSFETs were tested at a neutron beam port of HANARO research reactor and a 60 CO irradiation facility to investigate slow neutron response and gamma response, respectively. The voltage change was proportional to the accumulated slow neutron dose. The results from Gd coupled MOSFET neutron dosemeters shows an excellent sensitivity (15 - 16mV/cGy) and linearity to thermal neutrons with negligible background contamination. The results demonstrate the outstanding performance of the Gd coupled MOSFET neutron dosemeters clearly. The Gd-pMOSFET can also be used in a mixed radiation field by subtracting the voltage change of a pMOSFET without Gd from that of the Gd-pMOSFET

  6. The performance of thermal control coatings on LDEF and implications to future spacecraft

    Science.gov (United States)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  7. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    Science.gov (United States)

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  8. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.

    Science.gov (United States)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-21

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  9. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  10. Excel-Based Tool for Pharmacokinetically Guided Dose Adjustment of Paclitaxel.

    Science.gov (United States)

    Kraff, Stefanie; Lindauer, Andreas; Joerger, Markus; Salamone, Salvatore J; Jaehde, Ulrich

    2015-12-01

    Neutropenia is a frequent and severe adverse event in patients receiving paclitaxel chemotherapy. The time above a paclitaxel threshold concentration of 0.05 μmol/L (Tc > 0.05 μmol/L) is a strong predictor for paclitaxel-associated neutropenia and has been proposed as a target pharmacokinetic (PK) parameter for paclitaxel therapeutic drug monitoring and dose adaptation. Up to now, individual Tc > 0.05 μmol/L values are estimated based on a published PK model of paclitaxel by using the software NONMEM. Because many clinicians are not familiar with the use of NONMEM, an Excel-based dosing tool was developed to allow calculation of paclitaxel Tc > 0.05 μmol/L and give clinicians an easy-to-use tool. Population PK parameters of paclitaxel were taken from a published PK model. An Alglib VBA code was implemented in Excel 2007 to compute differential equations for the paclitaxel PK model. Maximum a posteriori Bayesian estimates of the PK parameters were determined with the Excel Solver using individual drug concentrations. Concentrations from 250 patients were simulated receiving 1 cycle of paclitaxel chemotherapy. Predictions of paclitaxel Tc > 0.05 μmol/L as calculated by the Excel tool were compared with NONMEM, whereby maximum a posteriori Bayesian estimates were obtained using the POSTHOC function. There was a good concordance and comparable predictive performance between Excel and NONMEM regarding predicted paclitaxel plasma concentrations and Tc > 0.05 μmol/L values. Tc > 0.05 μmol/L had a maximum bias of 3% and an error on precision of 0.05 μmol/L values between both programs was 1%. The Excel-based tool can estimate the time above a paclitaxel threshold concentration of 0.05 μmol/L with acceptable accuracy and precision. The presented Excel tool allows reliable calculation of paclitaxel Tc > 0.05 μmol/L and thus allows target concentration intervention to improve the benefit-risk ratio of the drug. The easy use facilitates therapeutic drug monitoring in

  11. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  12. The Business Excellence Model for CSR Implementation?

    Directory of Open Access Journals (Sweden)

    Neergaard Peter

    2014-11-01

    Full Text Available Most of the Fortune 500 companies address Corporate Social Responsibility (CSR on their websites. However, CSR remains a fluffy concept difficult to implement in organization. The European Business Excellence Model has since the introduction in 1992 served as a powerful tool for integrating quality in organizations. CSR was first introduced in the model in 2002. From 2004 the European Foundation for Quality Management (EFQM has been eager to promote the model as an effective tool for implementing CSR.. The article discusses the potentials of the model for this end and illustrates how a 2006 European Award winning company has used the model to integrate CSR. The company adapted the Business Excellence model to improve performance, stimulate innovation and consensus.

  13. Microstructural characterization of EXCEL alloy

    International Nuclear Information System (INIS)

    Oroza Z E, Celiz; Saumell M, Lani; Versaci, R A; Bozzano, P B

    2012-01-01

    The microstructure of Excel alloy was studied by optical and scanning electron microscopy. X-ray diffraction was used to analyze the present phases. Characteristic peaks of α-Zr (HCP), β-Zr (BCC) and δhydride (FCC) were identified. The high relatives intensities of certain peaks suggest that samples are textured. Basal poles were dominant in radial-longitudinal planes and prismatic poles have the highest concentration in radial-tangential planes (author)

  14. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan; Kim, Taeil; France, David M.; Smith, Roger K.

    2018-01-01

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degrees C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.

  15. Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving

    Science.gov (United States)

    Engerman, Jason; Rusek, Matthew; Clariana, Roy

    2014-01-01

    This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…

  16. Improving the Pedagogy of Capital Structure Theory: An Excel Application

    Science.gov (United States)

    Baltazar, Ramon; Maybee, Bryan; Santos, Michael R.

    2012-01-01

    This paper uses Excel to enhance the pedagogy of capital structure theory for corporate finance instructors and students. We provide a lesson plan that utilizes Excel spreadsheets and graphs to develop understanding of the theory. The theory is introduced in three scenarios that utilize Modigliani & Miller's Propositions and…

  17. Romanian nuclear higher education towards a network of excellency

    International Nuclear Information System (INIS)

    Ghitescu, Petre

    2006-01-01

    RONEN - Romanian Nuclear Education Network - aims at becoming the future network of excellency for nuclear higher education in Romania. University Politehnica of Bucharest participated in ENEN and NEPTUNO FP-5 and FP-6 programs, being a founding member of ENEN Association. The experience gained by ENEN as well as the present European trends show that realization of associations and networks endow with more power the educational national capacities and makes easier the European cooperation. The objective of this project is to develop an efficient, flexible and modern system in the nuclear education field, able to comply with the requirements of final users (NPP operators, regulations organisms, subcontractors, decommissioning operators, radiation protection, personnel, radioactive waste disposal managers), complying at the same time with the common European perspectives of education and research (FP-6, FP-7, EUROATOM). This system is the proposed network of excellency, gathering all the Romanian institutions (universities, research-development centers, training centers, etc) implied in the nuclear education field and using the existent experience of BNEN (Belgian Network of Nuclear Education) and ENEN. The participants in RONEN are the Universities of Bucharest, Pitesti, Babes-Bolyai in Cluj-Napoca, the Vocational Training Center of National Institute for R and D in Physics and Nuclear Engineering Bucharest, the Training Center of Cernavoda NPP, and the Institute for Nuclear Research in Pitesti

  18. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  19. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Li, Wei; Song, Guolin; Chu, Xiaodong; Tang, Guoyi

    2012-01-01

    Microcapsules containing n-octadecane with different methylmethacrylate (MMA (methyl methacrylate))-based copolymer shells were fabricated by a suspension-like polymerization. Butyl acrylate (BA), butyl methacrylate (BMA), lauryl methacrylate (LMA) and stearyl methacrylate (SMA) were employed as monomers to copolymerize with MMA. Pentaerythritol tetraacrylate (PETRA) was employed as a crosslinking agent. The (microencapsulted phase change materials) MicroPCMs were characterized using Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Thermal properties and thermal resistances of MicroPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), respectively. Phase change enthalpies and PCM contents of MicroPCMs increased with the length decreasing of the side chain of the monomers. The n-octadecane content of as much as 77.3% can be obtained in the crosslinked MicroPCMs with P(MMA-co-BMA) as shell, and accompanied by the highest melting enthalpy (173.7 J/g) and crystallization enthalpy (174.4 J/g). Heat capacities of crosslinked MicroPCMs are higher than those of their uncrosslinked counterparts. The crosslinked MicroPCMs exhibit significantly greater thermal stabilities compared with their uncrosslinked counterparts and the n-ontadecane bulk. The crosslinked MicroPCMs with P(MMA-co-SMA) displays the highest thermal resistance temperature up to 255 °C. Therefore, MicroPCMs with MMA-based copolymer as shells, especially crosslinked copolymer shells, show excellent potentials for thermal energy storage. -- Highlights: ► n-Octadecane was encapsulated with methylmethacrylate(MMA)-based copolymer shells. ► n-Octadecane content of Microcapsules increased with length decreasing of side chain of monomers. ► Microcapsule with P(MMA-co-butyl methacrylate) has the highest latent heat. ► Microcapsule with P(MMA-co-stearyl methacrylate) has the greatest thermal stability.

  20. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification

    Science.gov (United States)

    Chen, Xiuyong; Gong, Yongfeng; Suo, Xinkun; Huang, Jing; Liu, Yi; Li, Hua

    2015-11-01

    Here we report a simple and cost-effective technical route for constructing superhydrophobic surfaces with excellent abrasion resistance on various substrates. Rough surface structures were fabricated by thermal spray deposition of a variety of inorganic materials, and further surface modification was made by applying a thin layer of polytetrafluoroethylene. Results show that the Al, Cu, or NiCrBSi coatings with the surface roughness of up to 13.8 μm offer rough surface profile to complement the topographical morphology in micro-/nano-scaled sizes, and the hydrophobic molecules facilitate the hydrophobicity. The contact angles of water droplets of ∼155° with a sliding angle of up to 3.5° on the samples have been achieved. The newly constructed superhydrophobic coatings tolerate strong abrasion, giving clear insight into their long-term functional applications.

  1. Review article: teaching, learning, and the pursuit of excellence in anesthesia education.

    Science.gov (United States)

    Wong, Anne

    2012-02-01

    Excellence in anesthesia education has been advocated to meet the future needs and direction of the specialty. The purpose of this article is twofold: first, to review the current medical education literature and theory in order to inform teaching and learning in anesthesia; and second, to advocate for excellence in anesthesia education. This review considers the general education, educational psychology, and medical education literature based on a search of the MEDLINE and ERIC databases, educational Web sites, and library catalogues. Excellent teaching is considered that which facilitates and maximizes learning. A conceptual framework of learning as a convergence of teacher, learner, assessment, and context is proposed. The contribution of each component to learning is examined in order to enable anesthesia teachers to choose and adapt the most appropriate educational approaches for their particular contexts. The relationship of excellent teaching, scholarly teaching, and the scholarship of teaching is explored. Strategies for promoting excellence in anesthesia education are suggested. The call for excellence in anesthesia has become an important theme, particularly with respect to education. While excellent teaching is a goal to which all anesthesia faculty should aspire, scholarly teaching and scholarship in teaching should also be promoted in order to advance anesthesia education for the benefit of the profession and ultimately for patient care.

  2. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites

    International Nuclear Information System (INIS)

    Tsai, Tsung-Yen; Lin, Mei-Ju; Chuang, Yi-Chen; Chou, Po-Chiang

    2013-01-01

    The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O 2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites. - Highlights: ► We control the dispersion morphology by protonation of K2 into the clay. ► The CL120 and CL88, with the higher CEC, are more random intercalated by K2. ► We report these materials have good optical clarity, and UV resistance

  3. Synthesis, Amphiphilic Property and Thermal Stability of Novel Main-chain Poly(o-carborane-benzoxazines)

    Science.gov (United States)

    Yang, Xiaoxue; Han, Guo; Yang, Zhen; Zhang, Xiaoa; Jiang, Shengling; Lyu, Yafei

    2017-10-01

    Five poly(o-carborane-benzoxazines) were synthesized via Mannich reaction of o-carborane bisphenol, paraformaldehyde, and diamine, and their structures were well characterized. Light transmission and 1H NMR in D2O confirmed that poly(o-carborane-benzoxazines) with PEG segments showed excellent water solubility and amphiphilic property. TGA analyses were conducted under nitrogen and air, and the results showed that the polymers own high initial decomposition temperatures owing to the shielding effect of carborane moiety on its adjacent aromatic structures. Besides, poly(o-carborane-benzoxazines) own high char yield at elevated temperatures, for the boron atom could combine with oxygen from the polymer structure or/and the air and be oxidized to form boron oxide, and thus the polymer weight is retained to a large extent. PEG segments had an adverse effect on the initial decomposition and char yield, and thus their concentration should be adjusted to control the polymer’s thermal stability.

  4. A introdução da concepção de excelência gerencial nos institutos e centros de pesquisa brasileiros: o projeto excelência na pesquisa tecnológica Managerial excellence in brazilian research institutes and centers: the experience of 'excellence in technological research program'

    Directory of Open Access Journals (Sweden)

    Marconi Edson Esmeraldo Albuquerque

    2011-12-01

    Full Text Available Programas de excelência em desempenho organizacional têm se proliferado mundo afora, transbordando sua filosofia e diretivas para além da indústria. O interesse de diferentes organizações por processos de avaliação se deve à evolução dos modelos de excelência gerencial (MEGs americano e europeu. No Brasil, o MEG do Prêmio Nacional da Qualidade (PNQ vem se propagando como referência para a constituição de programas de premiação em várias áreas. Os institutos e centros de pesquisa (ICPs brasileiros, destacadamente os de natureza pública, têm enfrentado nas últimas décadas uma forte pressão em relação à necessidade de gerarem recursos que garantam sua manutenção e sobrevivência. Isso tem exigido dessas organizações um reposicionamento estratégico, de forma a obter vantagens a partir das interações que estabelecem com os demais atores do sistema de inovação. Dessas instituições têm sido demandadas uma maior capacidade de resposta e a formulação de suas ações com base em diretrizes estratégicas consistentes. Evidentemente, os mecanismos de gestão passam a ter uma importância singular para que se alcancem os objetivos traçados. Este artigo tem por objetivo analisar o movimento pela excelência gerencial nos ICPs brasileiros, capitaneado pela Associação Brasileira das Instituições de Pesquisa Tecnológica (ABIPTI e materializado no Projeto Excelência na Pesquisa Tecnológica (PEPT. Para tanto, buscam-se referenciais: i que permitam a descrição e análise da evolução da qualidade na sociedade contemporânea, tendo como marcos os modelos de produção americano e o japonês; ii que possibilitem a compreensão da criação e desenvolvimento dos principais prêmios de qualidade, inclusive o brasileiro; e iii que ajudem a compreender as transformações na área da pesquisa científica e tecnológica. Além de revisão bibliográfica sobre o assunto, foram examinados documentos referentes ao PEPT, o

  5. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    Science.gov (United States)

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  6. Thermal behavior of phenol-furfuryl alcohol resin/carbon nanotubes composites

    Science.gov (United States)

    Conejo, L. S.; Costa, M. L.; Oishi, S. S.; Botelho, E. C.

    2018-04-01

    Phenol-furfuryl alcohol resins (PFA) are excellent candidates to replace existing thermoset matrices used in obtaining insulating systems or carbon materials, both in its pure form and reinforced with nanoscale structures. This work had as main purpose synthesize and investigate thermal characterization of PFA resin and its nanostructured composites with different concentrations of carbon nanotubes (0, 0.1, 0.5 and 1.0 wt%). The DSC analysis was performed to estimate the specific heat (cp) of the cured samples and thermomechanical analysis to find the linear thermal expansion coefficient (α). From these results, the cp values found for the PFA system was similar to that described in the literature for the phenolic resin. The cp increased with the increase in the CNT concentration in the system up to 0.5%. The coefficient of linear thermal expansion obtained by TMA technique for PFA sample was 33.10‑6/°C which was close to the α value of phenolic resin (40 to 80.10‑6/°C).

  7. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  8. Mobile-media pragmatism: innovation excellences and encumbrances

    Science.gov (United States)

    Lin, Chen-Ju

    2017-10-01

    Establishing two pragmatic models of enhancing entertainment and job-performance, this study aims to elaborate on how people adopt and perceive innovation excellences and encumbrances of modern mobile-media services through reflecting on their intrinsic expectancy. A survey methodology was executed to examine the hypothesised variable relationships using the purposive sampling method. CHT's Taipei think-tank head-office provided this study with a representative sampling frame and assisted to collect data from 725 focused subjects (with normative characteristics) who subscribed to HiNet or MOD, or predominantly used 4G telecommunication services. As a result of adopting the structural equation modelling test, the models of perceived innovation excellences and innovation encumbrances were affirmatively established to interpret the two applicative scenarios: entertainment and job-performance enhancement. Several valuable findings were generated. When a consumer targets entertainment technology pragmatism, he or she may stress the importance of innovative excellences, especially on product novelty. For the sake of pursuing job-performance enhancement, a customer was actively willing to invest his or her energy to meet and deal with the learning cost, customer unfamiliarity and complexity of telecom products and services. Importantly, the adopter's previous experiences with telecom products in the IT domain could effectively moderate the effect of pursuing new telecom innovation, adopting the product, and then strengthening self-evaluation.

  9. Courageous leaders. The integral force behind organizational excellence.

    Science.gov (United States)

    Snyder, N H

    1995-01-01

    For more than a decade, Total Quality Management (TQM) has been used as a powerful instrument in shaping the competitive strategies of businesses, and producing quality products and services has become the credo of firms trying to defend or expand their markets. During this time, we have come to realize that without effective leadership no quality program can succeed. That is why the quality guru, W. Edwards Deming, refused to work in any organization unless he could begin with the CEO. That is why the first criterion examined for the Malcolm Baldridge National Quality Award is leadership. Focusing on quality will not guarantee success in today's rapidly changing markets. Increasingly discriminating consumers have come to expect quality in the products and services they buy, and businesses that fail to deliver it will not survive. In a very real sense, quality performance is the price you must pay simply to play the game. But consumers want more, and satisfying their expectations will determine tomorrow's winners and losers. Building organizations capable of producing superior results that consistently meet the needs of customers is the responsibility of leaders. For this reason, leaders are more important today than they have ever been before. Leaders in successful businesses must show the way for their employees by nurturing "cultures" that encourage and reward superior performance and by exhibiting personal characteristics that inspire excellence. Great leaders possess three crucial characteristics--vision, strong values and beliefs, and the courage to do the job despite seemingly insurmountable obstacles. These characteristics make the difference between excellence and "business as usual."

  10. Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices

    Science.gov (United States)

    Liu, Yang; Kim, Eunju; Han, Jeong In

    2016-01-01

    During the initial development of wearable computing devices, the conductive fibers of Al thin film on cylindrical PET monofilament were fabricated by thermal evaporation. Their electrical current-voltage characteristics curves were excellent for incorporation into wearable devices such as fiber-based cylindrical capacitors or thin film transistors. Their surfaces were modified by UV exposure and dip coating of acryl or PVP to investigate the surface effect. The conductive fiber with PVP coating showed the best conductivities because the rough surface of the PET substrate transformed into a smooth surface. The conductivities of PET fiber with and without PVP were 6.81 × 103 Ω-1cm-1 and 5.62 × 103 Ω-1cm-1, respectively. In order to understand the deposition process of Al thin film on cylindrical PET, Al thin film on PET fiber was studied using SEM (Scanning Electron Microscope), conductivities and thickness measurements. Hillocks on the surface of conductive PET fibers were observed and investigated by AFM on the surface. Hillocks were formed and grown during Al thermal evaporation because of severe compressive strain and plastic deformation induced by large differences in thermal expansion between PET substrate and Al thin film. From the analysis of hillock size distribution, it turns out that hillocks grew not transversely but longitudinally. [Figure not available: see fulltext.

  11. Controlled synthesis of porous anhydrous cobalt oxalate nanorods with high reversible capacity and excellent cycling stability

    International Nuclear Information System (INIS)

    Xu, Junmin; He, Lei; Liu, Hui; Han, Tao; Wang, Yongjian; Zhang, Changjin; Zhang, Yuheng

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: One-dimensional porous anhydrous cobalt oxalate nanorods are prepared via a facile water-controlled coprecipitate method followed by thermal annealing treatment under N 2 at 300 °C. The nanorods are characterized by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. When evaluated as an anode material for lithium ion batteries, the nanorods exhibit high reversible specific capacity and excellent cycling stability (924 mA h g −1 at 50 mA g −1 after 100 cycles and 709 mA h g −1 at 200 mA g −1 after 220 cycles). This remarkable electrochemical performance is attributed to the one-dimensional porous nanostructure that can provide large electrode/electrolyte contact area and short lithium-ion diffusion pathway, meanwhile reduce the volume expansion during the repeated discharge/charge process

  12. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    Science.gov (United States)

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  13. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    Science.gov (United States)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  14. Potential of Hollow Glass Microsphere as Cement Replacement for Lightweight Foam Concrete on Thermal Insulation Performance

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Global warming can be defined as a gradual increase in the overall temperature of the earth’s atmosphere. A lot of research work has been carried out to reduce that heat inside the residence such as the used of low density products which can reduce the self-weight, foundation size and construction costs. Foamed concrete it possesses high flow ability, low self-weight, minimal consumption of aggregate, controlled low strength and excellent thermal insulation properties. This study investigate the characteristics of lightweight foamed concrete where Portland cement (OPC was replaced by hollow glass microsphere (HGMs at 0%, 3%, 6%, 9% by weight. The density of wet concrete is 1000 kg/m3 were tested with a ratio of 0.55 for all water binder mixture. Lightweight foamed concrete hollow glass microsphere (HGMs produced were cured by air curing and water curing in tank for 7, 14 and 28 days. A total of 52 concrete cubes of size 100mm × 100mm × 100mm and 215mm × 102.5mm × 65mm were produced. Furthermore, Scanning Electron Microscope (SEM and X-ray fluorescence (XRF were carried out to study the chemical composition and physical properties of crystalline materials in hollow glass microspheres. The experiments involved in this study are compression strength, water absorption test, density and thermal insulation test. The results show that the compressive strength of foamed concrete has reached the highest in 3% of hollow glass microsphere with less water absorption and less of thermal insulation. As a conclusion, the quantity of hollow glass microsphere plays an important role in determining the strength and water absorption and also thermal insulation in foamed concrete and 3% hollow glass microspheres as a replacement for Portland cement (OPC showed an optimum value in this study as it presents a significant effect than other percentage.

  15. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  16. A cost-effective method to fabricate VO{sub 2} (M) nanoparticles and films with excellent thermochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua [CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiao, Xiudi, E-mail: xiaoxd@ms.giec.ac.cn [CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Lu, Xuanming [CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chai, Guanqi; Sun, Yaoming; Zhan, Yongjun; Xu, Gang [CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-07-05

    Highlights: • Via solvent–thermal and pyrolysis method, VO{sub 2} (M) powder was synthesized in air. • Aiding by grinding, VO{sub 2} (M) nanoparticles with the size of 22 nm were obtained. • The VO{sub 2} films show great thermochromic properties with T{sub lum} = 62.1% and ΔT{sub sol} = 12.4%. • The haze is down to 1.9%, which is superior with films prepared by other methods. - Abstract: In this paper, high crystallinity and pure phase VO{sub 2} (M) powder is synthesized by a novel and facile method. Aiding by additional manual grinding and etching process, 22 nm high-quality VO{sub 2} (M) nanoparticles can be obtained. The structure and properties of the VO{sub 2} (M) particles were characterized by X-ray diffraction analysis, transmission electron microscopy, differential scanning calorimetry and UV–vis–NIR spectrophotometer. After mixing VO{sub 2} (M) nanoparticles with transparent polymer, thin films prepared by grinded VO{sub 2} nanoparticles show excellent thermochromic properties. The solar modulation ability is up to 12.4% with luminous transmittance of 62.7%. Moreover, The haze of films prepared by grinded VO{sub 2} (M) nanoparticles is down to 1.9%, which is far less than that of films prepared by original VO{sub 2} (Haze = 8.5%) and etched VO{sub 2} particles (Haze = 4.6%). Dramatical improvement of thermochromic property and definition indicate that it is a promising method to prepare large-scale VO{sub 2} nanoparticles and cost-effective smart window.

  17. Negative thermal expansion up to 1000 C of ZrTiO4-Al2TiO5 ceramics for high-temperature applications

    International Nuclear Information System (INIS)

    Kim, I.J.; Kim, H.C.; Han, I.S.; Aneziris, C.G.

    2005-01-01

    High temperature structural ceramics based on Al 2 TiO 5 -ZrTiO 4 (ZAT) having excellent thermal-shock-resistance were synthesized by a reaction sintering. The ZAT ceramics sintered at 1600 C had a negative thermal expansions up to 1000 C and a much lower thermal expansion coefficient (0.3 ∝ 1.3 x 10 -6 /K) than that of polycrystalline Al 2 TiO 5 (1.5 x 10 -6 /K). These low thermal expansion are apparently due to a combination of microcracking caused by the large thermal expansion anisotropy of the crystal axes of the Al 2 TiO 5 phase. The microstructural degradation of the composites after various thermal treatment for high temperature applications were analyzed by scanning electron microscopy, X-ray diffraction, ultrasonic and dilatometer. (orig.)

  18. Samuel P. Massie Chair of Excellence Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, James H. [Howard Univ., Washington, DC (United States)

    2014-12-01

    Abstract In 1994 the Department of Energy established the DOE Chair of Excellence Professorship in Environmental Disciplines Program. In 2004, the Massie Chair of Excellence Professor at Howard University transitioned from Dr. Edward Martin to Dr. James H. Johnson, Jr. At the time of his appointment Dr. Johnson served as professor of civil engineering and Dean of the College of Engineering, Architecture and Computer Sciences. Program activities under Dr. Johnson were in the following areas: • Increase the institution’s capacity to conduct scientific research and technical investigations at the cutting-edge. • Promote interactions, collaborations and partnerships between the private sector, Federal agencies, majority research institutes and other HBCUs. • Assist other HBCUs in reaching parity in engineering and related fields. • Mentor young investigators and be a role model for students.

  19. Discussion on 'Centres of excellence' in Africa

    International Nuclear Information System (INIS)

    Riad, S.

    1999-01-01

    In Africa, Centres of Excellence should be oriented to build up scientific and technological capacity in the four topics of international Monitoring System related technologies, namely, seismic monitoring, hydro acoustic monitoring, infrasound monitoring and radionuclides monitoring. Training programs on these topics should be a major objective. A network of such centres should be established in a number of African countries. Centres should be equipped with means and materials for on-line course dispatch to interested training centres or research institutions. African centres should develop strong relationship among themselves through information and data exchange and sharing, harmonization of training programs. National data centres may be established as a component of the African Centre of Excellence. States Signatories may authorize the establishment of a specific fund to support the activities of the African center

  20. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.