WorldWideScience

Sample records for show peak field

  1. Statistics of peaks of Gaussian random fields

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bond, J.R.; Kaiser, N.; Szalay, A.S.; Stanford Univ., CA; California Univ., Berkeley; Cambridge Univ., England; Fermi National Accelerator Lab., Batavia, IL)

    1986-01-01

    A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of upcrossing points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima. 67 references

  2. Statistics of peaks in cosmological nonlinear density fields

    International Nuclear Information System (INIS)

    Suginohara, Tatsushi; Suto, Yasushi.

    1990-06-01

    Distribution of the high-density peaks in the universe is examined using N-body simulations. Nonlinear evolution of the underlying density field significantly changes the statistical properties of the peaks, compared with the analytic results valid for the random Gaussian field. In particular, the abundances and correlations of the initial density peaks are discussed in the context of biased galaxy formation theory. (author)

  3. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  4. Peak Fields of Nb$_{3}$Sn Superconducting Undulators and a Scaling Law

    CERN Document Server

    Kim, S H

    2005-01-01

    The peak fields on the beam axis and the maximum fields in the conductor of Nb$_{3}$Sn superconducting undulators (SCUs) were calculated for an undulator period length of 16 mm. Using a simple scaling law for SCUs [1], the peak fields, as well as the conductor maximum fields and the current densities, were calculated for a period range of 8 to 32 mm. The critical current densities of commercially available Nb$_{3}$Sn superconducting strands were used for the calculations. The achievable peak fields are limited mainly by the flux-jump instabilities at low fields. The possible or feasible peak field will also be compared with that achieved in prototype development of SCUs.

  5. Periodic permanent magnet focusing system with high peak field

    International Nuclear Information System (INIS)

    Zhang Hong; Liu Weiwei; Bai Shuxin; Chen Ke

    2008-01-01

    In this study, hybrid periodic permanent magnet (PPM) system is studied, which has high axial magnetic field and low magnetic leakage. By simulation computation, some laws of magnetic field distribution vs. structure dimensions were obtained. A hybrid PPM is designed and constructed whose peak field reaches 0.6 T. The factors inducing discrepancies between computational results and practical measurements are analyzed. The magnetic field distribution is very sensitive to the variations of constructional parameters. Construction accuracy greatly influences the magnetic field distribution. Research results obtained here are potentially valuable for future work

  6. Investigation of magnetic fluids exhibiting field-induced increasing loss peaks

    International Nuclear Information System (INIS)

    Fannin, P.C.; Marin, C.N.; Couper, C.

    2010-01-01

    A theoretical analysis to explain an increase of the Brownian loss peak with increasing polarizing field, H, in a magnetic fluid, is presented. The model is based on the competition between the Brownian and Neel relaxation processes. It is demonstrated that in magnetic fluids with particles having small anisotropy constant, small average magnetic diameter and narrow particle size distribution an increase of the Brownian loss peak with the polarizing field can be observed. The theoretical results are compared with the experimental results of an Isopar M-based magnetic fluid with magnetite particles stabilized with oleic acid and the model explains qualitatively the main characteristics of the experimental results.

  7. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    Science.gov (United States)

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  8. Full-field peak pressure prediction of shock waves from underwater explosion of cylindrical charges

    NARCIS (Netherlands)

    Liu, Lei; Guo, Rui; Gao, Ke; Zeng, Ming Chao

    2017-01-01

    Cylindrical charge is a main form in most application of explosives. By employing numerical calculation and an indirect mapping method, the relation between peak pressures from underwater explosion of cylindrical and spherical charges is investigated, and further a model to predict full-field peak

  9. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Z. J. Zuo

    2013-12-01

    Full Text Available Magnetoelectric (ME coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,TiO3 composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (HDC, showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the HDC shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the HDC patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  10. Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source

    International Nuclear Information System (INIS)

    Wang Xiaomin; Yang Chao; Liu Dagang; Wang Xueqiong

    2011-01-01

    Based on the magnetic charge model, the numerical algorithm of three-dimensional permanent magnets was derived by the finite difference method. Then combining the full three-dimensional particle-in-cell/Monte Carlo algorithm (PIC/MCC), two multi-peak magnetic field configurations, external magnetic filter and tent-shaped filter, were analyzed respectively, and their influences on electron energy distribution were compared. The simulation results show that both configurations can confine the diffusion of particles and can extract negative hydrogen ions; their electron energy distributions are basically similar, presenting double energy state, which are consistent with the basic mechanism of plasma discharge. The former configuration is stronger in confining and can produce more particles, whose total number is approximately four times that of the latter. The tent-shaped magnetic filter can efficiently prevent electron drift caused by inhomogeneous longitudinal magnetic field, leading to more uniform spatial distribution of negative hydrogen ions. The results of simulation are consistent with those from the foreign experiment. (authors)

  11. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players

    OpenAIRE

    Lindsey T. Funch; Erik Lind; Larissa True; Deborah Van Langen; John T. Foley; James F. Hokanson

    2017-01-01

    The purpose of the study was to examine the changes in peak oxygen consumption ( V ˙O2peak) and running economy (RE) following four-weeks of high intensity training and concurrent strength and conditioning during the off-season in collegiate female field hockey players. Fourteen female student-athletes (age 19.29 ± 0.91 years) were divided into two training groups, matched from baseline V ˙O2peak: High Intensity Training (HITrun; n = 8) and High Intensity Interval Training (HIIT; ...

  12. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players

    Directory of Open Access Journals (Sweden)

    Lindsey T. Funch

    2017-11-01

    Full Text Available The purpose of the study was to examine the changes in peak oxygen consumption ( V ˙O2peak and running economy (RE following four-weeks of high intensity training and concurrent strength and conditioning during the off-season in collegiate female field hockey players. Fourteen female student-athletes (age 19.29 ± 0.91 years were divided into two training groups, matched from baseline V ˙O2peak: High Intensity Training (HITrun; n = 8 and High Intensity Interval Training (HIIT; n = 6. Participants completed 12 training sessions. HITrun consisted of 30 min of high-intensity running, while HIIT consisted of a series of whole-body high intensity Tabata-style intervals (75–85% of age predicted maximum heart rate for a total of four minutes. In addition to the interval training, the off-season training included six resistance training sessions, three team practices, and concluded with a team scrimmage. V ˙O2peak was measured pre- and post-training to determine the effectiveness of the training program. A two-way mixed (group × time ANOVA showed a main effect of time with a statistically significant difference in V ˙O2peak from pre- to post-testing, F(1, 12 = 12.657, p = 0.004, partial η2 = 0.041. Average (±SD V ˙O2peak increased from 44.64 ± 3.74 to 47.35 ± 3.16 mL·kg−1·min−1 for HIIT group and increased from 45.39 ± 2.80 to 48.22 ± 2.42 mL·kg−1·min−1 for HITrun group. Given the similar improvement in aerobic power, coaches and training staff may find the time saving element of HIIT-type conditioning programs attractive.

  13. The bias of weighted dark matter halos from peak theory

    CERN Document Server

    Verde, Licia; Simpson, Fergus; Alvarez-Gaume, Luis; Heavens, Alan; Matarrese, Sabino

    2014-01-01

    We give an analytical form for the weighted correlation function of peaks in a Gaussian random field. In a cosmological context, this approach strictly describes the formation bias and is the main result here. Nevertheless, we show its validity and applicability to the evolved cosmological density field and halo field, using Gaussian random field realisations and dark matter N-body numerical simulations. Using this result from peak theory we compute the bias of peaks (and dark matter halos) and show that it reproduces results from the simulations at the ${\\mathcal O}(10\\%)$ level. Our analytical formula for the bias predicts a scale-dependent bias with two characteristics: a broad band shape which, however, is most affected by the choice of weighting scheme and evolution bias, and a more robust, narrow feature localised at the BAO scale, an effect that is confirmed in simulations. This scale-dependent bias smooths the BAO feature but, conveniently, does not move it. We provide a simple analytic formula to des...

  14. Observation, modeling, and temperature dependence of doubly peaked electric fields in irradiated silicon pixel sensors

    CERN Document Server

    Swartz, M.; Allkofer, Y.; Bortoletto, D.; Cremaldi, L.; Cucciarelli, S.; Dorokhov, A.; Hoermann, C.; Kim, D.; Konecki, M.; Kotlinski, D.; Prokofiev, Kirill; Regenfus, Christian; Rohe, T.; Sanders, D.A.; Son, S.; Speer, T.

    2006-01-01

    We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trapping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon.

  15. Peak-locking reduction for particle image velocimetry

    International Nuclear Information System (INIS)

    Michaelis, Dirk; Wieneke, Bernhard; Neal, Douglas R

    2016-01-01

    A parametric study of the factors contributing to peak-locking, a known bias error source in particle image velocimetry (PIV), is conducted using synthetic data that are processed with a state-of-the-art PIV algorithm. The investigated parameters include: particle image diameter, image interpolation techniques, the effect of asymmetric versus symmetric window deformation, number of passes and the interrogation window size. Some of these parameters are found to have a profound effect on the magnitude of the peak-locking error. The effects for specific PIV cameras are also studied experimentally using a precision turntable to generate a known rotating velocity field. Image time series recorded using this experiment show a linear range of pixel and sub-pixel shifts ranging from 0 to  ±4 pixels. Deviations in the constant vorticity field (ω z ) reveal how peak-locking can be affected systematically both by varying parameters of the detection system such as the focal distance and f -number, and also by varying the settings of the PIV analysis. A new a priori technique for reducing the bias errors associated with peak-locking in PIV is introduced using an optical diffuser to avoid undersampled particle images during the recording of the raw images. This technique is evaluated against other a priori approaches using experimental data and is shown to perform favorably. Finally, a new a posteriori anti peak-locking filter (APLF) is developed and investigated, which shows promising results for both synthetic data and real measurements for very small particle image sizes. (paper)

  16. Effect of dc field on ac-loss peak in a commercial Bi:2223/Ag tape

    Science.gov (United States)

    Öztürk, Ali; Düzgün, İbrahim; Çelebi, Selahattin

    2017-12-01

    Measurements of the ac susceptibility in a commercial Bi:2223/Ag tape for some different ac magnetic field amplitudes, Hac, in the presence of bias magnetic field Hdc directed along Hac are reported. It is found that the peak values of the imaginary component of ac susceptibility χ″max versus Hac trace a valley for the orientation where applied field Ha perpendicular to wide face of the tape total. We note that the observation of the valley depends on various parameters such as field dependence parameter n in the critical current density, in the simple power law expression jc = α(T)/Bn, choice of the bias field Hdc together with selected ac field amplitudes Hac, and dimension and geometry of sample studied. Our calculations based on critical state model with jc = α(1 - T/Tcm)p/Bn using the fitting parameters of n = 0.25, p = 2.2, Tcm = 108 K gives quite good results to compare the experimental and calculated curves.

  17. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    Science.gov (United States)

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum

  18. The origin of double peak electric field distribution in heavily irradiated silicon detectors

    CERN Document Server

    Eremin, V; Li, Z

    2002-01-01

    The first observation of double peak (DP) electric field distribution in heavily neutron irradiated (>10 sup 1 sup 4 n/cm sup 2) semiconductor detectors has been published about 6 yr ago. However, this effect was not quantitatively analyzed up to now. The explanation of the DP electric field distribution presented in this paper is based on the properties of radiation induced deep levels in silicon, which act as deep traps, and on the distribution of the thermally generated free carrier concentration in the detector bulk. In the frame of this model, the earlier published considerations on the so-called 'double junction (DJ) effect' are discussed as well. The comparison of the calculated electric field profiles at different temperatures with the experimental ones allows one to determine a set of deep levels. This set of deep levels, and their charge filling status are essential to the value and the distribution of space charge in the space charge region in the range of 305-240 K, which is actual temperature ran...

  19. Relationships between electroencephalographic spectral peaks across frequency bands

    Directory of Open Access Journals (Sweden)

    Sacha Jennifer Van Albada

    2013-03-01

    Full Text Available The degree to which electroenencephalographic (EEG spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification.

  20. Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands

    Science.gov (United States)

    van Albada, S. J.; Robinson, P. A.

    2013-01-01

    The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification. PMID:23483663

  1. The prediction of output factors for spread-out proton Bragg peak fields in clinical practice

    International Nuclear Information System (INIS)

    Kooy, Hanne M; Rosenthal, Stanley J; Engelsman, Martijn; Mazal, Alejandro; Slopsema, Roelf L; Paganetti, Harald; Flanz, Jacob B

    2005-01-01

    The reliable prediction of output factors for spread-out proton Bragg peak (SOBP) fields in clinical practice remained unrealized due to a lack of a consistent theoretical framework and the great number of variables introduced by the mechanical devices necessary for the production of such fields. These limitations necessitated an almost exclusive reliance on manual calibration for individual fields and empirical, ad hoc, models. We recently reported on a theoretical framework for the prediction of output factors for such fields. In this work, we describe the implementation of this framework in our clinical practice. In our practice, we use a treatment delivery nozzle that uses a limited, and constant, set of mechanical devices to produce SOBP fields over the full extent of clinical penetration depths, or ranges, and modulation widths. This use of a limited set of mechanical devices allows us to unfold the physical effects that affect the output factor. We describe these effects and their incorporation into the theoretical framework. We describe the calibration and protocol for SOBP fields, the effects of apertures and range-compensators and the use of output factors in the treatment planning process

  2. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  3. Heterogeneous shear elasticity of glasses: The origin of the boson peak

    KAUST Repository

    Marruzzo, Alessia

    2013-03-08

    The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye\\'s elasticity theory: The density of states deviates from Debye\\'s law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.

  4. Heterogeneous shear elasticity of glasses: The origin of the boson peak

    KAUST Repository

    Marruzzo, Alessia; Schirmacher, Walter; Fratalocchi, Andrea; Ruocco, Giancarlo

    2013-01-01

    The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye's elasticity theory: The density of states deviates from Debye's law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.

  5. Central peaking of magnetized gas discharges

    International Nuclear Information System (INIS)

    Chen, Francis F.; Curreli, Davide

    2013-01-01

    Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T e , drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This “universal” profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a

  6. A novel graphene nanoribbon FET with an extra peak electric field (EFP-GNRFET) for enhancing the electrical performances

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Eshkalak, Maedeh [Young Researchers and Elite Club, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of); Anvarifard, Mohammad K., E-mail: m.anvarifard@guilan.ac.ir [Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah (Iran, Islamic Republic of)

    2017-04-25

    This work has provided an efficient technique to improve the electrical performance for the Graphene Nanoribbon Field Effect Transistors (GNRFETs) successfully. The physical gate length is divided into two gates named as the original gate and the other one as the virtual gate. We have applied a voltage source between these gates to control the channel of the GNRFETs. This technique has created an extra peak electric field in the middle of the channel resulting in the redistribution of surface potential profile. The proposed structure named as EFP-GNRFET has been compared with a simple GNRFET and has shown many improvements in terms of the critical parameters such as short channel effects, leakage current, subthreshold swing, ON-state to OFF-state current ratio, transconductance, output conductance and voltage gain. The structures under the study in this paper benefits from the Non-Equilibrium Green Function (NEGF) approach for solving Schrödinger equation coupled with the two-dimensional (2D) Poisson equation in a self-consistent manner. - Highlights: • Proposal of a novel graphene nanoribbon FET. • Creation of an extra peak in electric field. • Modification of the channel potential with the help of virtual gate. • Considerable improvement on electrical performances.

  7. On dealing with multiple correlation peaks in PIV

    Science.gov (United States)

    Masullo, A.; Theunissen, R.

    2018-05-01

    A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.

  8. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  9. The peak in anomalous magnetic viscosity

    International Nuclear Information System (INIS)

    Collocott, S.J.; Watterson, P.A.; Tan, X.H.; Xu, H.

    2014-01-01

    Anomalous magnetic viscosity, where the magnetization as a function of time exhibits non-monotonic behaviour, being seen to increase, reach a peak, and then decrease, is observed on recoil lines in bulk amorphous ferromagnets, for certain magnetic prehistories. A simple geometrical approach based on the motion of the state line on the Preisach plane gives a theoretical framework for interpreting non-monotonic behaviour and explains the origin of the peak. This approach gives an expression for the time taken to reach the peak as a function of the applied (or holding) field. The theory is applied to experimental data for bulk amorphous ferromagnet alloys of composition Nd 60−x Fe 30 Al 10 Dy x , x = 0, 1, 2, 3 and 4, and it gives a reasonable description of the observed behaviour. The role played by other key magnetic parameters, such as the intrinsic coercivity and fluctuation field, is also discussed. When the non-monotonic behaviour of the magnetization of a number of alloys is viewed in the context of the model, features of universal behaviour emerge, that are independent of alloy composition. - Highlights: • Development of a simple geometrical model based on the Preisach model which gives a complete explanation of the peak in the magnetic viscosity. • Geometrical approach is extended by considering equations that govern the motion of the state line. • The model is used to deduce the relationship between the holding field and the time it takes to reach the peak. • The model is tested with experimental results for a range of Nd–Fe–Al–Dy bulk amorphous ferromagnets. • There is good agreement between the model and the experimental data

  10. Limitation of peak fitting and peak shape methods for determination of activation energy of thermoluminescence glow peaks

    CERN Document Server

    Sunta, C M; Piters, T M; Watanabe, S

    1999-01-01

    This paper shows the limitation of general order peak fitting and peak shape methods for determining the activation energy of the thermoluminescence glow peaks in the cases in which retrapping probability is much higher than the recombination probability and the traps are filled up to near saturation level. Right values can be obtained when the trap occupancy is reduced by using small doses or by post-irradiation partial bleaching. This limitation in the application of these methods has not been indicated earlier. In view of the unknown nature of kinetics in the experimental samples, it is recommended that these methods of activation energy determination should be applied only at doses well below the saturation dose.

  11. Can double-peaked lines indicate merging effects in AGNs?

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2000-01-01

    Full Text Available The influence of merging effects in the central part of an Active Galactic Nucleus (AGN on the emission spectral line shapes are discussed. We present a model of close binary Broad Line Region. The numerical experiments show that the merging effects can explain double peaked lines. The merging effects may also be present in the center of AGNs, although they emit slightly asymmetric as well as symmetric and relatively stable (in profile shape spectral lines. Depending on the black hole masses and their orbit elements such model may explain some of the line profile shapes observed in AGNs. This work shows that if one is looking for the merging effects in the central region as well as in the wide field structure of AGNs, he should first pay attention to objects which have double peaked lines.

  12. Effects of peatland drainage management on peak flows

    Directory of Open Access Journals (Sweden)

    C. E. Ballard

    2012-07-01

    Full Text Available Open ditch drainage has historically been a common land management practice in upland blanket peats, particularly in the UK. However, peatland drainage is now generally considered to have adverse effects on the upland environment, including increased peak flows. As a result, drain blocking has become a common management strategy in the UK over recent years, although there is only anecdotal evidence to suggest that this might decrease peak flows. The change in the hydrological regime associated with the drainage of blanket peat and the subsequent blocking of drains is poorly understood, therefore a new physics-based model has been developed that allows the exploration of the associated hydrological processes. A series of simulations is used to explore the response of intact, drained and blocked drain sites at field scales. While drainage is generally found to increase peak flows, the effect of drain blocking appears to be dependent on local conditions, sometimes decreasing and sometimes increasing peak flows. Based on insights from these simulations we identify steep smooth drains as those that would experience the greatest reduction in field-scale peak flows if blocked and recommend that future targeted field studies should be focused on examining surface runoff characteristics.

  13. The Nature of Double-peaked [O III] Active Galactic Nuclei

    Science.gov (United States)

    Fu, Hai; Yan, Lin; Myers, Adam D.; Stockton, Alan; Djorgovski, S. G.; Aldering, G.; Rich, Jeffrey A.

    2012-01-01

    Active galactic nuclei (AGNs) with double-peaked [O III] lines are suspected to be sub-kpc or kpc-scale binary AGNs. However, pure gas kinematics can produce the same double-peaked line profile in spatially integrated spectra. Here we combine integral-field spectroscopy and high-resolution imaging of 42 double-peaked [O III] AGNs from the Sloan Digital Sky Survey to investigate the constituents of the population. We find two binary AGNs where the line splitting is driven by the orbital motion of the merging nuclei. Such objects account for only ~2% of the double-peaked AGNs. Almost all (~98%) of the double-peaked AGNs were selected because of gas kinematics; and half of those show spatially resolved narrow-line regions that extend 4-20 kpc from the nuclei. Serendipitously, we find two spectrally unresolved binary AGNs where gas kinematics produced the double-peaked [O III] lines. The relatively frequent serendipitous discoveries indicate that only ~1% of binary AGNs would appear double-peaked in Sloan spectra and 2.2+2.5 -0.8% of all Sloan AGNs are binary AGNs. Therefore, the double-peaked sample does not offer much advantage over any other AGN samples in finding binary AGNs. The binary AGN fraction implies an elevated AGN duty cycle (8+8 -3%), suggesting galaxy interactions enhance nuclear accretion. We illustrate that integral-field spectroscopy is crucial for identifying binary AGNs: several objects previously classified as "binary AGNs" with long-slit spectra are most likely single AGNs with extended narrow-line regions (ENLRs). The formation of ENLRs driven by radiation pressure is also discussed. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    Science.gov (United States)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  15. Magnetic Field-Vector Measurements in Quiescent Prominences via the Hanle Effect: Analysis of Prominences Observed at Pic-Du-Midi and at Sacramento Peak

    Science.gov (United States)

    Bommier, V.; Leroy, J. L.; Sahal-Brechot, S.

    1985-01-01

    The Hanle effect method for magnetic field vector diagnostics has now provided results on the magnetic field strength and direction in quiescent prominences, from linear polarization measurements in the He I E sub 3 line, performed at the Pic-du-Midi and at Sacramento Peak. However, there is an inescapable ambiguity in the field vector determination: each polarization measurement provides two field vector solutions symmetrical with respect to the line-of-sight. A statistical analysis capable of solving this ambiguity was applied to the large sample of prominences observed at the Pic-du-Midi (Leroy, et al., 1984); the same method of analysis applied to the prominences observed at Sacramento Peak (Athay, et al., 1983) provides results in agreement on the most probable magnetic structure of prominences; these results are detailed. The statistical results were confirmed on favorable individual cases: for 15 prominences observed at Pic-du-Midi, the two-field vectors are pointing on the same side of the prominence, and the alpha angles are large enough with respect to the measurements and interpretation inaccuracies, so that the field polarity is derived without any ambiguity.

  16. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    Science.gov (United States)

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  17. Peak effect in twinned superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Marchetti, M.C.; Vinokur, V.M.

    1995-01-01

    A sharp maximum in the critical current J c as a function of temperature just below the melting point of the Abrikosov flux lattice has recently been observed in both low- and high-temperature superconductors. This peak effect is strongest in twinned crystals for fields aligned with the twin planes. We propose that this peak signals the breakdown of the collective pinning regime and the crossover to strong pinning of single vortices on the twin boundaries. This crossover is very sharp and can account for the steep drop of the differential resistivity observed in experiments. copyright 1995 The American Physical Society

  18. Global peak flux profile of proton precipitation in the equatorial zone

    International Nuclear Information System (INIS)

    Miah, M.A.

    1991-01-01

    Particle precipitation near the equator within ± 30deg geomagnetic latitude was investigated by the Phoenix-1 instrumentation on board the S81-1 mission. The monitor telescope on board the mission was sensitive to protons in the energy range 0.6-9.1 MeV, to alpha particles in the energy range 0.4-80 MeV/nucleon and Z→3 particles ( 12 C) of energy greater than 0.7 MeV/nucleon. The peak efficiency of the telescope was for particles of ∼88deg pitch angles at the line of minimum magnetic field. Careful separation of the magnetically quiet time equatorial particle data from global data coverage and subsequent analysis shows that the ML detector on board the mission detected mostly protons. The proton peak flux profile follows the line of minimum magnetic field. The full width at half maximum (FWHM) of the equatorial zone is ∼ 13deg, which is well within the EUV emission zone. (author). 14 refs., 9 figs

  19. Local properties of the large-scale peaks of the CMB temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander (Spain)

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.

  20. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    Science.gov (United States)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  1. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    Science.gov (United States)

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  2. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase.

    Science.gov (United States)

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C

    2011-08-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.

  3. Magnetoresistance peak in the mixed state of the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br

    International Nuclear Information System (INIS)

    Zuo, F.

    1997-01-01

    In this letter, the authors report transport measurements with field and current parallel to the b axis (perpendicular to the conducting plane) in the organic superconductor κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Br. The isothermal magnetoresistance R(H) displays a peak effect as a function of field. The peak resistance is substantially larger than that in large fields. The results are in sharp contrast to the conventional dissipation mechanisms in the mixed state of anisotropic superconductors, as in the case of Bi 2 Sr 2 CaCu 2 O 8 . Comparison with H c2 (T) obtained from magnetic measurements shows that the peak effect in R(H) occurs in the mixed state. Analysis of the data suggests a much larger Josephson junction resistance in the mixed state than that in the normal state, indicative of a new charge transport scattering mechanism in the presence of vortices

  4. Correlation between peak and median blocking temperatures by magnetization measurement on isolated ferromagnetic and antiferromagnetic particle systems

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Mørup, Steen

    1997-01-01

    The influence of the particle size distribution on the ratio of the peak temperature, T-peak, to the blocking temperature, T-Bm, in zero field cooled (ZFD) magnetization curves has studied for both ferromagnetic and antiferromagnetic particle systems. In both systems the ratio beta=T-peak/T-Bm does...... not depend on the median particle volume. However, T-Bm can be considerably different from T-peak in both systems. These results show that the ZFD measurements can be used to determine T-Bm values only if the particle size distribution of the system is known. Otherwise, the estimated T-Bm values will have...... a large uncertainty, especially in systems with a broad particle size distribution....

  5. Modeling of Lightning Strokes Using Two-Peaked Channel-Base Currents

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-01-01

    Full Text Available Lightning electromagnetic field is obtained by using “engineering” models of lightning return strokes and new channel-base current functions and the results are presented in this paper. Experimentally measured channel-base currents are approximated not only with functions having two-peaked waveshapes but also with the one-peaked function so as usually used in the literature. These functions are simple to be applied in any “engineering” or electromagnetic model as well. For the three “engineering” models: transmission line model (without the peak current decay, transmission line model with linear decay, and transmission line model with exponential decay with height, the comparison of electric and magnetic field components at different distances from the lightning channel-base is presented in the case of a perfectly conducting ground. Different heights of lightning channels are also considered. These results enable analysis of advantages/shortages of the used return stroke models according to the electromagnetic field features to be achieved, as obtained by measurements.

  6. Employer Attitudes towards Peak Hour Avoidance

    NARCIS (Netherlands)

    Vonk Noordegraaf, D.M.; Annema, J.A.

    2012-01-01

    Peak Hour Avoidance is a relatively new Dutch mobility management measure. To reduce congestion frequent car drivers are given a financial reward for reducing the proportion of trips that they make during peak hours on a specific motorway section. Although previous studies show that employers are

  7. Employer attitudes towards peak hour avoidance

    NARCIS (Netherlands)

    Noordegraaf, D.M.V.; Annema, J.A.

    2012-01-01

    Peak Hour Avoidance is a relatively new Dutch mobility management measure. To reduce congestion frequent car drivers are given a financial reward for reducing the proportion of trips that they make during peak hours on a specific motorway section. Although previous studies show that employers are

  8. KiDS-450: cosmological constraints from weak-lensing peak statistics - II: Inference from shear peaks using N-body simulations

    Science.gov (United States)

    Martinet, Nicolas; Schneider, Peter; Hildebrandt, Hendrik; Shan, HuanYuan; Asgari, Marika; Dietrich, Jörg P.; Harnois-Déraps, Joachim; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Nakajima, Reiko

    2018-02-01

    We study the statistics of peaks in a weak-lensing reconstructed mass map of the first 450 deg2 of the Kilo Degree Survey (KiDS-450). The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter S_8 = σ _8 √{Ω _m/0.3}, which probes the (Ωm, σ8) plane perpendicularly to its main degeneracy. We estimate S8 = 0.750 ± 0.059, using peaks in the signal-to-noise range 0 ≤ S/N ≤ 4, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position coupling. These constraints are ˜ 25 per cent tighter than the constraints from the high significance peaks alone (3 ≤ S/N ≤ 4) which typically trace single-massive haloes. This demonstrates the gain of information from low-S/N peaks. However, we find that including S/N KiDS-450. Combining shear peaks with non-tomographic measurements of the shear two-point correlation functions yields a ˜20 per cent improvement in the uncertainty on S8 compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe.

  9. RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

    International Nuclear Information System (INIS)

    MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo; Saar, Enn; Tempel, Elmo; Pons-BorderIa, MarIa Jesus; Paredes, Silvestre; Fernandez-Soto, Alberto

    2009-01-01

    The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h -1 Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.

  10. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, J F; Paulides, M M; Van Rhoon, G C [Erasmus MC-Daniel den Hoed Cancer Center, Department of Radiation Oncology, Section Hyperthermia, PO Box 5201, NL-3008 AE, Rotterdam (Netherlands); Neufeld, E; Christ, A; Kuster, N, E-mail: j.bakker@erasmusmc.nl [Foundation for Research on Information Technologies in Society (IT' IS) (Switzerland)

    2011-08-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR{sub wb}) are provided to keep the whole-body temperature increase (T{sub body,incr}) under 1 deg. C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR{sub 10g}) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T{sub incr,max}) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T{sub incr,max} in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 deg. C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T{sub incr,max} as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T{sub incr,max} for specified durations of exposure.

  11. Automated Critical PeakPricing Field Tests: 2006 Pilot ProgramDescription and Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

    2007-06-19

    During 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology evaluation for the Pacific Gas and Electric Company (PG&E) Emerging Technologies Programs. This report summarizes the design, deployment, and results from the 2006 Automated Critical Peak Pricing Program (Auto-CPP). The program was designed to evaluate the feasibility of deploying automation systems that allow customers to participate in critical peak pricing (CPP) with a fully-automated response. The 2006 program was in operation during the entire six-month CPP period from May through October. The methodology for this field study included site recruitment, control strategy development, automation system deployment, and evaluation of sites' participation in actual CPP events through the summer of 2006. LBNL recruited sites in PG&E's territory in northern California through contacts from PG&E account managers, conferences, and industry meetings. Each site contact signed a memorandum of understanding with LBNL that outlined the activities needed to participate in the Auto-CPP program. Each facility worked with LBNL to select and implement control strategies for demand response and developed automation system designs based on existing Internet connectivity and building control systems. Once the automation systems were installed, LBNL conducted communications tests to ensure that the Demand Response Automation Server (DRAS) correctly provided and logged the continuous communications of the CPP signals with the energy management and control system (EMCS) for each site. LBNL also observed and evaluated Demand Response (DR) shed strategies to ensure proper commissioning of controls. The communication system allowed sites to receive day-ahead as well as day-of signals for pre-cooling, a DR strategy used at a few sites. Measurement of demand response was conducted using two different baseline models for estimating peak load savings. One

  12. Peak load pricing lowers generation costs

    International Nuclear Information System (INIS)

    Lande, R.H.

    1980-01-01

    Before a utility implements peak load pricing for different classes of consumers, the costs and the benefits should be compared. The methodology described enables a utility to determine whether peak load pricing should be introduced for specific users. Cost-benefit analyses for domestic consumers and commercial/industrial consumers, showing break-even points are presented. (author)

  13. Computation of peak discharge at culverts

    Science.gov (United States)

    Carter, Rolland William

    1957-01-01

    Methods for computing peak flood flow through culverts on the basis of a field survey of highwater marks and culvert geometry are presented. These methods are derived from investigations of culvert flow as reported in the literature and on extensive laboratory studies of culvert flow. For convenience in computation, culvert flow has been classified into six types, according to the location of the control section and the relative heights of the head-water and tail-water levels. The type of flow which occurred at any site can be determined from the field data and the criteria given in this report. A discharge equation has been developed for each flow type by combining the energy and continuity equations for the distance between an approach section upstream from the culvert and a terminal section within the culvert barrel. The discharge coefficient applicable to each flow type is listed for the more common entrance geometries. Procedures for computing peak discharge through culverts are outlined in detail for each of the six flow types.

  14. Terahertz-field-induced photoluminescence of nanostructured gold films

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Malureanu, Radu; Zalkovskij, Maksim

    2013-01-01

    We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced at the pe......We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced...

  15. CSEM-steel hybrid wiggler/undulator magnetic field studies

    International Nuclear Information System (INIS)

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields

  16. Degree of conversion of resin-based materials cured with dual-peak or single-peak LED light-curing units.

    Science.gov (United States)

    Lucey, Siobhan M; Santini, Ario; Roebuck, Elizabeth M

    2015-03-01

    There is a lack of data on polymerization of resin-based materials (RBMs) used in paediatric dentistry, using dual-peak light-emitting diode (LED) light-curing units (LCUs). To evaluate the degree of conversion (DC) of RBMs cured with dual-peak or single-peak LED LCUs. Samples of Vit-l-escence (Ultradent) and Herculite XRV Ultra (Kerr) and fissure sealants Delton Clear and Delton Opaque (Dentsply) were prepared (n = 3 per group) and cured with either one of two dual-peak LCUs (bluephase(®) G2; Ivoclar Vivadent or Valo; Ultradent) or a single-peak (bluephase(®) ; Ivoclar Vivadent). High-performance liquid chromatography and nuclear magnetic resonance spectroscopy were used to confirm the presence or absence of initiators other than camphorquinone. The DC was determined using micro-Raman spectroscopy. Data were analysed using general linear model anova; α = 0.05. With Herculite XRV Ultra, the single-peak LCU gave higher DC values than either of the two dual-peak LCUs (P < 0.05). Both fissure sealants showed higher DC compared with the two RBMs (P < 0.05); the DC at the bottom of the clear sealant was greater than the opaque sealant, (P < 0.05). 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin(®) TPO) was found only in Vit-l-escence. Dual-peak LED LCUs may not be best suited for curing non-Lucirin(®) TPO-containing materials. A clear sealant showed a better cure throughout the material and may be more appropriate than opaque versions in deep fissures. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Multiscale peak detection in wavelet space.

    Science.gov (United States)

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  18. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  19. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  20. Density peaking in the JFT-2M tokamak plasma with counter neutral beam injection

    International Nuclear Information System (INIS)

    Ida, K.; Itoh, S.; Itoh, K.

    1991-05-01

    A significant particle pinch and reduction of the effective thermal diffusivity are observed after switching the neutral beam direction from co- to counter- injection in the JFT-2M tokamak. A time delay in the occurrence of density peaking to that of plasma rotation is found. This shows that the particle pinch is related to the profile of the electric field as determined by the plasma rotation profile. The measured particle flux shows qualitative agreement with the theoretically-predicted inward pinch. (author)

  1. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

    International Nuclear Information System (INIS)

    Kacprzak, T.; Kirk, D.; Friedrich, O.; Amara, A.; Refregier, A.

    2016-01-01

    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg"2 field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0 4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. Lastly, we discuss prospects for future peak statistics analysis with upcoming DES data.

  2. Optical absorption of zigzag single walled boron nitride nanotubes in axial magnetic field

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2013-11-01

    We have investigated the effect of axial magnetic field on the band structure, dipole matrix elements and absorption spectrum in different energy ranges, using tight binding approximation. It is found that magnetic field breaks the degeneracy in the band structure and creates new allowed transitions in the dipole matrix which leads to creation of new peaks in the absorption spectrum. It is found that, unlike to CNTs which show metallic-semiconductor transition, the BNNTs remain semiconductor in any magnetic field strength. By calculation the diameter dependence of peak positions, we found that the positions of three first peaks in the lower energy region (E <5.3 eV) are proportional to n-2. In the middle energy region (7 < E < 7.5 eV) all (n, 0) zigzag BNNTs, with even and odd nanotube index, have two distinct peaks in the absence of magnetic field which these peaks may be used to identify zigzag BNNTs from other tube chiralities. For odd (even) tubes, in the middle energy region, applying the magnetic field leads to splitting of these two peaks into three (five) distinct peaks.

  3. Peak-interviewet

    DEFF Research Database (Denmark)

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...... fokuspersonen ønsker at tage op (nye mål eller nye processer). Nærværende workingpaper beskriver, hvad der menes med et peak-interview, peakinterviwets teoretiske fundament samt metodikken til at foretage et tillidsfuldt og effektiv peak-interview....

  4. 'Peak oil' or 'peak demand'?

    International Nuclear Information System (INIS)

    Chevallier, Bruno; Moncomble, Jean-Eudes; Sigonney, Pierre; Vially, Rolland; Bosseboeuf, Didier; Chateau, Bertrand

    2012-01-01

    This article reports a workshop which addressed several energy issues like the objectives and constraints of energy mix scenarios, the differences between the approaches in different countries, the cost of new technologies implemented for this purposes, how these technologies will be developed and marketed, which will be the environmental and societal acceptability of these technical choices. Different aspects and issues have been more precisely presented and discussed: the peak oil, development of shale gases and their cost (will non conventional hydrocarbons modify the peak oil and be socially accepted?), energy efficiency (its benefits, its reality in France and other countries, its position in front of the challenge of energy transition), and strategies in the transport sector (challenges for mobility, evolution towards a model of sustainable mobility)

  5. Automated Peak Picking and Peak Integration in Macromolecular NMR Spectra Using AUTOPSY

    Science.gov (United States)

    Koradi, Reto; Billeter, Martin; Engeli, Max; Güntert, Peter; Wüthrich, Kurt

    1998-12-01

    A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automatedpeak picking for NMRspectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking.

  6. The dislocation-internal friction peak γ in tantalum

    International Nuclear Information System (INIS)

    Baur, J.; Benoit, W.; Schultz, H.

    1989-01-01

    Torsion-pendulum measurements were carried out on high-purity single crystal specimens of tantalum, having extremely low oxygen contents ( 2 peak, which appears close to γ is small traces of oxygen are presents. The γ 2 peak was formerly explained as a ''dislocation-enhanced Snoek peak''. The γ peak recovers at the peak temperature, whereas the γ 2 peak is more stable. On the basis of their results, and making use of earlier investigations of Rodrian and Schultz, the authors suggest that γ 2 is modified γ relaxation, related to screw-dislocation segments, stabilized by oxygen-decorated kinks. The stability of the γ 2 peak allows an accurate determination of the activation energy, found to be 1.00 +- 0.03 eV. This value is distinctly lower than the activation energy of the oxygen Snoek effect (1.10 eV) and is related here to the mechanism of ''kink-pair formation'' in screw dislocations, as the original γ peak. The numerical value is compatible with recent values derived from flow-stress measurements. The peak γ 2 shows increasing stability with increasing oxygen content. This is explained by single- and multi-decorated kinks

  7. The geomorphic structure of the runoff peak

    Directory of Open Access Journals (Sweden)

    R. Rigon

    2011-06-01

    Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  8. Estimates of peak electric fields induced by Transcranial magnetic stimulation in pregnant women as patients using an FEM full-body model.

    Science.gov (United States)

    Yanamadala, J; Noetscher, G M; Makarov, S N; Pascual-Leone, A

    2017-07-01

    Transcranial magnetic stimulation (TMS) for treatment of depression during pregnancy is an appealing alternative to fetus-threatening drugs. However, no studies to date have been performed that evaluate the safety of TMS for a pregnant mother patient and her fetus. A full-body FEM model of a pregnant woman with about 100 tissue parts has been developed specifically for the present study. This model allows accurate computations of induced electric field in every tissue given different locations of a shape-eight coil, a biphasic pulse, common TMS pulse durations, and using different values of the TMS intensity measured in SMT (Standard Motor Threshold) units. Our simulation results estimate the maximum peak values of the electric field in the fetal area for every fetal tissue separately and for the TMS intensity of one SMT unit.

  9. Particle in cell simulation of peaking switch for breakdown evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.; Saxena, A.; Singh, N.M., E-mail: sachin.b.umbarkar@gmail.com [Department of Electric Engineering, Veermata Jijabai Technological Institute, Mumbai (India); Sharma, Archana; Saroj, P.C.; Mittal, K.C. [Accelerator Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (without peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)

  10. Quantitative analysis of Terminal Restriction Fragment Length Polymorphism (T-RFLP microbial community profiles: peak height data showed to be more reproducible than peak area Análise quantitativa de perfis de T-RFLP de comunidades microbianas: dados de altura de picos mostraram-se mais reprodutíveis do que os de área

    Directory of Open Access Journals (Sweden)

    Roberto A. Caffaro-Filho

    2007-12-01

    Full Text Available Terminal Restriction Fragment Length Polymorphism (T-RFLP is a culture-independent fingerprinting method for microbial community analysis. Profiles generated by an automated electrophoresis system can be analysed quantitatively using either peak height or peak area data. Statistical testing demontrated that peak height data showed to be more reproducible than peak area data.Terminal Restriction Fragment Length Polymorphism (T-RFLP é um método molecular, independente de cultivo, para análise de comunidades microbianas. Perfis gerados por um sistema automatizado de eletroforese podem ser analisados quantitativamente usando dados de altura ou área dos picos. Os dados de altura mostraram-se mais reprodutíveis do que os de área.

  11. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  12. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Science.gov (United States)

    Bhowmik, R. N.; Vijayasri, G.

    2015-06-01

    We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  13. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Restrepo, R.L. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Ungan, F.; Yesilgul, U.; Sari, H. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-03-15

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga{sub 1−x}Al{sub x}As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width.

  14. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Duque, C.A.; Mora-Ramos, M.E.; Restrepo, R.L.; Ungan, F.; Yesilgul, U.; Sari, H.; Sökmen, I.

    2015-01-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga 1−x Al x As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width

  15. Peak effect and vortex dynamics in superconducting MgB2 single crystals

    International Nuclear Information System (INIS)

    Lee, Hyun-Sook; Jang, Dong-Jin; Kim, Heon-Jung; Kang, Byeongwon; Lee, Sung-Ik

    2007-01-01

    The dynamic nature of the vortex state of MgB 2 single crystals near the peak effect (PE) region, which is very different either from that of conventional low-temperature superconductors or from that of high-temperature cuprate superconductors, is introduced in this article. Relaxation from a disordered, metastable field-cooled (FC) state to an ordered, stable zero-field-cooled (ZFC) state of the MgB 2 single crystals under an applied magnetic field and current is investigated. From an analysis of the noise properties in the ZFC state, a dynamic vortex phase diagram of the MgB 2 is obtained near the PE region. Between the onset and the peak region in the critical current vs. magnetic field diagram, crossovers from a high-noise state to a noise-free state are observed with increasing current. Above the peak, however, an opposite phenomenon, crossovers from a noise-free to a high-noise state, is observed which has not been observed in any other superconductors. The hysteresis in the I-V curves and the two-level random telegraph noise in the time evolution of the voltage response under an constant applied current at the ZFC state are also studied in detail

  16. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  17. Weak Lensing Peaks in Simulated Light-Cones: Investigating the Coupling between Dark Matter and Dark Energy

    Science.gov (United States)

    Giocoli, Carlo; Moscardini, Lauro; Baldi, Marco; Meneghetti, Massimo; Metcalf, Robert B.

    2018-05-01

    In this paper, we study the statistical properties of weak lensing peaks in light-cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20% with respect to the reference ΛCDM model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalisation. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically seventy percent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than two, and that the fraction of clusters in peaks approaches one-hundred percent for haloes with redshift z ≤ 0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.

  18. Decomposing the Bragg glass and the peak effect in a Type-II superconductor

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Abrahamsen, Asger Bech; Balog, Sandor

    2018-01-01

    . In Type-II superconductors, disorder generally works to pin vortices, giving zero resistivity below a critical current j(c). However, peaks have been observed in the temperature and field dependences of j(c). This peak effect is difficult to explain in terms of an ordered Abrikosov vortex lattice. Here we...

  19. Redshift space correlations and scale-dependent stochastic biasing of density peaks

    Science.gov (United States)

    Desjacques, Vincent; Sheth, Ravi K.

    2010-01-01

    We calculate the redshift space correlation function and the power spectrum of density peaks of a Gaussian random field. Our derivation, which is valid on linear scales k≲0.1hMpc-1, is based on the peak biasing relation given by Desjacques [Phys. Rev. DPRVDAQ1550-7998, 78, 103503 (2008)10.1103/PhysRevD.78.103503]. In linear theory, the redshift space power spectrum is Ppks(k,μ)=exp⁡(-f2σvel2k2μ2)[bpk(k)+bvel(k)fμ2]2Pδ(k), where μ is the angle with respect to the line of sight, σvel is the one-dimensional velocity dispersion, f is the growth rate, and bpk(k) and bvel(k) are k-dependent linear spatial and velocity bias factors. For peaks, the value of σvel depends upon the functional form of bvel. When the k dependence is absent from the square brackets and bvel is set to unity, the resulting expression is assumed to describe models where the bias is linear and deterministic, but the velocities are unbiased. The peak model is remarkable because it has unbiased velocities in this same sense—peak motions are driven by dark matter flows—but, in order to achieve this, bvel must be k dependent. We speculate that this is true in general: k dependence of the spatial bias will lead to k dependence of bvel even if the biased tracers flow with the dark matter. Because of the k dependence of the linear bias parameters, standard manipulations applied to the peak model will lead to k-dependent estimates of the growth factor that could erroneously be interpreted as a signature of modified dark energy or gravity. We use the Fisher formalism to show that the constraint on the growth rate f is degraded by a factor of 2 if one allows for a k-dependent velocity bias of the peak type. Our analysis also demonstrates that the Gaussian smoothing term is part and parcel of linear theory. We discuss a simple estimate of nonlinear evolution and illustrate the effect of the peak bias on the redshift space multipoles. For k≲0.1hMpc-1, the peak bias is deterministic but k

  20. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    International Nuclear Information System (INIS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5 eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study

  1. The Locations of Ring Current Pressure Peaks: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 CIR Storm

    Science.gov (United States)

    Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may

  2. Holographic wavefront characterization of a frequency-tripled high-peak-power neodymium:glass laser

    International Nuclear Information System (INIS)

    Kessler, T.J.

    1984-01-01

    Near-field amplitude and phase distributions from a high-peak-power, frequency converted Nd:glass laser (lambda = 351 nm) have been holographically recorded on silver-halide emulsions. Conventionally, the absence of a suitable reference beam forces one to use some type of shearing interferometry to obtain phasefront information, while the near-field and far-field distributions are recorded as intensity profiles. In this study, a spatially filtered, locally generated reference beam was created to holographically store the complex amplitude distribution of the pulsed laser beam, while reconstruction of the original wavefront was achieved with a continuous-wave laser. Reconstructed near-field and quasi-far-field intensity distributions closely resembled those obtained from conventional techniques, and accurate phasefront reconstruction was achieved. Furthermore, several two-beam interferometric techniques, not practicable with a high-peak-power laser, have been successfully implemented on a continuous-wave reconstruction of the pulsed laser beam. 46 refs., 40 figs., 1 tab

  3. Core fueling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1994-06-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. We show that with radially ''hollow'' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles which are peaked off-axis. The fueling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fueling does not require MeV particle energy. Even with beam voltages of ∼200 keV, however, exceptionally good particle confinement, τ p much-gt τ E is required to achieve net electrical power generation. In system with no power production requirement (e.g., neutron sources) neutral beam fueling should be capable of producing peaked density profiles in devices as large as ITER. Fueling systems with low energy cost per particle (such as cryogenic pellet injection) must be used in power producing tokamaks when τ p ∼ τ E . Simulations with pellet injection speeds of 7 km/sec show the peaking factor, n eo /left-angle n e right-angle, approaching 2

  4. Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations

    OpenAIRE

    Huisman, Ronald; Mahieu, Ronald; Schlichter, Felix

    2007-01-01

    textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to allocate optimal positions in peak and off-peak forward contracts. It is shown that the optimal allocations are based on the difference in risk premiums per unit of day-ahead risk as a measure of relati...

  5. Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data.

    Science.gov (United States)

    Ishii, Satoshi; Kadota, Koji; Senoo, Keishi

    2009-09-01

    DNA fingerprinting analysis such as amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic PCR (rep-PCR), ribosomal intergenic spacer analysis (RISA), and denaturing gradient gel electrophoresis (DGGE) are frequently used in various fields of microbiology. The major difficulty in DNA fingerprinting data analysis is the alignment of multiple peak sets. We report here an R program for a clustering-based peak alignment algorithm, and its application to analyze various DNA fingerprinting data, such as ARDRA, rep-PCR, RISA, and DGGE data. The results obtained by our clustering algorithm and by BioNumerics software showed high similarity. Since several R packages have been established to statistically analyze various biological data, the distance matrix obtained by our R program can be used for subsequent statistical analyses, some of which were not previously performed but are useful in DNA fingerprinting studies.

  6. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-01-15

    Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.

  7. The electric field standing wave effect in infrared transflection spectroscopy

    Science.gov (United States)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-02-01

    We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.

  8. Non-Gaussian bias: insights from discrete density peaks

    CERN Document Server

    Desjacques, Vincent; Riotto, Antonio

    2013-01-01

    Corrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However, numerical simulations clearly support the prediction of the former, in which the non-Gaussian amplitude is proportional to the linear halo bias. To understand better the reasons behind the failure of standard Lagrangian local bias, in which the halo overdensity is a function of the local mass overdensity only, we explore the effect of a primordial bispectrum on the 2-point correlation of discrete density peaks. We show that the effective local bias expansion to peak clustering vastly simplifies the calculation. We generalize this approach to excursion set peaks and demonstrate that the resulting non-Gaussian amplitude, which is a weighted sum of quadratic bias factors, precisely agrees with the peak-background split expectation, which is a logarithmic derivative of the halo mass function with respect to the normalisation amplitude. We point out tha...

  9. Peak regulation right

    International Nuclear Information System (INIS)

    Gao, Z. |; Ren, Z.; Li, Z.; Zhu, R.

    2005-01-01

    A peak regulation right concept and corresponding transaction mechanism for an electricity market was presented. The market was based on a power pool and independent system operator (ISO) model. Peak regulation right (PRR) was defined as a downward regulation capacity purchase option which allowed PRR owners to buy certain quantities of peak regulation capacity (PRC) at a specific price during a specified period from suppliers. The PRR owner also had the right to decide whether or not they would buy PRC from suppliers. It was the power pool's responsibility to provide competitive and fair peak regulation trading markets to participants. The introduction of PRR allowed for unit capacity regulation. The PRR and PRC were rated by the supplier, and transactions proceeded through a bidding process. PRR suppliers obtained profits by selling PRR and PRC, and obtained downward regulation fees regardless of whether purchases are made. It was concluded that the peak regulation mechanism reduced the total cost of the generating system and increased the social surplus. 6 refs., 1 tab., 3 figs

  10. Automatic acquisition and shape analysis of metastable peaks

    International Nuclear Information System (INIS)

    Maendli, H.; Robbiani, R.; Kuster, Th.; Seibl, J.

    1979-01-01

    A method for automatic acquisition and evaluation of metastable peaks due to transitions in the first field-free region of a double focussing mass spectrometer is presented. The data are acquired by computer-controlled repetitive scanning of the accelerating voltage and concomitant accumulation, the evaluation made by a mathematical derivatization of the resulting curve. Examples for application of the method are given. (Auth.)

  11. Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations

    Directory of Open Access Journals (Sweden)

    Yannick Bousquet

    2014-01-01

    Full Text Available This study concerns a 2.5 pressure ratio centrifugal compressor stage consisting of a splittered unshrouded impeller and a vaned diffuser. The aim of this paper is to investigate the modifications of the flow structure when the operating point moves from peak efficiency to near stall. The investigations are based on the results of unsteady three-dimensional simulations, in a calculation domain comprising all the blade. A detailed analysis is given in the impeller inducer and in the vaned diffuser entry region through time-averaged and unsteady flow field. In the impeller inducer, this study demonstrates that the mass flow reduction from peak efficiency to near stall leads to intensification of the secondary flow effects. The low momentum fluid accumulated near the shroud interacts with the main flow through a shear layer zone. At near stall condition, the interface between the two flow structures becomes unstable leading to vortices development. In the diffuser entry region, by reducing the mass flow, the high incidence angle from the impeller exit induces a separation on the diffuser vane suction side. At near stall operating point, vorticity from the separation is shed into vortex cores which are periodically formed and convected downstream along the suction side.

  12. High peak power tubes and gate effect Klystrons

    International Nuclear Information System (INIS)

    Gerbelot, N.; Bres, M.; Faillon, G.; Buzzi, J.M.

    1993-01-01

    The conventional microwave tubes such as TWTs, Magnetrons, Klystrons... deliver the very high peak powers which are required by radar transmitters but more especially by many particle accelerators. In the range of a few hundred MHz to about 10 GHz, some dozen of MWs per unit are currently obtained and commercially available, according to the frequency and the pulse lengths. But peak power requirements are ever increasing, especially for the expected new linear particle acceleratores, where several hundred MWs per tube would be necessary. Also some special military transmitters begin to request GW pulses, with short pulse lengths - of course - but at nonnegligible repetition rates. Therefore several laboratories and microwave vacuum tube manufacturers have engaged - for several years - studies and development in the field of very high peak microwave power (HPM) toward two main directions: extended operation and extrapolation of the conventional tubes and devices; development of new concepts, among which the most promising are likely the high-current relativistic klystrons - that are also referred to as gate effect klystrons

  13. Estimation of the peak factor based on watershed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, Jean; Nolin, Simon; Ruest, Benoit [BPR Inc., Quebec, (Canada)

    2010-07-01

    Hydraulic modeling and dam structure design require the river flood flow as a primary input. For a given flood event, the ratio of peak flow over mean daily flow defines the peak factor. The peak factor value is dependent on the watershed and location along the river. The main goal of this study consisted in finding a relationship between watershed characteristics and this peak factor. Regression analyses were carried out on 53 natural watersheds located in the southern part of the province of Quebec using data from the Centre d'expertise hydrique du Quebec (CEHQ). The watershed characteristics included in the analyses were the watershed area, the maximum flow length, the mean slope, the lake proportion and the mean elevation. The results showed that watershed area and length are the major parameters influencing the peak factor. Nine natural watersheds were also used to test the use of a multivariable model in order to determine the peak factor for ungauged watersheds.

  14. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Bagger, Frederik Otzen; Lauridsen, Felicia Kathrine Bratt

    2016-01-01

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak......-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show...... four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate...

  15. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    International Nuclear Information System (INIS)

    Park, Jinhye; Moon, Y.-J.; Lee, Harim

    2017-01-01

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are as follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  16. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinhye; Moon, Y.-J. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Lee, Harim, E-mail: jinhye@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2017-07-20

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are as follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  17. Make peak flow a habit

    Science.gov (United States)

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  18. Peak effect and superconducting properties of SmFeAsO{sub 0.8}F{sub 0.2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y L; Cui, Y J; Yang, Y; Zhang, Y; Wang, L; Zhao, Y [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C H; Sorrell, C [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-11-15

    Ta-sheathed SmFeAsO{sub 0.8}F{sub 0.2} superconducting wires with T{sub c} = 52.5 K have been fabricated using the powder-in-tube (PIT) method and the superconducting properties of the wires have been investigated. The wires exhibit a very large intragrain critical current density at a temperature below 30 K. A peak effect with maximal J{sub c} = 0.6 MA cm{sup -2} at 10 K under 6 T field was observed. The peak field H{sub pear} is strongly temperature-dependent. A severe weak-link effect depresses the development of global supercurrent owing to a very short coherence length. The wires also show a power law temperature dependence for the irreversibility line with H{sub irr}{approx_equal}(1-T/T{sub c}){sup 1.5}. The H-T phase diagram was found to be similar to that of other superconducting cuprates.

  19. Similarities in the dynamical behavior across the classical peak effect and the second magnetization peak in single crystals of 2H-NbSe2

    International Nuclear Information System (INIS)

    Thakur, A.D.; Ramakrishnan, S.; Grover, A.K.; Chandrasekhar Rao, T.V.; Uji, S.; Terashima, T.; Higgins, M.J.

    2005-01-01

    The classical peak effect (CPE) and the second magnetization peak (SMP) are two distinct anomalies in critical current of superconductors. A nascent pinned single crystal sample of 2HNbSe 2 (T c (0) ∼7.2 K) shows only the sharp CPE. In a moderately pinned sample (T c (0) ∼6 K), the sharp CPE broadens with the addition of characteristic structure (stepwise amorphization) between the onset and the peak positions of the CPE. Also, there emerges another anomalous peak akin to SMP prior to the CPE. We have looked at samples of 2H-NbSe 2 with intermediate levels of quenched random pinning (T c (0) ∼ 7.1 K) and successfully explored the two peaks down to 50 mK. (author)

  20. Evaluation of the shape of the specular peak for high glossy surfaces

    Science.gov (United States)

    Obein, Gaël.; Ouarets, Shiraz; Ged, Guillaume

    2014-02-01

    Gloss is the second most relevant visual attribute of a surface beside its colour. While the colour originates from the wavelength repartition of the reflected light, gloss originates from its angular distribution. When an observer is asked to evaluate the gloss of a surface, he always first orientate his eyes along the specular direction before lightly tilting the examined sample. This means that gloss is located in and around the specular direction, in a peak that is called the specular peak. On the one hand, this peak is flat and broad on matte surfaces on the other hand, it is narrow and sharp on high gloss surfaces. For the late ones, the FWHM of the specular peak is less than 2° which can be quite difficult to measure. We developed a dedicated facility capable of measuring specular peak with a FWHM up to 0,1 °. We measured the evolution of the peak according to the angle of illumination and the specular gloss of the sample in the restricted field of very glossy surface. The facility and peaks measured are presented in the paper. The next step will be to identify the correlations between the peak and the roughness of the sample.

  1. Peaking of world oil production: Impacts, mitigation, & risk management

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, R.L. (SAIC); Bezdek, Roger (MISI); Wendling, Robert (MISI)

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  2. Primordial black holes from single field models of inflation

    CERN Document Server

    Garcia-Bellido, Juan

    Primordial black holes (PBH) have been shown to arise from high peaks in the matter power spectra of multi-field models of inflation. Here we show, with a simple toy model, that it is also possible to generate a peak in the curvature power spectrum of single-field inflation. We assume that the effective dynamics of the inflaton field presents a near-inflection point which slows down the field right before the end of inflation and gives rise to a prominent spike in the fluctuation power spectrum at scales much smaller than those probed by Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations. This peak will give rise, upon reentry during the radiation era, to PBH via gravitational collapse. The mass and abundance of these PBH is such that they could constitute the totality of the Dark Matter today. We satisfy all CMB and LSS constraints and predict a very broad range of PBH masses. Some of these PBH are light enough that they will evaporate before structure formation, leaving behind a ...

  3. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    Science.gov (United States)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising

  4. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} oxide

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, R. N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Vijayasri, G. [Department of Physics, Pondicherry University, R.Venkataraman Nagar, Kalapet, Puducherry - 605 014 (India)

    2015-06-15

    We have studied current-voltage (I-V) characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3}, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔV{sub P}) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  5. Avoiding the False Peaks in Correlation Discrimination

    International Nuclear Information System (INIS)

    Awwal, A.S.

    2009-01-01

    Fiducials imprinted on laser beams are used to perform video image based alignment of the 192 laser beams in the National Ignition Facility (NIF) of Lawrence Livermore National Laboratory. In many video images, matched filtering is used to detect the location of these fiducials. Generally, the highest correlation peak is used to determine the position of the fiducials. However, when the signal to-be-detected is very weak compared to the noise, this approach totally breaks down. The highest peaks act as traps for false detection. The active target images used for automatic alignment in the National Ignition Facility are examples of such images. In these images, the fiducials of interest exhibit extremely low intensity and contrast, surrounded by high intensity reflection from metallic objects. Consequently, the highest correlation peaks are caused by these bright objects. In this work, we show how the shape of the correlation is exploited to isolate the valid matches from hundreds of invalid correlation peaks, and therefore identify extremely faint fiducials under very challenging imaging conditions

  6. Improvement of graphene field-effect transistors by hexamethyldisilazane surface treatment

    International Nuclear Information System (INIS)

    Chowdhury, Sk. Fahad; Sonde, Sushant; Rahimi, Somayyeh; Tao, Li; Banerjee, Sanjay; Akinwande, Deji

    2014-01-01

    We report the improvement of the electrical characteristics of graphene field-effect transistors (FETs) by hexamethyldisilazane (HMDS) treatment. Both electron and hole field-effect mobilities are increased by 1.5 × –2×, accompanied by effective residual carrier concentration reduction. Dirac point also moves closer to zero Volt. Time evolution of mobility data shows that mobility improvement saturates after a few hours of HMDS treatment. Temperature-dependent transport measurements show small mobility variation between 77 K and room temperature (295 K) before HMDS application. But mobility at 77 K is almost 2 times higher than mobility at 295 K after HMDS application, indicating reduced carrier scattering. Performance improvement is also observed for FETs made on hydrophobic substrate–an HMDS-graphene-HMDS sandwich structure. Raman spectroscopic analysis shows that G peak width is increased, G peak position is down shifted, and intensity ratio between 2D and G peaks is increased after HMDS application. We attribute the improvements in electronic transport mainly to enhanced screening and mitigation of adsorbed impurities from graphene surface upon HMDS treatment.

  7. Evaluation of peak-fitting software for gamma spectrum analysis

    International Nuclear Information System (INIS)

    Zahn, Guilherme S.; Genezini, Frederico A.; Moralles, Mauricio

    2009-01-01

    In all applications of gamma-ray spectroscopy, one of the most important and delicate parts of the data analysis is the fitting of the gamma-ray spectra, where information as the number of counts, the position of the centroid and the width, for instance, are associated with each peak of each spectrum. There's a huge choice of computer programs that perform this type of analysis, and the most commonly used in routine work are the ones that automatically locate and fit the peaks; this fit can be made in several different ways - the most common ways are to fit a Gaussian function to each peak or simply to integrate the area under the peak, but some software go far beyond and include several small corrections to the simple Gaussian peak function, in order to compensate for secondary effects. In this work several gamma-ray spectroscopy software are compared in the task of finding and fitting the gamma-ray peaks in spectra taken with standard sources of 137 Cs, 60 Co, 133 Ba and 152 Eu. The results show that all of the automatic software can be properly used in the task of finding and fitting peaks, with the exception of GammaVision; also, it was possible to verify that the automatic peak-fitting software did perform as well as - and sometimes even better than - a manual peak-fitting software. (author)

  8. Linear Optical Response of Silicon Nanotubes Under Axial Magnetic Field

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2013-01-01

    We investigated the optical properties of silicon nanotubes (SiNTs) in the low energy region, E < 0.5 eV, and middle energy region, 1.8 eV < E < 2 eV. The dependence of optical matrix elements and linear susceptibility on radius and magnetic field, in terms of one-dimensional (1-d) wavevector and subband index, is calculated using the tight-binding approximation. It is found that, on increasing the nanotube diameter, the low-energy peaks show red-shift and their intensities are decreased. Also, we found that in the middle energy region all tubes have two distinct peaks, where the energy position of the second peak is approximately constant and independent of the nanotube diameter. Comparing the band structure of these tubes in different magnetic fields, several differences are clearly seen, such as splitting of degenerate bands, creation of additional band-edge states, and bandgap modification. It is found that applying the magnetic field leads to a phase transition in zigzag silicon hexagonal nanotubes (Si h-NTs), unlike in zigzag silicon gear-like nanotubes (Si g-NTs), which remain semiconducting in any magnetic field. We found that the axial magnetic field has two effects on the linear susceptibility spectrum, namely broadening and splitting. The axial magnetic field leads to the creation of a peak with energy less than 0.2 eV in metallic Si h-NTs, whereas in the absence of a magnetic field such a transition is not allowed.

  9. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  10. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    Directory of Open Access Journals (Sweden)

    Sean Yaw

    2017-10-01

    Full Text Available This paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown to be NP-hard. Our results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.

  11. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    Science.gov (United States)

    Ren, Z.; Wan, W.

    2017-12-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  12. Combined effect of storm movement and drainage network configuration on flood peaks

    Science.gov (United States)

    Seo, Yongwon; Son, Kwang Ik; Choi, Hyun Il

    2016-04-01

    This presentation reports the combined effect of storm movement and drainage network layout on resulting hydrographs and its implication to flood process and also flood mitigation. First, we investigate, in general terms, the effects of storm movement on the resulting flood peaks, and the underlying process controls. For this purpose, we utilize a broad theoretical framework that uses characteristic time and space scales associated with stationary rainstorms as well as moving rainstorms. For a stationary rainstorm the characteristic timescales that govern the peak response include two intrinsic timescales of a catchment and one extrinsic timescale of a rainstorm. On the other hand, for a moving rainstorm, two additional extrinsic scales are required; the storm travel time and storm size. We show that the relationship between the peak response and the timescales appropriate for a stationary rainstorm can be extended in a straightforward manner to describe the peak response for a moving rainstorm. For moving rainstorms, we show that the augmentation of peak response arises from both effect of overlaying the responses from subcatchments (resonance condition) and effect of increased responses from subcatchments due to increased duration (interdependence), which results in maximum peak response when the moving rainstorm is slower than the channel flow velocity. Second, we show the relation between channel network configurations and hydrograph sensitivity to storm kinematics. For this purpose, Gibbs' model is used to evaluate the network characteristics. The results show that the storm kinematics that produces the maximum peak discharge depends on the network configuration because the resonance condition changes with the network configuration. We show that an "efficient" network layout is more sensitive and results in higher increase in peak response compared to "inefficient" one. These results imply different flood potential risks for river networks depending on network

  13. Magnetic field induced enhancement of resistance in polycrystalline ZrTe5

    Science.gov (United States)

    Behera, Prakash; Bera, Sumit; Patidar, Manju Mishra; Singh, Durgesh; Mishra, A. K.; Krishnan, M.; Gangrade, M.; Deshpande, U. P.; Venkatesh, R.; Ganesan, V.

    2018-04-01

    Transport properties of the polycrystalline ZrTe5 showing a considerable positive Magneto-Resistance (MR) in the intermediate temperatures has been reported. Substantial shift of peak temperature by approximately 65 K with an applied magnetic field of 13.5 Tesla has been observed. Magneto resistance of this polycrystalline sample (˜100%) is comparable with its single crystalline counterpart reported in literature. The peak intensity scales with peak temperature and obeys reasonably the Dionne relationship that is a clear indication of polaron mediated conduction in this system. Magneto Resistance (MR) in this system is attributed to the two carrier polaronic conduction model similar to the Holstein's approach. The results are further complemented with the Peak shift in magnetic field expected for a system having a fraction of localized carrier density. This observation places this famous thermoelectric material that displays a topological Dirac to Weyl transition in magnetic field in to the family of materials that have potential technological applications in the liquid nitrogen temperature range viz. 85-150 K.

  14. Measurement of peak discharge at dams by indirect methods

    Science.gov (United States)

    Hulsing, Harry

    1967-01-01

    This chapter describes procedures for measuring peak discharges using dams, weirs, and embankments. Field and office procedures limited to this method are described. Discharge coefficients and formulas are given for three general classes of weirs-sharp-crested, broad-crested, and round-crested-and for highway embankments and weirs of unusual shape. The effects of submergence are defined for most forms.

  15. Magnetism and thermodynamic properties of a spin-1/2 ferrimagnetic diamond XY chain in magnetic fields at finite temperatures

    International Nuclear Information System (INIS)

    Cheng, Tai-Min; Ma, Yan-Ming; Ge, Chong-Yuan; Sun, Shu-Sheng; Jia, Wei-Ye; Li, Qing-Yun; Shi, Xiao-Fei; Li, Lin; Zhu, Lin

    2013-01-01

    The elementary excitation spectra of a one-dimensional ferrimagnetic diamond chain in the spin-1/2 XY model at low temperatures have been calculated by using an invariant eigen-operator (IEO) method, the energies of elementary excitations in different specific cases are discussed, and the analytic solutions of three critical magnetic field intensities (H C1 , H C2 , and H peak ) are given. The magnetization versus external magnetic field curve displays a 1/3 magnetization plateau at low temperatures, in which H C1 is the critical magnetic field intensity from the disappearance of the 1/3 magnetization plateau to spin-flop states, H C2 is the critical magnetic field intensity from spin-flop states to the saturation magnetization, and H peak is the critical magnetic field intensity when the temperature magnetization shows a peak in the external magnetic field. The temperature dependences of the magnetic susceptibility and the specific heat show a double peak structure. The entropy and the magnetic susceptibility versus external magnetic field curves also exhibit a double peak structure, and the positions of the two peaks correspond to H C1 and H C2 , respectively. This derives from the competition among different types of energies: the temperature-dependent thermal disorder energy, the potential energy of the spin magnetic moment, the ferromagnetic exchange interaction energy, and the anti-ferromagnetic exchange interaction energy. However at low temperatures, the specific heat as a function of external magnetic field curve exhibits minima at the above two critical points (H C1 and H C2 ). The origins of the above phenomena are discussed in detail.

  16. Peak Oil and other threatening peaks-Chimeras without substance

    International Nuclear Information System (INIS)

    Radetzki, Marian

    2010-01-01

    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth.

  17. A method for estimating peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area

    Science.gov (United States)

    Asquith, William H.; Cleveland, Theodore G.; Roussel, Meghan C.

    2011-01-01

    method in terms of excess rainfall (the excess rational method). Both the unit hydrograph method and excess rational method are shown to provide similar estimates of peak and time of peak streamflow. The results from the two methods can be combined by using arithmetic means. A nomograph is provided that shows the respective relations between the arithmetic-mean peak and time of peak streamflow to drainage areas ranging from 10 to 640 acres. The nomograph also shows the respective relations for selected BDF ranging from undeveloped to fully developed conditions. The nomograph represents the peak streamflow for 1 inch of excess rainfall based on drainage area and BDF; the peak streamflow for design storms from the nomograph can be multiplied by the excess rainfall to estimate peak streamflow. Time of peak streamflow is readily obtained from the nomograph. Therefore, given excess rainfall values derived from watershed-loss models, which are beyond the scope of this report, the nomograph represents a method for estimating peak and time of peak streamflow for applicable watersheds in the Houston metropolitan area. Lastly, analysis of the relative influence of BDF on peak streamflow is provided, and the results indicate a 0:04log10 cubic feet per second change of peak streamflow per positive unit of change in BDF. This relative change can be used to adjust peak streamflow from the method or other hydrologic methods for a given BDF to other BDF values; example computations are provided.

  18. Mask effects on cosmological studies with weak-lensing peak statistics

    International Nuclear Information System (INIS)

    Liu, Xiangkun; Pan, Chuzhong; Fan, Zuhui; Wang, Qiao

    2014-01-01

    With numerical simulations, we analyze in detail how the bad data removal, i.e., the mask effect, can influence the peak statistics of the weak-lensing convergence field reconstructed from the shear measurement of background galaxies. It is found that high peak fractions are systematically enhanced because of the presence of masks; the larger the masked area is, the higher the enhancement is. In the case where the total masked area is about 13% of the survey area, the fraction of peaks with signal-to-noise ratio ν ≥ 3 is ∼11% of the total number of peaks, compared with ∼7% of the mask-free case in our considered cosmological model. This can have significant effects on cosmological studies with weak-lensing convergence peak statistics, inducing a large bias in the parameter constraints if the effects are not taken into account properly. Even for a survey area of 9 deg 2 , the bias in (Ω m , σ 8 ) is already intolerably large and close to 3σ. It is noted that most of the affected peaks are close to the masked regions. Therefore, excluding peaks in those regions in the peak statistics can reduce the bias effect but at the expense of losing usable survey areas. Further investigations find that the enhancement of the number of high peaks around the masked regions can be largely attributed to the smaller number of galaxies usable in the weak-lensing convergence reconstruction, leading to higher noise than that of the areas away from the masks. We thus develop a model in which we exclude only those very large masks with radius larger than 3' but keep all the other masked regions in peak counting statistics. For the remaining part, we treat the areas close to and away from the masked regions separately with different noise levels. It is shown that this two-noise-level model can account for the mask effect on peak statistics very well, and the bias in cosmological parameters is significantly reduced if this model is applied in the parameter fitting.

  19. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters

    Directory of Open Access Journals (Sweden)

    Tiit Kutser

    2016-06-01

    Full Text Available Many lakes in boreal and arctic regions have high concentrations of CDOM (coloured dissolved organic matter. Remote sensing of such lakes is complicated due to very low water leaving signals. There are extreme (black lakes where the water reflectance values are negligible in almost entire visible part of spectrum (400–700 nm due to the absorption by CDOM. In these lakes, the only water-leaving signal detectable by remote sensing sensors occurs as two peaks—near 710 nm and 810 nm. The first peak has been widely used in remote sensing of eutrophic waters for more than two decades. We show on the example of field radiometry data collected in Estonian and Swedish lakes that the height of the 810 nm peak can also be used in retrieving water constituents from remote sensing data. This is important especially in black lakes where the height of the 710 nm peak is still affected by CDOM. We have shown that the 810 nm peak can be used also in remote sensing of a wide variety of lakes. The 810 nm peak is caused by combined effect of slight decrease in absorption by water molecules and backscattering from particulate material in the water. Phytoplankton was the dominant particulate material in most of the studied lakes. Therefore, the height of the 810 peak was in good correlation with all proxies of phytoplankton biomass—chlorophyll-a (R2 = 0.77, total suspended matter (R2 = 0.70, and suspended particulate organic matter (R2 = 0.68. There was no correlation between the peak height and the suspended particulate inorganic matter. Satellite sensors with sufficient spatial and radiometric resolution for mapping lake water quality (Landsat 8 OLI and Sentinel-2 MSI were launched recently. In order to test whether these satellites can capture the 810 nm peak we simulated the spectral performance of these two satellites from field radiometry data. Actual satellite imagery from a black lake was also used to study whether these sensors can detect the peak

  20. Relaxation peak near 200 K in NiTi alloy

    Science.gov (United States)

    Zhu, J. S.; Schaller, R.; Benoit, W.

    1989-10-01

    Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.

  1. Peak power ratio generator

    Science.gov (United States)

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  2. Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Boldin, Ivan A; Nikolaev, Eugene N

    2009-10-01

    Peak coalescence, i.e. the merging of two close peaks in a Fourier transform ion cyclotron resonance (FTICR) mass spectrum at a high number of ions, plays an important role in various FTICR experiments. In order to describe the coalescence phenomenon we would like to propose a new theory of motion for ion clouds with close mass-to-charge ratios, driven by a uniform magnetic field and Coulomb interactions between the clouds. We describe the motion of the ion clouds in terms of their averaged drift motion in crossed magnetic and electric fields. The ion clouds are considered to be of constant size and their motion is studied in two dimensions. The theory deals with the first-order approximation of the equations of motion in relation to dm/m, where dm is the mass difference and m is the mass of a single ion. The analysis was done for an arbitrary inter-cloud interaction potential, which makes it possible to analyze finite-size ion clouds of any shape. The final analytical expression for the condition of the onset of coalescence is found for the case of uniformly charged spheres. An algorithm for finding this condition for an arbitrary interaction potential is proposed. The critical number of ions for the peak coalescence to take place is shown to depend quadratically on the magnetic field strength and to be proportional to the cyclotron radius and inversely proportional to the ion masses. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Turbulence Hazard Metric Based on Peak Accelerations for Jetliner Passengers

    Science.gov (United States)

    Stewart, Eric C.

    2005-01-01

    Calculations are made of the approximate hazard due to peak normal accelerations of an airplane flying through a simulated vertical wind field associated with a convective frontal system. The calculations are based on a hazard metric developed from a systematic application of a generic math model to 1-cosine discrete gusts of various amplitudes and gust lengths. The math model simulates the three degree-of- freedom longitudinal rigid body motion to vertical gusts and includes (1) fuselage flexibility, (2) the lag in the downwash from the wing to the tail, (3) gradual lift effects, (4) a simplified autopilot, and (5) motion of an unrestrained passenger in the rear cabin. Airplane and passenger response contours are calculated for a matrix of gust amplitudes and gust lengths. The airplane response contours are used to develop an approximate hazard metric of peak normal accelerations as a function of gust amplitude and gust length. The hazard metric is then applied to a two-dimensional simulated vertical wind field of a convective frontal system. The variations of the hazard metric with gust length and airplane heading are demonstrated.

  4. [A new peak detection algorithm of Raman spectra].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  5. Peak loads and network investments in sustainable energy transitions

    Energy Technology Data Exchange (ETDEWEB)

    Blokhuis, Erik, E-mail: e.g.j.blokhuis@tue.nl [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Brouwers, Bart [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Putten, Eric van der [Endinet, Gas and Electricity Network Operations, P.O. Box 2005, 5600CA Eindhoven (Netherlands); Schaefer, Wim [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands)

    2011-10-15

    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: > Sustainable energy transitions can result in major electricity peak load increases. > Introduction of heat pumps and electrical vehicles requires network expansion. > Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. > The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. > Future policy choices should be made from the viewpoint of the integral energy system.

  6. Peak loads and network investments in sustainable energy transitions

    International Nuclear Information System (INIS)

    Blokhuis, Erik; Brouwers, Bart; Putten, Eric van der; Schaefer, Wim

    2011-01-01

    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: → Sustainable energy transitions can result in major electricity peak load increases. → Introduction of heat pumps and electrical vehicles requires network expansion. → Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. → The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. → Future policy choices should be made from the viewpoint of the integral energy system.

  7. Periodic transmission peak splitting in one dimensional disordered photonic structures

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco

    2016-08-01

    In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.

  8. Degradation of the Bragg peak due to inhomogeneities.

    Science.gov (United States)

    Urie, M; Goitein, M; Holley, W R; Chen, G T

    1986-01-01

    The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles.

  9. Six-Coordinate Ln(III Complexes with Various Coordination Geometries Showing Distinct Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Mei Guo

    2018-01-01

    Full Text Available The syntheses, structural characterization, and magnetic properties of three lanthanide complexes with formulas [Ln(L13] (Ln = Dy (1Dy; Er (1Er; and [Dy(L22] (2Dy were reported. Complexes 1Dy and 1Er are isostructural with the metal ion in distorted trigonal-prismatic coordination geometry, but exhibit distinct magnetic properties due to the different shapes of electron density for DyIII (oblate and ErIII (prolate ions. Complex 1Dy shows obvious SMM behavior under a zero direct current (dc field with an effective energy barrier of 31.4 K, while complex 1Er only features SMM behavior under a 400 Oe external field with an effective energy barrier of 23.96 K. In stark contrast, complex 2Dy with the octahedral geometry only exhibits the frequency dependence of alternating current (ac susceptibility signals without χ″ peaks under a zero dc field.

  10. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kostanovskiy, I.A., E-mail: kostanovskiyia@gmail.com [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Afanas’ev, V.P. [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Naujoks, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-07-15

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses.

  11. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    International Nuclear Information System (INIS)

    Kostanovskiy, I.A.; Afanas’ev, V.P.; Naujoks, D.; Mayer, M.

    2015-01-01

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses

  12. Light, Alpha, and Fe-peak Element Abundances in the Galactic Bulge

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,-3.02) and (0,-12). The (+5.25,-3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ~ 20,000), high signal-to-noise ration (S/N >~ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] >~ -0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ⊙ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars. However, the

  13. Light, alpha, and Fe-peak element abundances in the galactic bulge

    International Nuclear Information System (INIS)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-01-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ☉ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars

  14. Light, alpha, and Fe-peak element abundances in the galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Kobayashi, Chiaki [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Kunder, Andrea [Leibniz-Institute für Astrophysik Potsdam (AIP), Ander Sternwarte 16, D-14482, Potsdam (Germany); Koch, Andreas, E-mail: cjohnson@cfa.harvard.edu, E-mail: rmr@astro.ucla.edu, E-mail: c.kobayashi@herts.ac.uk, E-mail: akunder@aip.de, E-mail: akoch@lsw.uni-heidelberg.de [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, Heidelberg (Germany)

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field

  15. Giant Oil Fields - The Highway to Oil: Giant Oil Fields and their Importance for Future Oil Production

    International Nuclear Information System (INIS)

    Robelius, Fredrik

    2007-01-01

    Since the 1950s, oil has been the dominant source of energy in the world. The cheap supply of oil has been the engine for economic growth in the western world. Since future oil demand is expected to increase, the question to what extent future production will be available is important. The belief in a soon peak production of oil is fueled by increasing oil prices. However, the reliability of the oil price as a single parameter can be questioned, as earlier times of high prices have occurred without having anything to do with a lack of oil. Instead, giant oil fields, the largest oil fields in the world, can be used as a parameter. A giant oil field contains at least 500 million barrels of recoverable oil. Only 507, or 1 % of the total number of fields, are giants. Their contribution is striking: over 60 % of the 2005 production and about 65 % of the global ultimate recoverable reserve (URR). However, giant fields are something of the past since a majority of the largest giant fields are over 50 years old and the discovery trend of less giant fields with smaller volumes is clear. A large number of the largest giant fields are found in the countries surrounding the Persian Gulf. The domination of giant fields in global oil production confirms a concept where they govern future production. A model, based on past annual production and URR, has been developed to forecast future production from giant fields. The results, in combination with forecasts on new field developments, heavy oil and oil sand, are used to predict future oil production. In all scenarios, peak oil occurs at about the same time as the giant fields peak. The worst-case scenario sees a peak in 2008 and the best-case scenario, following a 1.4 % demand growth, peaks in 2018

  16. Peak Oil, Peak Coal and Climate Change

    Science.gov (United States)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  17. Peak clustering in two-dimensional gas chromatography with mass spectrometric detection based on theoretical calculation of two-dimensional peak shapes: the 2DAid approach.

    Science.gov (United States)

    van Stee, Leo L P; Brinkman, Udo A Th

    2011-10-28

    A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. [An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].

    Science.gov (United States)

    Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang

    2014-07-01

    Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.

  19. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.

    Science.gov (United States)

    Yang, Chao; He, Zengyou; Yu, Weichuan

    2009-01-06

    In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods. In general, we can decompose a peak detection procedure into three consequent parts: smoothing, baseline correction and peak finding. We first categorize existing peak detection algorithms according to the techniques used in different phases. Such a categorization reveals the differences and similarities among existing peak detection algorithms. Then, we choose five typical peak detection algorithms to conduct a comprehensive experimental study using both simulation data and real MALDI MS data. The results of comparison show that the continuous wavelet-based algorithm provides the best average performance.

  20. Climate change and peak demand for electricity: Evaluating policies for reducing peak demand under different climate change scenarios

    Science.gov (United States)

    Anthony, Abigail Walker

    This research focuses on the relative advantages and disadvantages of using price-based and quantity-based controls for electricity markets. It also presents a detailed analysis of one specific approach to quantity based controls: the SmartAC program implemented in Stockton, California. Finally, the research forecasts electricity demand under various climate scenarios, and estimates potential cost savings that could result from a direct quantity control program over the next 50 years in each scenario. The traditional approach to dealing with the problem of peak demand for electricity is to invest in a large stock of excess capital that is rarely used, thereby greatly increasing production costs. Because this approach has proved so expensive, there has been a focus on identifying alternative approaches for dealing with peak demand problems. This research focuses on two approaches: price based approaches, such as real time pricing, and quantity based approaches, whereby the utility directly controls at least some elements of electricity used by consumers. This research suggests that well-designed policies for reducing peak demand might include both price and quantity controls. In theory, sufficiently high peak prices occurring during periods of peak demand and/or low supply can cause the quantity of electricity demanded to decline until demand is in balance with system capacity, potentially reducing the total amount of generation capacity needed to meet demand and helping meet electricity demand at the lowest cost. However, consumers need to be well informed about real-time prices for the pricing strategy to work as well as theory suggests. While this might be an appropriate assumption for large industrial and commercial users who have potentially large economic incentives, there is not yet enough research on whether households will fully understand and respond to real-time prices. Thus, while real-time pricing can be an effective tool for addressing the peak load

  1. Economic effects of peak oil

    International Nuclear Information System (INIS)

    Lutz, Christian; Lehr, Ulrike; Wiebe, Kirsten S.

    2012-01-01

    Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market. - Highlights: ► National and sectoral economic effects of peak oil until 2020 are modelled. ► The price elasticity of oil demand is low resulting in high price fluctuations. ► Oil shortage strongly affects transport and indirectly all other sectors. ► Global macroeconomic effects are comparable to the 2008/2009 crisis. ► Country effects depend on oil imports and productivity, and economic structures.

  2. Rotational and peak torque stiffness of rugby shoes.

    Science.gov (United States)

    Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe

    2014-09-01

    Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    Science.gov (United States)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  4. Multiple-valued logic design based on the multiple-peak BiCMOS-NDR circuits

    Directory of Open Access Journals (Sweden)

    Kwang-Jow Gan

    2016-06-01

    Full Text Available Three different multiple-valued logic (MVL designs using the multiple-peak negative-differential-resistance (NDR circuits are investigated. The basic NDR element, which is made of several Si-based metal-oxide-semiconductor field-effect-transistor (MOS and SiGe-based heterojunction-bipolar-transistor (HBT devices, can be implemented by using a standard BiCMOS process. These MVL circuits are designed based on the triggering-pulse control, saw-tooth input signal, and peak-control methods, respectively. However, there are some transient states existing between the multiple stable levels for the first two methods. These states might affect the circuit function in practical application. As a result, our proposed peak-control method for the MVL design can be used to overcome these transient states.

  5. Dose ratio proton radiography using the proximal side of the Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P. J., E-mail: paul.doolan.09@ucl.ac.uk; Royle, G.; Gibson, A. [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Lu, H.-M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Prieels, D.; Bentefour, E. H. [Ion Beam Applications (IBA), 3 Chemin du Cyclotron, Louvain la Neuve B-1348 (Belgium)

    2015-04-15

    square field equivalent size of 7.6 cm{sup 2}, for a required accuracy in the WET of 3 mm and a 1% noise level in the dose ratio image. The technique showed limited applicability for other patient sites. The CMOS APS demonstrated a good accuracy, with a root-mean-square-error of 1.6 mm WET. The noise in the measured images was found to be σ = 1.2% (standard deviation) and theoretical predictions with a 1.96σ noise level showed good agreement with the measured errors. Conclusions: After validating the theoretical approach with measurements, the authors have shown that the use of the proximal side of the Bragg peak when performing dose ratio imaging is feasible, and allows for a wider dynamic range than when using the distal side. The dynamic range available increases as the demand on the accuracy of the WET decreases. The technique can only be applied to clinical sites with small maximum WETs such as for pediatric brains.

  6. Standardization of I-125. Sum-Peak Coincidence Counting

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2011-01-01

    I-125 is a nuclide which presents difficulties for standardization. The sum-peak method is one of the procedures used to standardize this radionuclide. Initially NaI (Tl)detectors and then the semiconductor detectors with higher resolution have been used.This paper describes the different methods based on the sum-peak procedure and the different expressions used to calculate the activity are deduced. We describe a general procedure for obtaining all of the above equations and many more. We analyze the influence of uncertainties in the used parameters in the uncertainty of the activity. We give a complete example of the transmission of uncertainty and the effects of correlations in the uncertainty of the activity of the sample. High-resolution spectra show an unresolved doublet of 62.0 keV and 62.8 keV. The paper presents two approaches to solve this problem. One is based on the calculation of area ratio and the sum of peak areas obtained from atomic and nuclear data, in the other we modify the equations so that the sum of the peak areas doublet, rather than its components, is present. (Author) 19 refs.

  7. Standardization of I-125. Sum-Peak Coincidence Counting

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2011-07-01

    I-125 is a nuclide which presents difficulties for standardization. The sum-peak method is one of the procedures used to standardize this radionuclide. Initially NaI (Tl)detectors and then the semiconductor detectors with higher resolution have been used.This paper describes the different methods based on the sum-peak procedure and the different expressions used to calculate the activity are deduced. We describe a general procedure for obtaining all of the above equations and many more. We analyze the influence of uncertainties in the used parameters in the uncertainty of the activity. We give a complete example of the transmission of uncertainty and the effects of correlations in the uncertainty of the activity of the sample. High-resolution spectra show an unresolved doublet of 62.0 keV and 62.8 keV. The paper presents two approaches to solve this problem. One is based on the calculation of area ratio and the sum of peak areas obtained from atomic and nuclear data, in the other we modify the equations so that the sum of the peak areas doublet, rather than its components, is present. (Author) 19 refs.

  8. Electric field-induced valley degeneracy lifting in uniaxial strained graphene: Evidence from magnetophonon resonance

    Science.gov (United States)

    Assili, Mohamed; Haddad, Sonia; Kang, Woun

    2015-03-01

    A double peak structure in the magnetophonon resonance (MPR) spectrum of uniaxial strained graphene, under crossed electric and magnetic fields, is predicted. We focus on the Γ point optical phonon modes coupled to the inter-Landau level transitions 0 ⇆±1 where MPR is expected to be more pronounced at high magnetic field. We derive the frequency shifts and the broadenings of the longitudinal and transverse optical phonon modes taking into account the effect of the strain modified electronic spectrum on the electron-phonon coupling. We show that the MPR line for a given phonon mode acquires a double peak structure originating from the twofold valley degeneracy lifting. The latter is due to the different Landau level spacings in the two Dirac valleys resulting from the simultaneous action of the inplane electric field and the strain-induced Dirac cone tilt. We discuss the role of some key parameters such as disorder, strain, doping, and electric field amplitude on the emergence of the double peak structure.

  9. Pulsed field studies of magnetotransport in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Dalton, K.S.H.

    1999-01-01

    High field magnetotransport in two classes of semiconductor heterostructures has been studied: parallel transport in InAs/(Ga,In)Sb double heterojunctions and superlattices at low temperatures (300 mK-4.2 K), and vertical transport in GaAs/AlAs short-period superlattices at 150-300 K. The experiments mainly used the Oxford pulsed magnet (∼45 T, ∼15 ms pulses). The development of the data acquisition system and experimental techniques for magnetotransport are described, including corrections to the data, required because of the rapidly changing magnetic field. Previous studies of magnetotransport in InAs/GaSb double heterojunctions are reviewed: this electron-hole system shows compensated quantum Hall plateaux, with ρ xy dips accompanied by 'anomalous' peaks in σ xx . New data show a peak between ν=1 plateaux; this behaviour and the temperature dependence of the 'anomalous' σ xx peaks are explained by considering the movement of the Fermi level amongst anticrossing electron- and hole-like levels. InAs/(Ga,In)Sb superlattices with electron:hole density ratios close to 1 exhibit large oscillations in the resistivity (maxima typically ∼20-30 x higher than minima) and conductivity components. Deep minima in ρ xy alternate with low-integer plateaux. The magnetotransport in various ideal structures is considered, to explain the experimental results. The growth of a novel structure has allowed clearer observation of the behaviour of ρ xx (giant maxima) and ρ xy (zeroes or maxima) when the contributions from each well to σ xx and σ xy approach zero. Measurements of the high field magnetotransport peak positions show that the band overlap is increased by growing 'InSb' rather than 'GaAs' interfaces (∼20% increase), increasing the indium in the (Ga,In)Sb (∼30% increase per 10% In), or growing along [111] instead of [001] (∼30% increase). Magnetophonon resonance in short-period GaAs/AlAs superlattices causes strong, electric field-dependent vertical

  10. Prediction of a Photon Peak in Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casalderrey-Solana, Jorge; Mateos, David

    2008-07-01

    We show that if a flavour-less vector meson remains bound after deconfinement, and if its limiting velocity in the quark-gluon plasma is subluminal, then this meson produces a distinct peak in the spectrum of thermal photons emitted by the plasma. We also demonstrate that this effect is a universal property of all strongly coupled, large-Nc plasmas with a gravity dual. For the J/psi the corresponding peak lies between 3 and 5 GeV and could be observed at LHC.

  11. Peaked signals from dark matter velocity structures in direct detection experiments

    International Nuclear Information System (INIS)

    Lang, Rafael F.; Weiner, Neal

    2010-01-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies E R . The peaks of such signals are typically fairly broad, with ΔE R /E peak ∼ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape

  12. Peak thrust operation of linear induction machines from parameter identification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  13. Peak-by-peak correction of Ge(Li) gamma-ray spectra for photopeaks from background

    Energy Technology Data Exchange (ETDEWEB)

    Cutshall, N H; Larsen, I L [Oak Ridge National Lab., TN (USA)

    1980-12-01

    Background photopeaks can interfere with accurate measurement of low levels of radionuclides by gamma-ray spectrometry. A flowchart for peak-by-peak correction of sample spectra to produce accurate results is presented.

  14. Peaking-factor of PWR

    International Nuclear Information System (INIS)

    Morioka, Noboru; Kato, Yasuji; Yokoi, M.

    1975-01-01

    Output peaking factor often plays an important role in the safety and operation of nuclear reactors. The meaning of the peaking factor of PWRs is categorized into two features or the peaking factor in core (FQ-core) and the peaking factor on the basis of accident analysis (or FQ-limit). FQ-core is the actual peaking factor realized in nuclear core at the time of normal operation, and FQ-limit should be evaluated from loss of coolant accident and other abnormal conditions. If FQ-core is lower than FQ-limit, the reactor may be operated at full load, but if FQ-core is larger than FQ-limit, reactor output should be controlled lower than FQ-limit. FQ-core has two kinds of values, or the one on the basis of nuclear design, and the other actually measured in reactor operation. The first FQ-core should be named as FQ-core-design and the latter as FQ-core-measured. The numerical evaluation of FQ-core-design is as follows; FQ-core-design of three-dimensions is synthesized with FQ-core horizontal value (X-Y) and FQ-core vertical value, the former one is calculated with ASSY-CORE code, and the latter one with one dimensional diffusion code. For the evaluation of FQ-core-measured, on-site data observation from nuclear reactor instrumentation or off-site data observation is used. (Iwase, T.)

  15. Peak-by-peak correction of Ge(Li) gamma-ray spectra for photopeaks from background

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Larsen, I.L.

    1980-01-01

    Background photopeaks can interfere with accurate measurement of low levels of radionuclides by gamma-ray spectrometry. A flowchart for peak-by-peak correction of sample spectra to produce accurate results is presented. (orig.)

  16. Spatial peak-load pricing

    International Nuclear Information System (INIS)

    Arellano, M. Soledad; Serra, Pablo

    2007-01-01

    This article extends the traditional electricity peak-load pricing model to include transmission costs. In the context of a two-node, two-technology electric power system, where suppliers face inelastic demand, we show that when the marginal plant is located at the energy-importing center, generators located away from that center should pay the marginal capacity transmission cost; otherwise, consumers should bear this cost through capacity payments. Since electric power transmission is a natural monopoly, marginal-cost pricing does not fully cover costs. We propose distributing the revenue deficit among users in proportion to the surplus they derive from the service priced at marginal cost. (Author)

  17. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    Science.gov (United States)

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.

  18. Core fuelling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1995-01-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. It is shown that with radially 'hollow' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles that are peaked off-axis. The fuelling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fuelling does not require Megavolt particle energies. Even with beam voltages of ∼ 200 keV, however, exceptionally good particle confinement is needed to achieve net electrical power generation. The required ratio of particle to thermal diffusivities is an order of magnitude outside the range reported for tokamaks. In a system with no power production requirement (e.g., neutron sources) neutral beam fuelling should be capable of producing peaked density profiles in devices as large as ITER. Fuelling systems with low energy cost per particle - such as cryogenic pellet injection - must be used in power producing tokamaks when τ P ∼ τ E . Simulations with pellet injection speeds of 7 km/s show that the peaking factor, n e0 / e >, approaches 2. (author). 65 refs, 8 figs

  19. Filtration influence in a constant potential X-ray machine peak voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.R.; Vivolo, V.; Xavier, M.; Potiens, M.P.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Navarro, M.V.T., E-mail: dossantos.lucasrodrigues@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Salvador (Brazil)

    2017-09-01

    This work shows the peak voltage measurements for several beam filtrations used in diagnostic radiology, using two types of non-invasive detectors; a voltage meter and a high-resolution spectrometer. The technique chosen for the voltage peak measurements with the spectrometer was the endpoint. The results were compared to the measured ones and showed good similarity to the nominal values. However the voltage meter detector used in this work presented errors for heavier filtrations. (author)

  20. Automated asteroseismic peak detections

    DEFF Research Database (Denmark)

    de Montellano, Andres Garcia Saravia Ortiz; Hekker, S.; Themessl, N.

    2018-01-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However......, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible...... of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler....

  1. Environmental impacts of public transport. Why peak-period travellers cause a greater environmental burden than off-peak travellers

    International Nuclear Information System (INIS)

    Rietveld, P.

    2002-01-01

    Given the difference between peak and off-peak occupancy rates in public transport, emissions per traveller kilometre are lower in the peak than in the off-peak period, whereas the opposite pattern is observed for cars. It is argued that it is much more fruitful to analyse environmental effects in marginal terms. This calls for a careful analysis of capacity management policies of public transport suppliers that are facing increased demand during both peak and off-peak periods. A detailed analysis of capacity management by the Netherlands Railways (NS) revealed that off-peak capacity supply is mainly dictated by the demand levels during the peak period. The analysis included the effects of increased frequency and increased vehicle size on environmental impacts, while environmental economies of vehicle size were also taken into account. The main conclusion is that the marginal environmental burden during the peak hours is much higher than is usually thought, whereas it is almost zero during the off-peak period. This implies a pattern that is the precise opposite of the average environmental burden. Thus, an analysis of environmental effects of public transport based on average performance would yield misleading conclusions [nl

  2. Group Elevator Peak Scheduling Based on Robust Optimization Model

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2013-08-01

    Full Text Available Scheduling of Elevator Group Control System (EGCS is a typical combinatorial optimization problem. Uncertain group scheduling under peak traffic flows has become a research focus and difficulty recently. RO (Robust Optimization method is a novel and effective way to deal with uncertain scheduling problem. In this paper, a peak scheduling method based on RO model for multi-elevator system is proposed. The method is immune to the uncertainty of peak traffic flows, optimal scheduling is realized without getting exact numbers of each calling floor's waiting passengers. Specifically, energy-saving oriented multi-objective scheduling price is proposed, RO uncertain peak scheduling model is built to minimize the price. Because RO uncertain model could not be solved directly, RO uncertain model is transformed to RO certain model by elevator scheduling robust counterparts. Because solution space of elevator scheduling is enormous, to solve RO certain model in short time, ant colony solving algorithm for elevator scheduling is proposed. Based on the algorithm, optimal scheduling solutions are found quickly, and group elevators are scheduled according to the solutions. Simulation results show the method could improve scheduling performances effectively in peak pattern. Group elevators' efficient operation is realized by the RO scheduling method.

  3. ICPD-a new peak detection algorithm for LC/MS.

    Science.gov (United States)

    Zhang, Jianqiu; Haskins, William

    2010-12-01

    The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.

  4. Surface modification by vacuum annealing for field emission from heavily phosphorus-doped homoepitaxial (1 1 1) diamond

    International Nuclear Information System (INIS)

    Yamada, Takatoshi; Nebel, Christoph E.; Somu, Kumaragurubaran; Shikata, Shin-ichi

    2008-01-01

    The relationship between field emission properties and C 1s core level shifts of heavily phosphorus-doped homoepitaxial (1 1 1) diamond is investigated as a function of annealing temperature in order to optimize surface carbon bonding configurations for device applications. A low field emission threshold voltage is observed from surfaces annealed at 800 deg. C for hydrogen-plasma treated surface, while a low field emission threshold voltage of wet-chemical oxidized surface is observed after annealing at 900 deg. C. The C 1s core level by X-ray photoelectron spectroscopy (XPS) showed a shoulder peak at 1 eV below the main peak over 800 and 900 deg. C annealing temperature for hydrogen-plasma treated and wet-chemical oxidized surfaces, respectively. When the shoulder peak intensity is less than 10% of the main peak intensity, lower threshold voltages are observed. This is due to the carbon-reconstruction which gives rise to a small positive electron affinity. By increasing annealing temperature, the shoulder peak ratios also increase, which indicates that a surface graphitization takes place. This leads to higher threshold voltages

  5. Drivers of peak sales for pharmaceutical brands

    NARCIS (Netherlands)

    Fischer, Marc; Leeflang, Peter S. H.; Verhoef, Peter C.

    2010-01-01

    Peak sales are an important metric in the pharmaceutical industry. Specifically, managers are focused on the height-of-peak-sales and the time required achieving peak sales. We analyze how order of entry and quality affect the level of peak sales and the time-to-peak-sales of pharmaceutical brands.

  6. Automated Peak Detection and Matching Algorithm for Gas Chromatography–Differential Mobility Spectrometry

    Science.gov (United States)

    Fong, Sim S.; Rearden, Preshious; Kanchagar, Chitra; Sassetti, Christopher; Trevejo, Jose; Brereton, Richard G.

    2013-01-01

    A gas chromatography–differential mobility spectrometer (GC-DMS) involves a portable and selective mass analyzer that may be applied to chemical detection in the field. Existing approaches examine whole profiles and do not attempt to resolve peaks. A new approach for peak detection in the 2D GC-DMS chromatograms is reported. This method is demonstrated on three case studies: a simulated case study; a case study of headspace gas analysis of Mycobacterium tuberculosis (MTb) cultures consisting of three matching GC-DMS and GC-MS chromatograms; a case study consisting of 41 GC-DMS chromatograms of headspace gas analysis of MTb culture and media. PMID:21204557

  7. PLD synthesis of GaN nanowires and nanodots on patterned catalyst surface for field emission study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, D.K.T.; Hong, M.H. [National University of Singapore (Singapore). Department of Electrical and Computer Engineering; Data Storage Institute, Singapore (Singapore); Tan, L.S. [National University of Singapore (Singapore). Department of Electrical and Computer Engineering; Zhu, Y.W.; Sow, C.H. [National University of Singapore (Singapore). Nanoscience and Nanotechnology Initiative; National University of Singapore (Singapore). Department of Physics

    2008-11-15

    Patterned gallium nitride nanowires and nanodots have been grown on n-Si(100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/{mu}m to achieve a current density of 0.01 mA/cm{sup 2} and an enhanced field emission current density as high as 0.156 mA/cm{sup 2} at an applied field of 11 V/{mu}m. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties. (orig.)

  8. Analysis of Peak-to-Peak Current Ripple Amplitude in Seven-Phase PWM Voltage Source Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2013-08-01

    Full Text Available Multiphase systems are nowadays considered for various industrial applications. Numerous pulse width modulation (PWM schemes for multiphase voltage source inverters with sinusoidal outputs have been developed, but no detailed analysis of the impact of these modulation schemes on the output peak-to-peak current ripple amplitude has been reported. Determination of current ripple in multiphase PWM voltage source inverters is important for both design and control purposes. This paper gives the complete analysis of the peak-to-peak current ripple distribution over a fundamental period for multiphase inverters, with particular reference to seven-phase VSIs. In particular, peak-to-peak current ripple amplitude is analytically determined as a function of the modulation index, and a simplified expression to get its maximum value is carried out. Although reference is made to the centered symmetrical PWM, being the most simple and effective solution to maximize the DC bus utilization, leading to a nearly-optimal modulation to minimize the RMS of the current ripple, the analysis can be readily extended to either discontinuous or asymmetrical modulations, both carrier-based and space vector PWM. A similar approach can be usefully applied to any phase number. The analytical developments for all different sub-cases are verified by numerical simulations.

  9. On the portents of peak oil (and other indicators of resource scarcity)

    International Nuclear Information System (INIS)

    Smith, James L.

    2012-01-01

    Economists have studied various indicators of resource scarcity but largely ignored the phenomenon of “peaking” due to its connection to non-economic (physical) theories of resource exhaustion. I consider peaking from the economic point of view, where economic forces determine the shape of the equilibrium extraction path. Within that framework, I ask whether the timing of peak production reveals anything useful about scarcity. I find peaking to be an ambiguous indicator. If someone announced the peak would arrive earlier than expected, and you believed them, you would not know whether the news was good or bad. However, I also show that the traditional economic indicators of resource scarcity (price, cost, and rent) fare no better, and argue that previous studies have misconstrued the connection between changes in underlying scarcity and movements in these traditional indicators. - Highlights: ► We ask whether “peak oil” provides a useful economic indicator of scarcity. ► Timing of the peak follows Hotelling's model of inter-temporal equilibrium. ► The peak provides an ambiguous signal. ► Unexpectedly early peaking could be good news or bad. ► The traditional indicators (cost, price, and rent) do not fare much better.

  10. How to use your peak flow meter

    Science.gov (United States)

    ... meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  11. Reversal of asymmetry of X-ray peak profiles from individual grains during a strain path change

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Lienert, U.; Pantleon, Wolfgang

    2010-01-01

    X-ray peak profiles are measured from individual bulk grains during tensile deformation. Two differently oriented copper samples pre-deformed in tension show the expected peak profile asymmetry caused by intra-grain stresses. One of the samples is oriented to achieve a significant change of the i......X-ray peak profiles are measured from individual bulk grains during tensile deformation. Two differently oriented copper samples pre-deformed in tension show the expected peak profile asymmetry caused by intra-grain stresses. One of the samples is oriented to achieve a significant change...

  12. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    Science.gov (United States)

    Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.

  13. Energy Saving by Chopping off Peak Demand Using Day Light

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Maitra

    2011-08-01

    Full Text Available An artificial intelligent technique has been implemented in this research using real time datas to calculate how much energy can be chopped from peak load demand. The results are based on real time data that are taken from power delivering centers. These datas do reflect the present condition of power and a solution to those critical conditions during the peak period. These are done in such a way such that helps in judicious scheduling of load. The time based load scheduling has been done so as to understand the basic criteria for solving power crisis during morning peak and early evening peak. The sunray availability and percentage of load that will use day light saving (DLS technique has been taken into account in this work. The results shows that about 0.5% to 1% of load can be shedded off from the peak load period which otherwise is reduction of power. Thus it otherwise also means that an equivalent amount of energy is saved which amounts to a large saving of national money. This result is obtained on monthly and even daily basis. Thus this paper justifies DLS gives a new renewable technique to save energy.

  14. Low-field susceptibilities of rare earth spin glass alloys

    International Nuclear Information System (INIS)

    Sarkissian, B.V.B.

    1977-01-01

    Static susceptibility in various applied fields and AC susceptibility data on Sc 13% Gd and Sc 4.5% Tb spin glass alloys are reported. The data show that the sharp peak at the freezing temperature, Tsub(g), normally observed in the low-field susceptibility of spin glasses containing 3d magnetic impurities is observed here in the case of Gd, which is an S state solute, but not for Tb. On the contrary, for the Sc-Tb alloy a rather rounded maximum is observed which becomes slightly sharper with increasing applied magnetic fields. (author)

  15. Dynamics of supercooled liquids: excess wings, β peaks, and rotation-translation coupling

    International Nuclear Information System (INIS)

    Cummins, H Z

    2005-01-01

    Dielectric susceptibility spectra of liquids cooled towards the liquid-glass transition often exhibit secondary structure in the frequency region between the α peak and the susceptibility minimum, in the form of either an 'excess wing' or a secondary peak-the Johari-Goldstein β peak. Recently, Goetze and Sperl (2004 Phys. Rev. Lett. 92 105701) showed that a simple schematic mode coupling theory model, which incorporates rotation-translation (RT) coupling, successfully describes the nearly logarithmic decay observed in optical Kerr effect data. This model also exhibits both excess wing and β peak features, qualitatively resembling experimental dielectric data. It also predicts that the excess wing slope decreases with decreasing temperature and gradually evolves into a β peak with increasing RT coupling. We therefore suggest that these features and their observed evolution with temperature may be consequences of RT coupling

  16. Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields

    International Nuclear Information System (INIS)

    Burileanu, L.M.

    2014-01-01

    Using a perturbative method we have investigated the behavior of the binding energy and photoionization cross-section of a donor impurity in spherical GaAs–GaAlAs quantum dots under the influence of electric and intense high-frequency laser fields. The dependencies of the binding energy and photoionization cross-section on electric and laser field strength, dot radius and impurity position were investigated. Our results show that the amplitude of photoionization cross-section grows with the dot radius increase and the peak of the cross-section blue shifts with the laser intensity increment. We have found that the binding energy is not a monotonically function of laser intensity: it decreases or increases depending on electric field regime. The studied effects are even more pronounced as the quantum dot radius is smaller. -- Highlights: • A photoionization cross-section study in quantum dots under laser and electric fields. • The photoionization cross-section peaks are red shifted by the electric field. • The photoionization cross-section peaks are blue shifted by the laser field. • The combined effects of applied fields strongly affect the binding energy

  17. Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response

    International Nuclear Information System (INIS)

    Gyamfi, Samuel; Krumdieck, Susan

    2011-01-01

    Peak demand on electricity grids is a growing problem that increases costs and risks to supply security. Residential sector loads often contribute significantly to seasonal and daily peak demand. Demand response projects aim to manage peak demand by applying price signals and automated load shedding technologies. This research investigates voluntary load shedding in response to information about the security of supply, the emission profile and the cost of meeting critical peak demand in the customers' network. Customer willingness to change behaviour in response to this information was explored through mail-back survey. The diversified demand modelling method was used along with energy audit data to estimate the potential peak load reduction resulting from the voluntary demand response. A case study was conducted in a suburb of Christchurch, New Zealand, where electricity is the main source for water and space heating. On this network, all water heating cylinders have ripple-control technology and about 50% of the households subscribe to differential day/night pricing plan. The survey results show that the sensitivity to supply security is on par with price, with the emission sensitivity being slightly weaker. The modelling results show potential 10% reduction in critical peak load for aggregate voluntary demand response. - Highlights: → Multiple-factor behaviour intervention is necessarily for effective residential demand response. → Security signals can achieve result comparable to price. → The modelling results show potential 10% reduction in critical peak load for aggregate voluntary demand response. → New Zealand's energy policy should include innovation and development of VDR programmes and technologies.

  18. Peak reduction for commercial buildings using energy storage

    Science.gov (United States)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  19. Discovery and characterization of the first low-peaked and intermediate-peaked BL Lacertae objects in the very high energy {gamma}-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Karsten

    2009-12-19

    20 years after the discovery of the Crab Nebula as a source of very high energy {gamma}-rays, the number of sources newly discovered above 100 GeV using ground-based Cherenkov telescopes has considerably grown, at the time of writing of this thesis to a total of 81. The sources are of different types, including galactic sources such as supernova remnants, pulsars, binary systems, or so-far unidentified accelerators and extragalactic sources such as blazars and radio galaxies. The goal of this thesis work was to search for {gamma}-ray emission from a particular type of blazars previously undetected at very high {gamma}-ray energies, by using the MAGIC telescope. Those blazars previously detected were all of the same type, the so-called high-peaked BL Lacertae objects. The sources emit purely non-thermal emission, and exhibit a peak in their radio-to-X-ray spectral energy distribution at X-ray energies. The entire blazar population extends from these rare, low-luminosity BL Lacertae objects with peaks at X-ray energies to the much more numerous, high-luminosity infrared-peaked radio quasars. Indeed, the low-peaked sources dominate the source counts obtained from space-borne observations at {gamma}-ray energies up to 10 GeV. Their spectra observed at lower {gamma}-ray energies show power-law extensions to higher energies, although theoretical models suggest them to turn over at energies below 100 GeV. This opened the quest for MAGIC as the Cherenkov telescope with the currently lowest energy threshold. In the framework of this thesis, the search was focused on the prominent sources BL Lac, W Comae and S5 0716+714, respectively. Two of the sources were unambiguously discovered at very high energy {gamma}-rays with the MAGIC telescope, based on the analysis of a total of about 150 hours worth of data collected between 2005 and 2008. The analysis of this very large data set required novel techniques for treating the effects of twilight conditions on the data quality

  20. Discovery and characterization of the first low-peaked and intermediate-peaked BL Lacertae objects in the very high energy γ-ray regime

    International Nuclear Information System (INIS)

    Berger, Karsten

    2009-01-01

    20 years after the discovery of the Crab Nebula as a source of very high energy γ-rays, the number of sources newly discovered above 100 GeV using ground-based Cherenkov telescopes has considerably grown, at the time of writing of this thesis to a total of 81. The sources are of different types, including galactic sources such as supernova remnants, pulsars, binary systems, or so-far unidentified accelerators and extragalactic sources such as blazars and radio galaxies. The goal of this thesis work was to search for γ-ray emission from a particular type of blazars previously undetected at very high γ-ray energies, by using the MAGIC telescope. Those blazars previously detected were all of the same type, the so-called high-peaked BL Lacertae objects. The sources emit purely non-thermal emission, and exhibit a peak in their radio-to-X-ray spectral energy distribution at X-ray energies. The entire blazar population extends from these rare, low-luminosity BL Lacertae objects with peaks at X-ray energies to the much more numerous, high-luminosity infrared-peaked radio quasars. Indeed, the low-peaked sources dominate the source counts obtained from space-borne observations at γ-ray energies up to 10 GeV. Their spectra observed at lower γ-ray energies show power-law extensions to higher energies, although theoretical models suggest them to turn over at energies below 100 GeV. This opened the quest for MAGIC as the Cherenkov telescope with the currently lowest energy threshold. In the framework of this thesis, the search was focused on the prominent sources BL Lac, W Comae and S5 0716+714, respectively. Two of the sources were unambiguously discovered at very high energy γ-rays with the MAGIC telescope, based on the analysis of a total of about 150 hours worth of data collected between 2005 and 2008. The analysis of this very large data set required novel techniques for treating the effects of twilight conditions on the data quality. This was successfully achieved

  1. Large abnormal peak on capillary zone electrophoresis due to contrast agent.

    Science.gov (United States)

    Wheeler, Rachel D; Zhang, Liqun; Sheldon, Joanna

    2017-01-01

    Background Some iodinated radio-contrast media absorb ultraviolet light and can therefore be detected by capillary zone electrophoresis. If seen, these peaks are typically small with 'quantifications' of below 5 g/L. Here, we describe the detection of a large peak on capillary zone electrophoresis that was due to the radio-contrast agent, Omnipaque™. Methods Serum from a patient was analysed by capillary zone electrophoresis, and the IgG, IgA, IgM and total protein concentrations were measured. The serum sample was further analysed by gel electrophoresis and immunofixation. Results Capillary zone electrophoresis results for the serum sample showed a large peak with a concentration high enough to warrant urgent investigation. However, careful interpretation alongside the serum immunoglobulin concentrations and total protein concentration showed that the abnormal peak was a pseudoparaprotein rather than a monoclonal immunoglobulin. This was confirmed by analysis with gel electrophoresis and also serum immunofixation. The patient had had a CT angiogram with the radio-contrast agent Omnipaque™; addition of Omnipaque™ to a normal serum sample gave a peak with comparable mobility to the pseudoparaprotein in the patient's serum. Conclusions Pseudoparaproteins can appear as a large band on capillary zone electrophoresis. This case highlights the importance of a laboratory process that detects significant electrophoretic abnormalities promptly and interprets them in the context of the immunoglobulin concentrations. This should avoid incorrect reporting of pseudoparaproteins which could result in the patient having unnecessary investigations.

  2. Peaked signals from dark matter velocity structures in direct detection experiments

    Science.gov (United States)

    Lang, Rafael F.; Weiner, Neal

    2010-06-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.

  3. Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals.

    Science.gov (United States)

    Ze Wang; Chi Man Wong; Feng Wan

    2017-07-01

    An adaptive Fourier decomposition (AFD) based R-peak detection method is proposed for noisy ECG signals. Although lots of QRS detection methods have been proposed in literature, most detection methods require high signal quality. The proposed method extracts the R waves from the energy domain using the AFD and determines the R-peak locations based on the key decomposition parameters, achieving the denoising and the R-peak detection at the same time. Validated by clinical ECG signals in the MIT-BIH Arrhythmia Database, the proposed method shows better performance than the Pan-Tompkin (PT) algorithm in both situations of a native PT and the PT with a denoising process.

  4. Gnevyshev peaks in solar radio emissions at different frequencies

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2009-04-01

    Full Text Available Sunspots have a major 11-year cycle, but the years near the sunspot maximum show two or more peaks called GP (Gnevyshev Peaks. In this communication, it was examined whether these peaks in sunspots are reflected in other parameters such as Lyman-α (the chromospheric emission 121.6 nm, radio emissions 242–15 400 MHz emanating from altitude levels 2000–12 000 km, the low latitude (+45° to −45° solar open magnetic flux and the coronal green line emission (Fe XIV, 530.3 nm. In the different solar cycles 20–23, the similarity extended at least upto the level of 609 MHz, but in cycle 22, the highest level was of 242 MHz. The extension to the higher level in cycle 22 does not seem to be related to the cycle strength Rz(max, or to the cycle length.

  5. Discrete ordinates transport methods for problems with highly forward-peaked scattering

    International Nuclear Information System (INIS)

    Pautz, S.D.

    1998-04-01

    The author examines the solutions of the discrete ordinates (S N ) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S N equations. This analysis shows that in this asymptotic limit the S N solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S N equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method

  6. Automated asteroseismic peak detections

    Science.gov (United States)

    García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.

    2018-05-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.

  7. Improved Peak Capacity for Capillary Electrophoretic Separations of Enzyme Inhibitors with Activity-Based Detection Using Magnetic Bead Microreactors

    Science.gov (United States)

    Yan, Xiaoyan; Gilman, S. Douglass

    2010-01-01

    A technique for separating and detecting enzyme inhibitors was developed using capillary electrophoresis with an enzyme microreactor. The on-column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase-coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme microreactor was detected by laser-induced fluorescence. Inhibitor zones electrophoresed through the capillary, passed through the enzyme microreactor, and were observed as negative peaks due to decreased product formation. The goal of this study was to improve peak capacities for inhibitor separations relative to previous work, which combined continuous engagement electrophoretically mediated microanalysis (EMMA) and transient engagement EMMA to study enzyme inhibition. The effects of electric field strength, bead injection time and inhibitor concentrations on peak capacity and peak width were investigated. Peak capacities were increased to ≥20 under optimal conditions of electric field strength and bead injection time for inhibition assays with arsenate and theophylline. Five reversible inhibitors of alkaline phosphatase (theophylline, vanadate, arsenate, L-tryptophan and tungstate) were separated and detected to demonstrate the ability of this technique to analyze complex inhibitor mixtures. PMID:20024913

  8. Extreme daily increases in peak electricity demand: Tail-quantile estimation

    International Nuclear Information System (INIS)

    Sigauke, Caston; Verster, Andréhette; Chikobvu, Delson

    2013-01-01

    A Generalized Pareto Distribution (GPD) is used to model extreme daily increases in peak electricity demand. The model is fitted to years 2000–2011 recorded data for South Africa to make a comparative analysis with the Generalized Pareto-type (GP-type) distribution. Peak electricity demand is influenced by the tails of probability distributions as well as by means or averages. At times there is a need to depart from the average thinking and exploit information provided by the extremes (tails). Empirical results show that both the GP-type and the GPD are a good fit to the data. One of the main advantages of the GP-type is the estimation of only one parameter. Modelling of extreme daily increases in peak electricity demand helps in quantifying the amount of electricity which can be shifted from the grid to off peak periods. One of the policy implications derived from this study is the need for day-time use of electricity billing system similar to the one used in the cellular telephone/and fixed line-billing technology. This will result in the shifting of electricity demand on the grid to off peak time slots as users try to avoid high peak hour charges. - Highlights: ► Policy makers should design demand response strategies to save electricity. ► Peak electricity demand is influenced by tails of probability distributions. ► Both the GSP and the GPD are a good fit to the data. ► Accurate assessment of level and frequency of extreme load forecasts is important.

  9. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK

    International Nuclear Information System (INIS)

    Würz, Julia M.; Güntert, Peter

    2017-01-01

    The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

  10. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK

    Energy Technology Data Exchange (ETDEWEB)

    Würz, Julia M.; Güntert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (Germany)

    2017-01-15

    The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

  11. Coupled field induced conversion between destructive and constructive quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong

    2016-12-15

    We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.

  12. Acquisition of peak responding: what is learned?

    Science.gov (United States)

    Balci, Fuat; Gallistel, Charles R; Allen, Brian D; Frank, Krystal M; Gibson, Jacqueline M; Brunner, Daniela

    2009-01-01

    We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later.

  13. Simultaneous collection method of on-peak window image and off-peak window image in Tl-201 imaging

    International Nuclear Information System (INIS)

    Murakami, Tomonori; Noguchi, Yasushi; Kojima, Akihiro; Takagi, Akihiro; Matsumoto, Masanori

    2007-01-01

    Tl-201 imaging detects the photopeak (71 keV, in on-peak window) of characteristic X-rays of Hg-201 formed from Tl-201 decay. The peak is derived from 4 rays of different energy and emission intensity and does not follow in Gaussian distribution. In the present study, authors made an idea for the method in the title to attain the more effective single imaging, which was examined for its accuracy and reliability with phantoms and applied clinically to Tl-201 scintigraphy in a patient. The authors applied the triple energy window method for data acquisition: the energy window setting was made on Hg-201 X-rays photopeak in three of the lower (3%, L), main (72 keV, M) and upper (14%, U) windows with the gamma camera with 2-gated detector (Toshiba E. CAM/ICON). L, M and U images obtained simultaneously were then constructed to images of on-peak (L+M, Mock on-peak) and off-peak (M+U) window settings for evaluation. Phantoms for line source with Tl-201-containing swab and for multi-defect with acrylic plate containing Tl-201 solution were imaged in water. The female patient with thyroid cancer was subjected to preoperative scintigraphy under the defined conditions. Mock on-, off-peak images were found to be equivalent to the true (ordinary, clinical) on-, off-peak ones, and the present method was thought usable for evaluation of usefulness of off-peak window data. (R.T.)

  14. Fluctuations of the peak current of tunnel diodes in multi-junction solar cells

    International Nuclear Information System (INIS)

    Jandieri, K; Baranovskii, S D; Stolz, W; Gebhard, F; Guter, W; Hermle, M; Bett, A W

    2009-01-01

    Interband tunnel diodes are widely used to electrically interconnect the individual subcells in multi-junction solar cells. Tunnel diodes have to operate at high current densities and low voltages, especially when used in concentrator solar cells. They represent one of the most critical elements of multi-junction solar cells and the fluctuations of the peak current in the diodes have an essential impact on the performance and reliability of the devices. Recently we have found that GaAs tunnel diodes exhibit extremely high peak currents that can be explained by resonant tunnelling through defects homogeneously distributed in the junction. Experiments evidence rather large fluctuations of the peak current in the diodes fabricated from the same wafer. It is a challenging task to clarify the reason for such large fluctuations in order to improve the performance of the multi-junction solar cells. In this work we show that the large fluctuations of the peak current in tunnel diodes can be caused by relatively small fluctuations of the dopant concentration. We also show that the fluctuations of the peak current become smaller for deeper energy levels of the defects responsible for the resonant tunnelling.

  15. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    2000-05-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  16. Seasonal analysis of precipitation, drought and Vegetation index in Indonesian paddy field based on remote sensing data

    International Nuclear Information System (INIS)

    Darmawan, S; Takeuchi, W; Shofiyati, R; Sari, D K; Wikantika, K

    2014-01-01

    Paddy field is important agriculture crop in Indonesia. Rice is a food staple for 237,6 million Indonesian people. Paddy field growth is strongly influenced by water, but the amount of precipitation is unpredictable. Annual and interannual climate variability in Indonesia is unusual. In recent years remote sensing data has been used for measurement and monitoring of precipitation, drought and Vegetation index such as Global Satellite Mapping of Precipitation (GSMaP), Multi-purpose Transmission SATellite (MTSAT) and Moderate Resolution Imaging Spectroradiometer (MODIS). The objective of this research is to investigate seasonal variability of precipitation, drought and Vegetation index in Indonesian paddy field based on remote sensing data. The methodology consists of collecting of enhanced vegetation index (EVI) from MODIS data, mosaicking of image, collecting of region of interest of paddy field, collecting of precipitation and drought index based on Keetch Bryam Drought Index (KBDI) from GSMaP and MTSAT, and seasonal analysis. The result of this research has showed seasonal variability of precipitation, KBDI and EVI on Indonesia paddy field from 2007 until 2012. Precipitation begins from January until May and October until December, and KBDI begins to increase from June and peak in September only in South Sumatera precipitation almost in all month. Seasonal analysis has showed precipitation and KBDI affect on EVI that can indicate variety phenology of Indonesian paddy field. Peak of EVI occurs before peak of KBDI occurs and increasing of KBDI followed by decreasing of EVI. In 2010 all province got higher precipitation and smaller KBDI so EVI has three peaks such as in West Java that can indicated increasing of rice production

  17. An internal friction peak caused by hydrogen in maraging steel

    International Nuclear Information System (INIS)

    Usui, Makoto; Asano, Shigeru

    1996-01-01

    Internal friction in hydrogen-charged iron and steel has so far been studied by a large number of investigators. For pure iron, a well-defined peak of internal friction has been observed under the cold-worked and hydrogen-charged conditions. This is called the hydrogen cold-work peak, or the Snoek-Koester relaxation, which originates from the hydrogen-dislocation interaction. In the present study, a high-strength maraging steel (Fe-18Ni-9Co-5Mo) was chosen as another high-alloy steel which is known to be very susceptible to hydrogen embrittlement. The purpose of this paper is to show a new internal friction peak caused by hydrogen in the maraging steel and to compare it with those found in stainless steels which have so far been studied as typical engineering high-alloy materials

  18. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  19. Magnitudes and timing of seasonal peak snowpack water equivalents in Arizona: A preliminary study of the possible effects of recent climatic change

    Science.gov (United States)

    Peter F. Ffolliott; Gerald J. Gottfried

    2010-01-01

    Field measurements and computer-based predictions suggest that the magnitudes of seasonal peak snowpack water equivalents are becoming less and the timing of these peaks is occurring earlier in the snowmelt-runoff season of the western United States. These changes in peak snowpack conditions have often been attributed to a warming of the regional climate. To determine...

  20. Peak creation in the energy spectrum of laser-produced protons by phase rotation

    International Nuclear Information System (INIS)

    Noda, Akira; Nakamura, Shu; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Ito, Hiroyuki; Souda, Hikaru; Yamazaki, Atsushi; Tanabe, Mikio; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Bulanov, Sergei; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    In collaboration between JAEA, Kansai Photon Science Institute and Institute for Chemical Research, Kyoto University, proton generation from a thin foil target (Ti 3 or 5 μm in thickness) with use of 10 TW laser (JLITEX) has been performed. Proton production is optimized by real time proton energy measurement with use of TOF method. Phase rotation with use of an RF electric field phase-synchronized to the pulse laser enabled the creation of peaks with the spread of ∼7% in the energy spectrum of the produced protons, which resulted in the increase of the intensity ∼4 times at peak position. (author)

  1. Statistical analysis of the low-temperature dislocation peak of internal friction (Bordoni peak) in nanostructured copper

    International Nuclear Information System (INIS)

    Vatazhuk, E.N.; Natsik, V.D.

    2011-01-01

    The temperature-frequency dependence of internal friction in the nanostructured samples of Cu and fibred composite C-32 vol.%Nb with the sizes of structure fragments approx 200 nm is analyzed. Experiments are used as initial information for such analysis. The characteristic for the heavily deformed copper Bordoni peak, located nearby a temperature 90 K, was recorded on temperature dependence of vibration decrement (frequencies 73-350 kHz) in previous experiments. The peak is due to the resonance interaction of sound with the system of thermal activated relaxators, and its width considerably greater in comparison with the width of standard internal friction peak with the single relaxation time. Statistical analysis of the peak is made in terms of assumption that the reason of broadening is random activation energy dispersion of relaxators as a result of intense distortion of copper crystal structure. Good agreement of experimental data and Seeger theory considers thermal activated paired kinks at linear segments of dislocation lines, placed in potential Peierls relief valley, as relaxators of Bordoni peak, was established. It is shown that the registered peak height in experiment correspond to presence at the average one dislocation segment in the interior of crystalline grain with size of 200 nm. Empirical estimates for the critical Peierls stress σp ∼ 2x10 7 Pa and integrated density of the interior grain dislocations ρ d ∼ 10 13 m -2 are made. Nb fibers in the composite Cu-Nb facilitate to formation of nanostructured copper, but do not influence evidently on the Bordoni peak.

  2. Within-field spatial distribution of Megacopta cribraria (Hemiptera: Plataspidae) in soybean (Fabales: Fabaceae).

    Science.gov (United States)

    Seiter, Nicholas J; Reay-Jones, Francis P F; Greene, Jeremy K

    2013-12-01

    The recently introduced plataspid Megacopta cribraria (F.) can infest fields of soybean (Glycine max (L.) Merrill) in the southeastern United States. Grid sampling in four soybean fields was conducted in 2011 and 2012 to study the spatial distribution of M. cribraria adults, nymphs, and egg masses. Peak oviposition typically occurred in early August, while peak levels of adults occurred in mid-late September. The overall sex ratio was slightly biased at 53.1 ± 0.2% (SEM) male. Sweep samples of nymphs were biased toward late instars. All three life stages exhibited a generally aggregated spatial distribution based on Taylor's power law, Iwao's patchiness regression, and spatial analysis by distance indices (SADIE). Interpolation maps of local SADIE aggregation indices showed clusters of adults and nymphs located at field edges, and mean densities of adults were higher in samples taken from field edges than in those taken from field interiors. Adults and nymphs were often spatially associated based on SADIE, indicating spatial stability across life stages.

  3. Universal parametric correlations of conductance peaks in quantum dots

    International Nuclear Information System (INIS)

    Alhassid, Y.; Attias, H.

    1996-01-01

    We compute the parametric correlation function of the conductance peaks in chaotic and weakly disordered quantum dots in the Coulomb blockade regime and demonstrate its universality upon an appropriate scaling of the parameter. For a symmetric dot we show that this correlation function is affected by breaking time-reversal symmetry but is independent of the details of the channels in the external leads. We derive a new scaling which depends on the eigenfunctions alone and can be extracted directly from the conductance peak heights. Our results are in excellent agreement with model simulations of a disordered quantum dot. copyright 1996 The American Physical Society

  4. The peak in neutron powder diffraction

    International Nuclear Information System (INIS)

    Laar, B. van; Yelon, W.B.

    1984-01-01

    For the application of Rietveld profile analysis to neutron powder diffraction data a precise knowledge of the peak profile, in both shape and position, is required. The method now in use employs a Gaussian shaped profile with a semi-empirical asymmetry correction for low-angle peaks. The integrated intensity is taken to be proportional to the classical Lorentz factor calculated for the X-ray case. In this paper an exact expression is given for the peak profile based upon the geometrical dimensions of the diffractometer. It is shown that the asymmetry of observed peaks is well reproduced by this expression. The angular displacement of the experimental profile with respect to the nominal Bragg angle value is larger than expected. Values for the correction to the classical Lorentz factor for the integrated intensity are given. The exact peak profile expression has been incorporated into a Rietveld profile analysis refinement program. (Auth.)

  5. Customers` response to residential peak-activated pricing. Evidence from a Japanese experiment; Peak taio ryokinka ni okeru kateiyo juyoka no fuka chosei kodo no bunseki. Kansetsu fuka seigyo jikken data wo mochiita kakaku koka no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Asano, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-10-01

    Demand side management through a pricing mechanism, that is the indirect load control was experimented to analyze the pricing effect. When power consumption in indirect load control groups is compared between peak time band in weekdays in summer and off-the-peak time band, the power is less consumed when price gap is set than in a uniform charge time. When more number of persons is in home in daytime, room cooling is used in daytime including the peak band to adjust the demand. The substitution elasticity in price between demands in the peak time band and the off-the-peak time band is from about 0.06 to 0.07, which cannot be ignored. If the peak price is increased by four times, the demand in the peak band can be reduced by about 0.15 kW (when average power demand per household is assumed 0.75 kW). For room cooling devices, the first device is often installed in a living room and the second and further units in individual rooms such as bed rooms. The more the number of device, the higher the possibility that the use time band is outside the peak time band. This indirect load control experiment is a field test related to the peak-activated pricing for small power users, by which the users` behavior against the pricing effect was identified quantitatively. 5 refs., 1 fig., 8 tabs.

  6. Method and apparatus for current-output peak detection

    Science.gov (United States)

    De Geronimo, Gianluigi

    2017-01-24

    A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.

  7. Gamma-Ray Peak Integration: Accuracy and Precision

    International Nuclear Information System (INIS)

    Richard M. Lindstrom

    2000-01-01

    The accuracy of singlet gamma-ray peak areas obtained by a peak analysis program is immaterial. If the same algorithm is used for sample measurement as for calibration and if the peak shapes are similar, then biases in the integration method cancel. Reproducibility is the only important issue. Even the uncertainty of the areas computed by the program is trivial because the true standard uncertainty can be experimentally assessed by repeated measurements of the same source. Reproducible peak integration was important in a recent standard reference material certification task. The primary tool used for spectrum analysis was SUM, a National Institute of Standards and Technology interactive program to sum peaks and subtract a linear background, using the same channels to integrate all 20 spectra. For comparison, this work examines other peak integration programs. Unlike some published comparisons of peak performance in which synthetic spectra were used, this experiment used spectra collected for a real (though exacting) analytical project, analyzed by conventional software used in routine ways. Because both components of the 559- to 564-keV doublet are from 76 As, they were integrated together with SUM. The other programs, however, deconvoluted the peaks. A sensitive test of the fitting algorithm is the ratio of reported peak areas. In almost all the cases, this ratio was much more variable than expected from the reported uncertainties reported by the program. Other comparisons to be reported indicate that peak integration is still an imperfect tool in the analysis of gamma-ray spectra

  8. Morphology of magnetic fields generated in laser-produced plasmas

    International Nuclear Information System (INIS)

    Boyd, T.J.M.; Cooke, D.

    1988-01-01

    Magnetic fields in the megagauss range have been measured in experiments on plasmas generated by irradiating targets with high power lasers. A study of the morphology of these self-generated fields is important not only for its intrinsic interest but for possible implications in laser--target physics. In this paper work on the numerical modeling of large magnetic fields generated in target experiments is reported. The results show generally satisfactory agreement with the fields measured experimentally both in terms of the magnitude of the peak fields and their morphology. In the numerical model the contribution from the Hall term in describing the evolution of the magnetic field is shown to be important especially in short pulse (≅100 psec) experiments

  9. Hubbert's Peak -- A Physicist's View

    Science.gov (United States)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  10. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    Science.gov (United States)

    Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.

    2018-05-01

    In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  11. Fast neutron detection with germanium detectors: computation of response functions for the 692 keV inelastic scattering peak

    International Nuclear Information System (INIS)

    Fehrenbacher, G.; Meckbach, R.; Paretzke, H.G.

    1996-01-01

    The dependence of the shape of the right-sided broadening of the inelastic scattering peak at 692 keV in the pulse-height distribution measured with a Ge detector in fast neutron fields on the energy of the incident neutrons has been analyzed. A model incorporating the process contributing to the energy deposition that engender the peak, including the partitioning of the energy deposition by the Ge recoils, was developed. With a Monte Carlo code based on this model, the detector response associated with this peak was computed and compared with results of measurements with quasi-monoenergetic neutrons for energies between 0.88 and 2.1 MeV. A set of 80 response functions for neutron energies in the range from the reaction threshold at 0.7 to 6 MeV was computed, which will serve as a starting point for methods, which aim at obtaining information on the spectral distribution of fast neutron fields for this energy range from measurements with a Ge detector. (orig.)

  12. Peak-to-valley ratios for three different HPGe detectors for the assessment of 137Cs deposition on the ground and the impact of the detector field-of-view.

    Science.gov (United States)

    Östlund, Karl; Samuelsson, Christer; Mattsson, Sören; Rääf, Christopher L

    2017-02-01

    The peak-to-valley (PTV) method was investigated experimentally comparing PTV ratios for three HPGe detectors, with complementary Monte Carlo simulations of scatter in air for larger source-detector distances. The measured PTV ratios for 137Cs in air were similar for three different detectors for incident angles between 0 and 90°. The study indicated that the PTV method can differentiate between surface and shallow depth sources if the detector field of view is limited to a radius of less than 3.5m. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    Science.gov (United States)

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2018-06-01

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit

  14. High impact ionization rate in silicon by sub-picosecond THz electric field pulses (Conference Presentation)

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Hirori, Hideki

    2017-01-01

    Summary form only given. Metallic antenna arrays fabricated on high resistivity silicon are used to localize and enhance the incident THz field resulting in high electric field pulses with peak electric field strength reaching several MV/cm on the silicon surface near the antenna tips. In such high...... electric field strengths high density of carriers are generated in silicon through impact ionization process. The high density of generated carriers induces a change of refractive index in silicon. By measuring the change of reflectivity of tightly focused 800 nm light, the local density of free carriers...... near the antenna tips is measured. Using the NIR probing technique, we observed that the density of carriers increases by over 8 orders of magnitude in a time duration of approximately 500 fs with an incident THz pulse of peak electric field strength 700 kV/cm. This shows that a single impact...

  15. Genetic Spot Optimization for Peak Power Estimation in Large VLSI Circuits

    Directory of Open Access Journals (Sweden)

    Michael S. Hsiao

    2002-01-01

    Full Text Available Estimating peak power involves optimization of the circuit's switching function. The switching of a given gate is not only dependent on the output capacitance of the node, but also heavily dependent on the gate delays in the circuit, since multiple switching events can result from uneven circuit delay paths in the circuit. Genetic spot expansion and optimization are proposed in this paper to estimate tight peak power bounds for large sequential circuits. The optimization spot shifts and expands dynamically based on the maximum power potential (MPP of the nodes under optimization. Four genetic spot optimization heuristics are studied for sequential circuits. Experimental results showed an average of 70.7% tighter peak power bounds for large sequential benchmark circuits was achieved in short execution times.

  16. Modeling the probability distribution of peak discharge for infiltrating hillslopes

    Science.gov (United States)

    Baiamonte, Giorgio; Singh, Vijay P.

    2017-07-01

    Hillslope response plays a fundamental role in the prediction of peak discharge at the basin outlet. The peak discharge for the critical duration of rainfall and its probability distribution are needed for designing urban infrastructure facilities. This study derives the probability distribution, denoted as GABS model, by coupling three models: (1) the Green-Ampt model for computing infiltration, (2) the kinematic wave model for computing discharge hydrograph from the hillslope, and (3) the intensity-duration-frequency (IDF) model for computing design rainfall intensity. The Hortonian mechanism for runoff generation is employed for computing the surface runoff hydrograph. Since the antecedent soil moisture condition (ASMC) significantly affects the rate of infiltration, its effect on the probability distribution of peak discharge is investigated. Application to a watershed in Sicily, Italy, shows that with the increase of probability, the expected effect of ASMC to increase the maximum discharge diminishes. Only for low values of probability, the critical duration of rainfall is influenced by ASMC, whereas its effect on the peak discharge seems to be less for any probability. For a set of parameters, the derived probability distribution of peak discharge seems to be fitted by the gamma distribution well. Finally, an application to a small watershed, with the aim to test the possibility to arrange in advance the rational runoff coefficient tables to be used for the rational method, and a comparison between peak discharges obtained by the GABS model with those measured in an experimental flume for a loamy-sand soil were carried out.

  17. Specific gas turbines for extreme peak-load

    International Nuclear Information System (INIS)

    Bellot, C.

    1992-12-01

    As with other European countries, in France peak consumption of electricity occurs during winter. Due to the increasing use of electricity for domestic heating, outside temperature greatly influences consumption (1 200 MW for a drop of 1 deg C). To meet requirements during cold spells, EDF has sought to determine which special facilities are best suited for extreme peak load conditions (i.e. offering short lifespan and minimum capital cost) and has studied the possibility of installing generation means in transformer substations (20 kV). This solution does not require extension of networks since these means are scattered near consumption areas. An experiment conducted on 3 Diesel generators of 800 kWe each at Senlis revealed some of the disadvantages of Diesel (maintenance requirements, polluting emissions and noise). EDF then examined, for this same application, the use of gas turbines, for which these drawbacks are significantly less. A study carried out under an EDF contract by the French manufacturer TURBOMECA showed that it is possible to design a small capacity gas turbine that can compete with Diesel generators, and that capital costs could be minimized by simplifying the machine, adapting its lifespan to extreme peak load needs, and taking advantage of lower cost provided by mass production. TURBOMECA defined the machine's characteristics (2 MW, 6 000 hours lifespan) and aerodynamic flow. It also estimated the cost of packaging. In terms of overall cost (including initial investment, maintenance and fuel) the gas turbine appears cheaper than Diesel generators for annual operation times of less than one hundred hours, which corresponds closely with extreme peak load use. The lower maintenance costs and the better availability counterbalance the higher capital cost (+6%) and the greater consumption (+50%). (author). 7 figs

  18. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Richert, Ranko [School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.

  19. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  20. Seasonal and annual plant production of a southern Manitoba old-field

    International Nuclear Information System (INIS)

    Turner, B.N.; Iverson, S.L.

    1980-06-01

    The amount of natural variation in vegetation production during Project ZEUS (an investigation of long-term gamma radiation on meadow voles) will constitute an important habitat variable for the meadow vole population. To quantify this variation, annual and seasonal plant production of a nearby old-field was estimated by monthly harvests of aboveground vegetation between April and October for five consecutive years. The amount of dry green vegetation varied significantly both among years and months, peaking at a mean of nearly 300 G. M -2 in late July and late August. Mean rates of production were maximum in late May to late June, reaching 4.45 g.m -2 .d -1 . Dead vegetation varied significantly among months, but not among years, with peak amounts of nearly 800 G. M -2 in May and October. Moss quantities varied among years, but not among months, and showed a general trend to increase as the field aged. Monthly production of green vegetation showed some relationships to precipitation and temperature, and particularly indicated that hot dry springs impeded growth. Both amount and rate of green production were greater than that on most similar old-fields reported in the literature, and generally exceeded levels on all native grasslands except tallgrass prairie. Annual variability in peak green production was similar to that on other grasslands and old-fields. Variability in green production was greatest in April, and least in June, at the time when production was greatest. Greatest variation in green production occurred at the same time as greatest variation in temperature. Low precipitation may limit production, but the amount of precipitation does not appear to have an effect above a certain minimum level. (auth)

  1. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.

    Science.gov (United States)

    Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.

  2. Can We Distinguish Emotions from Faces? Investigation of Implicit and Explicit Processes of Peak Facial Expressions.

    Science.gov (United States)

    Xiao, Ruiqi; Li, Xianchun; Li, Lin; Wang, Yanmei

    2016-01-01

    Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes, which indicated the

  3. Splitting and Restoration of Kondo Peak in a Deformed Molecule Quantum Dot Coupled to Ferromagnetic Electrodes

    International Nuclear Information System (INIS)

    Wang Ruiqiang; Jiang Kaiming

    2010-01-01

    We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Intradot spin-flip Andreev reflection tunneling through a ferromagnet-quantum dot-superconductor system with ac field

    International Nuclear Information System (INIS)

    Song Hongyan; Zhou Shiping

    2008-01-01

    We investigate Andreev reflection (AR) tunneling through a ferromagnet-quantum dot-superconductor (F-QD-S) system in the presence of an external ac field. The intradot spin-flip scattering in the QD is involved. Using the nonequilibrium Green function and BCS quasiparticle spectrum for superconductor, time-averaged AR conductance is formulated. The competition between the intradot spin-flip scattering and photon-assisted tunneling dominates the resonant behaviors of the time-averaged AR conductance. For weak intradot spin-flip scattering strengths, the AR conductance shows a series of equal interval resonant levels. However, the single-peak at main resonant level develops into a well-resolved double-peak resonance at a strong intradot spin-flip scattering strength. Remarkable, multiple-photon-assisted tunneling that generates photonic sideband peaks with a variable interval has been found. In addition, the AR conductance-bias voltage characteristic shows a transition between the single-peak to double-peak resonance as the ratio of the two tunneling strengths varies

  5. Passive radio frequency peak power multiplier

    Science.gov (United States)

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  6. Peak-counts blood flow model-errors and limitations

    International Nuclear Information System (INIS)

    Mullani, N.A.; Marani, S.K.; Ekas, R.D.; Gould, K.L.

    1984-01-01

    The peak-counts model has several advantages, but its use may be limited due to the condition that the venous egress may not be negligible at the time of peak-counts. Consequently, blood flow measurements by the peak-counts model will depend on the bolus size, bolus duration, and the minimum transit time of the bolus through the region of interest. The effect of bolus size on the measurement of extraction fraction and blood flow was evaluated by injecting 1 to 30ml of rubidium chloride in the femoral vein of a dog and measuring the myocardial activity with a beta probe over the heart. Regional blood flow measurements were not found to vary with bolus sizes up to 30ml. The effect of bolus duration was studied by injecting a 10cc bolus of tracer at different speeds in the femoral vein of a dog. All intravenous injections undergo a broadening of the bolus duration due to the transit time of the tracer through the lungs and the heart. This transit time was found to range from 4-6 second FWHM and dominates the duration of the bolus to the myocardium for up to 3 second injections. A computer simulation has been carried out in which the different parameters of delay time, extraction fraction, and bolus duration can be changed to assess the errors in the peak-counts model. The results of the simulations show that the error will be greatest for short transit time delays and for low extraction fractions

  7. Peak load arrangements : Assessment of Nordel guidelines

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Two Nordic countries, Sweden and Finland, have legislation that empowers the TSO to acquire designated peak load resources to mitigate the risk for shortage situations during the winter. In Denmark, the system operator procures resources to maintain a satisfactory level of security of supply. In Norway the TSO has set up a Regulation Power Option Market (RKOM) to secure a satisfactory level of operational reserves at all times, also in winter with high load demand. Only the arrangements in Finland and Sweden fall under the heading of Peak Load Arrangements defined in Nordel Guidelines. NordREG has been invited by the Electricity Market Group (EMG) to evaluate Nordel's proposal for 'Guidelines for transitional Peak Load Arrangements'. The EMG has also financed a study made by EC Group to support NordREG in the evaluation of the proposal. The study has been taken into account in NordREG's evaluation. In parallel to the EMG task, the Swedish regulator, the Energy Markets Inspectorate, has been given the task by the Swedish government to investigate a long term solution of the peak load issue. The Swedish and Finnish TSOs have together with Nord Pool Spot worked on finding a harmonized solution for activation of the peak load reserves in the market. An agreement accepted by the relevant authorities was reached in early January 2009, and the arrangement has been implemented since 19th January 2009. NordREG views that the proposed Nordel guidelines have served as a starting point for the presently agreed procedure. However, NordREG does not see any need to further develop the Nordel guidelines for peak load arrangements. NordREG agrees with Nordel that the market should be designed to solve peak load problems through proper incentives to market players. NordREG presumes that the relevant authorities in each country will take decisions on the need for any peak load arrangement to ensure security of supply. NordREG proposes that such decisions should be

  8. Predictors of VO2Peak in children age 6- to 7-years-old

    DEFF Research Database (Denmark)

    Dencker, Magnus; Hermansen, Bianca; Bugge, Anna

    2011-01-01

    This study investigated the predictors of aerobic fitness (VO2PEAK) in young children on a population-base. Participants were 436 children (229 boys and 207 girls) aged 6.7 ± 0.4 yrs. VO2PEAK was measured during a maximal treadmill exercise test. Physical activity was assessed by accelerometers....... Total body fat and total fat free mass were estimated from skinfold measurements. Regression analyses indicated that significant predictors for VO2PEAK per kilogram body mass were total body fat, maximal heart rate, sex, and age. Physical activity explained an additional 4-7%. Further analyses showed...... the main contributing factors for absolute values of VO2PEAK were fat free mass, maximal heart rate, sex, and age. Physical activity explained an additional 3-6%....

  9. MERGERS IN DOUBLE-PEAKED [O III] ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Fu Hai; Djorgovski, S. G.; Myers, Adam D.; Yan Lin

    2011-01-01

    As a natural consequence of galaxy mergers, binary active galactic nuclei (AGNs) should be commonplace. Nevertheless, observational confirmations are rare, especially for binaries with separations less than 10 kpc. Such a system may show two sets of narrow emission lines in a single spectrum owing to the orbital motion of the binary. We have obtained high-resolution near-infrared images of 50 double-peaked [O III]λ5007 AGNs with the Keck II laser guide star adaptive optics system. The Sloan Digital Sky Survey sample is compiled from the literature and consists of 17 type-1 AGNs between 0.18 BH -σ * relation because of overestimated stellar velocity dispersions, illustrating the importance of removing mergers from the samples defining the M BH -σ * relations. Finally, we find that the emission-line properties are indistinguishable for spatially resolved and unresolved sources, emphasizing that scenarios involving a single AGN can produce the same double-peaked line profiles and they account for at least 70% of the double-peaked [O III] AGNs.

  10. Geologic Map of the Tower Peak Quadrangle, Central Sierra Nevada, California

    Science.gov (United States)

    Wahrhaftig, Clyde

    2000-01-01

    Introduction The Tower Peak quadrangle, which includes northernmost Yosemite National Park, is located astride the glaciated crest of the central Sierra Nevada and covers an exceptionally well-exposed part of the Sierra Nevada batholith. Granitic plutonic rocks of the batholith dominate the geology of the Tower Peak quadrangle, and at least 18 separate pre-Tertiary intrusive events have been identified. Pre-Cretaceous metamorphic rocks crop out in the quadrangle in isolated roof pendants and septa. Tertiary volcanic rocks cover granitic rocks in the northern part of the quadrangle, but are not considered in this brief summary. Potassium-argon (K-Ar) age determinations for plutonic rocks in the quadrangle range from 83 to 96 million years (Ma), including one of 86 Ma for the granodiorite of Lake Harriet (Robinson and Kistler, 1986). However, a rubidium-strontium whole-rock isochron age of 129 Ma has been obtained for the Lake Harriet pluton (Robinson and Kistler, 1986), which field evidence indicates is the oldest plutonic body within the quadrangle. This suggests that some of the K-Ar ages record an episode of resetting during later thermal events and are too young. The evidence indicates that all the plutonic rocks are of Cretaceous age, with the youngest being the Cathedral Peak Granodiorite at about 83 Ma. The pre-Tertiary rocks of the Tower Peak quadrangle fall into two groups: (1) an L-shaped area of older plutonic and metamorphic rocks, 3 to 10 km wide, that extends diagonally both northeast and southeast from near the center of the quadrangle; and (2) a younger group of large, probably composite intrusions that cover large areas in adjacent quadrangles and extend into the Tower Peak quadrangle from the east, north, and southwest.

  11. NOISY WEAK-LENSING CONVERGENCE PEAK STATISTICS NEAR CLUSTERS OF GALAXIES AND BEYOND

    International Nuclear Information System (INIS)

    Fan Zuhui; Shan Huanyuan; Liu Jiayi

    2010-01-01

    , for the isothermal cluster. For the NFW cluster, Δν ∼ 0.8. The existence of noise also causes a location offset for the weak-lensing identified main-cluster-peak with respect to the true center of the cluster. The offset distribution is very broad and extends to R ∼ R c for the isothermal case. For the NFW cluster, it is relatively narrow and peaked at R ∼ 0.2R c . We also analyze NFW clusters of different concentrations. It is found that the more centrally concentrated the mass distribution of a cluster is, the less its weak-lensing signal is affected by noise. Incorporating these important effects and the mass function of NFW dark matter halos, we further present a model calculating the statistical abundances of total convergence peaks, true and false ones, over a large field beyond individual clusters. The results are in good agreement with those from numerical simulations. The model then allows us to probe cosmologies with the convergence peaks directly without the need of expensive follow-up observations to differentiate true and false peaks.

  12. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    Science.gov (United States)

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  13. On the origin of discontinuity of the hyperfine fields at {sup 57}Fe nuclei in bulk iron and aerosol Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.I. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Shafranovsky, E.A., E-mail: shafr@chph.ras.r [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Casas, Ll. [Departament de Geologia, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, 08193 Bellaterra (Spain); Molins, E. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2011-03-14

    Advancing the early work in which a discontinuity of hyperfine fields at {sup 57}Fe nuclei in bulk iron and in aerosol Fe nanoparticles has been revealed by analyzing their Moessbauer spectra the present Letter evidences that the existence of several peaks in the hyperfine distribution (HFD) for bulk Fe is caused with the internal magnetic fields owing to its multidomain structure whereas aerosol Fe nanoparticles are single-domain and show only a unique peak in HFD. This argument has been corroborated by transformation of the HFD pattern for Fe foil after applying the external magnetic field of 0.03 T.

  14. Peak effect in laser ablated DyBa2Cu3O7-δ films at microwave frequencies at subcritical currents

    NARCIS (Netherlands)

    Bhangale, A.R.; Raychaudhuri, P.; Banerjee, T.; Shirodkar, V.S.

    2001-01-01

    In this article we report the observation of a peak in the microwave surface resistance (at frequencies ~10 GHz) of laser ablated DyBa2Cu3O7-δ films in magnetic field ranging from 2 to 9 kOe (||c) close to the superconducting transition temperature [Tc(H)]. The exact nature of the peak is sample

  15. Some predicted peak ground motions for nuclear cratering explosions along the Qattara alignment in Egypt

    International Nuclear Information System (INIS)

    Bryan, J.B.

    1980-01-01

    Some predicted peak free-field ground motions at shot depth for the nuclear explosive excavation of a canal in Egypt are summarized. Peak values of displacement, velocity, acceleration, and radial stress are presented as a function of slant range from the working point. Results from two-dimensional TENSOR cratering calculations are included. Fits to ground motion measurements in other media are also shown. This summary is intended to help specify engineering design requirements for detonating nuclear explosive salvos which are required to efficiently excavate the canal. It also should be useful in guiding estimates for gage response ranges in ground motion measurements

  16. Peak experiences of psilocybin users and non-users.

    Science.gov (United States)

    Cummins, Christina; Lyke, Jennifer

    2013-01-01

    Maslow (1970) defined peak experiences as the most wonderful experiences of a person's life, which may include a sense of awe, well-being, or transcendence. Furthermore, recent research has suggested that psilocybin can produce experiences subjectively rated as uniquely meaningful and significant (Griffiths et al. 2006). It is therefore possible that psilocybin may facilitate or change the nature of peak experiences in users compared to non-users. This study was designed to compare the peak experiences of psilocybin users and non-users, to evaluate the frequency of peak experiences while under the influence of psilocybin, and to assess the perceived degree of alteration of consciousness during these experiences. Participants were recruited through convenience and snowball sampling from undergraduate classes and at a musical event. Participants were divided into three groups, those who reported a peak experience while under the influence of psilocybin (psilocybin peak experience: PPE), participants who had used psilocybin but reported their peak experiences did not occur while they were under the influence of psilocybin (non-psilocybin peak experience: NPPE), and participants who had never used psilocybin (non-user: NU). A total of 101 participants were asked to think about their peak experiences and complete a measure evaluating the degree of alteration of consciousness during that experience. Results indicated that 47% of psilocybin users reported their peak experience occurred while using psilocybin. In addition, there were significant differences among the three groups on all dimensions of alteration of consciousness. Future research is necessary to identify factors that influence the peak experiences of psilocybin users in naturalistic settings and contribute to the different characteristics of peak experiences of psilocybin users and non-users.

  17. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.; Lenc, E. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), Marsfield, NSW 2122 (Australia); Line, J. L. B.; Hancock, P. J.; Kapińska, A. D.; McKinley, B.; Procopio, P. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) (Australia); Hurley-Walker, N.; Tingay, S. J.; Franzen, T. M. O.; Morgan, J. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Dwarakanath, K. S. [Raman Research Institute (RRI), Bangalore 560080 (India); For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Hindson, L.; Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Offringa, A. R., E-mail: joseph.callingham@sydney.edu.au [Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands); and others

    2017-02-20

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  18. Individual vision and peak distribution in collective actions

    Science.gov (United States)

    Lu, Peng

    2017-06-01

    People make decisions on whether they should participate as participants or not as free riders in collective actions with heterogeneous visions. Besides of the utility heterogeneity and cost heterogeneity, this work includes and investigates the effect of vision heterogeneity by constructing a decision model, i.e. the revised peak model of participants. In this model, potential participants make decisions under the joint influence of utility, cost, and vision heterogeneities. The outcomes of simulations indicate that vision heterogeneity reduces the values of peaks, and the relative variance of peaks is stable. Under normal distributions of vision heterogeneity and other factors, the peaks of participants are normally distributed as well. Therefore, it is necessary to predict distribution traits of peaks based on distribution traits of related factors such as vision heterogeneity and so on. We predict the distribution of peaks with parameters of both mean and standard deviation, which provides the confident intervals and robust predictions of peaks. Besides, we validate the peak model of via the Yuyuan Incident, a real case in China (2014), and the model works well in explaining the dynamics and predicting the peak of real case.

  19. Intra-well relaxation process in magnetic fluids subjected to strong polarising fields

    Energy Technology Data Exchange (ETDEWEB)

    Marin, C.N., E-mail: cmarin@physics.uvt.ro [West University of Timisoara, Faculty of Physics, B-dul V. Parvan, No. 4, Timisoara 300223 (Romania); Fannin, P.C. [Department of Electronic and Electrical Engineering, Trinity College, Dublin 2 (Ireland); Malaescu, I.; Barvinschi, P.; Ercuta, A. [West University of Timisoara, Faculty of Physics, B-dul V. Parvan, No. 4, Timisoara 300223 (Romania)

    2012-02-15

    We report on the frequency and field dependent complex magnetic susceptibility measurements of a kerosene-based magnetic fluid with iron oxide nanoparticles, stabilized with oleic acid, in the frequency range 0.1-6 GHz and over the polarising field range of 0-168.4 kA/m. By increasing polarising field, H, a subsidiary loss-peak clearly occurs in the vicinity of the ferromagnetic resonance peak, from which it remains distinct even in strong polarising fields of 168.4 kA/m. This is in contrast to other reported cases in which the intra-well relaxation process is manifested only as a shoulder of the resonance peak, which vanishes in polarising fields larger than that of 100 kA/m. The results of the XRD analysis connected to the anisotropy field results confirm that the investigated sample contains particles of magnetite and of the tetragonal phase of maghemite. Taking into account the characteristics of our sample, the theoretical analysis revealed that the intra-well relaxation process of the small particles of the tetragonal phase of maghemite may be responsible for the subsidiary loss peak of the investigated magnetic fluid. - Highlights: > Intra-well relaxation process in a magnetic fluid is studied. > Sample consists of the tetragonal phase of maghemite and magnetite particles. > A subsidiary relaxation peak is observed in the vicinity of the resonance peak. > Relaxation peak is correlated to the intra-well relaxation process. > It is assigned to the tetragonal phase of maghemite particles.

  20. Electron-related nonlinearities in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells under the effects of intense laser field and applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E.; Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)

    2013-03-15

    The combined effects of intense laser radiation and applied electric fields on the intersubband-related linear and nonlinear optical properties in GaAs-based quantum wells are discussed. It is shown that for asymmetric double quantum well, the increasing laser field intensity causes progressive redshifts in the peak positions of the second and third harmonic coefficients. However, the resonant peaks of the nonlinear optical rectification can suffer a blueshift or a redshift, depending on the laser strengths. The same feature appears in the case of the resonant peaks corresponding to the total coefficients of optical absorption and relative change in the refractive index. - Highlights: Black-Right-Pointing-Pointer Nonlinear optical properties in double quantum wells. Black-Right-Pointing-Pointer Increasing laser field intensity causes redshifts in the peak positions. Black-Right-Pointing-Pointer Resonant peak of second order nonlinearities can be blue-shifted. Black-Right-Pointing-Pointer Relative change in refractive index depends of the applied electric field. Black-Right-Pointing-Pointer The energy position depends of the laser field parameter.

  1. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster

    Science.gov (United States)

    Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-05-01

    The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.

  2. Isotope resolution of the iron peak

    International Nuclear Information System (INIS)

    Henke, R.P.; Benton, E.V.

    1977-01-01

    A stack of Lexan detectors from the Apollo 17 mission has been analyzed to obtain Z measurements of sufficient accuracy to resolve the iron peak into its isotopic components. Within this distribution several peaks are present. With the centrally located, most populated peak assumed to be 56 Fe, the measurements imply that the abundances of 54 Fe and 58 Fe are appreciable fractions of the 56 Fe abundance. This result is in agreement with those of Webber et al. and Siegman et al. but in disagreement with the predictions of Tsao et al. (Auth.)

  3. The Research of Indoor Positioning Based on Double-peak Gaussian Model

    Directory of Open Access Journals (Sweden)

    Lina Chen

    2014-04-01

    Full Text Available Location fingerprinting using Wi-Fi signals has been very popular and is a well accepted indoor positioning method. The key issue of the fingerprinting approach is generating the fingerprint radio map. Limited by the practical workload, only a few samples of the received signal strength are collected at each reference point. Unfortunately, fewer samples cannot accurately represent the actual distribution of the signal strength from each access point. This study finds most Wi- Fi signals have two peaks. According to the new finding, a double-peak Gaussian arithmetic is proposed to generate a fingerprint radio map. This approach requires little time to receive WiFi signals and it easy to estimate the parameters of the double-peak Gaussian function. Compared to the Gaussian function and histogram method to generate a fingerprint radio map, this method better approximates the occurrence signal distribution. This paper also compared the positioning accuracy using K-Nearest Neighbour theory for three radio maps, the test results show that the positioning distance error utilizing the double-peak Gaussian function is better than the other two methods.

  4. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

    Science.gov (United States)

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2006-09-01

    A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be

  5. Storm time electric field penetration observed at mid-latitude

    International Nuclear Information System (INIS)

    Yeh, H.C.; Foster, J.C.; Rich, F.J.; Swider, W.

    1991-01-01

    During the height of the February 8-9, 1986, magnetic storm the Millstone Hill radar was in the evening local time sector (1600-2200 MLT). Radar observations indicate that high speed (>1,000 m s -1 ) westward ion flow penetrated deeply below 50 degree invariant latitude (Λ) and persisted for 6 hours between 2100 UT on February 8 and 0300 UT on February 9. The double-peaked ion convection feature was pronounced throughout the period, and the separation in the dual maxima ranged from 4 degree to 10 degree. The latitude positions of the high-latitude ion drift peak and the convection reversal varied in unison. The low-latitude ion drift peak (∼49 degree Λ or L =2.3) did not show significant universal time/magnetic local time (UT/MLT) variation in its latitude location but showed a decrease in magnitude during the initial recovery phase of the storm. Using simultaneous particle (30 eV-30 keV) precipitation data from the DMSP F6 and F7 satellites, the authors find the high-latitude ion drift peak to coincide with the boundary plasma sheet/central plasma sheet transition in the high ionospheric conductivity (>15 mho) region. The low-latitude ion drift peak lay between the equatorward edges of the electron and soft ( + dominated ring current energy density in magnetic latitude. The low-latitude ion drift peak is the low-altitude signature of the electric field shielding effect associated with ring current penetration into the outer layer of the storm time plasmasphere

  6. Instream flow needs below peaking hydroelectric projects

    International Nuclear Information System (INIS)

    Milhous, R.T.

    1991-01-01

    This paper reports on a method developed to assist in the determination of instream flow needs below hydroelectric projects operated in a peaking mode. Peaking hydroelectric projects significantly change streamflow over a short period of time; consequently, any instream flow methodology must consider the dual flows associated with peaking projects. The dual flows are the lowest flow and the maximum generation flow of a peaking cycle. The methodology is based on elements of the Physical Habitat Simulation System of the U.S. Fish and Wildlife Service and uses habitat, rather than fish numbers or biomas, as at basic response variable. All aquatic animals are subject to the rapid changes in streamflow which cause rapid swings in habitat quality. Some aquatic organisms are relatively fixed in location in the stream while others can move when flows change. The habitat available from a project operated in peaking mode is considered to be the minimum habitat occurring during a cycle of habitat change. The methodology takes in to consideration that some aquatic animals can move and others cannot move during a peaking cycle

  7. Transfusion Associated Peak in Hb HPLC Chromatogram – a Case Report

    Science.gov (United States)

    Jain, Sonal; Dass, Jasmita; Pati, Hara Prasad

    2012-01-01

    High performance liquid chromatography (HPLC) and electrophoresis are commonly used to diagnose various hemoglobinopathies. However, insufficient information about the transfusion history can lead to unexpected and confusing results. We are reporting a case of Juvenile myelomonocytic leukemia (JMML) in which HbHPLC was done to quantify fetal hemoglobin (HbF). The chromatogram showed elevated HbF along with a peak in the HbD window. A transfusion acquired peak was suspected based on the unexpectedly low percentage of HbD and was subsequently confirmed using parental HbHPLC. PMID:22348188

  8. The U.S. Geological Survey Peak-Flow File Data Verification Project, 2008–16

    Science.gov (United States)

    Ryberg, Karen R.; Goree, Burl B.; Williams-Sether, Tara; Mason, Robert R.

    2017-11-21

    Annual peak streamflow (peak flow) at a streamgage is defined as the maximum instantaneous flow in a water year. A water year begins on October 1 and continues through September 30 of the following year; for example, water year 2015 extends from October 1, 2014, through September 30, 2015. The accuracy, characterization, and completeness of the peak streamflow data are critical in determining flood-frequency estimates that are used daily to design water and transportation infrastructure, delineate flood-plain boundaries, and regulate development and utilization of lands throughout the United States and are essential to understanding the implications of climate and land-use change on flooding and high-flow conditions.As of November 14, 2016, peak-flow data existed for 27,240 unique streamgages in the United States and its territories. The data, collectively referred to as the “peak-flow file,” are available as part of the U.S. Geological Survey (USGS) public web interface, the National Water Information System, at https://nwis.waterdata.usgs.gov/usa/nwis/peak. Although the data have been routinely subjected to periodic review by the USGS Office of Surface Water and screening at the USGS Water Science Center level, these data were not reviewed in a national, systematic manner until 2008 when automated scripts were developed and applied to detect potential errors in peak-flow values and their associated dates, gage heights, and peak-flow qualification codes, as well as qualification codes associated with the gage heights. USGS scientists and hydrographers studied the resulting output, accessed basic records and field notes, and corrected observed errors or, more commonly, confirmed existing data as correct.This report summarizes the changes in peak-flow file data at a national level, illustrates their nature and causation, and identifies the streamgages affected by these changes. Specifically, the peak-flow data were compared for streamgages with peak flow

  9. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding.

    Science.gov (United States)

    Ge, Yongchao; Sealfon, Stuart C

    2012-08-01

    For flow cytometry data, there are two common approaches to the unsupervised clustering problem: one is based on the finite mixture model and the other on spatial exploration of the histograms. The former is computationally slow and has difficulty to identify clusters of irregular shapes. The latter approach cannot be applied directly to high-dimensional data as the computational time and memory become unmanageable and the estimated histogram is unreliable. An algorithm without these two problems would be very useful. In this article, we combine ideas from the finite mixture model and histogram spatial exploration. This new algorithm, which we call flowPeaks, can be applied directly to high-dimensional data and identify irregular shape clusters. The algorithm first uses K-means algorithm with a large K to partition the cell population into many small clusters. These partitioned data allow the generation of a smoothed density function using the finite mixture model. All local peaks are exhaustively searched by exploring the density function and the cells are clustered by the associated local peak. The algorithm flowPeaks is automatic, fast and reliable and robust to cluster shape and outliers. This algorithm has been applied to flow cytometry data and it has been compared with state of the art algorithms, including Misty Mountain, FLOCK, flowMeans, flowMerge and FLAME. The R package flowPeaks is available at https://github.com/yongchao/flowPeaks. yongchao.ge@mssm.edu Supplementary data are available at Bioinformatics online.

  10. Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance

    Directory of Open Access Journals (Sweden)

    A. Aizaz

    2010-09-01

    Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.

  11. Electric field determination in streamer discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Bonaventura, Z; Bourdon, A; Celestin, S; Pasko, V P

    2011-01-01

    The electric field in streamer discharges in air can be easily determined by the ratio of luminous intensities emitted by N 2 (C 3 Π u ) and N 2 + (B 2 Σ u + ) if the steady-state assumption of the emitting states is fully justified. At ground pressure, the steady-state condition is not fulfilled and it is demonstrated that its direct use to determine the local and instantaneous peak electric field in the streamer head may overestimate this field by a factor of 2. However, when spatial and time-integrated optical emissions (OEs) are considered, the reported results show that it is possible to formulate a correction factor in the framework of the steady-state approximation and to accurately determine the peak electric field in an air discharge at atmospheric pressure. A correction factor is defined as Γ = E s /E e , where E e is the estimated electric field and E s is the true peak electric field in the streamer head. It is shown that this correction stems from (i) the shift between the location of the peak electric field and the maximum excitation rate for N 2 (C 3 Π u ) and N 2 + (B 2 Σ u + ) as proposed by Naidis (2009 Phys. Rev. E 79 057401) and (ii) from the cylindrical geometry of the streamers as stated by Celestin and Pasko (2010 Geophys. Res. Lett. 37 L07804). For instantaneous OEs integrated over the whole radiating plasma volume, a correction factor of Γ ∼ 1.4 has to be used. For time-integrated OEs, the reported results show that the ratio of intensities can be used to derive the electric field in discharges if the time of integration is sufficiently long (i.e. at least longer than the longest characteristic lifetime of excited species) to have the time to collect all the light from the emitting zones of the streamer. For OEs recorded using slits (i.e. a window with a small width but a sufficiently large radial extension to contain the total radial extension of the discharge) the calculated correction factor is Γ ∼ 1.4. As for OEs observed

  12. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.

    Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  13. Unidirectional magnetoelectric-field multiresonant tunneling

    International Nuclear Information System (INIS)

    Kamenetskii, E O; Hollander, E; Joffe, R; Shavit, R

    2015-01-01

    Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropic-dielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as Fano-resonance peaks in the scattering-matrix parameters at the stationary states of the MDM spectrum. The ME near-field excitations are quasimagnetostatic fields ∇-vector × H-vector =0 with non-zero helicity parameter: F=(1/(16π))Im{ E-vector ⋅( ∇-vector × E-vector ) ∗ }. Topological phase properties of ME fields are determined by edge chiral currents of MDM oscillations. We show that while for a given direction of a bias magnetic field (in other words, for a given direction of time), the ME field excitations are considered as ‘forward’ tunneling processes, in the opposite direction of a bias magnetic field (the opposite direction of time), there are ‘backward’ tunneling processes. Unidirectional ME field resonant tunneling is observed due to the distinguishable topology of the ‘forward’ and ‘backward’ ME field excitations. We establish a close connection between the Fano-resonance unidirectional tunneling and the topology of the ME fields in different microwave structures. (paper)

  14. Effect of external magnetic field on locking range of spintronic feedback nano oscillator

    Directory of Open Access Journals (Sweden)

    Hanuman Singh

    2018-05-01

    Full Text Available In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3 multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.

  15. Pinning potentials of the vortex lattice in YBCO crystals in the peak effect region

    International Nuclear Information System (INIS)

    Pasquini, G.; Bekeris, V.

    2004-01-01

    Memory effects in the dynamic response of the vortex lattice (VL) in type II superconductors and its relationship with the controversial peak effect, have attracted great interest for a long time. In the last years, these features have been observed in YBCO single crystals, with the DC magnetic field tilted away from the twin planes and were related with robust dynamical states characterized by different degrees of mobility. Recently, we reported that the previous dynamical history of the VL can modify not only its dynamic response, but can even modify its static properties as well. In the present work, we try to understand the nature of the peak effect in YBCO crystals by sensing the effective AC penetration depth in the linear Campbell regime. We report history dependent effective pinning potential well curvatures and study the stability of the different static configurations. Interestingly, we observe that the more pinned VL configuration is not the more stable. Results agree with a dynamic scenario undergoing the Peak Effect

  16. A channel-by-channel method of reducing the errors associated with peak area integration

    International Nuclear Information System (INIS)

    Luedeke, T.P.; Tripard, G.E.

    1996-01-01

    A new method of reducing the errors associated with peak area integration has been developed. This method utilizes the signal content of each channel as an estimate of the overall peak area. These individual estimates can then be weighted according to the precision with which each estimate is known, producing an overall area estimate. Experimental measurements were performed on a small peak sitting on a large background, and the results compared to those obtained from a commercial software program. Results showed a marked decrease in the spread of results around the true value (obtained by counting for a long period of time), and a reduction in the statistical uncertainty associated with the peak area. (orig.)

  17. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.

    Science.gov (United States)

    Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico

    2015-01-01

    Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.

  18. Two types of peak emotional responses to music: The psychophysiology of chills and tears

    Science.gov (United States)

    Mori, Kazuma; Iwanaga, Makoto

    2017-01-01

    People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response. PMID:28387335

  19. Two types of peak emotional responses to music: The psychophysiology of chills and tears.

    Science.gov (United States)

    Mori, Kazuma; Iwanaga, Makoto

    2017-04-07

    People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response.

  20. Social learning solves the problem of narrow-peaked search landscapes: experimental evidence in humans.

    Science.gov (United States)

    Acerbi, Alberto; Tennie, Claudio; Mesoudi, Alex

    2016-09-01

    The extensive use of social learning is considered a major reason for the ecological success of humans. Theoretical considerations, models and experiments have explored the evolutionary basis of social learning, showing the conditions under which learning from others is more adaptive than individual learning. Here we present an extension of a previous experimental set-up, in which individuals go on simulated 'hunts' and their success depends on the features of a 'virtual arrowhead' they design. Individuals can modify their arrowhead either by individual trial and error or by copying others. We study how, in a multimodal adaptive landscape, the smoothness of the peaks influences learning. We compare narrow peaks, in which solutions close to optima do not provide useful feedback to individuals, to wide peaks, where smooth landscapes allow an effective hill-climbing individual learning strategy. We show that individual learning is more difficult in narrow-peaked landscapes, but that social learners perform almost equally well in both narrow- and wide-peaked search spaces. There was a weak trend for more copying in the narrow than wide condition, although as in previous experiments social information was generally underutilized. Our results highlight the importance of tasks' design space when studying the adaptiveness of high-fidelity social learning.

  1. Interaction of LED light with coinitiator-containing composite resins: effect of dual peaks.

    Science.gov (United States)

    Sim, Jae-Seong; Seol, Hyo-Joung; Park, Jeong-Kil; Garcia-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2012-10-01

    Recently the colour stability of composite resins has been an issue due to the emphasis on the aesthetics of restored teeth. The purpose of the present study was to investigate how dual-peak LED units affect the polymerization of coinitiator-containing composite resins. Five composite resins [coinitiator-containing: Aelite LS Posterior (AL), Tetric EvoCeram (TE), and Vit-l-escence (VI); only CQ-containing: Grandio (GD) and Filtek Z350 (Z3)] were light cured using four different light-curing units (LCUs). Among them, Bluephase G2 (BP) and G-light (GL) were dual-peak LED LCUs. Microhardness, polymerization shrinkage, flexural, and compressive properties were measured. BP and GL had no consistent effect on the microhardness of AL, TE, and VI on the top and bottom surfaces of resin specimens. Among the specimens, AL and VI showed the least (9.86-10.41 μm) and greatest (17.58-19.21 μm) polymerization shrinkage, respectively. However, the effect of BP and GL on the shrinkage of specimens was not consistent. Among the specimens, GD showed the greatest flexural properties [strength (FS) and modulus (FM)] and TE showed the lowest flexural and compressive properties [strength (CS) and modulus (CM)]. In same resin product, maximum FS and CS differences due to the different LCUs were 10.3-21.0% and 3.6-9.2%, respectively. Furthermore, the influences of BP and GL on FS and CS were not consistent. The tested dual-peak LED LCUs had no consistent synergic effect on the polymerization of coinitiator-containing composite resins as compared with QTH and single-peak LED LCUs. The dual-peak LED LCUs achieve a similar degree of polymerization in coinitiator-composite resins as QTH and single-peak LED LCUs did. Choice of LCU does not appear to be a determinant of the light curing of coinitiator-composite resins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Upper limit of peak area

    International Nuclear Information System (INIS)

    Helene, O.A.M.

    1982-08-01

    The determination of the upper limit of peak area in a multi-channel spectra, with a known significance level is discussed. This problem is specially important when the peak area is masked by the background statistical fluctuations. The problem is exactly solved and, thus, the results are valid in experiments with small number of events. The results are submitted to a Monte Carlo test and applied to the 92 Nb beta decay. (Author) [pt

  3. Effects of electric fields in polymerization on enthalpy of PMAA anhydridization

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhenqi; Liu Gang; Zhang Zhicheng

    2004-02-19

    PMAA (polymethacrylic acid) polymerized by {gamma}-irradiation in electric field forms six-membered cyclic anhydride during heating process and the enthalpy of PMAA anhydridization was determined by DSC. Why the endothermic peak of PMAA anhydridization in DSC curve between 200 and 300 deg. C appears is particularly explained by calculation. The relations between applied electric field and the enthalpy of PMAA anhydridization are studied. The results show that, with the increases of the intensity of electric field in polymerization, the enthalpy of PMAA forming anhydrides nonlinearly increase, which might be related to orientation of carboxylic acid groups of the PMAA in an electric field.

  4. Assessment of end-use electricity consumption and peak demand by Townsville's housing stock

    International Nuclear Information System (INIS)

    Ren, Zhengen; Paevere, Phillip; Grozev, George; Egan, Stephen; Anticev, Julia

    2013-01-01

    We have developed a comprehensive model to estimate annual end-use electricity consumption and peak demand of housing stock, considering occupants' use of air conditioning systems and major appliances. The model was applied to analyse private dwellings in Townsville, Australia's largest tropical city. For the financial year (FY) 2010–11 the predicted results agreed with the actual electricity consumption with an error less than 10% for cooling thermostat settings at the standard setting temperature of 26.5 °C and at 1.0 °C higher than the standard setting. The greatest difference in monthly electricity consumption in the summer season between the model and the actual data decreased from 21% to 2% when the thermostat setting was changed from 26.5 °C to 27.5 °C. Our findings also showed that installation of solar panels in Townville houses could reduce electricity demand from the grid and would have a minor impact on the yearly peak demand. A key new feature of the model is that it can be used to predict probability distribution of energy demand considering (a) that appliances may be used randomly and (b) the way people use thermostats. The peak demand for the FY estimated from the probability distribution tracked the actual peak demand at 97% confidence level. - Highlights: • We developed a model to estimate housing stock energy consumption and peak demand. • Appliances used randomly and thermostat settings for space cooling were considered. • On-site installation of solar panels was also considered. • Its' results agree well with the actual electricity consumption and peak demand. • It shows the model could provide the probability distribution of electricity demand

  5. Solid state cathodoluminescence and the properties of its two emission peaks

    International Nuclear Information System (INIS)

    Xu Xurong

    2007-01-01

    We discovered solid state cathodoluminescence (SSCL). For its identification we excluded all artifacts, carried out its cross proof and studied its generality. Its spectrum is characterized by the appearance of short wavelength peak when the applied voltage is increased. Three voltage ranges are distinguished, in the lower voltage range we have the long wavelength emission, in the middle range we have both long and short wavelength emissions, and in the higher voltage range we have only the short wavelength emission. The mechanism of this spectral shift lies in the electrical field ionization of excitons. This effect initiates the applicability of band model besides molecular excitons theory. The temporal behaviors of both peaks in SSCL are studied with a method of estimating lifetime by means of frequency dependence on intensity. The lifetime of short wavelength emission is found to be 5 ms and that of long wavelength emission is less than 0.05 ms

  6. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  7. Practical load management - Peak shaving using photovoltaics

    International Nuclear Information System (INIS)

    Berger, W.

    2009-01-01

    This article takes a look at how photovoltaic (PV) power generation can be used in a practical way to meet peak demands for electricity. Advice is provided on how photovoltaics can provide peak load 'shaving' through the correlation between its production and the peak loads encountered during the day. The situation regarding feed-in tariffs in Italy is discussed, as are further examples of installations in Germany and Austria. Further, an initiative of the American Southern California Edison utility is discussed which foresees the installation of large PV plant on the roofs of commercial premises to provide local generation of peak energy and thus relieve demands on their power transportation network.

  8. Linear relationship between peak and season-long abundances in insects.

    Directory of Open Access Journals (Sweden)

    Ksenia S Onufrieva

    Full Text Available An accurate quantitative relationship between key characteristics of an insect population, such as season-long and peak abundances, can be very useful in pest management programs. To the best of our knowledge, no such relationship has yet been established. Here we establish a predictive linear relationship between insect catch Mpw during the week of peak abundance, the length of seasonal flight period, F (number of weeks and season-long cumulative catch (abundance A = 0.41MpwF. The derivation of the equation is based on several general assumptions and does not involve fitting to experimental data, which implies generality of the result. A quantitative criterion for the validity of the model is presented. The equation was tested using extensive data collected on captures of male gypsy moths Lymantria dispar (L. (Lepidoptera: Erebidae in pheromone-baited traps during 15 years. The model was also tested using trap catch data for two species of mosquitoes, Culex pipiens (L. (Diptera: Culicidae and Aedes albopictus (Skuse (Diptera: Culicidae, in Gravid and BG-sentinel mosquito traps, respectively. The simple, parameter-free equation approximates experimental data points with relative error of 13% and R2 = 0.997, across all of the species tested. For gypsy moth, we also related season-long and weekly trap catches to the daily trap catches during peak flight. We describe several usage scenarios, in which the derived relationships are employed to help link results of small-scale field studies to the operational pest management programs.

  9. Cardiorespiratory Responses and Prediction of Peak Oxygen Uptake during the Shuttle Walking Test in Healthy Sedentary Adult Men

    Science.gov (United States)

    Neves, Camila D. C.; Lacerda, Ana Cristina Rodrigues; Lage, Vanessa K. S.; Lima, Liliana P.; Fonseca, Sueli F.; de Avelar, Núbia C. P.; Teixeira, Mauro M.; Mendonça, Vanessa A.

    2015-01-01

    Background The application of the Shuttle Walking Test (SWT) to assess cardiorespiratory fitness and the intensity of this test in healthy participants has rarely been studied. This study aimed to assess and correlate the cardiorespiratory responses of the SWT with the cardiopulmonary exercise testing (CEPT) and to develop a regression equation for the prediction of peak oxygen uptake (VO2 peak) in healthy sedentary adult men. Methods In the first stage of this study, 12 participants underwent the SWT and the CEPT on a treadmill. In the second stage, 53 participants underwent the SWT twice. In both phases, the VO2 peak, respiratory exchange ratio (R), and heart rate (HR) were evaluated. Results Similar results in VO2 peak (P>0.05), R peak (P>0.05) and predicted maximum HR (P>0.05) were obtained between the SWT and CEPT. Both tests showed strong and significant correlations of VO2 peak (r = 0.704, P = 0.01) and R peak (r = 0.737, P0.05) was found. Conclusions The SWT produced maximal cardiorespiratory responses comparable to the CEPT, and the developed equation showed viability for the prediction of VO2 peak in healthy sedentary men. PMID:25659094

  10. Explaining the price of oil 1971–2014 : The need to use reliable data on oil discovery and to account for ‘mid-point’ peak

    International Nuclear Information System (INIS)

    Bentley, Roger; Bentley, Yongmei

    2015-01-01

    This paper explains, in broad terms, the price of oil from 1971 to 2014 and focuses on the large price increases after 1973 and 2004. The explanation for these increases includes the quantity of conventional oil (i.e. oil in fields) discovered, combined with the decline in production of this oil that occurs typically once ‘mid-point’ is passed. Many past explanations of oil price have overlooked these two constraints, and hence provided insufficient explanations of oil price. Reliable data on conventional oil discovery cannot come from public-domain proved (‘1P’) oil reserves, as such data are very misleading. Instead oil industry backdated proved-plus-probable (‘2P’) data must be used. It is recognised that accessing 2P data can be expensive, or difficult. The ‘mid-point’ peak of conventional oil production results from a region's field-size distribution, its fall-off in oil discovery, and the physics of field decline. In terms of the future price of oil, estimates of the global recoverable resource of conventional oil show that the oil price will remain high on average, unless dramatic changes occur in the volume of production and cost of non-conventional oils, or if the overall demand for oil were to decline. The paper concludes with policy recommendations. - Highlights: • We show that understanding the oil price is assisted by reliable data on oil discovery. • These data need to be combined with the ‘peak at mid-point’ concept. • Results show that the world has probably entered an era of constrained oil supply. • Oil price stays high unless non-conventional supply, or demand, change significantly.

  11. Comparison of Peak-area Ratios and Percentage Peak Area Derived from HPLC-evaporative Light Scattering and Refractive Index Detectors for Palm Oil and its Fractions.

    Science.gov (United States)

    Ping, Bonnie Tay Yen; Aziz, Haliza Abdul; Idris, Zainab

    2018-01-01

    High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.

  12. The fascicular anatomy and peak force capabilities of the sternocleidomastoid muscle.

    Science.gov (United States)

    Kennedy, Ewan; Albert, Michael; Nicholson, Helen

    2017-06-01

    The fascicular morphology of the sternocleidomastoid (SCM) is not well described in modern anatomical texts, and the biomechanical forces it exerts on individual cervical motion segments are not known. The purpose of this study is to investigate the fascicular anatomy and peak force capabilities of the SCM combining traditional dissection and modern imaging. This study is comprised of three parts: Dissection, magnetic resonance imaging (MRI) and biomechanical modelling. Dissection was performed on six embalmed cadavers: three males of age 73-74 years and three females of age 63-93 years. The fascicular arrangement and morphologic data were recorded. MRIs were performed on six young, healthy volunteers: three males of age 24-37 and three females of age 26-28. In vivo volumes of the SCM were calculated using the Cavalieri method. Modelling of the SCM was performed on five sets of computed tomography (CT) scans. This mapped the fascicular arrangement of the SCM with relation to the cervical motion segments, and used volume data from the MRIs to calculate realistic peak force capabilities. Dissection showed the SCM has four parts; sterno-mastoid, sterno-occipital, cleido-mastoid and cleido-occipital portions. Force modelling shows that peak torque capacity of the SCM is higher at lower cervical levels, and minimal at higher levels. Peak shear forces are higher in the lower cervical spine, while compression is consistent throughout. The four-part SCM is capable of producing forces that vary across the cervical motion segments. The implications of these findings are discussed with reference to models of neck muscle function and dysfunction.

  13. A study of diurnal variation in peak expiratory flow rates in healthy adult female subjects in South India

    Directory of Open Access Journals (Sweden)

    Jenny Jayapal

    2014-01-01

    Full Text Available Background: Peak Expiratory Flow Rate (PEFR reflects the strength and condition of respiratory muscles and the degree of airflow limitation in large airways. PEFR shows hour to hour variation that follows a specific pattern in asthmatics and healthy individuals. Adequate data is not available for the diurnal variation in normal individuals who are students in professional courses and had a sedentary life style. Hence, this study was undertaken to study the diurnal variation in peak expiratory flow rates in healthy adult female subjects in South India. Materials and Methods: Peak expiratory flow rate was recorded in 50 adult healthy female students aged 18-23 years and studying in professional courses. Mini Wright′s peak flow meter was used to measure the peak expiratory flow rate. PEFR were recorded at 7-8 a.m., 10-11 a.m., 1-2 p.m., 4-5 p.m., and 7-8 p.m. for two consecutive days. Results: On analysis of PEFR records of individual subjects, it was seen that there was an overall dip in the morning at 7-8 h PEFR, which increased in the daytime, peaking in the afternoon at 1-2 p.m. and eventually decreased in the night. Subjects did not show the peak PEFR values at the same time point, 10% of subjects had a rise in PEFR in the early morning, afternoon (1-2 p.m. peak was observed in 48% subjects and evening (4-5 p.m. peak was observed in 16% subjects. 14% subjects showed a peak in the night time (7-8 p.m. PEFR values. Conclusion: This study provided the preliminary reference data of diurnal variation of peak expiratory flow rate in healthy adults. Since, there is a variation in the peak expiratory flow rate recorded during different time points of the day; hence, to compare the PEFR between individuals it is advisable to record the PEFR at the same time point.

  14. Seeds of Life in Space (SOLIS). III. Zooming Into the Methanol Peak of the Prestellar Core L1544

    Science.gov (United States)

    Punanova, Anna; Caselli, Paola; Feng, Siyi; Chacón-Tanarro, Ana; Ceccarelli, Cecilia; Neri, Roberto; Fontani, Francesco; Jiménez-Serra, Izaskun; Vastel, Charlotte; Bizzocchi, Luca; Pon, Andy; Vasyunin, Anton I.; Spezzano, Silvia; Hily-Blant, Pierre; Testi, Leonardo; Viti, Serena; Yamamoto, Satoshi; Alves, Felipe; Bachiller, Rafael; Balucani, Nadia; Bianchi, Eleonora; Bottinelli, Sandrine; Caux, Emmanuel; Choudhury, Rumpa; Codella, Claudio; Dulieu, François; Favre, Cécile; Holdship, Jonathan; Jaber Al-Edhari, Ali; Kahane, Claudine; Laas, Jake; LeFloch, Bertrand; López-Sepulcre, Ana; Ospina-Zamudio, Juan; Oya, Yoko; Pineda, Jaime E.; Podio, Linda; Quenard, Davide; Rimola, Albert; Sakai, Nami; Sims, Ian R.; Taquet, Vianney; Theulé, Patrice; Ugliengo, Piero

    2018-03-01

    Toward the prestellar core L1544, the methanol (CH3OH) emission forms an asymmetric ring around the core center, where CH3OH is mostly in solid form, with a clear peak at 4000 au to the northeast of the dust continuum peak. As part of the NOEMA Large Project SOLIS (Seeds of Life in Space), the CH3OH peak has been spatially resolved to study its kinematics and physical structure and to investigate the cause behind the local enhancement. We find that methanol emission is distributed in a ridge parallel to the main axis of the dense core. The centroid velocity increases by about 0.2 km s‑1 and the velocity dispersion increases from subsonic to transonic toward the central zone of the core, where the velocity field also shows complex structure. This could be an indication of gentle accretion of material onto the core or the interaction of two filaments, producing a slow shock. We measure the rotational temperature and show that methanol is in local thermodynamic equilibrium (LTE) only close to the dust peak, where it is significantly depleted. The CH3OH column density, N tot(CH3OH), profile has been derived with non-LTE radiative transfer modeling and compared with chemical models of a static core. The measured N tot(CH3OH) profile is consistent with model predictions, but the total column densities are one order of magnitude lower than those predicted by models, suggesting that the efficiency of reactive desorption or atomic hydrogen tunneling adopted in the model may be overestimated; or that an evolutionary model is needed to better reproduce methanol abundance. This work is based on observations carried out under project number L15AA with the IRAM NOEMA Interferometer and on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  15. Accurate mean-field modeling of the Barkhausen noise power in ferromagnetic materials, using a positive-feedback theory of ferromagnetism

    Science.gov (United States)

    Harrison, R. G.

    2015-07-01

    A mean-field positive-feedback (PFB) theory of ferromagnetism is used to explain the origin of Barkhausen noise (BN) and to show why it is most pronounced in the irreversible regions of the hysteresis loop. By incorporating the ABBM-Sablik model of BN into the PFB theory, we obtain analytical solutions that simultaneously describe both the major hysteresis loop and, by calculating separate expressions for the differential susceptibility in the irreversible and reversible regions, the BN power response at all points of the loop. The PFB theory depends on summing components of the applied field, in particular, the non-monotonic field-magnetization relationship characterizing hysteresis, associated with physical processes occurring in the material. The resulting physical model is then validated by detailed comparisons with measured single-peak BN data in three different steels. It also agrees with the well-known influence of a demagnetizing field on the position and shape of these peaks. The results could form the basis of a physics-based method for modeling and understanding the significance of the observed single-peak (and in multi-constituent materials, multi-peak) BN envelope responses seen in contemporary applications of BN, such as quality control in manufacturing, non-destructive testing, and monitoring the microstructural state of ferromagnetic materials.

  16. Fast Metabolite Identification in Nuclear Magnetic Resonance Metabolomic Studies: Statistical Peak Sorting and Peak Overlap Detection for More Reliable Database Queries.

    Science.gov (United States)

    Hoijemberg, Pablo A; Pelczer, István

    2018-01-05

    A lot of time is spent by researchers in the identification of metabolites in NMR-based metabolomic studies. The usual metabolite identification starts employing public or commercial databases to match chemical shifts thought to belong to a given compound. Statistical total correlation spectroscopy (STOCSY), in use for more than a decade, speeds the process by finding statistical correlations among peaks, being able to create a better peak list as input for the database query. However, the (normally not automated) analysis becomes challenging due to the intrinsic issue of peak overlap, where correlations of more than one compound appear in the STOCSY trace. Here we present a fully automated methodology that analyzes all STOCSY traces at once (every peak is chosen as driver peak) and overcomes the peak overlap obstacle. Peak overlap detection by clustering analysis and sorting of traces (POD-CAST) first creates an overlap matrix from the STOCSY traces, then clusters the overlap traces based on their similarity and finally calculates a cumulative overlap index (COI) to account for both strong and intermediate correlations. This information is gathered in one plot to help the user identify the groups of peaks that would belong to a single molecule and perform a more reliable database query. The simultaneous examination of all traces reduces the time of analysis, compared to viewing STOCSY traces by pairs or small groups, and condenses the redundant information in the 2D STOCSY matrix into bands containing similar traces. The COI helps in the detection of overlapping peaks, which can be added to the peak list from another cross-correlated band. POD-CAST overcomes the generally overlooked and underestimated presence of overlapping peaks and it detects them to include them in the search of all compounds contributing to the peak overlap, enabling the user to accelerate the metabolite identification process with more successful database queries and searching all tentative

  17. Occupational exposure to electromagnetic fields in physiotherapy departments

    International Nuclear Information System (INIS)

    Macca, I.; Scapellato, M. L.; Carrieri, M.; Di Bisceglie, A. P.; Saia, B.; Bartolucci, G. B.

    2008-01-01

    To assess occupational exposure to electromagnetic fields, 11 microwave (MW), 4 short-wave diathermy and 15 magneto therapy devices were analysed in eight physiotherapy departments. Measurements taken at consoles and environmental mapping showed values above European Directive 2004/40/EC and ACGIH exposure limits at ∼50 cm from MW applicators (2.45 GHz) and above the Directive magnetic field limit near the diathermy unit (27.12 MHz). Levels in front of MW therapy applicators decreased rapidly with distance and reduction in power; this may not always occur in work environments where nearby metal structures (chairs, couches, etc.) may reflect or perturb electromagnetic fields. Large differences in stray field intensities were found for various MW applicators. Measurements of power density strength around MW electrodes confirmed radiation fields between 30 deg. and 150 deg., with a peak at 90 deg., in front of the cylindrical applicator and maximum values between 30 deg. and 150 deg. over the whole range of 180 deg. for the rectangular parabolic applicator. Our results reveal that although most areas show substantially low levels of occupational exposure to electromagnetic fields in physiotherapy units, certain cases of over-occupational exposure limits do exist. (authors)

  18. Dual-peak dose measurement for radiochromic films by a newly developed spectral microdensitometer

    International Nuclear Information System (INIS)

    Lee, K.Y.; Fung, K.K.L.; Kwok, C.S.

    2005-01-01

    Radiochromic film (RCF) dosimetry is usually based on densitometric methods which use an analyzing light source of a fixed or a broad spectrum of wavelengths. These methods have not exploited the sensitivity of the dose response of the RCF otherwise attainable by using a light source with wavelengths peaked at the two absorption peaks in the absorption spectrum of the RCF. A new algorithm of dual-peak dose measurement for the RCF has been proposed in this paper to make use of these dual absorption peaks to achieve the maximum attainable sensitivity. This technique relies on the measurement of the transmittance of the RCF at the wavelength of the major and minor absorption peaks, respectively. The dual-peak dose measurement is accomplished with the aid of a novel spectral microdensitometer developed in our Institute. The microdensitometer utilizes a monochromator to provide a light source of which the wavelength can be matched precisely to the wavelength of the absorption peaks of the RCF. The doses obtained at these wavelengths are fed into a weighted objective function and an optimum dose is searched by minimizing the objective function to give the best estimate of the dose deposited on the film. An initial test shows that there is a good agreement between the estimated and actual dose deposited; and the maximum discrepancy was found to be less than 1%

  19. Probabilistic peak detection for first-order chromatographic data.

    Science.gov (United States)

    Lopatka, M; Vivó-Truyols, G; Sjerps, M J

    2014-03-19

    We present a novel algorithm for probabilistic peak detection in first-order chromatographic data. Unlike conventional methods that deliver a binary answer pertaining to the expected presence or absence of a chromatographic peak, our method calculates the probability of a point being affected by such a peak. The algorithm makes use of chromatographic information (i.e. the expected width of a single peak and the standard deviation of baseline noise). As prior information of the existence of a peak in a chromatographic run, we make use of the statistical overlap theory. We formulate an exhaustive set of mutually exclusive hypotheses concerning presence or absence of different peak configurations. These models are evaluated by fitting a segment of chromatographic data by least-squares. The evaluation of these competing hypotheses can be performed as a Bayesian inferential task. We outline the potential advantages of adopting this approach for peak detection and provide several examples of both improved performance and increased flexibility afforded by our approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Study on the influence of lipid peak to the results of MR spectroscopy in the central gland of prostate

    International Nuclear Information System (INIS)

    Dong Yanjun; Wang Xiaoying; Li Feiyu; Jiang Xuexiang

    2007-01-01

    Objective: To study the influence of lipid peak to MRS in central gland of prostate gland. Methods: Seventeen patients performed transurethral resection of prostate (TURP) for benign prostate hyperplasia (BPH) were enrolled in this study. Three groups were divided according to the pathological findings: glandular-BPH (GBPH) (7 cases), stromal-BPH (SBPH) (6 cases), and incidentally detected prostate carcinoma (IDPC) (4 cases). The voxel with lipid peak in the field of volume was counted. Compared with pathology, the following studies were performed: (1) The location of the voxels that more frequently presented lipid peak in the central gland. (2) Whether the appearance of the lipid peak would obscure the identification of the peaks of the endogenous metabolites. Results: The ratio of voxels with lipid peak in central gland was about 22.8% (834/3567). There were 1477 (397 voxels with lipid peak), 1434(396 voxels with lipid peak), and 656(41 voxels with lipid peak) voxels in CBPH, SBPH, and IDPC groups, respectively. The percentage in GBPH, SBPH, and IDPC groups was 23.6%, 27.2%, and 6.4%, respectively. The percentage of voxels with lipid peak at the edge of the central gland (79.6%, 68.6% and 72.4%, respectively) was higher than that in other regions. The lipid peak in most of the voxels didn't influence the identification of the citrate and choline peak (82.8%, 98.0%, and 96.4%, respectively). Conclusion: The lipid peak in the central gland may result from the lipid tissues near the gland, and most lipid peak had no influence on the identification of endogenous metabolites. (authors)

  1. Cassini Ion Mass Spectrometer Peak Calibrations from Statistical Analysis of Flight Data

    Science.gov (United States)

    Woodson, A. K.; Johnson, R. E.

    2017-12-01

    The Cassini Ion Mass Spectrometer (IMS) is an actuating time-of-flight (TOF) instrument capable of resolving ion mass, energy, and trajectory over a field of view that captures nearly the entire sky. One of three instruments composing the Cassini Plasma Spectrometer, IMS sampled plasma throughout the Kronian magnetosphere from 2004 through 2012 when it was permanently disabled due to an electrical malfunction. Initial calibration of the flight instrument at Southwest Research Institute (SwRI) was limited to a handful of ions and energies due to time constraints, with only about 30% of planned measurements carried out prior to launch. Further calibration measurements were subsequently carried out after launch at SwRI and Goddard Space Flight Center using the instrument prototype and engineering model, respectively. However, logistical differences among the three calibration efforts raise doubts as to how accurately the post-launch calibrations describe the behavior of the flight instrument. Indeed, derived peak parameters for some ion species differ significantly from one calibration to the next. In this study we instead perform a statistical analysis on 8 years of flight data in order to extract ion peak parameters that depend only on the response of the flight instrument itself. This is accomplished by first sorting the TOF spectra based on their apparent compositional similarities (e.g. primarily water group ions, primarily hydrocarbon ions, etc.) and normalizing each spectrum. The sorted, normalized data are then binned according to TOF, energy, and counts in order to generate energy-dependent probability density maps of each ion peak contour. Finally, by using these density maps to constrain a stochastic peak fitting algorithm we extract confidence intervals for the model parameters associated with various measured ion peaks, establishing a logistics-independent calibration of the body of IMS data gathered over the course of the Cassini mission.

  2. Important variables in explaining real-time peak price in the independent power market of Ontario

    International Nuclear Information System (INIS)

    Rueda, I.E.A.; Marathe, A.

    2005-01-01

    This paper uses support vector machines (SVM) based learning algorithm to select important variables that help explain the real-time peak electricity price in the Ontario market. The Ontario market was opened to competition only in May 2002. Due to the limited number of observations available, finding a set of variables that can explain the independent power market of Ontario (IMO) real-time peak price is a significant challenge for the traders and analysts. The kernel regressions of the explanatory variables on the IMO real-time average peak price show that non-linear dependencies exist between the explanatory variables and the IMO price. This non-linear relationship combined with the low variable-observation ratio rule out conventional statistical analysis. Hence, we use an alternative machine learning technique to find the important explanatory variables for the IMO real-time average peak price. SVM sensitivity analysis based results find that the IMO's predispatch average peak price, the actual import peak volume, the peak load of the Ontario market and the net available supply after accounting for load (energy excess) are some of the most important variables in explaining the real-time average peak price in the Ontario electricity market. (author)

  3. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  4. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  5. Thermally-activated internal friction peaks in amorphous films of Nb3Ge and Nb3Si

    International Nuclear Information System (INIS)

    Berry, B.S.; Pritchet, W.C.

    1978-01-01

    A large number of the thermally-activated internal friction peaks observed in crystalline solids are associated with the general mechanism of stress-induced directional short-range ordering. These peaks are an indirect but nevertheless valuable structural probe, and provide an important means of obtaining quantitative information on the kinetics of local atomic movements. This paper deals with what are thought to be the first-known examples of such peaks in the field of metallic glasses. The peaks have been observed in amorphous films of Nb 3 Ge and Nb 3 Si which are both superconductors with transition temperatures Tsub(c) near 3.6K. Although Tsub(c) is thus well below the record values of approximately equal to 23K reported for crystalline films of Nb 3 Ge, Tsuei has found the amorphous films to be much superior mechanically to their crystalline counterparts. Consequently, the amorphous films have technological interest as an easily-handled source from which the brittle high-Tsub(c) phase may be obtained by a final in-situ anneal. (author)

  6. A neutron polarisation analysis study of the 'central' peak in single-crystal praseodymium

    International Nuclear Information System (INIS)

    Burke, S.K.; Stirling, W.G.; McEwen, K.A.; Salford Univ.

    1981-01-01

    The technique of neutron polarisation analysis has been used to examine the broad 'central' peak in paramagnetic praseodymium. Measurements over the temperature range 1.2-25 K show that these peaks, observed at reciprocal space positions (Q 1 , 0, 2m + 1) with Q 1 = 0.11 tau 100 , are entirely magnetic in character. The relationship between these short-range magnetic correlations and the long-range antiferromagnetic ordering process is discussed. (author)

  7. Climate Change Impacts on Peak Electricity Consumption: US vs. Europe.

    Science.gov (United States)

    Auffhammer, M.

    2016-12-01

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond. This finding is at odds with the relatively modest increase in climate driven impacts on consumption. Comprehensive high frequency load balancing authority level data have not been used previously to parameterize the relationship between electric demand and temperature for any major economy. Using statistical models we analyze multi-year data from load balancing authorities in the United States of America and the European Union, which are responsible for more than 90% of the electricity delivered to residential, industrial, commercial and agricultural customers. We couple the estimated response functions between total daily consumption and daily peak load with an ensemble of downscaled GCMs from the CMIP5 archive to simulate climate change driven impacts on both outcomes. We show moderate and highly spatially heterogeneous changes in consumption. The results of our peak load simulations, however, suggest significant changes in the intensity and frequency of peak events throughout the United States and Europe. As the electricity grid is built to endure maximum load, which usually occurs on the hottest day of the year, our findings have significant implications for the construction of costly peak generating and transmission capacity.

  8. Peak Shaving Considering Streamflow Uncertainties | Iwuagwu ...

    African Journals Online (AJOL)

    The main thrust of this paper is peak shaving with a Stochastic hydro model. In peak sharing, the amount of hydro energy scheduled may be a minimum but it serves to replace less efficient thermal units. The sample system is die Kainji hydro plant and the thermal units of the National Electric Power Authority. The random ...

  9. Effects of daily activity recorded by pedometer on peak oxygen consumption (VO2peak), ventilatory threshold and leg extension power in 30- to 69-year-old Japanese without exercise habit.

    Science.gov (United States)

    Zhang, Jian-Guo; Ohta, Toshiki; Ishikawa-Takata, Kazuko; Tabata, Izumi; Miyashita, Mitsumasa

    2003-09-01

    The relationships among walk steps, exercise habits and peak oxygen consumption (VO2peak), ventilatory threshold (VT) and leg extension power (LEP) were examined in 709 apparently healthy Japanese subjects (male 372, female 337) aged 30-69 years. Walk steps were evaluated using a pedometer. VO2peak and VT were assessed by a cycle ergometer test, while LEP was measured with an isokinetic leg extension system (Combi, Anaero Press 3500, Japan). Subjects who participated in exercise three times or more a week demonstrated significantly greater VO2peak and VT when compared with subjects without exercise habits. When a separate analysis was conducted on subjects who exercised fewer than three times per week, we found that the subgroup with the highest number of walk steps showed significantly greater VT in all male subjects and female subjects aged 30-49 years, but a significantly greater VO2peak only in females aged 30-49 years, when compared to the subgroup with the fewest walk steps. These results suggest that although some people exercise less than three times a week, if they are quite active in daily life, such activities might also confer benefits upon their fitness.

  10. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington

    Science.gov (United States)

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.

    2012-01-01

    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  11. Peak Oil, threat or energy worlds' phantasm?

    International Nuclear Information System (INIS)

    Favennec, Jean-Pierre

    2011-01-01

    The concept of Peak Oil is based on the work of King Hubbert, a petroleum geologist who worked for Shell in the USA in the 1960's. Based on the fact that discoveries in America reached a maximum in the 1930's, he announced that American production would reach a maximum in 1969, which did actually occur. Geologists members of the Association for the Study of Peak Oil have extrapolated this result to a worldwide scale and, since oil discoveries reached a peak in the 1960's, argued that production will peak in the very near future. It is clear that hydrocarbon reserves are finite and therefore exhaustible. But little is known regarding the level of ultimate (i.e. total existing) reserves. There are probably very large reserves of non conventional oil in addition to the reserves of conventional oil. An increasing number of specialists put maximum production at less than 100 Mb/d more for geopolitical than physical reasons. Attainable peak production will probably vary from year to year and will depend on how crude oil prices develop

  12. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Nursery peak inventory endorsement. 457.163 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.163 Nursery peak inventory endorsement. Nursery Crop Insurance Peak Inventory Endorsement This endorsement is not continuous and must be...

  13. What is the peak stress in ceramic bar impacts?

    International Nuclear Information System (INIS)

    Simha, C. Hari Manoj; Bless, S.J.; Bedford, A.

    2000-01-01

    The bar impact experiment has been extensively used to characterize the high strain rate properties of high strength ceramics. In particular, alumina AD-99.5 has been widely studied; both stress gauge and VISAR bar impact data are available for this material. We have performed plate-on-bar impact experiments using this material in some novel configurations. An interface was introduced in the target bar (by cutting it) in the zone where the material fails by axial splitting. Such experiments resulted in a dramatic drop in the peak stress measured in the experiment, when compared to experiments with no interface. We show that the damage kinetics in tension influence these measurements. Since the peak stress is dependent on the damage kinetics we conclude that the measurement cannot be correlated to some intrinsic strength of the ceramic

  14. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Aran, A. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Gomez-Herrero, R.; Dresing, N.; Heber, B., E-mail: david.lario@jhuapl.edu [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany)

    2013-04-10

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ - ({phi} - {phi}{sub 0}){sup 2}/2{sigma}{sup 2}], where {phi} is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, {phi}{sub 0} is the distribution centroid, and {sigma} determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R < 1 AU, allows us to determine a lower limit to the radial dependence of the 71-112 keV electron peak intensities measured along IMF lines. We find five events for which the nominal magnetic footpoint of MESSENGER was less than 20 Degree-Sign apart from the nominal footpoint of a spacecraft near 1 AU. Although the expected theoretical radial dependence for the peak intensity of the events observed along the same field line can be approximated by a functional form R {sup -{alpha}} with {alpha} < 3, we find two events for which {alpha} > 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  15. Diffraction peaks in x-ray spectroscopy: Friend or foe?

    International Nuclear Information System (INIS)

    Tissot, R.G.; Goehner, R.P.

    1992-01-01

    Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample

  16. Comparison of mantle lithosphere beneath early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts

    Directory of Open Access Journals (Sweden)

    I.V. Ashchepkov

    2016-07-01

    Kharamai mantle clinopyroxenes represent three geochemical types: (1 harzburgitic with inclined linear REE, HFSE troughs and elevated Th, U; (2 lherzolitic or pyroxenitic with round TRE patterns and decreasing incompatible elements; (3 eclogitic with Eu troughs, Pb peak and high LILE content. Calculated parental melts for garnets with humped REE patterns suggest dissolution of former Cpx and depression means Cpx and garnets extraction. Clinopyroxenes from Ary-Mastakh fields show less inclined REE patterns with HMREE troughs and an increase of incompatible elements. Clinopyroxenes from Kuranakh field show flatter spoon-like REE patterns and peaks in Ba, U, Pb and Sr, similar to those in ophiolitic harzburgites. The PT diagrams for the mantle sections show high temperature gradients in the uppermost SCLM accompanied by an increase of P-Fe#Ol upward and slightly reduced thickness of the mantle keel of the Siberian craton, resulting from the influence of the Permian–Triassic superplume, but with no signs of delamination.

  17. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  18. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed

    2013-01-07

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  19. Exciton diamagnetic shift and optical properties in CdSe nanocrystal quantum dots in magnetic fields

    Science.gov (United States)

    Wu, Shudong; Cheng, Liwen

    2018-04-01

    The magnetic field dependence of the optical properties of CdSe nanocrystal quantum dots (NQDs) is investigated theoretically using a perturbation method within the effective-mass approximation. The results show that the magnetic field lifts the degeneracy of the electron (hole) states. A blue-shift in the absorption spectra of m ≥ 0 exciton states is observed while the absorption peak of m attributed to the interplay of the orbital Zeeman effect and the additive confinement induced by the magnetic field. The excitonic absorption coefficient is almost independent of B in the strong confinement regime. The applied magnetic field causes the splitting of degenerated exciton states, resulting in the new absorption peaks. Based on the first-order perturbation theory, we propose the analytical expressions for the exciton binding energy, exciton transition energy and exciton diamagnetic shift of 1s, 1p-1, 1p0, 1p1, 1d-2, 1d-1, 1d0, 1d1, 1d2 and 2s exciton states on the applied magnetic field in the strong confinement regime.

  20. Projection Effects of Large-scale Structures on Weak-lensing Peak Abundances

    Science.gov (United States)

    Yuan, Shuo; Liu, Xiangkun; Pan, Chuzhong; Wang, Qiao; Fan, Zuhui

    2018-04-01

    High peaks in weak lensing (WL) maps originate dominantly from the lensing effects of single massive halos. Their abundance is therefore closely related to the halo mass function and thus a powerful cosmological probe. However, besides individual massive halos, large-scale structures (LSS) along lines of sight also contribute to the peak signals. In this paper, with ray-tracing simulations, we investigate the LSS projection effects. We show that for current surveys with a large shape noise, the stochastic LSS effects are subdominant. For future WL surveys with source galaxies having a median redshift z med ∼ 1 or higher, however, they are significant. For the cosmological constraints derived from observed WL high-peak counts, severe biases can occur if the LSS effects are not taken into account properly. We extend the model of Fan et al. by incorporating the LSS projection effects into the theoretical considerations. By comparing with simulation results, we demonstrate the good performance of the improved model and its applicability in cosmological studies.

  1. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial.

    Science.gov (United States)

    Kim, Jaeyoun; Soref, Richard; Buchwald, Walter R

    2010-08-16

    We investigate the electromagnetic response of the concentric multi-ring, or the bull's eye, structure as an extension of the dual-ring metamaterial which exhibits electromagnetically-induced transparency (EIT)-like transmission characteristics. Our results show that adding inner rings produces additional EIT-like peaks, and widens the metamaterial's spectral range of operation. Analyses of the dispersion characteristics and induced current distribution further confirmed the peak's EIT-like nature. Impacts of structural and dielectric parameters are also investigated.

  2. Ion peak narrowing by applying additional AC voltage (ripple voltage) to FAIMS extractor electrode.

    Science.gov (United States)

    Pervukhin, Viktor V; Sheven, Dmitriy G

    2010-01-01

    The use of a non-uniform electric field in a high-field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer increases sensitivity but decreases resolution. The application of an additional AC voltage to the extractor electrode ("ripple" voltage, U(ripple)) can overcome this effect, which decreases the FAIMS peak width. In this approach, the diffusion ion loss remains minimal in the non-uniform electric field in the cylindrical part of the device, and all ion losses under U(ripple) occur in a short portion of their path. Application of the ripple voltage to the extractor electrode is twice as efficient as the applying of U(ripple) along the total length of the device. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  3. Analysis of fuel end-temperature peaking

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Jiang, Q.; Lai, L.; Shams, M. [CANDU Energy Inc., Fuel Engineering Dept., Mississauga, Ontario (Canada)

    2013-07-01

    During normal operation and refuelling of CANDU® fuel, fuel temperatures near bundle ends will increase due to a phenomenon called end flux peaking. Similar phenomenon would also be expected to occur during a postulated large break LOCA event. The end flux peaking in a CANDU fuel element is due to the fact that neutron flux is higher near a bundle end, in contact with a neighbouring bundle or close to heavy water coolant, than in the bundle mid-plane, because of less absorption of thermal neutrons by Zircaloy or heavy water than by the UO{sub 2} material. This paper describes Candu Energy experience in analysing behaviour of bundle due to end flux peaking using fuel codes FEAT, ELESTRES and ELOCA. (author)

  4. Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field

    Science.gov (United States)

    Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.

    2017-12-01

    One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our

  5. Enhancement of the thermoelectric figure of merit in a quantum dot due to external ac field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiao, E-mail: cqhy1127@yahoo.com.cn [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Wang, Zhi-yong, E-mail: wzyong@cqut.edu.cn [School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Xie, Zhong-Xiang [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China)

    2013-08-15

    We investigate the figure of merit of a quantum dot (QD) system irradiated with an external microwave filed by nonequilibrium Green's function (NGF) technique. Results show that the frequency of microwave field influence the figure of merit ZT significantly. At low temperature, a sharp peak can be observed in the figure of merit ZT as the frequency of ac field increases. As the frequency varies, several zero points and resonant peaks emerge in the figure of merit ZT. By adjusting the frequency of the microwave field, we can obtain high ZT. The figure of merit ZT increases with the decreasing of linewidth function Γ. In addition, Wiedemann–Franz law does not hold, particularly in the low frequency region due to multi-photon emission and absorption. Some novel thermoelectric properties are also found in two-level QD system.

  6. Study of the Boson Peak and Fragility of Bioprotectant Glass-Forming Mixtures by Neutron Scattering

    Directory of Open Access Journals (Sweden)

    F. Migliardo

    2013-01-01

    Full Text Available The biological relevance of trehalose, glycerol, and their mixtures in several anhydrobiotic and cryobiotic organisms has recently promoted both experimental and simulation studies. In addition, these systems are employed in different industrial fields, such as pharmaceutical and cosmetic industries, as additives in mixtures for cryopreservation and in several formulations. This review article shows an overview of Inelastic Neutron Scattering (INS data, collected at different temperature values by the OSIRIS time-of-flight spectrometer at the ISIS Facility (Rutherford Appleton Laboratory, Oxford, UK and by the IN4 and IN6 spectrometers at the Institut Laue Langevin (ILL, Grenoble, France, on trehalose/glycerol mixtures as a function of the glycerol content. The data analysis allows determining the Boson peak behavior and discussing the findings in terms of fragility in relation to the bioprotective action of trehalose and glycerol.

  7. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  8. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm.

    Science.gov (United States)

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei; Wang, Hongxun; Dai, Wei

    2018-04-08

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry-Perot (F-P) filter and optical switch. To improve system resolution, the F-P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  9. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Weifang Zhang

    2018-04-01

    Full Text Available A Fiber Bragg Grating (FBG interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA and advanced RISC machine (ARM platform, tunable Fabry–Perot (F–P filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  10. Detection of irradiated strawberries by identifying ESR peak of irradiated cellulose component

    International Nuclear Information System (INIS)

    Goto, Michiko; Tanabe, Hiroko

    2002-01-01

    The method of detecting low-dose irradiated strawberries by identifying ESR peak of irradiated cellulose component was studied. Ratio of peak height (S) of high magnetic field cellulose component, and noise width (N) of either irradiated or unirradiated seeds of strawberries were compared. In this study, sample was identified to be irradiated when S/N ratio of ESR spectrum of 4 min. sweep time was above 0.7. In the case of S/N ratio below 0.7, when the S/N ratio of integrated ESR spectrum, obtained from measuring 10 times with 1 min. sweep time was above 1.0, the sample was identified to be irradiated. The result suggests that S/N ratio is a good marker to detect the irradiation. The strawberries irradiated above 0.5kGy was able to be detected after 3 days storage at room temperature, after 21 days refrigeration and after 60 days freezing, respectively. (author)

  11. Numerical analysis of blast flow-field of baffle type muzzle brake

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.H. [Graduate School, Chungnam National University, Taejon (Korea); Ko, S. [Chungnam National University, Taejon (Korea)

    1998-11-01

    A three-dimensional unsteady, inviscid blast flow-field of a baffle type muzzle brake has been simulated by solving the Euler equation. The blast flow-field includes the effect of the free air blast, precursor blast flow and the propellant blast gas flow. Chimera grid scheme was used to generate 9 multi-block volume grids for the complex geometry. The evolution of the blast flow-field is presented by showing the contours of pressure, density and Mach number for certain time step. The comparison of the calculated and measured peak pressures on the surfaces of the muzzle brake is also presented. (author). 4 refs., 5 figs., 1 tab.

  12. Measurement of disintegration rates of 60Co volume sources by the sum-peak method

    International Nuclear Information System (INIS)

    Kawano, Takao; Ebihara, Hiroshi

    1991-01-01

    The sum-peak method has been applied to the determination of the disintegration rates of 60 Co volume sources (1.05 x 10 4 Bq, 1.05 x 10 3 Bq and 1.05 x 10 2 Bq, in 100-ml polyethylene bottles) by using a NaI(Tl) detector of a diameter of 50 mm and a height of 50 mm. The experimental results showed that decreasing the disintegration rates resulted in enlarged underestimation in comparison with the true disintegration rates. It was presumed that the underestimations of the disintegration rates determined by the sum-peak method resulted from the overestimations of the areas under the sum peaks caused by the overlap of the area under the Compton scattering of the γ-ray (2614 keV) emitted from a naturally occurring radionuclide 208 Tl under the sum peaks. (author)

  13. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  14. Bayesian approach for peak detection in two-dimensional chromatography.

    Science.gov (United States)

    Vivó-Truyols, Gabriel

    2012-03-20

    A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual one-dimensional peaks have been originated from the same compound and should then be arranged in a two-dimensional peak. The merging algorithm is based on Bayesian inference. The user sets prior information about certain parameters (e.g., second-dimension retention time variability, first-dimension band broadening, chromatographic noise). On the basis of these priors, the algorithm calculates the probability of myriads of peak arrangements (i.e., ways of merging one-dimensional peaks), finding which of them holds the highest value. Uncertainty in each parameter can be accounted by adapting conveniently its probability distribution function, which in turn may change the final decision of the most probable peak arrangement. It has been demonstrated that the Bayesian approach presented in this paper follows the chromatographers' intuition. The algorithm has been applied and tested with LC × LC and GC × GC data and takes around 1 min to process chromatograms with several thousands of peaks.

  15. Development of the modified sum-peak method and its application

    International Nuclear Information System (INIS)

    Ogata, Y.; Miyahara, H.; Ishihara, M.; Ishigure, N.; Yamamoto, S.; Kojima, S.

    2016-01-01

    As the sum-peak method requires the total count rate as well as the peak count rates and the sum peak count rate, this meets difficulties when a sample contains other radionuclides than the one to be measured. To solve the problem, a new method using solely the peak and the sum peak count rates was developed. The method was theoretically and experimentally confirmed using "6"0Co, "2"2Na and "1"3"4Cs. We demonstrate that the modified sum-peak method is quite simple and practical and is useful to measure multiple nuclides. - Highlights: • A modified sum-peak method for simple radioactivity measurement was developed. • The method solely requires the peak count rates and the sum peak count rate. • The method is applicable to multiple radionuclides.

  16. Peak broadening in paper chromatography and related techniques : III. Peak broadening in thin-layer chromatography on cellulose powder

    NARCIS (Netherlands)

    Ligny, C.L. de; Remijnse, A.G.

    1968-01-01

    The mechanism of peak broadening in thin-layer chromatography on cellulose powder was investigated by comparing the peak widths obtained in chromatography with those caused only by diffusion in the cellulose powder, for a set of amino acids of widely differing RF values and six kinds of cellulose

  17. The relation between crossover of the intergrain loss-peak temperature-field characteristics of the Ag-Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub x] screen-printed tapes and their J[sub C] values

    Energy Technology Data Exchange (ETDEWEB)

    Noji, H [IRC in Superconductivity, Univ. of Cambridge (United Kingdom); Glowacki, B A [IRC in Superconductivity, Univ. of Cambridge (United Kingdom) Dept. of Materials Science and Metallurgy, Univ. of Cambridge (United Kingdom); Oota, A [Dept. of Electric and Electronic Engineering, Toyohashi Univ. of Tech., (Japan)

    1993-05-10

    A study of the influence of the processing conditions of Ag-Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub x] screen-printed tapes on the temperature, field and frequency dependence of their a.c. susceptibility has been conducted. Samples have been prepared by melt-solidification and subsequent sintering on silver substrates under the same conditions but with different cooling procedures and reannealing. These procedures lead to different Tc values and field dependency of the loss peak temperature T[sub M], which cause the crossover in the T[sub M] versus applied field characteristics. It was established that the above crossover phenomenon is correlated to the crossover in the J[sub C] versus temperature characteristics. (orig.)

  18. OccuPeak: ChIP-Seq peak calling based on internal background modelling

    NARCIS (Netherlands)

    de Boer, Bouke A.; van Duijvenboden, Karel; van den Boogaard, Malou; Christoffels, Vincent M.; Barnett, Phil; Ruijter, Jan M.

    2014-01-01

    ChIP-seq has become a major tool for the genome-wide identification of transcription factor binding or histone modification sites. Most peak-calling algorithms require input control datasets to model the occurrence of background reads to account for local sequencing and GC bias. However, the

  19. Cranial Indicators Identified for Peak Incidence of Otitis Media.

    Science.gov (United States)

    Pagano, Anthony S; Wang, Eugene; Yuan, Derek; Fischer, Daniel; Bluestone, Charles; Marquez, Samuel; Laitman, Jeffrey

    2017-10-01

    Acute otitis media (AOM) is one of the most common pediatric conditions worldwide. Peak age of occurrence for AOM has been identified within the first postnatal year and it remains frequent until approximately six postnatal years. Morphological differences between adults and infants in the cartilaginous Eustachian tube (CET) and associated structures may be responsible for development of this disease yet few have investigated normal growth trajectories. We tested hypotheses on coincidence of skeletal growth changes and known ages of peak AOM occurrence. Growth was divided into five dental eruption stages ranging from edentulous neonates (Stage 1) to adults with erupted third maxillary molars (Stage 5). A total of 32 three-dimensional landmarks were used and Generalized Procrustes Analysis was performed. Next, we performed principal components analysis and calculated univariate measures. It was found that growth change in Stage 1 was the most rapid and comprised the largest amount of overall growth in upper respiratory tract proportions (where time is represented by the natural logarithmic transformation of centroid size). The analysis of univariate measures showed that Stage 1 humans did indeed possess the relatively shortest and most horizontally oriented CET's with the greatest amount of growth change occurring at the transition to Stage 2 (eruption of deciduous dentition at five postnatal months, commencing peak AOM incidence) and ceasing by Stage 3 (approximately six postnatal years). Skeletal indicators appear related to peak ages of AOM incidence and may contribute to understanding of a nearly ubiquitous human disease. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1721-1740, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Assessing peak aerobic capacity in Dutch law enforcement officers

    Directory of Open Access Journals (Sweden)

    Harriet Wittink

    2015-06-01

    Full Text Available Objectives: To cross-validate the existing peak rate of oxygen consumption (VO2peak prediction equations in Dutch law enforcement officers and to determine whether these prediction equations can be used to predict VO2peak for groups and in a single individual. A further objective was to report normative absolute and relative VO2peak values of a sample of law enforcement officers in the Netherlands. Material and Methods: The peak rate of oxygen consumption (ml×kg–1×min–1 was measured using a maximal incremental bicycle test in 1530 subjects, including 1068 male and 461 female police officers. Validity of the prediction equations for groups was assessed by comparing predicted VO2peak with measured VO2peak using paired t-tests. For individual differences limits of agreement (LoA were calculated. Equations were considered valid for individuals when the difference between measured and predicted VO2peak did not exceed ±1 metabolic equivalent (MET in 95% of individuals. Results: None of the equations met the validity criterion of 95% of individuals having ±1 MET difference or less than the measured value. Limits of agreement (LoAs were large in all predictions. At the individual level, none of the equations were valid predictors of VO2peak (ml×kg–1×min–1. Normative values for Dutch law enforcement officers were presented. Conclusions: Substantial differences between measured and predicted VO2peak (ml×kg–1×min–1 were found. Most tested equations were invalid predictors of VO2peak at group level and all were invalid at individual levels.

  1. Topside ionosphere of Mars: Variability, transient layers, and the role of crustal magnetic fields

    Science.gov (United States)

    Gopika, P. G.; Venkateswara Rao, N.

    2018-04-01

    The topside ionosphere of Mars is known to show variability and transient topside layers. In this study, we analyzed the electron density profiles measured by the radio occultation technique aboard the Mars Global Surveyor spacecraft to study the topside ionosphere of Mars. The electron density profiles that we used in the present study span between 1998 and 2005. All the measurements are done from the northern high latitudes, except 220 profiles which were measured in the southern hemisphere, where strong crustal magnetic fields are present. We binned the observations into six measurement periods: 1998, 1999-north, 1999-south, 2000-2001, 2002-2003, and 2004-2005. We found that the topside ionosphere in the southern high latitudes is more variable than that from the northern hemisphere. This feature is clearly seen with fluctuations of wavelengths less than 20 km. Some of the electron density profiles show a transient topside layer with a local maximum in electron density between 160 km and 210 km. The topside layer is more prone to occur in the southern hemispheric crustal magnetic field regions than in the other regions. In addition, the peak density of the topside layer is greater in regions of strong crustal magnetic fields than in other regions. The variability of the topside ionosphere and the peak density of the topside layer, however, do not show one-to-one correlation with the strength of the crustal magnetic fields and magnetic field inclination. The results of the present study are discussed in the light of current understanding on the topside ionosphere, transient topside layers, and the role of crustal magnetic fields on plasma motions.

  2. Structural and morphological changes in P3HT thin film transistors applying an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Deepak Kumar; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany); Flesch, Heinz; Resel, Roland [University of Siegen (Germany); Graz University of Technology (Austria)

    2010-07-01

    We report on electric field dependent crystalline structure and morphological changes of drop casting and spin coated poly(3-hexylthiophene) (P3HT) thin films. In order to probe the morphological changes induced by an applied electric field the samples were covered with thin source/drain electrodes separated by a small channel of 2 mm width. A series of x-ray reflectivity, X-ray grazing incidence out-of-plane and in-plane scans have been performed as function of the applied electric voltage. The (100) peak shows a decrease in intensity with increase of the applied electric field. This might be caused by Joule heating and the creation of current induced defects in the P3HT film. On other hand the (020) peak intensity shows much stronger changes with applied field. Considering the *-* stacking direction the measured effect can be directly related to a change in the electric transport. The observed changes in structure are reversible and the current-voltage cycle can be repeated several times. For X-ray reflectivity major changes have been found close to critical angle of total external reflection indicating the film becomes less dense and increases in surface roughness with increase of the voltage. This change in surface behaviour could be confirmed by in-situ AFM measurements.

  3. Thermal Analysis of NR Composite with MWCNTs Aligned in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2015-01-01

    Full Text Available We got the aligned carbon tube in the rubber matrix through magnetic field. TEM shows that Fe3O4 is symmetrically coated on the outer surface of MWCNTs. Diffraction peaks corresponding to Fe3O4 cubic crystal also appeared in the X-ray diffraction spectra. Thermal conductivity of composites increases by filling the appropriate content of carbon tube. If the magnetic field is larger and the direction time is longer, a greater thermal conductivity of composites can be obtained.

  4. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    Science.gov (United States)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  5. [Microbiological and pharmacokinetic studies on flomoxef in ophthalmologic field].

    Science.gov (United States)

    Ooishi, M; Sakaue, F; Oomomo, A; Tazawa, H

    1989-05-01

    Microbiological and pharmacokinetic studies were carried out on flomoxef (FMOX, 6315-S), a new oxacephem parenteral antibiotic, in the ophthalmologic field. The results obtained are summarized as follows. FMOX has a broad antimicrobial activity spectrum against Gram-positive and Gram-negative bacteria. The MIC distribution against Staphylococcus aureus isolated from clinical cases was less than or equal to 0.20 - greater than or equal to 100 micrograms/ml with the peak value of 0.39 micrograms/ml. Concentrations of FMOX in aqueous humor and ocular tissues were determined after intravenous injection of 50 mg/kg to rabbits. FMOX showed a peak level of 2.2 micrograms/ml in the aqueous humor at 1/2 hour after administration with the ratio to serum level of 3.4%. Levels of FMOX in external and internal ocular tissues were 12.7 - 76.5 micrograms/g, less than 0.8 - 34.4 micrograms/g (ml) at 1/2 hour after administration, respectively. From these results, we concluded that FMOX may be expected to be a useful and valuable agent against infections in the ophthalmologic field.

  6. Physical activity as a long-term predictor of peak oxygen uptake: the HUNT Study.

    Science.gov (United States)

    Aspenes, Stian Thoresen; Nauman, Javaid; Nilsen, Tom Ivar Lund; Vatten, Lars Johan; Wisløff, Ulrik

    2011-09-01

    A physically active lifestyle and a relatively high level of cardiorespiratory fitness are important for longevity and long-term health. No population-based study has prospectively assessed the association of physical activity levels with long-term peak oxygen uptake (VO(2peak)). 1843 individuals (906 women and 937 men) who were between 18 and 66 yr at baseline and were free from known lung or heart diseases at both baseline (1984-1986) and follow-up (2006-2008) were included in the study. Self-reported physical activity was recorded at both occasions, and VO(2peak) was measured at follow-up. The association of physical activity levels and VO(2peak) was adjusted for age, level of education, smoking status, and weight change from baseline to follow-up, using ANCOVA statistics. The level of physical activity at baseline was strongly associated with VO(2peak) at follow-up 23 yr later in both men and women (Ptrends active at baseline had higher (3.3 and 4.6 mL·kg(-1)·min(-1)) VO(2peak) at follow-up. Women who were inactive at baseline but highly active at follow-up had 3.7 mL·kg(-1)·min(-1) higher VO(2peak) compared with women who were inactive both at baseline and at follow-up. The corresponding comparison in men showed a difference of 5.2 mL·kg(-1)·min(-1) (95% confidence interval = 3.1-7.3) in VO(2peak). Physical activity level at baseline was positively associated with directly measured cardiorespiratory fitness (VO(2peak)) 23 yr later. People who changed from low to high activity during the observation period had substantially higher V˙O(2peak) at follow-up compared with people whose activity remained low.

  7. Peak torque and muscle balance in the knees of young U-15 and U-17 soccer athletes playing various tactical positions.

    Science.gov (United States)

    Chiamonti Bona, Cleiton; Tourinho Filho, Hugo; Izquierdo, Mikel; Pires Ferraz, Ricardo M; Marques, Mário C

    2017-01-01

    Soccer is a sport that is practiced worldwide and has been investigated in its various aspects, particularly muscle strength, which is an essential motor skill for sports performance. The objective of this study was to investigate the peak torque and muscle balance on the knee extensor and flexor of young soccer players in the tactical positions of goalkeeper, defender, full back, midfielder, defensive midfielder and striker, as well as to determine which field position has the highest peak torque. Forty-nine male players were recruited and divided into two categories during the preparatory period of the season: the Under-15 (U-15) group (N.=23, mean age 14.7±0.5 years, body mass 58.2±10.5 kg, body height 168.5±7.6 cm), and the Under-17 (U-17) group (N.=26, mean age 16.8±0.4 years, body mass 69.2±7.9 kg, body height 176.2±6.6 cm). The U-17 athletes presented a higher peak torque in all the movements of flexion and extension in the two angular velocities (i.e. 60°/s and 300°/s), but only the dominant knee extensor at 300°/s was significantly different between the two categories as well as the percentage change in peak torque compared between U-15 and U-17 was always above 20%. The peak torque variation in the U-17 category (i.e. mostly above 20%) highlights a higher peak torque compared to U-15 athletes. The muscular deficit of the two categories presented a low average of 10-15%, indicating a good muscle balance between knee extensors and flexors. Finally, goalkeepers and defenders achieved the highest peak torque amongst the field positions.

  8. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Horikoshi, S., E-mail: horikoshi@sstl.info; Matsumoto, N.; Kato, T. [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-8656 (Japan); Omata, Y. [Application and Technical Support, Elionix, Inc., 3-7-6 Motoyokoyama Hachioji, Tokyo 192-0063 (Japan)

    2014-05-21

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  9. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    Science.gov (United States)

    Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.

    2014-05-01

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  10. Direct observation of the hydrogen peak in the energy distribution of electrons backscattered elastically from polyethylene

    International Nuclear Information System (INIS)

    Varga, D.; Toekesi, K.; Berenyi, Z.; Toth, J.; Koever, L.

    2004-01-01

    Complete text of publication follows. Observation of the hydrogen peak is either challenging or impossible task for the conventional electron spectroscopy. Hydrogen was observed earlier in electron scattering experiments using transmission geometry and formvar film. In this work we show an alternative way for the detection of hydrogen peak analyzing the spectra of elastically backscattered electrons from polyethylene ((CH 2 ) n ). We take advantage of the fact that the elastic peak from polyethylene split into carbon and hydrogen components. The energy of the elastically scattered electrons is shifted from the nominal values due to the energy transfer between the primary electron and the target atoms (recoil effect). Due to the motion of the scattering atoms, a broadering of the energy width of the spectra takes place. We performed Monte Carlo simulation for 2 keV electrons penetrated and elastically backscattered from polyethylene sample. In our calculations both the elastic and inelastic scattering events were taken into account. We further assume that the thermal motion of the target atoms follows the Maxwell-Boltzmann energy distribution. After each elastic scattering the recoil energy was calculated according to ref Fig. 1 shows the geometric configuration used in the calculation. The initial angle of incident beam (θ) was 50 deg. Fig. 2 shows the gray scale plot of the intensity of electrons backscattered elastically from polyethylene. The separation between the carbon and hydrogen peaks is clearly seen. Our results show that the multiple electron scattering causes only minor changes in the energy shifts and broadenings of elastic peaks. Moreover, our simulations are in good agreement with our experimental observations. (author)

  11. Particle-in-cell analysis of beam-wave interaction in gyrotron cavity with tapered magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A., E-mail: anil.gyrotron@gmail.com [Gyrotron Lab., Microwave Tube Area, Central Electronics Engineering Research Inst. (CEERI, CSIR), Pilani, Rajasthan (India); Banasthali Univ., Dept. of Physics, Banasthali, Rajasthan (India); Khatun, H.; Kumar, N.; Singh, U.; Sinha, A.K. [Gyrotron Lab., Microwave Tube Area, Central Electronics Engineering Research Inst. (CEERI, CSIR), Pilani, Rajasthan (India); Vyas, V. [Banasthali Univ., Dept. of Physics, Banasthali, Rajasthan (India)

    2010-11-15

    A commercially available electromagnetic simulator -- MAGIC, a particle-in-cell (PIC) code -- has been used to carry out a comparative study of the beam-wave interaction under uniform and tapered magnetic field profiles of a 42 GHz, 200kW gyrotron. The magnetic field profile across the resonant cavity varies by ±6.5% with a peak value of 1.615 T. The MAGIC simulation shows the desire performance of the gyrotron under both magnetic field conditions with an operating mode TE{sub 03} and a pitch factor of 1.26. The analysis of the simulated results show that stability in the power growth was reached more quickly and achieved higher output power in the case of a tapered magnetic field. (author)

  12. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  13. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  14. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Directory of Open Access Journals (Sweden)

    Suyi Li

    2017-01-01

    Full Text Available The noninvasive peripheral oxygen saturation (SpO2 and the pulse rate can be extracted from photoplethysmography (PPG signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  15. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    Science.gov (United States)

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  16. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Science.gov (United States)

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  17. Determination of power peak factor using control rods, ex-core detectors and neural networks

    International Nuclear Information System (INIS)

    Souza, Rose Mary Gomes do Prado

    2005-01-01

    This work presents a methodology based on the artificial neural network technique to predict in real time the power peak factor in a form that can be implemented in reactor protection systems. The neural network inputs were those available in the reactor protection systems, namely, the axial and quadrant power differences obtained from measured ex-core detector signals, and the position of control rods. The response of ex core detector signals was measured in experiments especially performed in the IPEN/MB-01 zero-power reactor. Several reactor states with different power density distribution were obtained by positioning the control rods in different configurations. The power distribution and its peak factor were calculated for each of these reactor states using the Citation code. The obtained results show that the power peak factor correlates well with the control rod position and the quadrant power difference, and with a lesser degree with the axial power differences. The data presented an inherent organisation and could be classified into different classes of power peak factor behaviour as a function of position of control rods, axial power difference and quadrant power difference. The RBF networks were able to identify classes and interpolate the power peak factor values. The relative error for the power peak factor estimation ranged from 0.19 % to 0.67 %, less than the one that was obtained performing a power density distribution map with in-core detectors. It was observed that the positions of control rods bear the detailed and localised information about the power density distribution, and that the axial and the quadrant power difference describe its global variations in the axial and radial directions. The results showed that the RBF and MLP networks produced similar results, and that a neural network correlation can be implemented in power reactor protection systems. (author)

  18. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  19. Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet

    Science.gov (United States)

    Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang

    2013-05-01

    Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.

  20. An asthma patient with steroid-resistant decrease in peak expiratory flow after the Great East Japan earthquake showing spontaneous recovery after 1 month.

    Science.gov (United States)

    Yanagimoto, Shintaro; Haida, Michiko; Suko, Matsunobu

    2012-01-01

    People living in Japan were affected in various ways after the Great East Japan earthquake of March 11, 2011. A 52-year-old female asthma patient not directly affected by the disaster experienced a decrease in peak expiratory flow (PEF) immediately after the earthquake. Despite increasing the inhaled and oral corticosteroid doses, her PEF did not recover. One month later, her PEF level abruptly returned to normal with minimal medications, which were previously ineffective, and the asthma-related symptoms vanished. The stabilization of her state of mind and actual social state seemed to be a part of the reason for the patient's recovery.

  1. Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Piro, Anthony L. [Theoretical Astrophysics, California Institute of Technology, 1200 East California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States)

    2014-06-20

    Early observations of supernova light curves are powerful tools for shedding light on the pre-explosion structures of their progenitors and their mass-loss histories just prior to explosion. Some core-collapse supernovae that are detected during the first days after the explosion prominently show two peaks in the optical bands, including the R and I bands, where the first peak appears to be powered by the cooling of shocked surface material and the second peak is clearly powered by radioactive decay. Such light curves have been explored in detail theoretically for SN 1993J and 2011dh, where it was found that they may be explained by progenitors with extended, low-mass envelopes. Here, we generalize these results. We first explore whether any double-peaked light curve of this type can be generated by a progenitor with a 'standard' density profile, such as a red supergiant or a Wolf-Rayet star. We show that a standard progenitor (1) cannot produce a double-peaked light curve in the R and I bands and (2) cannot exhibit a fast drop in the bolometric luminosity as is seen after the first peak. We then explore the signature of a progenitor with a compact core surrounded by extended, low-mass material. This may be a hydrostatic low-mass envelope or material ejected just prior to the explosion. We show that it naturally produces both of these features. We use this result to provide simple formulae to estimate (1) the mass of the extended material from the time of the first peak, (2) the extended material radius from the luminosity of the first peak, and (3) an upper limit on the core radius from the luminosity minimum between the two peaks.

  2. Thermoluminescence of SrAl_2O_4:Eu"2"+, Dy"3"+: dosimetric characteristics and evidence of glow-peak collocation

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2016-01-01

    The thermoluminescence of SrAl_2O_4:Eu"2"+, Dy"3"+ consists of collocated peaks whereby a dominant component subsumes subsidiary ones to such an extent that they appear as one; Qualitative and quantitative analysis of such cases will be described with suitable illustrative examples. The general features and qualitative kinetics properties of thermoluminescence from SrAl_2O_4:Eu"2"+, Dy"3"+ is reported. Measurements using X-ray excited optical luminescence show that stimulated luminescence from SrAl_2O_4:Eu"2"+, Dy"3"+ has two prominent emission bands, one at 475 nm and a more intense one near 575 nm, studied in this work. There are also weaker intensity emissions at 405, 510, 600 and 660 nm. The natural thermoluminescence measured at 1°C s"-"1 shows three peaks at 74, 170 and 340°C whereas 20 Gy beta-irradiation produces TL dominated by a single peak at 34°C. Analysis of this peak for its order of kinetics produces somewhat inconclusive results. The results of the partial heating procedure T_m - T_s_t_o_p are consistent with both first and second-order kinetics. On the other hand, the position of the peak is independent of dose for several ranges of doses implying that the apparently single peak consists of multiple first-order peaks. Complementary investigations using the fractional glow technique, resolution by isothermal heating and the effect of fading on the peak show that the glow-curve of SrAl_2O_4:Eu"2"+, Dy"3"+ comprises closely collocated thermoluminescence peaks. The implication of such complexity on kinetic analysis on this material and others that share this feature will be discussed. (author)

  3. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  4. A NEW METHOD OF PEAK DETECTION FOR ANALYSIS OF COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY MASS SPECTROMETRY DATA.

    Science.gov (United States)

    Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang

    2014-06-01

    We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models.

  5. A NEW METHOD OF PEAK DETECTION FOR ANALYSIS OF COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY MASS SPECTROMETRY DATA*

    Science.gov (United States)

    Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang

    2014-01-01

    We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models. PMID:25264474

  6. Magnetization and susceptibility of a parabolic InAs quantum dot with electron–electron and spin–orbit interactions in the presence of a magnetic field at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev, E-mail: sanjeevchs@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [Department of Physics, CMR College of Engineering and Technology, Hyderabad (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2016-11-15

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron–electron and spin–orbit interactions as a function of magnetic field and temperature. The spin–orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron–electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron–electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin–orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin–orbit interaction shifts it to the lower magnetic field side. Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures. - Highlights: • Temperature has no effect on magnetization and susceptibility in the diamagnetic regime but reduces the height of the paramagnetic peak. • Electron-electron interaction reduces magnetization and susceptibility in the diamagnetic region. • Rashba spin–orbit interaction shifts the paramagnetic peak towards higher magnetic fields. • Dresselhaus spin–orbit interaction shifts the paramagnetic peak towards lower magnetic fields. • Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  7. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    Science.gov (United States)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  8. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    Science.gov (United States)

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  9. MEASURING PRIMORDIAL NON-GAUSSIANITY THROUGH WEAK-LENSING PEAK COUNTS

    International Nuclear Information System (INIS)

    Marian, Laura; Hilbert, Stefan; Smith, Robert E.; Schneider, Peter; Desjacques, Vincent

    2011-01-01

    We explore the possibility of detecting primordial non-Gaussianity of the local type using weak-lensing peak counts. We measure the peak abundance in sets of simulated weak-lensing maps corresponding to three models f NL = 0, - 100, and 100. Using survey specifications similar to those of EUCLID and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f NL = ±100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f NL = 0 peak function to the f NL = ±100 peak functions is less than 0.1%. Assuming the other cosmological parameters are known, f NL can be measured with an error Δf NL ∼ 13. It is therefore possible that future weak-lensing surveys like EUCLID and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide information complementary to that obtained from the cosmic microwave background.

  10. Static quadrupolar susceptibility for a Blume–Emery–Griffiths model based on the mean-field approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, A., E-mail: pawlak@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań (Poland); Gülpınar, G. [Department of Physics, Dokuz Eylül University, 35160 İzmir (Turkey); Erdem, R. [Department of Physics, Akdeniz University, 07058 Antalya (Turkey); Ağartıoğlu, M. [Institute of Science, Dokuz Eylül University, 35160 İzmir (Turkey)

    2015-12-01

    The expressions for the dipolar and quadrupolar susceptibilities are obtained within the mean-field approximation in the Blume–Emery–Griffiths model. Temperature as well as crystal field dependences of the susceptibilities are investigated for two different phase diagram topologies which take place for K/J=3 and K/J=5.0.Their behavior near the second and first order transition points as well as multi-critical points such as tricritical, triple and critical endpoint is presented. It is found that in addition to the jumps connected with the phase transitions there are broad peaks in the quadrupolar susceptibility. It is indicated that these broad peaks lie on a prolongation of the first-order line from a triple point to a critical point ending the line of first-order transitions between two distinct paramagnetic phases. It is argued that the broad peaks are a reminiscence of very strong quadrupolar fluctuations at the critical point. The results reveal the fact that near ferromagnetic–paramagnetic phase transitions the quadrupolar susceptibility generally shows a jump whereas near the phase transition between two distinct paramagnetic phases it is an edge-like. - Highlights: • MFA calculation of the quadrupolar and dipolar susceptibility in BEG model is given • The crystal-field variation of susceptibilities near the multi-critical points is examined • There are broad peaks in the quadrupolar susceptibility in the vicinity of CP • These maxima are remembrances of the very strong quadrupolar Fluctuations.

  11. A multifunctional energy-saving magnetic field generator

    Science.gov (United States)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  12. Shale fabric and velocity anisotropy : a study from Pikes Peak Waseca Oil Pool, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Newrick, R.T.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    The stratigraphic sequence of the Pikes Peaks region in west-central Saskatchewan consists of a thick sequence of shale overlying interbedded sandstones, shale and coal from the Mannville Group. Hydrocarbons exist in the Waseca, Sparky and General Petroleum Formations in the Pikes Peak region. The primary objective of this study was to examine the layering of clay minerals in the shale and to find similarities or differences between samples that may be associated with velocity anisotropy. Anisotropy is of key concern in areas with thick shale sequences. Several processing algorithms include corrections for velocity anisotropy in order for seismic images to be well focused and laterally positioned. This study also estimated the Thomsen parameters of anisotropy through field studies. The relationship between the shale fabric and anisotropy was determined by photographic core samples from Pike Peak using a scanning electron microscope. Shale from two wells in the Waseca Oil Pool demonstrated highly variable fabric over a limited vertical extent. No layering of clay minerals was noted at the sub-centimetre scale. Transverse isotropy of the stratigraphy was therefore considered to be mainly intrinsic. 7 refs., 3 tabs., 9 figs.

  13. Phase diagrams of a spin-1/2 transverse Ising model with three-peak random field distribution

    International Nuclear Information System (INIS)

    Bassir, A.; Bassir, C.E.; Benyoussef, A.; Ez-Zahraouy, H.

    1996-07-01

    The effect of the transverse magnetic field on the phase diagrams structures of the Ising model in a random longitudinal magnetic field with a trimodal symmetric distribution is investigated within a finite cluster approximation. We find that a small magnetizations ordered phase (small ordered phase) disappears completely for a sufficiently large value of the transverse field or/and large value of the concentration of the disorder of the magnetic field. Multicritical behaviour and reentrant phenomena are discussed. The regions where the tricritical, reentrant phenomena and the small ordered phase persist are delimited as a function of the transverse field and the concentration p. Longitudinal magnetizations are also presented. (author). 33 refs, 6 figs

  14. Optical absorption of selenite single crystals subjected to high electric fields and irradiated with X-rays or γ-rays

    International Nuclear Information System (INIS)

    Mishra, Sakuntala; Rao, A.V.K.; Rao, K.V.

    1988-01-01

    Measurements of the optical absorption coefficient of selenite single crystals show two peaks at 236 and 400 nm when plotted as a function of wavelength. These peaks decrease with increasing irradiation time for both γ and X-rays. Subsequent thermal bleaching increases the absorption coefficient at all wavelengths and flattens out the peaks at 140 0 C and 330 0 C respectively. The imposition of an a.c. or d.c. field prior to irradiation preserves the thermal bleaching characteristics with an overall increase in absorption coefficient. These effects are attributed to two different types of bond formed by water of crystallization giving rise to the two absorption peaks. Irradiation may destroy some of the bands of loosely bound water molecules near defect regions leading to a decrease in absorption. Thermal bleaching removes water molecules reducing the transparency of the samples, the more strongly bound molecules being removed at the higher temperature. Irradiation after a.c. or d.c. field treatment may introduce more defect regions enabling the removal of more water molecules by bleaching and hence increasing the absorption. (U.K.)

  15. The spatial resolution of epidemic peaks.

    Directory of Open Access Journals (Sweden)

    Harriet L Mills

    2014-04-01

    Full Text Available The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city; population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods. Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible.

  16. Calculation of the correlation coefficients between the numbers of counts (peak areas and backgrounds) obtained from gamma-ray spectra

    International Nuclear Information System (INIS)

    Korun, M.; Vodenik, B.; Zorko, B.

    2016-01-01

    Two simple methods for calculating the correlations between peaks appearing in gamma-ray spectra are described. We show how the areas are correlated when the peaks do not overlap, but the spectral regions used for the calculation of the background below the peaks do. When the peaks overlap, the correlation can be stronger than in the case of the non-overlapping peaks. The methods presented are simplified to the extent of allowing their implementation with manual calculations. They are intended for practitioners as additional tools to be used when the correlations between the areas of the peaks in the gamma-ray spectra are to be calculated. Also, the correlation coefficient between the number of counts in the peak and the number of counts in the continuous background below the peak is derived. - Highlights: • The correlation coefficients between areas of closely spaced peaks are assessed. • For isolated peaks the correlation arises from the common continuous background. • If peaks overlap the correlation coefficient depends on how much they overlap. • If peaks overlap also the background height affects the correlation coefficient. • The correlation coefficient between the peak area and its background is −1.

  17. Low-field susceptibilities of rare-earth spin glass alloys

    International Nuclear Information System (INIS)

    Sarkissian, B.V.B.

    1978-01-01

    The low-field AC susceptibilities of the dilute rare-earth spin glass alloys Sc-Gd, Sc-Tb, Pr-Tb and Pr-Gd are reported and compared with low-field DC susceptibilities of the same samples. The similarities between their behaviour and that of Au-Fe spin glass alloys is also considered. When single-ion anisotropy is important, this can cause a dramatic broadening of the sharp peak. Broadening in the AC peak has also observed as the frequency of the deriving field is increased. These data can be qualitatively discussed in terms of a recent magnetic-cluster model for spin glasses. (author)

  18. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  19. Characterization of radiofrequency field emissions from smart meters.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert; Mezei, Gabor

    2013-01-01

    This study presents measurement data that describe radiofrequency emission levels and patterns from smart meters (rated nominally at 1 W) currently deployed in Pacific Gas and Electric Company's service territory in northern California. The smart meters in our investigation could not be set to operate continuously and required a Field Service Unit to induce short periods of emitted fields. To obtain peak field data under both laboratory and ambient conditions, a spectrum analyzer scanned across the 83 transmitting channels between 902 and 928 MHz used by the smart meter on a random frequency-hopping basis. To obtain data describing temporal emission patterns, the analyzer operated in scope mode. Duty cycle was estimated using transmit data acquired by the system operator from over 88,000 m. Instantaneous peak fields at 0.3 m in front of the meters were no more than 15% of the US Federal Communications Commission (FCC) exposure limit for the general public, and 99.9% of the meters operated with a duty cycle of 1.12% or less during the sampling period. In a sample of measurements in six single-detached residences equipped with individual smart meters, no interior measurement of peak field exceeded 1% of the FCC's general public exposure limit.

  20. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  1. Phase control of higher spectral components in the presence of a static electric field

    International Nuclear Information System (INIS)

    Zhang Chaojin; Yang Weifeng; Song Xiaohong; Xu Zhizhan

    2009-01-01

    We investigate the higher spectral component generations driven by a few-cycle laser pulse in a dense medium when a static electric field is present. Our results show that, when assisted by a static electric field, the dependence of the transmitted laser spectrum on the carrier-envelope phase (CEP) is significantly increased. Continuum and distinct peaks can be achieved by controlling the CEP of the few-cycle ultrashort laser pulse. Such a strong variation is due to the fact that the presence of the static electric field modifies the waveform of the combined electric field, which further affects the spectral distribution of the generated higher spectral components.

  2. Gamma Oscillations and Neural Field DCMs Can Reveal Cortical Excitability and Microstructure

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-05-01

    Full Text Available This paper shows how gamma oscillations can be combined with neural population models and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical excitability and microstructure. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. Neural field models are used to evaluate model evidence and obtain parameter estimates using invasive and non-invasive gamma recordings. Our overview comprises two parts: in the first part, we use neural fields to simulate neural activity and distinguish the effects of post synaptic filtering on predicted responses in terms of synaptic rate constants that correspond to different timescales and distinct neurotransmitters. We focus on model predictions of conductance and convolution based field models and show that these can yield spectral responses that are sensitive to biophysical properties of local cortical circuits like synaptic kinetics and filtering; we also consider two different mechanisms for this filtering: a nonlinear mechanism involving specific conductances and a linear convolution of afferent firing rates producing post synaptic potentials. In the second part of this paper, we use neural fields quantitatively—to fit empirical data recorded during visual stimulation. We present two studies of spectral responses obtained from the visual cortex during visual perception experiments: in the first study, MEG data were acquired during a task designed to show how activity in the gamma band is related to visual perception, while in the second study, we exploited high density electrocorticographic (ECoG data to study the effect of varying stimulus contrast on cortical excitability and gamma peak frequency.

  3. Focal time-to-peak changes on perfusion MRI in children with Moyamoya disease: correlation with conventional angiography

    International Nuclear Information System (INIS)

    Choi, Hyun Seok; Kim, Dong-Seok; Shim, Kyu-Won; Kim, Jinna; Kim, Eun Soo; Lee, Seung-Koo

    2011-01-01

    Background: Moyamoya disease is a chronic progressive steno-occlusion of the distal internal carotid arteries with unknown etiology. As the classical presentation of childhood Moyamoya disease is ischemic stroke, cerebral hemodynamic evaluation is important for patient selection for surgery to prevent recurrent ischemic attacks. Perfusion MR imaging has been applied to evaluate cerebral hemodynamics. Purpose: To correlate the 'basal time-to-peak preservation sign', 'auto-synangiosis sign', and 'posterior involvement sign' on time-to-peak map of perfusion MRI with catheter angiography. Material and Methods: Thirty-four children (6.91 ± 3.08 years) with Moyamoya disease who underwent both perfusion-weighted MRI and catheter angiography were enrolled in this study. Given catheter angiography as a reference standard, basal time-to-peak preservation sign, auto-synangiosis sign, and posterior involvement sign were evaluated on time-to-peak maps. Results: The basal time-to-peak preservation sign was accurate for the diagnosis of childhood Moyamoya disease; both sensitivity and specificity were 100%. The auto-synangiosis sign showed lower sensitivity (65%), however, with an acceptable specificity (98%). The posterior involvement sign showed lower sensitivity (61%) but had an acceptable specificity (96%). Conclusion: The basal time-to-peak preservation sign may be a universal finding in childhood Moyamoya disease. The auto-synangiosis and posterior involvement sign may be useful in determining transdural collateral status and posterior circulation involvement in childhood Moyamoya disease

  4. Influence of the channel electric field distribution on the polarization Coulomb field scattering in AlGaN/AlN/GaN heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yingxia Yu

    2013-09-01

    Full Text Available Using the Quasi-Two-Dimensional (quasi-2D model, the current-voltage (I-V characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs with different gate length were simulated based on the measured capacitance-voltage (C-V characteristics and I-V characteristics. By analyzing the simulation results, we found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field scattering, and the difference of the electron mobility mostly caused by the polarization Coulomb field scattering can reach up to 1829.9 cm2/V·s for the prepared AlGaN/AlN/GaN HFET. In addition, it was also found that when the two-dimension electron gas (2DEG sheet density is modulated by the drain-source bias, the electron mobility appears peak with the variation of the 2DEG sheet density, and the ratio of gate length to drain-source distance is smaller, the 2DEG sheet density corresponding to the peak point is higher.

  5. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  6. Determination of the upper limit of a peak area

    International Nuclear Information System (INIS)

    Helene, O.

    1990-03-01

    This paper reports the procedure to extract an upper limit of a peak area in a multichannel spectrum. This procedure takes into account the finite shape of the peak and the uncertanties in the background and in the expected position of the peak. (author) [pt

  7. Determination of the upper limit of a peak area

    International Nuclear Information System (INIS)

    Helene, O.

    1991-01-01

    This article reports the procedure to extract an upper limit of a peak area in a multichannel spectrum. This procedure takes into account the finite shape of the peak and the uncertainties both in the background and in the expected position of the peak. (orig.)

  8. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  9. System dynamics model of Hubbert Peak for China's oil

    International Nuclear Information System (INIS)

    Tao Zaipu; Li Mingyu

    2007-01-01

    American geophysicist M. King Hubbert in 1956 first introduced a logistic equation to estimate the peak and lifetime production for oil of USA. Since then, a fierce debate ensued on the so-called Hubbert Peak, including also its methodology. This paper proposes to use the generic STELLA model to simulate Hubbert Peak, particularly for the Chinese oil production. This model is demonstrated as being robust. We used three scenarios to estimate the Chinese oil peak: according to scenario 1 of this model, the Hubbert Peak for China's crude oil production appears to be in 2019 with a value of 199.5 million tonnes, which is about 1.1 times the 2005 output. Before the peak comes, Chinese oil output will grow by about 1-2% annually, after the peak, however, the output will fall. By 2040, the annual production of Chinese crude oil would be equivalent to the level of 1990. During the coming 20 years, the crude oil demand of China will probably grow at the rate of 2-3% annually, and the gap between domestic supply and total demand may be more than half of this demand

  10. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan [School of Information Science & Technology, Chengdu University of Technology, Chengdu (China); Wu, Qi-fan [Department of Engineering Physics, Tsinghua University, Beijing (China)

    2017-06-21

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  11. Far-field detection of sub-wavelength Tetris without extra near-field metal parts based on phase prints of time-reversed fields with intensive background interference.

    Science.gov (United States)

    Chen, Yingming; Wang, Bing-Zhong

    2014-07-14

    Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

  12. Field and current amplification in the SSPX spheromak

    International Nuclear Information System (INIS)

    Hill, D.N. . hilld@llnl.gov; Bulmer, R.H.; Cohen, B.I.

    2003-01-01

    Results are presented from experiments relating to magnetic field generation and current amplification in the SSPX spheromak. The SSPX spheromak plasma is driven by DC coaxial helicity injection using a 2MJ capacitor bank. Peak toroidal plasma currents of up to 0.7MA and peak edge poloidal fields of 0.3T are produced; lower current discharges can be sustained up to 3.5msec. When edge magnetic fluctuations are reduced below 1% by driving the plasma near threshold, it is possible to produce plasmas with Te > 150eV, e >∼4% and core χ e ∼30m 2 /s. Helicity balance for these plasmas suggests that sheath dissipation can be significant, pointing to the importance of maximizing the voltage on the coaxial injector. For most operational modes we find a stiff relationship between peak spheromak field and injector current, and little correlation with plasma temperature, which suggests that other processes than ohmic dissipation may limit field amplification. However, slowing spheromak buildup by limiting the initial current pulse increases the ratio of toroidal current to injected current and points to new operating regimes with more favorable current amplification. (author)

  13. Bayesian approach for peak detection in two-dimensional chromatography

    NARCIS (Netherlands)

    Vivó-Truyols, G.

    2012-01-01

    A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual

  14. SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.

    Science.gov (United States)

    Budding, Karin E.; Kluender, Steven E.

    1984-01-01

    A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.

  15. Variable threshold method for ECG R-peak detection.

    Science.gov (United States)

    Kew, Hsein-Ping; Jeong, Do-Un

    2011-10-01

    In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis.

  16. Mean and peak wind load reduction on heliostats

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, J.A.; Tan, L.; Bienkiewcz, B.; Cermak, J.E.

    1987-09-01

    This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated both mean and peak forces, and moments. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved. In addition, a preliminary review of wind loads on parabolic dish collectors was conducted, resulting in a recommended research program for these type collectors. 42 refs., 38 figs., 1 tab.

  17. Assessing peak aerobic capacity in Dutch law enforcement officers

    NARCIS (Netherlands)

    Wittink, Harriet; Takken, Tim; de Groot, Janke; Reneman, Michiel; Peters, Roelof; Vanhees, Luc

    2015-01-01

    Objectives: To cross-validate the existing peak rate of oxygen consumption (VO2peak) prediction equations in Dutch law enforcement officers and to determine whether these prediction equations can be used to predict VO2peak for groups and in a single individual. A further objective was to report

  18. PEAK TRACKING WITH A NEURAL NETWORK FOR SPECTRAL RECOGNITION

    NARCIS (Netherlands)

    COENEGRACHT, PMJ; METTING, HJ; VANLOO, EM; SNOEIJER, GJ; DOORNBOS, DA

    1993-01-01

    A peak tracking method based on a simulated feed-forward neural network with back-propagation is presented. The network uses the normalized UV spectra and peak areas measured in one chromatogram for peak recognition. It suffices to train the network with only one set of spectra recorded in one

  19. Assessing peak aerobic capacity in Dutch law enforcement officers.

    NARCIS (Netherlands)

    Wittink, H.; Takken, T.; Groot, J.F. de; Reneman, M.; Peters, R.; Vanhees, L.

    2015-01-01

    Objectives: To cross-validate the existing peak rate of oxygen consumption (VO2peak) prediction equations in Dutch law enforcement officers and to determine whether these prediction equations can be used to predict VO2peak for groups and in a single individual. A further objective was to report

  20. Genetic and Dynamic Analyses of Murine Peak Bone Density

    Science.gov (United States)

    1999-10-01

    bone density in mice. Femurs from young adult B6, C3H, and CAST females at 4 months of age were measured by pQCT (XCT-960M, Norland Med Sys., Ft...progenitor strains - B6, C3H, and CAST - showed that adult skeletal peak BMD was established at 4 months. Therefore, F2 mice were necropsied at 4...calcium depletion causes hypocalcemia , which leads to secondary hyperparathyroidism, subsequently resulting in increased bone resorption. Conversely

  1. Emissions Scenarios and Fossil-fuel Peaking

    Science.gov (United States)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  2. Prediction on the Peak of the CO2 Emissions in China Using the STIRPAT Model

    Directory of Open Access Journals (Sweden)

    Li Li

    2016-01-01

    Full Text Available Climate change has threatened our economic, environmental, and social sustainability seriously. The world has taken active measures in dealing with climate change to mitigate carbon emissions. Predicting the carbon emissions peak has become a global focus, as well as a leading target for China’s low carbon development. China has promised its carbon emissions will have peaked by around 2030, with the intention of peaking earlier. Scholars generally have studied the influencing factors of carbon emissions. However, research on carbon emissions peaks is not extensive. Therefore, by setting a low scenario, a middle scenario, and a high scenario, this paper predicts China’s carbon emissions peak from 2015 to 2035 based on the data from 1998 to 2014 using the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT model. The results show that in the low, middle, and high scenarios China will reach its carbon emissions peak in 2024, 2027, and 2030, respectively. Thus, this paper puts forward the large-scale application of technology innovation to improve energy efficiency and optimize energy structure and supply and demand. China should use industrial policy and human capital investment to stimulate the rapid development of low carbon industries and modern agriculture and service industries to help China to reach its carbon emissions peak by around 2030 or earlier.

  3. QRS peak detection for heart rate monitoring on Android smartphone

    Science.gov (United States)

    Pambudi Utomo, Trio; Nuryani, Nuryani; Darmanto

    2017-11-01

    In this study, Android smartphone is used for heart rate monitoring and displaying electrocardiogram (ECG) graph. Heart rate determination is based on QRS peak detection. Two methods are studied to detect the QRS complex peak; they are Peak Threshold and Peak Filter. The acquisition of ECG data is utilized by AD8232 module from Analog Devices, three electrodes, and Microcontroller Arduino UNO R3. To record the ECG data from a patient, three electrodes are attached to particular body’s surface of a patient. Patient’s heart activity which is recorded by AD8232 module is decoded by Arduino UNO R3 into analog data. Then, the analog data is converted into a voltage value (mV) and is processed to get the QRS complex peak. Heart rate value is calculated by Microcontroller Arduino UNO R3 uses the QRS complex peak. Voltage, heart rate, and the QRS complex peak are sent to Android smartphone by Bluetooth HC-05. ECG data is displayed as the graph by Android smartphone. To evaluate the performance of QRS complex peak detection method, three parameters are used; they are positive predictive, accuracy and sensitivity. Positive predictive, accuracy, and sensitivity of Peak Threshold method is 92.39%, 70.30%, 74.62% and for Peak Filter method are 98.38%, 82.47%, 83.61%, respectively.

  4. Head-to-head comparison of peak supine bicycle exercise echocardiography and treadmill exercise echocardiography at peak and at post-exercise for the detection of coronary artery disease.

    Science.gov (United States)

    Peteiro, Jesús; Bouzas-Mosquera, Alberto; Estevez, Rodrigo; Pazos, Pablo; Piñeiro, Miriam; Castro-Beiras, Alfonso

    2012-03-01

    Supine bicycle exercise (SBE) echocardiography and treadmill exercise (TME) echocardiography have been used for evaluation of coronary artery disease (CAD). Although peak imaging acquisition has been considered unfeasible with TME, higher sensitivity for the detection of CAD has been recently found with this method compared with post-TME echocardiography. However, peak TME echocardiography has not been previously compared with the more standardized peak SBE echocardiography. The aim of this study was to compare peak TME echocardiography, peak SBE echocardiography, and post-TME echocardiography for the detection of CAD. A series of 116 patients (mean age, 61 ± 10 years) referred for evaluation of CAD underwent SBE (starting at 25 W, with 25-W increments every 2-3 min) and TME with peak and postexercise imaging acquisition, in a random sequence. Digitized images at baseline, at peak TME, after TME, and at peak SBE were interpreted in a random and blinded fashion. All patients underwent coronary angiography. Maximal heart rate was higher during TME, whereas systolic blood pressure was higher during SBE, resulting in similar rate-pressure products. On quantitative angiography, 75 patients had coronary stenosis (≥50%). In these patients, wall motion score indexes at maximal exercise were higher at peak TME (median, 1.45; interquartile range [IQR], 1.13-1.75) than at peak SBE (median, 1.25; IQR, 1.0-1.56) or after TME (median, 1.13; IQR, 1.0-1.38) (P = .002 between peak TME and peak SBE imaging, P peak TME (median, 5; IQR, 2-12) compared with peak SBE (median, 3; IQR, 0-8) or after TME (median, 2; IQR, 0-4) (P peak TME and peak SBE imaging, P peak TME, peak SBE, and post-TME echocardiography for CAD was 84%, 75%, and 60% (P = .001 between post-TME and peak TME echocardiography, P = .055 between post-TME and peak SBE echocardiography), with specificity of 63%, 80%, and 78%, respectively (P = NS) and accuracy of 77%, 77%, and 66%, respectively (P = NS). Peak TME

  5. 21 CFR 868.1860 - Peak-flow meter for spirometry.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Peak-flow meter for spirometry. 868.1860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1860 Peak-flow meter for spirometry. (a) Identification. A peak-flow meter for spirometry is a device used to measure a patient's...

  6. From Modeling of Plasticity in Single-Crystal Superalloys to High-Resolution X-rays Three-Crystal Diffractometer Peaks Simulation

    Science.gov (United States)

    Jacques, Alain

    2016-12-01

    The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.

  7. Electric peak power forecasting by year 2025

    International Nuclear Information System (INIS)

    Alsayegh, O.A.; Al-Matar, O.A.; Fairouz, F.A.; Al-Mulla Ali, A.

    2005-01-01

    Peak power demand in Kuwait up to the year 2025 was predicted using an artificial neural network (ANN) model. The aim of the study was to investigate the effect of air conditioning (A/C) units on long-term power demand. Five socio-economic factors were selected as inputs for the simulation: (1) gross national product, (2) population, (3) number of buildings, (4) imports of A/C units, and (5) index of industrial production. The study used socio-economic data from 1978 to 2000. Historical data of the first 10 years of the studied time period were used to train the ANN. The electrical network was then simulated to forecast peak power for the following 11 years. The calculated error was then used for years in which power consumption data were not available. The study demonstrated that average peak power rates increased by 4100 MW every 5 years. Various scenarios related to changes in population, the number of buildings, and the quantity of A/C units were then modelled to estimate long-term peak power demand. Results of the study demonstrated that population had the strongest impact on future power demand, while the number of buildings had the smallest impact. It was concluded that peak power growth can be controlled through the use of different immigration policies, increased A/C efficiency, and the use of vertical housing. 7 refs., 2 tabs., 6 figs

  8. Electric peak power forecasting by year 2025

    Energy Technology Data Exchange (ETDEWEB)

    Alsayegh, O.A.; Al-Matar, O.A.; Fairouz, F.A.; Al-Mulla Ali, A. [Kuwait Inst. for Scientific Research, Kuwait City (Kuwait). Div. of Environment and Urban Development

    2005-07-01

    Peak power demand in Kuwait up to the year 2025 was predicted using an artificial neural network (ANN) model. The aim of the study was to investigate the effect of air conditioning (A/C) units on long-term power demand. Five socio-economic factors were selected as inputs for the simulation: (1) gross national product, (2) population, (3) number of buildings, (4) imports of A/C units, and (5) index of industrial production. The study used socio-economic data from 1978 to 2000. Historical data of the first 10 years of the studied time period were used to train the ANN. The electrical network was then simulated to forecast peak power for the following 11 years. The calculated error was then used for years in which power consumption data were not available. The study demonstrated that average peak power rates increased by 4100 MW every 5 years. Various scenarios related to changes in population, the number of buildings, and the quantity of A/C units were then modelled to estimate long-term peak power demand. Results of the study demonstrated that population had the strongest impact on future power demand, while the number of buildings had the smallest impact. It was concluded that peak power growth can be controlled through the use of different immigration policies, increased A/C efficiency, and the use of vertical housing. 7 refs., 2 tabs., 6 figs.

  9. Influence of peak exercise heart rate on normal thallium-201 myocardial clearance

    International Nuclear Information System (INIS)

    Kaul, S.; Chesler, D.A.; Pohost, G.M.; Strauss, H.W.; Okada, R.D.; Boucher, C.A.

    1986-01-01

    Measurement of myocardial clearance rates between initial and delayed images is a major justification for adding computer quantification to the interpretation of exercise 201 TI images. To clarify the range of normal thallium clearance and its relationship to the level of exercise achieved, exercise thallium images in 89 normal subjects were analyzed: 45 asymptomatic subjects with less than 1% probability of coronary artery disease (CAD) (Group I), and 44 patients with chest pain found to have no significant CAD on angiography (Group II). Mean initial regional thallium uptake was similar in the two groups, but myocardial thallium clearance (mean +/- 1 s.d.) was slower in Group II, expressed as a longer half-life in the myocardium (8.2 +/- 7.6 hr compared with 3.4 +/- 0.7 hr p less than 0.001). Analysis of variance using ten clinical and exercise variables as covariates showed that the slower clearance in Group II was related to a lower peak exercise heart rate (HR) (154 +/- 27 compared with 183 +/- 11, respectively, p less than 0.001). By linear regression analysis, a decrease in peak HR of 1 beat/min was associated with a slower thallium clearance (longer half-life) of 0.05 hr. Using this formula, the clearance value in each patient was then corrected for peak exercise heart rate by decreasing measured clearance by 0.05 hr multiplied by the amount peak exercise heart rate which was below 183 (the mean value in Group I). There were no differences in the corrected clearance between the two groups. We conclude that thallium myocardial clearance after exercise is related in part to factors other than the presence of CAD, being slower when peak exercise HR is lower. Therefore, thallium clearance rates alone uncorrected for peak exercise heart rate should be used with caution when diagnosing CAD

  10. Amorphous chalcogenides as random octahedrally bonded solids: I. Implications for the first sharp diffraction peak, photodarkening, and Boson peak

    Science.gov (United States)

    Lukyanov, Alexey; Lubchenko, Vassiliy

    2017-09-01

    We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in

  11. A non-parametric peak calling algorithm for DamID-Seq.

    Directory of Open Access Journals (Sweden)

    Renhua Li

    Full Text Available Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS of double sex (DSX-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq. One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only. After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1 reads resampling; 2 reads scaling (normalization and computing signal-to-noise fold changes; 3 filtering; 4 Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC. We also used irreproducible discovery rate (IDR analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  12. A non-parametric peak calling algorithm for DamID-Seq.

    Science.gov (United States)

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  13. Noise distribution of a peak track and hold circuit

    International Nuclear Information System (INIS)

    Seller, Paul; Hardie, Alec L.; Morrissey, Quentin

    2012-01-01

    Noise in linear electronic circuits is well characterised in terms of power spectral density in the frequency domain and the Normal probability density function in the time domain. For instance a charge preamplifier followed by a simple time independent pulse shaping circuit produces an output with a predictable, easily calculated Normal density function. By the Ergodic Principle this is true if the signal is sampled randomly in time or the experiment is run many times and measured at a fixed time after the circuit is released from reset. Apart from well defined cases, the time of the sample after release of reset does not affect the density function. If this signal is then passed through a peak track-and-hold circuit the situation is very different. The probability density function of the sampled signal is no longer Normal and the function changes with the time of the sample after release of reset. This density function can be classified by the Gumbel probability density function which characterises the Extreme Value Distribution of a defined number of Normally distributed values. The number of peaks in the signal is an important factor in the analysis. This issue is analysed theoretically and compared with a time domain noise simulation programme. This is then related to a real electronic circuit used for low-noise X-ray measurements and shows how the low-energy resolution of this system is significantly degraded when using a peak track-and-hold.

  14. ECONOMIC CONSEQUENCES OF PEAK OIL FOR THE MAJOR MULTINATIONAL OIL AND GAS COMPANIES

    Directory of Open Access Journals (Sweden)

    Antonio García-Amate

    2018-03-01

    Full Text Available The main goal of this work is to analyze the financial statements of the five major multinational oil and gas companies, for the 2011-2015 period, in the framework of the peak oil phenomenon. Peak oil can affect key financial indicators (e.g., earnings volatility, leverage that are used by managers, investors, and stockholders and which may potentially lead to changes in the decision making by management. Our results show that the decline in oil production affects the decisions about investment in new oil wells, leverage, dividends paid, shares purchased and net income involving the five major companies. In addition, we study the evolution of oil prices, and its influence in several items of the financial statements. Even though oil prices were at high levels during 2011-2014, however, the net income of the five companies actually declined due to the impact of peak oil. Finally, data for the last year studied (2015 indicate a general deterioration in return ratios and other accounting variables. Although the new investments should have been profitable, they have been influenced by peak oil, compromising the economic position of the companies. The advice to these companies would be to relax their investments, especially during a period of falling oil prices. Company managers need to recognize the prolonged duration of peak oil and price trends to promote profitability recovery decisions.

  15. Equivalence of the Boson Peak in Glasses to the Transverse Acoustic van Hove Singularity in Crystals

    International Nuclear Information System (INIS)

    Chumakov, A. I.; Monaco, G.; Monaco, A.; Crichton, W. A.; Bosak, A.; Rueffer, R.; Meyer, A.; Kargl, F.; Comez, L.; Fioretto, D.; Giefers, H.; Roitsch, S.; Wortmann, G.; Manghnani, M. H.; Hushur, A.; Balogh, J.; Williams, Q.; Parlinski, K.; Jochym, P.; Piekarz, P.

    2011-01-01

    We compare the atomic dynamics of the glass to that of the relevant crystal. In the spectra of inelastic scattering, the boson peak of the glass appears higher than the transverse acoustic (TA) singularity of the crystal. However, the density of states shows that they have the same number of states. Increasing pressure causes the transformation of the boson peak of the glass towards the TA singularity of the crystal. Once corrected for the difference in the elastic medium, the boson peak matches the TA singularity in energy and height. This suggests the identical nature of the two features.

  16. Peak heart rate decreases with increasing severity of acute hypoxia

    DEFF Research Database (Denmark)

    Lundby, C; Araoz, M; Van Hall, Gerrit

    2001-01-01

    , 459, and 404 mmHg) in a hypobaric chamber and while breathing 9% O(2) in N(2). These conditions were equivalent to altitudes of 3300, 4300, 5300, and 6300 m above sea level, respectively. At 4300 m, maximal exercise was also repeated after 4 and 8 h. Peak heart rate (HR) decreased from 191 (182......-202) (mean and range) at sea level to 189 (179-200), 182 (172-189), 175 (166-183), and 165 (162-169) in the acute hypoxic conditions. Peak HR did not decrease further after 4 and 8 h at 4300 m compared to the acute exposure at this altitude. Between barometric pressures of 518 and 355 mmHg (approximately...... 3300 and 6300 m), peak HR decreased linearly: peak HR(hypobaria) = peak HR(sea level) - 0.135 x [hypobaria(3100) - hypobaria (mmHg)]; or peak HR(altitude) = peak HR(sea level) - 0.15 x (altitude - 3100 m). This corresponds to approximately 1-beat x min(-1) reduction in peak HR for every 7-mmHg decrease...

  17. Hydration-coupled protein boson peak measured by incoherent neutron scattering

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi; Kataoka, Mikio; Joti, Yasumasa; Kitao, Akio; Shibata, Kaoru; Tokuhisa, Atsushi; Tsukushi, Itaru; Go, Nobuhiro

    2006-01-01

    The boson peak of a protein was examined in relation to hydration using staphylococcal nuclease. Although the boson peak is commonly observed in synthetic polymers, glassy materials and amorphous materials, the origin of the boson peak is not fully understood. The motions that contribute to the peak are harmonic vibrations. Upon hydration the peak frequency shifts to a higher frequency and the effective force constant of the vibration increases at low temperatures, suggesting that the protein energy surface is modified. Hydration of the protein leads to a more rugged surface and the vibrational motions are trapped within the local minimum at cryogenic temperatures. The origin of the protein boson peak may be related to this rugged energy surface

  18. Peak oil analyzed with a logistic function and idealized Hubbert curve

    International Nuclear Information System (INIS)

    Gallagher, Brian

    2011-01-01

    A logistic function is used to characterize peak and ultimate production of global crude oil and petroleum-derived liquid fuels. Annual oil production data were incrementally summed to construct a logistic curve in its initial phase. Using a curve-fitting approach, a population-growth logistic function was applied to complete the cumulative production curve. The simulated curve was then deconstructed into a set of annual oil production data producing an 'idealized' Hubbert curve. An idealized Hubbert curve (IHC) is defined as having properties of production data resulting from a constant growth-rate under fixed resource limits. An IHC represents a potential production curve constructed from cumulative production data and provides a new perspective for estimating peak production periods and remaining resources. The IHC model data show that idealized peak oil production occurred in 2009 at 83.2 Mb/d (30.4 Gb/y). IHC simulations of truncated historical oil production data produced similar results and indicate that this methodology can be useful as a prediction tool. - Research Highlights: →Global oil production data were analyzed by a simple curve fitting method. →Best fit-curve results were obtained using two logistic functions on select data. →A broad potential oil production peak is forecast for the years from 2004 to 2014. →Similar results were obtained using historical data from about 10 to 30 years ago. →Two potential oil production decline scenarios were presented and compared.

  19. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  20. Using a Web-Based Resource to Prepare Students for Fieldwork: Evaluating the Dark Peak Virtual Tour

    Science.gov (United States)

    McMorrow, Julia

    2005-01-01

    This paper reports on development of a Dark Peak website and its use to prepare first-year geography students for a one-day physical geography field course in the south Pennines. The Virtual Tour (VT) component of the website is the main focus of this paper. Pre- and post-fieldwork evaluations of the first version of the VT by 195 students are…

  1. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Yun-A Jo

    2016-12-01

    Full Text Available An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs. We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV. We also found that peak luminosity is positively correlated with peak energy.

  2. Anisotropy of exciton spectrum and spin-orbit interactions in quantum wells in tilted magnetic field

    International Nuclear Information System (INIS)

    Olendski, Oleg; Shahbazyan, Tigran V

    2006-01-01

    We study theoretically excitonic energy spectrum and optical absorption in narrowgap semiconductor quantum wells in strong magnetic field. We show that, in the presence of an in-plane field component, the absorption coefficient exhibit a double-peak structure due to hybridization of bright and dark excitons. If both Rashba and Dresselhaus spin-orbit terms are present, the spectrum is anisotropic in in-plane field orientation with respect to [100] axis. In particular, the magnitude of the splitting can be tuned in a wide interval by varying the azimuthal angle of the in-plane field. The absorption spectrrum anisotropy would allow simultaneous measurement Dresselhaus and Rashba spin-orbit coefficients

  3. A peak in the ηω mass spectrum from diffractive photoproduction

    International Nuclear Information System (INIS)

    Atkinson, M.; Flower, P.; Hutton, J.S.; Kumar, B.R.; Morris, J.A.G.; Morris, J.V.; Sharp, P.H.; Barberis, D.; Davenport, M.; Lasalle, J.P.; Patrick, G.N.; Storr, K.M.; Brodbeck, T.J.; Clegg, A.B.; Flynn, P.J.; Henderson, R.C.W.; Ibbotson, M.; Newton, B.; Brookes, G.R.; Bunn, J.J.; Galbraith, W.; McClatchey, R.H.; Bussey, P.J.; Dainton, J.B.; Paterson, C.; Raine, C.; Skillicorn, I.O.; Smith, K.M.; Diekmann, B.; Heinloth, K.; Jakob, H.P.; Jung, M.; Liebenau, V.; Paul, E.; Reidenbach, M.; Rotscheidt, H.; Schloesser, A.

    1987-01-01

    The ηω mass spectrum resulting from diffractive photoproduction, by photons of 25-50 GeV, shows a peak at a mass of 1.61±0.04 GeV and width of 0.23±0.08 GeV. Comparison with the corresponding ηρ 0 mass spectrum suggests that a resonance interpretation is favoured. (orig.)

  4. Prediction for potential landslide zones using seismic amplitude in Liwan gas field, northern South China Sea

    Science.gov (United States)

    Li, Xishuang; Liu, Baohua; Liu, Lejun; Zheng, Jiewen; Zhou, Songwang; Zhou, Qingjie

    2017-12-01

    The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.

  5. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D. R., E-mail: dmikkelsen@pppl.gov; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); Reinke, M. L. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Podpaly, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); AAAS S and T Fellow placed in the Directorate for Engineering, NSF, 4201 Wilson Blvd., Arlington, Virginia 22230 (United States); Ma, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Candy, J.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2015-06-15

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  6. Monte Carlo characterization of clinical electron beams in transverse magnetic fields

    International Nuclear Information System (INIS)

    Lee, Michael C.; Ma, Chang-Ming

    2000-01-01

    Monte Carlo simulations were employed to study the characteristics of the electron beams of a clinical linear accelerator in the presence of 1.5 and 3.0 T transverse magnetic fields and to assess the possibility of using magnetic fields in conjunction with modulated electron radiation therapy (MERT). The starting depth of the magnetic field was varied over several centimetres. It was found that peak doses of as much as 2.7 times the surface dose could be achieved with a 1.5 T magnetic field. The magnetic field was shown to reduce the 80% and 20% dose drop-off distance by 50% to 80%. The distance between the 80% dose levels of the pseudo-Bragg peak induced by the magnetic field was found to be extremely narrow, generally less than 1 cm. However, by modulating the energy and intensity of the electron fields while simultaneously moving the magnetic field, a homogeneous dose distribution with low surface dose and a sharp dose fall-off was generated. Heterogeneities are shown to change the effective range of the electron beams, but not eliminate the advantages of a sharp depth-dose drop-off or high peak-to-surface dose ratio. This suggests the applicability of MERT with magnetic fields in heterogeneous media. The results of this study demonstrate the ability to use magnetic fields in MERT to produce highly desirable dose distributions. (author)

  7. Three-dimensional finite element analysis of residual magnetic field for ferromagnets under early damage

    International Nuclear Information System (INIS)

    Yao, Kai; Shen, Kai; Wang, Zheng-Dao; Wang, Yue-Sheng

    2014-01-01

    In this study, 3D finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. The contour maps of tangential and normal RMF gradients are given, and the 3D effect is discussed. The results show that the tangential peak–peak amplitude and normal peak–vale amplitude are remarkably different in 2D and 3D simulations, but the tangential peak–peak width and normal peak–vale width are similar. Moreover, some key points are capable of capturing the plastic-zone shape, especially when the lift-off is small enough. The present study suggests an effective defect identification method with Metal magnetic memory (MMM) technique. - Highlights: • Three-dimensional (3D) finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. • The contour maps of gradients of the tangential and normal residual magnetic fields are given, and the 3D effect is discussed. • The present study suggests an effective defect identification method with metal magnetic memory technique

  8. 2D mapping of plane stress crack-tip fields following an overload

    Directory of Open Access Journals (Sweden)

    P. J. Withers

    2015-07-01

    Full Text Available The evolution of crack-tip strain fields in a thin (plane stress compact tension sample following an overload (OL event has been studied using two different experimental techniques. Surface behaviour has been characterised by Digital Image Correlation (DIC, while the bulk behaviour has been characterised by means of synchrotron X-ray diffraction (XRD. The combination of both surface and bulk information allowed us to visualise the through-thickness evolution of the strain fields before the OL event, during the overload event, just after OL and at various stages after it. Unlike previous work, complete 2D maps of strains around the crack-tip were acquired at 60m spatial resolution by XRD. The DIC shows less crack opening after overload and the XRD a lower crack-tip peak stress after OL until the crack has grown past the compressive crack-tip residual stress introduced by the overload after which the behaviour returned to that for the baseline fatigue response. While the peak crack-tip stress is supressed by the compressive residual stress, the crack-tip stress field changes over each cycle are nevertheless the same for all Kmax cycles except at OL.

  9. Evidence of prompt penetration electric fields during HILDCAA events

    Science.gov (United States)

    Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas

    2017-10-01

    High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.

  10. Evidence of prompt penetration electric fields during HILDCAA events

    Directory of Open Access Journals (Sweden)

    R. P. Silva

    2017-10-01

    Full Text Available High-intensity, long-duration continuous auroral electrojet (AE activity (HILDCAA events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23 using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S. Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.

  11. Evaluation of peak power prediction equations in male basketball players.

    Science.gov (United States)

    Duncan, Michael J; Lyons, Mark; Nevill, Alan M

    2008-07-01

    This study compared peak power estimated using 4 commonly used regression equations with actual peak power derived from force platform data in a group of adolescent basketball players. Twenty-five elite junior male basketball players (age, 16.5 +/- 0.5 years; mass, 74.2 +/- 11.8 kg; height, 181.8 +/- 8.1 cm) volunteered to participate in the study. Actual peak power was determined using a countermovement vertical jump on a force platform. Estimated peak power was determined using countermovement jump height and body mass. All 4 prediction equations were significantly related to actual peak power (all p jump prediction equations, 12% for the Canavan and Vescovi equation, and 6% for the Sayers countermovement jump equation. In all cases peak power was underestimated.

  12. ERRATUM: Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    Science.gov (United States)

    Schmieder, B.; Kucera, T. A.; Knizhnik, K.; Luna, M.; Lopez-Ariste, A.; Toot, D.

    2014-01-01

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Halpha lines), Sac Peak (in Ha, Hß, and Na-D lines), and THEMIS ("Télescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires") with the MTR (MulTi-Raies) spectropolarimeter (in He D3 line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km/s, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  13. Robust Peak Recognition in Intracranial Pressure Signals

    Directory of Open Access Journals (Sweden)

    Bergsneider Marvin

    2010-10-01

    Full Text Available Abstract Background The waveform morphology of intracranial pressure pulses (ICP is an essential indicator for monitoring, and forecasting critical intracranial and cerebrovascular pathophysiological variations. While current ICP pulse analysis frameworks offer satisfying results on most of the pulses, we observed that the performance of several of them deteriorates significantly on abnormal, or simply more challenging pulses. Methods This paper provides two contributions to this problem. First, it introduces MOCAIP++, a generic ICP pulse processing framework that generalizes MOCAIP (Morphological Clustering and Analysis of ICP Pulse. Its strength is to integrate several peak recognition methods to describe ICP morphology, and to exploit different ICP features to improve peak recognition. Second, it investigates the effect of incorporating, automatically identified, challenging pulses into the training set of peak recognition models. Results Experiments on a large dataset of ICP signals, as well as on a representative collection of sampled challenging ICP pulses, demonstrate that both contributions are complementary and significantly improve peak recognition performance in clinical conditions. Conclusion The proposed framework allows to extract more reliable statistics about the ICP waveform morphology on challenging pulses to investigate the predictive power of these pulses on the condition of the patient.

  14. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of the three volume report is a final report appendix with information on the National Energy Peak Leveling Program (NEPLP).

  15. Peak reading detector circuit

    International Nuclear Information System (INIS)

    Courtin, E.; Grund, K.; Traub, S.; Zeeb, H.

    1975-01-01

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB) [de

  16. Analysis of the Extremely Low Frequency Magnetic Field Emission from Laptop Computers

    Directory of Open Access Journals (Sweden)

    Brodić Darko

    2016-03-01

    Full Text Available This study addresses the problem of magnetic field emission produced by the laptop computers. Although, the magnetic field is spread over the entire frequency spectrum, the most dangerous part of it to the laptop users is the frequency range from 50 to 500 Hz, commonly called the extremely low frequency magnetic field. In this frequency region the magnetic field is characterized by high peak values. To examine the influence of laptop’s magnetic field emission in the office, a specific experiment is proposed. It includes the measurement of the magnetic field at six laptop’s positions, which are in close contact to its user. The results obtained from ten different laptop computers show the extremely high emission at some positions, which are dependent on the power dissipation or bad ergonomics. Eventually, the experiment extracts these dangerous positions of magnetic field emission and suggests possible solutions.

  17. Active inductor shunt peaking in high-speed VCSEL driver design

    CERN Document Server

    Liang, Futian; Hou, Suen; Liu, Chonghan; Liu, Tiankuan; Su, Da-Shung; Teng, Ping-Kun; Xiang, Annie; Ye, Jingbo; Jin, Ge

    2013-01-01

    An all transistor active inductor shunt peaking structure has been used in a prototype of 8-Gbps high-speed VCSEL driver which is designed for the optical link in ATLAS liquid Argon calorimeter upgrade. The VCSEL driver is fabricated in a commercial 0.25-um Silicon-on-Sapphire (SoS) CMOS process for radiation tolerant purpose. The all transistor active inductor shunt peaking is used to overcome the bandwidth limitation from the CMOS process. The peaking structure has the same peaking effect as the passive one, but takes a small area, does not need linear resistors and can overcome the process variation by adjust the peaking strength via an external control. The design has been tapped out, and the prototype has been proofed by the preliminary electrical test results and bit error ratio test results. The driver achieves 8-Gbps data rate as simulated with the peaking. We present the all transistor active inductor shunt peaking structure, simulation and test results in this paper.

  18. The reversal of the Sun's magnetic field in cycle 24

    OpenAIRE

    Mordvinov, Alexander V.; Pevtsov, Alexei A.; Bertello, Luca; Petrie, Gordon J. D.

    2016-01-01

    Analysis of synoptic data from the Vector Stokes Magnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) and the NASA/NSO Spectromagnetograph (SPM) at the NSO/Kitt Peak Vacuum Telescope facility shows that the reversals of solar polar magnetic fields exhibit elements of a stochastic process, which may include the development of specific patterns of emerging magnetic flux, and the asymmetry in activity between northern and southern hemispheres. The presence of su...

  19. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Directory of Open Access Journals (Sweden)

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  20. A fluid dynamical flow model for the central peak in the rotation curve of disk galaxies

    International Nuclear Information System (INIS)

    Bhattacharyya, T.; Basu, B.

    1980-01-01

    The rotation curve of the central region in some disk galaxies shows a linear rise, terminating at a peak (primary peak) which is then vollowed by a deep minimum. The curve then again rises to another peak at more or less half-way across the galactic radius. This latter peak is considered as the peak of the rotation curve in all large-scale analysis of galactic structure. The primary peak is usually ignored for the purpose. In this work an attempt has been made to look at the primary peak as the manifestation of the post-explosion flow pattern of gas in the deep central region of galaxies. Solving hydrodynamical equations of motion, a flow model has been derived which imitates very closely the actually observed linear rotational velocity, followed by the falling branch of the curve to minimum. The theoretical flow model has been compared with observed results for nine galaxies. The agreement obtained is extremely encouraging. The distance of the primary peak from the galactic centre has been shown to be correlated with the angular velocity in the linear part of the rotation curve. Here also, agreement is very good between theoretical and observed results. It is concluded that the distance of the primary peak from the centre not only speaks of the time that has elapsed since the explosion occurred in the nucleus, it also speaks of the potential capability of the nucleus of the galaxy for repeating explosions through some efficient process of mass replenishment at the core. (orig.)

  1. Determination of the diagnostic x-ray tube practical peak voltage (PPV) from average or average peak voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hourdakis, C J, E-mail: khour@gaec.gr [Ionizing Radiation Calibration Laboratory-Greek Atomic Energy Commission, PO Box 60092, 15310 Agia Paraskevi, Athens, Attiki (Greece)

    2011-04-07

    The practical peak voltage (PPV) has been adopted as the reference measuring quantity for the x-ray tube voltage. However, the majority of commercial kV-meter models measure the average peak, U-bar{sub P}, the average, U-bar, the effective, U{sub eff} or the maximum peak, U{sub P} tube voltage. This work proposed a method for determination of the PPV from measurements with a kV-meter that measures the average U-bar or the average peak, U-bar{sub p} voltage. The kV-meter reading can be converted to the PPV by applying appropriate calibration coefficients and conversion factors. The average peak k{sub PPV,kVp} and the average k{sub PPV,Uav} conversion factors were calculated from virtual voltage waveforms for conventional diagnostic radiology (50-150 kV) and mammography (22-35 kV) tube voltages and for voltage ripples from 0% to 100%. Regression equation and coefficients provide the appropriate conversion factors at any given tube voltage and ripple. The influence of voltage waveform irregularities, like 'spikes' and pulse amplitude variations, on the conversion factors was investigated and discussed. The proposed method and the conversion factors were tested using six commercial kV-meters at several x-ray units. The deviations between the reference and the calculated - according to the proposed method - PPV values were less than 2%. Practical aspects on the voltage ripple measurement were addressed and discussed. The proposed method provides a rigorous base to determine the PPV with kV-meters from U-bar{sub p} and U-bar measurement. Users can benefit, since all kV-meters, irrespective of their measuring quantity, can be used to determine the PPV, complying with the IEC standard requirements.

  2. Calculated and measured fields in superferric wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  3. Hubbert's Oil Peak Revisited by a Simulation Model

    International Nuclear Information System (INIS)

    Giraud, P.N.; Sutter, A.; Denis, T.; Leonard, C.

    2010-01-01

    As conventional oil reserves are declining, the debate on the oil production peak has become a burning issue. An increasing number of papers refer to Hubbert's peak oil theory to forecast the date of the production peak, both at regional and world levels. However, in our views, this theory lacks micro-economic foundations. Notably, it does not assume that exploration and production decisions in the oil industry depend on market prices. In an attempt to overcome these shortcomings, we have built an adaptative model, accounting for the behavior of one agent, standing for the competitive exploration-production industry, subjected to incomplete but improving information on the remaining reserves. Our work yields challenging results on the reasons for an Hubbert type peak oil, lying mainly 'above the ground', both at regional and world levels, and on the shape of the production and marginal cost trajectories. (authors)

  4. Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays.

    Science.gov (United States)

    Dasgupta, Purnendu K

    2008-12-05

    Resolution of overlapped chromatographic peaks is generally accomplished by modeling the peaks as Gaussian or modified Gaussian functions. It is possible, even preferable, to use actual single analyte input responses for this purpose and a nonlinear least squares minimization routine such as that provided by Microsoft Excel Solver can then provide the resolution. In practice, the quality of the results obtained varies greatly due to small shifts in retention time. I show here that such deconvolution can be considerably improved if one or more of the response arrays are iteratively shifted in time.

  5. Characteristic of 120 degree C thermoluminescence peak of iceland spar

    International Nuclear Information System (INIS)

    Lu Xinwei; Han Jia

    2006-01-01

    The basic characteristic of 120 degree C thermoluminescence peak of iceland spar was studied. The experimental result indicates the longevity of 120 degree C thermoluminescence peak of iceland spar is about 2 h under 30 degree C. The thermoluminescence peak moves to the high temperature when the heating speed increasing. The intensity of 120 degree C thermoluminescence peak of iceland spar is directly proportional to radiation dose under 15 Gy. (authors)

  6. PROPAGATING WAVES TRANSVERSE TO THE MAGNETIC FIELD IN A SOLAR PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, B. [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon (France); Kucera, T. A.; Knizhnik, K. [Code 671, NASA' s GSFC, Greenbelt, MD 20771 (United States); Luna, M. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Lopez-Ariste, A. [THEMIS, CNRS-UPS853, E-38205 La Laguna (Spain); Toot, D. [Alfred University, Alfred, NY 14802 (United States)

    2013-11-10

    We report an unusual set of observations of waves in a large prominence pillar that consist of pulses propagating perpendicular to the prominence magnetic field. We observe a huge quiescent prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly in EUV on 2012 October 10 and only a part of it, the pillar, which is a foot or barb of the prominence, with the Hinode Solar Optical Telescope (SOT; in Ca II and Hα lines), Sac Peak (in Hα, Hβ, and Na-D lines), and THEMIS ({sup T}élescope Héliographique pour l' Etude du Magnétisme et des Instabilités Solaires{sup )} with the MTR (MulTi-Raies) spectropolarimeter (in He D{sub 3} line). The THEMIS/MTR data indicates that the magnetic field in the pillar is essentially horizontal and the observations in the optical domain show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data over the four hour observing period show vertical oscillations appearing as wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along thin quasi-vertical columns in the much broader pillar. The pulses have a velocity of propagation of about 10 km s{sup –1}, a period of about 300 s, and a wavelength around 2000 km. We interpret these waves in terms of fast magnetosonic waves and discuss possible wave drivers.

  7. Neutron-induced peaks in Ge detectors from evaporation neutrons

    International Nuclear Information System (INIS)

    Gete, E.; Measday, D.F.; Moftah, B.A.; Saliba, M.A.; Stocki, T.J.

    1997-01-01

    We have studied the peak shapes at 596 and 691 keV resulting from fast neutron interactions inside germanium detectors. We have used neutrons from a 252 Cf source, as well as from the 28 Si(μ - , nν), and 209 Bi(π - , xn) reactions to compare the peaks and to check for a dependence of peak shape on the incoming neutron energy. In our investigation, no difference between these three measurements has been observed. In a comparison of these peak shapes with other studies, we found similar results to ours except for those measurements using monoenergetic neutrons in which a significant variation with neutron energy has been observed. (orig.)

  8. Echo 2: observations at Fort Churchill of a 4-keV peak in low-level electron precipitation

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Hendrickson, R.A.; Winckler, J.R.

    1975-01-01

    The Echo 2 rocket flight launched from Fort Churchill, Manitoba, offered the opportunity to observe high-latitude low-level electron precipitation during quiet magnetic conditions. Although no visual aurora was evident at the time of the flight, an auroral spectrum sharply peaked at a few keV was observed to have intensities from 1 to 2 orders of magnitude lower than peaked spectra typically assoicated with bright auroral forms. There is a growing body of evidence that relates peaked electron spectra to discrete aurora. The Echo 2 observations show that whatever the mechanism for peaking the electron spectrum in and above discrete forms, it operates over a range of precipitation intensities covering nearly 3 orders of magnitude down to subvisual or near subvisual events

  9. Double Barriers and Magnetic Field in Bilayer Graphene

    Science.gov (United States)

    Redouani, Ilham; Jellal, Ahmed; Bahlouli, Hocine

    2015-12-01

    We study the transmission probability in an AB-stacked bilayer graphene of Dirac fermions scattered by a double-barrier structure in the presence of a magnetic field. We take into account the full four bands structure of the energy spectrum and use the suitable boundary conditions to determine the transmission probability. Our numerical results show that for energies higher than the interlayer coupling, four ways for transmission are possible while for energies less than the height of the barrier, Dirac fermions exhibit transmission resonances and only one transmission channel is available. We show that, for AB-stacked bilayer graphene, there is no Klein tunneling at normal incidence. We find that the transmission displays sharp peaks inside the transmission gap around the Dirac point within the barrier regions while they are absent around the Dirac point in the well region. The effect of the magnetic field, interlayer electrostatic potential, and various barrier geometry parameters on the transmission probabilities is also discussed.

  10. Evidence for two distinct defects contributing to the H4 deep-level transient spectroscopy peak in electron-irradiated InP

    International Nuclear Information System (INIS)

    Darwich, R.; Massarani, B.; Kaaka, M.; Awad, F.

    2000-01-01

    Deep-level transient spectroscopy (DLTS) has been used to study the dominant deep-level H4 produced in InP by electron irradiation. The characteristics of the H4 peak in Zn-doped Inp has been studied as a function of pulse duration (t p ) before and after annealing. The results show that at least two traps contribute to the H4 peak: one is a fast trap (labeled H4 f ) and the other is a show trap (labeled H4 s ). This is show through several results concerning the activation energy, the capture cross section, the full width at half-maximum, and the peak temperature shift. It is shown that both traps are irradiation defects created in P sublattice. (authors)

  11. Probabilistic peak detection for first-order chromatographic data

    NARCIS (Netherlands)

    Lopatka, M.; Vivó-Truyols, G.; Sjerps, M.J.

    2014-01-01

    We present a novel algorithm for probabilistic peak detection in first-order chromatographic data. Unlike conventional methods that deliver a binary answer pertaining to the expected presence or absence of a chromatographic peak, our method calculates the probability of a point being affected by

  12. The environmental impacts of peaking at hydropower plants

    International Nuclear Information System (INIS)

    Halleraker, Jo Halvard

    2001-01-01

    A recent energy act in Norway allows hydropower plants to be operated so that hydro peaking is permitted. However, it is uncertain how fish react to the variations in discharge and depth that follow hydro peaking. SINTEF Energy Research is cooperating with other research institutions to investigate the consequences of these variations on the biota. Among the research tools is an aqua channel which is an indoor laboratory flume where fish behaviour can be studied in detail. It has been constructed to provide the hydropower industry and public authorities with means of better determining the effects of hydro peaking. (author)

  13. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    Science.gov (United States)

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    period of 1 year, or the 1-year storm), which is a statistically common (high probability) storm. The Big Cottonwood Creek site is downstream from the Hayden Pass Fire burn area, which dramatically altered the hydrology of the watershed and caused this statistically rare (low probability) flood from a statistically common (high probability) storm. The peak flood stage at the cross section closest to the U.S. Highway 50 culvert was 6,438.32 feet (ft) above the North American Datum of 1988 (NAVD 88).The August 29, 2016, flood at the Fountain Creek site had an estimated annual exceedance probability of 0.5505 (return period equal to the 1.8-year flood). The August 29, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return period of 1 year, or the 1-year storm). The peak stage during this flood at the cross section closest to the U.S. Highway 24 bridge was 5,832.89 ft (NAVD 88).Slope-area indirect discharge measurements were carried out at the Big Cottonwood Creek and Fountain Creek sites to estimate peak discharge of the August 23, 2016, flood and August 29, 2016, flood, respectively. The USGS computer program Slope-Area Computation Graphical User Interface was used to compute the peak discharge by adding the surveyed cross sections with Manning roughness coefficient assignments to the high-water marks. The Manning roughness coefficients for each cross section were estimated in the field using the Cowan method.

  14. Clustering Mixed Data by Fast Search and Find of Density Peaks

    Directory of Open Access Journals (Sweden)

    Shihua Liu

    2017-01-01

    Full Text Available Aiming at the mixed data composed of numerical and categorical attributes, a new unified dissimilarity metric is proposed, and based on that a new clustering algorithm is also proposed. The experiment result shows that this new method of clustering mixed data by fast search and find of density peaks is feasible and effective on the UCI datasets.

  15. ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq.

    Science.gov (United States)

    Kucukural, Alper; Özadam, Hakan; Singh, Guramrit; Moore, Melissa J; Cenik, Can

    2013-10-01

    Unlike DNA, RNA abundances can vary over several orders of magnitude. Thus, identification of RNA-protein binding sites from high-throughput sequencing data presents unique challenges. Although peak identification in ChIP-Seq data has been extensively explored, there are few bioinformatics tools tailored for peak calling on analogous datasets for RNA-binding proteins. Here we describe ASPeak (abundance sensitive peak detection algorithm), an implementation of an algorithm that we previously applied to detect peaks in exon junction complex RNA immunoprecipitation in tandem experiments. Our peak detection algorithm yields stringent and robust target sets enabling sensitive motif finding and downstream functional analyses. ASPeak is implemented in Perl as a complete pipeline that takes bedGraph files as input. ASPeak implementation is freely available at https://sourceforge.net/projects/as-peak under the GNU General Public License. ASPeak can be run on a personal computer, yet is designed to be easily parallelizable. ASPeak can also run on high performance computing clusters providing efficient speedup. The documentation and user manual can be obtained from http://master.dl.sourceforge.net/project/as-peak/manual.pdf.

  16. HARD X-RAY EMISSION DURING FLARES AND PHOTOSPHERIC FIELD CHANGES

    International Nuclear Information System (INIS)

    Burtseva, O.; Petrie, G. J. D.; Pevtsov, A. A.; Martínez-Oliveros, J. C.

    2015-01-01

    We study the correlation between abrupt permanent changes of magnetic field during X-class flares observed by the Global Oscillation Network Group and Helioseismic and Magnetic Imager instruments, and the hard X-ray (HXR) emission observed by RHESSI, to relate the photospheric field changes to the coronal restructuring and investigate the origin of the field changes. We find that spatially the early RHESSI emission corresponds well to locations of the strong field changes. The field changes occur predominantly in the regions of strong magnetic field near the polarity inversion line (PIL). The later RHESSI emission does not correspond to significant field changes as the flare footpoints are moving away from the PIL. Most of the field changes start before or around the start time of the detectable HXR signal, and they end at about the same time or later than the detectable HXR flare emission. Some of the field changes propagate with speed close to that of the HXR footpoint at a later phase of the flare. The propagation of the field changes often takes place after the strongest peak in the HXR signal when the footpoints start moving away from the PIL, i.e., the field changes follow the same trajectory as the HXR footpoint, but at an earlier time. Thus, the field changes and HXR emission are spatio-temporally related but not co-spatial nor simultaneous. We also find that in the strongest X-class flares the amplitudes of the field changes peak a few minutes earlier than the peak of the HXR signal. We briefly discuss this observed time delay in terms of the formation of current sheets during eruptions

  17. Automatic fitting of Gaussian peaks using abductive machine learning

    Science.gov (United States)

    Abdel-Aal, R. E.

    1998-02-01

    Analytical techniques have been used for many years for fitting Gaussian peaks in nuclear spectroscopy. However, the complexity of the approach warrants looking for machine-learning alternatives where intensive computations are required only once (during training), while actual analysis on individual spectra is greatly simplified and quickened. This should allow the use of simple portable systems for fast and automated analysis of large numbers of spectra, particularly in situations where accuracy may be traded for speed and simplicity. This paper proposes the use of abductive networks machine learning for this purpose. The Abductory Induction Mechanism (AIM) tool was used to build models for analyzing both single and double Gaussian peaks in the presence of noise depicting statistical uncertainties in collected spectra. AIM networks were synthesized by training on 1000 representative simulated spectra and evaluated on 500 new spectra. A classifier network determines the multiplicity of single/double peaks with an accuracy of 5.8%. With statistical uncertainties corresponding to a peak count of 100, average percentage absolute errors for the height, position, and width of single peaks are 4.9, 2.9, and 4.2%, respectively. For double peaks, these average errors are within 7.0, 3.1, and 5.9%, respectively. Models have been developed which account for the effect of a linear background on a single peak. Performance is compared with a neural network application and with an analytical curve-fitting routine, and the new technique is applied to actual data of an alpha spectrum.

  18. Automatic fitting of Gaussian peaks using abductive machine learning

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1998-01-01

    Analytical techniques have been used for many years for fitting Gaussian peaks in nuclear spectroscopy. However, the complexity of the approach warrants looking for machine-learning alternatives where intensive computations are required only once (during training), while actual analysis on individual spectra is greatly simplified and quickened. This should allow the use of simple portable systems for fast and automated analysis of large numbers of spectra, particularly in situations where accuracy may be traded for speed and simplicity. This paper proposes the use of abductive networks machine learning for this purpose. The Abductory Induction Mechanism (AIM) tool was used to build models for analyzing both single and double Gaussian peaks in the presence of noise depicting statistical uncertainties in collected spectra. AIM networks were synthesized by training on 1,000 representative simulated spectra and evaluated on 500 new spectra. A classifier network determines the multiplicity of single/double peaks with an accuracy of 98%. With statistical uncertainties corresponding to a peak count of 100, average percentage absolute errors for the height, position, and width of single peaks are 4.9, 2.9, and 4.2%, respectively. For double peaks, these average errors are within 7.0, 3.1, and 5.9%, respectively. Models have been developed which account for the effect of a linear background on a single peak. Performance is compared with a neural network application and with an analytical curve-fitting routine, and the new technique is applied to actual data of an alpha spectrum

  19. Electric field measurement of two commercial active/sham coils for transcranial magnetic stimulation.

    Science.gov (United States)

    Smith, James Evan; Peterchev, Angel V

    2018-06-22

    Sham TMS coils isolate the ancillary effects of their active counterparts, but typically induce low-strength electric fields (E-fields) in the brain, which could be biologically active. We measured the E-fields induced by two pairs of commonly-used commercial active/sham coils. Approach: E-field distributions of the active and sham configurations of the Magstim 70 mm AFC and MagVenture Cool-B65 A/P coils were measured over a 7-cm-radius, hemispherical grid approximating the cortical surface. Peak E-field strength was recorded over a range of pulse amplitudes. Main results: The Magstim and MagVenture shams induce peak E-fields corresponding to 25.3% and 7.72% of their respective active values. The MagVenture sham has an E-field distribution shaped like its active counterpart. The Magstim sham induces nearly zero E-field under the coil's center, and its peak E-field forms a diffuse oval 3-7 cm from the center. Electrical scalp stimulation paired with the MagVenture sham is estimated to increase the sham E-field in the brain up to 10%. Significance: Different commercial shams induce different E-field strengths and distributions in the brain, which should be considered in interpreting outcomes of sham stimulation. © 2018 IOP Publishing Ltd.

  20. VO(2peak), myocardial hypertrophy, and myocardial blood flow in endurance-trained men.

    Science.gov (United States)

    Laaksonen, Marko S; Heinonen, Ilkka; Luotolahti, Matti; Knuuti, Juhani; Kalliokoski, Kari K

    2014-08-01

    Endurance training induces cardiovascular and metabolic adaptations, leading to enhanced endurance capacity and exercise performance. Previous human studies have shown contradictory results in functional myocardial vascular adaptations to exercise training, and we hypothesized that this may be related to different degrees of hypertrophy in the trained heart. We studied the interrelationships between peak aerobic power (V˙O2peak), myocardial blood flow (MBF) at rest and during adenosine-induced vasodilation, and parameters of myocardial hypertrophy in endurance-trained (ET, n = 31) and untrained (n = 17) subjects. MBF and myocardial hypertrophy were studied using positron emission tomography and echocardiography, respectively. Both V˙O2peak (P negatively with adenosine-stimulated MBF, but when LV mass was taken into account as a partial correlate, this correlation disappeared. The present results show that increased LV mass in ET subjects explains the reduced hyperemic myocardial perfusion in this subject population and suggests that excessive LV hypertrophy has negative effect on cardiac blood flow capacity.

  1. Detecting and accounting for multiple sources of positional variance in peak list registration analysis and spin system grouping.

    Science.gov (United States)

    Smelter, Andrey; Rouchka, Eric C; Moseley, Hunter N B

    2017-08-01

    Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the

  2. How does economic theory explain the Hubbert peak oil model?

    International Nuclear Information System (INIS)

    Reynes, F.; Okullo, S.; Hofkes, M.

    2010-01-01

    The aim of this paper is to provide an economic foundation for bell shaped oil extraction trajectories, consistent with Hubbert's peak oil model. There are several reasons why it is important to get insight into the economic foundations of peak oil. As production decisions are expected to depend on economic factors, a better comprehension of the economic foundations of oil extraction behaviour is fundamental to predict production and price over the coming years. The investigation made in this paper helps us to get a better understanding of the different mechanisms that may be at work in the case of OPEC and non-OPEC producers. We show that profitability is the main driver behind production plans. Changes in profitability due to divergent trajectories between costs and oil price may give rise to a Hubbert production curve. For this result we do not need to introduce a demand or an exploration effect as is generally assumed in the literature.

  3. Prediction of peak overlap in NMR spectra

    International Nuclear Information System (INIS)

    Hefke, Frederik; Schmucki, Roland; Güntert, Peter

    2013-01-01

    Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.

  4. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change.

    Science.gov (United States)

    Panchen, Zoe A; Primack, Richard B; Anisko, Tomasz; Lyons, Robert E

    2012-04-01

    The global climate is changing rapidly and is expected to continue changing in coming decades. Studying changes in plant flowering times during a historical period of warming temperatures gives us a way to examine the impacts of climate change and allows us to predict further changes in coming decades. The Greater Philadelphia region has a long and rich history of botanical study and documentation, with abundant herbarium specimens, field observations, and botanical photographs from the mid-1800s onward. These extensive records also provide an opportunity to validate methodologies employed by other climate change researchers at a different biogeographical area and with a different group of species. Data for 2539 flowering records from 1840 to 2010 were assessed to examine changes in flowering response over time and in relation to monthly minimum temperatures of 28 Piedmont species native to the Greater Philadelphia region. Regression analysis of the date of flowering with year or with temperature showed that, on average, the Greater Philadelphia species studied are flowering 16 d earlier over the 170-yr period and 2.7 d earlier per 1°C rise in monthly minimum temperature. Of the species studied, woody plants with short flowering duration are the best indicators of a warming climate. For monthly minimum temperatures, temperatures 1 or 2 mo prior to flowering are most significantly correlated with flowering time. Studies combining herbarium specimens, photographs, and field observations are an effective method for detecting the effects of climate change on flowering times.

  5. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    Science.gov (United States)

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  6. Participation through Automation: Fully Automated Critical PeakPricing in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Kiliccote,Sila; Linkugel, Eric

    2006-06-20

    California electric utilities have been exploring the use of dynamic critical peak prices (CPP) and other demand response programs to help reduce peaks in customer electric loads. CPP is a tariff design to promote demand response. Levels of automation in DR can be defined as follows: Manual Demand Response involves a potentially labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. They refer to this as Auto-DR. This paper describes the development, testing, and results from automated CPP (Auto-CPP) as part of a utility project in California. The paper presents the project description and test methodology. This is followed by a discussion of Auto-DR strategies used in the field test buildings. They present a sample Auto-CPP load shape case study, and a selection of the Auto-CPP response data from September 29, 2005. If all twelve sites reached their maximum saving simultaneously, a total of approximately 2 MW of DR is available from these twelve sites that represent about two million ft{sup 2}. The average DR was about half that value, at about 1 MW. These savings translate to about 0.5 to 1.0 W/ft{sup 2} of demand reduction. They are continuing field demonstrations and economic evaluations to pursue increasing penetrations of automated DR that has demonstrated ability to provide a valuable DR resource for California.

  7. Online junction temperature measurement using peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    A new method for junction temperature measurement of MOS-gated power semiconductor switches is presented. The measurement method involves detecting the peak voltage over the external gate resistor of an IGBT or MOSFET during turn-on. This voltage is directly proportional to the peak gate current...

  8. A new automatic fixed peak technology of microcontroller

    International Nuclear Information System (INIS)

    Huang Liguo; Wang Dequan; Zhang Damin; Li Jun; Liu Yuwen; Guo Qingxue; Wang Guifeng

    1999-01-01

    The microcontroller automatic fixed peak technology which differs from fashion half channel fixed peak is described. It bases on the principles of selecting double single channel and readjusting the voltage of power source. This technology is suitable to the industrial isotope instruments with various radioactive sources

  9. Dynamic vortex-phase diagram of MgB2 single crystals near the peak-effect region

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Lee, Hyun-Sook; Kang, Byeongwon; Chowdhury, P.; Kim, Kyung-Hee; Park, Min-Seok; Lee, Sung-Ik

    2006-01-01

    The dynamic vortex-phase diagram of MgB 2 single crystals has been constructed by using voltage noise characteristics. Between the onset (H on ) and the peak (H p ) magnetic fields, crossovers from a state with large noises to a noise-free state were observed with increasing current while above H p , a reverse behavior was found. We will discuss the dynamic vortex phase diagram and the possible origins of the crossovers

  10. Segmented abutting fields irradiation using multileaf collimators

    International Nuclear Information System (INIS)

    Nishimura, Tetsuo

    1998-01-01

    The object of this study is to evaluate the clinical feasibility of segmented abutting fields irradiation (SAFI) using multileaf collimators (MLCs), in which the target volume is divided into several segments to create complex irregular field without use of alloy blocks. A linear accelerator with 26 pairs of roundly ended MLCs of 1 cm in width was tested in this study. In SAFI, radiation leakage occurs at the abutment sites with these MLCs. Film dosimetry was used to determine the optimal length of the MLC overlap to minimize dose profile variation in abutting fields. A mantle field was investigated as a clinical application. Without overlapping the MLCs, radiation leakage at the abutments appeared as a peak of the dose profile. With more overlapping, the profile exhibited a minimized variation with a two-peak pattern. With excessive overlapping, the peak was reversed due to decreased dose. Variation of the profile was minimized with an overlap of 2.0-2.2 mm. The level of variation and the optimal length of overlap were found to be independent of the sites of measurement. Reproducibility was confirmed by repeated measurements. With the mantle field, SAFI using MLCs revealed an profile equivalent to use of alloy blocking fields in all respects other than the variations at the abutting sites. If the length of the MLC abutment overlap differs by site, clinical application of SAFI using MLCs would be quite complicated. The optimal length of the overlap was found to be 2.0 mm and to be independent of the sites of abutment. Therefore, we conclude that SAFI using MLCs of 1 cm in width is feasible for clinical use. (author)

  11. The sharp peak-flat trough pattern and critical speculation

    OpenAIRE

    Roehner, B. M.; Sornette, D.

    1998-01-01

    We find empirically a characteristic sharp peak-flat trough pattern in a large set of commodity prices. We argue that the sharp peak structure reflects an endogenous inter-market organization, and that peaks may be seen as local ``singularities'' resulting from imitation and herding. These findings impose a novel stringent constraint on the construction of models. Intermittent amplification is not sufficient and nonlinear effects seem necessary to account for the observations.

  12. Three-peak behavior in giant magnetoimpedance effect in Fe73.5-x Cr x Nb3Cu1Si13.5B9 amorphous ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Pineda-Gomez, P.

    2007-01-01

    A systematic study of the giant magnetoimpedance (GMI) effect in Fe 73.5- x Cr x Nb 3 Cu 1 Si 13.5 B 9 amorphous ribbons with x=0, 2, 4, 6, 8 and 10 is presented. The complex impedance in these compounds was measured for applied fields from -80 to 80 Oe at room temperature, via the so-called four-probe technique. Depending on the frequency, the experimentally observed GMI curves usually exhibit two types of behavior, namely single-peak (SP), and two-peak (TP). In this work, we emphasize the presence of a 'three-peak behavior' in GMI curves. It occurs between SP and TP behaviors. The mechanisms leading to the three-peak behavior are discussed

  13. Position difference regularity of corresponding R-wave peaks for maternal ECG components from different abdominal points

    International Nuclear Information System (INIS)

    Zhang Jie-Min; Liu Hong-Xing; Huang Xiao-Lin; Si Jun-Feng; Guan Qun; Tang Li-Ming; Liu Tie-Bing

    2014-01-01

    We collected 343 groups of abdominal electrocardiogram (ECG) data from 78 pregnant women and deleted the channels unable for experts to determine R-wave peaks from them; then, based on these filtered data, the statistics of position difference of corresponding R-wave peaks for different maternal ECG components from different points were studied. The resultant statistics showed the regularity that the position difference of corresponding maternal R-wave peaks between different abdominal points does not exceed the range of 30 ms. The regularity was also proved using the fECG data from MIT—BIH PhysioBank. Additionally, the paper applied the obtained regularity, the range of position differences of the corresponding maternal R-wave peaks, to accomplish the automatic detection of maternal R-wave peaks in the recorded all initial 343 groups of abdominal signals, including the ones with the largest fetal ECG components, and all 55 groups of ECG data from MIT—BIH PhysioBank, achieving the successful separation of the maternal ECGs. (interdisciplinary physics and related areas of science and technology)

  14. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    Energy Technology Data Exchange (ETDEWEB)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Tang, Kai; Liu, Zhi-jie; Wang, Sen [Key Lab of Materials Modification, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  15. Modelling the impact of retention-detention units on sewer surcharge and peak and annual runoff reduction.

    Science.gov (United States)

    Locatelli, Luca; Gabriel, Søren; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Taylor, Heidi; Bockhorn, Britta; Larsen, Hauge; Kjølby, Morten Just; Blicher, Anne Steensen; Binning, Philip John

    2015-01-01

    Stormwater management using water sensitive urban design is expected to be part of future drainage systems. This paper aims to model the combination of local retention units, such as soakaways, with subsurface detention units. Soakaways are employed to reduce (by storage and infiltration) peak and volume stormwater runoff; however, large retention volumes are required for a significant peak reduction. Peak runoff can therefore be handled by combining detention units with soakaways. This paper models the impact of retrofitting retention-detention units for an existing urbanized catchment in Denmark. The impact of retrofitting a retention-detention unit of 3.3 m³/100 m² (volume/impervious area) was simulated for a small catchment in Copenhagen using MIKE URBAN. The retention-detention unit was shown to prevent flooding from the sewer for a 10-year rainfall event. Statistical analysis of continuous simulations covering 22 years showed that annual stormwater runoff was reduced by 68-87%, and that the retention volume was on average 53% full at the beginning of rain events. The effect of different retention-detention volume combinations was simulated, and results showed that allocating 20-40% of a soakaway volume to detention would significantly increase peak runoff reduction with a small reduction in the annual runoff.

  16. Noise-tolerant instantaneous heart rate and R-peak detection using short-term autocorrelation for wearable healthcare systems.

    Science.gov (United States)

    Fujii, Takahide; Nakano, Masanao; Yamashita, Ken; Konishi, Toshihiro; Izumi, Shintaro; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2013-01-01

    This paper describes a robust method of Instantaneous Heart Rate (IHR) and R-peak detection from noisy electrocardiogram (ECG) signals. Generally, the IHR is calculated from the R-wave interval. Then, the R-waves are extracted from the ECG using a threshold. However, in wearable bio-signal monitoring systems, noise increases the incidence of misdetection and false detection of R-peaks. To prevent incorrect detection, we introduce a short-term autocorrelation (STAC) technique and a small-window autocorrelation (SWAC) technique, which leverages the similarity of QRS complex waveforms. Simulation results show that the proposed method improves the noise tolerance of R-peak detection.

  17. Between Two Worlds: Twin Peaks and the Film/Television Divide

    Directory of Open Access Journals (Sweden)

    Siobhan Lyons

    2017-04-01

    Full Text Available In 1992, the year David Lynch’s cult television series 'Twin Peaks' was pulled off air, Lynch released the film 'Twin Peaks: Fire Walk with Me', a prequel to the television series which filled in some of the gaps left from the series finale cliff-hanger. The film was received with unanimously negative reviews from critics and fans alike, condemning both its subtle and obvious deviations from the series and its inclusion of the character Laura Palmer, whose absence was a crucial narrative device at the centre of 'Twin Peaks'. In film form, the 'Twin Peaks' narrative suffers from thematic inconsistencies and aesthetic deviations. The scope of 'Twin Peaks' seems much more capable in the setting of television and its gradual, episodic set-up. In recent years, however, with the announcement of a revival of the series, retrospective analysis of 'Fire Walk with Me' has become more positive, and the film has also become an integral part of the overall 'Twin Peaks' canon. Nevertheless, the transition from television to film in the case of 'Twin Peaks' has remained a point of fan and scholarly controversy, with issues of continuity, narrative and aesthetics between the two different mediums continually being addressed and compared. In light of the news that the new season of 'Twin Peaks' is set to be released in 2017, this article examines the significance of 'Fire Walk with Me' as a cinematic counterpart and prequel to the original series, and how this has helped shape – whether positively or not – the overall narrative of 'Twin Peaks'.

  18. Photoluminescence spectra of n-doped double quantum wells in a parallel magnetic field

    International Nuclear Information System (INIS)

    Huang, D.; Lyo, S.K.

    1999-01-01

    We show that the photoluminescence (PL) line shapes from tunnel-split ground sublevels of n-doped thin double quantum wells (DQW close-quote s) are sensitively modulated by an in-plane magnetic field B parallel at low temperatures (T). The modulation is caused by the B parallel -induced distortion of the electronic structure. The latter arises from the relative shift of the energy-dispersion parabolas of the two quantum wells (QW close-quote s) in rvec k space, both in the conduction and valence bands, and formation of an anticrossing gap in the conduction band. Using a self-consistent density-functional theory, the PL spectra and the band-gap narrowing are calculated as a function of B parallel , T, and the homogeneous linewidths. The PL spectra from symmetric and asymmetric DQW close-quote s are found to show strikingly different behavior. In symmetric DQW close-quote s with a high density of electrons, two PL peaks are obtained at B parallel =0, representing the interband transitions between the pair of the upper (i.e., antisymmetric) levels and that of the lower (i.e., symmetric) levels of the ground doublets. As B parallel increases, the upper PL peak develops an N-type kink, namely a maximum followed by a minimum, and merges with the lower peak, which rises monotonically as a function of B parallel due to the diamagnetic energy. When the electron density is low, however, only a single PL peak, arising from the transitions between the lower levels, is obtained. In asymmetric DQW close-quote s, the PL spectra show mainly one dominant peak at all B parallel close-quote s. In this case, the holes are localized in one of the QW close-quote s at low T and recombine only with the electrons in the same QW. At high electron densities, the upper PL peak shows an N-type kink like in symmetric DQW close-quote s. However, the lower peak is absent at low B parallel close-quote s because it arises from the inter-QW transitions. Reasonable agreement is obtained with recent

  19. Conductance oscillations of core-shell nanowires in transversal magnetic fields

    Science.gov (United States)

    Manolescu, Andrei; Nemnes, George Alexandru; Sitek, Anna; Rosdahl, Tomas Orn; Erlingsson, Sigurdur Ingi; Gudmundsson, Vidar

    2016-05-01

    We analyze theoretically electronic transport through a core-shell nanowire in the presence of a transversal magnetic field. We calculate the conductance for a variable coupling between the nanowire and the attached leads and show how the snaking states, which are low-energy states localized along the lines of the vanishing radial component of the magnetic field, manifest their existence. In the strong-coupling regime they induce flux periodic, Aharonov-Bohm-like, conductance oscillations, which, by decreasing the coupling to the leads, evolve into well-resolved peaks. The flux periodic oscillations arise due to interference of the snaking states, which is a consequence of backscattering at either the contacts with leads or magnetic or potential barriers in the wire.

  20. A proposal to pulse the Bevatron/Bevalac main guide field magnet with SCR power supplies

    International Nuclear Information System (INIS)

    Frias, B.; Alonso, J.; Dwinell, R.; Lothrop, F.

    1989-01-01

    The Bevatron/Bevalac Main Guide Field Power Supply was originally designed to provide a 15,250 Volt DC. at sign 8400 Ampere peak magnet pulse. Protons were accelerated to 6.2 Gev. The 128 Megawatt (MW) pulse required two large motor-generator (MG) sets with 67 ton flywheels to store 680 Megajoules of energy. Ignitron rectifiers are used to rectify the generator outputs. Acceleration of heavy ions results in an operating schedule with a broad range of peak fields. The maximum field of 12.5 kilogauss requires a peak pulse of 80 MW. Acceleration of ions to 1.0 kilogauss requires an 8 MW peak pulse. One MG set can provide pulses below 45 MW. Peak pulses of less than 15 MW are now a large block of the operating schedule. A proposal has been made to replace the existing MG system with eight SCR power supplies for low field operation. The SCR supplies will be powered directly from the Lawrence Berkeley Laboratory's 12.3 KV. power distribution system. This paper describes the many advantages of the plan. 4 refs., 3 figs., 3 tabs

  1. Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors

    International Nuclear Information System (INIS)

    Yu Ying-Xia; Lin Zhao-Jun; Luan Chong-Biao; Yang Ming; Wang Yu-Tang; Lü Yuan-Jie; Feng Zhi-Hong

    2014-01-01

    By making use of the quasi-two-dimensional (quasi-2D) model, the current–voltage (I–V) characteristics of In 0.18 Al 0.82 N/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance–voltage (C–V) characteristics and I–V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm 2 /V·s for the prepared In 0.18 Al 0.82 N/AlN/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain–source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Managing peak loads in energy grids: Comparative economic analysis

    International Nuclear Information System (INIS)

    Zhuk, A.; Zeigarnik, Yu.; Buzoverov, E.; Sheindlin, A.

    2016-01-01

    One of the key issues in modern energy technology is managing the imbalance between the generated power and the load, particularly during times of peak demand. The increasing use of renewable energy sources makes this problem even more acute. Various existing technologies, including stationary battery energy storage systems (BESS), can be employed to provide additional power during peak demand times. In the future, integration of on-board batteries of the growing fleet of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) into the grid can provide power during peak demand hours (vehicle-to-grid, or V2G technology). This work provides cost estimates of managing peak energy demands using traditional technologies, such as maneuverable power plants, conventional hydroelectric, pumped storage plants and peaker generators, as well as BESS and V2G technologies. The derived estimates provide both per kWh and kW year of energy supplied to the grid. The analysis demonstrates that the use of battery storage is economically justified for short peak demand periods of <1 h. For longer durations, the most suitable technology remains the use of maneuverable steam gas power plants, gas turbine,reciprocating gas engine peaker generators, conventional hydroelectric, pumped storage plants. - Highlights: • Cost of managing peak energy demand employing different technologies are estimated. • Traditional technologies, stationary battery storage and V2G are compared. • Battery storage is economically justified for peak demand periods of <1 h. • V2G appears to have better efficiency than stationary battery storage in low voltage power grids.

  3. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    Science.gov (United States)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  4. Psychological Preparation for Peak Performance in Sports Competition

    Science.gov (United States)

    Ohuruogu, Ben; Jonathan, Ugwuanyi I.; Ikechukwu, Ugwu Jude

    2016-01-01

    This paper attempts to make an overview of various techniques, sport psychologist adopt in psychological preparation of athletes for peak performance. To attain peak performance in sports competitions, coaches and athletes should not base their prospect on physical training on sport skills alone rather should integrate both the mental and physical…

  5. The end of Peak Oil? Why this topic is still relevant despite recent denials

    International Nuclear Information System (INIS)

    Chapman, Ian

    2014-01-01

    Up until recently Peak Oil was a major discussion point crossing from academic research into mainstream journalism, yet it now attracts far less interest. This paper evaluates the reasons for this and on-going relevance of Peak Oil, considering variations in predictive dates for the phenomenon supported by technological, economic and political issues. Using data from agencies, the validity of each position is assessed looking at reserves, industrial developments and alternative fuels. The complicating issue of demand is also considered. The conclusions are that, supported by commercial interests, an unsubstantiated belief in market and technical solutions, and a narrow paradigmatic focus, critics of Peak Oil theory have used unreliable reserve data, optimistic assumptions about utilisation of unconventional supplies and unrealistic predictions for alternative energy production to discredit the evidence that the resource-limited peak in the world's production of conventional oil has arrived, diverting discussion from what should be a serious topic for energy policy: how we respond to decreasing supplies of one of our most important energy sources. - Highlights: • Key advocates/opponents of Peak Oil reveal their biases. • Reserve calculation methods are considered, showing flaws. • Non-conventional oils’ viability is critiqued and found wanting. • Alternative fuels are found to be unsuitable substitutes for oil. • Demand increases add to the potential for fuel shortages

  6. A simple method for the deconvolution of 134 Cs/137 Cs peaks in gamma-ray scintillation spectrometry

    International Nuclear Information System (INIS)

    Darko, E.O.; Osae, E.K.; Schandorf, C.

    1998-01-01

    A simple method for the deconvolution of 134 Cs / 137 Cs peaks in a given mixture of 134 Cs and 137 Cs using Nal(TI) gamma-ray scintillation spectrometry is described. In this method the 795 keV energy of 134 Cs is used as a reference peak to calculate the activity of the 137 Cs directly from the measured peaks. Certified reference materials were measured using the method and compared with a high resolution gamma-ray spectrometry measurements. The results showed good agreement with the certified values. The method is very simple and does not need any complicated mathematics and computer programme to de- convolute the overlapping 604.7 keV and 661.6 keV peaks of 134 Cs and 137 Cs respectively. (author). 14 refs.; 1 tab., 2 figs

  7. Step-wise potential development across the lipid bilayer under external electric fields

    Science.gov (United States)

    Majhi, Amit Kumar

    2018-04-01

    Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.

  8. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    International Nuclear Information System (INIS)

    Ganter, R.; Bakker, R.J.; Gough, C.; Paraliev, M.; Pedrozzi, M.; Le Pimpec, F.; Rivkin, L.; Wrulich, A.

    2006-01-01

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect

  9. Nanosecond field emitted and photo-field emitted current pulses from ZrC tips

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, R. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)]. E-mail: romain.ganter@psi.ch; Bakker, R.J. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Gough, C. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Paraliev, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Pedrozzi, M. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Le Pimpec, F. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Rivkin, L. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland); Wrulich, A. [Paul Scherrer Institut, Villigen, CH 5232 (Switzerland)

    2006-09-15

    In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 {mu}m, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect.

  10. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    Science.gov (United States)

    Villarini, Gabriele; Smith, James A.; Serinaldi, Francesco; Bales, Jerad; Bates, Paul D.; Krajewski, Witold F.

    2009-08-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110km) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1mskm to a maximum of 5.1mskm. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2mskm). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2mskm ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades.

  11. Enhanced vegetation growth peak and its key mechanisms

    Science.gov (United States)

    Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Schwalm, C.; Huntzinger, D. N.; Chen, J.; Cook, R. B.; Fang, Y.; Fisher, J. B.; Jacobson, A. R.; Michalak, A.; Schaefer, K. M.; Wei, Y.; Yan, L.; Luo, Y.

    2017-12-01

    It remains unclear that whether and how the vegetation growth peak has been shifted globally during the past three decades. Here we used two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in seasonal peak vegetation growth. The attribution of changes in peak growth to their driving factors was examined with several datasets. We demonstrated that the growth peak of global vegetation has been linearly increasing during the past three decades. About 65% of this trend is evenly explained by the expanding croplands (21%), rising atmospheric [CO2] (22%), and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend was substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrated that croplands have a higher photosynthetic capacity than other vegetation types. The contribution of rising atmospheric [CO2] and nitrogen deposition are consistent with the positive response of leaf growth to elevated [CO2] (25%) and nitrogen addition (8%) from 346 manipulated experiments. The positive effect of rising atmospheric [CO2] was also well captured by 15 terrestrial biosphere models. However, most models underestimated the contributions of land-cover change and nitrogen deposition, but overestimated the positive effect of climate change.

  12. Simulating emissions of 1,3-dichloropropene after soil fumigation under field conditions.

    Science.gov (United States)

    Yates, S R; Ashworth, D J

    2018-04-15

    Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions. Published by Elsevier B.V.

  13. The simple method of determination peaks areas in multiplets

    International Nuclear Information System (INIS)

    Loska, L.; Ptasinski, J.

    1991-01-01

    Semiconductor germanium detectors used in γ-spectrometry give spectra with well-separated peaks. However, in some cases, energies of γ-lines are too near, to produce resolved and undisturbed peaks. Then, there is a necessity to perform a mathematical separation. The method proposed here is based on the assumption, that areas of peaks composing the analysed multiplet are proportional to their heights. The method can be applied for any number of interfering peaks, providing, that the function of the background under the multiplet is accurately determined. The results of testing calculations performed on a simulated spectrum are given. The method works successfully in a computer program used for neutron activation analysis data processing. (author). 9 refs, 1 fig, 1 tab

  14. Energy and public health: the challenge of peak petroleum.

    Science.gov (United States)

    Frumkin, Howard; Hess, Jeremy; Vindigni, Stephen

    2009-01-01

    Petroleum is a unique and essential energy source, used as the principal fuel for transportation, in producing many chemicals, and for numerous other purposes. Global petroleum production is expected to reach a maximum in the near future and to decline thereafter, a phenomenon known as "peak petroleum." This article reviews petroleum geology and uses, describes the phenomenon of peak petroleum, and reviews the scientific literature on the timing of this transition. It then discusses how peak petroleum may affect public health and health care, by reference to four areas: medical supplies and equipment, transportation, energy generation, and food production. Finally, it suggests strategies for anticipating and preparing for peak petroleum, both general public health preparedness strategies and actions specific to the four expected health system impacts.

  15. Statistical mechanical lattice model of the dual-peak electrocaloric effect in ferroelectric relaxors and the role of pressure

    International Nuclear Information System (INIS)

    Dunne, Lawrence J; Axelsson, Anna-Karin; Alford, Neil McN; Valant, Matjaz; Manos, George

    2011-01-01

    Despite considerable effort, the microscopic origin of the electrocaloric (EC) effect in ferroelectric relaxors is still intensely discussed. Ferroelectric relaxors typically display a dual-peak EC effect, whose origin is uncertain. Here we present an exact statistical mechanical matrix treatment of a lattice model of polar nanoregions forming in a neutral background and use this approach to study the characteristics of the EC effect in ferroelectric relaxors under varying electric field and pressure. The dual peaks seen in the EC properties of ferroelectric relaxors are due to the formation and ordering of polar nanoregions. The model predicts significant enhancement of the EC temperature rise with pressure which may have some contribution to the giant EC effect.

  16. Gamma-ray peak shapes from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  17. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu [Imaging and Medical Physics, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Dr., C-5018, Atlanta, Georgia 30322 (United States); Cai, Weixing [Department of Radiation Oncology, Brigham and Women’s Hospital Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115 (United States); Mao, Hui [Laboratory of Functional and Molecular Imaging and Nanomedicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, Georgia 30329 (United States)

    2016-06-15

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on the paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both

  18. Size and field effect on mesoscopic spin glass

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, K. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)]. E-mail: komatsu@az.appi.keio.ac.jp; Maki, H. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Taniyama, T. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sato, T. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)

    2007-03-15

    Spin glass particles were prepared as the mesoscopic system in order to examine the space scale of spin glass domain (droplet). The peak temperature T {sub peak} in the temperature-dependent magnetization is systematically reduced with decreasing average particle size. This is due to the imitation of droplet growth to the particle diameter. The magnetic field H also decreases T {sub peak}, which is caused by the reduction of the barrier height by Zeeman energy. However, there appears different tendency in the relation between H and T {sub peak} below 100 Oe. This indicates the existence of crossover between the two regimes in which the free energy and Zeeman energy govern the droplet excitation.

  19. On the Seismic Response of Protected and Unprotected Middle-Rise Steel Frames in Far-Field and Near-Field Areas

    Directory of Open Access Journals (Sweden)

    Dora Foti

    2014-01-01

    Full Text Available Several steel moment-resisting framed buildings were seriously damaged during Northridge (1994; Kobe (1995; Kocaeli, Turkey (1999, earthquakes. Indeed, for all these cases, the earthquake source was located under the urban area and most victims were in near-field areas. In fact near-field ground motions show velocity and displacement peaks higher than far-field ones. Therefore, the importance of considering near-field ground motion effects in the seismic design of structures is clear. This study analyzes the seismic response of five-story steel moment-resisting frames subjected to Loma Prieta (1989 earthquake—Gilroy (far-field register and Santa Cruz (near-field register. The design of the frames verifies all the resistance and stability Eurocodes’ requirements and the first mode has been determined from previous shaking-table tests. In the frames two diagonal braces are installed in different positions. Therefore, ten cases with different periods are considered. Also, friction dampers are installed in substitution of the braces. The behaviour of the braced models under the far-field and the near-field records is analysed. The responses of the aforementioned frames equipped with friction dampers and subjected to the same ground motions are discussed. The maximum response of the examined model structures with and without passive dampers is analysed in terms of damage indices, acceleration amplification, base shear, and interstory drifts.

  20. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-01-15

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  1. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-11-01

    This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation

  2. A simplified controller and detailed dynamics of constant off-time peak current control

    Science.gov (United States)

    Van den Bossche, Alex; Dimitrova, Ekaterina; Valchev, Vencislav; Feradov, Firgan

    2017-09-01

    A fast and reliable current control is often the base of power electronic converters. The traditional constant frequency peak control is unstable above 50 % duty ratio. In contrast, the constant off-time peak current control (COTCC) is unconditionally stable and fast, so it is worth analyzing it. Another feature of the COTCC is that one can combine a current control together with a current protection. The time dynamics show a zero-transient response, even when the inductor changes in a wide range. It can also be modeled as a special transfer function for all frequencies. The article shows also that it can be implemented in a simple analog circuit using a wide temperature range IC, such as the LM2903, which is compatible with PV conversion and automotive temperature range. Experiments are done using a 3 kW step-up converter. A drawback is still that the principle does not easily fit in usual digital controllers up to now.

  3. Peak oil: The four stages of a new idea

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Ugo [Dipartimento di Chimica, Universita di Firenze, Association for the Study of Peak Oil and Gas (ASPO), Polo Scientifico di Sesto Fiorentino, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi) (Italy)

    2009-03-15

    The present paper reviews the reactions and the path of acceptance of the theory known as ''peak oil''. The theory was proposed for the first time by M.K. Hubbert in the 1950s as a way to describe the production pattern of crude oil. According to Hubbert, the production curve is ''bell shaped'' and approximately symmetric. Hubbert's theory was verified with good approximation for the case of oil production in the United States that peaked in 1971, and is now being applied to the worldwide oil production. It is generally believed that the global peak of oil production (''peak oil'') will take place during the first decade of the 21st century, and some analysts believe that it has already occurred in 2005 or 2006. The theory and its consequences have unpleasant social and economical implications. The present paper is not aimed at assessing the peak date but offers a discussion on the factors that affect the acceptance and the diffusion of the concept of ''peak oil'' with experts and with the general public. The discussion is based on a subdivision of ''four stages of acceptance'', loosely patterned after a sentence by Thomas Huxley. (author)

  4. Production of highly charged ions of argon by optical field ionization in a relativistic laser field

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Akahane, Yutaka; Aoyama, Makoto; Nakano, Fumihiko; Yamakawa, Koichi

    2001-01-01

    We observed the highly charged ions of argon by optical field ionization in a relativistic intensity regime. Charge states up to Ar 15+ were produced at the highest intensity of 800 nm, linearly polarized 20 fs Ti: sapphire laser pulses. The peak intensity of the pulse is determined by comparing the measured ion production curve for Ar 9+ with ADK theory. The results of these measurements of the ionization indicate that the maximum peak intensity is achieved to ∼2x10 19 W/cm 2 . (author)

  5. Peak Operation of Cascaded Hydropower Plants Serving Multiple Provinces

    Directory of Open Access Journals (Sweden)

    Jianjian Shen

    2015-10-01

    Full Text Available The bulk hydropower transmission via trans-provincial and trans-regional power networks in China provides great operational flexibility to dispatch power resources between multiple power grids. This is very beneficial to alleviate the tremendous peak load pressure of most provincial power grids. This study places the focus on peak operations of cascaded hydropower plants serving multiple provinces under a regional connected AC/DC network. The objective is to respond to peak loads of multiple provincial power grids simultaneously. A two-stage search method is developed for this problem. In the first stage, a load reconstruction strategy is proposed to combine multiple load curves of power grids into a total load curve. The purpose is to deal with different load features in load magnitudes, peaks and valleys. A mutative-scale